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Abstract 

A Theoretical Cognitive Construct of a 3D Embodied Agent: 

VAL, the Virtual Autonomous Learner 

 

Lexx Lazerman 

 

The cognitive sciences have always educated educators by providing a pedagogical 

framework as a guide. However, the standard cognitive sciences are being challenged by 

a new paradigm, embodied cognition, in which learning is part of a dynamical system.  In 

this paradigm, virtual embodiment (VE) is the new artificial intelligence (AI). This thesis 

is an application of VE, introducing an approach to developing a virtual 3D agent that has 

the potential to achieve “strong AI” status. I believe such agents can mature into AI 

educators. And that the development of a great AI educator starts with the development 

of a humble AI child. My methodological approach is a metasynthesis of a broad range of 

disciplines and consists of (1) the use of empirical research to ground my ideas, (2) the 

integration of dissimilar research to construct new ideas, and (3) the use of thought 

experiments to uncover the fundamental nature of learning within an embodiment 

paradigm. As a result, this thesis introduces a virtual 3D agent, the virtual autonomous 

learner (VAL), along with key elements of its ecological construct. With an embodied 

cognitive perspective, VAL seeks to find its own affordance and that of its environment. I 

conclude that (1) the construct for VAL needs to accommodate different cognitive 

architectures if we are to make full use of its methodology; (2) a rigorous virtual 

curriculum must be developed, and efficient pedagogical tools should be designed and 

developed to implement this curriculum; and (3) an educational perspective is paramount 

for this project. 
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Introduction 

The cognitive sciences have always educated educators on learning. The three 

main theoretical schools, behaviorism, cognitivism, and constructivism, provide a 

pedagogical framework to guide educators. However, the standard cognitive sciences are 

being challenged by a new paradigm, embodied cognition, in which learning is part of a 

dynamical system (Shapiro, 2011). This thesis is an application of the new paradigm.  

Insights about embodied cognition are transforming traditional cognitive science, and 

virtual embodiment (VE) is the new paradigm for artificial intelligence (AI). 

AI is everywhere and used by everyone. If you recently Googled something—

anything—then you recently used AI. Broadly speaking, AI includes any algorithm that 

learns. AI can take on many forms as it is applied in different domains. When it is used in 

education, most AI resides in intelligent tutoring systems (Beck, 1996). In essence, these 

systems are “AI educators.” This thesis takes the concept of the AI educator to a new 

level. 

 AI includes a wide variety of processes that simulate intelligent behavior. AI 

systems can be subdivided into two classes based on their functionality: (1) weak AI and 

(2) strong AI (Searle, 1980).  Weak AI systems are systems that do not match or exceed 

human intelligence; these are software systems such as pattern recognition systems, 

expert systems, and data mining systems.  Today these weak AI systems are used in a 

wide range of fields, including medical diagnosis, stock trading, robotic control, gaming, 

and the toy industry. Most relevantly for our purposes, weak AI is being used in 

education. In contrast, unlike weak AI systems, strong AI systems that match or exceed 

human intelligence have not been realized.   
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In this thesis, I will explore the potentials of VE and begin a discourse on the 

construction of a virtually embodied synthetic learner that serves as a viable candidate for 

achieving strong AI. Most of this thesis centers around the creation of a construct that 

contains a 3D virtual agent; I argue that embodiment is a viable concept that can aid in 

the development of strong AI. Although this thesis presents the model for a 3D virtual 

computer agent, the Virtual Autonomous Learner (VAL), it is important to note that the 

creation of VAL is just the first step in the development of strong AI. Following the 

creation of VAL, the educational technology development device called “rapid 

prototyping” will be applied to accelerate learning. Rapid prototyping is used in many 

design-related domains and will be applied to VAL’s curriculum, with the ultimate goal 

of having VAL achieve strong AI status. The end product of such an achievement would 

be an AI educator.  

Key features of VAL’s construct are described and discussed throughout this 

thesis, including the accommodation of different cognitive architectures, the development 

of a rigorous virtual pedagogy, and the adoption of an educational perspective.  From an 

embodiment perspective, these are all key elements for the development of strong AI. 

This thesis contains six sections. In the first section following this introduction, 

“Educational Rationale and Context,” I discuss some specific shortcomings of human 

educators and argue that there is a need for AI educators. The next section, “Theoretical 

and Conceptual Framework,” covers the angle from which I approach my topic; here I 

identify the assumptions and presuppositions that I bring to my research. The section 

“Literature Review” contains a broad review that provides the background information 

needed to understand important concepts. In this section, I discuss similar research and 
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technologies, occasionally noting how the research has influenced my work and often 

commenting on how other technologies fall short of my research goals. In the following 

section, “Methodology,” I articulate the process that I used to generate my ideas.  

The final two sections, “An Ecological Construct of a Virtual Autonomous 

Learner” and “Learning Methodology of a Virtual Autonomous Learner,” are the main 

sections of this thesis. In the former, I present the key elements that are needed for an 

embodied agent to obtain strong AI status, and in the latter, I lay out the advantages of 

learning in a virtual environment rather than the real world. I conclude this thesis with a 

discussion of what can be expected from VAL and suggestions about future research 

directions. 

Educational Rationale and Context 

Educators have the most profound jobs, period. After all, much of civilization 

arose from individuals teaching individuals. In the beginning, the human educational 

system was explicit and relied heavily on oral tradition. Then, around eight thousand 

years ago, humans developed writing systems that allowed off-loading some of the 

knowledge and information that was stored in the heads of educators. Around five 

hundred years ago, the printing press made information widely available to anyone who 

could read. Today, information and knowledge are undergoing another revolution of sorts, 

a revolution whose poster child is Google. Google’s mission statement, “Organize the 

world’s information and make it universally accessible and useful” (Google, 2012), is not 

a collection of idle words—Google is in the process of digitizing every book ever written! 

Significantly, today there are more and more sophisticated devices (computers) that off-

load more and more information from educators. The significance of this revolution with 
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regard to education is that it has given students unprecedented access to knowledge and 

information. Yet we still have teachers. Why? Because, even though information is more 

readily available than ever before, teachers are still needed to guide inquisitive minds. As 

this thesis will show, this is especially true in early education where much learning comes 

from the interactions between teachers and students. That is, even in light of the digital 

revolution, face-to-face communication remains an efficient way to exchange knowledge 

and ideas.  

Evidently, then, the human educator still has much value. Nevertheless, humans 

are fundamentally flawed as educators. One of these flaws is the simple fact that all 

humans—educators included—have biases; this is just part of our nature. It is also widely 

accepted that the influence an educator can have on students is profound and that the 

influence can be for the better or for the worse. For example, studies have shown that 

teachers’ expectations of students can influence performance (Good, 1981). 

 Knowing that every educator, like every person generally, has biases, what can be 

done to ensure that students are not negatively affected? The answer is that not much can 

be done. Even the best educators, those who acknowledge their biases and try not to “act” 

on them, cannot control all of their biases, because many of these are subconscious 

(Gladwell, 2005). It would appear that the quality of an educator is linked to the quality 

of the individual. With that said, even though we know that some educators can 

potentially have a negative influence on students, we still value face-to-face or student-

to-teacher interactions.  

Furthermore, even the best educators—those who are considered among their 

peers as exceptional educators and who follow “best practices,” modifying their 
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pedagogical approaches for each student with a recognition of the student’s strengths and 

weaknesses and giving each student what that student needs when it is needed—have 

limitations. A measurable limitation of educators is inefficiency. There are only so many 

hours in the day, and there are many, many students. In fact, I would argue that if 

educators are tools for educating students, then it would be logical to surmise that a 

human educator, like any other tool, can be replaced by more efficient computer 

technology. Unlike a computer, a human educator cannot copy itself, is not portable, 

cannot update the latest “best practices,” and is not accessible in remote corners of this 

planet in the way that an AI educator can be.  

 Is it possible to have the best of both worlds? Can we create something that looks 

and acts like a human educator, yet does not have human biases and does have the 

efficiency of a computer?  

I ask you to suspend your disbelief for a moment and imagine a perfect educator. 

What would your perfect educator look like? How would that educator behave? The big 

question is: how would you design a perfect educator? This is perhaps a futile question, 

for if we asked a thousand educators for their vision of a perfect educator, we would 

surely get one thousand different visions. Regardless of what your idea of the perfect 

educator might encompass, consider this: one thing all educators have in common is that 

they each had an education themselves. This may seem like a trivial fact, but it is not—it 

is a profound one. It should not be taken lightly, because it is often life experiences that 

make an ordinary educator a great educator. So, regardless of how you want to design 

your perfect educator, that educator will have to be a student first and will have to 

develop, learn, make meaning, and make sense of the educator’s environment before 
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knowledge can be shared. This thesis argues that the development of a great AI educator 

starts with the development of a humble AI child. The thesis starts with the belief that 

humanity needs more and better educators, journeys through an exploration of the new AI 

paradigm, VE, and ends with a virtual child that will one day educate us.  

As we have mentioned, AI can provide a nonbiased approach to instruction, and it 

is already used in education in the form of intelligent tutoring systems. Indeed, in the past 

decade or so, virtual environments have started to gain momentum in educational settings. 

However, AI and virtual environments each have shortcomings with regard to their 

effectiveness in educational settings. Therefore, this thesis explores the potential of 

combining AI and virtual environments by applying embodied cognition principles to a 

virtual agent. Through this exercise, we will learn much about the nature of learning. 

 

Instead of trying to produce a programme to simulate the adult 

mind, why not rather try to produce one which simulates the 

child's?  

(Turing, 1950, p. 23) 

 

 Looking at the history of AI, it is clear that Alan Turing understood the profound 

potential of this emerging realm. He proposed two approaches to developing intelligent 

machines: (1) creating an adult mind and (2) creating a child (Turing, 1950). Thus, the 

idea of developing a synthetic child, a child “that would learn from experience just as a 

human child does” (McCarthy, 2008, p. 1), is not new. What is new since Turing’s time 

is our greater understanding of cognition, our ability to study brain activity in real time, 
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and, most relevant to my thesis, our technological proficiency for creating virtual 

environments.  

The traditional cognitive sciences, with their symbolic computations, had a strong 

influence on traditional AI (weak AI). Since this thesis views embodied cognition as the 

foundation for the new paradigm of cognitive science, VE should therefore become the 

new AI (strong AI). With that said, I shall argue—and I hope that you will agree after 

reading this thesis—that creating a virtual environment and placing a virtual infant in this 

environment is an efficient approach to developing humanlike intelligence.  

 Along with advocating the virtual environment approach, this thesis also argues 

that some of the issues relating to the design and development of intelligent machines are 

inherently “nature vs. nurture” problems. That is, there are two issues that contribute to 

the development of intelligent behavior: (1) on the nature side, there is the issue of the 

metaphoric “blank slate,” and (2) on the nurture side, there is the issue of how one would 

educate a virtual child (McCarthy, 2008). 

To complete my presentation of the educational rationale and context for this 

thesis, I need to mention one caveat concerning the proverbial “blank slate.” It is 

important to note that this is borrowed terminology, and I use it as a conceptual 

foundation because of its colloquial familiarity. However, the term is not accurate 

because the slate is never completely blank. That is, it is widely accepted that living DNA 

stores innate information, although how and how much is a matter of great debate. 

Nevertheless, in this thesis, the metaphoric blank slate is more like an ever-changing 

template, a cognitive template. Therefore, I use the term “template” rather than “blank 

slate” to refer to the default configuration of the virtual agent’s cognitive architecture.  
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 This thesis provides an integrative review of many domains to illustrate the 

potentials of 3D agents, and it introduces VAL, the Virtual Autonomous Learner, as a 

candidate for achieving strong AI.  

Theoretical and Conceptual Framework 

 The theoretical framework for my thesis has its foundation in many domains, 

including computer science, neuroscience, psychology, philosophy, evolution, and 

education.   

 From a philosophical and practical point of view, this thesis rejects dualism and 

takes as its theoretical foundation the belief that thoughts and behavior are the result of 

neural activity. This thesis takes a physical reductionist point of view, holding that 

physical phenomena can be explained by breaking large complex elements down into 

smaller simple parts. And since, as just mentioned, behavior is generated from neural 

activity, it should be possible to generate behavior from artificial neurons in a virtual 

environment. This thesis takes an embodied cognition point of view with regard to 

learning, as opposed to the standard model of the cognitive sciences that focuses on 

symbolic computation. That is, much of the conceptual framework for this thesis is based 

on the belief that intelligence emerges from the dynamic interaction of the body, the mind, 

and the environment. Therefore, the framework for this thesis rejects the old AI paradigm 

as a viable means for achieving strong AI and incorporates the belief that any AI system 

that tries to generate humanlike intelligence needs a humanlike body.  

Further, this thesis looks to evolution for insight into how the mind works, 

postulating that an examination of evolutionary stages can reveal hidden secrets about 

how the mind works. 
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 Finally, this thesis uses Moore’s Law to partially justify its potential success, to 

refute old AI paradigms, and to argue that virtual environments can exploit principles of 

embodied cognition.  

Literature Review 

The interdisciplinary nature of strong AI calls for a broad review of the literature, 

and this review, along with the material in the section “Theoretical and Conceptual 

Framework,” should help readers understand the perspective that underlies this thesis.  

Generally speaking, three approaches have been taken in the development of AI: 

the symbolic, statistical, and embodied approaches. Symbolic processing has been the 

mainstream approach to the development and application of AI systems. Although the 

symbolic approach has seen some limited success, it does not have the necessary 

conceptual framework for achieving the status of strong AI. Statistical learning 

algorithms, in conjunction with artificial neural networks (ANNs), are relatively more 

successful and are widely used in medical diagnosis, stock trading, robot control, gaming, 

and the toy industry. However, it is unlikely that an autonomous learner can be developed 

through symbolic methods, mainly because these methods lack the necessary ingredients 

for autonomous learners, which include having a body. The relatively new embodied 

approach to AI seeks to develop intelligence through the interaction between an agent 

and its environment. Researchers have been using the embodied approach to integrate 

human features such as hearing, vision, and emotions into virtual bodies (Lorenz & 

Barnard, 2007).  

Hence, a literature review for the application of embodied cognition principles to 

a virtual autonomous 3D agent with the purpose of developing strong AI must cover 
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research in three main domains: the environment, the body, and the mind. To better 

inform the reader about these three domains, this literature review tries to answer three 

questions:  

1. What is the current state of technology with regard to virtual environments? 

2. What is the current state of technology with regard to autonomous agents?  

3. What would the mind of an autonomous agent look like?  

Real and Virtual Environments 

 

A wide range of virtual environments are available for researchers to explore 

embodied cognition principles. Some environments are simple and resemble the popular 

website SecondLife, while others are very sophisticated and contain dynamic elements 

that can simulate real world physics (Boulos, Hetherington, & Wheeler, 2007). 

Some of the simple virtual environments have been used effectively in 

educational settings and offer a rich method of multimodal interaction between 3D agents 

and humans. To explore the effectiveness of virtual agents in educational settings, Rickel 

& Johnson (2000) designed the 3D agent Steve (short for “Soar Training Expert for 

Virtual Environments”). Steve can communicate with students through voice recognition 

and a voice synthesizer. Steve also uses gaze, gesture, and body orientation to guide the 

student in a particular task, in much the same way that a real educator would. As the 

authors put it, “Steve illustrates the enormous potential for face-to-face, task oriented 

collaboration between students and synthetic agents in virtual environments” (Rickel & 

Johnson, 2008, p. 24). However, although some elements of Steve’s construction can be 

considered to be AI, most are not. In its environment, Steve’s movement (behavior) is 

preanimated: it can only move in a predetermined way (Rickel & Johnson, 2000). Having 

said that, however, I’ll add that many elements of Steve’s environment are similar to 
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what I discuss in my thesis, and the application of Steve as a virtual instructor is a good 

model for thinking about the end use for VAL. 

Other virtual systems and environments are strictly centered around and based 

upon artificial neural network developmental tools. These environments allow 

researchers to explore the complexities of cognitive neuroscience in virtual 3D 

environments. For example, Emergent, an open-source tool, demonstrates how artificial 

neural networks can be used to simulate large-scale cognitive phenomena (O'Reilly & 

Munakata, 2000). This software system incorporates anatomical and physiological 

properties of the neocortex, basically simulating neurons down to the neural-transmitter 

level. This tool makes it possible to simulate large-scale brain networks with memory 

systems, sensors capable of pattern recognition, and artificial neurons capable of motor 

control. The relevance of this tool is that the same neural simulation technology can be 

used as the backbone for the virtual autonomous learner’s control system, as we shall see 

in the section “An Ecological Construct for the Virtual Autonomous Learner” of this 

thesis. 

There are more encompassing AI environments that contain humanlike agents that 

bridge the gap between the virtual and real worlds. For example, SIMNOS, a virtual 

embodied agent developed at The Machine Consciousness Lab at the University of 

Bristol, simulates the cognitive development of an agent within the virtual world (Gamez, 

2008). After completing a virtual learning intervention, the system can upload the “mind” 

of the agent to its real world counterpart, the physical robot CORNOS. That is, the 

cognitive architecture of this system can be used in both the real world and the virtual 
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world because SIMNOS’s virtual representation and control system are immersed in an 

environment with a “real time physics-based” emulator (Gamez, 2008, p. 895). 

Even with a physics emulator, there is a stark contrast between virtual and 

physical environments in most respects. However, many researchers believe that the real 

and virtual environments pose “nearly identical challenges from the agent modeling 

perspective” because in both domains, agents receive sensory data from the environment 

(Best & Lebiere, 2006, p. 186). Furthermore, today’s virtual worlds can simulate most 

real-world elements; we can model and simulate the physical world in minute detail 

down to the ion channels of neurons. Moreover, within these virtual worlds, we can 

simulate the real-world physics that is necessary for an embodied approach to learning. 

For example, dynamic physics engines can simulate forces like gravity. Virtual 

environments can also simulate surface textures that affect their virtual properties, like 

friction. Also within these environments, optical properties like reflection and refraction 

can be simulated.  

Virtual environments are so apt at representing real-world physics and dynamics 

that engineers use data generated in virtual environments to guide the construction of 

real-world artifacts. All of this means that a methodological approach that uses virtual 

environments allows researchers to study the relationship between the environment, the 

body, and the mind. Virtual worlds are modeled on real-world systems so that the 

stimulus data for an agent’s system are essentially the same as real-world data (Best & 

Lebiere, 2006). Best and Lebiere add that “most importantly, these domains involve 

agents that [can] interact with humans and each other in real-time in a three-dimensional 

space” (2006, p. 186). 
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Embodiment  

 

As mentioned in the section “Educational Rationale and Context,” this thesis has 

a bias towards Turing’s (1950) child-based approach to the development of strong AI, 

believing that it is technologically feasible to build “a child machine that would learn 

from experience just as a human child does” (McCarthy, 2008, p. 2003). McCarthy 

believes that the past failure of AI to create intelligence by creating a child owes to the 

fact that “innate knowledge the child machine should be equipped with was ignored” 

(McCarthy, 2008, p. 2003). I shall further comment on this issue of innate knowledge in 

the section “Learning Methodology for a Virtual Autonomous Learner.”   

As the literature illustrates, the idea of a synthetic child learner has been around 

since the inception of AI. However, the tools to implement this idea have only been 

available to researchers in recent years. This is important, because much of what I present 

not only uses embodied cognition, the new paradigm for the cognitive sciences, but it 

also takes advantage of these new software tools. Research that is similar to mine, both in 

the physical world and in a virtual world, also takes advantage of new technologies and 

techniques. Two examples follow.  

The physical robot iCub is an open-source humanoid robot that has the 

approximate size and proportions of a human baby.  This is an autonomous agent that 

contains an array of sensors and motors that simulate human faculties.  The researchers 

who developed iCub claim that it has “the ability to learn the affordances of objects” 

(Metta, 2010, p.7). The cognitive architecture of this robot enables learning and 

development in a social environment; that is, it learns from its interactions with people. 
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The researchers also claim that iCub “adapts and learns how to behave in new situations” 

and “invents new solutions on the basis of the past experience” (Metta, 2010, p. 1).  

In the virtual realm, the CyberChild may be the most ambitious project that 

attempts to simulate the enormous complexity of the human body, and this project is 

most similar to my own research. CyberChild is a virtual child agent that includes 

features like hearing and touch receptors, pain receptors, muscles, and a gut with bladder 

control (Cotterill, 2003). Cotterill believes that virtually modeling the core elements of 

the mammalian nervous system that represent “the earliest stages of human life” will 

bring about intelligent behavior (2003, p. 31). However, Cotterill’s project focuses on the 

emergence of consciousness, and in this respect, our research diverges. Although our 

research methods are similar in some respects, my work focuses on producing a virtual 

agent that learns autonomously. 

Other researchers, like Mueller & Minnery (2008) and Goertzel & Pennachin 

(2007), adopt a similar embodiment perspective. However, much of their research 

focuses on high-level cognitive processes and resembles the inquiry methods of the old 

AI paradigm, whereas CyberChild and iCub are examples of recent research projects that 

adopt the new paradigm of looking at child embodiment for insight about intelligence.  

Generally speaking, embodiment as a research field has been around for at least 

20 years, and Rodney Brooks may be one of its most prominent advocates. Brooks has 

written extensively on robotics systems that depart from classical AI assumptions. Brooks 

discusses how to generate intelligent behavior in robots by exploiting the morphology 

and the physical properties of the body. He advocates embodied cognition principles that 

promote learning, a key component of my thesis.  Brooks develops perceptual systems 
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that incorporate visual, vestibular, auditory, tactile, and kinesthetic senses to create what 

he calls “a complete embodied system” (Brooks, 1999, p. 52). Pfeifer, Bongard, and 

Grand (2007) use the term “complete-agent principle” (p. 104) and apply many of Brooks’ 

ideas, offering detailed examples and empirical studies of applications of embodied 

cognition principles to agents.   

Brain and Mind 

 

While the previously mentioned researchers concentrate on the morphology of the 

body and the relationship between the body and the environment, other researchers offer 

insight into the morphology of neurons. To shed light on the question “What would the 

mind of an autonomous agent look like?” we must review the morphology of neurons 

(their architecture) and the morphology’s effects—cognition. Knowledge of how human 

neural morphology changes over time and how that change affects overall behavior can 

guide the development of an artificial neural network for a complete agent.  

Different research domains can be combined to paint a clearer picture of the 

brain–mind relationship. For example, Edelman and Mountcastle’s (1978) study of higher 

brain functions offers insight into the morphology of the brain’s neocortex, and Gopnik’s 

(2009) theory of babies’ consciousness offers insight into the mind. Edelman “Neural 

Darwinism” proposes that neurons are first indiscriminately and massively 

interconnected during early stages of development and that the neural network is 

subsequently pruned through experience, keeping only the strongest connections.  This 

theory complements Gopnik’s ideas about babies’ consciousness: Gopnik sheds light on 

the mind, while Edelman and Mountcastle shed light on the brain. These authors would 

lead us to believe that babies are more aware (conscious) of and less biased about their 
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environment than are adults. The section “Learning Methodology for a Virtual 

Autonomous Learner,” will make it evident why this is significant. 

Gopnik (2009) also claims that infants are logical and rational and understand 

cause and effect, somehow making complicated calculations with conditional 

probabilities. Apparently, a baby is the “most powerful learning computer on the planet” 

(Gopnik, 2011) and uses Bayesian learning algorithms.  

Generally, solid insights about the human mind can contribute to the development 

of strong AI.  In this thesis, the mind encompasses all cognitive functions, and from an 

embodied cognitive point of view, cognitive functions incorporate both the brain and 

body.  

Any serious discussion of the mind or humanlike intelligence must account for 

consciousness. There are many views about the mind and human consciousness that can 

be modeled in the pursuit of strong AI. Therefore, when they conduct research and 

develop theories related to the mind, many researchers look for evolutionary factors that 

might have contributed to human intelligence (Greenspan & Shanker, 2004; Gopnik, 

2009; Hawkins & Blakeslee, 2004; Jaynes, 1990; Montague, 2006). In fact, I believe that 

metaphorically rewinding the stages of human evolution can offer the most valuable 

insight into the development of embodied agents’ cognitive architectures. 

 Hawkins and Blakeslee’s (2004) theory of intelligence offers a starting point for a 

simple cognitive architecture. These authors offer a plausible explanation of the major 

function of the human neocortex. They interpret Mountcastle’s (1997) cortical column as 

a mini generic processor, and they claim that the neocortex is a massive memory-

prediction machine. The sample generic architecture that I offer in the section 
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“Subsystem” of “Learning Methodology for a Virtual Autonomous Learner” is based on 

Hawkins and Blakeslee (2004).  

Greenspan and Shanker (2004) lay out a developmental road map of human 

behavior and intelligence. These authors believe that higher cognitive functions like 

abstract thinking began with basic emotions that successively became more and more 

complex. This view fits well with an embodied approach to strong AI. An application of 

their ideas would be most fruitful as a guide for the development of VAL’s curriculum. 

Jaynes (1990) suggests a plausible method for developing a virtual embodied conscious 

mind, and this might contribute greatly to the general architecture of a complete virtual 

agent. Jaynes’ theory, which is that the conscious mind has only been around for a few 

thousand years, provides insight into the type of cognitive performance that might be 

expected from an embodied agent.  Jaynes’ theory is the reason that I shy away from 

claiming that VAL will develop a conscious mind at any time in the near future. My 

reasoning is that if the conscious mind has only been around for a small period of human 

history, then this may mean that consciousness appears at a very high level of cognitive 

development—and therefore, there is no need to look for consciousness in VAL, 

especially during the early stages of development. This does not mean that we should not 

strive for developing consciousness in virtual agents; in fact, Jaynes offers an interesting 

model of how an agent can acquire a conscious mind. The bicameral mind is a model of 

the mind in which the mind is slightly divided (this can be seen physically with the 

corpus callosum) and one side can become aware of the other. This theory about the mind 

can be modeled with artificial neural networks. 
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This application of Jaynes’ (1990) research was not his intent. That is, his book 

does not discuss computation or artificial neural networks, so I have taken great liberty in 

translating his ideas and applying them to my research. However, other researchers with 

similar ideas do have more computational backgrounds. A good example is Reed 

Montague, a professor of neuroscience. Montague’s (2006) discussions and ideas center 

around computation, efficiency, and value, and he discusses a particular goal common to 

all animals: the goal of surviving. Montague discusses how our brains are like computers 

and postulates that our brains have evolved to survive by seeking simple goals like food, 

water, and sex. He claims that these simple goals can then turn into more complex ideas. 

Most importantly, he discusses how the brain builds meaning through a built-in value 

system. The relevance to my thesis is that Montague offers insight into computational 

perception and answers the very important question, “How would a complete agent build 

meaning?”  

These theories of mind and consciousness that pertain to the architecture of neural 

connectivity are very important in the development of strong AI. As already mentioned, 

past failures in strong AI have been attributed to the lack of innate attributes within the 

architecture of artificial neural networks (McCarthy, 2008). With the proper innate neural 

configurations and exposure to a stimulating environment, people thrive (Ridley, 2003), 

and I believe that the same will be true of VE agents. 

The Big Picture 

 

An embodied cognitive perspective on developing strong AI seeks to find an 

algorithm for the relationship between the environment, the body, and the mind. Gibson 

(1979) articulates this relationship in what is popularly known as “affordance theory.” 



19 

Gibson’s theory discusses the surface and texture of objects, and he claims that how an 

animal perceives an object will determine how the animal will use it. Gibson holds that 

the morphology of an animal affects its perception. Gibson’s discussion of affordances, 

the properties of objects that permit specific actions to be taken, is an important 

contribution to the overall theory of embodied cognition and therefore will serve as a 

good starting point for my discussion of which innate properties should be programmed 

into an agent. In many respects, my research is an application of Gibson’s work. I shall 

say more about innatism in the section “Learning Methodology for a Virtual Learner.” 

The theory of affordance also offers indirect insight into how artificial vision can 

be developed. Gibson’s views on perception are discussed and applied in Marr (1982), 

which provides ideas about how to develop better perception for virtual agents. Marr 

claims that vision is a complex information-processing system, and he deconstructs 

vision into many components that can be used as a computational filtering system. This 

area of research is very important because one of the most profound challenges facing the 

development of strong AI is the development of perception. Marr’s deconstruction of 

vision complements Gibson’s environment/body/mind processes. In his research, Marr 

describes how the brain processes different visual elements like edges, reflection, textures, 

and shadows. An application of this research, the creation of a multilayered neural 

network that filters different aspects of our visual world, inspired many AI researchers to 

research and create better visual perception devices for intelligent agents.   

Today, we have the technology to exploit and apply some of the fundamental 

aspects of affordance theory. For example, most 3D modeling and animation software has 
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the ability to create objects with surface textures that contain all of Marr’s visual 

elements, providing 3D agents with the opportunity to learn the affordance of said objects. 

Before I turn to the final topic in this literature review, there is one more 

important point that must be explicitly stated, as it is a testament to the state of the 

technologies discussed in this literature review: a synergy is developing in VE research, 

perhaps in part because many of the software packages and technologies that I have 

reviewed, like the dynamic physics simulators, are open source.  

Finally, this literature review will take a quick look at the current state of 

technology in general and how it affects my thesis. The futurist Ray Kurzweil holds that 

the exponential growth of technology and its effect on society are profoundly shaping the 

new direction of AI. Kurzweil (1999) predicts that strong AI will be achieved by 2029, 

when he believes that computers will commonly pass the Turing test (Turing 1950). 

Others, most notably Paul Allen, the cofounder of Microsoft, believe that this will be 

achieved at a much later date (Allen & Greaves, 2011). Kurzweil (2005) bases much of 

his prediction on Moore’s Law, which states that computer processing power will double, 

and the price per unit will drop by half, every 18 months. Moreover, this popular 

statement is only part of the big picture. That is, the price per unit is not the only factor 

that contributes to the exponential growth of computer technology; new algorithms that 

process information in new and more efficient ways also increase computational power. 

The success of strong AI is therefore not solely linked to processing power; innovative 

techniques will be the backbone for its success. It is new ideas and processes (algorithms) 

that will primarily contribute to the ultimate goal: a virtual agent that has strong AI status. 
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Methodology 

My methodological approach—that is, the process by which I generate my 

arguments and my conclusions—is a metasynthesis of a broad range of disciplines and 

consists of (1) the use of empirical research to ground my ideas, (2) the integration of 

dissimilar research to construct new ideas, and (3) the use of thought experiments to 

uncover the fundamental nature of learning within an embodiment paradigm. 

Empirical Research 

 

Most ideas and theories need to be grounded on some starting point. Therefore, I 

humbly stand on the shoulders of other researchers and use their empirical research to 

ground my ideas. As you have seen in my literature review, the research that I use is 

broad and covers many disciplines. When reviewing a study or even a philosophical 

paper, I constantly ask myself, “How is this relevant to my research?”   

Integrate Dissimilar Research 

 

The cognitive sciences are by their very nature interdisciplinary; AI is only a 

small piece of a much larger picture that includes psychology, philosophy, neuroscience, 

linguistics, anthropology, sociology, and education. What might seem to be dissimilar 

areas of research are in fact intricately related. Moreover, the triangulation of data or 

knowledge from different domains paints a clearer picture of the very nature of VE. 

Therefore, crossing traditional boundaries between knowledge domains is the only way to 

achieve strong AI, and the only feasible perspective for the development of strong AI is 

one that integrates multiple perspectives from all relevant domains. 

Thought Experiments 
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Albert Einstein is known for saying that “imagination is more important than 

knowledge.”  He used thought experiments as a tool to see what cannot be seen and to go 

where no one can go. Going into the mind of a child is not child’s play. That is, building 

a child AI system is very different than building an adult AI system. If you want to model 

an adult mind and want to know what adults are thinking, you have the privilege of 

asking them. However, trying to figure out what a child is thinking is somewhat more 

complex, and more complex yet is peering into the mind of a virtual infant.  The last is 

the crux of the thought experiment that this thesis offers.  

An example of the application of this methodology would be as follows: 

Something in an anthropology research article sparks my attention and stimulates my 

recall of a psychology study, and together, these studies reinforce the results of a 

neuroscience experiment that I read about last week. This quickly reminds me how an 

engineer used those results as a guide for redesigning the cognitive architecture inside his 

robot. All of these elements then provide enough information to guide me through a 

thought experiment. In the case of this thesis, leveraging existing technology and 

integrating dissimilar research gives me a sense of what it is to be an infant in a virtual 

environment and helps me to mentally visualize the neural processes of a virtual agent 

engaging with its environment.  

An Ecological Construct for the Virtual Autonomous Learner 

Strong AI requires a construct that can build meaning in a way that resembles 

biological meaning building. This section articulates the key plausible elements for a 

virtual learning environment for the virtual student VAL. With VAL and its 3D 
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environment, I seek to exploit embodied cognitive principles with the goal of having 

VAL develop strong AI status. I shall begin with an overview of my approach. 

An efficient search for inspiration for the graphic user interface (GUI) and the 

overall design features of VAL should begin with a look at industries that have similar 

tools and structures. Moreover, since an embodied approach requires an environment for 

the body and a body for the mind, VAL’s construct should be based on a 

multidimensional environment or 3D software platform.  

The 3D software industry has been developing virtual tools and environments for 

over 30 years, and there is a gamut of 3D software tools for modeling, animating, 

rendering, and building simulations. These tools serve mammoth industries like special 

FX entertainment, 3D-animated films, 3D computer games, and 3D graphics for websites. 

From a manufacturing perspective, the 3D Computer Aided Design (CAD) industry is a 

robust multibillion dollar industry that provides visualization and analytical tools for 

engineers and architects, such as finite element analyses. These 3D tools create virtual 

products that are so realistic that educators use them for training pilots, soldiers, and 

medical personnel in life and death situations. So this thesis does not redesign the 

metaphorical virtual wheel; rather, it leverages different technologies with the aim of 

creating a new research tool that designs and develops cognitive devices.  

Within the 3D-environment software landscape, the diverse community uses a 

multitude of interface and design conventions that provide a common foundation for 

anyone who wishes to build in 3D. Therefore, in order to be comprehensive, much of 

what is illustrated below has been drawn from these standards and conventions. 
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Figure 1. Sample GUI. This figure illustrates the Environment module that 

has a four viewport configuration. The other two modules in VAL’s 

construct are Curriculum and Stats. 

Environment 

 

  VAL’s construct is, first and foremost, a 3D environment. The main interface of 

such an environment should have multiple viewports to help navigate within the 3D 

space, as illustrated in Figure 1. Standard viewing angles within these viewports consist 

of a perspective view, and front, back, right, left, top, and bottom views. With simple 

clicks on a button, a viewport can be resized or reoriented to display any view. Most 

importantly, a viewport can display the virtual agent’s point of view. That is, the 

viewport can show you what the agent VAL is actually seeing at any given moment. This 
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is a significant feature of virtual worlds, because in the real world, we never get to see a 

student’s true perspective.  

Using standard tools, researchers can build fundamentally anything within these 

viewports: a chair, a desk, a classroom, a school, or a humanoid infant body. The degrees 

of detail that these virtual artifacts have can vary dramatically, where more detail equates 

to a greater computational demand. The degree to which these virtual artifacts can be 

displayed to us, as opposed to the virtual agent, also varies dramatically. Our need to 

visualize the virtual content has a computational cost, and the cost is greater when we 

want to see more. There is a distinct difference between (1) the internal mathematical 

representation of objects and (2) the display resolution or what we see on the monitor. It 

is important to note that the viewports are used to see into and set up the environment; the 

agent itself does not need the viewports. The learning ramifications of this fact will be 

articulated in the next section, “Learning Methodology for a Virtual Autonomous 

Learner.” 

Virtual efficiency will be a recurring topic, as it is an important issue with regard 

to VAL’s environment (or any other virtual environment). Due to the limitations of 

computer processor speed, there is always a compromise between realism and 

performance in virtual environments. For example, with today’s technology, we can 

easily create virtual installations that are physically and photographically identical to real 

world installations; however, there is an efficiency cost for this level of realism, and that 

cost is such that most computers would not be able to navigate in real time within such a 

high-resolution environment. Nevertheless, significant and vital calculations can still be 

made based on the interaction between the environment and the agent’s body, depending 
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on how one compromises with the amount of resolution in the system.  Since efficiency 

will be a recurring issue in this thesis, compromise will be a recurring solution. 

Physics simulation. A virtual embodied approach to cognition requires the agent 

to interact with its environment, and this interaction should resemble real-world 

interactions. For example, objects have mass in the real world, and all mass is subject to a 

force that literally keeps us grounded: gravity. This force and other properties of the real 

world can be simulated in virtual environments with what is called a “dynamic physics 

engine.” 

The embodied cognitive way for VAL to learn is to learn like a real infant. 

Therefore, VAL’s environment must have the same forces as our real-world environment. 

When a baby opens its hands and their contents fall down, the baby can quickly learn the 

effects of gravity. This is a simplified example of how a baby learns the effect of 

gravitational force: that all things fall down. Therefore, as long as the same forces are in 

place, there is the potential for VAL to learn through VE principles. 

There are numerous open-source real-time physics engines that simulate the 

forces that are needed for a virtual agent to learn causality, that is, the relationship 

between an event (the cause) and a second event (the effect). Real-time physics engines 

create dynamic virtual environments that are similar to our real world. Virtual physics 

engines not only simulate gravity but also include a wide variety of other features. An 

important example is collision detection. Collision detection is performed by a system 

that defines the boundaries of virtual objects and that forces all other objects in the 

environment to respect these boundaries. Physics simulators also implement rigid body 
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dynamics, soft body dynamics, and fluid dynamics. See Boeing and Bräunl (2007) for a 

more extensive review of open-source physics simulators. 

Objects. Much of VAL’s learning will come from the interaction between VAL 

and the virtual objects in its virtual environment. Virtual objects are just mathematical 

representations of real objects. Standard 3D tools can be used to create these objects 

within VAL’s virtual environment through a process called “3D modeling.” There are 

technicians in the 3D industry who specialize in modeling, and the created artifacts are 

routinely imported and exported across applications and platforms.  There are also 

millions of premade objects that can be imported from hundreds of digital libraries. Once 

imported or created in VAL’s construct, these objects can be modified and virtual 

properties can be assigned to them, giving them the characteristics of their real world 

counterparts. 

As discussed above, the computational cost associated with the amount of details 

and properties to be represented is one of the main issues surrounding objects in virtual 

environments. The representation of a real-world object in a virtual environment is a 

mathematical representation that uses a virtual wire mesh to represent the volume of the 

object. The wire mesh can be dense or light (see Figure 2), where a less dense wire frame 

is less realistic but also less computationally demanding. It is important to note once 

again that much of the computational demand arises from the computer showing us 

(rendering) the results of the representation. That is, displaying the virtual environment 

on our monitor has a computational cost. 
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 a) low density    b) medium density  c) high density 

Figure 2. Different levels of wire mesh density. This figure illustrates the 

different levels of wire mesh density that a 3D virtual object can have: a) 

low-density sphere with 10 subdivisions within its vertical and horizontal 

axes, b) medium-density sphere with 20 subdivisions within its vertical and 

horizontal axes, and c) high-density sphere with 40 subdivisions within its 

vertical and horizontal axes. 

Once the wire mesh for an object is created, it can be covered with bitmaps 

(image files) and texture maps, and it can be assigned other surface properties. Any 

image or pattern can be applied to a virtual object, making it difficult for a person to 

differentiate the virtual object from its real-world counterpart. Virtual objects can also be 

assigned optical properties like transparency and translucency that control the reflective 

and refractive properties of these objects.  

Virtual lights, objects that behave like real lights, illuminate virtual darkness and 

cast shadows of objects. Through a computational process called “ray tracing,” the visual 

effects of the lights in a virtual environment are akin to those of their real-world 

counterparts. Ray tracing traces virtual rays of light as they interact with the surfaces of 

objects in the virtual environment, and it does this in a manner that resembles real light. 
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The process of computer software calculating all of the variables in a scene, figuring out 

what the environment should look like, and then presenting it in one of the viewports so 

that we or an avatar can see it is called “rendering.” A skilled computer 3D modeller and 

renderer can easily create virtual environments that are indistinguishable from real 

environments. 

Along with optical properties, virtual objects can be assigned (tagged with) 

physical properties. For example, they can be soft or hard, light or dense, and fragile or 

durable. These physical properties work in conjunction with the dynamic physics engine. 

The tagged physical properties tell the physics simulator how to manipulate the objects. 

So, for example, a spherical object in a virtual environment that is given the properties of 

a bowling ball will behave like a bowling ball, and a spherical object that is given the 

properties of a basketball will behave like a basketball. Impressively, the rendering can 

be performed in real time. 

Knowing that there is a computational cost to providing details, we should 

determine the degree of modeling details and the quantity and quality of the properties 

assigned to any given object based on the amount of interaction VAL would have with 

said objects. For example, there is no need to create an über-physically-realistic toy if that 

toy is on a distant shelf, far out of VAL’s sight and reach. The computational cost of such 

an object would be high, while the learning value for VAL would be low. 

Other agents and avatars. If VAL is to learn like other children, interactions 

between VAL and other agents are of paramount importance. The technological 

constructs of today’s virtual environments allow such interactions, which can take on 

many forms. For instance, a 3D agent like Steve (Rickel & Johnson, 2000), which was 
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discussed in the “Literature Review” section, can be preprogrammed and preanimated to 

guide VAL in much the same way as it would guide a human student. VAL itself is 

another example. When VAL is a complete agent, regardless of how profoundly its 

cognitive abilities have developed, it can interact with an instantiation of itself. Basically, 

VAL could engage in playtime with another agent like itself. 

An avatar controlled by a human is probably the most robust device that can 

easily be implemented to facilitate VAL’s learning. A virtual avatar controlled by a 

human can be placed in the virtual environment in several ways. For example, the avatar 

can have virtual volume and “physically” interact with VAL in much the same way that 

avatars interact with other avatars in the virtual world of SecondLife. A human-controlled 

virtual avatar can be coupled with forced-feedback technology. Haptic technology (tactile 

feedback) systems that can transmit forces between the real world and virtual worlds 

have been around as long as virtual worlds (Hayward, Astley, Cruz-Hernandez, Grant, & 

Robles-De-La-Torre, 2004). Haptic technology has great potential for physical 

engagement with VAL; I will discuss this further in “Learning Methodology for a Virtual 

Autonomous Learner.” 

A more efficient, but less engaging, way for a human to interact with VAL would 

be by appearing in the virtual environment as a hologram; however, the downside of this 

technique is that it would not have virtual volume. The system could be based on 

Microsoft’s Kinect (now open-source), a virtual interface for the Xbox 360 video game 

console. This system uses an infrared projector and camera that can capture a human’s 

gestures and then generate a virtual avatar in the virtual environment (Lowensohn, 2010). 
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Use of an off-the-shelf webcam for projecting a person into the virtual 

environment is another technique that is similar to the hologram and even more efficient, 

although less engaging. Webcam videos are routinely streamed into 3D environments, 

and this would be an efficient means of communicating with VAL. A video window can 

be placed anywhere within a virtual environment—for example, as part of a virtual 

monitor or on its own as a hovering virtual window. 

Body 

 

The virtual body of a 3D agent is basically a virtual robot. However, unlike real 

robots, a virtual robot can be created with components and techniques that are not 

currently available in the real world. For example, most real world robots, even humanoid 

robots, are constructed with mechanical parts—the parts are “hard,” as opposed to 

organic “soft” parts. The fact that virtual environments can model organic parts is very 

important and cannot be overstressed. Most of this thesis is centered on embodied 

principles, and it is clear that the interplay between the body and the environment will 

vary according to the morphology of the body. Furthermore, some elements of our 

physical body—mostly soft elements—simply cannot be recreated in the physical real 

world. Obvious examples of body parts that can be created virtually, as opposed to 

actually, are muscle and skin.  

Typically, in today’s virtual environments, anything is possible. More than ever 

before, we have the luxury to design and develop artificial learners that conform to our 

research needs. To reiterate, in the real world we can only create what can technically be 

created, while in the virtual world, in contrast, we can create virtually whatever we need. 
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The virtual construction of a virtual body can be based on a mechanical model, an 

organic model, or both.  

Since virtual bodies are virtual, they can take the form of any creature—be it a 

biped like us, a quadruped like a dog, a fish, or even a very simple creature like a worm. 

This feature of VAL’s construct is important, as it allows us to study the ecology of many 

different creatures with different morphologies, and this provides many benefits. For 

example, studying virtual versions of simple worms (worm agents) minimizes the 

cognitive elements within the construct and therefore reduces extraneous variables.  

Moreover, from an evolutionary perspective, modeling a simple life form like a worm—

analyzing how it interacts with its environment—may enable us to examine that 

creature’s fundamental learning ecology. Such fundamental learning devices can then be 

applied to more complex agents like VAL. In fact, there are specific virtual cognitive 

simulators that only contain wormlike agents, for instance, the C. elegans (Kitano, 

Hamahashi, & Luke, 1998; Ferrée & Lockery, 1999). The important point here is that 

because the C. elegans has only 900 cells, of which 300 are neurons, there is little need to 

compromise when it is virtually reconstructed. The virtual construct for the C. elegans 

serves as partial proof of the concept, with VAL’s construct being nothing more than a 

scaled-up version. I will discuss the importance of this well-researched “model organism” 

in the concluding section of this thesis.  

Since the point of this thesis is to discuss the construction of a virtual learner that 

can potentially generate behavior that resembles human behavior, it seems logical to 

discuss the construction of a virtual robot that resembles humans. Furthermore, because 
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this thesis calls for the development of strong AI through the development of a virtual 

child, VAL will be the representation of a human child. 

Below, I describe what might seem like a biological system—and that is the point, 

because much of my design is inspired by biological systems. My idea is to try to build 

something that is close to a human, because we know a lot about how human parts work. 

Real-world humanoid robots, as the name suggests, resemble humans on some level. 

However, this resemblance is superficial. Looking beneath the surface, we see motor 

actuators and other components that look nothing like what we look like inside. We are 

forced to use these inorganic components because these are the only components 

available in the real world. Contrast this to virtual worlds where anything is possible: we 

can build virtual robots that look like humans inside and out, as long as we know where 

and how to compromise the construction of the components.  

The modeling of a humanoid robot in a virtual environment can be divided into 

two distinct parts, although it remains one complete complex system: (1) the Body 

(discussed in this section), which is essentially the interface between the mind and the 

environment, and (2) the Control System (to be discussed in the next section), which 

contains the mind and controls the virtual body. This is a simple setup, for with an 

embodied perspective on cognition, “brains are first and foremost the control system” for 

bodies (Clark, 1999, p. 506). 

Sensory system. Virtual senses are a key component of any complete agent 

because they provide the input stimulus data (perceptions). The sensory system forms an 

integral part of the learning mechanism and helps build meaning. The sensory system is 

an integrated system that includes the five well-known senses—vision, hearing, somatic 
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sensation (touch), taste and olfaction (smell)—along with other elements that help code 

modalities like temperature, proprioception, pain, and pressure. In the virtual 

environment, different sensors will measure specific environmental values such as the 

intensity and color of light, the intensity and fluxuation of sound, the intensity of pressure, 

and the degree at which a limb is flexed. The basic function of a sensor is to gauge or 

perceive something in the environment and generate a value (a number) corresponding to 

what it perceives, outputting that value to VAL’s control system. 

Vision. Similar to other components of VAL’s construct, its vision system is 

modeled on biological vision. The vision system is comprised of a virtual object (eye) 

that contains a grid (network) of artificial neurons that can detect light in much the same 

way that our photoreceptor cells detect light. Like a biological retina, the visual system 

can contain multiple ANN grids (cones or rods) that specialize in different optical 

properties. When virtual light activates the elements of the ANN grid, the grid transmits 

the pattern (what is seen) to VAL’s control system for further processing. The actual 

construction of a virtual eye can vary dramatically; it can resemble the complexity of a 

human eye, including a functioning iris and a lens, or it can be a simplified version that 

only has a retina.  

The importance of binocular vision with regard to cognition is well known; depth 

perception is one of the main cognitive benefits. The modeling of eyes provides a good 

example that illustrates the advantage of working within a virtual world. Once a complex 

bodily component like an eye (or any other complex virtual object) has been built, 

identical or mirror copies can be made effortlessly. In contrast, nothing about building 

robots in the real world is effortless.  Besides the time cost that is associated with 
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constructing complex objects in the real world, there is also a financial cost. In a virtual 

world, the cost of making a copy of an eye in order to give VAL binocular vision is 

virtually nothing.  

The function of the virtual eye is relatively simple. It uses the same process that 

calculates and renders all of the objects in a 3D environment and then projects a 2D 

image of the scene on a monitor. The system calculates the position of VAL’s head and 

eyes with respect to its environment, but instead of rendering an image on the monitor, 

the construct projects the same information directly into the ANN grid of VAL’s virtual 

eyes. The data collected by the light-sensitive grid is then sent to the control system (see 

the section “Control System” for further elaboration). 

Hearing. Hearing the sounds of one’s environment is an important part of 

embodiment and hence an important part of learning. The physics and mathematics of 

acoustics form a well-established science. Acoustics engineers often use virtual 

simulations to map how sound will travel in real-world environments. Similar 

technologies can be used to generate virtual sounds from virtual objects and input the 

values into a virtual agent’s ear. The human auditory system has two ears, one located on 

each side of the head, creating binaural hearing. VAL will also have binaural hearing. 

Even though the sound is virtual—that is, the sound is directly input to the ears—the 

input to each ear sensor will be different. As VAL moves within its environment, the 

input will constantly be updated, just as it is in the real world. 

 Olfaction. Olfaction, the sense of smell, is similar to hearing in the sense that it is 

passive; for the most part the olfactory sensor simply receives data. Similar to the way in 

which virtual sounds can be generated in a virtual environment, virtual odors can also be 
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generated. Odors propagate in a much simpler fashion than sounds, and so the 

computational cost of such a feature is minimal, with important benefits.  

In much the same way that properties are assigned to objects so that the virtual 

physics engine knows how to handle the objects, properties giving odor characteristics 

can be assigned to objects. That is, all objects can have unique numerical values that 

represent odor characteristics. If a tagged object is within range, the sensor located in 

VAL’s virtual nose would pick up the information and send it to the control system.  

Skeletal muscular system. The virtual skeletal muscular system contains both a 

structural system and an actuation system that is modeled on vertebrate anatomy; this 

system is therefore unlike most real-world robots. The skeleton and the muscle mass 

covering it make up most of VAL’s morphology and therefore have a profound impact on 

how VAL perceives its environment. In VAL’s construct, the bones and muscles of an 

agent, like any other object, can be of any size or shape and have any degree of detail. 

The purpose of a virtual skeletal muscular system, like its real-world counterpart, is to 

provide an agent with a support structure and movement.  

Virtual bones, the hard parts of the skeletal muscular system, do have real-world 

counterparts—aluminum is often used as the structural frame for robots because it is light 

and strong. However, virtual muscles, the soft parts of the system, do not have real-world 

equivalents. Virtual muscles are virtual actuators and are key elements of the overall 

construction of VAL, mainly because they are efficient, that is, easy to construct and 

maintain. In contrast, electroactive polymers (artificial muscles) are still highly 

experimental and are not widely used. Because true artificial muscles are hard to design, 

most real-world robots have motor actuators. 
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Mouth: Vocalization and consumption. In the early stages of development, 

newborns and young infants have overt oral fixations. This stage of human child 

development is an important step as a child acquires knowledge of itself and its 

environment. In addition to serving as a vital passage for respiration, the mouth also has 

two important roles in communication and the consumption of nourishment. Not only is 

the mouth essential, but the upper aerodigestive tract is “the most complex 

neuromuscular unit in the human body” (Rogers & Arvedson, 2005, p. 1). Further 

evidence of this complexity can be seen in the cortical homunculus maps of the brain 

(Penfield, 1961), where the mouth has the second largest neural representation, after the 

hands. Its physical complexity, neural representation, and basic contribution to survival 

make the mouth one of the most important body parts. Therefore, great attention should 

be given to the design of a virtual mouth.  

Historically, in the 3D modeling industry, the mouth (including the tongue) was 

notoriously difficult to render and animate, due to its complex combination of hard and 

soft tissue. However, this is no longer an issue; anatomically precise high-resolution faces 

are readily available on the market for a nominal price.  In fact, there are biomechanical 

modeling toolkits that specialize in orofacial simulation (Stavness, Lloyd, Payan, & Fels, 

2011). Such 3D models have more than enough detail for VAL. 

Vocalization. Adhering to the embodiment principles, virtual vocalization should 

be modeled with a specific type of speech synthesis that uses the physical properties of 

the vocal tract. Systems using a research technique called “articulatory speech synthesis” 

are modeled on the human vocal tract and contain all of the variables needed to generate 

human utterances (Birkholz, 2010).  
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ArtiSynth is an open-source 3D biomechanical modeling toolkit for physical 

simulation of anatomical structures. In this system, both hard and soft tissue components 

of the vocal tract are modeled, combining both finite element method and multi-body 

capabilities “with an emphasis on computational efficiency” (Stavness et al., 2011, p. 2). 

This system is essentially an embodied approach to speech synthesis and is a testament to 

the advanced state of technology with regard to speech synthesis. However, even though 

Stavness et al. claim computational efficiency, this system can be considered a medium- 

to high-resolution system and therefore most likely would be computationally very costly 

to integrate into a complete agent like VAL.  

The important point is that VAL should be given the opportunity to learn to 

coordinate and control the necessary variables in order to generate desired sounds. 

Therefore, the vocalization system need not be a high-resolution system containing all of 

the physical components of the vocal tract; it can be constructed as an integrated 

subsystem. A detailed description of such subsystems appears in the section “Learning 

Methodology for the Virtual Autonomous Learner.” As long as the subsystem has the 

same variables as the high-resolution system, VAL will have an opportunity to generate 

sound. Therefore, a basic low-resolution virtual model is all that is needed for VAL to 

“find its voice.” 

Consumption. Consumption is a major necessity for survival and must therefore 

be a significant part of an embodied experience.  The gut drives much of our action 

because the strength of our basic need for nourishment is so profound. However, a high-

resolution, fully functional digestive system is not necessary. In fact, most of our internal 

organs are not vital to model because we are not conscious of them. Having said that, 
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however, there is a need for a virtual agent to have a virtual representation of the gut in 

an embodied approach to cognition, In fact, the stomach is arguably the most relevant 

internal organ, and in the section “Learning Methodology for a Virtual Autonomous 

Learner,” I will discuss how a direct connection between the gut and the control system 

builds meaning. 

Skin. VAL’s skin is an important component of the construct and contains some 

of the sensors that are prevalent throughout its virtual body. The various sensors allow it 

to touch, differentiate between hot and cold, and feel pain and pleasure.  

VAL’s virtual skin conforms to VAL’s skeleton and muscles. The degree to 

which the skin conforms and stretches is determined by a process called “skinning.” In 

the 3D animation world, there are technicians that specialize in skinning virtual 

characters. When constructed properly, virtual skin can behave in much the same way as 

human skin does. Like all of the other objects in this construct, the skin can be of any 

resolution. In principle, the skin covering the entire surface area of VAL could be one 

large somatosensory system. However, for efficiency purposes it would be prudent to 

limit sensors to areas that will potentially be used.  

The skin is also a vital component of VAL’s body insofar as the skin is what 

interacts with the collision-detection element of the real-time physics engine. 

Virtuality. Since the canon of embodied principles with regard to cognition relies 

so heavily on the interplay between the body and its environment, it would stand to 

reason that the morphology of the body will dramatically impact its cognitive processes. 

This is the major argument for the development of strong AI within a virtual environment 

rather than a physical environment. Virtual environments contain virtual agents, and 
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these agents are cheaper, more robust, and more diversifiable than physical agents. That 

is, we can create virtual agents that are just not possible in the real world. 

By now you should be able to visualize all of the parts of VAL. Perhaps its virtual 

body is similar to one of many 3D human characters from your favorite computer-

animated film. If not, try to visualize a virtual body that is complete, containing a full 

skeleton with eyes, ears, mouth, muscles, skin, and an array of senses integrated 

throughout the body. However, this picture is still missing a command and control system, 

which I shall cover in the next section. 

Control System  

 

VAL’s control system is a sensorimotor system that acts like a brain. Here again, 

much of the design inspiration comes from biological systems like the mammalian 

brain’s central nervous system. VAL’s control system connects all of its virtual body 

parts: the sensory system, the skeletal muscular system, and the mouth. ANNs are used to 

make these connections. Inspired by the natural neural networks in the human brain and 

nervous system, ANNs consist of simple mathematical units called “nodes” and the 

connections between them.  A single node in an ANN consists of a number of weighted 

inputs and usually one output. The basic function of a node is to generate an output if the 

sum of all inputs reaches a specific numeric threshold. This is similar to the firing of a 

biological neuron. 

The nodes in an ANN are locally grouped and massively interconnected. The 

network connections are made by connecting the output of one node to the inputs of other 

nodes. Groups of ANNs can be considered to be miniprocessors that can learn from their 

environment through the use of sensors. When such a dynamic system is turned on, an 
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array of sensors takes a snapshot of the environment, creating an internal state. Then, 

based on previous experiences from previous states, the neural network calculates the 

best action to take and creates the action by sending a numeric value to virtual actuators. 

The basic arrangement of the ANN that comprises VAL’s control system 

coordinates input from an array of sensors, directing the input to the dedicated processing 

location. Each type of stimulus modality would have its own dedicated processing 

location. The arrangement of the various processing locations and the path that 

information takes is called the “cognitive architecture” of the agent. Basically, a cognitive 

architecture is a metaphorical blueprint that illustrates the essential structures of and 

relationships between the different components that constitute the agent’s thinking. There 

are a multitude of such architectures today. VAL’s construct is set up in a manner that 

can accommodate a wide variety of cognitive architectures, because I believe that this 

approach will lead to a more productive developmental process. 

In addition to coordinating the input from the sensors, the cognitive architecture 

generates and coordinates the output in the form of actions or behavior. Hence, the 

control system operates in a continuous cycle, as a dynamic system. Smith & Thelen 

(2003) further discuss dynamic systems. The cycle of retrieving input from sensors, 

processing, and then outputting to produce movement is considered to be an agent’s 

cognitive process. The goal with VAL is to generate action that resembles human action. 

Construct Summary 

 

My basic purpose in this section was to convey the idea that virtually anything is 

possible in a virtual environment. Moreover, it is relatively easy to set up a virtual 

environment and its artifacts to look and behave like real-world environments. Modeling 
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and configuring agent components like the skeleton, muscles, skin, and other important 

sensory components is also not an issue. Rather, the cognitive architecture of the control 

system is the ongoing challenge that will determine whether or not VAL will learn on its 

own. 

So far in this thesis, what I have written about the VAL construct has been 

centered on the environment and its artifacts, agents, and other objects. This part of the 

construct is just one of three modules; the other two are a Curriculum module and a Stats 

module (see Figure 1). The Curriculum module is the place where learning interventions 

will be created and developed for VAL. These interventions will be further discussed in 

the next section, “Learning Methodology for a Virtual Autonomous Learner.” 

The Stats module, which is not discussed extensively in this thesis, is the part of 

the software application that supports viewing and comparing scientific/empirical data. 

The quality and quantity of the data would be very acute due to the nature of virtual 

environments; the virtual artifacts are already digital data. As a consequence, any 

behavior variable, however mundane or profound, can easily be measured. For example, 

if VAL picks up a ball, the force exerted by each finger can be measured, along with the 

time it took to apply the force, the gaze of the eyes while the ball was grabbed, and so on. 

Given this overt amount of control over the virtual learner and its environment variables, 

it is easy to see how virtual learning environments have more advantages than do real-

world settings. These advantages will be covered in the next section. 

Learning Methodology for the Virtual Autonomous Learner 

To make a small but significant point, I ask you to imagine a time in the near 

future when VAL is a complete agent and is similar to a virtual infant. Imagine that its 



43 

construct is fully functional and that the virtual environment in which VAL resides 

resembles an average classroom. If your imagination takes you to a place where VAL and 

its environment look like a typical 3D character in a typical computer-animated film, a 

vision that we might call a “high-resolution environment,” then this virtual environment 

should contain all of the necessary educational elements that facilitate learning and thus 

resemble a real-world educational system. To clarify, if there are virtual schools, teachers, 

peers, exams, and so on in VAL’s high-resolution world, then it would be accurate to 

assume that any real-world educational lesson, activity, or intervention would and could 

be applied to VAL’s virtual curriculum.  

I am asking you to visualize a high-resolution scene (environment and artifacts). 

This may, logically, lead you to ask: How important is the resolution of an embodied 3D 

agent? The answer is that it is very important if we want VAL to learn with ease, in much 

the same way a real child does; but it is not as important if we are trying to figure out the 

fundamental algorithms of learning within an embodied cognition paradigm. This thesis 

claims that the virtual resolution of VAL and its environment is a controllable variable in 

the development of strong AI; as long as the agent’s construction and cognitive 

architecture have properties and variables that are similar to those of the high-resolution 

version, the learning algorithms should be similar as well.  

If you concur that all real-world learning paradigms would work in high 

resolution, then there is good reason to retain this assumption even if VAL and its 

environment have been scaled down to low resolution in order to meet the computational 

demands of the host computer. Therefore, if VAL’s learning methods include all real-

world learning paradigms, it becomes more important to elucidate an added advantage of 
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learning in virtual environments. The relevant question is then: How would VAL’s 

learning differ from real-world learning? 

This section has two main focal points. The first is a discussion of what can be 

done in virtual environments with respect to learning and development that cannot also 

be done in the real world.  This discussion occurs in the subsections “Subsystems,” 

“Machine Learning,” and “Time Manipulation and Automation.” The short section 

“Research, Life: Developmental Guides for VAL” contains the second focal point: it 

illustrates how research and other aspects of life can be used as a guide to aid the 

development of the virtual learner. Finally, I end with a thought experiment that merges 

some of these elements and in doing so illustrates further pedagogical details of VAL’s 

curriculum. 

At this point, it is important to first explicitly and precisely articulate the stage of 

development our virtual learner is in, with respect to its real world counterpart. I have 

previously stated that the development of strong AI would be more successful if it 

implemented Turing’s (1950) idea of creating something that can simulate a child’s mind. 

I have also alluded to my belief that a newborn with its “blank slate,” which we might 

call the “default wiring of its neural network” or its “cognitive template,” would be an 

ideal theoretical starting point. However, many, if not most, researchers believe that 

learning starts prenatally. The embodiment perspective is also in line with this belief: as 

long as there is a mind wired to a body that has sensors to perceive its environment and 

actuators to act on it, the agent has the potential to learn. As Gallagher (2005) says, from 

an embodied cognitive perspective the “prenatal bodily movement has already been 

organized along the lines of our own human shape” (p. 1). Therefore, as one of the points 
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of this section is to illustrate how research can guide the development of VAL, it would 

be prudent to clearly state that VAL’s cognitive template is akin to that of neonates. More 

precisely, my aim is to develop a cognitive template that would generate behavior that 

can be compared to a newborn’s behavior. So, even though it is widely accepted that 

learning begins prenatally, it is safe to say that there are more empirical studies, and 

hence more data, about newborns than there are about prenatal babies. For this reason, it 

is just more practical, from a research point of view, to use data based on newborn 

development as opposed to prenatal fetal data.  

Moving forward, the idea is to use the milestones of child developmental stages as 

guides for training and assessing VAL’s ANN. Let us therefore assume that VAL’s 

default cognitive template is striving to resemble its real world counterpart: the blank 

slate of a newborn. Now that I have specified that VAL’s default cognitive template’s age 

is analogous to that of a newborn, I need to say more about innateness. This is because I 

will soon be discussing the “programming” of subsystems within VAL’s cognitive 

architecture, and this may at first glance seem to be the cognitive equivalent of adding 

innate knowledge.  However, it really is not, and here is why. 

It is not that difficult to understand the theory behind the embodied approach to 

cognition when observing the physical body of an animal that affords all properties 

necessary for survival. Here the morphology of the body is evidently innate; its genes 

determine its shape (for the most part). It is the body’s interaction with the environment 

that drives the animal’s behavior and that will ultimately determine how well it will 

survive. However, this “physical” innateness is very different from the formal 

philosophical doctrine of innatism that claims that ideas in the form of knowledge are 
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innate and that somehow this knowledge is stored in our genes (Winchester, 1985). This 

thesis does not reject innatism, but I hope you can now see why it is not necessary for 

learning in the context of embodied cognition.  

So, with regard to innateness, the idea is to take what we know about the overall 

ecology and create the subsystem as a temporary placeholder for what is known. Before 

going into details about how this is done, I would like to pause to articulate, from a high-

level point of view, how subsystems fit within the perspective of VE. So far, I have 

talked about the body, the mind, and the environment without saying much about another 

important variable: action. I illustrate the ecological value of action with the equation 

environment + body = mind × action, 

in which the mind creates action that controls the body and the environment. Because the 

fundamental function of VAL’s construct is to create all four of these variables 

(environment, body, mind, and action), and since we can easily create three of the four 

elements (environment, body, and action), this means that the only unknown element is 

the mind. With that said, let us rearrange the equation to look like this:  

environment + body 

= mind 
action 

Yes, there is much that we do know about the mind, but it is only a small fraction 

compared to what we know about the environment, the body, and action. However, we 

can use what is known about the mind to our advantage. In fact, using what we do know 

to flesh out the unknown is the crux of the learning methodology for VAL. This is why 

we use what we know to create subsystems: subsystems are based on known behavior 

(actions). 
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Subsystems 

 

Again, imagine VAL, this time as a complete low-resolution agent with all of the 

body and control system components discussed in “An Ecological Construct for the 

Virtual Autonomous Learner.” As a complete agent, VAL has various sensors to perceive 

its environment and a skeletal muscular system to act on its environment. The sensors 

and actuators are wired to the control system. The architecture of the control system is 

open, that is, it can take on and implement designs from any of the numerous existing 

cognitive architectures being developed today. To describe the function and purpose of 

subsystems, I first need to articulate a simplified generic architecture within the 

embodiment paradigm. 

The generic cognitive architecture about to be described is the wiring system that 

controls the low-resolution version of VAL (see Figure 3). VAL’s spread-eagle posture in 

Figure 3 resembles that of Leonardo da Vinci’s Virtual Man. This pose was chosen 

because it is the standard default position used when modelling 3D characters; it gives the 

modeller quick visual access to most of a character’s body parts. In Figure 3, the artificial 

neural network, a generic architecture, is superimposed over VAL. There are three main 

parts to this generic architecture structure: (1) sensors, (2) actuators, and (3) the network. 

In this architecture, the network both processes information and is the repository of 

information.  

Note that since my immediate purpose is to describe the function and purpose of 

VAL’s subsystems, the exact size and type of neural network is not relevant; the 

subsystems can be used in conjunction with any size and type of artificial neural network.  
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Figure 3. Generic architecture. This figure illustrates the flow of 

information coming from and going to VAL. Sensors are represented with 

circles, actuators are represented with squares, and the artificial neural 

network is represented by the grid. 

The generic architecture is a basic dynamic input/output system with sensors and 

actuators creating a general feedback loop. The flow of information in this architecture is 

as follows. Values from all input sensors are received and aggregated within the network; 

let us call this network the “brain.” In the brain, the weights of neural nodes are 

calculated and adjusted, depending on environmental factors, and a value is output. That 

is, information is received from the environment via the sensors, the information is then 

processed as the values of the neural nodes propagate throughout the brain’s network, and 

finally, a value is sent to the actuators, generating action. Subsystems will, for the most 
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part, bypass the brain’s propagation process (see Figure 4). Thus, a subsystem in this 

thesis is an algorithmic device that is integrated into the cognitive architecture yet 

bypasses most brain functions—the subsystem generates actuator values based on the 

collective input values of the sensors. In this sense, a subsystem is a quick fix to simplify 

the cognitive architecture and is used as a bootstrapping device to stimulate the embodied 

learning process.  

 

Figure 4. Subsystem. This figure illustrates how a subsystem bypasses 

most of the artificial neural network.  

In brief, from the perspective of embodiment, the body along with the mind 

perceives and acts on the environment. But what initiates this engagement? From a high-

level point of view, some would say that it is the basic need to survive, and this may very 

well be true. But what are the basic low-level devices encoded in our neural architecture 

that stimulate the interactions between the body and its environment? Perhaps answers to 
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this key question can be inferred from an evolutionary investigation. Unfortunately, for 

the most part, this approach can only serve us at a high level. That is, evolution has 

shaped our bodies as well as the configurations of our neurons over millions of years, yet 

while we have observed and recreated the bodily shapes of past creatures, we have not 

done the same with their neural architectures. This does not mean that all is lost with 

respect to identifying and recreating the basic neural devices that are needed for an agent 

to learn about its environment and hence have a better chance of survival. For example, 

one approach would be to use behavior to infer what the neural device should “look like” 

and then program that behavior as a subsystem into the overall cognitive architecture, 

thus creating a more functional template for VAL.  

To reiterate, since we know how newborns behave, or should behave, at specific 

stages of development, we can program very low-level behaviors that would bring about 

the more sophisticated high-level behaviors. The basic low-level algorithms are inferred 

from observed behavior and are used to design subsystems that can jump-start VAL’s 

learning process. 

For example, let us take our complete agent VAL, as seen in Figure 3. In this state, 

VAL is like a glorified virtual rag doll connected to a large neural network, with no 

initiative to do anything. However, if we program a subsystem into the motor neurons 

(actuators) that control eye movement to mimic human eyes’ saccades (involuntary short 

rapid movements of the eyes), this program can act as a visual stimulus for VAL’s 

learning because it would provide constant visual variance. The reflex actions of muscles 

constitute another example of what should be programmed; that is, a subsystem that 

mimics the reflex arcs in neural pathways should be created.  
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Our body’s vestibular system, or our sense of balance, provides another, slightly 

more complex, example of where a subsystem can serve as an efficient and effective 

device within an agent’s cognitive architecture. The bony labyrinth in our inner ears that 

consists of three very small juxtaposed semicircular canals is a device that helps keep our 

balance. Since we know how this intricate system works, that is, we know its function, 

there would be no point to physically and neurologically modeling this system and then 

recreating it in high resolution. Computationally, this would be too expensive. The 

efficient thing to do would be to implement a subsystem that can mimic this system’s 

function and integrate that function into the cognitive template of VAL’s artificial neural 

network.  

The key point is that any system that is below the level of consciousness (that is 

subconscious) can be programmed with subsystems without compromising embodied 

learning principles. Providing such subsystems will dramatically reduce the complexity 

of the embodied cognitive architecture and will therefore contribute significantly to its 

efficiency. Our three examples of subsystems that perform the functions of the eyes’ 

saccades, the muscular reflexes, and the vestibular system are some of the vital systems 

that can be preprogrammed rather than left for VAL’s neural network to learn on its own. 

From the perspective of embodied cognitive architecture, these subsystems are just a 

means to control variables whose value (behavior) is known. The subsystems can then 

serve as a foundation on which to build more complex behaviors. This process of training 

and then generating the desired behaviors of computer programs is called “machine 

learning” and is the topic of the next section. But first, I will mention one more key 

subsystem.  
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The three aforementioned subsystems are all small devices that are nonetheless an 

integral part of VAL’s cognitive template. However, a more complex and significant 

subsystem lies at the heart of VAL’s learning and meaning building: a metabolism 

subsystem. Our metabolism consists of highly complex chemical reactions that, for the 

most part, convert substances into the nourishment that provides us with energy. When 

our energy is low and there is a strong discomfort in our gut, we have a strong desire to 

take action to rectify this uncomfortable state (Montague, 2006). Hence, there are two 

advantages to synthesizing a metabolism subsystem within an embodied agent. The first 

advantage is that by devising a device that can give energy to or take energy from the 

virtual agent, we can create an internal motivational system. The second advantage of 

synthesizing the metabolism is that this can create and simulate discomfort in the virtual 

agent’s gut. In the section “Thought Experiment: A Virtual Intervention,” I will explain 

how this subsystem is used. 

Machine Learning 

 

Now that most of VAL’s inner workings have been covered, it is time to provide 

more details about VAL’s learning methods. As I just mentioned, the training of an 

embodied agent with a neural network control system falls into the category of machine 

learning.  This is a large and well-established subfield of AI that focuses on the 

development of learning algorithms for a wide range of computer applications (Alpaydin, 

2004). Machine-learning techniques can be used with classical symbolic processing, but 

in this thesis I confine my discussion to neural network devices.  

The core of machine learning is twofold. First, it is descriptive, that is, it is used to 

gain knowledge, where the knowledge is acquired through interaction with the 
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environment. This knowledge is broadly distributed throughout the agent’s ANN. Second, 

machine learning is predictive, that is, it is used to encourage the neural network to 

behave in a predictable manner. These predictions are based on experience, where more 

experience brings better predictions and hence more appropriate behavior (Alpaydin, 

2004). 

The taxonomy of machine-learning algorithms is discernible in the labels for the 

algorithms: “supervised learning,” “unsupervised learning,” “reinforcement learning,” 

“learning association,” “classification,” and “regression.” Note that these categories of 

learning algorithms are similar to those found in the vernacular of educators. Different 

algorithms are used in different learning situations. With this handful of algorithms, 

neural networks can be trained to recognize spoken words (voice recognition), recognize 

written words (optical character recognition), recognize faces (facial recognition), and 

even learn fine motor control of body parts. These learning algorithms train part of the 

virtual agent's neural network to respond appropriately to given stimuli. Take 

reinforcement learning, for example. If we were to place a virtual bottle (stimulus) in 

front of VAL, there is a series of events (behavior) that we would hope to happen. For 

instance, we would want the agent to recognize the bottle, reach for it, grasp it, pull it 

near, and start to suckle on it. If executed properly, the cascading chain of events would 

then be rewarded. The reward reinforces the appropriate behavior by strengthening the 

weights of the connecting artificial neurons involved in the action.   

If what has been said about machine learning sounds similar to the canon of 

various educational learning theories, then that is a good thing, as it will help when 

constructing learning objectives for VAL. That is, being familiar with real-world learning 
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theories and knowing how to teach in the real world can help researchers teach in the 

virtual world. However, this is where VAL’s learning methods depart from real-world 

methods in an interesting way. The implementations of some of these learning 

mechanisms call for many iterations of a learning intervention to produce the desired 

outcome. In some cases hundreds, if not thousands, of trial-and-error cycles are needed to 

adjust the systemic weights of the agent’s neural network to obtain the desired effect. The 

fact that it is so difficult to train a neural network is a good example of why these types of 

interventions, which we may call “nonethical” interventions, are not appropriate for 

humans. On a very high level, the possibility of these nonethical interventions constitutes 

one of the most profound advantages of virtual learning over real-world learning. 

Thus, ANN learning methods are similar to human learning methods, but have 

some added advantages due to their ability to incorporate nonethical learning techniques. 

As another example, in the virtual world we can isolate any part of the agent, remove it, 

fiddle with it, and then replace it. This holds true for components like the agent’s head, 

arm, skin, bones, and eyes, and even all or a portion of its neural network. The 

implementation of these algorithms is not only nonethical—it is impossible in the real 

world.  

The possible of a nonethical approach to learning leads me to discuss one more 

type of learning algorithm that is a powerful tool for getting an agent’s neural network to 

look and behave a particular way. Genetic learning algorithms (evolutionary algorithms) 

have been used with remarkable results in producing organic behavior in virtual 

environments (see Sims, 1994). Not surprisingly, genetic algorithms are inspired by 

biological evolution. These algorithms can evolve not only the physical morphology of 
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an agent but also its neural architecture, which determines its behavior. Since it is 

established that the agent VAL resembles a human infant, there is no need to apply 

genetic techniques to its morphology. Although genetic techniques can refine the 

morphology of our virtual infant to breed a better baby, this is not paramount since we 

have more or less what we need with respect to the agent’s bodily shape—that is, we 

know how a typical baby is supposed to look. In contrast, since we do not have a clear 

picture of the default configuration of newborns’ neural architecture, genetic learning 

algorithms can be used to optimize the design of the artificial neural networks, effectively 

evolving a better cognitive architecture and hence better default cognitive templates for 

VAL.  

To reiterate, the idea is to evolve the neural architecture and the weights of its 

nodes in order to make the architecture more likely to generate appropriate behavior. 

Since VAL’s behavior is at issue, the genetic algorithm discussed here applies only to the 

agent’s artificial neural architecture and not the shape of its body. A genetic algorithm in 

machine learning is an evolutionary process that filters out bad designs, specifically, bad 

neural designs. The algorithm finds design solutions for a specific task by using a fitness 

function to select specific properties of the neural network that make it more inclined to 

perform the task. This is a Darwinian approach that generates multiple potential solutions 

in the form of multiple neural architectures and/or neural weight values and that then 

applies a fitness function to select the best candidates. The top contenders (neural designs) 

are then combined and used to generate new candidates. The process is reiterated until 

the neural architecture produces the desired results, which in this context are appropriate 

behaviors or appropriate actions with respect to the environment. Variations of this 
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technique have had remarkable success in developing behavior in virtual environments. 

For example, complex control systems have been designed (evolved) to enable agents to 

walk and jump (Streeter, 2003). 

I have said that the use of nonethical learning methods is one of the most 

profound advantages of virtual learning over real-world learning. Now it is time to 

introduce the most “technical” advantages that the virtual world has to offer: time 

manipulation and automation. These topics are discussed in a separate section since they 

have more to do with the nature of computing then the learning process itself.  

Time Manipulation and Automation  

 

Time in the real world is limited for students and their education. There are only 24 

hours in a day and only 365 days in a year. Perhaps educational policymakers take this 

limited duration into consideration when designing and developing curricula. In fact, time 

is such an integral factor in learning and development that there are time-based markers 

that gauge whether or not a child’s “mind” is emerging at a normal rate. Furthermore, it is 

probably safe to say that most educators think that “time on task” is an important variable 

in a student’s acquisition of knowledge. Since it is clear that time is a key element in 

development and learning, virtual time is a valuable asset for the curriculum and 

pedagogy of a virtual agent. 

Like most other aspects of the virtual world, virtual time can be manipulated. 

Most notably, virtual time (1) can be compressed and (2) can be used to manipulate the 

energy level of agents. With regard to time compression, imagine a three-hour virtual 

lesson being compressed into five minutes of real time, or years of virtual learning being 

compressed into days of real time. All of this is possible. I will develop this idea further 
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in just a moment, but first, I shall say more about the manipulation of the agent’s notion 

of time. 

For the most part, time for the virtual agent depends on the processing power of 

its host computer. VAL’s construct that is described in this thesis is just a computer 

program that runs on top of an operating system; the program’s commands are converted 

into 1s and 0s so that the computer’s central processing unit (CPU) can process this 

information. The very nature of the hardware/software relationship is that commands are 

executed as fast as is technically possible. Programs will process information at different 

speeds that depend on the power of the CPU. Different computers equate to different 

speeds . 

An embodied agent cannot have such a chaotic ecological environment, where on 

one system it is moving faster and on another, slower. Hence, the notion of virtual time 

within the agent’s environment is controlled by software. In this case, the dynamic 

physical engine acts like a governor and grounds time to simulate real-world physics. For 

example, since we know precisely how long it should take for a dropped ball to hit the 

floor after being released from a specific height, that value can be and is used to calibrate 

virtual time, making virtual time a constant across all computer platforms.  

With that said, it should be clear that virtual time is an added advantage of virtual 

environments, as it can be employed to serve learning and developmental needs. As I 

have often mentioned in this thesis, designing an efficient agent is paramount, and here is 

another reason why: in building a low-resolution agent that can “freely” interact with its 

environment in real time, we have room to manipulate its energy level. This energy 

variable is one of the key elements that is integrated into VAL’s metabolism subsystem. 
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From a behavioral point of view, our model can control whether the agent is sluggish or 

energetic. Furthermore, the ability to control an agent’s energy level can lead to the 

development of more complex feelings such as basic emotions (Greenspan & Shanker, 

2004; Montague, 2006). 

With regard to time compression, one pedagogical approach would be to create 

interventions that target specific learning objectives and then render the activities (the 

learning process) without displaying them in a viewport. If set up properly, all of the 

variables needed for the agent’s behavior to be modified as a result of the interventions 

would still be intact, thanks to the environment’s physical engine, and thus the agent’s 

perspective on time would be effectively compressed relative to our time. 

Developing the comparison to educational technology further, we can say that 

creation of these interventions is akin to the creation of learning objects. Moreover, it is 

not difficult to imagine a system where the curriculum and the applied pedagogy are 

totally automated. When this becomes reality, the early stages of infant development and 

eventually the acquisition of higher cognitive functions can be automated, effectively 

automating an agent’s entire education. Setting up such a system is a key element of 

VAL’s construct and is part of the rapid-prototyping process mentioned in the 

introduction to this thesis. 

The main function of a rapid-prototyping process is to quickly create something—

anything—where it is paramount to have something tangible to work on; that is, we first 

create and then improve. The ultimate goal in this case is to automate a series of learning 

interventions (dozens, if not hundreds) with the intention of having the virtual agent reach 

an infant milestone marker. 
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Research, Life: Developmental Guides for VAL 

 

Standard AI techniques based on standard cognitive science have a limited 

potential for meaningful comparison with human research studies because the standard 

techniques lack an embodied perspective (Shapiro, 2011).  Even standard connectionist 

models fall short in this respect. It is true that the traditional connectionist approach has 

been useful for explaining and understanding a wide range of human cognitive 

phenomena (Chen & Verguts, 2010; Shultz, 2003; Sun, 2007); it is a common practice to 

compare human phenomena to computer simulations in order to better understand the 

human condition. However, taking the computational methodology one step further, 

embodied approaches have been able to supplement current empirical data and to answer 

research questions that the traditional connectionist approach cannot answer (Rucinski, 

Cangelosi, & Belpaeme, 2011). This should come as no surprise, as the embodied 

approach is more encompassing, accounting for more of the variables that relate and 

encode multimodal learning. 

As mentioned in the section “Educational Rationale and Context,” the ultimate 

goal of my research is to create an AI educator through the development of a virtual child. 

The purpose of this section is to articulate how research on child development and other 

aspects of human life can facilitate the development of VAL. The example I use to 

illustrate the research point is an experiment called “sticky mittens,” and the example I 

use to illustrate how aspects of human life can be used to facilitate VAL’s development 

centers on physical well-being. 

With regard to child development, many researchers believe that there are 

cognitive windows of opportunity in which emerging cognitive devices need to be 
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cultivated in order to mature properly. These critical periods can be viewed as 

embodiment issues, as they (1) are “especially sensitive to input of the environment” 

(Needham, Barrett, & Peterman, 2002, p. 279) and (2) are associated with many input 

sensory devices. For example, if an infant is deprived of proper visual stimulation within 

its critical period, the “visual cortical neurons” become “unresponsive to subsequent 

visual stimulation” (Rittenhouse, Shouval, Paradiso, & Bear, 1999, p. 347). Gathering 

data concerning the occurrence and duration of these windows is the first step in learning 

their effects on development. Thus, empirical data are documented and aggregated to 

determine the milestones of child development, and these milestones are regularly used 

as empirical points of reference. 

The milestone connected with the sticky mitten research is set at “approximately 5 

months of age,” when “infants systematically reach for objects” (Needham et al., 2002, p. 

281). In this study, soft fleece mittens covered with Velcro tabs (hard side) were used to 

stimulate infants’ prehension skills. In brief, two- to five-month-old infants were given 

“enrichment sessions” ten minutes a day for two weeks. During these sessions, the infants 

were attired with their sticky mittens and placed in front of a table that contained 

attractive toys laced with Velcro strips (soft side). The researchers wanted to see “what 

effect the enrichment of infants’ typical early experience as agents acting on objects 

would have on their object exploration behavior” (Needham et al., 2002, p. 280). 

The researchers had a variety of trials that measured (1) visual exploration, (2) 

swats preceded by visual contact, (3) exploration percentage, and (4) switching between 

looking and mouthing. The result was that “on almost every measure of object 

exploration and object-directed action obtained, infants who had the 2-week enrichment 
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experience with the sticky mittens significantly outperformed their counterparts who did 

not have this experience” (Needham et al., 2002, p. 290). Intuitively, these results should 

come as no surprise, as any attention given to a child will inevitably stimulate learning. 

The relevant point here is that the general design of this study can be implemented within 

VAL’s construct, and since the general research designs of some human studies can be 

applied in virtual environments, the data generated can more easily be compared to 

human data. 

 As previously mentioned, time is somewhat arbitrary in virtual environments, and 

age is therefore also arbitrary. In order to gauge VAL’s developmental progress, we need 

to have some point of reference. We need a standardized system with which to gauge 

performance. A system that measures comparative age would be useful. For example, 

VAL 0.1 would have 10% of the cognitive function of a human neonate and VAL 1.0 

would be the equivalent of a newborn, and the agents’ performance can be measured 

accordingly. 

With an embodied approach to AI, it is not sufficient to pass the Turing test. That 

is, mastery of a test helps very little when the goal is to learn from the journey. We need 

milestones to gauge the learner’s progress, so that we can learn from it. If the virtual 

artificial learner’s results are similar to human trials, this will serve to indicate that we are 

heading in the right direction with regard to VAL’s development. 

 Research and theories about child development are the logical places to find data 

that can help guide VAL’s learning. A VE approach to physical development offers more 

relevant tools. That is, technologies that are related to physical therapy can offer 

techniques and tools to aid VAL’s physical learning. For instance, a set of parallel bars, a 
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commonly-used physical therapy device that supports people while they gain strength 

and balance, can also be used in a virtual environment. Virtual rigs can also be set up to 

function as leg braces; as the constraints of the braces limit the movement of the agent’s 

virtual legs, the ANN’s weights associated with the legs will also be constrained. In fact, 

any real-world physical device that aids people or animals can be used virtually. 

As VAL’s comparative age increases, more and more real-world activities can be 

integrated into its curriculum. For example, when there is a VAL 2.0, sports and dance 

can be used as tools for learning better coordination, and when there is a VAL 5.0, 

learning yoga would perhaps make it more aware of its body.  

Thought Experiment: A Virtual Intervention 

 

The goal of this thought experiment is to guide you through a typical learning 

intervention from an embodied cognition perspective and then to articulate what VAL is 

learning through its neural network as it interacts with its environment. At this point, it is 

important for the reader to consider and envision VAL as a complete agent, with all 

modules of its construct fully functional and doing what they were designed to do. For 

instance, the Stats module containing the databases can present the measureable variables 

in a meaningful way, the Intervention module can create any intervention you can 

imagine, and the Environment module can host every virtual educational need.  

This thought experiment is something like a mock case. In this scenario, you (the 

reader) will act as a researcher going through various steps of creating and implementing 

an intervention and then measuring its effectiveness by comparing its results with that of 

a control. With this thought experiment, we revisit the sticky mittens study. However, 

this particular implementation can only be executed virtually. Needham et al. (2002) 
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tested the effects of the sticky mittens by measuring how much, if at all, they would 

enhance an infant’s ability to grasp objects. Therefore, in this thought experiment, one of 

the variables being measured will be VAL’s set of prehension skills. The similarities to 

Needham et al. end there, as the toys are replaced with a baby’s bottle containing virtual 

nourishment. At the risk of sounding overly dramatic, I will stipulate that if VAL does 

not learn how to grasp the bottle, it will die. This dramatic scenario is intended, in part, to 

emphasize the point that anything is possible in a virtual environment, including 

nonethical intervention. 

In the center of the vast virtual environment lies a crib containing the virtual 

autonomous learner. Double clicking on the magnifying glass icon causes the crib to 

zoom in. VAL is in a spread-eagle position, still and lifeless, since the simulation is not 

running—that is, VAL is turned off. This version of VAL, which we shall call “version 

0.1,” has an unweighted default cognitive template because this is its first intervention, 

perhaps the first of many in a long and complex curriculum. For all intents and purposes, 

VAL 0.1 is like a newborn with no life experience. It has no knowledge about its 

environment or even about itself, for it has not yet interacted with its environment. 

Therefore, running the simulation (turning on VAL) at this point would result in the agent 

just flailing about, owing to the fact that none of the neural weights in its artificial neural 

network have been adjusted (fine-tuned).  

 A click on the “Intervention” tab brings up the Intervention module. Here you set 

up the parameters for the experiment, in this case inserting a standard “rig” to hold the 

baby’s bottle. This module is designed to keep track of all variables in the environment, 

but more importantly, it allows you to select and present only the variables that you want 
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to measure: variables that measure VAL, all artifacts, all environmental properties (light 

and sound), and all aspects of the aforementioned rig.  

 Since our goal in this experiment is to measure whether the sticky mittens are an 

effective tool to use for refining VAL’s prehension skills, we need two sets of trials: one 

with the sticky mittens and one without. In each trial, VAL will have to learn to reach, 

grab, and then bring the bottle to its mouth. VAL has a limited time to do this, since all 

bodily movement expends energy and if VAL runs out of energy, it will die. Survival 

thus requires VAL to obtain energy by bringing the bottle to its mouth, and the agent will 

survive if it masters this task. It is important to add that slightly touching the bottle will 

give VAL some energy, perhaps just enough for VAL to try a few more times. The reality 

of the situation is that it will take hundreds of iterations for VAL to master the task, 

where each new iteration follows the death of a VAL that was unable to master it (this is 

a nonethical approach). Given this design, one measurable variable will be the number of 

iterations. Supplementing this data, there will be a set of heuristics based on the quality of 

VAL’s behavior, for example, the path that the hand took to reach the bottle, the strength 

of the grip, and the position of other body parts.  

After all of the parameters for the intervention are set up, we click on the 

“Environment” tab to get back to the Environment module. Now we see the intervention 

rig attached to the crib and hanging over VAL, within arm’s reach. For the first trial, let 

us start with the intervention without the use of the sticky mittens. To speed up the 

experiment, we would normally run it in the background where it can compress virtual 

time, but first let us see what happens in real time.  
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Clicking on the “Run in Real Time” button, we see the virtual infant flailing about, 

as expected. Since its neural network has not had any training, all limb and joint actuators 

have been given random values as weights, which are meaningless. Note, however, that 

even though VAL’s movements are jerky, the behavior is in real time and seems to obey 

the fundamental laws of physics. 

Looking at the viewport’s heads-up display, we can see that VAL’s energy level 

is low. If VAL does not find the bottle and obtain more energy it will die, and since we 

want to see whether the automation process is functioning properly, we let it exhaust its 

energy. At this point, VAL stops moving. After the cycle is complete (death), the 

construct sends relevant data from this first iteration to a database.  

Clicking on the “Stats” tab for a quick peek to see if the data is in order, we 

discover just that. Upon returning to the Environment module, we see that the construct’s 

automation process has loaded the second iteration, a second cycle in which a new VAL 

replaces the old. The morphology of VAL remains the same for each cycle. However, the 

computer randomly changes the weight values in its neural network, and these slight 

changes in the network produce slightly different behavior. 

Let us say that the first cycle took five minutes, an arbitrary amount of time. If it 

takes three hundred cycles for VAL to master the task, then it should take over a day to 

execute this first trial. So, since we see that all aspects of the construct are functioning 

properly, we click on the “Run in the Background” button. The virtual environment goes 

black and an indicator pops up, stating that the virtual time is being compressed by ten to 

one. Now, if it takes a hundred cycles, all we have to wait is a little under an hour.  
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One hour and 286 cycles later, VAL has mastered the task. Another quick peek at 

the Stats module reveals that the database contains 286 entries. Looking closer at the last 

entry, which contains the data on VAL’s mastery of the task, we see that it took just over 

one minute for VAL to grasp and suckle the bottle. If we now used this version of VAL 

with the “trained” neural network as the default cognitive template, we would find that 

more often than not, VAL 0.1.286 (as we call this version) can complete the task in just 

over a minute. The reason is that somewhere within its neural network there are weights 

(of neural connections) that result in a greater aptness for grabbing the bottle. 

The same process used in the first trial (VAL without sticky mittens) is used for 

the second trial (VAL with the sticky mittens). Not surprisingly, it takes only 204 cycles 

for VAL to master the task in this case. Let us take a closer look at the details of the 

intervention from an embodiment point of view, to understand what is happening to 

VAL’s neural network when it interacts with its environment.  

 Running the construct in real time and zooming in even further, we now see the 

familiar ungraceful movement of the virtual infant. Then, simply by chance, and at the 

same time inevitably, the infant’s hand touches the bottle. When this happens, the infant 

receives a slight reward in the form of more energy. The associative learning algorithm 

within VAL’s neural network then evaluates that bodily state (the position of the body, 

especially the agent’s gaze and the position of its hand touching the bottle) as being a 

positive thing, essentially reinforcing the behavior. 

The reinforcement of VAL’s actions acts like a constraint, as it increases the 

likelihood of that action being repeated. VAL’s behavior becomes more refined each time 

its hand touches the bottle. Each time the hand touches the bottle, it does so in a slightly 
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different state (position), and because of this, the neural representation gets a better 

“feeling” for where the bottle is. The chances that VAL’s palm will hit the bottle in the 

future are greater. Taking this thought experiment one step further, let us imagine what 

happens when VAL’s palm does touch the bottle. 

At this point, the built-in subsystem in the neural network kicks in and causes all 

actuators that control the fingers to clench, effectively gaining a firm grip on the bottle. 

When this happens, a “body state” that is associated with all the variables used in the 

grabbing action is created within the network.   While VAL is in this state, very 

interesting things begin to happen, from the embodiment point of view. For the first time, 

VAL is really engaged with its environment. The physics engine is simulating a slight 

resistance that provides valuable feedback for VAL and that thereby adds another layer of 

modality to the learning intervention. This added modality is the sensation of “pressure” 

that is virtually created through the sensors lining VAL’s fingers and palm. For VAL, the 

sensations are real because the physics engine simulates the pressure. Some other 

modalities contributing to the body state are VAL’s gaze and its proprioception. 

At this point, it should be clear that the embodied process builds on top of VAL’s 

prior success. The sticky-mittens intervention would be just the first of many 

interventions lined up in a queue that make up VAL’s virtual curriculum. Furthermore, 

the curriculum could be peppered with human/VAL interactions in which the rig that 

holds the bottle can be replaced with one of many force feedback devices. Then you 

could actually feel the pull of the virtual infant’s grip.  

 Segments of VAL’s curriculum could be automated, creating virtual milestones. 

Perhaps, when many milestones have been reached, that version of VAL could be saved 
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and tagged as being the equivalent of a one-month-old baby. VAL with a cognitive 

template of 0.2, for example, would have the equivalent of twenty percent of an average 

human infant’s cognitive development. The goal for all of the milestones would be to 

increase this percentage, thus making VAL’s behavior that much closer to human 

behavior, and this in turn would enable us to set up interventions that more closely match 

real-world experiments.   

Much of our discussion has illustrated VAL at an early stage of development. 

Because most of the virtual agent’s acquired skills at this stage of development are 

directed at gaining control of its virtual body, let us call this a “sensorimotor stage,” 

drawing a parallel to Piaget’s (1977) theory of cognitive development. At this stage, 

much of VAL’s development can be automated. The intervention envisioned in the 

thought experiment would be one of hundreds of interventions needed for VAL to 

advance to the next stage of development, whatever that might be. In fact, there are 

numerous theories of child development that can be used as a reference or for inspiration.  

Discussion  

In this discussion, I will first try to reinforce the premise of this thesis by asking 

and then answering questions related to the viability and purpose of my research. I shall 

then come full circle by articulating how an AI educator would be integrated into our 

future culture, concluding with a few final words regarding Moore’s Law and AI. 

All that has been discussed is just the beginning of VAL. With VAL 0.1, I 

introduced you to the ecological construct where VAL was created. Then, based on the 

embodiment perspective, I discussed some of its learning methodology. Although there 

were many key elements, I have boiled them down to three.  
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First, the construct for VAL needs to accommodate different cognitive 

architectures if we are to make full use of its methodology; much excellent research is 

being carried out in the realm of embodiment, and the ability to implement different 

algorithms will definitely be an asset that can contribute greatly to the development of 

VAL. Second, another vital element of this thesis is the development of a rigorous virtual 

curriculum and the design and development of efficient pedagogical tools to implement 

that curriculum. Third, this thesis emphasizes the importance of having an educational 

perspective. These are all key elements for the development of strong AI. But how much 

of this is possible?  

To answer the question “Can intelligent behavior emerge from within VAL’s 

ecological construct?” I refer the reader back to the “Literature Review” section. If we 

look at other research such as that presented in Metta (2010), Cotterill (2003), Brooks 

(1991), Pfieifer (2007), and even Goertzel (2007), we can see that many elements similar 

to those involved in the design of VAL are already being implemented. Moreover, if we 

view the C. elegans simulations in Kitano and Luke (1998) as being “ultra-low resolution” 

versions of VAL, then the answer to the question is most likely “yes.” 

Perhaps, because the aforementioned research is similar to mine, a more relevant 

question should be asked: How does my research differ? The answer to this question lies 

in the desired end product of the research. In the case of the CyberChild (Cotterill 2003), 

the goal is consciousness, and in the case of Goertzel (2007), the goal is artificial general 

intelligence (AGI). Moreover, although the theoretical foundations of Brooks (1991), 

Pfieifer and Grand (2007), and Metta (2010) are similar to mine, I am overwhelmingly in 

favor of a virtual approach. This has many implications.  
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For example, as stated earlier, there are no limits to what can be virtually built. 

Since the real world is more constrained, there are investigative techniques that only can 

be executed virtually. The main feature of my research that sets it apart from other 

research is the method of virtually combining the child approach to strong AI with an 

evolutionary approach.  This method can be summarized as follows. 

Start by creating a simple virtual creature, one that resembles one of our 

evolutionary stages, perhaps something resembling the C. elegans. Then acquire data on 

its cognitive architecture by creating interventions based on its interaction with its 

environment. Use that data to build more sophisticated model animals from our 

evolutionary history, for example, a fish, then an anthropoid, then a quadruped, and so on, 

until we build a biped. At every stage, the virtual creature (agent) learns how to survive 

on its own. The learning is based on embodied cognition principles, the creatures learning 

the affordance of themselves and their environment.  

With this approach we can build virtual agents like VAL 0.1, which was used as a 

point of reference in my thought experiment. But how do we get from VAL 0.1 to an AI 

educator? The first step is getting VAL 0.1 to VAL 1.0, which is a biped that can survive 

on its own. The next step and all future steps integrate a more and more sophisticated 

virtual curriculum to bring out more and more humanlike behavior. It is vital that the 

agent’s behavior resemble human behavior, because students are human and live in a 

world that is designed (physically and mentally) for humans.  

From a physical perspective, as we look at all the artifacts that surround us, it is 

apparent that our world is built for and by bipeds with very dextrous hands. With regard 

to our mental faculties, there are social structures that can only be negotiated through 
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human capacities. It is clear, then, that an agent developed with human behavior would 

make a better educator than one that was not so developed, for it is important that 

educator and students be able to relate to one another.  

I see the future AI educator as one that can talk to students without prejudice and 

that is available on demand. The AI educator would also function as an assistant and 

inevitably be integrated into mobile technology, in much the same way as Apple’s Siri. In 

fact, I predict that in the near future (within the next ten years), every mobile device will 

have access to strong AI. At first, the strong AI agent will look and act like Siri, but then 

it will mature to act more like a real personal assistant or companion. When that happens, 

the strong AI agent will have become an AI educator. As it becomes more and more 

knowledgeable and gains more and more experiences, the AI educator could perhaps 

become an AI mentor. I dare to take this flow of thought one step further: I claim that one 

day, virtual companions will even walk among us.  

Soon material technology will offer products that can be used as artificial muscles. 

In combination with 3D printer technology, this will enable us to manufacture robots that 

are just not possible today. These new robots will be manufactured with a morphology 

that can be identical to any virtual agent, giving us the ability to transfer the AI educator 

from the virtual world into the physical world.  

This may seem far-fetched, but the synergy of new technology has always been an 

accelerant. New technology needs new benchmarks. Since I proclaim that VE is the new 

AI, perhaps we need a new Turing test, as suggested by Mueller and Minnery (2008). 

Keeping in line with human research, a simple VE test could be the “rouge test,” 

otherwise known as the “mirror test” (Keller et al., 2004). This simple test is used to 
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evaluate whether a child or animal can recognize its own reflection in a mirror, and it 

could be applied to both VE agents and physical companions. An agent that successfully 

passes this test could be considered conscious, which brings the ethical question “What is 

life?” to the forefront.  

I have no intention of going into details about the ethics of robots, but an 

interesting caveat is in order. I would not be surprised if one day some research ethics 

committees were to see VE agents roaming around in their virtual environments and 

think to themselves that it might be a good idea to include VE research in their ethical 

reviews. Why would reviewing the ethics of VE be a good idea? It would be like an 

insurance policy covering us humans, just in case VE agents do one day become truly 

autonomous. If that happens, how would we look if we totally disregarded ethics when 

creating them? A better question, perhaps, might be: What would be the ramifications of 

creating such creatures?  

My final words about Moore’s Law involve a comparison of processing demands 

as we move from AI to VE. I claim that increased computational power does little to 

improve the results of the old AI paradigm. To some this might seem obvious, but for 

others I offer a simple example, hoping to show that the more computationally 

demanding a task is, the more it will benefit from Moore’s Law. 

This is something of an exaggeration, but I want my point to be clear. Thirty years 

ago, when calculating 2 × 2 on a new state-of-the-art calculator, one would receive the 

answer 4 in less than a second. Today one can still receive the answer 4 in less than a 

second. In this situation, because the calculation is not very complex, no real benefit 

arises from using faster processors. That is, not much was gained from Moore’s Law. In 
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contrast, a more computationally demanding task like sequencing the human genome can 

benefit dramatically. Decoding the first billon base pairs took three years, but with 

today’s processors, a person’s DNA can be sequenced in a couple of weeks. The benefits 

of increased processing power for the simple calculator are negligible compared to the 

tremendous benefits for the more complex DNA sequencing. Similarly, since VE is more 

computationally demanding then AI, it will surely benefit more. 

The two main points I wish the reader to take away from this thesis are: Virtual 

environments can serve as a productive test bed for embodied cognition research, and 

within this paradigm, many of the issues with regard to the development of a virtual 

artificial learner are educational. 
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