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ABSTRACT
This preliminary conceptual work discusses a notion of self-
forensics as an autonomic property to augment the Auto-
nomic System Specification Language (ASSL) framework of
formal specification tools for autonomic systems. The core
of the proposed methodology leverages existing designs, the-
oretical results, and implementing systems to enable rapid
completion of and validation of the experiments and their
the results initiated in this work. Specifically, we leverage
the ASSL toolkit to add the self-forensics autonomic prop-
erty (SFAP) to enable generation of the Java-based Object-
Oriented Intensional Programming (JOOIP) language code
laced with traces of Forensic Lucid to encode contextual
forensic evidence and other expressions.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Very high-level languages; Multiparadigm languages;;
D.3.4 [Programming Languages]: Processors—Compil-
ers; Preprocessors; Run-time environments; I.2.2 [Artificial
Intelligence]: Automatic Programming—Program synthe-
sis; Program transformation; Forensic computing ; D.2.11
[Software Architectures]: Domain-specific architectures;
Languages
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1. INTRODUCTION

1.1 Problem and Proposed Solution
The novel concept of self-forensics and the idea of its im-

plementation within ASSL and GIPSY is described through
their founding core works. These preliminary findings and
discussions are currently at the conceptual level, but the au-
thors are confident to provide a concrete formal model, the
complete requirements, design, and implementation of the
concept described here by leveraging the resources provided
by the previous research work. To the authors’ knowledge
there is no preceding work other than the authors’ own that
does attempt something similar to what is described here.

1.2 Organization
First, we give a glimpse overview of the founding back-

ground work on ASSL and self-forensics in Section 2.1 and
Section 2.2. Then, we describe the core principles and ideas
of the methodology of realization of the self-forensics au-
tonomic property (SFAP) within the ASSL framework in
Section 3. We provide a quick notion of the syntactical nota-
tion of SFAP and where it fits within the generating toolset
of ASSL and the run-time environment of the General In-
tensional Programming System (GIPSY). We conclude in
Section 4 for the merits and the future endeavors for the
developments in this direction.

2. BACKGROUND

2.1 ASSL Formal Specification Toolset
The ASSL framework [44, 39, 32] takes as an input a spec-

ification of properties of autonomic systems [6, 7, 9, 8, 1, 26,
22], does formal syntax and semantics checks of the speci-
fications, and if the checks pass, it generates a Java collec-
tion of classes and interfaces corresponding to the specifi-
cation. Subsequently, a developer has to fill in some over-
ridden interface methods corresponding to the desired auto-
nomic policies in a proxy implementation within the gener-
ated Java skeleton application or map them to the existing
legacy application [44, 39, 32].

The ASSL framework [44] includes the autonomic multi-



I. Autonomic System (AS)
* AS Service-level Objectives
* AS Self-managing Policies
* AS Architecture
* AS Actions
* AS Events
* AS Metrics
II. AS Interaction Protocol (ASIP)
* AS Messages
* AS Communication Channels
* AS Communication Functions
III. Autonomic Element (AE)
* AE Service-level Objectives
* AE Self-managing Policies
* AE Friends
* AE Interaction Protocol (AEIP)
- AE Messages
- AE Communication Channels
- AE Communication Functions
- AE Managed Elements

* AE Recovery Protocol
* AE Behavior Models
* AE Outcomes
* AE Actions
* AE Events
* AE Metrics

Figure 1: ASSL Multi-Tier Model

tier system architecture (AS) including formal language con-
structs to specify service-level objectives (SLOs), core self-
CHOP (i.e. self-configuration, self-healing, self-optimization,
and self-protection) autonomic properties, corresponding ar-
chitecture, allowed actions, events, and metrics to aid the
self-management aspect of the system. It also specifies the
interaction protocols between the AS’ managed autonomic
elements, including specification of of messages exchanged
and how they are communicated. Finally, it provides for
specification of the autonomic element (AE) architecture,
like for the whole system, each element is a subject to the
SLOs, self-CHOP policies, behavior, actions, metrics, and
interaction protocols, the summary of all of which is enu-
merated in Figure 1.

ASSL formal modeling, specification, and model check-
ing [36, 35] has been applied to a number open-source, aca-
demic, and research software system specifications, e.g. such
as Voyager imagery processing [34], the Distributed Modular
Audio Recognition Framework (DMARF) [41, 20, 40], and
the General Intensional Programming System (GIPSY) [43]
reliability of self-assessment, distributed, and other auto-
nomic aspects of the autonomic system-time reactive model
(AS-TRM) [38, 42], self-adapting properties of NASA swarm
missions [31, 5, 37] and others [33].

2.2 Self-Forensics Concept
The study of self-forensics [12, 21, 13], is an additional

property one of the authors is investigating throughout his
ongoing PhD thesis work with the contextual forensic log-
ging with Forensic Lucid and case specification [14, 16, 10,
18, 17]. Forensic Lucid is an intensional context-oriented
forensic case specification, modeling, and evaluation lan-
guage. Forensic Lucid was initially proposed for specifica-
tion and automatic deduction and event reconstruction in
the cybercrime domain of digital forensics [23]. It has been
proposed to extend its use onto other domains such as inves-
tigation of incidents in various vehicle crash investigations,
and autonomous software and hardware systems. Its pri-

mary feature inherited from the Lucid family of languages
is to be able to specify and work with context [45, 25, 30] as
a first-class value, and the context represents the evidence
and stories told by witnesses.

Forensic Lucid’s primary experimental platform for com-
pilation (Forensic Lucid compiler is a member of the General
Intensional Programming Compiler (GIPC) framework) and
evaluation is the General Intensional Programming System
(GIPSY) [24, 4, 15]. GIPSY’s run-time system, the General
Eduction Engine (GEE), is designed to be flexible to allow
various modes of execution, including the planned used of
the evaluation by the PRISM- [29] and AspectJ-based [2]
backends as illustrated in Figure 2 [19] and Figure 3.

Figure 2: GIPSY High Level Overview

3. SELF-FORENSICS AUTONOMIC
PROPERTY (SFAP)

First, we add a notion of a SELF_FORENSICS policy speci-
fication for AS tier and AE, just like it is done for the self-
CHOP properties. The property introduction consists of
two major parts: (1) adding the syntax and semantical sup-
port to the lexical analyzer, parser, and semantic checker of
ASSL as well as (2) adding the appropriate code generator
for JOOIP and Forensic Lucid to translate forensic events.
The JOOIP code is mostly Java with embedded fragments
of Forensic Lucid-encoded evidence [10, 21].

We use ASSL’s managed-element (ME) specification of
AE to encode any module or subsystem of any software sys-
tem under study to increase or reduce the amount of forensic
evidence logged as Forensic Lucid events depending on the
criticality of faults (that can be expressed as ASSL metrics).

A very high-level example of the generic self-forensic spec-
ification is in Figure 4. Many details are presently omitted
due to the preliminary work on this novel concept and will
be provided in our subsequent publication.

Wu and the GIPSY team came up with a hybrid inten-
sional OO language, JOOIP [47, 46], to allow mixing Java
and Lucid code by placing Lucid fragments nearly anywhere
within Java classes (as data members or within methods. As
a part of this conceptual research work, we propose that the
ASSL toolset in this instance be augmented with a code-
generation plug-in that generates JOOIP [47, 46] code laced
with Forensic Lucid contextual expressions for forensic anal-
ysis. The evaluation of the JOOIP+Forensic Lucid code
further is to be performed by the GIPSY’s general eduction
engine (GEE), described in detail elsewhere [24, 4, 15].

Furthermore, in this proposed prototype the EVENTS mem-
bers would be the basic building blocks of the contextual
specification of the Forensic Lucid observation sequences.
The INITIATED_BY and TERMINATED_BY clauses would corre-



Figure 3: Forensic Lucid Compilation and Evaluation Flow in GIPSY



spond to the beginning and end of data stream Lucid oper-
ators bod and eod. ASSL fluents would map to the Lucid
streams of the observation sequences where each stream is a
witness account of systems behavior. All fluents constitute
an evidential statement. The mapping and actions corre-
spond to the handling of the anomalous states within the
JOOIP’s Java code.

Once JOOIP code with Forensic Lucid fragments is gener-
ated by the ASSL toolset, it is passed on to the hybrid com-
piler of GIPSY, the GIPC to properly compile the JOOIP
and Forensic Lucid specifications, link them together in a
executable code inside the GEE engine resources (GEER),
which then would have three choices of evaluation of it – the
traditional eduction model of GEE, AspectJ-based eduction
model, and probabilistic model checking with the PRISM
backend.

4. CONCLUSION
We laid out some preliminary groundwork of requirements

to implement formally the self-forensics autonomic property
within the ASSL toolset in order to allow any implementa-
tion of the self-forensics property added to the legacy small-
to-medium open-source and academic software systems.

Our future work will be to complete the implementation
of the said property and export it onto the target example
software systems of ADMARF, AGIPSY [43], and others
described conceptually in [21].

We will investigate the use of the open-source PRISM
tool [29], for probabilistic model-checking of the produced
Forensic Lucid specifications as Forensic Lucid forensic case
specification models include credibility and trustworthiness
factors of the evidence and witnesses based on the Dempster-
Shafer mathematical theory of evidence [11, 3, 27] into the
ASSL specifications.
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AS ADMARF {

TYPES { MonitoredElement }

ASSELF_MANAGEMENT {
SELF_FORENSICS {

FLUENT inIntensiveForensicLogging {
INITIATED_BY { EVENTS.anomalyDetected }
TERMINATED_BY {

EVENTS.anomalyResolved,
EVENTS.anomalyFailedToResolve

}
}

MAPPING {
CONDITIONS { inIntensiveForensicLogging }
DO_ACTIONS { ACTIONS.startForensicLogging }

}
}

}

ACTIONS {
ACTION startForensicLogging {

GUARDS { ASSELF_MANAGEMENT.SELF_FORENSICS.inIntensiveForensicLogging }
VARS { Boolean ... }
DOES {

...
FOREACH member in AES {

...
};

}
ONERR_DOES {

// if error then log it too
...

}
}

} // ACTIONS

EVENTS { // these events are used in the fluents specification
EVENT anomalyDetected {

ACTIVATION { SENT { ASIP.MESSAGES.... } }
}
...

} // EVENTS

METRICS {
METRIC thereIsInsecurePublicMessage {

METRIC_TYPE { CREDIBILITY }
DESCRIPTION { "sets event’s trustworthiness/credibility AE" }
VALUE { ... }
...

}
}

} // AS ADMARF

// ...

MANAGED_ELEMENTS
{

MANAGED_ELEMENT STAGE_ME
{

INTERFACE_FUNCTION logForensicEvent
{

PARAMETERS { ForensicLucidEvent poEvent }
RETURNS { Boolean }

}
}

}

Figure 4: The Prototype Syntactical Specification of the SELF_FORENSICS in ASSL for ADMARF
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