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ABSTRACT 

Fingerprint Recognition: A Histogram Analysis Based Fuzzy       

C-Means Multilevel Structural Approach 

Mohamed Ahmed Wahby Shalaby, Ph. D. 

Concordia University, 2012. 

In order to fight identity fraud, the use of a reliable personal identifier has become a 

necessity. Fingerprints are considered one of the best biometric measurements and are 

used as a universal personal identifier. There are two main phases in the recognition of 

personal identity using fingerprints: 1) extraction of suitable features of fingerprints, and 

2) fingerprint matching making use of the extracted features to find the correspondence 

and similarity between the fingerprint images. Use of global features in minutia-based 

fingerprint recognition schemes enhances their recognition capability but at the expense 

of a substantially increased complexity. The recognition accuracies of most of the 

fingerprint recognition schemes, which rely on some sort of crisp clustering of the 

fingerprint features, are adversely affected due to the problems associated with the 

behavioral and anatomical characteristics of the fingerprints. The objective of this 

research is to develop efficient and cost-effective techniques for fingerprint recognition, 

that can meet the challenges arising from using both the local and global features of the 

fingerprints as well as effectively deal with the problems resulting from the crisp 

clustering of the fingerprint features. To this end, the structural information of local and 

global features of fingerprints are used for their decomposition, representation and 
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matching in a multilevel hierarchical framework. The problems associated with the crisp 

clustering of the fingerprint features are addressed by incorporating the ideas of fuzzy 

logic in developing the various stages of the proposed fingerprint recognition scheme. 

In the first part of this thesis, a novel low-complexity multilevel structural scheme 

for fingerprint recognition (MSFR) is proposed by first decomposing fingerprint images 

into regions based on crisp partitioning of some global features of the fingerprints. Then, 

multilevel feature vectors representing the structural information of the fingerprints are 

formulated by employing both the global and local features, and a fast multilevel 

matching algorithm using this representation is devised.  

Inspired by the ability of fuzzy-based clustering techniques in dealing more 

effectively with the natural patterns, in the second part of the thesis, a new fuzzy based 

clustering technique that can deal with the partitioning problem of the fingerprint having 

the behavioral and anatomical characteristics is proposed and then used to develop a 

fuzzy based multilevel structural fingerprint recognition scheme. First, a histogram 

analysis fuzzy c-means (HA-FCM) clustering technique is devised for the partitioning of 

the fingerprints. The parameters of this partitioning technique, i.e., the number of clusters 

and the set of initial cluster centers, are determined in an automated manner by 

employing the histogram of the fingerprint orientation field. The development of the HA-

FCM partitioning scheme is further pursued to devise an enhanced HA-FCM (EAH-

FCM) algorithm. In this algorithm, the smoothness of the fingerprint partitioning is 

improved through a regularization of the fingerprint orientation field, and the 

computational complexity is reduced by decreasing the number of operations and by 

increasing the convergence rate of the underlying iterative process of the HA-FCM 
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technique. Finally, a new fuzzy based fingerprint recognition scheme (FMSFR), based on 

the EHA-FCM partitioning scheme and the basic ideas used in the development of the 

MSFR scheme, is proposed. 

Extensive experiments are conducted throughout this thesis using a number of 

challenging benchmark databases. These databases are selected from the FVC2002, 

FVC2004 and FVC2006 competitions containing a wide variety of challenges for 

fingerprint recognition. Simulation results demonstrate not only the effectiveness of the 

proposed techniques and schemes but also their superiority over some of the state-of-the-

art techniques, in terms of the recognition accuracy and the computational complexity. 
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CHAPTER 1 

Introduction 

 

In recent years, the use of personal identification/authentication to fight identity fraud has 

become one of the most important problems to be solved using automated systems.  It is 

quite important to make the computer to be able to achieve successful answers to the 

questions “Who is she/he?” or “Does this person have the claimed identity?”. Personal 

identity could be verified using different methods such as username and password, 

personal identification number (PIN), personal cards with photos (e.g. medical card and 

driving license) and biometric (body) measurements such as, face, iris, signature, and 

fingerprints. The personal identities that do not depend on the body measurements may 

be stolen or shared. Moreover, it is very unlikely and theoretically impossible that two 

persons would have the same body measurements. 

The biometric measurements have been used for criminal investigations and 

personal identification for quite some time. Among all the known body measurements, 

human fingerprints have been found to be one of the most distinctive personal identifiers 

[1]. This fact shows the importance of using human fingerprints as a universal identifier. 

1.1 Fingerprint Based Biometric Systems 

A biometric recognition system makes use of the anatomical characteristics, e.g. 

fingerprints, face, and palmprint of a human being, or the behavioral characteristics, e.g. 

handwriting, signature, and voice, for manually or automatically recognizing individuals. 
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These characteristics are called biometric identifiers, or simply biometrics. Figure 1.1 

shows a few typical examples of biometrics. In Figure 1.1(a), two examples of 

anatomical characteristics have been shown, which are a fingerprint and palmprint. In 

addition, Figure 1.1(b) shows two examples of behavioral characteristics, which are a 

signature and voice. Some of the biometrics may be considered as a combination of 

anatomical and behavioral characteristics. For example, even though a fingerprint is 

considered as an anatomical characteristic in nature, the usage of the input device to 

capture it (e.g., how a user presents a finger to the fingerprint scanner) depends on the 

person’s behavior.  

   

(a) (b) 

Figure 1.1: Examples of the biometrics (a) anatomical (fingerprint and palmprint) and (b) 

behavioral biometrics (signature and voice) [1, 2]. 

 

In order for a biometric measurement to be chosen as an identifier, it should 

satisfy the following requirements: universality, distinctiveness, permanence and ease of 

collectability. A biometric system to be considered as a practical recognition system, 

there are a number of issues that should be addressed [1]: 

 Performance; It refers to the achievable recognition accuracy, the response time, 

and the resource requirements. It is noted that the operational and the 

environmental factors affect the performance metrics. 
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 Acceptability; It indicates the extent to which individuals are willing to accept a 

particular biometric identifier in their daily lives. 

 Circumvention; It refers to the simplicity to deceive the system by fraudulent 

methods. 

 

The fingerprint, which is a graphical ridge/valley pattern of a human finger, has 

been found to be the most suitable biometric for the personal identification applications. 

This has been supported by a comparative study of different human biometric 

measurements with respect to the above requirements [1]. This study shows that among 

the various human biometric measures, fingerprint is the one that has a good compromise 

among all the desirable features: 

 Universality; The majority of the population has legible fingerprints. 

 Distinctiveness; It has been found that, each person has his/her own distinctive 

fingerprint. Even the identical twins can be identified successfully based on their 

fingerprints; meanwhile some other biometrics such as the face would fail. 

 Permanence; Fingerprints are formed during the fetal stage and remain 

structurally unchanged throughout the life of a person. 

 Collectability; Fingerprint can be collected easily and measured quantitatively. 

 High Performance; The fingerprint recognition systems are able to achieve a 

higher accuracy compared to other biometric systems. 

Since the fingerprint recognition system can be viewed as a pattern recognition 

system, the system should be designed to be capable of extracting salient features from 

fingerprints and matching them in a robust way [1]. Based on the application, a 
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fingerprint recognition system may be classified as either an automatic fingerprint 

verification system (AFVS) or an automatic fingerprint identification system (AFIS). The 

AFVS conducts a one-to-one comparison to verify the claimed identity, whereas the 

AFIS conducts one-to-many comparisons to establish the identity of the individual. 

Fingerprint representation, i.e., the feature extraction and template formulation, and 

fingerprint matching are considered to be the core modules of an automated fingerprint 

recognition (verification/identification) system. These two modules are the most 

expensive parts, in terms of the computational complexity, within the system. Therefore, 

these two modules need to be designed as simple as possible in order to achieve the 

required accuracy at a reasonable cost. Based on the information (features) associated 

with the fingerprint’s ridge/valley pattern of a human finger, a template could be 

formulated to represent the fingerprint. These features are traditionally categorized as the 

global features, such as ridge orientations, and the local features, such as minutiae and 

pores [1, 38]. It has been found that the local features (minutiae) provide highly 

distinctive information about the fingerprint. Therefore, they have been traditionally used 

for fingerprint representation and matching [1]. On the other hand, the global features 

have been used generally for the fingerprint image enhancement at the preprocessing 

stage [9], for classification (indexing) of fingerprints [1013] and for fingerprint image 

partitioning [14]. 

1.2 Challenges in Fingerprint Recognition 

Despite decades of a research work in the fingerprint recognition problem, it is still 

considered as a challenging and important pattern recognition problem to be solved [1]. 

In order to have the best and accurate results (especially for criminal cases), we still have 
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to depend on the opinion of a human expert, which makes the process rather expensive. 

Hence, there is still a compelling need to have an efficient and inexpensive automated 

fingerprint recognition system with acceptable recognition accuracy. 

As mentioned earlier, a fingerprint is considered to have a combination of the 

anatomical and behavioral characteristics of the person in a question. Even though the 

ridge/valley structure and minutiae distribution are the unique identifier of a person, the 

extraction of this information, and therefore the recognition/identification becomes 

challenging, since the fingerprints of the person are affected due to his/her anatomical 

and behavioral characteristics. Furthermore, the requirements (e.g. the accuracy and the 

time limit) and the working conditions (e.g. the scanner capability and the storage limit) 

of the fingerprint applications pose additional challenges. For example, a door lock 

system should be able to provide a very high accuracy with a short response time, while 

using a small area scanner with a limited space of the storage. 

The challenges in fingerprint recognition could be categorized as follows: 

1) Challenges due to behavioral characteristics 

a) Incomplete and rotated fingerprint images: This situation arises due to the 

person’s lack of experience in using fingerprint scanners; or from the fingerprint 

images received from the crime scenes. 

b) Poor quality fingerprint image: The fingerprint images with low quality are 

mainly due to the capability of the input device, the pressure of the fingertip on 

the input device or the condition of the skin. 

c) Deformation of the fingerprint ridges: The fingerprint images of the same 

person may have some differences in their ridge thicknesses or shapes, which is 
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mainly due to different forces by the same person’s finger against the input 

device. 

Due to the above mentioned behavioral-based problems, the fingerprint images 

taken from the same finger may sometimes look quite different, which is known as intra-

class variability. Figure 1.2 contains six images represent the same fingerprint with 

different qualities, rotation angels and portions of this finger. It is seen from this figure 

that it is very difficult to decide whether all these images represent the same finger or not. 

 

 
 

 

 
 

Figure 1.2: Six images represent the same fingerprint with different qualities, 

rotation angels and portions of this fingerprint. 

 

2) Challenges due to anatomical characteristics 

a) Distortion of the fingerprint ridges: Some changes of the fingerprint ridges 

shapes due to some natural life events, such as cuts and burns. 
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b) Inter-class similarity: The fingerprints from different fingers may appear 

naturally quite similar. 

3) Challenges due to application requirements  

a) Fingerprint template size: Some fingerprint applications, such as door lock, 

have a limitation on the storage space. Accordingly, it is a challenge to formulate 

a suitable template to represent the fingerprint image within the determined size. 

b) Response time: The response time of a fingerprint recognition system consists 

mainly of scanning of the image, pre-processing, representation and matching 

modules. Some recent fingerprint applications to be accepted by the customers, 

such as banking systems, require a very short response time. 

1.3 Existing Schemes of Fingerprint Recognition: A Literature Review 

Over the last forty years, the majority of fingerprint recognition schemes have been 

developed based on the matching of the local features of the extracted minutiae. Despite 

the highly distinctive feature and storage efficiency of minutiae, it is extremely difficult 

to extract and represent them accurately. This difficulty which arises mainly due to the 

anatomical and behavioral-based challenges mentioned in Section 1.2, affects on the 

overall performance of the fingerprint recognition scheme. In order to overcome the 

problem of the effect of the inaccurate minutia extraction on the fingerprint recognition 

accuracy, a number of fingerprint recognition schemes have recently been proposed. 

These techniques can be classified into two broad categories: 1) the techniques that are 

based on the local and global features of minutiae, and 2) those that are based on the 

global structure of the fingerprint ridge pattern and the local minutiae features. 
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1.3.1 Techniques based on the local and global features of minutiae  

Originally, the minutiae-based fingerprint recognition schemes used only the local 

attributes of the minutiae (i.e., position, direction, and type) for fingerprint representation 

and matching. In view of the above mentioned anatomical and behavioral-based 

challenges, the use of these local minutiae attributes is not reliable enough. Therefore, the 

main idea in the first category is in devising a minutia descriptor in which the local 

minutiae attributes are combined with some global minutiae features. Accordingly, the 

fingerprint representation based on this descriptor should be more immune than the 

traditional minutia descriptors against some of the above mentioned challenges. In the 

following, some of the recently developed schemes based on this idea are reviewed. 

a) Willis and Myers [15] investigated the development of a robust algorithm 

allowing a good recognition of low-quality fingerprints with inexpensive hardware. They 

proposed a new approach called a wedge ring overlay minutia detector that is particularly 

robust to imperfections. The main drawbacks for this scheme are: 1) The fingerprint 

images have to be enhanced prior to the representation. 2) There is a high degree of 

computational complexity associated with their feature extraction algorithm. 

b) Ceguerra and Koprinska [16] proposed a new approach for combining 

minutia’s local and global features by using the matched local features as the reference 

axis for generating shape signature as a global feature. The dependence on minutiae to 

generate a shape signature is the main weakness of the approach. 

c) Tico and Kuosmannen [17] proposed a new representation for the fingerprint 

minutiae, which consisted of the local minutiae attributes and a local orientation-based 

minutia descriptor. The proposed minutiae descriptor matching fails when two minutiae 
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are close to each other, since their descriptors in this case would be very similar. In 

addition, this technique has a high computational complexity especially when the number 

of minutiae is large. 

d) Qi et al. [18] modified the minutia descriptor proposed in [17] by using the 

curvature map instead of using the orientation field in constructing the minutia descriptor. 

They have shown that their scheme provides a higher accuracy than that provided by the 

scheme of [17]. However, this scheme has even higher computational complexity 

resulting from the curvature map construction. 

e) Jea and Venu [19] presented an approach that uses localized secondary 

features derived from the relative minutiae information. Due to the nature of minutiae 

distribution inside the fingerprint images, this secondary feature might misinform the 

matcher. 

f) Jia et al. [20] proposed an improved fingerprint matching technique using 

both the weighting method and the support vector machine (SVM). A new weighting 

feature based on the distance between minutiae is introduced to supplement the minutiae 

information. A pre-processing stage of image enhancement to reduce the possibility of 

detecting the false minutiae is required. Therefore, the proposed technique requires a high 

computational complexity. 

g) Feng [21] has proposed a combination of two different minutiae descriptors. 

The two descriptors that have been used are a texture-based descriptor and a minutiae-

based descriptor, to provide more accurate matching results. In [22] a genetic algorithm 

for fingerprint matching has been developed based on the modification of these 
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descriptors. Both the schemes require a high computational complexity for fingerprint 

representation. 

From the above review it is seen that the fingerprint recognition schemes, which 

are based on the use of a minutia descriptor in which the local minutiae attributes are 

combined with some global minutiae features, were always able to achieve a higher 

accuracy than that provided by the traditional only minutiae-based schemes. The main 

drawback of the algorithms in this category is that since the fingerprint recognition 

schemes are totally dependent on the extracted minutiae, a false extraction of a minutia 

(i.e., spurious minutia) may greatly affect the recognition accuracy. Consequently, some 

of these schemes have used a pre-processing stage of image enhancement to reduce the 

possibility of detecting the spurious minutiae [15], [17], [18], [20]. 

1.3.2 Minutiae features combined with global fingerprint features  

Researchers in the fingerprint recognition community have recently started paying 

attention to the use of some distinct characteristics of the fingerprint global features that 

traditionally belonged only to the domain of fingerprint classification and indexing 

[2335]. The main reasons for looking for some distinguishing features of the fingerprint 

other than the minutiae are as follows: 1) A reliable detection of minutiae is difficult in 

poor-quality fingerprint images, especially without the use of a pre-processing step for 

image enhancement. 2) The formulation of a robust minutia descriptor is a time-

consuming process. 3) The use of additional information gathered from the global 

features in conjunction with the local minutiae features might increase the recognition 

accuracy and robustness. Even though the global features of the fingerprint ridge pattern, 

such as ridge orientation and frequency, ridge shape, and texture information, may be 
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extracted more reliably than minutiae, their distinctiveness is generally lower than the 

minutiae attributes. Accordingly in the second category of fingerprint recognition 

schemes, fingerprint recognition is carried out based on the use of both the local minutiae 

features and the global features for fingerprint representation and matching. In the 

following, some of these schemes are reviewed. 

a) Jain et al. [23] proposed a filter-based algorithm that uses a bank of Gabor 

filters to capture both local and global details in a fingerprint as a compact fixed-length 

FingerCode [13]. This technique is suitable for matching as well as storage on a 

smartcard. They have shown that the matching performance can be improved by 

combining the decisions of the matchers based on complementary (minutiae-based and 

filter-based) fingerprint information. This technique has some limitations, such as, the 

reference point localization and the recourse to the fingerprint pre-alignment stage. 

Accordingly, it is not suitable for poor quality and incomplete fingerprint images. 

b) Ross et al. [24, 25] have developed a hybrid fingerprint matching scheme that 

uses both the minutiae and a ridge texture map. First of all a set of local minutiae features 

are extracted from the fingerprint image. This minutiae feature vector is used for 

estimating the transformation parameters, which are required to align the ridge feature 

maps of the two fingerprint images. Therefore, in order to avoid the effect of spurious 

minutiae, a fingerprint enhancement step is necessary, thus adding to the processing time.  

Unfortunately, the proposed technique has not been tested using a benchmark database.  

c) Krivec et al. [26] proposed a method, which due to its compressibility, can be 

applied in memory constrained environments. This is important for applications, such as 

smartcards and independent identification modules, which have recently gained 
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popularity. The hybrid fingerprint matchers are well known as a powerful tool for high-

security applications, where the reliability of a single fingerprint characteristic is not high 

enough for intended applications. The proposed method uses minutia point matcher as the 

first stage of matching and after successfully completing this stage, a second stage of 

matching is carried out based on the homogeneity of the direction map of the reference 

image. The direction map is compressed using a quad tree. However since, the method 

depends on the minutiae features as a first stage of matching, so it fails if many false 

minutiae have been detected. 

d) Jinwei et al. [27] have proposed the use of a model-based fingerprint 

orientation field, as a global feature, in combination with the extracted minutiae set for 

the matching purpose. For the global feature, two different model-based orientation fields 

have been used. The first one is suitable when the singular point is detected. The second 

one, which is a modified model, is more useful in situations when there is a difficulty in 

detecting the singular points. Unfortunately, the latter one does not perform as well as the 

former one at the regions around the singular points. In either case, the final matching 

score is obtained by combining results from the local and global matchers. The results 

have been presented to show that the use of the two matchers provides higher recognition 

accuracy. However, the scheme suffers from a high computational complexity, due to the 

use of model-based orientation field, and the need of performing a pre-alignment step 

before the matching step. 

e) Shi et al. [28] proposed a fingerprint representation, in which the information 

about the singular point has been combined with its neighborhood minutiae. In this 

scheme, the computational complexity of the matching has been reduced since the 
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number of candidate minutiae required for identification has been decreased. This 

approach assumes the existence of singular points (especially the core point), thus it is 

not suitable for fingerprint images without a detected core pint. 

f) Nanni and Lumini [29] have presented a hybrid wavelet-based fingerprint 

matcher, with the need to perform an enhancement step before the extraction of minutiae 

set, and to do a pre-alignment step before applying a 2D wavelet transform on the 

image’s sub-windows. Since the method depends on an accurate extraction of the 

minutiae set to perform a pre-alignment step, it would fail in the cases of poor-quality or 

incomplete fingerprint images. 

g) Benhammadi et al. [30], based on the reuse of the FingerCode technique [13], 

have proposed a new hybrid fingerprint matching technique, which depends on the 

minutiae texture maps. This method has essentially three drawbacks: (i) This approach 

consumes more time in the enrolment and matching processes. (ii) Since each minutia has 

its own oriented minutia code (OMC) feature vector, this requires a large template size 

compared with the original FingerCode method. (iii) The recognition accuracy of this 

method is affected by the presence of spurious minutiae. 

It is seen from the above review that the idea of combining local feature 

(minutiae) with the global fingerprint features is a promising methodology and helpful to 

overcome the problems associated with the minutia-based techniques. Furthermore, it is 

also seen from this review that the choice of the global feature(s) is crucial and has a 

significant impact on the overall performance of the fingerprint recognition scheme 

[2334]. This has also been supported by a comparative study of the impact of combining 

multiple features on the recognition accuracy [35]. This study has concluded that a larger 
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improvement can usually be obtained as more features are combined; however, a 

combination of more than four features results only in a marginal performance 

improvement [35]. 

1.4 Research Objectives and Approach 

The use of both the local and global features of a fingerprint in a technique of the either 

category described above for fingerprint recognition is quite useful in solving the 

problems that arise from the behavioral and anatomical characteristics such as ridge 

pattern deformation, translation and/or rotation, incomplete fingerprint, etc., of 

fingerprints. However, there is set of other problems that arise from the basic idea of 

using both the local and global features of a fingerprint in fingerprint recognition 

techniques: 1) The usage of fingerprint’s global and local features necessitates a larger 

template to represent a fingerprint, especially for techniques using complicated minutia 

descriptor. 2) The extraction and usage of the global features makes the overall 

computational complexity of the technique high. 3) Most of these techniques require a 

step of pre-alignment, which depends mainly on the minutiae, prior to carrying out the 

matching process. Thus, a technique requiring such a pre-alignment suffers from the 

effect of the spurious minutiae. Further, most of the fingerprint recognition schemes rely 

on some sort of crisp clustering of the fingerprint features. The recognition accuracies of 

such schemes are adversely affected for fingerprints with behavioral or anatomical 

characteristics.  

The objective of this research is to develop efficient and cost-effective techniques 

for fingerprint recognition that can meet not only the challenges arising from using both 

the local and global features of the fingerprints but also deal effectively with the 
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problems resulting from the crisp clustering of the features when the fingerprints are 

marred with the behavioral or anatomical characteristics. To this end, the structural 

information of local and global features of fingerprints are used for their decomposition, 

representation and matching in a multilevel hierarchical framework. The problems 

associated with the crisp clustering of the fingerprint features are also addressed in this 

thesis by incorporating the ideas of fuzzy logic in developing the various stages of the 

proposed fingerprint recognition scheme. 

1.5 Organization of the Thesis 

The thesis is organized as follows. 

In Chapter 2, the background material necessary for the work undertaken in this thesis is 

presented. The main parts of the fingerprint recognition systems, the performance 

metrics, and the benchmark databases used for examining the performance of fingerprint 

recognition systems are discussed. The fuzzy clustering techniques and their important 

role in the pattern recognition field are also briefly discussed.  

In Chapter 3, the first stage of the proposed multilevel structural approach for 

fingerprint recognition, i.e., the decomposition of the fingerprint image into regions using 

the global features, is developed. In this chapter, the traditional crisp techniques for both 

singular point detection and partitioning of the orientation field are used. The proposed 

multilevel structural scheme for fingerprint representation and matching is then presented 

in Chapter 4. A multilevel feature vector is first formulated by employing the structural 

information of the local and global features of each region with a view of obtaining a 

fingerprint representation that is less variant to the displacement, rotation and 

deformation of the fingerprint ridges. Next, a fast multilevel matching algorithm, in 
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which the correspondence problem is dealt with by making use of the global features and 

the similarity problem is taken care by employing both the global and local features, is 

devised. 

In Chapter 5, the idea of fuzzy logic to cluster the fingerprint features is 

introduced in order to overcome the limitation of crisp clustering in effectively dealing 

with the problems arising from the behavioral and anatomical characteristics of 

fingerprints. A new fingerprint partitioning scheme based on the fuzzy c-means clustering 

technique is developed. In this technique, the number of clusters and the set of the initial 

cluster centers are determined in a rational and automated manner through an analysis of 

the orientation field histogram. Moreover, by using this fuzzy-based partitioning scheme, 

a new technique for detecting the singular points of the fingerprint is developed. In this 

technique, singular points are determined by certain cluster distributions that characterize 

different types of singular points. In Chapter 6, the fuzzy-based partitioning scheme is 

further modified in order to enhance the smoothness of the fingerprint partitions and to 

reduce the computational complexity. In Chapter 7, this enhanced partitioning scheme is 

then used to develop a fuzzy-based fingerprint recognition scheme relying on the basic 

ideas of the multilevel structural scheme presented in Chapters 3 and 4. Finally, Chapter 

8 concludes the thesis by summarizing the research work undertaken in this thesis and 

highlighting the contributions made. 
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CHAPTER 2 

Background Material 

 

2.1 Introduction 

In this chapter, the required background material for the work undertaken in this thesis is 

presented. In Section 2.2, the different types of fingerprint recognition systems are first 

described. In Section 2.3, the main modules of these recognition systems, namely 

fingerprint representation and matching, are discussed in details. In Section 2.4, the most 

important metrics to measure the performance of fingerprint recognition systems are 

presented. In order to examine and compare the performance of a fingerprint recognition 

system there is a need to use a benchmark fingerprint database; in Section 2.5 some of the 

benchmark fingerprint databases, used in the literature, are reviewed. Finally, in Section 

2.6, the fuzzy clustering techniques and their important role in the pattern recognition 

field are briefly discussed. 

2.2 Automated Fingerprint Verification/Identification Systems 

As mentioned in chapter 1, a fingerprint recognition system may be classified as either an 

automatic fingerprint verification system (AFVS) or an automatic fingerprint 

identification system (AFIS) as specified below: 

(i) The verification system (AFVS) authenticates a person’s identity by comparing 

the captured biometric characteristic with the person’s own biometric template(s), 

which are pre-stored in the system. AFVS conducts a one-to-one comparison to 
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determine whether the identity claimed by the individual is true. Accordingly, a 

verification system accepts the person’s request as a genuine template, or rejects it 

as an imposter template. 

(ii) The identification system (AFIS) recognizes an individual by searching the entire 

templates database for a match. Therefore, AFIS conducts one-to-many 

comparisons to establish the identity of the individual. Accordingly, the 

identification system accepts the person’s request as a genuine template if a match 

has been found; otherwise the request will be rejected as an imposter template. 

For either system there is an important common operational mode:  

 Enrollment mode: to insert a new identity template for a new person in the 

system’s database as shown in Figure 2.1(a). This enrollment mode is required 

once at the time of system installation (e.g. Airport security check) or once for 

each new identity registration (e.g. Bank system). 

The verification task is responsible for verifying individuals at the point of access. 

During the operation phase the personal ID is required to be entered. As shown in Figure 

2.1(a, b), an automatic fingerprint verification system (AFVS) consists mainly of four 

modules: 

 Data Acquisition: By which the fingerprint image is acquired in a digital 

format using a biometric sensor, such as a scanner. 

 Pre-processing: Sometimes it is required to apply some pre-processing 

algorithms (e.g. noise rejection, edge enhancement). In fact, the need for this 

step depends mainly on the quality of the acquired fingerprint images; which 
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is affected by the scanning process and the surrounding working environment. 

Therefore, some AFVS dose not need the pre-processing step. 

 Feature Extraction: to extract the required salient features from a fingerprint 

image, and to formulate the template (to enroll or to verify).  

 Matching: to compare the extracted fingerprint template against the reference 

template retrieved from the system database based on the entered personal ID. 

Accordingly, it makes a final decision (matched or non-matched).  

Although, an automatic fingerprint identification system (AFIS) also consists of 

the same four modules mentioned above, the difference between AFIS and AFVS is in 

the matching module. In the identification task, no personal ID is provided and the 

system compares the extracted fingerprint template against all reference templates of the 

personal identities enrolled in the system database. Therefore, the AFIS matching module 

conducts a one-to-many comparison to establish the identity of the individual, as shown 

in Figure 2.1(c). In the case of the identification systems with large databases, the AFIS 

matching module is computationally expensive. Thus, the fingerprint classification and 

indexing techniques are often deployed to limit the number of templates that have to be 

matched against the input [1]. 
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(a) 

 

(b) 

 

(c)  

Figure 2.1: General architecture for the main parts of the fingerprint recognition system 

(a) Enrollment operation, (b) Verification operation, and (c) Identification operation. 
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2.3 Fingerprint Representation and Matching 

Fingerprint representation, i.e. the features extraction and template formulation, and 

fingerprint matching are considered the core modules of the automated fingerprint 

recognition (verification/identification) systems. Since these two modules are the most 

complicated parts within the system, they have to be designed as perfect as possible in 

order to meet the performance requirements of an automatic fingerprint recognition 

system. 

2.3.1 Fingerprint representation 

The importance of the fingerprint representation module arises from two facts: First, the 

original fingerprint images can not be saved directly in the system database, since it 

requires a large amount of storage space. Second, the objective in devising a suitable 

fingerprint representation is to provide a high accuracy in fingerprint recognition with a 

reasonable complexity, i.e. the fingerprint matching module could be simplified without 

affecting the accuracy of the matching results based on a suitable method to represent a 

fingerprint image in the system database. Thus, the problem of fingerprint representation 

is to determine a measurement (feature) space, in which fingerprint images taken from a 

specific finger form a compact cluster different from those of other fingers from the stand 

point of these features.  

The fingerprints are the graphical ridge/valley patterns of human fingers; hence a 

fingerprint is mainly represented by using the information (features) associated with its 

ridges. These features are traditionally categorized as the global features and the local 

features. Normally, for these features (known as the feature vector) to be considered as a 

suitable representation of a fingerprint, they need to satisfy the following requirements: 
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1. Saliency: the feature vector should represent distinctive information about the 

fingerprint. 

2. Extractability: these features can be easily detected. 

3. Compactness: the feature vector could be stored in a compact form (to save 

the storage space) 

4. Usefulness: the feature vector should to be formulated such that it becomes 

useful for the matching step. 

- Global Features 

The global features represent the overall ridges pattern. As shown in Figure 2.2, the 

pattern of the ridges flow of the fingerprint has a smooth curvature everywhere, except 

nearby some regions which are called singular regions. In addition, the density of the 

ridges varies based on their locations with respect to theses singular regions. Based on 

these different characteristics of the ridge pattern, many global features have been 

defined to be used for fingerprint recognition systems as follows: 

1. Singular points, called loop and delta, are a sort of control (reference) points 

around which the ridge lines are wrapped [1]. It has been found that, the 

human fingerprint has at most four singular points (i.e. two loops and two 

deltas), as shown in Figure 2.2, or at least one singular point which is the 

upper loop (the core). Since there are many different fingerprints that contain 

the same singular points topology, this feature is not sufficient for verification 

or identification purposes. Nevertheless, this feature is helpful as it is used to 

prealign fingerprint images that need to be matched. In fact, most of the 

matching algorithms need a pre-alignment step. Usually, the pre-alignment 
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depends on the core point as a center reference point. Another popular use of 

fingerprints’ singular points is to determine the fingerprint category (i.e. 

fingerprint classes) as shown in Figure 2.3. 

 

Figure 2.2: Fingerprint image shows the different global features.  

 

          (a)                           (b)                       (c)                        (d)                          (e) 

Figure 2.3: Fingerprint patterns as they appear at a coarse level: (a) tented arch, (b) arch, 

(c) right loop, (d) left loop, and (e) whorl. 

 

2. Local ridge orientation, which is known as the orientation field or the 

directional image of the fingerprint (Figure 2.4). There are many techniques 

have been proposed to calculate the local ridge orientation [1]. The most 

natural approach for estimating the local ridge orientation is based on the 

computation of gradients in the fingerprint image [36]. In practical, a ridge 

orientation value is calculated for each block of size NN  . Each block is 

Upper loop 
Lower loop 

Right delta 
Left delta 
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assigned an orientation value R  in the interval [0,) that corresponds to the 

most dominant direction of the ridges contained therein. The orientation 

values are calculated with respect to the horizontal border of the image (2.1). 

The orientation field O  can then be considered as a matrix whose ),( lk
th

 

element represents the orientation value of the ),( lk
th
 block.  
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where ),( jiGx and ),( jiGy  are the values of the gradients at pixel ),( ji in the 

x and y directions, respectively, using 33 Sobel mask. 

3. Local ridge frequency, which is known as the frequency image or the ridge 

density map of the fingerprint (Figure 2.5) [9, 37]. The local ridge frequency 

of the ),( lk
th

 block is defined as the number of the ridges per unit length 

along a segment orthogonal to the local ridge orientation R  [1]. It has been 

noticed that, the ridge density varies across different parts of the same 

fingerprint (Figure 2.5). In addition, different fingerprints have been found to 

have naturally different ridge density maps [1].  

4. Local ridge curvature, which is known as the curvature map of the 

fingerprint (Figure 2.6). Qi et al [18, 38] have been proposed the use of the 

orientation field of the fingerprint image to construct the curvature map. The 

curvature of the ),( lk th
 block is defined as the half of the difference between 
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the orientations of the two neighboring blocks to which the direction of the 

),( lk
th
 block. 

The global features of the fingerprint, especially the first three global features, 

have been traditionally used for image enhancement at a preprocessing stage [9], for 

classification (indexing) of fingerprint [1013], for fingerprint image partitioning [14], 

and for singular points detection [3940]. Even though, the global features of the 

fingerprint are not considered as a completely distinctiveness features, they might be used 

with the local features to enhance the accuracy of the fingerprint matching, as mentioned 

in Section 1.3.  

 

 

 
 

Figure 2.5: Fingerprint and its frequency image [37]. 

 
 

Figure 2.4: Fingerprint and its orientation image. 
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- Local Features 

The local features represent the small details of the ridges, which normally can not be 

seen by the human eyes. These features have been reported as the highest distinctiveness 

characteristics of the fingerprint [1]. Traditionally, the local ridge characteristics, called 

minute details (shortly called minutiae), are widely used for the fingerprint representation 

and matching. These small details are found to remain in the fingerprint pattern 

unchanged over an individual’s lifetime [1].  The two most prominent minutiae are: ridge 

ending and ridge bifurcation (see Figure 2.7). A ridge ending is defined as the ridge point 

where a ridge ends abruptly. A ridge bifurcation is defined as the ridge point where a 

ridge forks or diverges into branch ridges. The FBI minutiae coordinate model considers 

only termination and bifurcations: each minutia is denoted by its type, the x and y 

coordinates and the angle between the tangent to the ridge line at the minutia position and 

the horizontal axis [1]. The minutiae can be extracted, in general, either through a 

binarization process of the fingerprint ridges or directly from the gray-scale fingerprint 

image [1]. 

 
 

Figure 2.6: Fingerprint and its curvature map and the orientation image [18, 38]. 
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Figure 2.7: Minutiae types: Ridge endings and ridge bifurcations. 

2.3.2 Fingerprint matching 

The process of fingerprint matching is to compare the fingerprint templates by using a set 

of similarity measures of the corresponding features in these templates. And thus the 

matching scheme returns a score between 0 and 1 representing the degree of similarity 

between the two fingerprint images, or a binary score of 0 or 1 indicating whether or not 

the fingerprint under consideration is the same as the reference fingerprint. The accuracy 

of the final decision and the response time are the two main concerns of a matching 

scheme. However, the requirements on the degree of accuracy and the response time of a 

matching scheme vary from one application to another. Although this matching process 

seems easy to do, it is an extremely difficult problem to solve due to the challenges 

associated with the behavioral and anatomical characteristics of fingerprints. 

2.4 Performance Metrics 

Each fingerprint application has its own requirement. Examples of such requirements are 

the degree of accuracy required, and the speed of the system’s response. Thus, practical 

Ridge 

endings 

Ridge 

bifurcations 
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performance requirements of a biometric system are very much application dependent. 

Three main factors are used in evaluating the performance of a fingerprint recognition 

system: 

1- Fingerprint system’s decision accuracy, i.e., the recognition accuracy. 

2- The computational complexity of the feature extraction, template formulation and 

matching modules. 

3- The size of the resultant features vector (i.e., template), and whether this template 

has a fixed or variable size. 

In order to measure the decision accuracy of the fingerprint recognition system, 

the fingerprint verification problem is defined as follows [1]. Let the stored fingerprint 

template of a person be represented with T , and the acquired input for recognition be 

represented with I . Then the null and alternate hypotheses are: 

TIH :0 , input I is not from the same person as the original template. 

TIH :1 , input I  is from the same person as the original template. 

The associated decisions are: 

:0D  The person is not who she/he claims to be. 

:1D  The person is who she/he claims to be. 

The verification involves matching T  and I  using a similarity measure ),( ITS . If the 

matching score is less than the system threshold t, then decide 0D , else decide 1D . 

Accordingly, the testing formulation inherently contains two types of errors: 

Type A: false match ( 1D  is decided when 0H  is true); 
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Type B: false non-match ( 0D  is decided when 1H  is true). 

False match rate (FMR) is the probability of type A error (also called false acceptance 

rate (FAR)); and false non-match rate (FNMR) is the probability of type B error (also 

called false rejection rate (FRR)): 

)|( 01 trueHDpFMR   (2.2) 

)|( 10 trueHDpFNMR   (2.3) 

In order to evaluate the accuracy of a biometric system, scores generated from a 

number of fingerprint pairs from the same finger are to be collected (the distribution 

)|( 1 trueHsp   of such scores is traditionally called genuine distribution). In addition, 

scores generated from a number of fingerprint pairs from different fingers also need to be 

collected (the distribution )|( 0 trueHsp   of such scores is traditionally called impostor 

distribution). Figure 2.8 graphically illustrates the computation of FMR and FNMR over 

genuine and impostor distributions. From the drawing, it is evident that FMR is the 

percentage of impostor pairs whose matching score is greater than or equal to the 

threshold t , and FNMR is the percentage of genuine pairs whose matching score is less 

than t  [1]. Another important error measure of the system performance is the equal error 

rate (ERR), which is defined as the error rate at the threshold t  at which FAR = FRR. 

The most common used measurements are: false acceptance rate (FAR), false rejection 

rate (FRR) and the equal error rate (ERR). It is also recommended to report the system 

performance at all operating points (threshold t ), by plotting FRR( t ) against FAR( t ) as 

a receiver operating characteristic (ROC) curve [1]. 
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The computational complexity of a fingerprint recognition scheme is measured, in 

general, by reporting the CPU times of the different modules of the system. There are 

mainly two time measures to be reported: the enrollment time and the matching time. The 

enrollment time is defined as the time needed for fingerprint representation module, 

which includes pre-processing step, features extraction and template formulation (Figure 

2.1(a)). The matching time represents mainly the time needed for comparing two 

different templates (reference template vs. input template). Finally, the size of the 

formulated template in bytes, which is called a model size [41], is another important 

performance metric to be reported. 

2.5 Fingerprint Benchmark Databases 

With the increase in the number of commercial systems for fingerprint-based recognition, 

proper evaluation protocols are needed. So, testing of all the algorithms should be carried 

out on one common database, to know the best feature extraction/matching technique 

 
 

Figure 2.8: FMR and FNMR, for a given threshold t, are displayed over the genuine 

and impostor score distributions [1]. 
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satisfying an application’s requirements. Recently, the first fingerprint verification 

competition (FVC2000) was a good start in establishing such protocols with new dataset 

well suited for the evaluation of algorithms with live-scan images [42]. 

Our main concern in choosing a fingerprint database for experimentation is to 

ensure that the fingerprint images contained therein represent the real life situations, 

meaning that the images have been collected under unsupervised conditions and without 

a quality check. The public domain databases from Fingerprint Verification Competitions 

(FVC), i.e., FVC2000 [43], FVC2002 [44], FVC2004 [41], and FVC2006 [45, 46] satisfy 

that concern. Each of these FVCs contains four different benchmark databases, namely, 

DB1, DB2, DB3, and DB4. The first three databases consist of real-life fingerprints and 

they have been acquired by using different types of sensors. The fourth one has been 

created by using a synthetic fingerprint generator (SFinGe).  In the first three FVCs, each 

database contains 8 impressions of a finger with different qualities of the image and may 

contain the images of a finger even only partially. Each database contains 110 fingers, 

i.e., a total of 880 fingerprints. The fingers numbered 101 to 110 (set B) have been 

selected for training and estimating the parameter values, and the rest of the fingers, 

numbered 1 to 100 (set A), are used for testing. In FVC2006, each database contains 150 

fingers with 12 impressions of each, i.e. a total of 1800 fingerprints. The fingers 

numbered 141 to 150 (set B) have been selected for training and estimating the parameter 

values, and the rest of the fingers, numbered 1 to 140 (set A), are used for testing. Tables 

2.1, 2.2, 2.3 and 2.4 provides a summary in terms of the fingerprint size, resolution and 

the source of acquisition of the benchmark FVC databases [4146]. 
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Table 2.1: Summary of the benchmark FVC2000 databases [4243] 

 DB1 DB2 DB3 DB4 

Sensor type Optical Capacitive Optical SFinGe 

Image size (pixels) 300x300 256x364 448x478 240x320 

Resolution (dpi) 500 500 500 ~ 500 

Table 2.2: Summary of the benchmark FVC2002 databases [44] 

 DB1 DB2 DB3 DB4 

Sensor type Optical Optical Capacitive SFinGe v2.51 

Image size (pixels) 388x374 296x560 300x300 288x384 

Resolution (dpi) 500 569 500 ~ 500 

Table 2.3: Summary of the benchmark FVC2004 databases [41] 

 DB1 DB2 DB3 DB4 

Sensor type Optical Optical Thermal 

sweeping 

SFinGe v3.0 

Image size (pixels) 640x480 328x364 300x480 288x384 

Resolution (dpi) 500 500 512 ~ 500 

Table 2.4: Summary of the benchmark FVC2006 databases [45, 46] 

 DB1 DB2 DB3 DB4 

Sensor type Electrical 

field 

Optical Thermal 

sweeping 

SFinGe v3.0 

Image size (pixels) 96x96 400x560 400x500 288x384 

Resolution (dpi) 250 569 500 ~ 500 

2.6 A Fuzzy-based Clustering Technique 

Because of to the nature of many problems in pattern recognition and image processing 

fields, the use of fuzzy-based techniques has been shown to be capable of achieving 

better results [47]. Among these techniques, the fuzzy-based clustering problems (FCP) 

represent important area in pattern recognition and image processing fields. In general, 

the clustering problems are based on the notion of unsupervised learning and consist in 

assembling patterns or entities in restricted classes. In the crisp clustering, each pattern is 

classified in a single cluster, assuming well-defined class boundaries. However, the 

boundaries in the real life situations between natural classes may be overlapping. Thus, a 
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certain input pattern may be not completely belong to a single class, but partially belong 

to the other classes too. Therefore, the use of the crisp clustering models to solve real life 

problems should be limited. On the other hand, the FCP have been proposed to deal with 

the real life problems more effectively. The beginning of fuzzy clustering can be traced to 

early works of Bellman et al. [48] and Ruspini [49]. The fuzzy clustering methods give us 

more information than the crisp ones about the degree of membership of a pattern. The 

FCP consist of assigning a set of patterns to a given number of clusters such that each of 

them may belong to more than one cluster with different degrees of membership. In 

general, FCP can be classified into three categories: (i) fuzzy clustering based on fuzzy 

relation, (ii) fuzzy clustering based on fuzzy rule learning, and (iii) fuzzy clustering based 

on the optimization of an objective function [50, 51].  

The most popular heuristic for solving FCP based on the optimization of an 

objective function is the so called fuzzy c-means method (FCM) [51]. It has been 

successfully applied in a large number of areas such as chemistry, biology, and medical 

diagnosis [47, 50]. The FCM has been also widely used in image segmentation [5259]. 

The fuzzy clustering with an objective function (FCM) is similar to the well-known k-

means heuristic used for crisp clustering. The FCM alternatively, which depends on the 

fuzzy sets theory [47, 51, 60, 61], assigns membership degrees of a set of patterns to a 

given number of clusters until there is no more improvement in the objective function 

value. 

2.6.1 Standard FCM algorithm 

In order to classify n  patterns into c  clusters, the problem of FCM clustering could be 

formulated as follows: First, given n  patterns in d -dimensional space, where the pattern 
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vector is represented as  nxxxX ,...,, 21 , nixxxx idiii ,...,2,1),,...,,( 21   Therefore, the 

ikx  represents the thk  attribute (or feature) associated with pattern i . Second, let c  

denotes a known number of clusters. Accordingly, let U  be a matrix of size cn , where 

its item iju  denotes the membership degree for pattern i  with respect to cluster j , with 

the following two constraints: 

                                niu
c

j

ij ,...,2,1,1
1




 (2.4)  

                               
cjniuij ,...,2,1;,...,2,1,10 

 (2.5) 

Finally, the FCM algorithm is an iterative optimization that minimizes the 

objective function defined as follows [50]. 
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where: 

 m  is a tuning parameter which controls the degree of fuzziness in the clustering 

process. The FCM iterative algorithm works under condition that 1m , and 

usually 2m . 

  cvvvV ,...,, 21  is a set of the centers of the clusters, where ),...,,( 21 jdjjj vvvv   

is the center of the thj  class. 

   is the Euclidean distance defined on 
dR . 
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Then the optimal fuzzy clustering structure of set X  is obtained as a solution of 

the non-linear programming problem (P) in variables ( VU , ). By fixing U  the problem 

(P) reduces to finding V  and we also find U  by fixing V .  

For this objective function Eq. 2.4, there exist one global optimum solution and a 

number of other possible local optimum solutions. Based on the initial set of the centers 

of the clusters 0V , the FCM algorithm has been proved to converge to one of theses 

optimum solutions (local or global) [62]. Normally, finding the global optimum appears 

to be very difficult, since the initial set of the centers of the clusters 0V  is usually 

unknown. Therefore, in many cases, the initial set of the centers of the clusters 0V  is 

randomly initialized. 

2.6.2 An illustrative numerical example 

In this section, we are presenting the solutions of a numerical example (Table 2.5) 

obtained by the different crisp and FCM clustering techniques. In addition to the above 

mentioned FCM clustering technique, we are using two crisp techniques:  

1- The quantization method: under the assumption of knowing the possible range of 

the values of the data items, a group of crisp sets with their centers could be 

defined. Accordingly each pattern is assigned to one of these crisp sets. This 

technique is much simpler than the k-Means heuristic. 

2- The well known k-means heuristic, which depends mainly on the given pattern 

vector to provide the centers of the clusters. Similar to the FCM, the k-Means 

heuristic depends on the initialization step and also converges to one of the local 

optimum solutions. 
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In this example, the pattern vector contains fifteen data items, i.e. 15n , such 

that each data item represents the age of a person. Then, by using the three clustering 

techniques, these patterns are to be classified into three clusters, i.e. 3c . These clusters 

representing: (1) the younger people, (2) the middle-age people and (3) the elderly 

people. 

Table 2.5: A given set of ages of different persons in the illustrative numerical example. 

P# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Age 30.5 18.9 19.5 68.5 30.7 4 15.8 69 37.8 86 85 60 49 89 82 

1- By assuming that the minimum age is equal to zero and the maximum possible 

age is one hundred, then we can define three crisp sets as follows:  

i. The younger people’s age }5.330|{  ii yyY  

ii. The middle-age people }675.33|{  ii mmM  

iii. The elderly people  }10067|{  ii eeE  

And thus, the set of cluster centers, based on the quantization technique, is V  = [16.66, 

50, 83.33]. Accordingly, the clustering solution of the given pattern vector is obtained as 

listed in Table 2.6. 

Table 2.6: The clustering solution obtained using the quantization technique. 

P# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Cluster# 1 1 1 3 1 1 1 3 2 3 3 2 2 3 3 

2- By using the k-Means technique, one of the possible set of cluster centers to 

this problem is V = [14.55,  37,  77.07]. Accordingly, the clustering solution of the given 

pattern vector is obtained as listed in Table 2.7. 
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Table 2.7: The clustering solution obtained using the K-means technique. 

P# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Cluster# 2 1 1 3 2 1 1 3 2 3 3 3 2 3 3 

3- By using the FCM technique, one of the possible set of cluster centers to this 

problem is V = [20.69,  59.06,  84.77]. Accordingly, the clustering solution of the given 

pattern vector is obtained as listed in Table 2.8. By using the FCM technique, the patterns 

are classified such that each pattern belongs to all clusters with different membership 

degrees as seen from Table 2.8. 

Table 2.8: The clustering solution obtained using the FCM technique. 

P# 
1iu  2iu  3iu  

1 0.8691 0.10251 0.028392 

2 0.99728 0.0019815 0.00073661 

3 0.99876 0.00090401 0.00033212 

4 0.028328 0.72718 0.24449 

5 0.86296 0.10747 0.02957 

6 0.88139 0.080978 0.037632 

7 0.98251 0.012553 0.004939 

8 0.029396 0.69488 0.27573 

9 0.56176 0.36371 0.074529 

10 0.00035163 0.0020672 0.99758 

11 1.2367e-005 7.6033e-005 0.99991 

12 0.00056613 0.99801 0.0014254 

13 0.10483 0.82952 0.065647 

14 0.0037388 0.019467 0.97679 

15 0.0020134 0.014386 0.9836 

 

It is seen from Tables 2.6, 2.7, and 2.8, that the solutions achieved by the crisp 

techniques are quite near to each others, i.e., 12 patterns out of 15 have been classified to 
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belong to similar clusters. On the other hand, the FCM technique provides a different 

manner of the clustering solution. For example: pattern number 9 {37.8} has been 

assigned to cluster number 2 using both crisp techniques which means it belongs to the 

middle age group, whereas the FCM technique assigns the same pattern to the first and 

second clusters with the largest membership to the first cluster, which means this pattern 

is more likely to be considered as the younger people group. Another example: pattern 

number 11 {85} which is almost equal to the center of the third cluster, and therefore its 

membership is almost equal to one under the third cluster. 

2.7 Summary 

The purpose of this chapter has been to present the background material necessary for the 

development of the work undertaken in this thesis. The fingerprint recognition systems 

are classified as an automatic fingerprint verification system or an automatic fingerprint 

identification system. In this chapter, these systems have been first discussed and their 

different operational modes described. Next, the main modules of these systems, namely, 

the fingerprint representation and matching, have been discussed in details. Then, to 

measure the performance of the fingerprint recognition systems in terms of the accuracy 

and complexity, the most commonly used performance metrics in the area of fingerprint 

recognition have been presented. Benchmark databases are used in order to examine and 

compare the performances of fingerprint recognition systems. In this chapter, some of the 

most challenging databases containing a variety of fingerprint difficulties are also 

described. 

Since one of the objectives of the work undertaken in this thesis to address the 

problems arising from a crisp partitioning of the features by exploring the possibility of 
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employing a fuzzy based partitioning, finally, different types of the fuzzy-based 

clustering techniques have been reviewed. The most popular heuristic for solving fuzzy 

clustering problems, i.e. fuzzy c-means method, has been described in this chapter. It has 

been shown through a numerical example that the use of the fuzzy c-means technique 

provides a smoother clustering solution in comparison to that provided by crisp clustering 

techniques. 
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CHAPTER 3 

Fingerprint Decomposition 

 

3.1 Introduction 

In fingerprint recognition problem, the global features of the fingerprint image represent 

mainly the structural information of the fingerprint ridges. In comparison to the local 

features (minutiae) of the fingerprint, the global features can be determined more reliably. 

Therefore, the idea of combining the global features with the local features of a 

fingerprint could provide a promising methodology to achieve recognition accuracy 

higher than that achieved by minutia-based techniques. 

Considering that the fingerprint recognition is a complex problem, it is proposed 

to simplify it by using a strategy of divide-and-conquer for developing a multilevel 

structural fingerprint recognition (MSFR) scheme. As a first phase of this scheme, in this 

chapter, a low-complexity algorithm for decomposing a fingerprint image into regions 

(sub-images) is developed by using more than one of its global features [63]. In Section 

3.2, a comparative study of the different global features of fingerprint images is first 

undertaken, in order to choose the most effective ones in terms of their extraction 

reliability and their importance in solving the fingerprint recognition problem. In Section 

3.3, the idea of partitioning a fingerprint image based on the global features is discussed 

and the previous work done in this area is reviewed. Finally, a new technique for 

decomposing fingerprint images using global features selected based on the conclusion 

drawn in Sections 3.2 and 3.3 is presented in Section 3.4. 
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3.2 The Global Features of the Fingerprint: A Comparative Study 

As mentioned in Chapter 2, the global features of the fingerprint are: the singular points, 

the orientation field, the ridge frequency map, and the curvature map. Based on the 

characteristics of these global features, the main differences between them could be 

summarized as follows: 

 The ridge density map is considered as a raw feature of the ridges of the 

fingerprint, since it is calculated directly from these ridges. Even though, different 

fingerprints have been found to have naturally different ridge density maps, these maps 

are affected by the person’s behavioral characteristics. During the acquisition process of 

the fingerprint image, different pressures on the fingertip against input device lead to 

different ridges densities. Hence, the values of the resulting ridge density maps of same 

finger are affected. Accordingly, this feature could be considered as a behavioral and an 

anatomical characteristic. Therefore, the ridge density map may be useful for the 

fingerprint recognition only under certain circumstances, such as the acquisition process 

of the fingerprint images has been done under supervision. 

 The orientation field is considered also as a raw feature of the ridges of the 

fingerprint. There are mainly two behavioral characteristics of a person which may affect 

on the values of the ridges orientations. First, the possibility of having different rotations 

of the fingertip during the image acquisition, which is a tolerable effect by finding a 

reference orientation among different fingerprint images [1]. Second, the possibility of 

having some amount of deformation of the ridges due to different pressures on the 

fingertip during the acquisition process, which is also a tolerable effect by smoothing the 

original orientation field [39] or by devising a deformable model [64, 65]. Therefore, the 
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orientation field could be considered as an anatomical characteristic, since the effect of 

the person’s behavioral characteristics on the values of the orientation field is limited. In 

addition, the orientation field provides, to some extent, discriminatory information other 

than that provided by the traditionally and widely used minutiae points. It has some 

special characteristics: (i) The ridge orientations are almost continuous and smooth 

everywhere, except for the regions near the singular points, which makes the process of 

extraction of the orientation field robust and less sensitive to noise. (ii) Compared to the 

local features, it is more immune to ridge pattern deformation and rotation or translation. 

 The curvature map is calculated based on the orientation field. Even though, this 

feature carries another kind of useful information [18, 38], it is solely depend on the 

orientation field. Accordingly, it does not actually present a new feature compared with 

the orientation field, meanwhile its formulation requires an additional computational cost 

compared with the previous two global features. 

 The singular points (cores and deltas) are detected based also on the orientation 

field. These features could be considered as anatomical characteristics, since they are not 

affected by the behavioral characteristics of a person. Actually, the singular points 

represent a special ridge shapes within the fingerprint image. Therefore, it carries very 

important information as well as the orientation field. 

In figure 3.1, two fingerprint images scanned from the same finger are presented 

[44] with their orientation fields and their ridge density maps. The first image, Figure 

3.1(a), represents a complete fingerprint image with a good quality. Whereas, the second 

image, Figure 3.1(b), represents a lower quality incomplete fingerprint image with a 

certain amount of rotation and deformation of the ridges. Figures 3.1(b) and (c) show the  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.1: Two fingerprint images taken for the same finger (a, b) with their orientation 

fields (c, d) and their ridge density maps (e, f).  
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orientation fields of both images, which have been obtained by using a gradient based 

method similar to that proposed by Ratha et al. [36]. Finally, the ridge density maps of 

the fingerprint images, Figures 3.1(d) and (e), have been obtained by using the method 

proposed by Hong et al. [9]. In their method, the local ridge density is determined as the 

inverse of the average number of the pixels between two consecutive peaks of gray-levels 

(i.e., ridges) along the direction normal to the local ridge orientation. Therefore, the 

higher ridge density areas are represented by the brighter areas in the Figures 3.1(d) and 

(e) and vice versa. 

It is seen from Figures 3.1(b) and (c) that the ridge orientations of the 

correspondent areas of the images have almost similar orientations after rotating the 

second one to be aligned vertically with the first one. On the other hand, Figures 3.1(d) 

and (e) show that there are differences between the ridge densities of the correspondent 

areas of the fingerprint images. One can conclude from this example that the orientation 

field is, in general, a more reliable global feature than the ridge frequency map. 

Finally, Table 3.1 summarizes the above comparisons between the different 

global features in terms of:  (i) the feature type, if it is a raw or dependent feature, (ii) the 

biometric characteristic of the feature, (iii) the reliability of extracting the feature from 

the fingerprint image, and (iv) the importance of using the feature for fingerprint 

recognition field. It is seen from this table the singular points and the orientation field are 

the most important characteristics that can be used as global features of a fingerprint or to 

be used to extract other features. 
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Table 3.1: The attributes of the global features of the fingerprint. 

 Feature type Biometric characteristic Reliability Importance 

Ridge density map Raw Anatomical/behavioral Low High 

Orientation field Raw Anatomical High High 

Curvature map Dependent Anatomical High Low 

Singular points Dependent Anatomical High High 

3.3 Fingerprint Image Partitioning Schemes 

Over the last decade, the idea of partitioning the fingerprint image into different areas has 

been used for fingerprint classification [1013], recognition purposes [23, 32] or for 

detecting singular points [66, 67]. Even though there are many global features of the 

fingerprint have been defined, most of the proposed partitioning schemes have used only 

the singular points or the orientation field. Therefore, the partitioning schemes in the 

literature could be categorized into two groups: 1) The partitioning schemes which based 

on the singular points, and 2) orientation field-based partitioning schemes. In this section, 

the previous work that has been done in this area is reviewed. 

3.3.1 Partitioning schemes based on the singular points 

As mentioned in Chapter 2, the singular points are classified as core and deltas. 

Naturally, any fingerprint has at least one singular point which is the core point (i.e. the 

upper loop) accordingly the core point plays a very important role in the fingerprint 

recognition field. That was the main motivation for some researchers to use the core point 

as a center point for partitioning the fingerprint image. In [14], Bazen and Gerez have 

proposed an intrinsic coordinate system for fingerprint matching by partitioning the 

fingerprint image mainly into four regular regions based on the locations and orientations 
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of the singular points (i.e. both the core and deltas). Some other researchers have 

proposed the idea of fingerprint image tessellation around the core point to partition the 

image [13, 23, 32]. In [13], Anil et al have been proposed a multi-channel approach to 

fingerprint classification. In this approach a fingerprint representation, based on the 

circular image tessellation around the core point, has been formulated which is called 

FingerCode [13]. The flow diagram of this approach is depicted in Figure 3.2, which is 

composed of the following steps: 

1. Determine a reference point (i.e. the core) and region of interest for the fingerprint 

image. 

2. Tessellate the region of interest around the reference point in a circular fashion. 

3. Filter the region of interest in four different directions using a bank of Gabor 

filters to capture the global information. 

4. Decompose the input image into a set of component images, each of which 

preserves certain ridge structures. 

5. Compute the standard deviation of the component images in each sector to 

generate the feature vector, which is called FingerCode. 

6. Feed the feature vector into a classifier.  

In [23], Anil et al. have been reused the same idea of circular image tessellation 

around the core point for fingerprint representation and matching. In order to capture both 

the global and local features, the region of interest has been filtered in eight (not only 

four) different directions using a bank of Gabor filters [23]. In [32] a fingerprint 

recognition scheme has been proposed using tessellated invariant moment features. This 
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scheme starts by locating a reference point, which represents the maximum curvature in 

an orientation field image. It has been used to determine a unique reference point for all 

types of fingerprints. Based on their definition of the reference point in [32], it is in 

general corresponds to the core point. To minimize the effects of noise and nonlinear 

distortions, a region of interest centered on the reference point is then determined and 

tessellated into a predefined number of non overlapping square cells (Figure 3.3) [32]. 

The main disadvantage associated with the above fingerprint image partitioning 

schemes is in their dependence on the use only of the singular points. In some cases such 

as the incomplete fingerprint images or images with low quality, the detection of the 

singular points is problematic, accordingly, the above image partitioning schemes fail. 

 

Figure 3.2: Flow diagram of the multi-channel approach to fingerprint classification [13]. 
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Figure 3.3: A fingerprint image tessellated around the core point into a predefined 

number of non overlapping square cells [32]. 

3.3.2 Partitioning schemes based on the orientation field 

Many researchers have proposed fingerprint image partitioning schemes by using only 

the orientation field [1012, 66, 67]. These image partitioning schemes have been used 

for either fingerprint classification [1012] or for singular points detection [66, 67]. In 

[12] by using the orientation field, Maio and Maltoni have proposed an iterative 

clustering algorithm to partition the fingerprint image into regions characterized by 

homogeneous orientation values. Due to the nature of the ridge orientations, which are 

almost continuous and smooth everywhere except for the regions near the singular points, 

the clustering algorithm proposed in [12] requires a high computational cost. Therefore, 

Cappelli et al. [11] have proposed another approach, which is based on performing a 

guided clustering with the aim of reducing the degrees of freedom during the partitioning 

process. In this approach, a set of dynamic masks has been defined directly derived from 

the most common fingerprint classes, to guide the clustering algorithm [11]. In [10], Yao 

et al. have used the same fingerprint image partitioning scheme proposed in [11] to 
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represent the fingerprint as a relational graph, in order to know the fingerprint class by 

using recursive neural networks and support vector machines. 

Some authors noted that the partitioning of the fingerprint image using the 

orientation field into regions characterized by homogeneous orientation implicitly reveals 

the position of singularities. Hung and Huang [66] and Huang, Liu, and Hung [67] have 

quantized the orientation field by using a small number of orientation values, such that 

each orientation value determines a region. By tracing the borderlines between the 

adjacent regions, which are called fault-lines, they have defined a geometrical method to 

detect the singular points. This was done by noting that the fault lines converge towards 

loop singularities (i.e. upper and lower cores) and diverge from deltas.  

Contrary to the partitioning schemes based on the singular points, the dependence 

on the orientation field is more robust since the information on the ridge orientations is 

always available. The main challenge in the orientation field based partitioning schemes 

is in clustering the irregularities of the regions containing singular points leads to the 

requirement of high computational complexity techniques. 

3.4 The Proposed Fingerprint Decomposition Algorithm 

Based on the discussions made in the previous sections, three main observations could be 

drawn: 1) the global features of the fingerprint represent quite important information 

about the structure of the fingerprint ridges. 2) The singular points and the orientation 

field are the most important characteristics that can be used as global features of a 

fingerprint or to be used to extract other features. 3) The singular points and the 

orientation field have been used for various fingerprint partitioning techniques.  



 50 

Therefore, a new fingerprint image decomposition (partitioning) algorithm by using both 

the singular points and the orientation field is now developed in this section. 

In the proposed algorithm, the fingerprint image is decomposed into regions (sub-

images), such that each region has a unique global feature characteristic. Since the ridge 

orientations are almost continuous and smooth everywhere, except for the regions near 

the singular points, the fingerprint image is decomposed into singular and non-singular 

regions. A region is defined to be a singular region, if it contains a core or delta, or a 

plain region, if it contains only ridges having orientation values within a specified range. 

This results in lowering the computational complexity of the proposed decomposition 

scheme compared to that of the schemes in [1012]. 

To start with, the orientation field of the fingerprint image is obtained by a 

method similar to that proposed by Ratha et al. [36]. A ridge orientation value is 

calculated for each block of size NN. Each block is assigned an orientation value in the 

interval [0,) that corresponds to the most dominant direction of the ridges contained 

therein. The orientation values are calculated with respect to the horizontal border of the 

image. The orientation field O  can then be considered as a matrix whose ),( lk th
 element 

represents the orientation value of the ),( lk th
 block. After the construction of the 

orientation field, a quantization operation is performed on the elements of the matrix O  

to obtain a quantized orientation field qO  by allowing the elements of qO  to assume 

values in range of [0,) at steps of . The use of the quantized orientation field qO  

facilitates the succeeding steps in the fingerprint decomposition scheme. Next, a process 

of segmentation is carried out for separating the fingerprint foreground and the 

background areas. Each NN   block is assigned to the foreground or background area 
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according to the variance of the gray-levels in a direction orthogonal to the ridge 

orientation [36]. Detection of singular points is then carried out by a shape analysis 

technique of the orientation field in the fingerprint image [39]. Through this shape 

analysis, it is not only possible to detect a singular point but also to determine its type, 

that is, whether it is an upper or lower core or a left or right delta. 

Finally, the fingerprint image is decomposed into different regions and 

represented as a set  
LPPPSSS  ,,...,,,,

21321
, where  MjB i

i jP ,...,1, 


  is 

a plain region that contains a group of adjacent image blocks i

jB


, all having the same 

orientation value i  which is chosen from the set {0,,2,…,-}, and  

 GgFfB gfSi
,...,1,,...,1,,  , where gfB ,  is the ),( gf

th
 image block 

corresponding to a singular point (i.e. a core or delta). In the proposed method, a singular 

point region 
iS  could be only one of three types: the core region 

1S  (upper and/or 

lower core), the left delta region 
2S , and the right delta region 

3S . Note that if both 

lower and upper cores exist simultaneously, they are included in the same region 
1S , 

since they are located relatively in a closer proximity than left and right deltas do. During 

the decomposition process, there is a possibility to have abnormal regions: 1) Isolated 

region, which is a region that has no adjacent regions, i.e. the image blocks of this region 

have no neighboring blocks belonging to other regions. This situation arises due to the 

presence of noise beyond the fingerprint region or within the region that isolates a part of 

the fingerprint from the rest of the fingerprint regions. In either case, such an isolated 

region is removed from  . In the case of the former, such an isolated region is not useful 

at all, whereas in the latter case it cannot be used, since it lacks the availability of 
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neighboring regions. 2) A small region containing only a few blocks. This situation arises 

due mainly to an incomplete fingerprint image, in which some ridges are not complete. A 

small region does not carry much global information but it may contain some useful local 

information. Retaining this small region increases the computational complexity of the 

fingerprint recognition. Consequently such a region is distributed among the neighboring 

regions based on the orientation values of the ridges within the region under 

consideration. 

The proposed fingerprint image decomposition scheme described in the preceding 

paragraphs can now be summarized as an algorithm with the following steps. 

Algorithm 3.1: Fingerprint decomposition 

1- Divide the fingerprint image into WH   blocks each of size NN   pixels.  

2- For each block Hk :1  and  Wl :1  

 Compute the dominant ridge ),( lk direction in the current block R  by using 

the equation:  
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where ),( jiGx and ),( jiGy  are the values of the gradients at pixel ),( ji  in the 

x and y directions, respectively, using 33 Sobel mask. 

 Formulate the orientation field O as a matrix, where Rlk ),(O . 

 Formulate the quantized orientation field qO  as a matrix, where 

),(),(  Rq onQuantizatilk O ,  being the quantization step.  
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 Compute the variance 2  of the gray levels of image pixels within the current 

image block, in a direction that is perpendicular to R . 

 If  2 , where  is an empirically specified threshold, then the current 

image block belongs to the background, and it has to be removed from the 

orientation field, therefore, we set 1),( lkO  and 1),( lkqO . 

3- Detect the location of the upper_core, lower_core, left_delta and right_delta points by 

applying the shape analysis technique [39] on qO . 

4- Define the singular point regions  GgFfB gfSi
,...,1,,...,1,,   by choosing the 

blocks that contain the singular points, then remove these blocks from qO  by 

assigning a “1” value to the items that corresponded to the blocks of this region. 

5- Divide the rest of the items of qO , into 


   groups. Each group represents the 

fingerprint image blocks, which have only one orientation value selected from the set 

{0,,2,…,-}. 

6- For each group n = 1 :    

Define the plain regions  MjB i

i jP ,...,1, 


 by gathering the adjacent blocks into 

one region. The adjacent blocks are identified using the 8-connetcivity criteria [68]. 

7- Use the output of steps 4 and 6 to represent the decomposed image as a set of 

regions  
LPPPSSS  ,,...,,,,

21321
. 

8- For each plain region i = 1 : L 
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 If the region is an isolated region, then remove the region from set  , and 

remove its blocks from O and qO  by assigning a “1” value to the items that 

corresponded to the blocks of this region. 

 If the region is a very small region (i.e. a region contains a number of blocks  

t), then remove the region from set  , and reassign its blocks to the adjacent 

regions. 

 

In order to show the usefulness of the proposed decomposition algorithm, two 

experiments have been conducted. In the first one, two fingerprint images corresponding 

to the same fingertip have been decomposed using the proposed algorithm. Figure 3.4 

contains these two fingerprint images (a and b) with their decomposed images (c and d). 

In this experiment, the chosen two images contain different parts from the original 

fingerprint. By comparing the decomposed images, two main observations can be made. 

First, the singular regions of the two images (i.e. core and left delta) are clearly 

corresponding to each other. Second, the correspondence between the plain regions of the 

two images could be easily determined. These two observations show that the images 

taken from the same finger should have, in general, the same set of decomposed regions.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.4: An example of two fingerprint images taken from the same finger (a, b), and 

the resulting decomposed images (c, d).  

 

In the second experiment, two fingerprint images corresponding to different 

fingertips have been decomposed using the proposed algorithm. As shown in Figures 

3.5(a) and (b), these two fingerprint images belong to the right loop fingerprint class, 

however the second image has only the upper core and the left delta is not presented due 

to the incomplete scanning of its fingertip. By comparing the decomposed images Figures 

3.5(c) and (d), two main observations can be made. First, the singular regions of the two 

images, in this case only the cores, are corresponding to each other. Second, the 

correspondence between the plain regions of the two images could not be determined. 

These two observations show that the images taken from different fingers should have, in 
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general, different sets of decomposed regions, even though these images belong to the 

same class. From the two experiments, it is seen that the inter-class similarity problem 

could be dealt effectively using the proposed decomposition algorithm. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.5: An example of two fingerprint images taken from different fingers (a, b), and 

the resulting decomposed images (c, d).  

3.5 Summary 

The idea of combining the local feature, minutiae, with global features has been shown to 

be a promising methodology to provide fingerprint recognition accuracy higher than that 

provided by the techniques using only minutia. In this chapter, a comparative study of the 
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different global features of the fingerprint image has been first undertaken in order to 

choose the most suitable ones for fingerprint recognition. It has seen from this study that 

the orientation field and the singular points are the most important characteristics that can 

be used as global features of a fingerprint.  

Considering that the fingerprint recognition is a complex problem, the proposed 

scheme by using a strategy of divide-and-conquer simplifies this problem and provides a 

solution to the original complex problem at a lower complexity. The idea of partitioning 

the fingerprint images using only global features has been then discussed in detail, and 

the previous related work reviewed. The partitioning schemes in the literature could be 

categorized into two groups: 1) the partitioning schemes that are based on the singular 

points, 2) orientation field-based partitioning schemes. In this chapter, a novel technique 

has been proposed for decomposing fingerprint image into different regions using both 

the orientation field and the singular points. The new algorithm for fingerprint 

decomposition provides a preliminary representation of the fingerprint image as a set of 

regions based only on singular points and the ridge orientations. In the next chapter, this 

preliminary representation will be used to formulate a multilevel structural representation 

for fingerprint images. 
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CHAPTER 4 

A Multilevel Fingerprint Representation and Matching  

4.1 Introduction 

In the previous chapter, the fingerprint image was decomposed into a set of singular and 

plain regions by using the fingerprint decomposition technique. In this chapter, by using 

this set of regions, schemes for fingerprint representation and matching for multilevel 

structural fingerprint recognition are presented [63]. In Section 4.2, for each region, a 

multilevel feature vector (MFV) is formulated by employing the structural information of 

local and global features of the fingerprint, and thus devising a multilevel fingerprint 

representation. Next, in Section 4.3, a multilevel matching algorithm is developed based 

on the MFVs in order to find a similarity between two fingerprints. Finally in Section 4.4, 

extensive experiments are conducted using some challenging benchmark databases, and 

the results compared with those of some state-of-the-art schemes. 

4.2 Multilevel Fingerprint Representation 

The problem of fingerprint representation is to determine a measurement (feature) space, 

in which fingerprint images belonging to a specific finger form a compact cluster 

different from those of other fingers from the stand point of these features. The objective 

in devising a suitable fingerprint representation is to provide a high accuracy in 

fingerprint recognition with a reasonable complexity. In the previous chapter, by using 

the locations of the singular points and the orientation field, a fingerprint image has been 
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decomposed and represented as a set of regions  . This preliminary representation is 

based only on two of the global features of the fingerprint. In this section, we propose a 

multilevel structural fingerprint representation that includes information on both the 

global and local features. Each extracted region resulting from the application of 

Algorithm 3.1 on a fingerprint image has a distinguishable global feature such as the 

ridge orientation or whether or not it contains a singular point. In addition, the region 

might also contain a group of minutiae that belong to the ridges inside the region. In the 

proposed scheme, a region of the fingerprint is represented using three different levels of 

fingerprint characteristics. 

1) The global features of a region, which represent mainly the global structure of 

the fingerprint image with respect to the core region. 

2) The neighborhood features of a region, which represent the region’s 

characteristics in relation to its adjacent regions. This level of characteristics is especially 

useful when the fingerprint core point is not detectable; such a situation arises in 

fingerprint images with poor quality at the core point region. 

3) The local characteristics of a region, such as curvature of ridges and minutiae, 

which vary from region to region.  

4.2.1 Formulation of multilevel feature vectors 

We now describe the formulation of these three levels of characteristics in a 

multilevel feature vector (MFV). 

(i)  Formulation of Global Features (FV1) 

In order to capture the global structure of the fingerprint image, we specify three 

global features: (i) the type of the region, in regard to whether it is a plain or a singular 
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region, and (ii) its position and (iii) its orientation, both relative to the core point. The 

first feature is already determined after the application of Algorithm 3.1 on the fingerprint 

image. To quantify the second and third features, we first introduce a new rectangular 

coordinate system and split the entire fingerprint image into eight sectors based on the 

location and orientation of the core point (Figure 4.1). The location of the core point is 

considered as the origin. The new coordinate system consists of the axes Core  and 

CoreP , where Core  is the average orientation of the core region 
1S , and CoreP  is 

perpendicular to Core . The orientations of these two axes are calculated using the 

following formulas: 
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Starting from Core  axis, the entire image is divided into eight sectors, such that each 

sector covers 45
o
 of the space around the core point. Sectors are then labeled as 1 to 8. 

The second feature for each plain region is calculated by finding the sector in which the 

geometrical center CenterP _  of the region is located. 
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The above three features are used to form the first level (FV1) of a multilevel 

feature vector using only two components as follows: 

a- Type and position of a region ( ) 

In order to reduce the final fingerprint template size,   is used to represent 

both the relative position of a region with respect to the core point region as 

well as the type of the region. For a plain region 
iP ,   represents the relative 

position, and hence, its value is between 1 and 8, and for singular regions, the 

core, left delta, and right delta are represented by the digits 9, 10, and 11, 

respectively. 

b- Relative orientation ( Core ) of a region 

By considering Core  as reference orientation, this feature is used to represent 

the orientation of a plain region relative to the orientation of the core. For each 

plain region, this feature is calculated by subtracting Core  from the orientation 

k  of the ridges of this plain region.  

With the formulation of FV1 as carried out above, it is seen that its two 

components are invariant to displacement and rotation, and thus a pre-alignment step, 

 

Figure 4.1: Coordinates system defined based on 
Core . 
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commonly employed prior to the matching process of the fingerprint recognition, would 

not be required. 

(ii) Formulation of Neighborhood Features (FV2) 

In order to capture the characteristics of a region in relation to its adjacent 

regions, a pair of features for each adjacent region, the relative position ij  and the 

relative orientation ij , is used. The feature ij  of region i  is defined as the position of 

the geometrical center of its adjacent region j  relative to that of region i . The second 

feature ij  is defined as the orientation of the adjacent region j  relative to that of region 

i . In order to evaluate ij , a coordinate system is defined in a manner similar to that 

defined for the formulation of global features by using the geometrical center CenterP _  of 

region i  as the origin and by using its ridge orientation i  instead of Core . The relative 

orientation  ij  is calculated by subtracting i  from j . The formulation of FV2 is a set 

of neighborhood features of region i  with the number of components equal to the number 

of adjacent regions.  

(iii) Formulation of Local Features (FV3) 

The third group of features, FV3, contains two local features: the curvature of the 

ridges belonging to a region and the set of minutiae contained therein.  

a. Curvature of a region ( i )  

This feature represents the curvature i  of the ridges of a region i , which is 

calculated only for the plain regions 
iP  as minmax iii   , where mini  and 

maxi  are, respectively, the smallest and largest orientation values of the ridges 
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contained in region i , which are retrieved from the original orientation field 

O  within 
iP . Therefore, the value of this feature is in the range [0, ]. 

b. Minutiae set  Li mmmMinu ,...,, 21  

The traditional minutiae-based approaches represent each minutia l  as 

),,,( lllll tyxm  , where ),( ll yx  is the minutia’s location, l  is the minutia’s 

orientation, and lt  is the minutia’s type (i.e. ridge ending or ridge bifurcation). 

In the proposed representation, a minutia is represented as ),,( lll tyx , since l  

is already implicitly represented as Core  corresponding to the region. Thus, 

this minutiae descriptor requires a template size smaller than that used in the 

traditional minutiae representation. 

By using the features formulated as above, the proposed fingerprint representation 

(i.e. the fingerprint template) is defined as  kSSSMFV  ,,...,,,, 21321
, in which  

 
ii SS FV1  corresponding to a singular region iS  and  iiii FVFVFV 3,2,1  

corresponding to a plain region i , where ),(1 Coreii i
FV   , 

},...,1),,{(2 QqFV iqiqi   ,  and }},...,1),,,{(,{3 LltyxMinuFV llliii    contain, 

respectively, the global, neighborhood and local features for a plain region i . Hence, the 

size of the proposed MFV varies according to the number of the regions. Finally, one can 

expect the proposed fingerprint representation to be more accurate and reliable, since two 

different levels of structural features that are invariant to translation and rotation have 

been incorporated in the representation. 
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4.2.2 Core detection using FV2 

The fingerprint ridges around a core point have a shape that is like a semi-circle in the 

case of an upper core, or have a shape that resembles a circle in the case of a whorl 

fingerprint. In these cases, the ridges on both sides of the core are almost parallel to each 

other; in other words, the orientations of these ridges are equal to each other. As 

motioned in the previous section, the detection of singular points (core and deltas) is 

carried out by analyzing the shapes represented by the orientation field. Unfortunately, 

this shape analysis technique cannot detect the core point in a situation when the quality 

of the fingerprint in the core region is poor (see Figure 4.2(a)), or when the location of 

the core point is very close to the boundary of the fingerprint (see Figure 4.2(b)). This is 

so, because in the shape analysis technique, the location of the core is determined by 

searching for a specific shape of the ridges, namely a cap or cup, in the fingerprint image. 

Thus, in this case (i.e., when the core is not successfully detectable) the formulation of 

the MFVs, in the proposed technique of fingerprint image decomposition, is carried out 

by using only the orientation field. Therefore, the resulting MFVs are an incomplete 

representation of the fingerprint, since it does not contain the information concerning the 

core region. However, in the proposed technique the FV2 component of the incomplete 

MFV can be used to detect the presence and the location of the core in a situation when it 

was not detected by the shape analysis technique. Thus, if the core information is not 

present in any of the MFVs formulated after the fingerprint decomposition, the relative 

orientation ij  of FV2 of the MFVs are checked. If ij  for a certain FV2 is found to be 

zero, we conclude that, there exists a core point between the regions i  and j . The 
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corresponding MFV is then modified to reflect this fact. If none of FV2’s are detected to 

have 0ij , the fingerprint image is declared to have no core. 

 

 

(a) (b) 

Figure 4.2: Two examples of fingerprint images (a) Core with undesirable noise. (b) 

Incomplete core located at the image borders. 

 

4.3 Multilevel Matching 

The process of fingerprint matching is to compare the fingerprint templates of two 

fingerprint images and return a score between 0 and 1 representing the degree of 

similarity between the two fingerprint images, or a binary score of 0 or 1 indicating 

whether or not the fingerprint under consideration is the same as the reference fingerprint. 

The accuracy of the final decision and the response time are the two main concerns of a 

matching scheme. However, the requirements on the degree of accuracy and the response 

time of a matching scheme vary from one application to another. In this section, we 

propose a fingerprint multilevel matching (MLM) scheme using the MFVs formulated in 

Section 4.2.  We denote the MFVs corresponding to the reference fingerprint template 
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retrieved from the database as  MSSST  ,,...,,,, 21321
 with M plain regions, 

and the MFVs corresponding to the template of the input fingerprint to be matched as 

 NSSSI  ,,...,,,, 21321
 with N plain regions. As explained in the previous 

section, the formulation of FV1 depends on the presence of core region; therefore, in the 

case when the core point does not exist or it is undetectable, in the proposed multilevel 

matching scheme we use only FV2 and FV3 to report the final matching  result between 

T  and I . 

On the onset, the proposed multilevel matching scheme determines whether or not 

both T  and I  belong to the same category. By using 
1S , 

2S , and 
3S  for the 

templates T  and I , the category of the fingerprint is identified as left loop, right loop, 

whorl, arch, or tended arch. If T  and I are found to belong to the same category, then by 

using FV1 the best corresponding pairs of regions from T  and I are found, and the 

degree of similarity, referred to as elementary similarity measure, between the two 

fingerprints is estimated. If the value of this elementary measure is equal to zero, then the 

proposed scheme reports a non-match and stops the matching process. Otherwise, the 

matching process moves on to the next level of matching, in which the calculations of the 

so called secondary similarity measure is carried out by using FV2 of T  and I . If the 

value of this secondary estimate is equal to zero, a non-match is reported and further 

matching of T  and I  is stopped. Otherwise, the matching scheme moves on to a third 

level and a tertiary similarity between T  and I  is estimated by using FV3. Finally, the 

three degrees of similarities are combined to obtain the final matching result. 
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We now derive expressions for the three similarity measures of fingerprints, 

which in turn depend on functions representing the similarity of the regions from the T  

and I  templates, using FV1, FV2, and FV3.  

1) Similarity measure based on FV1= { , Core } 

For a plain region, the value of the first component   ranges from 1 to 8; 

therefore, in order to find the correspondence between two plain regions belonging to T  

and I , respectively, we first define a spatial distance function between the two plain 

regions 
j

I and 
i

T  as 

 )()(8,)()(min))(),((
ijijij

TITITISD     (4.3) 

where )(
j

I  and )(
i

T denote the values of the type and position features for the 

regions 
j

I  and 
i

T , respectively. An optimal similarity function between these two 

regions is then obtained by using the normalized difference of the orientation values 

Core  of the regions from T  and I  as [17], [27] 
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where ),(
ij

TI   is the normalized orientation distance [27] between the two regions 

j
I and 
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with the symbol ),(0 ij
TI   representing the orientation distance between the two 

regions
j

I and 
i

T , and evaluated as 

 













otherwise

TIif
TI

ijij

CoreCoreij ij

ij 



,min

0))(.)(( 
),(0   (4.6) 

where ij is the absolute difference of )(
j

ICore   and )(
i

TCore  , and ij  is the sum of 

their absolute values. 

In order to find the best corresponding regions from I and T , the similarity 

between a region of the template I and  a region of the template T  is first calculated 

using (5). Then region 
i

T  is reported as a best corresponding region i.e. mate of 
j

I , if 

the similarity between them is greater than all other similarities between 
j

I  and the 

other regions from template T . Hence, for each region Nj ,...,1  from template I , its 

mate from regions from T  can be formulated as  
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where k  is the index of the region from template T  that has maximum similarity with a 

region j  of template I . Thus, a value 0)( jB  implies that a region j  in template I  is 

not mated to any region in template T ; hence, 0),(
)(1  jBj

TIS . Finally, the expression 

for the elementary similarity measure between I  and T  is obtained as 
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where K is the number of mated regions. 

2) Similarity measure based on FV2 = { jq , jq } 
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A plain region j  has a group of neighbors  Qq ,...,2,1  each having a pair 

{ jq , jq } to represent the neighborhood relationship. The spatial distance function 

))(),((
ij

TISD ihjq    between two regions h  and q  representing the neighbor of the 

region i  in T  and that j  in I , respectively can be calculated using (4.3). In addition, the 

orientation distance function between these two neighboring regions h  and q  is defined 

as 

   
















ise    otherw                    

TIifTI
TI ijij

ij

ihjqihjq

ihjq

0))(.)(( )()(
))(),((0


                 (4.9) 

By using the two distance measures, )(SD  given by (4.3) and )(0   given by (4.9), the 

neighborhood correspondence between a neighbor in T  and that in I can be obtained as 
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where   is the quantization step as specified in Section 3.4. Then, the overall similarity 

measure ),(2 ij
TIS   between two regions from T  and I  based on their neighborhood 

relationships is obtained as 
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where F is the number of mated neighborhood correspondence.  

Finally, the expression for the secondary similarity measure between I and T  is 

obtained as 
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where K is the number of mated regions. 
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3) Similarity measure based on FV3 = }},...,1),,,{(,{ Lltyx lll   

The similarity function between the two regions 
j

I and 
i

T  based on the first 

component   of the feature vector FV3 is defined as 
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where )(
j

I  and )(
i

T  represent the values of the curvature features for the regions 

j
I  and 

i
T , respectively.  

As for the second component of FV3, the minutiae set 

},...,1),,,{( LltyxMinu lll  , we first compare the set in a region of I  with that of T  to 

determine the mated minutiae. The two minutiae, )(
j

Iml   and )(
i

Tmq   having the same 

type, are considered a mated pair if their Euclidean spatial distance ))(),((
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Then, a similarity measure using the minutiae set of FV3 is obtained as 
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where L  is the total number of minutiae in 
j

I . The overall similarity measure 

),(3 li
TIS   between two regions based on FV3 can be defined as 

      ))(),(())(),((5.0),(3 
ijijij
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The tertiary similarity score between I and T  using the K  pairs of mated regions, is 

given by 
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The final similarity score between I and T  is obtained as a weighted sum of the 

similarity measures given by (4.8), (4.12) and (4.17) as 

),(3.),(2.),(1.),( 321 TIFVwTIFVwTIFVwTIS    (4.18) 

where the values of the weights 1w , 2w  and 3w  can be adjusted depending on the nature 

of the fingerprint images. 

The proposed fingerprint multilevel matching scheme described in the preceding 

paragraphs can now be summarized as an algorithm. 

Algorithm 4.1: Multilevel fingerprint matching  

1- For each region Nj ,...,1  of template I   

a. For each region Mi ,...,1  of template  T  

 Compute  ),(),(_ 1 ij
TISjimatrixSimilarity   using (4.4). 

b. )),:1(_()(_ 1 jMmatrixSimilarityMaxjscoremated  . 

c. Compute )( jB  using (4.7). 

2- By using the 1_ scoremated , calculate the elementary similarity measure ),(1 TIFV  

using (4.8). If 0),(1 TIFV , then report a non-match and exit; otherwise go to step 3.  

3- For each region Nj ,...,1  of template I  

a. Let )( jBi  . 

b. Compute ),()(_ 22 ij
TISjscoremated   using (4.11). 
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4- By using the 2_ scoremated , calculate the secondary similarity measure ),(2 TIFV  

using (4.12). If 0),(2 TIFV , then report a non-match and exit; otherwise go to step 

5. 

5- For each region Nj ,...,1  of template I   

a. Let )( jBi  . 

b. compute ),()(_ 33 ij
TISjscoremated   using (4.16). 

6- By using the 3_ scoremated , calculate the tertiary similarity measure ),(3 TIFV using 

(4.17).  

7- Compute the total similarity score between T  and I using (4.18). 

As mentioned earlier, in the case when the core point does not exist or it is 

undetectable, we use only FV2 and FV3. In such a case, FV2 is used to find the mated 

pairs of regions instead of using FV1. Thus, ),(1 ij
TIS   is replaced by ),(2 ij

TIS   in 

(4.7) for finding the list of mated regions, B . 

In the case of traditional minutiae-based matching schemes, the matching decision 

depends on the comparison results of all the minutiae from the two fingerprint templates. 

This implies that a large number of comparisons are required. In addition, the majority of 

the minutiae-based matching schemes require a pre-alignment step [1]. However, the 

proposed multilevel matching algorithm requires comparisons of the minutiae only from 

the corresponding regions. Hence, the number of comparisons is much smaller than that 

required by the traditional techniques. As an example, consider two fingerprint templates 

each with 40 minutiae. A traditional minutiae-based matching scheme with an absolute 

pre-alignment technique [1] requires 4040 = 1600 comparisons. On the other hand, for 
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the proposed matching scheme with the fingerprints assumed to be decomposed into 10 

regions, each on the average having 4 minutiae, only 1010 = 100 comparisons are 

required to find the mated regions. Since another (44) comparisons would be required to 

find the mated minutiae for each region, the total number of comparisons required for the 

proposed scheme is 100 + 10 (44) = 260. Thus, for this example, the required number of 

comparisons in the proposed method is only 16% of that required by a traditional method. 

The reduction in the number of comparisons enhances the overall performance especially 

for the AFIS, since it conducts one-to-many comparisons to establish the identity of an 

individual. Finally, it is to be noted that the proposed method does not require a pre-

alignment step prior to the fingerprint matching, since it is possible to determine the 

correspondence between different parts of the fingerprint images by using the formulated 

fingerprint representation without any alignment. Therefore, the proposed matching 

algorithm has a lower computational complexity compared to the minutiae-based 

matching schemes. 

4.4 Experimental Results and Comparisons 

In this section, we first discuss the choice of the databases and suitability of their use for 

a critical examination of the proposed fingerprint recognition scheme. Next with the 

chosen databases, the performance of the proposed multilevel structural fingerprint 

recognition scheme is studied and compared with that of some of the recently proposed 

algorithms.  



 74 

4.4.1 Databases 

Our main concern in choosing a fingerprint database for experimentation is to ensure that 

the fingerprint images contained therein represent the real life situations, meaning that the 

images have been collected under unsupervised conditions and without a quality check. 

The public domain databases from Fingerprint Verification Competitions (FVC), i.e., 

FVC2000 [43], FVC2002 [44], FVC2004 [41], and FVC2006 [45, 46] satisfy that 

concern. Each of these FVCs contains four different benchmark databases, namely, DB1, 

DB2, DB3, and DB4. The first three databases consist of real-life fingerprints and they 

have been acquired by using different types of sensors. The fourth one has been created 

by using a synthetic fingerprint generator (SFinGe).  In the first three FVCs, each 

database contains 8 impressions of a finger with different qualities of the image and may 

contain the images of a finger even only partially. Each database contains 110 fingers, 

i.e., a total of 880 fingerprints. The fingers numbered 101 to 110 (set B) have been 

selected for training and estimating the parameter values, and the rest of the fingers, 

numbered 1 to 100 (set A), are used for testing. In FVC2006, each database contains 150 

fingers with 12 impressions of each, i.e. a total of 1800 fingerprints, which have been 

also divided into sets A and B. 

Since the proposed scheme uses both the global features of fingerprint (i.e. 

singular points and ridge orientations) and the local features (i.e. minutiae),  in order to 

test the efficacy of our scheme, we must make sure to choose databases in which the 

fingerprints are not necessarily biased in favor of these features. The fingerprint images 

in FVC2002 (DB1 and DB2) have been designed using large-area touch sensors with a 

wide variations in the amount of rotation and translation; therefore, they have significant 
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bearing on the global features and to a certain extent on the local features as well. On the 

other hand, the fingerprint images of FVC2002 (DB3 and DB4) have been designed using 

smaller-area touch sensors and the images in these databases frequently consist of partial 

fingerprints. Thus, these fingerprints significantly affect the local features and to a lesser 

extent the global features as well. The fingerprint images of FVC2004 databases have 

been designed using large-area touch sensor (DB1), medium- and small-area touch 

sensors (DB2 and DB4), and a sweep sensor (DB3), and the fingerprints in all these 

databases have the main characteristic of plastic distortion [1]. Therefore, the fingerprints 

in these databases affect almost invariably the global features even when a fingerprint 

does not have a translation or rotation. Finally, the fingerprint images of FVC2006 

databases have been designed using small-area touch sensor (DB1), large- and medium-

area touch sensors (DB2 and DB4), and a sweep sensor (DB3). It is noted that FVC2006 

DB1 has been classified as a database with a high degree of difficulty [1]. Based on the 

above consideration of possible distortions in fingerprints that affect their global and 

local features, we chose the databases FVC2002 (DB1, DB3, and DB4), FVC2004 (DB1 

and DB2) and FVC2006 (DB1) to evaluate the proposed fingerprint recognition scheme. 

Table 4.1 provides a summary in terms of the fingerprint size, resolution and the source 

of acquisition of the selected databases [41, 4446]. In our tests, we follow the 

experimental protocols proposed in [40] 

Table 4.1: Summary of the databases selected for experimentation 

 FVC2002 FVC2004 FVC2006 

DB1 DB3 DB4 DB1 DB2 DB1 

Sensor 

type 

Optical 

sensor 

Capacitive 

sensor 

SFinGe 

v2.51 

Optical 

sensor 

Optical sensor Electric 

field sensor 

Image size 388x374 300x300 288x384 640x480 328x364 96x96 

Resolution 500 dpi 500 dpi ~ 500 dpi 500 dpi 500 dpi 250 dpi 
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4.4.2 Parameters Selection and Performance 

First, sets B of the databases selected are used to find the best values of the parameters 

needed for the implementation of the proposed scheme. For the proposed fingerprint 

decomposition algorithm, the most reasonable block size N  is selected as two times the 

ridge width of a fingerprint to provide a compromised performance between the 

recognition accuracy and complexity. In order to generate the quantized orientation field 

qO , three different quantization levels were tested on the orientation field. By using a 4-

level quantization, the quantized orientation field becomes too crude which affects the 

recognition accuracy. On the other hand, a 16-level quantization has an adverse effect on 

the computational complexity of the algorithm. In view of these considerations, an 8-

level quantization (i.e., a quantization step 5.22 ) is chosen to generate qO .  

Accordingly, the maximum number of plain regions extracted by the proposed 

decomposition algorithm is sixteen. The value of the parameter   used in the matching 

algorithm is empirically (based on the training set) fixed to be 6/1  for calculating the 

similarity measure ),(1 ij
TIS  . The values assigned to the weights 1w , 2w  and 3w  are 

based on the following consideration. The weights 1w  and 2w  are associated with the 

global features, and 3w  with the local features of the fingerprint. Since minutia is the 

most important feature in the fingerprint recognition, we provide the largest weight to 

3w , with the remainder of the total weight being divided between 1w  and 2w , which are 

associated with the global features based on the core point(s) and the neighborhood 

relations of the ridges, respectively. However, this remainder of the total weight is 

completely assigned to 2w , if the core does not exist. When the fingerprint images are 
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captured using small- or medium-area sensors, it is quite likely that some or many of the 

images are only partial. In such a case, the number of minutiae in an image is smaller. 

Consequently, for the databases designed using small- or medium-area sensors, the value 

of weight assigned to 3w  can be reduced and that to 1w  correspondingly increased. The 

reason for assigning more weight to 1w  is that in case of partial fingerprint images, the 

global features based on the core point is more reliable than the one based on the 

neighborhood relations, since the available information on the ridges is now less. Table 

4.2 gives a summary on the values assigned to the weights 1w , 2w and 3w  for the various 

databases. 

Table 4.2: The values of the weights used for the selected databases 

Weight 

FVC 2002 FVC 2004 FVC 2006 

DB1 DB3 DB4 DB1 DB2 DB1 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

1w  0.2 0 0.25 0 0.25 0 0.2 0 0.25 0 0.25 0 

2w  0.2 0.4 0.2 0.45 0.2 0.45 0.2 0.4 0.2 0.45 0.2 0.45 

3w  0.6 0.55 0.55 0.6 0.55 0.55 

In order to study the performance of the proposed MSFR scheme, the algorithms 

for the fingerprint representation and matching are implemented on a machine with a 1.8 

GHz CPU and 512 MB RAM. The average enrollment (fingerprint representation) time is 

found to be 0.23 s for the fingerprint images of the six selected databases. Table 4.3 

shows the performance of the proposed scheme in terms of equal error rate (EER) [1], 

and the average CPU times for the fingerprint decomposition and the template 

formulation components of the fingerprint representation and the average CPU time of 

the matching, using the six selected databases. It is seen from this table that the proposed 

scheme for the fingerprint decomposition and the formulation of the template together 
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require on the average only 22% of the average enrollment time. In addition, the 

proposed MLM scheme provides a very short matching decision time (i.e. only a few 

milliseconds). Accordingly, the proposed MLM scheme yields a very good performance 

for large scale database applications. 

Table 4.3: The performance of the MSFR on the selected databases 

 FVC 2002  FVC 2004 FVC 2006 

DB1 DB3 DB4 DB1 DB2 DB1 

EER (%) 2.57 % 6 % 2.81 % 2 % 3.2 % 5.21% 

Fingerprint 

decomposition (ms) 

30 25 25 34 35 37 

Template 

formulation (ms) 

20 18.5 16.5 27 24 8.6 

Matching (ms) 6.2 3.9 3.6 6.24 5.3 2.5 

 

4.4.3 Comparisons with Previous Works 

The proposed scheme is compared in terms of ROC (false rejection rate (FRR) versus 

false acceptance rate (FAR)) curves, EER and template size with four representative 

works, which adopt some global features, namely the orientation field and/or the core 

point, in conjunction with the local feature minutiae into the formulation of the 

fingerprint template and matching. The first scheme proposed by Tico et al. [17] uses an 

orientation-based minutia descriptor that comprises information about the orientation 

field in a broad region around a minutia point. The second scheme, due to Qi et al. [18], 

proposed the use of a curvature-based minutia descriptor that uses the orientation field to 

calculate the curvature of the ridges around the minutia point. These two schemes can be 

categorized as minutiae based matching schemes, in which a large number of samples 

around the minutia are required in order to formulate each minutia descriptor; 

accordingly the template formulation has a large computational complexity. Compared 
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with these two schemes, the proposed MSFR scheme formulates the fingerprint template 

by using a simpler minutia descriptor, in addition to the global features, as explained in 

Section 4.2. Figure 4.3 depicts the ROC curves for FVC2002 DB1 obtained by using the 

proposed scheme as well as the schemes of [17] and [18]. It is seen from this figure that 

the accuracy of the proposed MSFR scheme is better than that of Tico et al. The accuracy 

of the proposed scheme is also better than that of Qi et al. except for the region        

FAR 0.1% when the accuracy of the latter becomes slightly better. This slight 

improvement in the accuracy of the scheme of Qi et al. is achieved at the expense of a 

larger computational complexity associated with their minutiae descriptor. However, our 

proposed scheme provides a lower EER (2.5%) compared to that provided by Qi et al. 

(3.4%) or Tico et al. (4.5%). 

 

Figure 4.3: ROC curves for FVC2002 DB1 obtained by using the proposed MSFR 

scheme, the Tico et al. scheme [17] and Qi et al. scheme [18]. 
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(a) 

 

(b) 

Figure 4.4: ROC curves for FVC2002 (a) DB3 and (b) DB4 obtained with the proposed 

MSFR scheme and Gu et al. scheme [27]. 

 

In the third scheme, Gu et al. [27] have proposed the use of a model-based 

fingerprint orientation field, as a global feature, in combination with the extracted 

minutiae set for the purpose of matching. Their so-called combination model models the 

real and the imagery parts of the vector field of the orientation field with two bivariate 
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polynomials, respectively [27]. Compared with this scheme, the proposed one uses 

directly the orientation field in addition to the singular points as a global feature, as 

explained in Section 4.2. Figure 4.4 depicts the ROC curves obtained by using the 

proposed scheme as well as the scheme of [27] on databases FVC2002 (DB3 and DB4). 

These ROC curves show that the overall accuracy of the proposed MSFR scheme is much 

higher than that of [27] for both the databases. In addition, for the databases DB3 and 

DB4, the proposed scheme provides EERs of 6% and 2.8%, respectively, which are lower 

than the values of 15% and 7.2% provided by the scheme of [27]. 

In the fourth scheme, Shi et al. [28] have proposed a fast fingerprint matching 

algorithm, which is based on a novel structure for fingerprint representation. They 

formulate a fingerprint template by combining the singular point with its neighborhood 

minutiae. Compared to this scheme, the proposed MSFR scheme uses singular points and 

orientation field in addition to all the available minutiae in the fingerprint image not just a 

limited number of minutiae within the neighborhood of the singular point. Therefore, the 

proposed scheme can be expected to be more robust than the one presented in [28]. 

Moreover, the scheme given in [28] would fail whenever singular points are not detected 

in the fingerprint. Figure 4.5 depicts the ROC curves obtained by using the proposed 

scheme as well as the scheme of [28] on FVC2004 DB1 database. It is seen that the 

accuracy of our MSFR scheme is much higher than that provided by the scheme of [28]. 

In addition, the proposed scheme provides an EER of 2% compared to that of 9.25% 

provided by the scheme of [28]. 
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Figure 4.5: ROC curves for FVC2004 DB1 obtained with the proposed MSFR scheme 

and Shi et al. scheme [28]. 

 

 

Table 4.4 gives the template sizes, in bytes, of the proposed and the four schemes 

that have been used to benchmark the proposed one. The template sizes given in this 

table, either estimated or reported in the respective references, are based on the 

assumption that the average number of detected minutiae of a fingerprint is 40. Based on 

the formulation of the multilevel features (MFV) in Section 4.2, each of  , ij  and i  

need only one byte; whereas Core  and ij  need two bytes. By assuming the average 

number of adjacent regions Q  associated with a given region to be 3, each plain region 

needs only 13 bytes. Based on the assumption that the average number of detected 

minutiae of a fingerprint is 40, the minutiae require 120 bytes. Thus, by assuming the 

average number of the plain regions to be 10 and number of singular regions 3, the size of 

MFV is 3x1 + 10x13 + 120= 253 bytes. It is seen from Table 4.4 that the proposed 

scheme and the one due to Gu et al. [27] require the smallest template size. 
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Table 4.4: Comparison with previous works in terms of template size. 

 Tico et al. [17] Qi et al. [18] Gu et al. [27] Shi et al. [28] MSFR 

Template 

size (byte) 

2480 2480 337 800 253 

Finally, the results of the proposed MSFR scheme are compared with those 

published in the FVC2004 [41] and FVC2006 competitions [46]. Depending on the 

template (model) size, the enrollment and the matching times, the entries to this 

competition were categorized as light or open category. In order for a scheme to be 

included in the light category of these competitions, the maximum allowable values for 

the template size, enrollment and the matching times were as listed in Table 4.5. In 

FVC2004 and FVC2006 competitions, various schemes were tested using a CPU of 1.4 

GHz and 512-MB RAM and a CPU of 3.2 GHz and 1-GB RAM, respectively. Since the 

proposed MSFR scheme is run on a 1.8-GHz CPU, the processing times are re-scaled to 

correspond our results to the 1.4-GHz and 3.2-GHz CPUs of these competitions.  

Table 4.5: Requirements of the light category for FVC2004 and FVC2006 competitions 

Competition Template size Average enrollment time (s) Average matching time (s) 

FVC2004 2 Kb 0.5 0.3 

FVC2006 2 Kb 0.3 0.1 

Table 4.6 gives the EER results along with the template size, average enrollment 

time and the average matching time for the proposed MSFR scheme as well that for the 

best schemes in the light and open categories of the FVC2004 competition using 

databases DB1 and DB2. It can be seen from this table that the proposed scheme belongs 

to the light category. This table shows that the overall performance of the proposed 

scheme is better than the best schemes in the light category for both the databases. 

Moreover, the performance of the proposed scheme is quite impressive even in the open 

category. The EER results of the proposed scheme are comparable to the best scheme 
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using DB1 and to the fourth best one using DB2 in the open category. Table 4.7 gives the 

performance results of the proposed MSFR scheme along with the best schemes in the 

light and open categories of the FVC2006 competition using database DB1. This table 

shows that the overall performance of the proposed scheme is better than the best 

schemes in both categories for FVC2006 DB1. 

Table 4.6: Comparison with FVC2004 results. 

 EER(%) 
Template 

size (byte) 

Average 

enrollment time 

(s) 

Average 

matching time 

(s) 

 MSFR 2 % 253 0.3 0.011 

DB1 Best light 3.89 % 1100 0.25 0.21 

 Best open 1.97 % 1400 1.95 1.87 

 MSFR 3.2 % 253 0.3 0.009 

DB2 Best light 4.01 % 1000 0.23 0.23 

 4th best open 3.17 % 40900 0.33 0.35 

 

Table 4.7: Comparison with FVC2006 results. 

 EER(%) 
Template 

size (byte) 

Average 

enrollment time 

(s) 

Average 

matching time 

(s) 

 MSFR 5.2 % 253 0.070 0.001 

DB1 Best light 5.35 % 1940 0.031 0.029 

 Best open 5.56 % 1220 0.038 0.039 

4.5 Summary 

In order to provide improved accuracy in fingerprint recognition, many researchers in 

recent years have proposed the use of the fingerprint information that is complementary 

to that contained in minutiae. The use of this additional information, however, results in a 

larger size fingerprint template and an increased complexity in its formulation in 

comparison to the traditional approaches using only minutiae. In Chapter 3, a fingerprint 

decomposition technique was developed to partition fingerprint images into a set of 

singular and plain regions by using two global features. In this chapter, by using this set 



 85 

of decomposed regions, i.e. singular and plain regions, a fingerprint template has been 

formulated as three-level feature vectors with levels for global, neighborhood, and local 

features. The first two levels represent the position and ridge orientation of a region with 

respect to the core and its adjacent regions, respectively, whereas the third one represents 

the region’s local features of curvature and minutiae of its ridges. The idea of using 

multilevel feature vectors (MFVs) ensures that the fingerprint template contains all the 

available useful information from the fingerprint image. In the proposed three-level 

representation, the features have been formulated using simple mathematical operations 

and thus have not resulted in a significant increase in the complexity of the template 

representation over these of single-level minutiae based representations. As a matter of 

fact, the template representation complexity of the proposed scheme has been found to be 

even less than that of some of the existing minutiae based schemes. 

Based on the proposed MFVs, a very fast fingerprint matching scheme, referred to 

as multilevel matching (MLM) scheme, has been developed. In this scheme, the 

correspondence problem is dealt with by making use of the global feature components of 

the MFVs, whereas the similarity problem is taken care by employing all the three levels 

of features contained in the MFVs. The fast matching speed can be attributed to the 

following two features of the proposed scheme: 1) a significantly reduced number of 

comparisons required to provide the matching decision, and 2) the strategy of an early 

rejection that allows the MLM scheme to skip the second and/or third levels of matching. 

As a result, the proposed scheme could be very attractive for fingerprint identification 

applications involving large scale databases. 
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In order to study the performance of the proposed scheme, comprehensive 

experiments have been conducted using six benchmark databases from FVC2002, 

FVC2004 and FVC2006. These databases have been selected to show the robustness of 

the proposed scheme against a wide variety of challenges in fingerprint recognition. 

Experimental results have shown that the average template size in the proposed 

fingerprint representation scheme is 253 bytes and the average enrollment and matching 

time is about 0.23 s. The proposed scheme has been compared in terms of the ROC 

curve, the equal error rate, and the template size with the existing schemes that also use 

some of the global features of the fingerprint in addition to the local minutiae attributes 

for fingerprint representation and matching. The results of the proposed scheme have also 

been compared with some of the best results published from FVC2004 and FVC2006 

competitions. The evaluation study has shown that the proposed scheme for fingerprint 

recognition and representation provides a performance superior to those of the other 

schemes used for an objective comparison. 
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CHAPTER 5 

A Histogram Analysis Fuzzy C-Means Based Technique for 

Fingerprint Partitioning and its Application for Singular Point 

Detection 

 

5.1 Introduction  

The benefit of using artificial intelligence techniques for solving many pattern 

recognition problems or for image understanding and interpretation have been shown by 

many researchers [47, 6877]. In a particular, considerable amount of research work has 

been devoted to the area of fingerprint recognition using artificial intelligence techniques. 

In these studies it has shown that the use of artificial intelligence techniques enhances the 

performance accuracy of the fingerprint recognition systems [10], [20], [22]. Some 

researchers have proposed the use of the neural networks for fingerprint classification 

[10, 7881], or for minutiae filtering [82]. In addition, some other researchers have 

proposed the use of fuzzy neural networks for minutiae recognition [83, 84], or for 

fingerprint verification [85, 86]. An extensive review on the use of artificial intelligence 

techniques for fingerprint related research area is provided by Maltoni et al. [1] and Jain 

et al. [87]. 

As mentioned in Chapter 1, the orientation field (OF) of the fingerprint image has 

been used extensively for the fingerprint recognition [1, 17, 18, 27]. The idea of using the 

orientation field for partitioning fingerprint images into non-overlapping regions has been 
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proposed by many researchers [1]. Most of these OF-based partitioning schemes have 

been used for fingerprint classification [1012] or for singular points detection [66, 67]. 

These partitioning schemes could be categorized into two groups: 1) Iterative clustering 

techniques that minimize some cost function, representing the non-homogeneity of the 

fingerprint region, with respect to its ridge orientations [1012]. 2) Partitioning 

techniques for the fingerprint images based on a pre-specified number of discretization 

levels for the orientation field [39, 66, 67], where the number of partitioning levels is 

dictated by the specific application for which the partitioning is carried out. The OF-

based partitioning schemes in either category are faced by challenges, such as the cuts 

and deformations of the fingerprint ridges or the low quality fingerprint images. In order 

to overcome these challenges, the use of an image enhancement technique prior to 

partitioning became a mandatory step [66, 67].   

All the OF-based partitioning techniques in the literature provide only crisp (hard) 

clustering of the orientation field in that each image pixel (or block) is assigned to one 

and only one cluster. As mentioned in Chapter 2, the use of fuzzy-based clustering 

techniques has been shown to be capable of providing better results in solving many 

problems in pattern recognition and image processing fields [47, 50, 5259, 7276]. The 

fuzzy-based clustering techniques provide a smoother classification of a dataset by 

assigning each pattern to all the clusters with different degrees of membership. Therefore, 

these fuzzy-based clustering techniques should be able to deal more effectively with the 

natural patterns, in which the objects cannot be classified to belong exclusively to one 

cluster. In the light of above mentioned difficulties of cuts and deformations of the 

fingerprint ridges or the low quality fingerprint images, the use of a fuzzy-based 
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clustering technique would be able to assign the affected image blocks to more than one 

cluster. This reflects the fact that these blocks have an uncertainty problem, which can be 

solved using some rule-based technique [47, 61].  

The most popular heuristic for solving the problem of fuzzy clustering is the so-

called fuzzy c-means method (FCM) [51]. In this chapter, a novel histogram analysis 

based FCM (HA-FCM) technique for fingerprint partitioning is proposed [88]. Then, 

based on this technique a method for singular point detection is developed. Experiments 

using challenging benchmark databases are carried out to demonstrate the effectiveness 

of the proposed techniques for both fingerprint partitioning and singular points detection, 

and the results are compared with those of other state-of-the-art techniques. 

5.2 HA-FCM Based Technique for Fingerprint Image Partitioning 

In this section, a fuzzy c-means technique for fingerprint partitioning based on the ridge 

orientations is developed. The use of FCM allows the fingerprint image to be partitioned 

into overlapping homogeneous regions. The original FCM technique [51] has two main 

concerns. 1) It requires a priori knowledge of the number of clusters. In many cases, the 

number of clusters could be determined based on the application of the data partitioning, 

for example, in the image segmentation application [5259], the partitioning is carried 

out using two clusters (i.e. background and foreground of the image). However, in the 

partitioning of a fingerprint image based on ridge orientations, the number of clusters 

depends on the dynamic range of the orientations, which varies for different fingerprint 

images. 2) Based on the initial choice of the cluster centers, the convergence rate of the 

FCM algorithm and the cluster quality vary. Specifically, if the FCM algorithm is to be 

applied to the orientation based fingerprint partitioning the homogeneity of the clusters 
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will depend on the initial choice of the clusters centers. Therefore, if an FCM algorithm 

has to be used in the orientation based homogenous fingerprint partitioning, the above 

two concerns, namely the number of clusters and the initial choice of clusters centers, 

have to be effectively dealt with. The histogram of a dataset provides information on the 

frequencies of occurrences of different patterns. In the proposed partitioning scheme, the 

histogram of the orientation field is used to deal with the above two problems of the 

original FCM algorithm. 

5.2.1 Standard FCM algorithm 

In order to classify n  patterns into c  clusters, the problem of FCM clustering is 

formulated as follows. Assume that n  patterns in d-dimensional space is represented by 

 nxxxX ,...,, 21 , where nixxxx idiii ,...,2,1),,...,,( 21  . Therefore, the ikx  represents 

the thk  attribute (or feature) associated with pattern i . Let U  be a matrix of size cn , 

where its item iju  denotes the membership degree for the pattern i  with respect to the 

cluster j , with the following two constraints: 

                               niu
c

j

ij ,...,2,1,1
1




 (5.1) 

                               cjniuij ,...,2,1;,...,2,1,10   (5.2) 

The FCM algorithm is an iterative optimization that minimizes the objective 

function defined as follows [51]: 

                             
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where, 
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 m  is a tuning parameter which controls the degree of fuzziness in the clustering 

process. The FCM iterative algorithm works under condition that 1m , and 

usually 2m . 

  cvvvV ,...,, 21  is a set of the centers of the clusters, where ),...,,( 21 jdjjj vvvv   

is the center of the thj  cluster. 

   is the Euclidean distance defined on dR . 

Then, the optimal fuzzy clustering structure of the set X  is obtained as a solution 

of the non-linear programming problem in variables ( VU , ). Note that by fixing V  the 

problem of the non-linear programming reduces to that of finding U  and vice versa. The 

steps of iterative algorithm for the FCM clustering using the non-linear programming are 

given below. 

Algorithm 5.1 : FCM Clustering 

1- Let  0

21 ,...,,)0( cvvvV   be an initial set of the centers of the clusters. Fix the values 

of m ,   and  , where   is a small positive constant and   is the maximum 

number of iterations. 

2- For t   = 1 :   

 By using the set )1( tV  calculated in iteration )1( t , compute the optimal 

)(t

iju , ni ,...,2,1  and cj ,...,2,1  using the following equation: 
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 Compute the center vectors )(tv j , cj ,...,2,1 , with fixed )(tuij , using the 

following equation: 

m
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  (5.5) 

 If   )1()( tJtJ mm , stop. 

 Table 5.1 gives the centers of clusters, the values of the objective function and 

the number of iterations of using the FCM algorithm to classify the set of numbers 

]10,9,8,7,6,5,4,3,2,1[X  into four clusters based on five different initial choices for the 

cluster centers. The table also gives the Euclidean distance between the initial and final 

cluster centers. 

It is seen from this table that the solutions, i.e. the cluster centers and the value of 

the objective function, by using the FCM algorithm depend mainly on the initial choice 

of the cluster centers. In addition, the number of iterations required by the FCM to reach 

a solution depends on the distance from the initial set of cluster centers to the final set. 

For example, the solutions 1 and 2 provide identical cluster centers. However, solution 2 

reaches the final solution faster (30 versus 41 iterations), since the choice of initial cluster 

centers in this case is closer (as indicated by the distances) to the final solution. It is noted 
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the choice of initial cluster centers in solution 2 is closer to final solution, since the initial 

cluster centers in solution 2 is more aligned with the distribution of the numbers in the 

dataset X . The same conclusions can be drawn from solutions 3 and 4. Finally, we have 

considered yet another solution to this clustering problem, namely solution 5. this 

solution is the best among all the solutions considered both in terms of the number of 

iterations and the minimum of the objective function achieved, since in this case the 

initial cluster centers is more aligned with the distribution of the data points in X . 

Hence, the solution 5 reinforces the importance of the distribution of the initial centers 

with respect to the dataset to be clustered. 

Table 5.1: An illustrative numerical example 

Solution 1 2 3 4 5 

Initial centers 4.9818 

5.5121 

5.8248 

5.851 

3.4877 

5.0594 

6.0009 

6.2576 

5.1663 

5.213 

5.2586 

6.6392 

4.8022 

5.0699 

6.1672 

6.6479 

1.5 

4.5 

6.5 

9.5 

Centers 1.6462    

4.2159    

6.7972    

9.3587 

1.6462    

4.2159    

6.7972    

9.3587 

1.6414    

4.2030    

6.7843    

9.3539 

1.6414    

4.2030    

6.7843    

9.3539 

1.6445 

4.2104 

6.7896 

9.3555 

Objective function 3.602221 3.602221 3.602219 3.602219 3.602198 

Distance 5.1045 3.7886 4.8107 4.2948 0.4577 

Iterations 41 30 46 23 10 

5.2.2 The proposed scheme for determining the number of clusters and their initial 

centers for fingerprint partitioning 

As mentioned earlier, in order to apply the FCM to partition the fingerprint image, the 

exact number of clusters and initial choice of the cluster centers need to be known. In the 



 94 

previous subsection, however, we have seen the importance of the initial choice of the 

cluster centers in the clustering problem of datasets. In this subsection, a new technique 

of determining the number of clusters and initial choice of their centers is developed for 

the clustering problem at hand, namely partitioning the fingerprint image based on the 

orientation field. Since the histogram of the orientation field of a fingerprint can provide 

a map of the occurrence frequencies of the orientations in the range ),0[  , it can be used 

rationally in deciding the number and the initial choice of the cluster centers in the FCM 

algorithm. To emphasize this point, consider the fingerprint images and the 

corresponding histograms of their orientation field shown in Figure 5.1. Figures 5.1(a) 

and (b) illustrate the examples of the histograms of fingerprints covering the entire range 

),0[   of the orientation field, whereas Figures 5.1(c) and (d) are the examples of partial 

fingerprints in which the orientation field is partially covered. On the other hand, Figure 

5.1(a) is the example in which in the range of orientation field covered, there are no 

significant sub ranges with missing orientation values, whereas Figures 5.1(b), (c) and (d) 

are the examples of the fingerprints with such gaps. Therefore, one should expect a better 

OF-based partitioning of a fingerprint image, if the number of clusters take into 

consideration the significant gaps present in the histogram and the initial choice of the 

cluster centers is somehow synchronized with the histogram. 

In the proposed technique, the entire ),0[   range of the orientation field is 

considered to be circular, that is, the orientation 0  is not differentiable from orientation 

 . We modify the range ),0[   as ),[   , where   is a positive quantity whose 

value depends on the number of clusters, in order to facilitate the grouping of the 

orientation values in the vicinities of 0  and  . In the proposed technique, the histogram  
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(a) A fingerprint image, with a histogram of its OF which indicates that it has all 

orientations with a very small number of missed orientations. 

  

(b) A partial fingerprint image, with a histogram of its OF which indicates that it has 

some missed orientations. 

 

 

(c) A partial fingerprint image, with a histogram of its OF which indicates that the 

orientation field is partially covered. 

 
 

(d) Another partial fingerprint image, with a histogram of its OF which indicates that the 

orientation field is also partially covered, but for different ranges. 

Figure 5.1.: Different examples of fingerprint images with the histograms of their OF. 
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of the OF of a fingerprint image with orientation values in the range ),[    is 

defined as a discrete function kk nrHOF )( , where kr  is the k
th
 orientation value and kn  

is the number of image blocks in the fingerprint image having the orientation value kr . 

In the proposed OF-based histogram, the number of clusters is chosen to have a 

pre-initial value c , which is determined based on the goal of the partitioning. For 

example Huang et al. in [67] have used 3, 4, or 5 clusters in fingerprint partitioning for 

the purpose of singular points detection. With this pre-initial choice of the number of 

clusters as c , a pre-initial set )0(V   of centers is first chosen to be evenly distributed to 

cover the entire range of orientation, that is  1,....,0,)0(  cjvV j , where jv  is the 

center of the thj  cluster, and  each center is given as 
c

j
v j





. Thus, the thj  cluster is 

considered to cover range )
2

)12(
,

2

)12(
[

c

j

c

j







 
 of the orientation values.  

The proposed histogram based technique of determining the number of clusters c  

and the initial choice of the cluster centers )0(V  is divided into two stages. In the first 

stage, using the histogram of the orientation field, a set of effective sub-ranges of the 

orientation values  LdddD ,...,, 21 , where ],[ 21

l

k

l

kl rrd   is the thl  sub range consisting 

of orientation values from l

kr 1  to l

kr 2  and L  is the number of such sub ranges, is obtained. 

In the second stage, the pre-initial set 















c

c

cc
V

 )1(
,...,

2
,,0)0(  of centers and the 

set D  are used to determine the suitable number of clusters c  and the initial set of 

centers )0(V  for the FCM algorithm.  
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 Stage 1: 

By analyzing the entire range of orientations, the histogram ( HOF ) is represented as a 

set of segments  MmsS m ,....,1,  , where M  is the number of segments. Each 

segment  ms  is determined as a certain range of orientation values, such that for each 

orientation value in this range there exists at least one image block with this orientation, 

and the two orientation values just outside the two boundaries of the segment have an 

occurrence of zero. That is, the thm  segment ],[ 21

m

k

m

km rrs  , where m

kr 1  and m

kr 2  are, 

respectively, the first and last orientation values of the segment, is defined as,  











1and,1,0

,0
)(

21

21

m

k

m

k

m

k

m

k

m
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rrrr

rrr
rHOF                             (5.6) 

These segments, in general, would have different characteristics in terms of their 

widths and the occurrence frequencies of the orientation values covered by each segment. 

Based on these characteristics of the segments, the set D  of effective sub-ranges is 

constructed. The consecutive segments of set S  are considered as adjacent segments if 

there are small distances (gaps) between them or as isolated segments if the gaps are 

large. In order to consider the two consecutive segments ms  and 1ms  to be adjacent, the 

distance between their borders m

kr 2  and 1

1

m

kr , respectively, should be smaller than certain 

threshold. This threshold   is chosen to be one-half of the distance between consecutive 

centers from the set )0(V  , i.e. 
c


2


 . From the set S  of segments, the set D  of 

effective sub-ranges are formed by combining and removing certain segments from the 

former set. For this purpose, we term an isolated segment or a group of adjacent segments 
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to be thin if its width is less than 
2


. Each thin segment or thin group of segments is 

removed from the set S  if the total occurrence frequency of its orientations is a small 

percentage   of the total number of orientations of all the blocks in the fingerprint image. 

The final step in the construction of the set D  is to combine each group of adjacent 

segments to form an effective sub-range ld . Thus, the final membership of D  consists of 

combined adjacent segments and the remaining isolated segments from the set S . It is to 

be noted that the set D  will have only two types of effective sub-ranges, i.e. regular and 

irregular. A regular sub-range is the one that has a wide range of consecutive orientations 

from the entire range ),[    irrespective of the frequencies of the orientation values 

contained within the sub-range. On the other hand, an irregular sub-range is always of a 

narrow width and contains significant values of its orientation frequencies. Since the 

former is significant by virtue of its width and the latter by virtue of its height in the 

orientation field histogram, both these types of sub-ranges would play an effective role in 

the partitioning of the fingerprint images and as such are called effective sub-ranges. 

 Stage 2: 

The number of clusters c  and the initial set of their centers )0(V  are determined as 

follows. By examining the set  LdddD ,...,, 21  of the effective sub-ranges and the set 

 1,....,0,)0(  cjvV j  of the pre-initial centers, it is decided whether or not a pre-

initial cluster center jv  is qualified to be the center pv  for the initial set )0(V  of the 

cluster centers. A center jv  from )0(V  is chosen to be center pv  in )0(V , if and only if 

this center is either within or very close to a sub-range ld . The location of a center jv  is 
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considered to be very close to a sub-range ld , if the distance between jv  and one of the 

two extremities of ld  is smaller than 
3


. For some sub-ranges, especially for the irregular 

ones, there may not exist a )0(Vv j
  within or very close to a sub-range. For such a sub-

range, a new center is created as the mid-point of the sub-range in question. Finally, the 

total number of clusters c  is obviously equal to the cardinality of the set )0(V of the 

initial cluster centers thus constructed. 

The proposed orientation field histogram analysis based technique described in 

the preceding paragraphs can now be summarized as an algorithm. 

Algorithm 5.2: The histogram analysis technique for determining the location and 

number of the initial cluster centers   

 Initialization 

8- With a specified orientation field OF of the fingerprint and a pre-initial number of 

clusters c , let the maximum distance threshold be 
c


2


  and  . 

a. Compute a uniformly-spaced set of pre-initial centers as 

 1,....,0,)0(  cjvV j , where jv  is the center of the j
th

 cluster calculated as 

c

j
v j





. 

b. Compute the histogram of OF, as kk nrHOF )( , where ),[  kr  is the 

k
th
 orientation value, and kn  is the number of image blocks in the fingerprint 

image having the orientation value kr . 

 Construction of the set S  
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9- Construct the set of segments of OF as  MmsS m ,....,1,  , where M  is the total 

number of segments and ms  is the m
th

 segment given by ],[ 21

m

k

m

km rrs   satisfying the 

condition given by (5.6). 

 Construction of the set D  

10- Let 1m  

11- If 1 Mm , then go to step 5, otherwise go to step 6. 

12- If for the pair of consecutive segments ms  and 1ms ,  m

k

m

k rr 2

1

1 , then combine the 

pair of segments as single segment ],[ 1

21

 m

k

m

km rrs , let 1MM  and go to step 4. 

Otherwise let 1 mm  and go to step 4. 

13- Let 0l  and  D . 

14- For each segment ms , where Mm :1  

If 
2

12


 m

k

m

k rr , then let 1 ll , define a new regular sub-range ml sd  , and let 

 ldDD  , otherwise ms  is a thin segment. For this segment check if 


m
k

m
k

r

r

m

krHOF
2

1

)( , then let 1 ll , define a new irregular sub-range ml sd  , and let 

 ldDD  . 

 Determination of cluster centers 

15- Let 1p  and  )0(V . 

16- For each sub-range ld , where Ll ,...,1 ,  

a. For each center )0(Vv j
 , where 1,...,0  cj , check if jv  is a suitable 

center, that is, if any of the following conditions is true: l
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l

k rvr 21   , or 



 101 

3
1


 j

l

k vr , or 
3

2


 l

kj rv . Then let jp vv  ,  pvVV )0()0(  , and 

1 pp . 
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
  ,  pvVV )0()0(  , and 1 pp . 

In order to show the effectiveness of the proposed histogram analysis technique of 

determining the number of clusters and the set of initial cluster centers to be used for the 

FCM algorithm, we consider the following numerical example.  Let us specify the 

number of the pre-initial clusters 6c  and the set S  obtained from the histogram of the 

given orientation field as           164,130,106,102,80,70,54,42,28,2S . With 

6 cc  and  93.86,74.83,55.83,9.77,55.74,32.70)0( V , the FCM technique 

provides the set of cluster centers as  32.156,98.137,01.104,83.74,71.46,36.11V  in 

45 iterations. On the other hand, the proposed histogram analysis technique, with 6c  

and hence the pre-initial set of cluster centers given by  150,120,90,60,30,0)0( V , 

provides the initial set of centers as  150,75,48,30,0)0( V  and the number of clusters 

to be only 5. Based on this initialization from the histogram analysis technique, the set of 

cluster centers is obtained as  36.147,21.75,04.48,21,77.4V  in only 15 iterations.  

Next, by letting the initial number of clusters 5c  and 

 54.84,46.83,63.82,73.77,46.70)0( V , we apply the FCM algorithm again. In this 

case, the final solution of cluster centers is obtained as 

 33.155,86.135,68.77,08.47,5.11V  in 34 iterations.  
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This experiment thus shows the effectiveness of the proposed histogram analysis 

based initialization in terms of the number of iterations and the quality of the solution 

provided by the FCM algorithm. 

5.2.3 The proposed HA-FCM fingerprint partitioning scheme 

We now describe the proposed HA-FCM fingerprint partitioning scheme. First, the 

orientation field matrix O  of a fingerprint image is obtained as explained in Chapter 3. 

By using O , the data set  nxxxX ,...,, 21 , where n  is the total number of image blocks 

containing ridges, is then constructed. For this purpose, we first construct the set 

 WHqxX q ,....,1,  , where ),( whxq O , Ww ,...,2,1  and Hh ,...,2,1 , such that 

wWhq  )1( ,. Then, the data set X  is obtained from X   by removing from it all the 

elements not containing a valid orientation value. Next, the HA technique (Algorithm 

5.2) is applied on the set X  to determine the number of clusters c  and the set of their 

initial centers )0(V . The FCM algorithm (Algorithm 5.1) is then used to cluster the data 

items of the set X . This step provides a set of cluster centers V  and the membership 

matrix U  whose elements represent the degree of belonging of a data item Xxi   to 

each cluster  cj ,...,2,1 . Finally, the fingerprint image is fuzzy partitioned as follows. 

This is done by constructing a fuzzy clustered orientation field (FCOF) set using the data 

set X , the final set of cluster centers V , and the membership matrix U . The i
th
 element 

of FCOF represents all the clusters to which the i
th
 element ix  belongs to and the degree 

of belonging to each of these clusters in a certain order. Thus, each element of FCOF 

consists of a sorted set of ordered pairs given by 

       niuarururiFCOF
iiii airiiiriiri ,....,1,),(,....,),2(,),1()( )()2()1(                (5.7) 
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where  cjkri ,...,2,1)(  , iak ,...,1 , such that )(kiri
u  is the thk  largest value in the set 

 ciU ,...,1),,(  , and cai   is a positive integer representing the number of clusters in 

which the total of degrees of membership of ix  is larger than a pre-specified threshold  . 

The partitioning of the fingerprint image as given by (5.7) is a fuzzy partitioning, 

since a data item can belong to more than one cluster (i.e. 1ia ). In the specific case 

when iai  ,1 , the partitioning given by (5.7) leads to the partition of the fingerprint 

image into non-overlapping regions, that is, the borders between the regions get fixed 

similar to that in the traditional crisp partitioning techniques. However, as we will see 

later, this crisp partitioning carried out by the proposed scheme is different from these 

obtained by using the traditional techniques. The proposed HA-FCM fingerprint 

partitioning scheme just described is now put as an algorithm. 

Algorithm 5.3: The HA-FCM  fingerprint partitioning scheme   

 Construction of the set X  

1- Divide the fingerprint image into HW blocks each of size NN pixels.  

2- Let  X . 

3- For each block Hh :1  and  Ww :1  

a. Compute the dominant ridge direction in the current block ),( whO  by using 

(3.1). 

b. Compute the variance 2  of the gray levels of image pixels within the current 

image block, in a direction that is perpendicular to ),( whO . If  2 , where  is 

an empirically specified threshold, then the current image block belongs to the 

background, and it is removed from the orientation field. Set 1),( whO . 
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c. Let wWhq  )1(  and ),( whxq O . 

d. Let  
qxXX    

4- Let 0i  and  X . 

5- For each Xxq
 , where WHq ,....,1 , if 1qx , then 1 ii ,  qi xx   and 

 ixXX  . 

 Clustering of the set X  using the HA-FCM 

6- With a pre-initial c , apply the HA technique (Algorithm 5.2) on the set X  to 

determine the initial number of clusters c  with the set of initial cluster centers )0(V . 

7- With the initial number of clusters c  and the cluster centers )0(V , apply the FCM 

(Algorithm 5.1) on set X  to determine the final set of cluster centers V and the 

membership matrix U . 

 Construction of the set FCOF  

8- For each Xxi  , where ni ,....,1 , construct the fuzzy clustered orientation field 

(FCOF) set as       )()2()1( ),(,....,),2(,),1()(
iiii airiiiriiri uarururiFCOF  , where 

 cjkri ,...,2,1)(  , iak ,...,1 , such that )(kiri
u  is the thk  largest value in the set 

 ciU ,...,1),,(  , and cai   is chosen to be the smallest integer   for which 





1

)(

k

kiri
u . 

We now demonstrate the effectiveness of the proposed HA-FCM partitioning 

technique by considering several fingerprint images from FVC2002 and FVC2004 

databases. Each image is partitioned into non-overlapping regions using both the 
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quantization technique of [39] and the proposed technique. For this set of experiments, 

the parameters needed for HA-FCM technique are chosen based on the following 

considerations.  

i. The maximum number of iterations is selected as 200 , which is large 

enough to ensure that the HA-FCM algorithm does not stop prematurely 

before reaching the optimum solution.  

ii. The minimum reduction of the objective function between two consecutive 

iterations is chosen as 510 , which is small enough to ensure that the 

solution found is an optimum one.  

iii. The tuning parameter controlling the degree of fuzziness in the clustering 

process is chosen to be 2m , as customarily done in the use of FCM 

algorithm.  

iv. The pre-initial number of clusters is chosen to be 8c , which consistent 

with the number of quantization levels used in Chapter 3.  

In the first part of our experiments we have chosen eight different fingerprint 

images, such that their orientation field covers the entire range ),0[   of orientations. The 

parameters c  for FCM and c  for HA-FCM are chosen to have value 8. Since the 

selected images cover the entire orientation range, the HA-FCM algorithm also provides 

the value of c  as 8. In view of the fact that both algorithms use the same number of 

clusters, it should be possible for them to achieve the same solution. Table 5.2 gives the 

number of iterations required by the proposed algorithm and the average number of 

iterations of 10 different runs of FCM algorithm, with randomly chosen sets of initial 

cluster centers, for reaching the same solution for each of the fingerprint images. It is 
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seen from this table that the HA-FCM algorithm for most of fingerprint provides 

solutions with a considerably smaller number of iterations. 

Table 5.2: Comparisons between the HA-FCM and the FCM techniques. 

 FVC2002 DB3 FVC2004 DB1 

101_1 102_4 103_1 105_6 106_1 1_1 2_6 12_4 

FCM 67 107 123 127 103 68 83 137  

HA-FCM 39 74 96 96 85 43 56 121 

In the second part of the experiment, we consider the example of a partial 

fingerprint image shown in Figure 5.1(b). The parameters c  and c , for HA-FCM and 

FCM, are chosen to be 8. As expected because of the gaps in the orientations in the 

fingerprint, the HA-FCM provides a lower value 6c  of the number of clusters. 

Because of the difference in the values of c  for the two algorithms, they now cannot be 

expected to provide the same solution. Figure 5.2 shows the images of the fingerprint, the 

corresponding orientation image, and the fuzzy clustered orientation images (FCOI) with 

ia  chosen as unity provided by the FCM and HA-FCM algorithms. A comparison of 

Figures 5.2(c) and (d) shows that the clustered image provided by HA-FCM is smoother 

and more aligned with the actual orientations shown in Figure 5.1(b) of the fingerprint 

image. Moreover, the number of iterations required by HA-FCM is only 51 in 

comparison of 83 required by FCM. From Figure 5.2 and Table 5.2, it is seen that the 

proposed HA-FCM technique reduces the overall computational complexity required by 

the original FCM and provides smoother fingerprint partitioning. 

The ridge orientations are naturally almost continuous and smooth everywhere in 

the fingerprint, except in regions near the singular points. Therefore, it is expected from 

an OF-based partitioning scheme to assign an image block in the vicinity of or containing 
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a singular point to a larger number of different clusters. On the other hand, other image 

blocks should have less diversity in terms of their belonging to different clusters. In the 

third part of the experiment, six different fingerprint images are considered to compare 

the fuzzy clustered partitioning with the quantization based partitioning. Each of Figures 

5.3 and 5.4 contains three different fingerprint images (first row), their orientation images 

(second row), the image obtained using the quantization based partitioning (third row), 

and the image partitioned using the proposed HA-FCM technique (fourth row). By 

comparing the partitioned images from the two techniques, two main observations can be 

made. First, the regions away from the singular points are much smoother in the case of 

the partitioning obtained by HA-FCM in that these regions do not have inside them many 

smaller regions. Many smaller regions of the quantized partitioning resulting from the 

noise or ridge cuts, present in the second and third images, have been more effectively 

resolved by the HA-FCM technique. Second, the proposed technique assigns, as desired, 

the singular point region to more clusters, since such regions contain larger number of 

ridge orientations. 

In summary, the proposed HA-FCM technique, by using an image-based 

approach for determining the number of clusters and the set of their initial centers, 

provides the following benefits. 1) In comparison with the quantization (i.e. 

discretization) method [39], the proposed HA-FCM technique provides smoother regions. 

2) The proposed HA-FCM technique is able to achieve a better or similar solution 

compared with the one achieved by the FCM technique at a lower computational 

complexity. 
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(a) (b) 

  

(c) (d) 

Figure 5.2: (a) the original fingerprint image, (b) the orientation image, (c) the FCOI 

obtained by the FCM using 8 clusters, and (d) the FCOI obtained by the proposed HA-

FCM, by which the number of clusters are found to be only 6. It is clear that the proposed 

HA-FCM provides smoother partitions. 
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(a) 

   

(b) 

   

(c) 

   

(d) 

Figure 5.3: (a) A set of three fingerprint images. (b) The orientation images. (c) Images 

partitioned using the quantization. (d) Images partitioned using the proposed HA-FCM. 
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(a) 

   
(b) 

   
(c) 

   
(d) 

Figure 5.4: (a) Another set of three fingerprint images. (b) The orientation images. (c) 

Images partitioned using the quantization. (d) Images partitioned using the proposed HA-

FCM. 
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5.3 Singular Point Detection Based on the HA-FCM Fingerprint 

Partitioning Scheme  

The singular points (SP) of the fingerprint images, as a global feature that is invariant to 

rotation, translation, shrinking and enlargement, have a significant role for fingerprint 

pattern classification [39, 40] and fingerprint recognition [13, 14, 23, 32]. The singular 

points of a fingerprint represent special regions of the ridge pattern, where the 

orientations of the ridges are characterized by irregularities. There are two types of the 

singularities, namely loop and delta, which are defined based on the types of the 

orientation irregularities. The loop singularity is defined as the region at which the ridges 

are wrapped to form almost half-circled shapes. Based on this definition of loop 

singularity, there are four types of loop singularities as shown in Figures 5.5(a)-(d): (i) 

upper core, (ii) lower core, (iii) whorl and (iv) twin loops. The core point corresponds to 

the topmost (i.e. upper core) or bottommost (i.e. lower core) point of the innermost 

curving ridge [1, 39]. The delta singularity is defined as the point from which the ridges 

branch out in three different directions to form a delta shape as shown in Figure 5.5(e). If 

the fingerprint image has no singularities, such as the arch fingerprint shown in Figure 

5.5(f), the core point is defined as the point of maximum ridge curvature [1, 39]. 

    
  

(a) (b) (c) (d) (e) (f) 

Figure 5.5: The different possible types of singular points: (a) upper core, (b) lower core, 

(c) whorl, (d) twin loops, (e) delta, and (f) arch. 
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Even though there are some singular point detection approaches using directly the 

pixel gray values of the fingerprint images [89], most of the singular point detection 

techniques proposed in the literature use the orientation field of the fingerprint image. 

These techniques could be categorized as follows: 1) Methods based on Poincare´ index 

[9096], 2) methods based on local characteristics of the orientation image [38, 39, 

9799], 3) methods based on the partitioning of the fingerprints using the orientation 

field [12, 66, 67, 100], and 4) methods based on the global model of the orientation image 

[40,101105]. The methods based on Poincare´ index or on the local characteristics of 

the orientation image detect the singular points at low computational cost, but they fail to 

detect the singularities located near the image borders or in poor quality fingerprint 

images, or they falsely detect some spurious singular points. The methods based on the 

partitioning of the fingerprints into regions of homogeneous orientations implicitly 

provide the position of the singular points and provide better detection accuracy but at the 

expense of higher computational complexity. Since, the accuracy of detecting the 

singular points affects the overall performance of fingerprint classification and 

recognition schemes, the idea of exploiting the global model of the orientation image has 

been found to be more effective in improving the detection accuracy of singular points. 

However, the approaches for singular point detection based on the global modeling have 

the disadvantage of very high computational complexity because of the following 

reasons. First, most of the global modeling techniques require determining the candidate 

singular points usually by employing the Poincare´ index method. Second, the global 

modeling of the orientation image itself is computationally expensive. Therefore, there is 

a need to develop a new approach which is able to provide a high accuracy for the 
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detection of the singular point at a reasonable computational cost. In this section, a new 

singular point detection technique is proposed based on the HA-FCM fingerprint 

partitioning scheme developed in Section 5.2. By searching for specific cluster 

distributions within the fuzzy clustered orientation image (FCOI), the proposed approach 

for singular point detection is able not only to locate the different singular points but also 

to determine the types of the detected singular points as well as the orientation of the core 

points.  

5.3.1. Cluster distributions for fingerprint ridge structures 

In the proposed scheme for singular point detection, the fingerprint ridge structures are 

classified as singular or non-singular structures. Depending on the type of singularity, the 

singular structures represent the upper core, lower core or delta. In our study, four types 

of the non-singular structures are defined as: (i) plain region, (ii) plain region with ridge 

deformation, (iii) plain region with noise, and (iv) plain region with ridge cuts.  

Figures 5.6 and 5.7 show the ridge flows around the image blocks contained 

within regions having the different types of singular and non-singular structures, 

respectively. They also give the corresponding cluster distributions within the 3x3 

neighborhood obtained by using the HA-FCM technique with 5c , i.e. 5c . A 

comparison of distributions in the two figures shows that, in general, there is a larger 

diversity in the number of different clusters within the set of blocks with singular points 

than in the set without singular points. The non-singular regions may also be 

characterized a large diversity in the number of different clusters, if they affected by 

deformation (Figure 5.7(b)), noise (Figure 5.7(c)) or cut (Figure 5.7(d)). It is to be noted, 

however, that the diversity in the number of clusters in singular regions are also 
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associated with some distinctiveness in their patterns. We now state the following three 

axioms based on the distinctiveness of the patterns of the clusters distributions of the 

neighborhood blocks associated with the three types of singular points. 

1 : Upper core:- If the upper neighborhood of 2x3 blocks contain at least 1c  

different clusters, such that the clusters appear clockwise in a descending order of 

their numbers. 

2 : Lower core:- If the lower neighborhood of 2x3 blocks contain at least 1c  

different clusters, such that the clusters appear clockwise in a descending order of 

their numbers. 

3 : Delta:- If the 3x3 neighborhood blocks contain a minimum of 2c  and a 

maximum of c  different clusters, such that the clusters appear clockwise in a non- 

descending order of their numbers. 

In the next subsection, the above set of axioms is used to develop the proposed 

technique for singular point detection. 

 

  

 

2 1 5 

3  4 

X X X 
 

X X X 

4  3 

5 1 2 
 

5 1 1 

4  2 

4 3 2 
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Figure 5.6: Typical ridge flows and the corresponding cluster distribution around the 

different types of singular points: (a) upper core, (b) lower core, and (c) delta. 
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Figure 5.7: the ridge flows and the corresponding cluster distribution around: (a) a plain 

region, (b) a plain region with ridge deformation, (c) a plain region with noise, and (d) a 

plain region with ridge cut. 

5.3.2. The proposed HA-FCM-based scheme for singular points detection 

The proposed HA-FCM-based scheme for singular point detection is divided into two 

stages. In the first stage, a set of candidates corresponding to each of the three singular 

points are constructed. In the second stage, the consistency and relative accuracy of the 

detected candidate singular points are checked, to determine the actual singular points. 

 Stage 1: 

In this stage, a fuzzy clustered orientation image (FCOI) is first constructed from the 

FCOF set by choosing ia ’s as unity. Thus, the thwh ),(  block of the FCOI contains an 

ordered pair  )1(),1(
iiri ur  of the cluster number and the membership degree corresponding 

to the thwh ),(  image block. Then, the 3x3 neighborhood correspond to each block ),( wh  

is examined using the above axioms. If the particular block ),( wh is found to belong to 

one of the three types of singular points, the index ),( wh  is included in the initial 

candidate set for that type of singular point. In addition the index ),( wh  of such block is 
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also appended by a fuzzy-based measure of the correctness (FMC) of choosing ),( wh  as 

a candidate to belong to that type of singular point. This measure of the degree of 

correctness is calculated as the average of the membership degrees of the blocks 

comprising the neighborhood. 

Since, in our scheme, the original orientation field O  has been estimated directly 

based on the computation of gradients in the fingerprint image [36], it would contain 

irregularities for the ridges affected by noise, cuts, deformation, or blurring. In order to 

overcome this problem, the idea of orientation field regularization (smoothing) has been 

used by many researchers in the literature [11, 39, 92]. This regularization could be 

implemented using a simple low-pass filtering [11, 39] or global modeling of the 

orientation field [92]. In the proposed HA-FCM based approach, it has been seen that the 

cluster distributions for fingerprint singular and non-singular structures are normally 

different. However, some non-singular structures, especially that of the second or third 

type, may have a pattern of cluster distribution similar to that of the singular structures. 

Accordingly, the above three initial sets of candidate blocks for the singular points may 

contain some spurious items. Therefore, in the proposed method, in order to remove these 

spurious items from the above initial candidate sets, the 3x3 neighborhood of each 

candidate item is first regularized by replacing the cluster number of each block nbwh ),(  

in the neighborhood of the item ),( wh  with a cluster number having the maximum 

occurrence within the 3x3 neighborhood of nbwh ),( . Next, the ),( wh  block is rechecked 

for its suitability to belong to the originally determined candidate set. If ),( wh  is found to 

not satisfy the axiom to be the originally determined candidate singular point in the 

context of new regularized pattern of clusters, it is then removed from the candidate set. 
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After the removal of the spurious blocks, the remaining candidate blocks are used to 

determine the candidate singular points, such that each candidate singular point is 

represented by a candidate block or a group of neighboring candidate blocks (Figure 5.8). 

Each candidate singular point is characterized by the geometrical center of the 

corresponding blocks and the average of their FMC. As to be seen in the description of 

second stage, the orientation of the core points [105107] are utilized in determining the 

relative positions of delta points. In our fuzzy-based method, the orientation of a core 

point (upper or lower) is calculated as the average of the cluster centers of the lower or 

upper neighborhood of 2x3 of the image blocks corresponding to the core point. 

Thus the first stage finally provides three sets of candidate singular points 

corresponding to the upper and lower cores and the delta. Each item in the sets contains 

the position of the candidate singular point and its FMC. In addition the items in the 

candidate sets of the upper and lower cores also have the information on the orientation 

of the core point. These candidate sets are used in stage 2 to determine the actual singular 

points. 

 
(a)                                (b) 

Figure 5.8: (a) An example of a fingerprint image contains upper core ( ), lower core 

( ) and right delta (+). (b) The corresponding FCOI with the candidate blocks 

corresponding to the upper core (i.e. the vertical rectangle), the lower core (i.e. two small 

squares) and the delta (i.e. the big square). 
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Stage 2: 

It is known that a fingerprint has at most one upper core, one lower core and two deltas. 

However, each of the three candidate singular point sets obtained from stage 1 may have 

a number of candidates that is more than these maximums. This larger number of 

candidate singular points arises because of the fingerprint images when affected by 

blurring, ridge cuts or wrapping of the ridges close to the actual core points. In this stage, 

these spurious singular points are removed by using the FMCs associated with the 

candidate singular points and verifying the typological constraints of the three different 

types of singular points as follows. 

Figures 5.9(a) and (b) contain two examples of fingerprint images in which from 

stage 1 spurious (upper or lower) cores have arisen because of wrapping of the ridges 

close to the actual core points. In this case, the upper and lower cores with the larger 

FMCs are chosen as the actual core point (Figures 5.9(c) and (d)). Figure 5.10(a) is an 

example of the image with blurring close to the lower border of the fingerprint. In this 

example, stage 1 provides falsely a lower core and a left delta detected in the affected 

region, in addition to the actual upper core and the actual left delta. Since the upper and 

lower cores should exist within a certain maximum distance, the lower core is eliminated 

by stage 2 in view of the fact that it is within the affected region and its distance from the 

upper core exceeds a pre-specified threshold for the distances between the upper and 

lower cores. It is also seen from Figure 5.10(a) as well as from Figure 5.10(c) that two 

delta points have been detected by stage 1. In order to remove spurious delta points 

detected by stage 1, each candidate delta is first classified as either a left delta or a right 

delta with respect to the location and orientation of the core point. Then, if there are more 
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than one left (or right) deltas, stage 2 selects the one with the largest FMC value. 

Following this rule, the two deltas in each of the examples of Figure 5.10(a) and (c) as 

obtained from stage 1 are reduced by stage 2 to only one delta as shown in Figures 

5.10(b) and (d), respectively. 

 

    

(a) (b) (c) (d) 

Figure 5.9: (a) An example of two upper ( ) and two lower ( ) cores obtained by stage 

1, and their calculated orientations indicated by the bright lines. (b) An example of two 

upper ( ) cores obtained by stage 1, and their calculated orientations indicated by the 

dark lines. (c) Correctly detected upper and lower cores in the fingerprint of (a) by stage 

2. (d) Correctly detected an upper core in the fingerprint of (b) by stage 2. 

 

 

  
  

(a) (b) (c) (d) 

Figure 5.10: (a) An example of a spurious lower core and a left delta detected by stage 1 

due to the effect of blurring. (b) Removal of the spurious singular points in (a) by stage 2. 

(c) An example of a spurious right delta detected by stage 1 due to the effect of ridge 

cuts. (d) Removal of the spurious right delta in (c) by stage 2. 
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5.3.3 Experimental results and comparisons 

- Databases 

In order to show the efficacy of the proposed HA-FCM based scheme for singular point 

detection, the DB1 databases of FVC 2002 [44], 2004 [41] and 2006 [45, 46] have been 

used. As described in Chapter 2, these databases have different image sizes and have 

varieties of difficulties. It has been pointed out in [1] that the databases FVC2002 DB1, 

FVC2004 DB1 and FVC2006 DB1 have, respectively, low, medium and high degrees of 

difficulties. The DB1 of FVC2002 and FVC2004 have 8 impressions each of 110 

different fingers divided into 100 fingers for testing and 10 for training. On the other 

hand, the FVC2006 DB1 has 12 impressions of 150 different fingers divided into 140 

fingers for testing and 10 for training. The FVC2006 DB1 is more heterogeneous and 

includes fingerprint images of manual workers and elderly people. 

- Performance measures 

For measuring the performance of the proposed scheme, the detected singular points and 

the orientations of the cores are compared with the manually decided ground truths. The 

three quantities of interest for the measurement of performance are the number of correct 

detections, the number of spurious detections and the difference between the computed 

orientations and the corresponding ground truth values. The detection is reported as a 

correct detection if its location lies within a certain number of pixels (i.e. a decision 

threshold) from the true singular point, otherwise it is reported as a spurious one. Since, 

there is no established standard in the literature for evaluating the performance of 

singular point detection of a scheme, we have chosen from the literature five most 

commonly used measurements to report and compare the performance of the proposed 
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scheme from different perspectives. As in [40] and [104], the performance is measured in 

terms of the following three quantities. 

FNTP

TP
Recall


  (5.8) 

FPTP

TP
Precision


  (5.9) 

PrecisionRecall

Precision Recall 2
measure-F




  (5.10) 

where TP is true positive, FP is false positive and the FN is false negative at a specified 

decision threshold. Therefore, Recall is the ratio of correctly detected singular points to 

all the true singular points. The Recall measure has also been called detection rate by 

some other researchers [92]. Precision is the ratio of correctly detected singular points to 

all detections made by the scheme. The Fmeasure specifies the trade-off between recall 

and precision, giving equal importance to both. 

In [92] another important performance measure that has been used is the 

fingerprint correct rate (FCR), which is defined as the ratio of the correct number of 

fingerprints to the total number of fingerprints tested. A fingerprint is reported as 

“correct” if all detected singular points are correct and without any spurious or missed 

ones. Hence, this measure could be used to determine the usefulness of a singular point 

detection scheme for fingerprint classification/indexing applications. This measure takes 

into consideration the fingerprint images which do not contain any singular point and 

thus it is reported as a “correct” if no singular points have been detected. It is noted that 

the three measures defined earlier are not affected by such a “correct” fingerprint image. 

Finally, in order to report the accuracy of the calculated orientation of the core points, we 

use the orientation error defined as the ratio of the number of fingerprints with the 
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orientation difference smaller than or equal to a pre-specified value to the total number of 

the fingerprints tested [105]. 

- Results and comparisons 

From the classification of the orientation-based singular point detection techniques as 

carried out in the introduction of Section 5.3, it is seen that the proposed scheme for 

singular point detection belongs to the second category. In order to compare the 

performance of the proposed scheme, we have chosen and implemented the shape 

analysis technique [39], which is considered to be one of the state of the art techniques 

belonging to the same category. In the implementation of the shape analysis technique, 

the same modules as those used in the implementation of the proposed technique for the 

calculation of the orientation field and fingerprint image segmentation have been used. In 

order to be comprehensive in examining the proposed technique, we also compare the 

results of our scheme with three techniques presented in [92], [67] and [40], which 

belong to the first, third and fourth categories, respectively. The detection technique of 

Zhou et al. [92] is based on using Poincare´ index to determine the initial set of candidate 

singular points followed by the development of a DORIC feature vector for these singular 

points. Then, a support vector machine (SVM) based classifier is designed to remove the 

spurious singular points. In the technique of Huang et al. [67] the singular points are 

detected at the intersection of the so called fault lines by carrying out a pixel-wise 

orientation based fingerprint partitioning. The technique of Jirachaweng et al. [40] is 

based on developing a residual model for the orientation field and then using Poincare´ 

index method to detect the singular points from this model. 
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Figures 5.11, 5.12 and 5.13 depict the results of the proposed scheme and the 

shape analysis technique [39] on the FVC2002 Db1, FVC2004 Db1 and FVC2006 Db1, 

respectively, where the performance measures, Recall, Precision and F-measure, are 

plotted as a function of the decision threshold. In addition Figure 5.12 also provides the 

results of the global model based technique, as reported in [40] on FVC2004 DB1. The 

superiority of the proposed technique to the shape analysis technique [39] on different 

databases, and also to [40] on FVC2004 DB1, is clearly seen. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.11: Performance measures of singular point detection using the proposed 

scheme and the technique of Park et al [39] on FVC2002 DB1. (a) Recall, (b) Precision 

and (c) F-measure. 
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(a) 

 
(b) 

 
(c) 

Figure 5.12: Performance measures of singular point detection using the proposed 

scheme and the techniques of Park et al [39] and Jirachaweng et al [40] on FVC2004 

DB1. (a) Recall, (b) Precision and (c) F-measure. 
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(a) 

 
(b) 

 
(c) 

Figure 5.13: Performance measures of singular point detection using the proposed 

scheme and the technique of Park et al [39] on FVC2006 DB1. (a) Recall, (b) Precision 

and (c) F-measure. 

Next, the performance measures of the proposed scheme and the schemes of [39], 

[92] and [67] (at decision threshold less than or equal to 20 pixels) are given in Tables 

5.3, 5.4, and 5.5. These tables show that the proposed scheme has a much higher values 

for the performance measures FCR, Recall, Precision and F-measure for the various 

databases. The superiority of the proposed scheme is even more pronounced for the 

detection of delta points. It is to be noted that, unlike the technique of [92] the proposed 

technique does not perform any pre-processing on the raw fingerprint images, nor, unlike 
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the technique of [67], performs pixel-wise smoothing of the orientation field, in order to 

obtain the results given in Figures 5.11-5.13 and Tables 5.3-5.5. 

Table 5.3: The performance measures of the proposed scheme and the techniques in [39] 

and [92] using FVC2002 DB1. 

Type of measure Proposed [39] [92] 

FCR 94.12 75.75 88.88 

Recall Cores 97.03 86.04 95.78 

Deltas 98.3 78.92 96.98 

Precision Cores 98.24 95.02 - 

Deltas 97.57 94.2 - 

Fmeasure Cores 97.63 90.31 - 

Deltas 97.92 85.88 - 

 

Table 5.4: The performance measures of the proposed scheme and the techniques in [39] 

and [67] using FVC2004 DB1. 

Type of measure Proposed [39] [67] 

FCR 95.98 61.25 - 

Recall Cores 97.84 72.91 97.5 

Deltas 98.23 73.6 83 

Precision Cores 98.76 92.98 96 

Deltas 98.23 89.12 93.65 

Fmeasure Cores 98.3 81.74 96.74 

Deltas 98.23 80.62 88.05 

 

Table 5.5: The performance measures of the proposed scheme and the technique in [39] 

using FVC2006 DB1. 

Type of measure Proposed [39] 

FCR 88 50.71 

Recall Cores 94.96 66.95 

Deltas 91.13 52 

Precision Cores 95.79 92.26 

Deltas 96.12 86.67 

Fmeasure Cores 95.37 77.6 

Deltas 93.56 65 
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Finally, Table 5.6 lists the accuracy measure of the calculated core orientation of 

the proposed scheme for the different databases. It is seen from this table that the 

proposed scheme is able to provide a very highly accurate values for core orientation, 

which is quite useful for the pre-alignment stage of fingerprint matching. In this regard, it 

may be pointed that the scheme proposed in [105] has been able to report an accuracy of 

only 80.7% within the orientation difference less than or equal to 
16


 radians when this 

technique applied to FVC2002 DB1 in comparison to the accuracy of 94.19% achieved 

by the proposed scheme. 

Table 5.6: Accuracy measure of the calculated core orientation. 

Orientation difference (rad.) 

less than or equal to 

FVC2002 DB1 FVC2004 DB1 FVC2006 DB1 

16


 

94.19 94.66 94.87 

8


 

98.63 99 98.74 

From the experimental results presented in this section, it is seen that the proposed 

technique is quite robust in that it can deal more effectively in providing higher singular 

point detection accuracy in comparison to other methods. In addition, the proposed 

method is suitable for real-time processing, since the average processing time of each 

fingerprint is approximately 0.1 second, when it is implemented on a machine with a 1.8-

GHz CPU and 512-MB RAM. 

5.3 Summary 

The idea of using the orientation field for partitioning fingerprint images into non-

overlapping regions has been used effectively in various areas involving fingerprints, 

such as fingerprint indexing and singular point detection. In order to partition a 
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fingerprint image into non-overlapping regions, each fingerprint image block must be 

assigned to only one region, which could be achieved using a crisp clustering technique. 

However, the crisp clustering techniques are generally affected by the fingerprint image 

problems, such as ridge cuts and noise. On the other hand, the fuzzy-based clustering 

techniques provide a smoother classification of a dataset by assigning each pattern to all 

the clusters with varying degrees of memberships. Therefore, these fuzzy-based 

clustering techniques are able to deal more effectively with the natural patterns, in which 

the objects cannot be classified to belong exclusively to a specific cluster. 

In this chapter a novel fuzzy c-means (FCM) technique has been proposed for 

partitioning fingerprint images into different regions using their orientation fields. The 

clustering solution in an FCM technique requires an a priori knowledge of the number of 

clusters and their initial centers. The novelty of the proposed technique is that both these 

input parameters to the FCM technique are determined in a rational and automated 

manner. In this technique, instead of pre-fixing the number of clusters and arbitrarily 

choosing the set of the initial cluster centers, both these parameters are made data 

dependent by determining them based on the analysis of the orientation field histogram of 

a fingerprint image. The proposed technique has been shown to lead to an optimal 

number of partitioning clusters that is fingerprint image adaptive. Also, the initial cluster 

centers thus determined has been shown to reduce the number of iterations required to 

obtain the optimum solution. The output of the proposed HA-FCM algorithm, which is a 

set of cluster centers and degrees of belonging of each data item to different clusters, has 

been used for partitioning the fingerprint image. The proposed technique has been 

experimented on a number of fingerprint images from challenging benchmark databases. 
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The simulation results have shown that (i) the HA-FCM technique results in smoother 

regions compared to that provided by the quantization technique and (ii) the proposed 

HA-FCM technique, in comparison to the FCM technique, is able to provide a more 

realistic partitioning vis-à-vis the nature of the fingerprint image under consideration at a 

lower computational cost. 

In order to show the effectiveness of the proposed HA-FCM partitioning 

technique in an application, we have considered the problem of fingerprint singular point 

detection. For this purpose, a novel singular point fuzzy-based detection scheme has been 

developed by first searching for specific cluster distributions in the fuzzy clustered 

orientation field (FCOF) resulting from the HA-FCM partitioning technique. The set of 

candidate singular points corresponding to these specific cluster distributions is then 

examined to remove the spurious candidates using a fuzzy-based measure of correctness. 

The proposed scheme has been designed not only to detect the singular points but also to 

identify their types. Experimental results using challenging benchmark database have 

shown that the proposed singular point detection scheme outperforms other state of the 

art techniques available in the literature. 
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CHAPTER 6 

An Enhanced HA-FCM Partitioning Scheme 

 

6.1 Introduction  

In the previous chapter, it was shown that the HA-FCM partitioning scheme provides 

regions that are smoother than that provided by the quantization technique at a lower 

computational complexity than that required by the standard FCM algorithm. In addition, 

it was successfully used for developing a high accuracy singular point detection scheme 

with a low computational complexity. However, it would be desirable to increase the 

smoothness of the regions even further as well as to reduce the complexity of the HA-

FCM technique. In this chapter, the HA-FCM partitioning scheme proposed in Chapter 5 

is enhanced in terms of the smoothness of the partitions and the computational 

complexity [88]. 

6.2 An Enhanced HA-FCM Technique for Fingerprint Image 

Partitioning 

As pointed in Chapter 5, the ridges having large amount of noise or cuts affect the 

smoothness of the fingerprint partitions. The idea of regularizing the orientation field has 

been used, for example, in crisp partitioning schemes in order to obtain smoother 

partitions [11] or to have a more accurate detection of the singular points [39, 92]. In this 

section, the idea of regularization of the orientation field is used as a pre-processing step 

in the HA-FCM technique in order to obtain smoother fuzzy partitions. It is noted that the 
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major complexity of the proposed HA-FCM technique (or for that matter that of the 

original FCM algorithm) lies in the iterative process for achieving a minimum of the 

objective function. In this section, it is proposed to reduce the complexity of HA-FCM by 

reducing the amount of operations involved in the computation of the objective function 

as well as by increasing its convergence rate. 

6.2.1 Regularization of the orientation field 

The regularization step of a given data set is implemented, in general, by replacing the 

value of each data item with a new value that takes into consideration the values of its 

neighboring items. This new value could be calculated as a simple average of the values 

in a neighborhood including the original data item [11]. Even though the use of a simple 

averaging to regularize the orientation field of a fingerprint is able to smooth out the local 

irregularities produced by noise, it also smoothens the global irregularities (i.e. the 

regions contain singular points) [11, 39]. To overcome this problem the authors in [11] 

have proposed a three-step technique for the enhancement of the orientation field, in 

which they have strengthen the regions containing singularities and attenuating those 

without the singularities. This method, however, has a high computational complexity. 

The regularization can also be done more simply by replacing a data item with a linearly-

weighted sum of the original data item and the average of its local neighboring data items 

[108]. This method was used for segmentation of MR brain images, and provides a better 

mechanism to control the regularization by adjusting the weights of the sum. This method 

is, therefore, more suitable to regularize the orientation field. We now describe this 

regularization step in the HA-FCM partitioning scheme giving rise to a regularized HA-

FCM (RHA-FCM) scheme. 
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The orientation field matrix O  of a fingerprint image is obtained as explained in 

Chapter 3. By using O , the data set  nxxxX ,...,, 21 , where n  is the total number of 

image blocks containing ridges, is then constructed as follows: we first construct the set 

 WHqxX q ,....,1,  , where ),( whxq O , Ww ,...,2,1  and Hh ,...,2,1 , such that 

wWhq  )1( ,. Then, the data set X  is obtained from X   by removing from it all the 

elements not containing a valid orientation value. Next, a regularized data set 

 nxxxX ,...,, 21  is constructed, such that ix  is calculated as [108]. 
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where iN  denotes the set of neighboring elements falling into a local window around 

Xxi  , and RN  represents its cardinality. The parameter   controls the effect of the 

average value of the neighboring elements on the value of the regularized orientation 

Xxi  . The value of this parameter was empirically chosen to be unity. Then using this 

regularized data set the objective function of the HA-FCM algorithm is modified as. 
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In order to show the effectiveness of the RHA-FCM technique in comparison to 

that of the HA-FCM technique, six different fingerprint images shown in Figures 6.1 and 

6.2 are considered. Each figure contains three different fingerprint images in its first row, 

their orientation images in the second row, and the corresponding images partitioned by 

using the HA-FCM and RHA-FCM techniques in the third and the fourth rows, 

respectively.  

As discussed in Chapter 5, an OF-based partitioning scheme can be expected to 

assign an image block in the vicinity of or containing a singular point to a larger number 

of different clusters, and other image blocks to have less diversity in terms of their 

belonging to different clusters. Even though these features are seen to be clearly present 

in the images of the two figures obtained by the two techniques, the following two 

conclusions can be drawn on the superiority of the second technique over the first one. 

First, the regions away from the singular points are much smoother in the case of the 

partitioning obtained by RHA-FCM in that these regions do not have within themselves 

many smaller regions. The problem of having smaller regions, which results from the 

noise or ridge cuts, has been more effectively resolved by the RHA-FCM technique. 

Second, the diversity of the singular point regions as provided by the HA-FCM technique 

is not compromised by the regularization step of the RHA-FCM technique. 

 

 



 134 

  

(a) 

 

  
(b) 

 

 
 

(c) 
 

  
(d) 

 

Figure 6.1: (a) A set of three fingerprint images. (b) Their orientation images. (c) Images 

partitioned using the HA-FCM. (d) Images partitioned using the RHA-FCM.  
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(a) 

 

 
 

(b)  

  
(c) 

 

  
(d) 

 

Figure 6.2: (a) Another set of three fingerprint images. (b) Their orientation images. (c) 

Images partitioned using the HA-FCM. (d) Images partitioned using the RHA-FCM. 
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6.2.2 Reduction of the computational complexity 

For the purpose of segmenting MR brain images, Szilagyi et. al. [58] have proposed a 

fast FCM clustering algorithm called the EnFCM algorithm. In this algorithm, after the 

regularization step is carried out on the intensities of image pixels, a new data set is 

obtained from X , as  qxxxX ~,...,~,~~
21 , where ix~ ’s are the distinct intensities of the 

image pixels, which are arranged in X
~

 in an increasing order of their magnitudes, and q  

is the total number of the different gray levels present in the image. The number of 

elements in data set X
~

 is, in general, much smaller than n , the number of elements in 

X . Due to this reduction in the number of elements, the amount of the calculations 

required in each iteration is significantly reduced. Therefore, the EnFCM algorithm has 

been able to provide a clustering solution with a computational complexity lower than 

that provided by the traditional FCM technique. 

Now, we propose to reduce the overall computational complexity of the RHA-

FCM technique in two stages. In the first stage, the amount of calculations involved in 

each iteration is reduced by adopting the approach of [58]. In the second stage, the 

number of iterations of the RHA-FCM algorithm is itself reduced. 

(a) Reduction in the amount of computations in an iteration 

The data set  qxxxX ~,...,~,~~
21  comprising the distinct orientation values is first 

constructed using the regularized data set X . Then using this new data set the objective 

function of the FCM algorithm is modified as [58]. 
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where l  is the number of blocks in the image having the orientation value equal to lx~ , 

such that n
q

l

l 
1

 . Updating of the membership matrix U  and that of the set of cluster 

centers V  are carried out as [58] 
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We will refer to the technique for fingerprint partitioning using this rearranged data set 

X
~

 in its objective function as the reduced-data RHA-FCM (RDRHA-FCM) technique. 

In order to compare the number of elements in the sets X  and X
~

, a 

comprehensive simulation study is carried out using the same benchmark databases as 

used in Chapter 4. Table 6.1 gives the average number of data items belonging to the sets 

X  and X
~

, i.e. n  and q , respectively, for the different databases. It is seen from this 

table that the number of data items n  has been reduced on the average by 52%. Hence, 

with the re-arranged expression for the objective function, the overall computational 

complexity of RHA-FCM is expected to be significantly reduced. 
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Table 6.1: Average number of data items belonging to the sets X  and X
~

. 

 FVC2002 FVC2004 FVC2006 

DB1 DB3 DB4 DB1 DB2 DB1 

n  277 199 211 301 261 142 
q  121 106 103 125 120 82 

(b) Reduction in the number of iterations 

Even though the number of operations performed in solving (6.5) in each iteration 

is now greatly reduced, this equation is only a re-arranged version of (6.2) representing 

the objective function of the RHA-FCM algorithm. Accordingly, the number of iterations 

and the clustering solution as provided by (6.6) and (6.7) must be the same as that 

provided by (6.3) and (6.4). We now propose a scheme to reduce the number of iterations 

without unduly affecting the clustering solution. Note that in the objective function given 

by (6.5), l  represents frequency in the set X  of each distinct data item lx~ . Changing the 

value of each l  will, in general, modify the objective function given by (6.5), and 

therefore, the solution obtained and the number of iterations required to achieve this 

solution will also change. If l  is replaced by 
n

l , the relative frequencies of the data 

items used in the objective function will remain unaffected. In fact, this change amounts 

to only increasing the value of threshold parameter   used for terminating the iteration 

process by a factor n , while keeping the objective function unchanged. Note that the 

value of this threshold parameter   is chosen to be very small (in our experiments 

510 ) in order to ensure the convergence of the iterative process to the solution. In 

practice, such a small value for   may not be necessary to ensure this convergence. Thus, 

increasing the value of threshold   by a factor n  would in effect reduce the number of 

iterations by making the stopping criterion less stringent. At the same time, with this 
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strategy, the stopping criterion is also made to be related to the total number of data items 

n  in the set X  or X . 

We now provide some simulation results in support of the proposed scheme of 

making the stopping criterion to be dependent on the size of the data set X . Monte Carlo 

simulations are performed to obtain the gradient of the objective function given by (6.5) 

as a function of the iteration number for three values of n , namely 10, 100 and 1000. The 

value of parameter   for terminating the iteration process is chosen to be a fixed value of 

510 . For 100 runs of the Monte Carlo simulations, 100 independent data sets are 

randomly generated for a given n  with their items being in the range ),0[  . Each data 

set is clustered using RDRHA-FCM technique with 5c . Figure 6.3 shows the results 

of one of the runs of the Monte Carlo simulation for each of the three values of n . We 

can make the following observations from the results in this figure, which are typical of 

the results obtained from other runs of our Monte Carlo simulation. 

(i) For each n , the convergence of the iterative process toward the final solution is 

initially fast but slows down at higher iterations. 

(ii) The initial convergence rate increases and the final convergence rate decreases as 

n  increases. 

(iii) Even though the criterion of terminating the iterations is exactly met (for 

510 ) at iteration number 26, 63 and 152 for the cases of 10n , 100 and 

1000, respectively, an acceptable solution seems to have been obtained earlier in 

each case with the set having larger n  providing this solution relatively even 

much earlier. 
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(a) 

 

(b) 

 

(c) 

Figure 6.3: The gradient of the objective function J versus the number of 

iterations: (a) 10n , (b) 100n  and (c) 1000n  based on Monte Carlo 

simulation. 

n = 1000 

n = 100 

n = 10 
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The above observations suggest that for each case,   could be increased from the 

chosen value 510  to a higher value, in addition this value can be chosen to be larger for 

larger values of n  without any appreciable loss in the accuracy of the solution. Thus, an 

effective choice of the threshold parameter can be  nn  , where   is some very small 

positive number such as 510 . 

The RDRHA-FCM technique with the modified threshold parameter  nn   

used in the criterion for stopping the iterations will be referred to as an enhanced HA-

FCM (EHA-FCM) technique. The EHA-FCM technique should provide a solution for the 

fingerprint partitioning problem that is not only superior to that obtained by HA-FCM 

technique of Chapter 5, but also results in a smaller number of iterations and a smaller 

amount of computations in each iteration, that is, the overall complexity gets significantly 

reduced. 

6.2.3 EHA-FCM fingerprint partitioning algorithm 

The EHA-FCM fingerprint partitioning algorithm developed in this chapter can be 

summarized to have the following steps: (i) The regularized data set X  is constructed 

from the original data set X . The data set X
~

 is then obtained such that its data items 

consist of only the distinct orientations values of X . (ii) The histogram analysis (HA) 

technique is applied on the set X
~

 to determine the number of clusters c  and the set of 

their initial centers )0(V . (iv) The FCM algorithm in which (5.4) and (5.5) replaced by 

(6.6), (6.7), respectively, and the threshold   replaced by  nn   is applied. This step 

provides the clustering solution as a set of cluster centers V , and the membership matrix 

U  whose elements represent the degree of belonging of a data item Xxl

~~   to each 
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cluster  cj .,..,2,1 . (v) The fuzzy clustered orientation field (FCOF) set is 

constructed as described in Chapter 5. 

The following algorithm gives a formal description of the EHA-FCM technique 

for fingerprint partitioning. 

Algorithm 6.1: The EHA-FCM  fingerprint partitioning scheme   

 Construction of the set X
~

 

1- Divide the fingerprint image into HW blocks each of size NN pixels.  

2- Let  X . 

3- For each block Hh :1  and  Ww :1  

e. Compute the dominant ridge direction in the current block ),( whO  by using 

(3.1). 

f. Compute the variance 2  of the gray levels of image pixels within the current 

image block, in a direction that is perpendicular to ),( whO . If  2 , where  is 

an empirically specified threshold, then the current image block belongs to the 

background, and it is removed from the orientation field. Set 1),( whO . 

g. Let wWhq  )1(  and ),( whxq O . 

h. Let  
qxXX    

4- Let 0i ,  X   and  X . 

5- For each Xxq
 , where WHq ,....,1 , if 1qx , then 1 ii , qi xx   and 

 ixXX  . 

6- For each Xxi  , where ni ,....,1  , calculate ix  using (6.1), then  ixXX  . 
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7- Let 0l  and  X
~

. 

8- For each Xxi  , where ni ,....,1  , if Xxi

~
 , then 1 ll ,  il xx ~  and 

 ixXX ~~~
 . 

 Clustering of the set X
~

 using the HA-FCM 

9- With a pre-initial c , apply the HA technique (Algorithm 5.2) on the set X
~

 to 

determine the initial number of clusters c  with the set of initial cluster centers )0(V . 

10- With the initial number of clusters c  and the cluster centers )0(V , apply the FCM 

(Algorithm 5.1) on set X
~

 with (5.4) and (5.5) replaced by (6.6), (6.7), respectively, 

and the threshold   replaced by  nn  , to determine the final set of cluster centers 

V and the membership matrix U . 

 Construction of the set FCOF  

11- For each Xxi  , where ni ,....,1 , construct the fuzzy clustered orientation field 

(FCOF) set as       )()2()1( ),(,....,),2(,),1()(
iiii airiiiriiri uarururiFCOF  , where 

 cjkri ,...,2,1)(  , and iak ,...,1 , such that )(kiri
u  is the thk  largest value in the set 

 ciU ,...,1),,(  , and cai   is chosen to be the smallest integer   for which 





1

)(

k

kiri
u . 

6.3 Experimental Results and Comparisons 

In order to compare the performances of HA-FCM technique and its evolutionary 

versions, namely the RHA-FCM, RDRHA-FCM and the EHA-FCM techniques, a 

comprehensive simulation study has been undertaken using the same databases as those 
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chosen in Chapter 4. In the first part of this study, the computational complexities of 

these techniques are compared in terms of the number of iterations required and the 

processing times in order to obtain the clustering solutions. Tables 6.2 and 6.3 give the 

average number of iterations and the average processing times, respectively, of the 

techniques for the different databases. By comparing the results listed in these tables, the 

following three observations can be made. First, the computational complexity of the 

RHA-FCM is slightly larger than that of the HA-FCM technique, which could be the 

result of introducing in the histogram of X  some new values of the data items by 

decreasing the frequencies of some of the old ones when the set X  is regularized as X . 

Second, even though, as expected, the number of iterations required by the RHA-FCM or 

RDRHA-FCM is the same, the processing times of the RDRHA-FCM is smaller than that 

of RHA-FCM. As explained previously, this is due to the reduction in the amount of 

calculations required in each iteration. Third, the processing time of EHA-FCM 

technique is significantly lower than that of RDRHA-FCM. This is because of the fact 

that the number of iterations required by the former is significantly lower than that 

required by the latter. It is also seen that the processing time of EHA-FCM technique is 

only about one-third of that of the RHA-FCM. 

Table 6.2: Average number of iterations required by the HA-FCM, RHA-FCM, RDRHA-

FCM and EHA-FCM techniques using different databases. 

 HA-FCM RHA-FCM RDRHA-FCM EHA-FCM 

2002 

DB1 85 87 87 60 

DB3 71 72 72 50 

DB4 77 84 84 59 

2004 
DB1 81 86 86 59 

DB2 82 88 88 61 

2006 DB1 68 68 68 50 
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Table 6.3: Average processing times (in ms) required by the HA-FCM, RHA-FCM, 

RDRHA-FCM and EHA-FCM techniques using different databases. 

 HA-FCM RHA-FCM RDRHA-FCM EHA-FCM 

2002 

DB1 104.8 105.9 52.6 36.4 

DB3 65.5 65.5 37.3 25.5 

DB4 70.5 75.7 40.6 28.1 

2004 
DB1 101.1 106.7 51.9 35.2 

DB2 95.1 102.1 51.2 34.9 

2006 DB1 43.7 42.5 22.9 16.3 

 

The second part of the study focuses on the quality of the clustering solution 

obtained by the EHA-FCM technique in comparison to the one obtained by the RDRHA-

FCM technique in order to show the effect of using the adaptive threshold parameter n  

instead of   on the accuracy of the solution obtained. In order to measure the quality of 

the clustering solution ),( )2()2( UV  obtained by EHA-FCM technique relative to that 

),( )1()1( UV  obtained by RDRHA-FCM technique for the fingerprints in a given database, 

we define the following two metrics: 







c

j j

jj

v

vv

c
VVS

1
)1(

)2()1(

)2()1(

1

1
),(                (6.8) 


 




q

l

c

j lj

ljlj

u

uu

qc
UUS

1 1
)1(

)2()1(

)2()1(

2

1
),(                (6.9) 

These two metrics are computed for the fingerprints of each of the databases. Table 6.4 

gives the average values of the metrics in percentages. The very small values of these 

metrics for each of the databases clearly show that the solution obtained by EHA-FCM 

using adaptive threshold parameter n  is almost as accurate as that obtained by RDRHA-

FCM that uses a non-adaptive threshold parameter  . 
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Table 6.4: Average values of the metrics (in percentage) representing the quality of the 

solution obtained by EHA-FCM techniques over that obtained by RDRHA-FCM for 

various databases. 

 FVC2002 FVC2004 FVC2006 

DB1 DB3 DB4 DB1 DB2 DB1 

),( )2()1(

1 VVS  0.18% 0.17% 0.32% 0.2% 0.3% 0.56% 

),( )2()1(

2 UUS  0.17% 0.14% 0.19% 0.18% 0.55% 0.13% 

 

In order to visually compare the solutions obtained by the RDRHA-FCM and 

EHA-FCM techniques, six different fingerprint images are partitioned using these two 

techniques. The results are shown in Figures 6.4 and 6.5. Each figure contains three 

different fingerprint images in the first row and the corresponding partitioned images 

using the RDRHA-FCM and EHA-FCM techniques in the second and third rows, 

respectively. It is clear from these figures that the partitioned images obtained by the two 

techniques are identical, thus showing that the very small difference in the solutions of 

the two methods, as seen from Table 6.4, has little effect on the actual partitioning of 

fingerprint images. 

From the above comparative study, it is concluded that the performance, in terms 

of both the quality of the solution obtained and the overall computational complexity, of 

the proposed EHA-FCM technique is much superior to that of the HA-FCM technique. 
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(a) 

   

(b) 

   

(c) 

Figure 6.4: (a) A set of three fingerprint images. (b) Images partitioned using the 

RDRHA-FCM. (c) Images partitioned using the EHA-FCM. 
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(a) 

   

(b) 

   

(c) 

Figure 6.5: (a) Another set of three fingerprint images. (b) Images partitioned using the 

RDRHA-FCM. (c) Images partitioned using the EHA-FCM. 
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6.4 Summary 

In Chapter 5, a histogram analysis fuzzy c-means (HA-FCM) technique was developed 

for the partitioning of fingerprint images in terms of the ridge orientations of the image. 

The technique was shown to provide partitioned regions that are smoother than that 

provided by the quantization technique at a computational cost that is lower than that of 

using the standard FCM algorithm. 

In this chapter, an enhanced HA-FCM (EHA-FCM) partitioning scheme has been 

proposed in order to further improve the performance in terms of the smoothness of the 

partitions and the computational complexity of the HA-FCM technique. In order to 

enhance the smoothness of the partitioned regions, the idea of data regularization has 

been applied on the original ridge orientation by replacing a data item by the linear 

combination of itself and the average of its local neighboring data items. It has been 

shown that through this regularization process the regions, affected by noise, are 

smoothened while keeping the singular regions unaffected. The problem of 

computational complexity has been addressed in two stages. In the first stage, the amount 

of computations in each iteration has been reduced by making the clustering process to 

depend only on the distinct orientation values rather than on all the data items. In the 

second stage, the number of iterations has been reduced by developing a scheme for 

terminating the iterative process based on the number of data items without affecting the 

clustering process itself. 

A simulation study using challenging benchmark databases has been undertaken 

in order to show the effectiveness of the proposed scheme in this chapter. The simulation 

results have shown that, in comparison to the HA-FCM technique, the proposed EHA-
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FCM technique provides a solution for the fingerprint partitioning problem that is not 

only superior but also results in a significant reduction of the overall computational 

complexity. 
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CHAPTER 7 

A Multilevel Structural Fingerprint Recognition Based on the 

EHA-FCM Partitioning Scheme 

 

7.1 Introduction  

In Chapter 3, a fingerprint decomposition technique using two global features, namely 

singular points and ridge orientations of the fingerprint, was presented. In this technique 

the decomposition was carried out using a crisp clustering technique for both the 

determination of the singular points and the partitioning of the fingerprint orientation 

field. The resulting decomposed fingerprint image along with information on the local 

features was then used in Chapter 4 to formulate a multilevel feature representation of 

fingerprint image. Finally, this multilevel feature vector was used to develop a matching 

algorithm for fingerprint recognition. In the preceding chapter, an enhanced histogram 

based fuzzy c-means partitioning scheme, referred to as EHA-FCM technique, was 

presented. The new technique was shown to provide fingerprint partitioning that is 

smoother than that provided by using the HA-FCM partitioning technique at a lower 

computational cost. 

In this chapter, using this fuzzy based partitioning along with the ideas of fingerprint 

decomposition, representation and matching introduced in Chapters 3 and 4, is used to 

develop a new fuzzy based fingerprint recognition scheme referred to as fuzzy based 

multilevel structural technique for fingerprint recognition (FMSFR) [109]. In Section 7.2, 
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a fuzzy based algorithm for fingerprint decomposition is presented. This decomposition 

that comprises singular points and plain orientation field regions are then used in Section 

7.3 for devising a fuzzy based multilevel representation of fingerprints. In Section 7.4, a 

fuzzy based matching algorithm is developed for fingerprint recognition. Finally, in 

Section 7.5 extensive simulations are carried out to study the performance of the fuzzy 

based multilevel fingerprint recognition technique proposed in this chapter. 

7.2 EHA-FCM Based Fingerprint Decomposition Algorithm 

In Chapter 3, a fingerprint image was decomposed into regions (sub-images), such that 

each region has a unique global feature characteristic. In this section a fingerprint 

decomposition algorithm is designed based on the EHA-FCM fingerprint partitioning 

scheme proposed in Chapter 6. The fingerprint image is decomposed into singular and 

non-singular regions. A region is defined to be a singular region, if it contains a singular 

point (core or delta) or a plain region, if it contains only ridges having orientation values 

belonging to a specified cluster. 

To start with, the EHA-FCM partitioning scheme of the previous chapter is used 

on a given fingerprint image to obtain a fuzzy clustered orientation field ( FCOF ). Such 

that the i
th

 element of FCOF  represents all the clusters to which the i
th
 image block 

belongs to and the degree of belonging to each of these clusters in a certain order. Thus, 

each element of FCOF consists of a sorted set of ordered pairs given by 

       niuarururiFCOF
iiii airiiiriiri ,....,1,),(,....,),2(,),1()( )()2()1(                        (7.1) 

where  cjkri ,...,2,1)(  , iak ,...,1 , such that )(kiri
u  is the thk  largest value in the set 

 ciU ,...,1),,(  , and cai   is a positive integer representing the number of clusters in 
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which the total of the degrees of membership of the i
th
 image block is larger than a pre-

specified threshold  . 

Next, using FCOF , the singular points are detected by employing the fuzzy-

based cluster distribution scheme developed in Chapter 5. As was seen in that chapter, 

this scheme is able to detect the singular points accurately and also determine their types, 

i.e., upper or lower core, or left or right delta. Moreover, this scheme is able to calculate 

the orientation of the cores, which will also be necessary in the next section to formulate 

multilevel feature vectors. 

Finally, the fingerprint image is decomposed into different regions and 

represented as a set  
LPPPSSS  ,,...,,,,

21321
, where 

dS  is the d
th
 singular 

region and 
lP  is the l

th
 plain region. A singular region is defined as 

 GgFfB gfSd
,...,1,,...,1,,  , where gfB ,  is the ),( gf

th
 image block 

corresponding to a singular point (i.e. a core or delta). In the proposed method, a singular 

point region 
dS  could be only one of the three types: the core region 

1S  (upper and/or 

lower core), the left delta region 
2S , and the right delta region 

3S . Note that if both 

lower and upper cores exist simultaneously, they are included in the same region 
1S , 

since they are located in a relatively closer proximity than the left and right deltas do. In 

addition, the core region 
1S  is associated with the orientation of the core as calculated in 

Chapter 5. After excluding the items corresponding to the singular regions from the 

FCOF , the remaining items are then used to form a set of overlapping plain regions. 

Each plain region 
lP  is characterized by a cluster center jv , which corresponds to the 

orientation of that region, l . Hence, a plain region  MiB j

iPl
,...,1,   contains M  
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adjacent image blocks, where j

iB  is the i
th
 image block represented as an ordered pair 

 
ijuj,  such that  cj ,...,2,1  and iju  is the membership degree of this block to the j

th
 

cluster. As explained in Chapter 3, there is a possibility to have abnormal regions in the 

set  , i.e., isolated regions or small regions. Therefore, an isolated region is removed 

from  , and the items of a small region are distributed among the neighboring regions. 

In order to distribute the items of a small region in this fuzzy based decomposition 

algorithm, an item j

iB  of a small region 
lP  is first examined to determine if it has been 

already assigned to another region, if so, then it is removed from the small region. 

Otherwise, this item is assigned to a neighboring region 
kP  with qk v  such that the 

membership degree of this item cluster number q  is )2(iiriq uu  . 

The proposed fuzzy-based fingerprint decomposition scheme described in the 

preceding paragraphs can be summarized as an algorithm. 

Algorithm 7.1: Fuzzy-based fingerprint decomposition 

1- With a pre-initial number of clusters c , apply the EHA-FCM partitioning technique 

(Algorithm 6.1) on a given fingerprint image to obtain the clustering solution ),( UV  

and thus to obtain the fuzzy clustered orientation field ( FCOF ) as in (7.1). 

2- Detect the singular points in the fingerprint using the fuzzy-based cluster distribution 

scheme of Section 5.3. 

3- Define the singular point regions  GgFfB gfSd
,...,1,,...,1,,  , where gfB ,  is a 

one-dimensional index of the ),( gf th
 image block corresponding to a singular point 

(i.e. a core or delta), then remove these blocks from FCOF . 
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4- Divide rest of the items of FCOF  into c  groups. The j
th
 group represents the 

fingerprint image blocks belonging to cluster center jv . 

5- For each group j = 1 : c  

Define the plain regions  MiB j

iPl
,...,1,   by grouping the adjacent blocks into 

one region. The adjacent blocks are identified using the 8-connetcivity criteria [68]. 

6- Use the output of steps 3 and 5 to represent the decomposed image as a set of regions 

 
LPPPSSS  ,,...,,,,

21321
. 

7- For each plain region l = 1 : L 

 If the region is an isolated region, then remove the region from set  . 

 If the region is a very small region, then each item j

iB  of a small region 
lP  

is first examined to determine if it has been already assigned to another 

region, if so, then it is removed from the small region. Otherwise, this item is 

assigned to a neighboring region 
kP  with qk v  such that the membership 

degree of this item cluster number q  is )2(iiriq uu  . Finally, remove this small 

region from set  . 

7.3 Fuzzy-based Multilevel Fingerprint Representation 

The problem of fingerprint representation is to determine a measurement (feature) space, 

in which fingerprint images belonging to a specific finger form a compact cluster 

different from those of other fingers from the stand point of these features. The objective 

in devising a suitable fingerprint representation is to provide high accuracy in fingerprint 

recognition with a reasonable computational complexity. In Chapter 4, a multilevel 
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structural fingerprint representation was developed that included information on both the 

global and local features of the fingerprint. In this scheme, a region of the fingerprint was 

represented using three different levels of fingerprint characteristics. The main ideas of 

this representation can be summarized as follows: 

1) The global features of a region, which mainly represent the global structure of the 

fingerprint image with respect to the core region, are specified as ),(1 Corell l
FV   , 

where l  denotes both the relative position of the l
th
 region with respect to the core 

region as well as the type of the region, i.e., a singular or plain region, and Corel   is the 

orientation of a plain region relative to the orientation of the core.  

2) The neighborhood features of a region, which represent the region’s characteristics in 

relation to its adjacent regions, are specified as },...,1),,{(2 QqFV lqlql   , where lq  

is the position and lq  is the orientation of the q
th

 region relative to those of the l
th

 region. 

This level of characteristics is especially useful when the core point is not detectable. 

3) The local characteristics of a region that include the ridge curvatures and minutiae, 

which vary from region to region, are specified as }},...,1,),,{(,{3 RrtyxFV lrrrll   , 

where l  is the curvature of the ridges of the region and },...,1,),,{( Rrtyx lrrr   is the 

minutiae inside this region. 

In this section, a fuzzy-based scheme is presented for the formulation of these 

feature vectors. In the previous section, a preliminary representation for the fingerprint 

images was obtained as a set of singular regions and overlapping plain regions by using 

the fuzzy fingerprint decomposition technique (Algorithm 7.1). In this technique, an 

image block is made to belong to the plain region(s) for which the block has a 
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considerable degree of membership(s) (determined by  ) in its (or their) associated 

cluster(s). The fuzzy formulation of these three levels of characteristics is carried out 

using both the cluster centers and the membership belonging degrees. 

(i)  Formulation of Global Features (FV1) 

In order to capture the global structure of the fingerprint image, we specify three 

global features: (i) the type of the region, in regard to whether it is a plain or a singular 

region, and (ii) its position and (iii) its orientation, both relative to the core point. The 

first feature is already determined after the application of Algorithm 7.1 on the fingerprint 

image. To quantify the second and third features, we first introduce a new rectangular 

coordinate system and split the entire fingerprint image into eight sectors based on the 

location and orientation of the core point (Figure 4.1, reproduced here as Figure 7.1 for 

convenience). The location of the core point is considered as the origin. The new 

coordinate system consists of the axes Core and CoreP , where axis Core  is the orientation 

of the core region 
1S  as evaluated in Section 5.3, and the axis CoreP  is perpendicular to 

the axis Core  evaluated as. 




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


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
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
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
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
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CoreP

if

if

        (7.2) 

Starting from Core  axis, the entire image is divided into eight sectors, such that each 

sector covers 45
o
 of the space around the core point. Sectors are then labeled as 1 to 8. 

The second feature for each plain region is calculated by finding the sector in which the 

geometrical center CenterP _  of the region is located. 
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The above three features are used to form the first level (FV1) of the multilevel 

feature vector using only two components as follows: 

a- Type and position of a region ( ) 

In order to reduce the final fingerprint template size,   is used to represent 

both the relative position of a region with respect to the core point region as 

well as the type of the region. For a plain region
lP ,   represents the relative 

position, and hence, its value is between 1 and 8, and for singular regions, the 

core, left delta, and right delta are represented by the digits 9, 10, and 11, 

respectively. 

b- Relative orientation ( Core ) of a region 

By considering Core  as reference orientation, this feature is used to represent 

the orientation of a plain region relative to the orientation of the core. For each 

plain region, this feature is calculated by subtracting Core  from the orientation 

l  of the ridges of this plain region.  

With the formulation of FV1 as carried out above, it is seen that its two 

components are invariant to displacement and rotation, and thus a pre-alignment step, 

 

Figure 7.1: Coordinates system defined based on 
Core . 
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commonly employed prior to the matching process of the fingerprint recognition, would 

not be required. 

(ii) Formulation of Neighborhood Features (FV2) 

In order to capture the characteristics of a region in relation to its adjacent 

regions, a pair of features for each adjacent region, the relative position lq  and the 

relative orientation lq , is used. The feature lq  of region l  is defined as the position of 

the geometrical center of its adjacent region q  relative to that of region l . The second 

feature lq  is defined as the orientation of the adjacent region q  relative to that of region 

l . In order to evaluate lq , a coordinate system is defined in a manner similar to that 

defined for the formulation of global features by using the geometrical center CenterP _  of 

region l  as the origin and by using its ridge orientation l  instead of Core . The relative 

orientation  lq  is calculated by subtracting l  from q . The formulation of FV2 is a set 

of neighborhood features of region l  with the number of components equal to the number 

of adjacent regions.  

(iii) Formulation of Local Features (FV3) 

The third group of features, FV3, contains three local features: the average 

membership degree, the curvature of the ridges belonging to a region, and the set of 

minutiae contained therein.  

a- Belonging degree of a region ( l ) 

This feature is a measure of correctness of a region’s degree of belonging to 

its associated cluster. For the plain region 
lP , it is calculated as the average 

of the membership degrees of the blocks comprising the region: 
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



M

i

ijl u
M 1

1
                    (7.3) 

b- Curvature of a region ( l )  

This feature represents the curvature l  of the ridges of a region l , which is 

calculated only for the plain regions 
lP  as 

minmax lll               (7.4) 

where minl  and maxl  are, respectively, the smallest and largest orientation 

values of the ridges contained in region l , which are retrieved from the 

original orientation field O  within 
lP . Since the orientation of the region l  

is the cluster center jv , the lowest possible value minl  is expected to be 

2

1 jj vv
 and the largest possible value maxl  is expected to be 

2

1 jj vv
. 

Therefore, the value of the curvature l  is in the range [0, l ], where 

2

11  


jj

l

vv
. Hence, this l  is considered as the fuzzy-clustering step 

which depends on the clustering solution U  and V  obtained by the EHA-

FCM technique. 

c- Minutiae set  Rl mmmMinu ,...,, 21  

In the original MFV each minutia is represented as ),,( rrr tyx , where ),( rr yx  

and rt  is the minutia’s type (i.e. ridge ending or ridge bifurcation). Since the 

EHA-FCM partitioning scheme results into overlapping regions, it is expected 

that the same minutia may be assigned to different regions. Therefore, another 

feature representing the belonging degree of the minutia r  to a region under 
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consideration needs to be defined. The value of this feature is calculated as the 

membership degree of the image block, containing this minutia, to the region. 

By using the features formulated as above, a fuzzy-based fingerprint 

representation is defined as  LSSSFMFV  ,,...,,,, 21321
, in which 

 
dd SS FV1  corresponding to a singular region dS , and  llll FVFVFV 3,2,1  

corresponding to the plain region l , where ),(1 Corell l
FV   , 

},...,1),,{(2 QqFV lqlql   , and }},...,1,),,,{(,,{3 RrtyxMinuFV lrrrrllll    

contain, respectively, the global, neighborhood, and local features for a plain region l . 

7.4 Fuzzy-based Multilevel Matching 

The process of fingerprint matching is to compare the fingerprint templates of two 

fingerprint images and return a score between 0 and 1 representing the degree of 

similarity between the two fingerprint images, or a binary score of 0 or 1 indicating 

whether or not the fingerprint under consideration is the same as the reference fingerprint. 

The accuracy of the final decision and the response time are the two main concerns of a 

matching scheme. However, the requirements on the degree of accuracy and the response 

time of a matching scheme vary from one application to another. In Chapter 4, a 

multilevel matching (MLM) scheme using the MFVs was developed. In this scheme, a 

similarity measure for each feature in the MFVs was defined to provide the final 

matching score. The MLM algorithm was designed based on an early rejection strategy.  

In this section, some of the similarity measures, as defined in Chapter 4, are 

modified based on the new FMFVs formulated in Section 7.3. We denote the FMFVs 

corresponding to the reference fingerprint template retrieved from the database as 
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 MSSST  ,,...,,,, 21321
 with M plain regions, and the FMFVs corresponding to 

the template of the input fingerprint to be matched as  NSSSI  ,,...,,,, 21321
 

with N plain regions. As explained in the previous section, the formulation of FV1 

depends on the presence of core region; therefore, in the case when the core point does 

not exist or it is undetectable, in the proposed multilevel matching scheme we use only 

FV2 and FV3 to report the final matching  result between T  and I . 

On the onset, the proposed multilevel matching scheme determines whether or not 

both T  and I  belong to the same category. By using 
1S , 

2S , and 
3S  for the 

templates T  and I , the category of the fingerprint is identified as left loop, right loop, 

whorl, arch, or tended arch. If T  and I are found to belong to the same category, then by 

using FV1 the best corresponding pairs of regions from T  and I are found, and the 

degree of similarity, referred to as elementary similarity measure, between the two 

fingerprints is estimated. If the value of this elementary measure is equal to zero, then the 

proposed scheme reports a non-match and stops the matching process. Otherwise, the 

matching process moves on to the next level of matching, in which the calculations of the 

so called secondary similarity measure is carried out by using FV2 of T  and I . If the 

value of this secondary estimate is equal to zero, a non-match is reported and further 

matching of T  and I  is stopped. Otherwise, the matching scheme moves on to a third 

level and a tertiary similarity between T  and I  is estimated by using FV3. Finally, the 

three degrees of similarities are combined to obtain the final matching result. 

We now derive expressions for the three similarity measures of fingerprints, 

which in turn depend on functions representing the similarity of the regions from the T  

and I  templates, using FV1, FV2, and FV3.  
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1) Similarity measure based on FV1= { , Core } 

For a plain region, the value of the first component   ranges from 1 to 8; 

therefore, in order to find the correspondence between two plain regions belonging to T  

and I , respectively, we first define a spatial distance function between the two plain 

regions 
j

I and 
i

T  as 

 )()(8,)()(min))(),((
ijijij

TITITISD     (7.5) 

where )(
j

I  and )(
i

T denote the values of the type and position features for the 

regions 
j

I  and 
i

T , respectively. An optimal similarity function between these two 

regions is then obtained by using the normalized difference of the orientation values 

Core  of the regions from T  and I  as [17], [27] 
















 

 





otherwise0

1))(),((if
),(

exp
),(1

ij

ij

ij

TISD
TI

TIS


   (7.6) 

where ),(
ij

TI   is the normalized orientation distance between the two regions 
j

I and 

i
T evaluated by using (4.5). 

In order to find the best corresponding regions from I and T , the similarity 

between a region of the template I  and  a region of the template T  is first calculated 

using (7.6). Then region 
i

T  is reported as a best corresponding region i.e. mate of 
j

I , if 

the similarity between them is greater than all other similarities between 
j

I  and the 

other regions from template T . Hence, for each region Nj ,...,1  from template I , its 

mate from regions from T  can be formulated as  
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



 




 

,...,1,0),(0
)(

1

otherwisek

MiTISif
jB

ij

         (7.7) 

where k  is the index of the region from template T  that has maximum similarity with a 

region j  of template I . Thus, a value 0)( jB  implies that a region j  in template I  is 

not mated to any region in template T ; hence, 0),(
)(1  jBj

TIS . Finally, the expression 

for the elementary similarity measure between I  and T  is obtained as 





N

j
jBj

TIS
K

TIFV
1

1 ),(
1

),(1
)(

           (7.8) 

where K is the number of mated regions. 

2) Similarity measure based on FV2 = { jq , jq } 

A plain region j  has a group of neighbors  Qq ,...,2,1  each having a pair 

{ jq , jq } to represent the neighborhood relationship. The spatial distance function 

))(),((
ij

TISD ihjq    between two regions h  and q  representing the neighbor of the 

region i  in T  and that j  in I , respectively can be calculated using (7.5). In addition, the 

orientation distance function between these two neighboring regions h  and q  is defined 

as 

   










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TI ijij
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ihjqihjq

ihjq 
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))(),((0
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               (7.9) 

where 


 is the fuzzy threshold calculated as 

),min( ij 


   (7.10) 
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where j  and i  denote the values of the fuzzy-clustering steps as specified in Section 

7.3 for the regions 
j

I  and 
i

T , respectively. By using the two distance measures, )(SD  

given by (7.5) and )(0   given by (7.9), the neighborhood correspondence between a 

neighbor in T  and that in I can be obtained as 
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       (7.11) 

Then, the overall similarity measure ),(2 ij
TIS   between two regions from T  and I  

based on their neighborhood relationships is obtained as 

                    


 
Q

q

HhhTqISR
F

TIS
ijij

1

2 ,...,1)),(),((max
1

),(                      (7.12) 

where F is the number of mated neighborhood correspondence.  

Finally, the expression for the secondary similarity measure between I and T  is 

obtained as 





N

j
jBj

TIS
K

TIFV
1

2 ),(
1

),(2
)(

           (7.13) 

where K is the number of mated regions. 

3) Similarity measure based on FV3 = }},...,1),,,,{(,,{ Rrtyx rrrr   

The similarity function between the two regions 
j

I and 
i

T based on the first 

component of the feature vector FV3 is defined as 

)(

)()(
1))(),((

j

ij

ij I

TI
TIBD













                (7.14) 
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where )(
j

I  and )(
i

T  calculated using (7.3) represent the values of the belonging 

degrees for the regions 
j

I  and 
i

T , respectively. The similarity function between the 

two regions 
j

I and 
i

T based on the second component of the feature vector FV3 is also 

defined as 





 

 


otherwise

TIif
TICD ij

ij

0
2

)()(1
))(),((




                (7.15) 

where )(
j

I  and )(
i

T  calculated using (7.4) represent the values of the curvature 

features for the regions 
j

I  and 
i

T , respectively.  

As for the third component of FV3, the minutiae set 

},...,1),,,,{( RrtyxMinu rrrr   , we first compare the set in a region of I  with that of 

T  to determine the mated minutiae. The two minutiae, )(
j

Imr   and )(
i

Tmq   having the 

same type, are considered a mated pair if their Euclidian spatial distance 

))(),((
ij

TmImSD ql   is smaller than a pre-specified tolerance 0r , that is, 



 





otherwise

TtItandrTmImSD
TmImMD iqjij

ij

rqr

qr
0

)())())(),((1
))(),((

0
      (7.16) 

As mentioned in the previous section, some of the minutiae may belong to different 

regions; therefore, a minutia from 
j

I  already mated to a minutia from 
i

T  according to 

(7.16) may also belong to another region 
k

I . Thus such a minutia through its 

membership to 
k

I  may also mate to another minutia in 
l

T . In such a case, we keep 

only one mated pair, that is, the pair ))(),((
ij

TmIm qr   with the largest similarity 

measure obtained by using (7.14) with the arguments ))(),((
ij

TI    replaced by 
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)))(()),(((
ij

TmIm ql   . Then, a similarity measure using the minutiae set of FV3 is 

obtained as 

 


 
R

r

qr QqTmImMD
R

TMinuIMinuSM
ijij

1

,...,1)),(),((max
1

))(),((            (7.17) 

where R  is the total number of minutiae in 
j

I . The overall similarity measure 

),(3 li
TIS   between two regions based on FV3 can be defined as 

 ))(),(())(),(())(),((
3

1
),(3 

ijijijij
TICDTIBDTMinuIMinuSMTIS     (7.18) 

The tertiary similarity score between I and T  using the K  pairs of mated regions, is 

given by 

  



N

j
jBj

TIS
K

TIFV
1

3 ),(
1

),(3
)(

                                 (7.19) 

The final overall similarity score between I and T  is obtained as a weighted sum 

of the similarity measures given by (7.8), (7.13) and (7.19) as 

),(3.),(2.),(1.),( 321 TIFVwTIFVwTIFVwTIS            (7.20) 

where the values of the weights 1w , 2w  and 3w  can be adjusted depending on the nature 

of the fingerprint images. 

The proposed fingerprint multilevel matching scheme described in the preceding 

paragraphs can now be summarized as an algorithm. 

Algorithm 7.2: Fuzzy-based multilevel fingerprint matching  

1- For each region Nj ,...,1  of template I   

a. For each region Mi ,...,1  of template  T  

 Compute  ),(),(_ 1 ij
TISjimatrixSimilarity   using (7.6). 
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b. )),:1(_()(_ 1 jMmatrixSimilarityMaxjscoremated  . 

c. Compute )( jB  using (7.7). 

2- By using the 1_ scoremated , calculate the elementary similarity measure ),(1 TIFV  

using (7.8). If 0),(1 TIFV , then report a non-match and exit; otherwise go to step 3.  

3- For each region Nj ,...,1  of template I  

a. Let )( jBi  . 

b. Compute ),()(_ 22 ij
TISjscoremated   using (7.12). 

4- By using the 2_ scoremated , calculate the secondary similarity measure ),(2 TIFV  

using (7.13). If 0),(2 TIFV , then report a non-match and exit; otherwise go to step 

5. 

5- For each region Nj ,...,1  of template I   

a. Let )( jBi  . 

b. compute ),()(_ 33 ij
TISjscoremated   using (7.18). 

6- By using the 3_ scoremated , calculate the tertiary similarity measure ),(3 TIFV using 

(7.19).  

7- Compute the total similarity score between T  and I using (7.20). 

As mentioned earlier, in the case when the core point does not exist or it is 

undetectable, we use only FV2 and FV3. In such a case, FV2 is used to find the mated 

pairs of regions instead of using FV1. Thus, ),(1 ij
TIS   is replaced by ),(2 ij

TIS   in 

(7.7) for finding the list of mated regions B . 
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7.5 Experimental Results and Comparisons 

In this section, with the choice of the same benchmark databases as chosen in Chapter 4, 

the performance of the fuzzy-based multilevel structural technique for fingerprint 

recognition (FMSFR) is studied. First, the parameters needed for the implementation of 

the proposed scheme are determined. Then, the simulation results of implementing 

Algorithms 7.1 and 7.2 are presented, and the performance of the FMSFR technique, in 

terms of its recognition accuracy, template size and computational cost, is compared with 

that of the MSFR technique developed in Chapters 3 and 4. 

7.5.1 Selection of parameters  

In this subsection, the sets B of the databases selected are used to find the values of the 

parameters needed for the implementation of the FMSFR technique. 

For the EHA-FCM partitioning technique, the parameters N ,  , c ,  ,   and   

are determined as follows: 

(i) The most reasonable block size N  is selected as two times the ridge width of a 

fingerprint to provide a compromised performance between the recognition accuracy and 

complexity. 

(ii) The parameter  , used in (6.1), controls the effect of the neighboring elements on the 

value of the regularized orientation. The value of this parameter is empirically obtained to 

be unity to achieve the objective of smoothing the image blocks affected by noise with 

little or no effect on the singularity blocks. 

(iii) The pre-initial number of clusters c  is chosen to be 8 to be consistent with the 8-

level quantization used in Chapter 4. 
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(iv) Determining the optimal number of clusters c  in Algorithm 6.1 requires the 

knowledge of the most effective sub-ranges of the orientations of the fingerprint. These 

sub-ranges depend on the choice of the threshold parameter  , which is empirically 

obtained as 5% of the total number of data items (i.e., image blocks). 

(v) For determining the adaptive threshold parameter  nn   for Algorithm 6.1, the 

parameter   is obtained empirically to be 510  in order to ensure the convergence of the 

iterative fuzzy clustering process to an optimum solution. 

(vi) The threshold parameter   is used in (7.1), and it specifies the number of clusters in 

which a given data item can have adequate degrees memberships. In effect, this 

parameter controls the overlapping between the different regions of a fingerprint. It is 

obtained empirically to be 85% of the total membership degrees of a given data item, to 

provide a compromised performance between the recognition accuracy and the 

computational complexity. 

In the matching algorithm, Algorithm 7.2, based on the training set, the value of 

the parameter   is empirically fixed to be 6/1  for calculating the similarity measure 

),(1 ij
TIS  . The values assigned to the weights 1w , 2w  and 3w  in (7.20) are the same as 

those given in Table 4.2. For the sake of easy reference, this table is reproduced 

hereunder as Table 7.1. 

Table 7.1: The values of the weights used in (7.20) for the selected databases. 

Weight 

FVC 2002 FVC 2004 FVC 2006 

DB1 DB3 DB4 DB1 DB2 DB1 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

With 

core 

w/o 

core 

1w  0.2 0 0.25 0 0.25 0 0.2 0 0.25 0 0.25 0 

2w  0.2 0.4 0.2 0.45 0.2 0.45 0.2 0.4 0.2 0.45 0.2 0.45 

3w  0.6 0.55 0.55 0.6 0.55 0.55 
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7.5.3 Performance results and comparisons  

In this subsection, the performance of the FMSFR technique, in terms of its recognition 

accuracy, template size and computational cost, is presented and compared with that of 

the MSFR technique presented in Chapter 4. First, the recognition accuracy of the 

FMSFR technique is presented and compared with that of the MSFR technique, in terms 

of the ROC (false rejection rate (FRR) versus false acceptance rate (FAR)) curves and the 

equal error rate (ERR). Next, the average template sizes required by the two techniques 

are presented and compared. Finally, the computational costs of the two techniques are 

compared in terms of the CPU times required for the fingerprint decomposition, 

representation and matching. 

Table 7.2 gives the EER of the two techniques using the databases selected. By 

comparing the results listed in this table, the following two observations can be made. 

First, the FMSFR technique provides the values of the EER that are consistently smaller 

than that provided by the MSFR technique for the databases. Second, the improvements 

in the values of EER are larger for the databases FVC2002 (DB3 and DB4) and 

FVC2006 (DB1), in which the images are more affected by the behavioral and 

anatomical characteristics of the fingerprints.  

Table 7.2: EER (%) of the MSFR and FMSFR techniques. 

Technique 
FVC 2002  FVC 2004 FVC 2006 

DB1 DB3 DB4 DB1 DB2 DB1 

MSFR 2.57 % 6 % 2.81 % 2 % 3.2 % 5.21% 

FMSFR 1.52 % 3.34 % 1.38 % 1.56 % 1.94 % 3.7% 

Figures 7.2 to 7.7 depict the ROC curves provided by the two techniques for the 

various databases chosen. It is clear from these figures that the overall recognition 

accuracy provided by the FMSFR technique is higher than that provided by the MSFR 
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technique. These improvements in the recognition accuracy can be attributed to a more 

accurate extraction and representation of the fingerprint features using the fuzzy ideas. 

Specifically, a more accurate extraction of the fingerprint features, represented by the 

FMFV, results from: (i) the use of fuzzy clustering technique for fingerprint partitioning 

providing overlapping regions that are smoother than the non-overlapping regions 

provided by the quantization technique, and (ii) the use of fuzzy-based technique 

providing a higher accuracy for singular point detection. 

 

 

 

Figure 7.2: ROC curves obtained by using the FMSFR and MSFR techniques for the 

database FVC2002 DB1. 
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Figure 7.3: ROC curves obtained by using the FMSFR and MSFR techniques for the 

database FVC2002 DB3. 

 

 

Figure 7.4: ROC curves obtained by using the FMSFR and MSFR techniques for the 

database FVC2002 DB4. 
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Figure 7.5: ROC curves obtained by using the FMSFR and MSFR techniques for the 

database FVC2004 DB1. 

 

 

Figure 7.6: ROC curves obtained by using the FMSFR and MSFR techniques for the 

database FVC2004 DB2. 
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Figure 7.7: ROC curves obtained by using the FMSFR and MSFR techniques for the 

database FVC2006 DB1. 

 

Table 7.3 gives the average number of regions provided and average template 

sizes required by the FMSFR and MSFR techniques for the databases selected. By 

comparing the results listed in this table, it is seen that the average template size of 

FMFV is always larger than that of MFV. This is expected, since FMFV contains more 

features in the FV3 (i.e., l  and r  ). However, it is also seen from Table 7.3 that the 

FMSFR technique still belongs to the light category in the FVC2004 [41] and FVC2006 

[46] competitions in terms of the template size. 

Table 7.3: The number of regions provided and the template sizes (in bytes) required by 

the FMSFR and MSFR techniques. 

Technique  
FVC 2002  FVC 2004 FVC 2006 

DB1 DB3 DB4 DB1 DB2 DB1 

MSFR 

Number of 

regions 

11 8 9 11 10 5 

Template size 252 206 208 270 273 102 

FMSFR 

Number of 

regions 

9 7 8 9 8 5 

Template size 326 264 286 355 357 145 
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Table 7.4 provides the CPU times of implementing the fingerprint decomposition, 

template formulation and matching in each of the two techniques using the same 

hardware as described earlier in Section 4.4. In this table, the parenthesized quantities are 

the parts of the total fingerprint decomposition CPU times, which result from 

implementing the EHA-FCM partitioning scheme in the FMSFR technique. By 

comparing the CPU times for the fingerprint decomposition of the two schemes, the 

following three observations can be made. First, the fuzzy-based fingerprint 

decomposition technique requires, in general, larger CPU times than that required by the 

fingerprint decomposition using the MSFR technique. This higher computational cost of 

the fuzzy-based fingerprint decomposition technique results from the use of the EHA-

FCM partitioning scheme instead of using the simple quantization scheme. Second, after 

accounting for the fingerprint partitioning part of the decomposition time, the remaining 

CPU time for the decomposition in the FMSFR technique is smaller than that in the 

MSFR technique. This is because of the fact that the construction of the regions using 

already smoothened clustered orientations (FCOF) in the FMSFR technique is less time 

consuming. Third, even though the decomposition time in the FMSFR technique 

increases as the fingerprint data size becomes larger, it is not affected significantly by the 

difficulty of the fingerprints. This is due to the fact that the histogram analysis technique 

by providing the number of clusters and their initial centers brings the process of 

fingerprint decomposition to a stage where the process from that point on is less affected 

by the difficulty of the fingerprints. A comparison of the CPU times resulting from the 

two schemes for the fingerprint template formulation and matching shows that the 

FMSFR technique requires, in general, smaller CPU times than that required by the 
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MSFR technique. This improvement in the computational cost for template formulation 

and matching results from a reduced number of regions (as seen from Table 7.3) provided 

by the fuzzy-based fingerprint decomposition algorithm of the FMSFR technique. As for 

the enrollment times of the two techniques, the average enrollment time of the FMSFR 

technique is 0.25 s compared to 0.23 s required by the MSFR technique. Despite this 

increase in the enrolment time, which is of course very modest, the FMSFR technique 

still belongs to the light category in the FVC2004 [41] and FVC2006 [46] competitions in 

terms of the computational cost. 

Table 7.4: CPU times (ms) for the fingerprint decomposition, template formulation and 

matching of the MSFR and FMSFR techniques. 

Module Technique 
FVC2002  FVC2004 FVC2006 

DB1 DB3 DB4 DB1 DB2 DB1 

Fingerprint 

decomposition 

MSFR 30 25 25 34 35 37 

FMSFR 
57 

(36.4) 
41 

(25.5) 
46 

(28.1) 
57.8 

(35.2) 
57.6 

(34.9) 
30.3 

(16.3) 

Template 

formulation 

MSFR 20 18.5 16.5 27 24 8.6 

FMSFR 18.6 16.5 15.7 25.7 21.7 7 

Matching 
MSFR 6.2 3.9 3.6 6.24 5.3 2.5 

FMSFR 3.7 2.8 3 3.7 3.2 2.5 

Finally, it is concluded that the FMSFR technique provides a higher recognition 

accuracy than that provided by the MSFR technique at the expense of requiring a larger 

template size and a slight increase in the computational cost. It is worth, however, 

pointing out that the technique still belongs to the light category in the FVC2004 [41] and 

FVC2006 [46] competitions. 

7.6 Summary 

In Chapters 3 and 4, a multilevel structural technique for fingerprint recognition (MSFR) 

was developed based on a crisp clustering of fingerprint features. In Chapters 5 and 6, 
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histogram based fuzzy c-means fingerprint partitioning schemes providing a fingerprint 

partitioning that is smoother than that provided by using the crisp technique of Chapters 3 

and 4 were developed. In this chapter, using this fuzzy based partitioning along with the 

ideas of fingerprint decomposition, representation and matching introduced in Chapters 3 

and 4, a new fuzzy based fingerprint recognition scheme (FMSFR) has been developed. 

First, a fingerprint decomposition scheme (Algorithm 7.1) has been developed using the 

fuzzy clustered orientation field provided by the EHA-FCM technique of Chapter 6. 

Next, a new fuzzy-based multilevel feature representation (FMFV) has been formulated 

using the set of regions obtained from this fuzzy decomposition algorithm. The resulting 

fuzzy multilevel feature vector has included in it some features in addition to those in the 

feature vector of the crisp technique. Finally, some fuzzy-based similarity functions have 

been formulated and used to compare the features of different fingerprints in the fuzzy-

based multilevel matching technique. 

A simulation study using some challenging benchmark databases has been 

undertaken in order to show the effectiveness of the scheme proposed in this chapter. In 

this study, the performance of the FMSFR technique, in terms of its recognition accuracy, 

template size and computational cost, has been presented and compared with that of the 

MSFR technique. The simulation results have shown that, in comparison to the MSFR 

technique, the proposed FMSFR technique provides higher recognition accuracy with a 

reasonable increase in the complexity measured in terms of the CPU time and template 

size. 
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CHAPTER 8 

Conclusion 

 

8.1 Concluding Remarks  

Fingerprints are considered to be one of the best biometric measurements and are used as 

a universal personal identifier. There are two main phases in the recognition of personal 

identity using fingerprints: 1) extraction of suitable features of fingerprints, and 2) 

fingerprint matching making use of the extracted features in order to find the 

correspondence and similarity between the fingerprint images. The use of both local and 

global features of a fingerprint in a technique for fingerprint recognition is useful in 

solving the problems that arise from the behavioral and anatomical characteristics of 

fingerprints, such as ridge pattern deformation or distortion, translation and/or rotation, 

incomplete fingerprint. However, such schemes result in an increased complexity in 

feature extraction and representation and a larger size fingerprint template in comparison 

to that obtained by using the traditional minutiae-based approaches. Further, most of the 

fingerprint recognition schemes rely on some sort of crisp clustering of the fingerprint 

features. Recognition accuracies of such schemes are adversely affected due to the 

behavioral and anatomical characteristics of fingerprints. This research has been 

concerned with the development of efficient and cost-effective techniques for fingerprint 

recognition, that can meet not only the challenges arising from using both the local and 

global features of the fingerprints but also deal effectively with the problems resulting 

from the crisp clustering of the features specifically when the fingerprints have 
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behavioral or anatomical characteristics. With this objective, the work of this research has 

been carried out in two parts. 

In the first part of the thesis, a low-complexity multilevel structural fingerprint 

recognition (MSFR) scheme, using both the local and global features extracted from a 

crisp partitioning of the fingerprint orientation field, has been developed. The main focus 

of the proposed scheme has been on overcoming the problems resulting from the 

behavioral and anatomical characteristics as well as from the crisp partitioning of 

fingerprint images. 

Based on a study of relative merits of different global features, a fingerprint image 

has been first decomposed into singular and plain regions by using only the singular 

points and the ridge orientation field as global features. Then, by employing the structural 

information of local features (i.e., ridge curvature and minutiae) and global features of 

each region, three-level feature vectors are formulated with levels for global, 

neighborhood, and local features of the region. The idea of using multilevel feature 

vectors (MFVs) ensures that the fingerprint templates contain all the available useful 

information from the fingerprint image. Inclusion of the global features in the proposed 

MFVs makes the fingerprint representation to be less variant to the displacement, rotation 

and deformation of the fingerprint ridges. In the proposed MSFR technique, the features 

have been obtained by using some simple mathematical operations. Therefore, the 

complexity in obtaining the MFVs representing these features are not significantly 

increased over those of obtaining single-level minutiae based representations.  

Finally, in the MSFR technique, a very fast fingerprint matching scheme, referred 

to as multilevel matching (MLM) scheme, has been devised. In this scheme, the 
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correspondence problem is dealt with by making use of the global feature components of 

the MFVs, whereas the similarity problem is taken care by employing all the three levels 

of features contained in the MFVs. The fast matching speed can be attributed to the 

following two features of the proposed scheme: 1) a significantly reduced number of 

comparisons required to provide the matching decision, and 2) the strategy of an early 

rejection that allows the MLM scheme to skip the second and/or third levels of matching. 

As a result, the proposed scheme could be very attractive for fingerprint identification 

applications involving large scale databases.  

Extensive experiments have been conducted using six challenging benchmark 

databases to investigate the effectiveness of the proposed MSFR scheme. These 

benchmark databases have been selected from the FVC2002, FVC2004 and FVC2006 

competitions containing a wide variety of challenges in fingerprint recognition. The 

proposed MSFR scheme has been compared in terms of the recognition accuracy and the 

template size with the existing schemes that also use some of the global features of the 

fingerprint in addition to the local minutiae attributes for fingerprint representation and 

matching. The experimental study has shown that the proposed MSFR scheme provides a 

performance superior to those of the other schemes used for an objective comparison. 

Inspired by the ability of fuzzy-based clustering techniques in dealing with the 

natural patterns, in the second part of the thesis, a fuzzy based multilevel structural 

fingerprint recognition (FMSFR) scheme has been developed to deal more effectively 

than in the MSFR scheme with the problems associated with the behavioral and 

anatomical characteristics of fingerprints. 
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First, a histogram analysis fuzzy c-means (HA-FCM) clustering technique has 

been devised for the partitioning of fingerprints. The parameters of this partitioning 

technique, i.e., the number of clusters and the set of initial cluster centers, have been 

made to be data dependent by determining them based on the analysis of the orientation 

field histogram of a fingerprint image. The output of the proposed HA-FCM algorithm, 

which is a set of cluster centers and the degrees of belonging of each data item to 

different clusters, has been used to partition the fingerprint image and thus to construct a 

fuzzy clustered orientation field (FCOF). The proposed HA-FCM partitioning technique 

has been shown to provide (i) smoother regions compared to that provided by the 

quantization technique and (ii) a more realistic partitioning that corresponds to the ridge 

pattern of the fingerprint image under consideration at a lower computational cost, in 

comparison to the FCM technique. By using the FCOF, a novel low-complexity singular 

point fuzzy-based detection scheme has been developed, which has been designed not 

only to detect the singular points but also to identify their types. It has been shown that 

the proposed singular point detection scheme outperforms some of the state of the art 

techniques, in terms of the detection accuracy at low computational cost.  

The development of the HA-FCM partitioning scheme has been further continued 

to devise an enhanced HA-FCM (EAH-FCM) algorithm. In this algorithm, the 

smoothness of the fingerprint partitioning has been further improved through a 

regularization process of the fingerprint orientation field, and the computational 

complexity has been reduced by decreasing the number of operations and by speeding up 

the convergence rate of the underlying iterative process of the HA-FCM technique. The 

EHA-FCM technique has been shown to provide a solution for the fingerprint 
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partitioning problem that is superior to that provided by the HA-FCM technique with a 

significantly lower computational complexity.  

Finally, using the fingerprint partitions and singular points obtained from the 

EHA-FCM technique, along with the ideas developed in the MSFR scheme, a new fuzzy 

based fingerprint recognition scheme (FMSFR) has been devised. First, a fingerprint 

decomposition algorithm is developed using the fuzzy clustered orientation field, which 

provided by the EHA-FCM technique. Next, a new fuzzy-based multilevel feature 

representation (FMFV) has been formulated using the set of regions obtained from this 

fuzzy decomposition algorithm. The resulting fuzzy multilevel feature vector has 

included in it some features in addition to those in the feature vector of the crisp 

technique. Finally, some fuzzy-based similarity functions have been formulated and used 

to compare the features of different fingerprints in the fuzzy-based multilevel matching 

(FMLM) technique.  

A simulation study using the same challenging benchmark databases as used in 

the first part of this work has been undertaken in order to show the effectiveness of the 

FMSFR scheme. The simulation results have convincingly demonstrated that the 

incorporation of fuzzy based schemes in the fingerprint decomposition, representation 

and matching has significantly improved the recognition accuracy of the multilevel 

structural fingerprint recognition scheme with only a modest increase in its complexity. 

Therefore, the FMSFR scheme proposed in this thesis could be very attractive for 

fingerprint identification applications involving large scale databases and/or requiring 

limited storage space. 
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8.2 Scope for Future Work 

While the research work undertaken in this thesis has focused on developing efficient and 

cost-effective techniques for fingerprint recognition that can meet the challenges arising 

from using both the local and global features of the fingerprints as well as effectively deal 

with fingerprints’ behavioral and anatomical characteristics, in the opinion of the author 

of this thesis, there are a number of additional studies that could be undertaken along the 

lines of the ideas developed in proposing a multilevel structural approach for fingerprint 

recognition. 

1. Recently, the intra-ridge details at the very-fine-level of the fingerprint images 

have been identified and acquired using high-resolution scanners. These intra-

ridge details may include features such as the width, shape, curvature, edge 

contours of the ridges. One of the most important very-fine-level details is the 

finger sweat pores, whose positions and shapes are considered highly distinctive. 

The formulation of the multilevel representation could be extended to include 

some of these features. 

2. One could also study the effect of developing a fuzzy-based fingerprint indexing 

technique using the multilevel representation proposed in this thesis to reduce the 

matching space for fingerprint identification applications. 

3. The use of the fuzzy clustered orientation field in enhancing the fingerprint 

images could also be studied.  

4. A study could be undertaken to develop fuzzy based schemes for multimodal 

biometric systems by using the ideas of the multilevel structural approach 

developed in this thesis for fingerprint recognition. 
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