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Abstract

In this work we model the ACME (a fictitious company name) “printer case incident”
and make its specification in Forensic Lucid, a Lucid- and intensional-logic-based pro-
gramming language for cyberforensic analysis and event reconstruction specification. The
printer case involves a dispute between two parties that was previously solved using the
finite-state automata (FSA) approach, and is now re-done in a more usable way in Foren-
sic Lucid. Our simulation is based on the said case modeling by encoding concepts like
evidence and the related witness accounts as an evidential statement context in a Forensic
Lucid program, which is an input to the transition function that models the possible de-
ductions in the case. We then invoke the transition function (actually its reverse) with the
evidential statement context to see if the evidence we encoded agrees with one’s claims and
then attempt to reconstruct the sequence of events that may explain the claim or disprove
it.

Keywords: cybercrime investigation modeling, intensional logic and programming, cy-
berforensics, Forensic Lucid, finite-state automata
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1 Introduction

1.1 Problem Statement

The very first formal approach to cyberforensic analysis and event reconstruction appeared
in two papers [7, 6] by Gladyshev et al. that relies on the finite-state automata (FSA) and
their transformation and operation to model evidence, witnesses, stories told by witnesses, and
their possible evaluation for the purposes of claim validation and event reconstruction. One
of the examples the papers present is the use-case for the proposed technique – the “ACME
Printer Case Investigation”. See [7] for the corresponding formalization using the FSA by
Gladyshev and the proof-of-concept LISP implementation. We aim at the same case to model
and implement it using Forensic Lucid, which paves a way to be more friendly and usable in
the actual investigator’s work and serve as a basis to further development in the area.

1.2 Proposed Solution

We show the intensional approach to the problem is an asset in the field of cyberforensics as
it is promising to be more practical and usable than the plain FSA and LISP. Since Lucid
was originally designed and used to prove correctness of programming languages [2, 3, 30, 1],
and is based on the temporal logic, functional and data-flow languages its implementation to
backtracking in proving or disproving the evidential statements and claims in the investigation
process as a evaluation of an expression that either evaluates to true or false given all the facts
in the formally specified context. We will also try to retain the generality of the approach vs.
building a problem-specific FSA in the FSA approach that can suffer a state explosion problem.

1.2.1 Intensional Logic

From the logic perspective, it was shown one can model computations (the basic unit in the
finite state machines in [7, 6]) as logic [10]. When armed with contexts as first-class values and
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a demand-driven model adopted in the implementation of the Lucid-family of languages [25, 23,
22, 32, 26, 27] that limits the scope of evaluation in a given set of that constrains the scope of
evaluation in a given set of dimensions, we come to the intensional logic and the corresponding
programming artifact. In the essence, we model our forensic computation unit in the intensional
logic and implement it in practice within an intensional programming platform [24, 25, 12]. We
project a lot of potential for this work to be successful, beneficial, and usable for cyberforensics
investigation as well as simulation and intensional programming communities.

1.2.2 Approach Overview

Based on the parameters and terms defined in the works of Gladyshev [7, 6], we have various
pieces of evidence and witnesses telling their own “stories” of an incident. The goal is to put
them together to make the description of the incident as precise as possible. To show that a
certain claim may be true, the investigator has to show that there are some explanations of
evidence that agree with the claim. To disprove the claim, the investigator has to show there
is no explanation of evidence that agree with the claim [7].

The authors of the FSA approach did a proof-of-concept implementation of the proposed
algorithms in CMU Common LISP [7] that we target to improve the usability of by re-writing
it in a Lucid dialect, that we call Forensic Lucid (with a near-future possibility to construct a
data-flow graph-based [5, 20] IDE for the investigator to use and train novice investigators as
an expert system).

In this particular work we focus on the specification of the mentioned sample investigation
case in Forensic Lucid while illustrating relates fundamental concepts, operators, and applica-
tion of context-oriented case modeling and evaluation. Common LISP, unlike Lucid, entirely
lacks contexts build into its logic, syntax, and semantics, thereby making the implementation
of the cases more clumsy and inefficient (i.e. highly sequential). Our system [24, 25, 22, 12, 9]
(not discussed here) offers distributed demand-driven evaluation of Lucid programs in a more
efficient way and is more general than LISP’s compiler and run-time environment.

2 Background and Related Work

To remain stand-alone and self-sufficient in this work we recite some material in part that we
extend from, or, deemed otherwise relevant works, such as previously presented posters, works-
in-progress, and conference papers [15, 19, 16, 18, 17, 13] and other related cited works for the
benefit of the readers.

2.1 Intensional Logic and Programming

Definitions Intensional programming is based on intensional (or, in other words, multidi-
mensional) logics, which, in turn, are based on Natural Language Understanding (aspects, such
as, time, belief, situation, direction, etc.). Intensional programming brings in dimensions and
context to programs (e.g. space and time in physics or chemistry). Intensional logic adds di-
mensions to logical expressions; thus, a non-intensional logic can be seen as a constant or a
snapshot in all possible dimensions. Intensions are dimensions at which a certain statement
is true or false (or has some other than a Boolean value). Intensional operators are operators
that allow us to navigate within these dimensions [21].
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An Example of Using Temporal Intensional Logic Temporal intensional logic is an
extension of temporal logic that allows to specify the time in the future or in the past [21].

1. E1 := it is raining here today

Context: {place:here, time:today}

2. E2 := it was raining here before(today) = yesterday

3. E3 := it is going to rain at (altitude here + 500 m) after(today) = tomorrow

The context is a collection of the dimensions, e.g. as in E1’s place and time with the
corresponding tag values of here and today. If we fix here to City1 and assume it is a
constant. In the month of March, 2011, with granularity of day, for every day, we can evaluate
E1 to either true or false, as shown in Figure 1. If one starts varying the here dimension (which

Tags days in March: 1 2 3 4 5 6 7 8 9 ...

Values (raining?): F F T T T F F F T ...

Figure 1: 1D Example of Tag-Value Contextual Pairs

could even be broken down to X, Y , Z), one gets a two-dimensional (or 4D) evaluation of E1, as
shown in Figure 2. Even with these toy examples we can immediately illustrate the hierarchical

Place/Time 1 2 3 4 5 6 7 8 9 ...

City1 F F T T T F F F T ...

City2 F F F F T T T F F ...

City3 F T T T T T F F F ...

Figure 2: 2D Example of Tag-Value Contextual Pairs

notion of the dimensions in the context: so far the place and time we treated as atomic values
fixed at days and cities. In some cases, we need finer subdivisions of the context evaluation,
where e.g. time can become fixed at hour, minute, second and finer values, and so is the place
broken down into boroughs, regions, streets, etc. and finally the X,Y, Z coordinates in the
Euclidean space with the values of millimeters or finer. This notion becomes more apparent
and important in Forensic Lucid for evidence composition where the temporal components can
be e.g. log entries and other registered events and observations from multiple sources.

2.2 Lucid Overview

Lucid [2, 3, 30, 1, 4] is a dataflow intensional and functional programming language. In fact, it is
a family of languages that are built upon intensional logic (which in turn can be understood as
a multidimensional generalization of temporal logic) promoting context-aware demand-driven
parallel computation model [18]. A program written in some Lucid dialect is an expression
that may have subexpressions that need to be evaluated at certain context. Given the set of
dimensions D = {dimi} in which an expression varies, and a corresponding set of indexes,
or, tags, defined as placeholders over each dimension, the context is represented as a set of
<dimi : tagi> mappings. Each variable in Lucid, called often a stream, is evaluated in that
defined context that may also evolve using context operators [23, 32, 29, 31].
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The first generic version of Lucid, the General Intensional Programming Language (GIPL) [21],
defines two basic operators @ and # to navigate (switch and query) in the context space P.
The GIPL is the first1 generic programming language of all intensional languages, defined by
the means of only two intensional operators @ and #. It has been proven that other intensional
programming languages of the Lucid family can be translated into the GIPL [21].

JLucid, Objective Lucid, and JOOIP JLucid [12, 8] was a first attempt on intensional
arrays and “free Java functions” in the GIPSY. The approach used the Lucid language as
the driving main computation, where Java methods were peripheral and could be invoked
from the Lucid part, but not the other way around. This was the first instance of hybrid
programming within the GIPSY. The semantics of this approach was not completely defined,
plus, it was only one-sided view (Lucid-to-Java) of the problem. JLucid did not support objects
of any kind, but introduced the wrapper class idea for the free Java methods. Objective
Lucid [12, 11] was a logical extension of the JLucid language mentioned in the previous section
that inherited all of the JLucid’s features and introduced Java objects to be available for use
by Lucid. Objective Lucid expanded the notion of the Java object (a collection of members of
different types) to the array (a collection of members of the same type) and first introduced
the dot-notation in the syntax and operational semantics in GIPSY. Like in JLucid, Objective
Lucid’s focus was on the Lucid part being the “main” program and did not allow Java to call
intensional functions or use intensional constructs from within a Java class. Objective Lucid
was the first in GIPSY to introduce the more complete operational semantics of the hybrid OO
intensional language. JOOIP [33] greatly complements Objective Lucid by allowing Java to call
the intensional language constructs closing the gap and making JOOIP a complete hybrid OO
intensional programming language within the GIPSY environment. JOOIP’s semantics further
refines in a greater detail the operational semantics rules of Lucid and Objective Lucid in the
attempt to make them complete. We eliminate the OO-related aspects from this work as well
as some others to conserve space and instead focus on the context hierarchies, syntax, and
semantics.

2.3 Forensic Lucid

This section summarizes concepts and considerations in the design of the Forensic Lucid lan-
guage, large portions of which were studied in the earlier work [17, 18]. The end goal of the
language design is to define its constructs to concisely express cyberforensic evidence as a con-
text of evaluations, which can be the initial state of the case (e.g. initial printer state when
purchased from the manufacturer, see Section 3), towards what we have actually observed (as
corresponding to the final state in the Gladyshev’s FSM) (e.g. when an investigator finds the
printer with two queue entries (Bdeleted, Bdeleted)). One of the evaluation engines (a topic of
another work) of the implementing system [24] is designed to backtrace intermediate results to
provide the corresponding event reconstruction path if it exists. The result of the expression
in its basic form is either true or false, i.e. “guilty” or “not guilty” given the evidential eval-
uation context per explanation with the backtrace(s). There can be multiple backtraces, that
correspond to the explanation of the evidence (or lack thereof) [18].

1The second is Lucx [32, 23, 31], and third is TransLucid [26]
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2.3.1 Language Characteristics

We use Forensic Lucid to model the evidential statements and other expressions representing
the evidence and observations as context. An execution trace of a running Forensic Lucid
program is designed to expose the possibility of the proposed claim with the events that lead
to a conclusion. Forensic Lucid capitalizes its design by aggregating the features of multiple
Lucid dialects mentioned earlier needed for these tasks along with its own extensions [18].

The addition of the context calculus from Lucx (stands for “Lucid enriched with context”
that promotes contexts as first-class values) for operators on simple contexts and context sets
(union, intersection, etc.) are used to manipulate complex hierarchical context spaces in
Forensic Lucid. Additionally, Forensic Lucid inherits many of the properties of Objective Lucid
and JOOIP (Java-embedded Object-Oriented Intensional Programming language) for the arrays
and structural representation of data for modeling the case data structures such as events,
observations, and groupings and correlation of the related data, and so on [18]. Hierarchical
contexts in Forensic Lucid also follow the example of MARFL [14] using a dot operator and by
overloading both @ and # to accept different types as their arguments.

The syntax and the operational semantics of Forensic Lucid were primarily maintained to
be compatible with the basic Lucx and GIPL [18]. This helpful (but not absolutely necessary)
when complying with the compiler and and the runtime subsystems within the implementing
system, the General Intensional Programming System (GIPSY) [25, 24]. The translation rules
or equivalent are to be provided when implementing the language compiler within GIPSY, and
such that the run-time environment (General Eduction Engine, or GEE) can execute it with
minimal changes to GEE’s implementation.

2.3.2 Context of Evaluation

Forensic Lucid provides an ability to encode the “stories” told by the evidence and witnesses.
This constitutes the primary context of evaluation. The “return value” of the evaluation is a
collection of backtraces (may be empty), which contain the “paths of truth”. If a given trace
contains all truths values, it’s an explanation of a story. If there is no such a path, i.e. the
trace, there is no enough supporting evidence of the entire claim to be true [18].

In its simplest form, the context can be expressed as integers or strings, to which we attribute
some meaning or description. E.g. “1” means printer state “x”, etc. The context spaces are
finite and can be navigated through in all directions of the along dimension indexes, potentially
allowing negative tags in our tag sets of dimensions. Our contexts can also be a finite set
of symbolic labels and their values that can be internally enumerated [18]. The symbolic
approach is naturally more appropriate for humans and we have a machinery to so in Lucx’s
implementation in GIPSY [29].

We define streams of observations os as our fundamental context units, that can be a simple
context or a context set. In fact, in Forensic Lucid we are defining higher-level dimensions and
lower-level dimensions. The highest-level one is the evidential statement es, which is a finite
unordered set of observation sequences os. The observation sequence os is a finite ordered set
of observations o. The observation o is an “eyewitness” of a particular property along with the
duration of the observation. As in the Gladyshev’s FSA [6, 7] that we model after, the basic
observations are tuples of (P,min, opt) in their generic form. The observations in this form,
specifically, the property P , can be exploded further into Lucx’s context set and further into an
atomic simple context [31, 23, 29]. (Actually P can be any arbitrary expression E). Context
switching between different observations is done naturally with the traditional Lucid @ context
switching operator [18].
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Consider some conceptual expression of a storyboard in Listing 1 where anything in [ ... ]

represents a story, i.e. the context of evaluation. foo can be evaluated at multiple contexts
(stories), producing a collection of final results (e.g. true or false) for each story as well as a
collection of traces.

f oo @
{

[ f ina l observed event , p o s s i b l e i n i t i a l observed event ] ,
[ ] ,
[ ]

}

Listing 1: Intensional Storyboard Expression

While the [...] notation here may be confusing with respect to the notation of [dimension:tag]
in traditional Lucid and more specifically in Lucx [31, 29, 23], it is in fact a simple syntactical
extension to allow higher-level groups of contexts where this syntactical sugar is later trans-
lated to the baseline context constructs. The tentative notation of {[...],...,[...]} implies
a notion similar to the notion of the “context set” in [31, 29] except with the syntactical sugar
mentioned earlier where we allow syntactical grouping of properties, observations, observation
sequences, and evidential statements as our context sets.

The Gladyshev’s concept of a generic observation sequence [7] can be expanded into the
context stream using the min and opt values, where they will translate into index values. Thus,
obs = (A, 3, 0)(B, 2, 0) expands the property labels A and B into a finite stream of five indexed
elements: AAABB. Thus, a Forensic Lucid fragment in Listing 2 would return the third A of
the AAABB context stream in the observation portion of o. Therefore, possible evaluations to
check for the properties can be as shown in Figure 3 [18].

// Give me observed property at index 2 in the observat ion sequence obs
o @. obs 2
where

// Higher−l e v e l dimension in the form of (P,min , opt )
obse rvat ion o ;
// Equivalent to wr i t ing = { A, A, A, B, B } ;
// Equivalent to wr i t ing = A fby A fby A fby B fby B fby eod ;
obse rvat ion sequence obs = (A, 3 , 0 ) (B, 2 , 0 ) ;
where

// Propert ies A and B are arrays of computations
// or any Expressions
A = [ c1 , c2 , c3 , c4 ] ;
B = E;
. . .

end ;
end ;

Listing 2: Observation Sequence With Duration

The property values of A and B can be anything that context calculus allows or even more
generally any arbitrary E allowing to encode all kinds of case knowledge. The observation

sequence is a finite ordered context tag set [29] that allows an integral “duration” of a given
tag property. This may seem like we allow duplicate tag values that are unsound in the classical
Lucid semantics; however, we find our way around it with the implicit tag index. The semantics
of the arrays of computations is not a part of either GIPL or Lucx; however, the arrays are
provided by Objective Lucid. We use the notion of the arrays to evaluate multiple computations
at the same context. Having an array of computations is conceptually equivalent of running
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an a Lucid program under the same context for each array element in a separate instance of
the evaluation engine and then the results of those expressions are gathered in one ordered
storage within the originating program. Arrays in Forensic Lucid are needed to represent a
set of results, or explanations of evidential statements, as well as denote some properties of
observations. (We explore the notion of arrays in Forensic Lucid much greater detail in another
work) [18].

To make equivalence relation with the formal Gladyshev’s FSA approach, computations ci
correspond to the states q and event i that enable the transition. For Forensic Lucid, we define
ci as theoretically any Lucid expression o = E [18].

Observed property (context): A A A B B
Sub-dimension index: 0 1 2 3 4

o @.obs 0 = A
o @.obs 1 = A
o @.obs 2 = A
o @.obs 3 = B
o @.obs 4 = B

To get the duration/index position:

o @.obs A = 0 1 2
o @.obs B = 3 4

Figure 3: Handling Duration of an Observed Property in the Context

In Figure 3 a possibility is illustrated to query for the sub-dimension indices by raw property
where it is present. This produces a finite stream of valid indices that can be used in subsequent
expressions, or, alternatively by supplying the index we can get the corresponding raw property
at that index. The latter feature is still under investigation of whether it is safe to expose it to
Forensic Lucid programmers or make it implicit at all times at the implementation level. This
method of indexing was needed to remedy the “problem” of “duplicate tags”: as previously
mentioned, observations form the context and allow durations. This means multiple duplicate
dimension tags with implied subdimension indexes should be allowed as the semantics of tra-
ditional Lucid approaches do not allow duplicate dimension tags. It should be noted however,
that the combination of the tag and its index in the stream is still unique and is nicely folded
into the traditional Lucid semantics [18].

2.3.3 Transition Function

A transition function (derived from the same notion from the works of Gladyshev et al. [7, 6])
determines how the context of evaluation changes during computation. It represents in part
the case’s crime scene modeling. A general issue exists that we have to address is that the
transition function ψ is usually problem-specific. In the FSA approach, the transition function
is the labeled graph itself [7]. We follow the graph of the case to model our Forensic Lucid
equivalent [18].

In general, Lucid has already basic operators to navigate and switch from one context to
another, that can be said equivalent to state switching. These operators represent the basic
“built-in” transition functions in themselves (the intensional operators such as @, #, iseod,
first, next, fby, wvr, upon, and asa as well as their inverse operators [18]. However, a specific
problem being modeled requires more specific transition function than just plain intensional
operators. In this case the transition function is a Forensic Lucid function where the matching
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state transition modeled through a sequence of intensional operators [18]. In fact, the forensic
operators are just pre-defined functions that rely on the traditional and inverse Lucid operators
as well as context switching operators that achieve something similar to the transitions [18]. At
the implementation level, it is the GEE that actually does the execution of ψ within GIPSY.
In fact, the intensional operators of Lucid represent the basic building blocks for ψ and Ψ−1.

2.3.4 Generic Observation Sequences

We adopt a way of modeling generic observation sequences as an equivalent to the box operator
from the Lucx’s context calculus [31, 29] in the dimensional context that defines the space of
all possible evaluations. The generic observation sequence context contains observations whose
properties’ duration is not fixed to the min value as in (P,min, 0) as we studied so far. The
third position in the observation tuple, opt is not 0 in the generic observation and as a result in
the containing observation sequence, e.g. os = (P1, 1, 2)(P2, 1, 1). Please refer to [7, 6, 18, 17]
for more detailed examples of a generic observation sequence [18].

2.3.5 Primitive Operators

The basic set of the classic intensional operators is extended with the similar operators, but
inverted in one of their aspects: either negation of trueness or reverse of direction of navigation.
Here we provide a definition of these operators alongside with the classical ones (to remind the
reader what they do and enlighten the unaware reader). The reverse operators have a restriction
that they must work on the bounded streams at the positive infinity. This is not a stringent
limitation as the our contexts of observations and evidence in this work are always finite, so
they all have the beginning and the end. What we need is an ability to go back in the stream
and, perhaps, negate in it with classical-like operators, but reversed [18].

Following the steps in [21], we further represent the definition of the operators via @ and #.
Again, there is a mix of classical operators that were previously defined in [21], such as first,
next, fby, wvr, upon, and asa as well as the new operators from this work [18].

2.3.6 Forensic Operators

The operators presented here are based on the discussion of the combination [7] function and
others that form more-than-primitive operations to support the required implementation. The
comb() operator is realized in the general manner in Forensic Lucid for combining analogies of
multiple partitioned runs (MPRs) [7], which in our case are higher-level contexts, in the new
language’s dimension types [18].

• combine corresponds to the comb function described earlier. It is defined in Listing 3.

/∗∗
∗ Append given e to each element of a given
∗ stream e under the context of d .
∗ @return the r e su l t i n g combined stream
∗/

combine ( s , e , d ) =
i f i s e od s then eod ;
else ( f i r s t s fby . d e ) fby . d combine ( next s , e , d ) ;

Listing 3: The combine Operator
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• product corresponds to the cross-product of contexts, translated from that of the LISP
example and added with context. It is defined in Listing 4.

/∗∗
∗ Append elements of s2 to element of s1
∗ in a l l p o s s i b l e combinations .
∗/

product ( s1 , s2 , d) =
i f i s e od s2 then eod ;
else combine ( s1 , f i r s t s2 ) fby . d product ( s1 , next s2 )

Listing 4: The product Operator

3 Modeling Printer Case in Forensic Lucid

3.1 ACME Manufacturing Printing Case

This is one of the cases we re-examine from the Gladyshev’s FSA approach [7].

The local area network at some company called ACME Manufacturing consists of
two personal computers and a networked printer. The cost of running the network is
shared by its two users Alice (A) and Bob (B). Alice, however, claims that she never
uses the printer and should not be paying for the printer consumables. Bob disagrees,
he says that he saw Alice collecting printouts. According to the manufacturer, the
printer works as follows:

1. When a print job is received from the user, it is stored in the first unallocated
directory entry of the print job directory.

2. The printing mechanism scans the print job directory from the beginning and
picks the first active job.

3. After the job is printed, the corresponding directory entry is marked as “deleted”,
but the name of the job owner is preserved.

4. The printer can accept only one print job from each user at a time.

5. Initially, all directory entries are empty.

The investigator finds the current state of the printer’s buffer as:

1. Job From B Deleted

2. Job From B Deleted

3. Empty

4. Empty

5. ...

10
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Investigative Analysis If Alice never printed anything, only one directory entry must have
been used, because the printer accepts only one print job from each user at a time [7]. How-
ever, two directory entries have been used and there are no other users except Alice and Bob.
Therefore, it must be the case that both Alice and Bob submitted their print jobs in the same
time frame. The trace of Alice’s print job was overwritten by Bob’s subsequent print jobs. As a
result, a finite state machine is constructed to model the situations as in the FSA [7] to indicate
the initial state and other possible states and how to arrive to them when Alice or Bob would
have submitted a job and a job would be deleted [7]. The FSM presented in [7] covers the
entire case with all possible events and transitions resulted due to those events. It is modeled
based on the properties of the investigation, in this case the printer queue’s state according to
the manufacturer specifications and the two potential users. The modeling is assumed to be
done by the investigator in the case in order to perform a thorough analysis. It also doesn’t
really matter how actually it so happened that the Alice’s print job was overwritten by Bob’s
subsequent jobs as is not a concern for this case any further. Assume, this behavior is derived
from the manufacturer’s specification and the evidence found. The investigator will have to
make similar assumptions in the real case [7].

The authors of [7] provided a proof-of-concept implementation of this case in Common LISP
(not recited in here) which takes about 6-12 pages of printout depending on the printing options
set and column format. Using our proposed solution, we rewrite the example in Forensic Lucid
and show the advantages of a much finer conciseness and added benefit of the implicit context-
driven expression and evaluation, and parallel evaluation that the LISP implementation lacks
entirely.

3.2 Sample Forensic Lucid Specification

The simulated printer case is specified in Forensic Lucid as follows. ψ is implemented in
Listing 6. We then provide the implementation of Ψ−1 in [18] in Listing 7. Finally, the “main
program” is modeled in Listing 5 that sets up the context hierarchy and the invokes Ψ−1. This
specification is the translation of the LISP implementation by Gladyshev described earlier [7]
and described in this section in semi-structured English.

The “Main Program”

In Listing 5 where the computation begins in our Forensic Lucid example. This is an equivalent
of main() or program entry point in other mainstream languages. The goal of this fragment
is to setup the context of evaluation which is core to the case – the evidential statement es.
This is the highest level dimension in Lucid terms, and it is hierarchical. This is an unordered
list (set) of stories and witness accounts of the incident (themselves known as observation
sequences); ordering in the program of them is arbitrary and has an array-like structure. The
relevant stories to the incident are that of Alice, the evidence of the printer’s final state as
found by the investigator, and the “expert testimony” by the manufacturer of how the printer
works. These observation sequences are in turn defined as ordered collections of observations
nesting one lever deeper into the context. The printer’s final state dimension F is the only
observation for the printer found by the investigator, which is an observation of the property
of the printer’s queue “Bob’s job deleted last” syntactically written as “B deleted” as inherited
from Gladyshev’s notation. Its duration is nothing special, that it was simply present. The
manuf observation sequence dictated by the manufacturer’s specification that the printer’s queue
state was empty initially for an undetermined period $ of time when the printer was delivered.
These are two observations, followed in time/ Alice’s line (also tow observations) is that from the
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beginning Alice did not not any actions signified by the properties P such as “add B” or “take”
(implying the computation “add A” has never happened (0 duration for the “infinity” i.e. till
the investigator examined the printer); which is Alice’s claim. alice claim is a collection of
Boolean results for possible explanations or lack thereof for Alice’s claim in this case at the
context of all this evidence and as evaluated by invpsiacme Ψ−1. If Alice’s claim were to check
out; the results would be “true”; “false” otherwise.

a l i c e c l a im @ es
where

e v i d e n t i a l statement es = [ pr in t e r , manuf , a l i c e ] ;

obse rvat ion sequence p r i n t e r = F;
obse rvat ion sequence manuf = [Oempty , $ ] ;
obse rvat ion sequence a l i c e = [ Oal ice , F ] ;

obse rvat ion F = ( ‘ ‘ B de leted ’ ’ , 1 , 0) ;
obse rvat ion Oal i ce = ( P a l i c e , 0 , +i n f ) ;
obse rvat ion Oempty = ( ‘ ‘ empty ’ ’ , 1 , 0) ;

// No ‘ ‘ add A ’ ’
P a l i c e = unordered { ‘ ‘ add B ’ ’ , ‘ ‘ take ’ ’ } ;

a l i c e c l a im = invpsiacme (F , es ) ;
end ;

Listing 5: Developing the Pinter Case: “main”

Modeling Forward Transition Function ψ

In Listing 6 ψ illustrating the normal flow of operations to model the scene. Which is also a
translation from LISP from Gladyshev [7] using Forensic Lucid syntax and operators described
in [18]. The function is modeled per manufacturer specification and focuses on the queue of the
printer. “A” corresponds to “Alice” and “B” to “Bob” along with their prompted queue actions
to add deleted print jobs. The code is a rather straightforward translation of the FSM/LISP
code in [7]. S is a collection of state properties observed. c is a “computation” action to add or
take print jobs by the printer’s spooler. d is a classical Lucid dimension type along which the
computation is happening (there can be multiple dimensions and evaluations going on).

Modeling Inverse Transition Function Ψ−1

In Listing 7 is the inverse Ψ−1 backtracking implementation with the purpose of event re-
construction, also translated from LISP to Forensic Lucid like the preceding fragments using
the Forensic Lucid operators. It is naturally more complex than ψ due to a possibility of
choices (non-determinism) when going back in time so all of them have to be explored. This
backtracking, if successful, for any claim, would provide the Gladyshev’s “explanation” of that
claim, i.e. the claim attains its meaning and is validated within the provided evidential state-
ment. Ψ−1 is based on the traversal from F to the initial observation of the printer’s queue as
defined in “main”. If such path were to exist, then Alice’s claim would have had an explana-
tion. pby (preceeded by) is the Forensic Lucid inverse operator of classical Lucid’s fby (followed
by). backtraces is an array of event backtracing computations identified with variables; their
number and definitions depend on the crime scene and are derived from the state machine of
Gladyshev.
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acmepsi ( c , s , d ) =
// Add a pr in t job from Alice
i f c == ‘ ‘ add A ’ ’ then

i f d1 == ‘ ‘A ’ ’ | | d2 == ‘ ‘A ’ ’ then s ;
else

i f d1 in S then ‘ ‘A ’ ’ fby . d d2 ;
else

i f d2 in S then d1 fby . d ‘ ‘A ’ ’ ;
else s ;

// Add a pr in t job from Bob
else i f c == ‘ ‘ add B ’ ’ then

i f d1 == ‘ ‘B ’ ’ | | d2 == ‘ ‘B ’ ’ then s ;
else

i f d1 in S then ‘ ‘B ’ ’ fby . d d2 ;
else

i f d2 in S then d1 fby . d ‘ ‘B ’ ’ ;
else s ;

// Printer takes the job per manufacturer s p e c i f i c a t i on
else i f c == ‘ ‘ take ’ ’

i f d1 == ‘ ‘A ’ ’ then ‘ ‘ A de leted ’ ’ fby . d d2 ;
else

i f d1 == ‘ ‘B ’ ’ then ‘ ‘B ’ ’ fby . d d2 ;
else

i f d2 == ‘ ‘A ’ ’ then d1 fby . d ‘ ‘ A de leted ’ ’ ;
else

i f d2 == ‘ ‘B ’ ’ then d1 fby . d ‘ ‘ B de leted ’ ’ ;
else s ;

// Done
else s fby . d eod ;

where
dimension d ;
S = [ ‘ ‘ empty ’ ’ , ‘ ‘ A de leted ’ ’ , ‘ ‘ B de le ted ’ ’ ] ;
d1 = f i r s t . d s ;
d2 = next . d d1 ;

end ;

Listing 6: “Transition Function” ψ in Forensic Lucid for the ACME Printing Case

4 Conclusion

We presented the basic overview of Forensic Lucid, its concepts, ideas, and dedicated purpose –
to model, specify, and evaluation digital forensics cases. The process of doing so is significantly
simpler and more manageable than the previously proposed FSM model and its common LISP
realization. At the same time, the language is founded in more than 30 years research on
correctness and soundness of programs and the corresponding mathematical foundations of
the Lucid language, which is a significant factor should a Forensic Lucid-based analysis be
presented in court. We re-wrote in Forensic Lucid one of the sample cases initial modeled by
Gladyshev in the FSM and Common LISP to show the specification is indeed more manageable
and comprehensible than the original and fits in two pages in this paper.

We also still realize by looking at the examples the usability aspect is still desired to be
improved further for the investigators, especially when modeling ψ and Ψ−1, as a potential
limitation, prompting one of the future work items to address it further.

In general, the proposed practical approach in the cyberforensics field can also be used to
model and evaluate normal investigation process involving crimes not necessarily associated with
information technology. Combined with an expert system (e.g. implemented in CLIPS [28]),
it can also be used in training new staff in investigation techniques. The notion of hierarchical
contexts as first-class values brings more understanding of the process to the investigators in
cybercrime case management tools.
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invpsiacme ( s , d) = backt race s
where

backt race s = [A, B, C, D, E, F , G, H, I , J , K, L , M ] ;
where

A = i f d1 == ‘ ‘ A deleted ’ ’
then d2 pby . d ‘ ‘A ’ ’ pby . d ‘ ‘ take ’ ’ else eod ;

B = i f d1 == ‘ ‘ B de leted ’ ’
then d2 pby . d ‘ ‘B ’ ’ pby . d ‘ ‘ take ’ ’ else eod ;

C = i f d2 == ‘ ‘ A deleted ’ ’ && d1 != ‘ ‘A ’ ’ && d2 != ‘ ‘B ’ ’
then d1 pby . d ‘ ‘A ’ ’ pby . d ‘ ‘ take ’ ’ else eod ;

D = i f d2 == ‘ ‘ B de leted ’ ’ && d1 != ‘ ‘A ’ ’ && d2 != ‘ ‘B ’ ’
then d1 pby . d ‘ ‘B ’ ’ pby . d ‘ ‘ take ’ ’ else eod ;

E = i f d1 in S && d2 in S
then s pby . d ‘ ‘ take ’ ’ else eod ;

F = i f d1 == ‘ ‘A ’ ’ && d2 != ‘ ‘A ’ ’
then

[ d2 pby . d ‘ ‘ empty ’ ’ pby . d ‘ ‘ add A ’ ’ ,
d2 pby . d ‘ ‘ A de leted ’ ’ pby . d ‘ ‘ add A ’ ’ ,
d2 pby . d ‘ ‘ B de leted ’ ’ pby . d ‘ ‘ add A ’ ’ ]

else eod ;

G = i f d1 == ‘ ‘B ’ ’ && d2 != ‘ ‘B ’ ’
then

[ d2 pby . d ‘ ‘ empty ’ ’ pby . d ‘ ‘ add B ’ ’ ,
d2 pby . d ‘ ‘ A de leted ’ ’ pby . d ‘ ‘ add B ’ ’ ,
d2 pby . d ‘ ‘ B de leted ’ ’ pby . d ‘ ‘ add B ’ ’ ]

else eod ;

H = i f d1 == ‘ ‘B ’ ’ && d2 == ‘ ‘A ’ ’
then

[ d1 pby . d ‘ ‘ empty ’ ’ pby . d ‘ ‘ add A ’ ’ ,
d1 pby . d ‘ ‘ A de leted ’ ’ pby . d ‘ ‘ add A ’ ’ ,
d1 pby . d ‘ ‘ B de leted ’ ’ pby . d ‘ ‘ add A ’ ’ ]

else eod ;

I = i f d1 == ‘ ‘A ’ ’ && d2 == ‘ ‘B ’ ’
then

[ d1 pby . d ‘ ‘ empty ’ ’ pby . d ‘ ‘ add B ’ ’ ,
d1 pby . d ‘ ‘ A de leted ’ ’ pby . d ‘ ‘ add B ’ ’ ,
d1 pby . d ‘ ‘ B de leted ’ ’ pby . d ‘ ‘ add B ’ ’ ]

else eod ;

J = i f d1 == ‘ ‘A ’ ’ | | d2 == ‘ ‘A ’ ’
then s pby . d ‘ ‘ add A ’ ’ else eod ;

K = i f d1 == ‘ ‘A ’ ’ && d2 == ‘ ‘A ’ ’
then s pby . d ‘ ‘ add B ’ ’ else eod ;

L = i f d1 == ‘ ‘B ’ ’ && d2 == ‘ ‘A ’ ’
then s pby . d ‘ ‘ add A ’ ’ else eod ;

M = i f d1 == ‘ ‘B ’ ’ | | d2 == ‘ ‘B ’ ’
then s pby . d ‘ ‘ add B ’ ’ else eod ;

where
dimension d ;
S = [ ‘ ‘ empty ’ ’ , ‘ ‘ A de leted ’ ’ , ‘ ‘ B de le ted ’ ’ ] ;
d1 = f i r s t . d s ;
d2 = next . d d1 ;

end ;

Listing 7: “Inverse Transition Function” Ψ−1 in Forensic Lucid for the ACME Printing Case
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5 Future Work

• Formally prove equivalence to the FSA approach.

• Adapt/re-implement a graphical UI based on the data-flow graph tool [5] to simplify
Forensic Lucid programming further for not very tech-savvy investigators by making it
visual. The listings provided are not very difficult to read and quite manageable to
comprehend, but any visual aid is always an improvement.

• Refine the semantics of Lucx’s context sets and their operators to be more sound, including
Box and Range.

• Explore and exploit the notion of credibility factors of the evidence and witnesses fully.

• Release a full standard Forensic Lucid specification.
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