
Towards a Self-Forensics Property in the ASSL Toolset

Serguei A. Mokhov
Computer Science and
Software Engineering
Concordia University

Montreal, QC, Canada
mokhov@cse.concordia.ca

Emil Vassev
School of Computer Science

and Informatics
University College Dublin

Dublin, Ireland
emil.vassev@ucd.ie

Joey Paquet
Computer Science and
Software Engineering
Concordia University

Montreal, QC, Canada
paquet@cse.concordia.ca

Mourad Debbabi
Concordia Institute for
Information Systems

Engineering
Concordia University

Montreal, QC, Canada
debbabi@ciise.concordia.ca

ABSTRACT
This preliminary conceptual work discusses a notion of self-
forensics as an autonomic property to augment the Auto-
nomic System Specification Language (ASSL) framework of
formal specification tools for autonomic systems. The core
of the proposed methodology leverages existing designs, the-
oretical results, and implementing systems to enable rapid
completion of and validation of the experiments and their
the results initiated in this work. Specifically, we leverage
the ASSL toolkit to add the self-forensics autonomic prop-
erty (SFAP) to enable generation of the Java-based Object-
Oriented Intensional Programming (JOOIP) language code
laced with traces of Forensic Lucid to encode contextual
forensic evidence and other expressions.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Very high-level languages; Multiparadigm languages;;
D.3.4 [Programming Languages]: Processors—Compil-
ers; Preprocessors; Run-time environments; I.2.2 [Artificial
Intelligence]: Automatic Programming—Program synthe-
sis; Program transformation; Forensic computing ; D.2.11
[Software Architectures]: Domain-specific architectures;
Languages

General Terms
Languages, Theory, Design

Keywords
self-forensics, Forensic Lucid, JOOIP, ASSL, forensic com-
puting, autonomic computing, GIPSY

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-10 2010, May 19-21, Montreal, [QC, CANADA]
Copyright 2010 ACM 978-1-60558-901-5/10/05 ...$10.00.

1. INTRODUCTION

1.1 Problem and Proposed Solution
The novel concept of self-forensics and the idea of its im-

plementation within ASSL and GIPSY is described through
their founding core works. These preliminary findings and
discussions are currently at the conceptual level, but the au-
thors are confident to provide a concrete formal model, the
complete requirements, design, and implementation of the
concept described here by leveraging the resources provided
by the previous research work. To the authors’ knowledge
there is no preceding work other than the authors’ own that
does attempt something similar to what is described here.

1.2 Organization
First, we give a glimpse overview of the founding back-

ground work on ASSL and self-forensics in Section 2.1 and
Section 2.2. Then, we describe the core principles and ideas
of the methodology of realization of the self-forensics au-
tonomic property (SFAP) within the ASSL framework in
Section 3. We provide a quick notion of the syntactical nota-
tion of SFAP and where it fits within the generating toolset
of ASSL and the run-time environment of the General In-
tensional Programming System (GIPSY). We conclude in
Section 4 for the merits and the future endeavors for the
developments in this direction.

2. BACKGROUND

2.1 ASSL Formal Specification Toolset
The ASSL framework [44, 39, 32] takes as an input a spec-

ification of properties of autonomic systems [6, 7, 9, 8, 1, 26,
22], does formal syntax and semantics checks of the speci-
fications, and if the checks pass, it generates a Java collec-
tion of classes and interfaces corresponding to the specifi-
cation. Subsequently, a developer has to fill in some over-
ridden interface methods corresponding to the desired auto-
nomic policies in a proxy implementation within the gener-
ated Java skeleton application or map them to the existing
legacy application [44, 39, 32].

The ASSL framework [44] includes the autonomic multi-

I. Autonomic System (AS)
* AS Service-level Objectives
* AS Self-managing Policies
* AS Architecture
* AS Actions
* AS Events
* AS Metrics
II. AS Interaction Protocol (ASIP)
* AS Messages
* AS Communication Channels
* AS Communication Functions
III. Autonomic Element (AE)
* AE Service-level Objectives
* AE Self-managing Policies
* AE Friends
* AE Interaction Protocol (AEIP)
- AE Messages
- AE Communication Channels
- AE Communication Functions
- AE Managed Elements

* AE Recovery Protocol
* AE Behavior Models
* AE Outcomes
* AE Actions
* AE Events
* AE Metrics

Figure 1: ASSL Multi-Tier Model

tier system architecture (AS) including formal language con-
structs to specify service-level objectives (SLOs), core self-
CHOP (i.e. self-configuration, self-healing, self-optimization,
and self-protection) autonomic properties, corresponding ar-
chitecture, allowed actions, events, and metrics to aid the
self-management aspect of the system. It also specifies the
interaction protocols between the AS’ managed autonomic
elements, including specification of of messages exchanged
and how they are communicated. Finally, it provides for
specification of the autonomic element (AE) architecture,
like for the whole system, each element is a subject to the
SLOs, self-CHOP policies, behavior, actions, metrics, and
interaction protocols, the summary of all of which is enu-
merated in Figure 1.

ASSL formal modeling, specification, and model check-
ing [36, 35] has been applied to a number open-source, aca-
demic, and research software system specifications, e.g. such
as Voyager imagery processing [34], the Distributed Modular
Audio Recognition Framework (DMARF) [41, 20, 40], and
the General Intensional Programming System (GIPSY) [43]
reliability of self-assessment, distributed, and other auto-
nomic aspects of the autonomic system-time reactive model
(AS-TRM) [38, 42], self-adapting properties of NASA swarm
missions [31, 5, 37] and others [33].

2.2 Self-Forensics Concept
The study of self-forensics [12, 21, 13], is an additional

property one of the authors is investigating throughout his
ongoing PhD thesis work with the contextual forensic log-
ging with Forensic Lucid and case specification [14, 16, 10,
18, 17]. Forensic Lucid is an intensional context-oriented
forensic case specification, modeling, and evaluation lan-
guage. Forensic Lucid was initially proposed for specifica-
tion and automatic deduction and event reconstruction in
the cybercrime domain of digital forensics [23]. It has been
proposed to extend its use onto other domains such as inves-
tigation of incidents in various vehicle crash investigations,
and autonomous software and hardware systems. Its pri-

mary feature inherited from the Lucid family of languages
is to be able to specify and work with context [45, 25, 30] as
a first-class value, and the context represents the evidence
and stories told by witnesses.

Forensic Lucid’s primary experimental platform for com-
pilation (Forensic Lucid compiler is a member of the General
Intensional Programming Compiler (GIPC) framework) and
evaluation is the General Intensional Programming System
(GIPSY) [24, 4, 15]. GIPSY’s run-time system, the General
Eduction Engine (GEE), is designed to be flexible to allow
various modes of execution, including the planned used of
the evaluation by the PRISM- [29] and AspectJ-based [2]
backends as illustrated in Figure 2 [19] and Figure 3.

Figure 2: GIPSY High Level Overview

3. SELF-FORENSICS AUTONOMIC
PROPERTY (SFAP)

First, we add a notion of a SELF_FORENSICS policy speci-
fication for AS tier and AE, just like it is done for the self-
CHOP properties. The property introduction consists of
two major parts: (1) adding the syntax and semantical sup-
port to the lexical analyzer, parser, and semantic checker of
ASSL as well as (2) adding the appropriate code generator
for JOOIP and Forensic Lucid to translate forensic events.
The JOOIP code is mostly Java with embedded fragments
of Forensic Lucid-encoded evidence [10, 21].

We use ASSL’s managed-element (ME) specification of
AE to encode any module or subsystem of any software sys-
tem under study to increase or reduce the amount of forensic
evidence logged as Forensic Lucid events depending on the
criticality of faults (that can be expressed as ASSL metrics).

A very high-level example of the generic self-forensic spec-
ification is in Figure 4. Many details are presently omitted
due to the preliminary work on this novel concept and will
be provided in our subsequent publication.

Wu and the GIPSY team came up with a hybrid inten-
sional OO language, JOOIP [47, 46], to allow mixing Java
and Lucid code by placing Lucid fragments nearly anywhere
within Java classes (as data members or within methods. As
a part of this conceptual research work, we propose that the
ASSL toolset in this instance be augmented with a code-
generation plug-in that generates JOOIP [47, 46] code laced
with Forensic Lucid contextual expressions for forensic anal-
ysis. The evaluation of the JOOIP+Forensic Lucid code
further is to be performed by the GIPSY’s general eduction
engine (GEE), described in detail elsewhere [24, 4, 15].

Furthermore, in this proposed prototype the EVENTS mem-
bers would be the basic building blocks of the contextual
specification of the Forensic Lucid observation sequences.
The INITIATED_BY and TERMINATED_BY clauses would corre-

Figure 3: Forensic Lucid Compilation and Evaluation Flow in GIPSY

spond to the beginning and end of data stream Lucid oper-
ators bod and eod. ASSL fluents would map to the Lucid
streams of the observation sequences where each stream is a
witness account of systems behavior. All fluents constitute
an evidential statement. The mapping and actions corre-
spond to the handling of the anomalous states within the
JOOIP’s Java code.

Once JOOIP code with Forensic Lucid fragments is gener-
ated by the ASSL toolset, it is passed on to the hybrid com-
piler of GIPSY, the GIPC to properly compile the JOOIP
and Forensic Lucid specifications, link them together in a
executable code inside the GEE engine resources (GEER),
which then would have three choices of evaluation of it – the
traditional eduction model of GEE, AspectJ-based eduction
model, and probabilistic model checking with the PRISM
backend.

4. CONCLUSION
We laid out some preliminary groundwork of requirements

to implement formally the self-forensics autonomic property
within the ASSL toolset in order to allow any implementa-
tion of the self-forensics property added to the legacy small-
to-medium open-source and academic software systems.

Our future work will be to complete the implementation
of the said property and export it onto the target example
software systems of ADMARF, AGIPSY [43], and others
described conceptually in [21].

We will investigate the use of the open-source PRISM
tool [29], for probabilistic model-checking of the produced
Forensic Lucid specifications as Forensic Lucid forensic case
specification models include credibility and trustworthiness
factors of the evidence and witnesses based on the Dempster-
Shafer mathematical theory of evidence [11, 3, 27] into the
ASSL specifications.

5. REFERENCES
[1] D. Agrawal et al. Autonomic computing expressing

language. Technical report, IBM Corporation, 2005.

[2] AspectJ Contributors. AspectJ: Crosscutting Objects
for Better Modularity. eclipse.org, 2007.
http://www.eclipse.org/aspectj/.

[3] R. Haenni, J. Kohlas, and N. Lehmann. Probabilistic
argumentation systems. Technical report, Institute of
Informatics, University of Fribourg, Fribourg,
Switzerland, Oct. 1999.

[4] B. Han, S. A. Mokhov, and J. Paquet. Advances in the
design and implementation of a multi-tier architecture
in the GIPSY environment with Java. In Proceedings
of SERA 2010. IEEE Computer Society, 2010. To
appear; online at http://arxiv.org/abs/0906.4837.

[5] M. G. Hinchey, J. L. Rash, W. Truszkowski, C. Rouff,
and R. Sterritt. Autonomous and autonomic swarms.
In Software Engineering Research and Practice, pages
36–44. CSREA Press, 2005.

[6] P. Horn. Autonomic computing: IBM’s perspective on
the state of information technology. Technical report,
IBM T. J. Watson Laboratory, Oct. 2001.

[7] IBM Corporation. An architectural blueprint for
autonomic computing. Technical report, IBM
Corporation, 2006.

[8] IBM Tivoli. Autonomic computing policy language.
Technical report, IBM Corporation, 2005.

[9] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):41–50,
2003.

[10] S. A. Mokhov. Encoding forensic multimedia evidence
from MARF applications as Forensic Lucid
expressions. In T. Sobh, K. Elleithy, and
A. Mahmood, editors, Novel Algorithms and
Techniques in Telecommunications and Networking,
proceedings of CISSE’08, pages 413–416, University of
Bridgeport, CT, USA, Dec. 2008. Springer. Printed in
January 2010.

[11] S. A. Mokhov. Enhancing the formal cyberforensic
approach with observation modeling with credibility
factors and mathematical theory of evidence. [online],
also in ;login: vol. 34, no. 6, p. 101, Dec. 2009.
Presented at WIPS at USENIX Security’09,
http://www.usenix.org/events/sec09/wips.html.

[12] S. A. Mokhov. The role of self-forensics modeling for
vehicle crash investigations and event reconstruction
simulation. In Proceedings of HSC’09. SCS, Oct. 2009.
To appear, online at
http://arxiv.org/abs/0905.2449.

[13] S. A. Mokhov. Towards improving validation,
verification, crash investigations, and event
reconstruction of flight-critical systems with
self-forensics. [online], June 2009. A white paper
submitted in response to NASA’s RFI
NNH09ZEA001L, http://arxiv.org/abs/0906.1845.

[14] S. A. Mokhov and J. Paquet. Formally specifying and
proving operational aspects of Forensic Lucid in
Isabelle. Technical Report 2008-1-Ait Mohamed,
Department of Electrical and Computer Engineering,
Concordia University, Montreal, Canada, Aug. 2008.
In Theorem Proving in Higher Order Logics
(TPHOLs2008): Emerging Trends Proceedings.

[15] S. A. Mokhov and J. Paquet. Using the General
Intensional Programming System (GIPSY) for
evaluation of higher-order intensional logic (HOIL)
expressions. In Proceedings of SERA 2010. IEEE
Computer Society, 2010. To appear; online at
http://arxiv.org/abs/0906.3911.

[16] S. A. Mokhov, J. Paquet, and M. Debbabi. Formally
specifying operational semantics and language
constructs of Forensic Lucid. In O. Göbel, S. Frings,
D. Günther, J. Nedon, and D. Schadt, editors,
Proceedings of the IT Incident Management and IT
Forensics (IMF’08), pages 197–216, Mannheim,
Germany, Sept. 2008. GI. LNI140.

[17] S. A. Mokhov, J. Paquet, and M. Debbabi. Reasoning
about a simulated printer case investigation with
Forensic Lucid. In Proceedings of the Huntsville
Simulation Conference (HSC’09). SCS, Oct. 2009. To
appear, online at http://arxiv.org/abs/0906.5181.

[18] S. A. Mokhov, J. Paquet, and M. Debbabi. Towards
automated deduction in blackmail case analysis with
Forensic Lucid. In Proceedings of the Huntsville
Simulation Conference (HSC’09). SCS, Oct. 2009. To

AS ADMARF {

TYPES { MonitoredElement }

ASSELF_MANAGEMENT {
SELF_FORENSICS {

FLUENT inIntensiveForensicLogging {
INITIATED_BY { EVENTS.anomalyDetected }
TERMINATED_BY {

EVENTS.anomalyResolved,
EVENTS.anomalyFailedToResolve

}
}

MAPPING {
CONDITIONS { inIntensiveForensicLogging }
DO_ACTIONS { ACTIONS.startForensicLogging }

}
}

}

ACTIONS {
ACTION startForensicLogging {

GUARDS { ASSELF_MANAGEMENT.SELF_FORENSICS.inIntensiveForensicLogging }
VARS { Boolean ... }
DOES {

...
FOREACH member in AES {

...
};

}
ONERR_DOES {

// if error then log it too
...

}
}

} // ACTIONS

EVENTS { // these events are used in the fluents specification
EVENT anomalyDetected {

ACTIVATION { SENT { ASIP.MESSAGES.... } }
}
...

} // EVENTS

METRICS {
METRIC thereIsInsecurePublicMessage {

METRIC_TYPE { CREDIBILITY }
DESCRIPTION { "sets event’s trustworthiness/credibility AE" }
VALUE { ... }
...

}
}

} // AS ADMARF

// ...

MANAGED_ELEMENTS
{

MANAGED_ELEMENT STAGE_ME
{

INTERFACE_FUNCTION logForensicEvent
{

PARAMETERS { ForensicLucidEvent poEvent }
RETURNS { Boolean }

}
}

}

Figure 4: The Prototype Syntactical Specification of the SELF_FORENSICS in ASSL for ADMARF

appear, online at http://arxiv.org/abs/0906.0049.

[19] S. A. Mokhov, J. Paquet, and X. Tong. A type system
for hybrid intensional-imperative programming
support in GIPSY. In Proceedings of C3S2E’09, pages
101–107, New York, NY, USA, May 2009. ACM.

[20] S. A. Mokhov and E. Vassev. Autonomic specification
of self-protection for Distributed MARF with ASSL.
In Proceedings of C3S2E’09, pages 175–183, New
York, NY, USA, May 2009. ACM.

[21] S. A. Mokhov and E. Vassev. Self-forensics through
case studies of small to medium software systems. In
Proceedings of IMF’09, pages 128–141. IEEE
Computer Society, Sept. 2009.

[22] R. Murch. Autonomic Computing: On Demand Series.
IBM Press, Prentice Hall, 2004.

[23] G. Palmer (Editor). A road map for digital forensic
research, report from first digital forensic research
workshop (DFRWS). Technical report, DFRWS, 2001.

[24] J. Paquet. Distributed eductive execution of hybrid
intensional programs. In Proceedings of the 33rd
Annual IEEE International Computer Software and
Applications Conference (COMPSAC’09), pages
218–224, Seattle, Washington, USA, July 2009. IEEE
Computer Society.

[25] J. Paquet, S. A. Mokhov, and X. Tong. Design and
implementation of context calculus in the GIPSY
environment. In Proceedings of the 32nd Annual IEEE
International Computer Software and Applications
Conference (COMPSAC), pages 1278–1283, Turku,
Finland, July 2008. IEEE Computer Society.

[26] M. Parashar and S. Hariri, editors. Autonomic
Computing: Concepts, Infrastructure and
Applications. CRC Press, Dec. 2006.

[27] G. Shafer. The Mathematical Theory of Evidence.
Princeton University Press, 1976.

[28] B. Shishkov, J. Cordeiro, and A. Ranchordas, editors.
ICSOFT 2009 - Proceedings of the 4th International
Conference on Software and Data Technologies,
volume 1. INSTICC Press, July 2009.

[29] The PRISM Team. PRISM: a probabilistic model
checker. [online], 2004–2010.
http://www.prismmodelchecker.org/, last viewed
June 2009.

[30] X. Tong. Design and implementation of context
calculus in the GIPSY. Master’s thesis, Department of
Computer Science and Software Engineering,
Concordia University, Montreal, Canada, Apr. 2008.

[31] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff.
NASA’s swarm missions: The challenge of building
autonomous software. IT Professional, 6(5):47–52,
2004.

[32] E. Vassev. ASSL: Autonomic System Specification
Language – A Framework for Specification and Code
Generation of Autonomic Systems. LAP Lambert
Academic Publishing, Nov. 2009. ISBN: 3-838-31383-6.

[33] E. Vassev and M. Hinchey. Assl: A software
engineering approach to autonomic computing. IEEE
Computer, 42(6):90–93, 2009.

[34] E. Vassev and M. Hinchey. ASSL specification model
for the image-processing behavior in the NASA
Voyager mission. Technical report, Lero - The Irish

Software Engineering Research Center, 2009.

[35] E. Vassev, M. Hinchey, and A. J. Quigley. A
self-adaptive architecture for autonomic systems
developed with ASSL. In Shishkov et al. [28], pages
163–168.

[36] E. Vassev, M. Hinchey, and A. J. Quigley. Towards
model checking with Java PathFinder for autonomic
systems specified and generated with ASSL. In
Shishkov et al. [28], pages 251–256.

[37] E. Vassev, M. G. Hinchey, and J. Paquet. Towards an
ASSL specification model for NASA swarm-based
exploration missions. In Proceedings of the 23rd
Annual ACM Symposium on Applied Computing (SAC
2008) - AC Track, pages 1652–1657. ACM, 2008.

[38] E. Vassev, H. Kuang, O. Ormandjieva, and J. Paquet.
Reactive, distributed and autonomic computing
aspects of AS-TRM. In J. Filipe, B. Shishkov, and
M. Helfert, editors, ICSOFT (1), pages 196–202.
INSTICC Press, Sept. 2006.

[39] E. Vassev and S. A. Mokhov. An ASSL-generated
architecture for autonomic systems. In Proceedings of
C3S2E’09, pages 121–126, New York, NY, USA, May
2009. ACM.

[40] E. Vassev and S. A. Mokhov. Self-optimization
property in autonomic specification of Distributed
MARF with ASSL. In B. Shishkov, J. Cordeiro, and
A. Ranchordas, editors, Proceedings of ICSOFT’09,
volume 1, pages 331–335, Sofia, Bulgaria, July 2009.
INSTICC Press.

[41] E. Vassev and S. A. Mokhov. Towards autonomic
specification of Distributed MARF with ASSL:
Self-healing. In Proceedings of SERA 2010. IEEE
Computer Society, 2010. To appear.

[42] E. Vassev, O. Ormandjieva, and J. Paquet. ASSL
specification of reliability self-assessment in the
AS-TRM. In J. Filipe, B. Shishkov, and M. Helfert,
editors, ICSOFT (SE), volume SE, pages 198–206.
INSTICC Press, July 2007.

[43] E. Vassev and J. Paquet. Towards autonomic GIPSY.
In Proceedings of the Fifth IEEE Workshop on
Engineering of Autonomic and Autonomous Systems
(EASE 2008), pages 25–34. IEEE Computer Society,
2008.

[44] E. I. Vassev. Towards a Framework for Specification
and Code Generation of Autonomic Systems. PhD
thesis, Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada,
2008.

[45] K. Wan. Lucx: Lucid Enriched with Context. PhD
thesis, Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada,
2006.

[46] A. Wu, J. Paquet, and S. A. Mokhov. Object-oriented
intensional programming: Intensional Java/Lucid
classes. In Proceedings of SERA 2010. IEEE
Computer Society, 2010. To appear; online at:
http://arxiv.org/abs/0909.0764.

[47] A. H. Wu. OO-IP Hybrid Language Design and a
Framework Approach to the GIPC. PhD thesis,
Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada,
2009.

