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Abstract

ECTree: An Extended Tree Index Structure for Attributed Subgraph

Queries

Jun Luo

Graphs are popular data structures for modeling complex data types, especially

graphs with attributes for gene sequences, protein structures, chemical compounds,

protein interaction networks, social networks, etc. There is a need for managing such

graph data and providing efficient querying tools. In the graph mining realm, the

problem lies in indexing a large number of graphs for fast retrieval. Indexing at-

tributed graphs and using attributed queries can provide faster response time and

more refined results.

This thesis focuses on extending an existing index to support attributed graph

indexing and providing subgraph querying access to the extended index. The aim is

to find a way such that the labels of the graphs as well as the attributes of the graphs

are indexed at the same time. A query format is provided to query the extended

index on the attributes with flexibility which allows intervals to be used. In addition,

regular expressions and label groups are used as query labels so that multiple queries

that have similar structures can be combined as a single query. This also benefits

in that a query graph does not have to use fixed labels. We also introduce a vertex

degree-attribute based vector to capture both the features of a data graph and a query

graph. A novel pruning method is proposed and implemented so that the pruning

based on the degree-attribute vectors can still be adopted even when it is not clear

how to define a histogram pruning for the query graphs that use non-fixed labels. All

the techniques presented in our work are validated through experiments on both real

and synthetic datasets.
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Chapter 1

Introduction

Along with the improvement of technology in biology and its related realms comes

large volumes of different kinds of data. The Human Genome Project (HGP) is one

of the projects with a primary goal of determining the sequence of chemical base pairs

which make up DNA and to identify and map the approximately 20,000 to 25,000

genes of the human genome [Gen] [Kru01]. Each gene contains a long sequence made

up of hundreds or even thousands of ‘genetic words’, which means the HGP also

brings about a fast growing need for the analysis of biological data. The focus of

recent biology related realms has shifted from the technology itself, via generating

data, to the management of the huge amount of data. By management we mean

collecting the data into databases, organizing them according to needs and finally

finding the information needed from the databases.

There are multiple types of data that are involved in biology-related realms: gene

sequences, protein structures, chemical compounds, protein interaction networks, etc.

They naturally have the basic features of a graph: a set of vertices and a set of edges,

and thus can be easily modeled as graphs. More broadly speaking, graphs have been

widely used to model various types of data, such as flight networks [AEP09], XML

data and queries [FGMP09], and social networks [BK09]. No matter what type it is,

since graphs form a complex and expressive data structure, we need efficient and effec-

tive methods for representing graphs in databases, manipulating and querying them

[AW10]. A key issue is that the data management software needs to be easy–to–use,

yet provides fast response time [BWWZ06].
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1.1 Graph Data

In bioinformatics and cheminformatics, graphs have been used to represent complex

data types [HS06], such as protein structures (Figure 1(a)), metabolic pathways (Fig-

ure 1(b)), chemical compounds (Figure 1(c)) and gene structures (Figure 1(d)).

(a) Protein structure of S. pombe pop2p dead-
enylation subunit [Deb]

(b) NAD metabolism pathway [Vic]

(c) Guanosine monophosphate [Cac] (d) Gene [Rav]

Figure 1: Varieties of graph data

The graphs that model different types of data can have different meanings on the

vertices and edges. For example, a metabolic pathway is modeled as a set of enzymes,

chemicals (also called metabolites) and reactions, where the edges are the connections
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between metabolites. The vertices for a single chemical compound could be the atoms

in the compound, and the edges are the bonds between the atoms.

1.2 The Problem

There has been a lot of work related to graph database management. We review

some of the major and/or latest works in Chapter 6. By studying varieties of graph

data indexes that are effective and efficient for the graph queries, we find that most

graph database indexes focus only on vertex-labeled and/or edge-labeled graphs, while

in general, there has been lack of studies on graph data indexes which can handle

vertices with attributes on index building, querying, as well as studies on flexible

query formats and corresponding optimization strategies.

Although the essential components of a graph are the vertices and the edges, in

many cases we can find that a graph may contain more information on the vertices

and the edges. For example, the transformation between two metabolites may have

certain conditions; an atom may have isotopes and a charge on it. This thesis aims

at developing an effective graph data index to organize small graphs with both label

indexing and attribute indexing, and to provide graph queries that have extended

features such as attributes on vertices. A small graph is defined as a graph with less

than 100 nodes [BV99]. In this thesis, we define it as a graph with less than 15 nodes.

In previous work, the query graphs have fixed labels which allows no flexibility.

Querying two similar graphs would be more efficient if there is a way to combine those

queries into one query. Thus we aim at providing a flexible query format for our new

index and developing a pruning method for the new query format as well.

1.3 Contributions

The contribution of this thesis can be classified as follows:

Study of merging numerical attributed graphs and extension of the tree index

structure for additional attributes. We implemented the CTree index in C++

and extended the index to support numerical attributes in both indexing and

querying. Our approach reveals that the indexing on both labels and attributes

3



is faster in terms of querying response time than indexing on only labels for

attributed graphs.

A query format to query the extended index with flexibility on the attribute

part, with non-fixed query labels supported which uses regular expression. The

new query format also allows queries with similar graph structure to be com-

bined into a single query.

A pruning method that works when the vertex labels are non-fixed or unknown.

The new pruning is based on the degree and attribute information of vertices

on data and query graphs. We proposed the method and implemented it to test

its pruning power.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 introduces the background

knowledge necessary for understanding the work in this thesis. Chapter 3 illustrates

the extension of the Closure-Tree [HS06] graph index. Chapter 4 describes a query

format combined with regular expression and a pruning method based on the vertex

degree and attributes. Chapter 5 provides validations of our work in Chapters 3 and

4. Chapter 6 discusses the related work to this thesis. Chapter 7 gives a conclusion

and discussions for the future work.
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Chapter 2

Background

This chapter gives the background knowledge which is necessary to understand the

described problem and related solutions in the following chapters.

2.1 Graph Databases

In past decades, the focus of the genome project has shifted from technology de-

velopment to data management. As more data is generated, data analysis becomes

more essential. A graph database supports data analysis with appropriate database

management [GBL95].

By definition, a graph database model is a model such that data structures for

the schema and instances are modeled as graphs or generalizations of them, and data

manipulation is expressed by graph-oriented operations and type constructors [AG08].

An SQL database [Mel96] addresses a many-to-many relationship with a join table

that could be huge when the relationship is complex and might lead to unwieldy,

long, incomprehensible SQL statements as well as unpredictable performance [Wig].

Comparing to relational databases, a graph database is designed to represent and

query this type of information, so it models the data more naturally.

The essence of a graph database lies in what qualifies as a node, and what qual-

ifies as an edge [Wan10]. A typical graph data model allows simple labels on the

nodes. The labels are usually numbers or strings and are the main recognition of the

nodes. Still, a node can contain some other attributes which are encoded by means of

“additional attributes” that are data values of various types. For example, a person
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has a name, as well as other information such as sex, age, nationality, and so on.

A graph database may contain many small graphs, such as a graph database for

chemical compounds [NCI], or, a graph database can contain a small number of large

complex graphs. For example, each of the Carbohydrate Metabolism pathway dataset

[KEG] could be a large graph that contains hundreds of metabolites and connections.

Thus, the main purpose of the graph databases is to find a proper way to model the

graph data so as to better serve the consequential graph data mining phase.

2.2 Subgraph Query and Matching

2.2.1 Subgraph and Subgraph Query

A commonly asked type of question mentioned in [CG70] is to find whether a given

chemical compound is a subcompound of a further specified compound, given the

structural formulas. In graph theory, this type of problem is generalized as to find

whether a given graph is a subgraph of another graph. We denote a graph G as

G V,E where V is the vertex set and E is the edge set. The formal definition for a

Subgraph is given here [BL]:

Definition 1 Subgraph

A graph G V ,E is a subgraph of another graph G V,E if and only if

V V and

E E

According to Definition 1, we can see that a graph G V,E is also a subgraph

of itself.

The task of a Subgraph Query is to find graphs which contain a specified graph

as a subgraph. Subgraph queries are widely applied for graph data mining and are

important in bioinfomatics and cheminfomatics because scientists frequently ask ques-

tions such as: is a specified metabolism pathway contained in this set of metabolism

pathways? Or, how many chemical compounds that develops potential cancer contain

this particular chemical substructure? A considerable amount of research has been

done into finding a subgraph in a set of graphs of a graph database. Some recent
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researches on subgraph mining algorithms can be found in [PLM08], [WC10] and

[FB08].

Figure 2 gives a simple example showing a graph G1 (Figure 2(a)) and one of its

subgraphs G2 (Figure 2(b)). If graph G2 is used as a subgraph query and graph G1

is a graph in the database being queried, then G1 should be returned as one of the

query results.

(a) G1 (b) G2

Figure 2: An example of a graph and its subgraph

2.2.2 Graph Isomorphism and Subgraph Isomorphism

Two graphs, G1 and G2, are the same if it is possible to redraw one of them, say

G2, so it appears identical to G1. In graph theory, the term isomorphic is used to

describe graphs that are the same but are models of different situations. If two graphs

G1 and G2 are equivalent graphs, they are referred as isomorphic graphs [Cha85].

The process of graph matching is to determine whether two graphs are isomorphic

or not. For instance, the graph G1 and G2 in Figure 3 (extracted from [Cha85]) are

isomorphic. If two graphs G1 and G2 are isomorphic, we say G1 is isomorphic to G2

and that G2 is isomorphic to G1.

Attributes of vertices are denoted by attr v . The definition for Graph Map-

ping, Graph Isomorphism and Isomorphic Graphs are given below [HS06]

7



(a) G1 (b) G2

Figure 3: Two isomorphic graphs

[Cha85]:

Definition 2 Graph Mapping

A mapping between two graphs G1 and G2 is a bijection φ : G1

G2, where (i) v V1, φ v V2, and (ii) e v1, v2 E1, φ e

φ v1 , φ v2 E2.

Definition 3 Graph Isomorphism and Isomorphic Graphs

A graph isomorphism from G1 to G2 is a graph mapping φ from G1 to

G2 such that (i) v V1, φ v V2 and attr v attr φ v and (ii)

e E1, φ e E2 and attr e attr φ e . Two graphs G1 and G2 are

isomorphic if a graph isomorphism exists from G1 to G2. Graph isomor-

phism is symmetric.

Given the definition of isomorphic graphs, the definition of Subgraph Isomor-

phic and Subgraph Isomorphism can then be given as follows.

Definition 4 Subgraph Isomorphic and Subgraph Isomorphism

A graph G1 is subgraph isomorphic to another graph G2 if G1 is isomorphic

to a subgraph of G2. A subgraph isomorphism exists between G1 and

G2 if G1 is subgraph isomorphic to G2. Subgraph isomorphism is not

symmetric.

8



The subgraph isomorphism problem has long been proved to be NP-complete using

a reduction from 3-SAT involving cliques [Coo71]. There has been a lot of research into

finding a fast algorithm for subgraph isomorphism decision. Early research in [Ull76]

proposed exact subgraph isomorphism algorithms which are devised for both graph

isomorphism and subgraph isomorphism and are still some of the most commonly used

algorithms for exact graph matching today. (The subgraph isomorphism algorithm

described in [Ull76] is used in this thesis.) [Epp95] proposed a linear time method to

solve the subgraph isomorphism problem in planar graphs for any pattern of constant

size. [CFSV04] demonstrated an algorithm, namely VF2, for isomorphism problems

when matching large graphs. A state-of-the-art subgraph isomorphism algorithm

called QuickSI is introduced in [SZLY08].

Having the definition of subgraph isomorphism, when referred to a subgraph of a

graph, we can simply say: a graph G V,E is a subgraph of another graph G V ,E

if G is subgraph isomorphic to G under graph mapping φ.

In this thesis, SubgraphIsomorphism G1,G2 is used to refer to the subgraph

isomorphism test to determine whether or not a graph G1 is a subgraph of another

graph G2.

2.3 The Filtering-and-Verification Framework

Though much research has been done into accelerating the process of subgraph iso-

morphism test, the time cost for this process is still heavy. Thus, a direct comparison

of a query graph to each of the graphs in the dataset using a subgraph isomorphism

algorithm is very inefficient. Different graph indexes for graph databases are used to

decrease the number of subgraph isomorphism tests for graph queries and therefore

gain a better performance in terms of time cost.

Most graph database indexes follow a common framework called Filtering-and-

Verification [ZCZ 08], as shown in Figure 4.

The filtering step firstly builds an index using the graphs in the dataset. Then the

index is used to eliminate some false results (usually most of the false results) and

produces a candidate set. The last step is to use the expensive subgraph isomorphism

test to verify the candidate set and obtain the final result set [CKNL07]. Since the

candidate set is much smaller than the original dataset, it is more efficient to use an

9



Figure 4: The filtering-and-verification framework as a pipe and filter system

index than naive sequential scan.

There has been a lot of research about graph indexes using the filtering-and-

verification framework. [HLPY10] categorized them into two main types depending

on whether they use frequent graph mining. A frequent graph mining algorithm is an

algorithm that discovers all subgraphs which occur frequently in the database, with

the motivation that these are the subgraphs with a statistically significant amount of

occurrences in the database [NK04].

Mining Based Approaches is the first category. The main process of building

the index in this category is to extract subgraphs as features in order to obtain a set

of feature graphs. Each feature graph is associated with a list of graph IDs which

contain this feature graph as a subgraph. In the query process, the candidate graphs

are obtained by finding features associated with the posting lists and intersecting the

lists. A subgraph isomorphism test is used to refine the candidates to get the final

result [HLPY10].

Non-Mining Based Approaches is the second category. Graph indexing and

query processing methods in this category do not share the same features. Graph-

Grep [SWG02], Summarization graph [ZCZ 08] and Closure-Tree [HS06] are in this

category. We will introduce the Closure-Tree in Section 2.5 which forms a basis for

our work.
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2.3.1 The False-Positive Rate in Candidate Answer Set

In the filtering phase, the false-positive rate is the probability of categorizing a nega-

tive result into the candidate set. Statistically, assume SC is the candidate answer set

for a query Q after filtering, the result set SR is obtained after verifying Q with SC ,

we have the false-positive rate FP = SC SR

SC
. In contrast, the true-positive rate TP

= SR

SC
. The false-positive rate can be reduced by selecting some proper filtering meth-

ods, thus to reduce the size of the candidate answer set to speed up the verification

process.

2.4 Dead Space in Graph Merging

Graph merging is an operation for a set of graphs, say S, to merge them into a single

graph GMerge, in a way that all the graphs in S are subgraphs of the generated graph

GMerge: g S, g is subgraph-isomorphic to GMerge.

Graph merging has an obvious feature for subgraph mining: if a query graph GQ

is a subgraph of one of the graphs in the set S, say G1, then GQ is a subgraph of

the merged graph GMerge. This is equal saying that, if GQ is not a subgraph of the

merged graph GMerge, then GQ is not a subgraph of any of the graphs in the set S.

This kind of organization of graphs benefits the subgraph mining process because if

GQ is not a subgraph of GMerge, then no further test is needed to examine each of the

graphs in S, and thus the execution times of the expensive subgraph-isomorphism

test is reduced to 1 from up to S .

To use the benefits of graph merging there is a price to be paid in terms of Dead

Space. The dead space of a merged graph Gmerge is the space inside Gmerge but

contains no graphs that are in the graph set S [HLPY10]. We use an example in

Figure 5 to explain the concept of dead space. Gmerge can be obtained by merging G1

(Figure 5(a)) and G2 (Figure 5(b)). It is obvious that Gmerge satisfies the condition

that both G1 and G2 are its subgraphs. There are two simple query graphs GQ1(Figure

5(d)) and GQ2(Figure 5(e)), both of which are not subgraphs of any of the graphs in

S. Table 1 shows a comparison of numbers of subgraph isomorphism tests executed

using G1 and G2 as query graphs in different graph matching strategies.

Query GQ1 benefits from the graph merging pre-process, but for GQ2, the number

11



(a) G1 (b) G2 (c) Gmerge

(d) GQ1 (e) GQ2

Figure 5: An example showing the dead space

of subgraph-isomorphism test is even larger than naive sequential scan of the dataset.

Because GQ2 is a subgraph of Gmerge but is not a subgraph of G1 or G2, thus we

consider GQ2 to be a graph in the dead space of Gmerge. There are many more sample

graphs that are in the dead space of Gmerge which make the merged graph somehow

inefficient. The larger the dead space of Gmerge is, the less graph matching can benefit

from graph merging.

The solution to reducing the dead space is to merge only the graphs that are

similar in terms of vertices, edges and the structures. The definition for the term

Query Graph Naive Sequential Scan Graph Merging Pre-process
GQ1 2 1
GQ2 2 3

Table 1: Graph matching comparison using different matching strategies
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Graph Similarity as well as related calculation methods are given in [He07].

2.5 Closure-Tree Index

In this section, we introduce the previous work in [HS06].

2.5.1 Graph Representation

The Closure-Tree (CTree) index is a graph database index for a large number of small

graphs which adopts a plain text format for representations of both data graphs and

query graphs. Figure 6(a) shows a simple graph G1 that contains six vertices and five

edges. Figure 6(b) shows the plain text format representation of graph G1.

(a) A simple graph G1 (b) Plain text format of G1

Figure 6: The graph data and query format in CTree

Each graph entry starts with a ‘#’, and is followed by the components: graph

name, number of vertices, list of vertex labels, number of edges, list of edges. The

vertices are numbered starting from 0 in the internal representation, which correspond

to the numbers in the edge list. The labels of the vertices are limited to alphabetic

letters. In the edge list, the order of the two numbers appearing in a line shows the
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direction of an edge. However, throughout the thesis, we use only undirected graphs

for both data and query graphs, thus each line in the edge list is recognized as an

undirected edge.

An undirected graph G is denoted as G V,E , where V is the vertex set and E is

the edge set.

2.5.2 The Graph-Closure Method

In the CTree index, every tree node is a graph or a special kind of graph which is

called a graph-closure. Every CTree node contains structural information of all its

descendants. Graph-Closure is introduced to capture the structural features of a set

of graphs or graph-closures. [HS06] gives the concepts of vertex-closure, edge-closure

and a new definition of graph mapping below:

Definition 5 Vertex Closure and Edge Closure

The closure of a set of vertices is a generalized vertex whose attribute is

the union of the attribute values of the vertices. Likewise, the closure of

a set of edges is a generalized edge whose attribute is the union of the

attribute values of the edges.

To ensure each vertex and edge have a corresponding element in the mapped graph,

dummy vertices/edges are introduced and have a special label ε as their attribute.

Definition 6 Graph Mapping

A mapping between two graphs G1 and G2 is a bijection φ : G1 G2,

where (i) v V1, φ v V2, and at least one of v and φ v is not dummy,

and (ii) e v1, v2 E1, φ e φ v1 , φ v2 E2, and at least one of

e and φ e is not dummy.

Figure 7 demonstrates an example of constructing a simple CTree. The subscript

of each label is used to differentiate vertices in different graphs.

Firstly, Closure 1 is computed from Graph 1 and Graph 2. Note that vertex A,

vertex B and edge A,B are common structures between these two graphs. Vertex

C and edge B,C in Graph 2 are not common structures. Vertex C is mapped to

a dummy vertex ε and put into a vertex closure C, ε . Edge B,C is mapped to
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(a) Graph 1 (b) Graph 2 (c) Closure 1

(d) Graph 3 (e) Closure 2a (f) Closure 2b

Figure 7: Computing a graph-clousre

a dummy edge ε and put into an edge closure B,C , ε . A dotted line implies

an edge-closure. Dummy vertices are used so that every vertex has a corresponding

element in the other graph.

Next, in Figure 7(e), Closure 2a is computed from Closure 1 and Graph 3 using

the same method. Here the concept of a graph-closure under mapping φ is introduced

[HS06].

Definition 7 Graph Closure under Mapping φ

The closure of two graphs G1 and G2 under a mapping φ is a generalized

graph V,E where V is the set of vertex closures of the corresponding

vertices and E is the set of edge closures of the corresponding edges. This
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is denoted by closure G1,G2 .

In Figure 7(d), vertex E4 is mapped to ε, vertex D4 is mapped to C, ε in (c).

If D4 is mapped to ε, then the final constructed graph-closure will be (f). [HS06]

developed a graph mapping method called Neighbor Biased Mapping (NBM) which

maximizes the common structures between two graphs. After NBM, the obtained

mapping can be used to merge two graphs, say G1 and G2, into a new generalized

graph G3. The process is denoted as G3 Closure G1,G2 .

In the plain text representation format, a graph-closure always has an ID null. A

vertex-closure or an edge-closure has null following the vertex label or edge numbers

indicating that it is a closure. Following the edge list, a graph-closure further has one

line indicating how many entries of graphs/graph-closures it has.

2.5.3 Building the CTree and Querying

The graph-closures for a graph dataset are computed recursively level by level. The

graph-closure on the top level contains the structural information of all the graphs in

the dataset and is the root of this CTree. The constructed tree structure is called a

Closure-Tree (CTree). The CTree building algorithm is shown in Algorithm 1 [HS06].

Figure 8: A CTree
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Algorithm 1: BuildCTree(S, M)

input : A set of graphs S, the maximum number of entries for each
graph-closure M

output: A CTree tree

ClosureSet Partition S ;
if ClosureSet 1 then

tree.Root ClosureSet 1
else

tree.Root MakeClosure ClosureSet ;

return ctree;

Function Partition(S)
input : A set of graphs S
output : A set of graph-closures C
if S M then

return MakeClosure S ;
else

S1 S i i 1, S
2 ;

S2 S i i S
2 1, S ;

C1 partition S1 ;
C2 partition S2 ;
if C1 C2 M then

return C1 C2 ;
else

C1 MakeClosure C1 ;
C2 MakeClosure C2 ;
return C1 C2;

Function MakeClosure(C)
input : A set of graphs C
output : A graph-closure G
if C 1 then

G C 1 ;
return G ;

else
G C 1 ;
for i 2 to C do

G Closure G,C i ;

return G;
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Figure 8 shows a CTree computed from the graphs in Figure 7. Closure3 is the

root of this CTree which has a depth of 2. Each graph-closure is a node in the

CTree, and each leaf CTree node (Closure1, Closure2) contains graph entries only,

while each non-leaf CTree node (Closure3) only contains CTreeNode entries. In

order to maintain that only leaf CTreeNodes contain graph entries, Graph4 is firstly

transformed into a graph-closure and then participates in further computing.

In order to distinguish the use of ‘vertex’ and ‘node’, the term ‘node’ is used when

we refer to the tree index, The word ‘vertex’ is used when we refer to the graphs in

a dataset.

In the graph query process, if a CTree node fails a sub-graph isomorphism test with

the query graph, then no children nodes need to be further tested, and thus this node

and all its descendants are pruned. If the pruning happens at a relatively higher level

of the index tree, then more descendant nodes are likely to be pruned and therefore

reduce the query time significantly. CTree uses a Pseudo Subgraph Isomorphism

test to prune unwanted nodes and uses the subgraph isomorphism test of [Ull76] to

further filter the candidate graph list. The query graphs have the same structure and

format as the data graphs. The query process is shown in Algorithm 2 from [HS06].

2.5.4 Histogram-Based Pruning in CTree

In CTree, a histogram-based method is used as a simple pruning before the structural

pruning Pseudo-Subgraph Isomorphism test [HS06]. The pruning starts by calculating

the histogram-feature of each graph in the dataset. Assume a query graph G1 and a

data graph G2 need to be tested. The pruning proceeds in the following steps:

1. Record the number of appearance of each different vertex labels in

an array TL to get TL G1 and TL G2 . Also record the number of

appearance of edges in an array TE to get TE G1 and TE G2 . Note

that TL G1 TL G2 TL , and TE G1 TE G2 TE .

2. if i 1, TL G1 , such that TL G1 i TL G2 i , prune G2.

3. if i 1, TE G1 , such that TE G1 i TE G2 i , prune G2.

This pruning can also be applied to prune graph-closures because a graph-closure

is a generalized graph.
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Algorithm 2: QueryCTree(query, tree)

input : A query graph query, a CTree tree
output: A set of graphs that contain query as a subgraph

CS V isit(query, tree.Root) ;
Ans empty ;
foreach G CS do if SubIsomorphic(query, G) then

Ans Ans G ;

return Ans ;

Function Visit(query, node)

input : A query graph query, a CTree node node
output : A graph set CS
CS empty;
foreach child c of node do

G the graph or graph closure at c ;
if PseudoSubIsomorphic(query,G) then

if G is a database graph then
CS CS G ;

else
CS CS V isit(query, c);

return CS;
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A pruning example is shown in Figure 9. G2 and G3 both survived the pruning

with G1 as a query graph. But G1 is not a subgraph of G3 and G3 is not pruned,

which means the pruning is conservative. G4 is pruned because TE G4 does not

satisfy the requirements.

Figure 9: The label pruning in CTree

2.6 Regular Expressions

A regular expression is the term used to describe a codified method that provides a

concise and flexible means for matching strings of text [ZYT]. It is usually used to

give a concise description of a set of strings without having to list all elements. The

IEEE POSIX [IEE] released the Basic Regular Expressions (BREs) along with an

alternative standard called Extended Regular Expressions (EREs). BREs provided

a common standard which is adopted as the default syntax of many Unix regular

expression tools. Most of such tools also provide additional features.

20



The GNU C Library [GNU] provides regular expression tools which follow the

POSIX.2 standard with support of EREs. We adopt this tool and use EREs in

Section 4.1. Detailed introduction of regular expressions can be found in [Goo05] and

[Fri97].
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Chapter 3

ECTree: the Extended

Closure-Tree for Subgraph Queries

Using a tree structure in a graph database index allows efficient subgraph structure

mining. Section 2.5 introduced Closure-Tree (CTree) which adopts a tree structure in

substructure graph mining. However, considering that the labels may not be the only

attribute that a vertex can have, CTree is not able to index vertices with additional

attributes other than vertex labels.

We adopt the CTree index structure to capture common structures in graphs and

focus on subgraph queries, meanwhile, we extend it with additional integer attributes

on the vertices.

This chapter is organized as follows: Section 3.1 presents our extensions on the

vertex attributes. Section 3.2 discusses the vertex merging methods after the exten-

sions. Section 3.3 shows the building process of the ECTree. Section 3.4 gives a query

format for the ECTree. Section 3.5 discusses the matching between a query graph

and a data graph.

3.1 Extending the Vertices with Attributes

The existing CTree provides access to subgraph mining focusing on vertex labels and

edge relations. However, actual graphs could contain more information on the vertices

than only the labels. For example, chemical compounds, social networks, etc. have

additional information of different types on each vertex. In this section, we firstly
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demonstrate an example of a chemical structure that has both label attributes and

numerical attributes. Then we show our method to represent it as a graph in plain

text format.

3.1.1 An Example in the SDF Format

SDF stands for structural-data file. It is one of a family of chemical-data file formats

developed by MDL [DNH 92]. The SDF format is a text-based format for representing

chemical compounds, in which the structural information and associated data items

for one or more compounds are contained. An SDF format chemical consists of some

header information, a connection table containing the atom info, the bond connections

and types, followed by some sections of more complex information. The file format

can be V2000, V3000 or a combination of both [Sym].

(a) ISIS/Draw version
of Alanine

(b) Connection table of Alanine [Sym]

Figure 10: Alanine in SDF format

Figure 10(a) shows a chemical compound Alanine[NC05] drawn from a chemical

structure drawing program called ISIS/Draw [LWSO04]. Figure 10(b) shows the

connection table (CTab) of Alanine.

The first line is the counts line which specifies the number of atoms, bonds, and

atom lists, the chiral flag setting, and the CTab version. Line 2-7 shows the atom
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block which specifies the atomic symbol and any mass difference, charge, stereochem-

istry and associated hydrogens for each atom. Line 8-12 shows the bond block which

specifies the two atoms connected by the bond, the bond type and any bond stereo-

chemistry and topology (chain or ring properties) for each bond. The last 3 lines are

the property block that is provided for future expandability of CTab features, while

maintaining compatibility with earlier CTab configurations. Detailed meaning of the

values of the atom properties can be found in Appendix A.

We adopt the atom names as vertex labels, the property lists as vertex attributes

and the bonds as edges in our ECTree index.

3.1.2 Data Representation in ECTree

We begin by transforming Alanine into the graph shown in Figure 11(a). Besides the

vertex label, each vertex further has three more integer attributes adopted from 10(b).

In order to store these additional attributes in text format, three positions after each

vertex label are added, separated by a “ ”, shown in Figure 11(b). The numbers of

integer attributes on each vertex are the same and can be defined according to actual

use of the dataset.

Here we give the definitions of data attribute vector, data vertex and data graph:

Definition 8 Data Attribute Vector, Data Vertex and Data Graph

A data attribute vector is a vector that contains only integers as its ele-

ments. A data vertex is a vertex that has a data attribute vector as its

attribute vector. A data graph is a graph that contains only data vertices.

The data attribute vector Λv of a data vertex v is formally defined here:

Λv a1, a2, ..., an , ai Z, i 1, n (1)

Each element ai of Λv is an attribute value of the data vertex v. All the graphs

from a dataset are always used as data graphs. Since a graph-closure is treated as a

generalized graph, all graph-closures are data graphs.

There are some reasons that we define the data attribute vector to contain only

integer numbers but not other data types such as string or boolean. Firstly, if the

attribute contains strings, then the strings have to be matched exactly in the vertex
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(a) The graph format of Alanine (b) Text representation of (a)

Figure 11: Data structure of ECTree

mapping phase, which is not any different than having an extra label. Secondly, a

pruning method can be developed with the numbers as attributes, this is discussed

later in Section 4.2. Thirdly, in the validation chapter (Chapter 5), the datasets use

only integers as attributes of the vertices. Besides, it is very simple to extend the

attributes to real numbers if there is need.

3.2 Vertex Merging

The vertex matching phase in building a CTree is very simple: to check whether two

vertices have the same label or not, if they do, then the two vertices match, otherwise

they do not match. We define the label-matching for two data vertices in ECTree as

follows: two data vertices label-match if these two data vertices have the same label.

Now we consider the attribute vector of a vertex. In CTree, if two vertices are

label-matched, there is no additional operations for merging them. In ECTree, we

need to modify the vertex merging strategy so that the label-matched vertices or

the non-label-matched vertices which are made into a vertex closure still capture

necessary information for the later querying phase. CTree uses each graph-closure as
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a “bounding box” of constituent graphs which contains discriminative information of

their descendants [ZYY07]. We want our index to inherit the feature of “bounding

box” on the attributes as well, thus the merging methods of vertex/vertex-closures

are taken into account.

There are three different cases to discuss in the vertex merging phase: i) merg-

ing two vertices, ii) merging a vertex and a vertex-closure, iii) merging two vertex-

closures. We firstly ignore the integer attributes and map two graphs using Neighbor

Biased Mapping, then we consider each of the merging cases separately in detail.

In this section, we only discuss the merging methods, the graph mapping method

Neighbor Biased Mapping is adopted from [HS06].

3.2.1 Merging Two Vertices

The main purpose of the closure-tree structure is to reuse common sub-structures.

Therefore the merging of two or multiple vertices is a very frequent operation. Merging

multiple vertices can be composed of a series of operations of merging two vertices,

so we only discuss binary operations here.

Figure 12 shows two vertices va and vb that have the same label. The merged

vertex from two label-matched vertices is a vertex with the same label. va and vb are

merged into vmerged shown in Figure 12(c). For each attribute ai in vmerge, we set it to

the maximum absolute value at the same position of the merging vertices. Λvmerged
1

= Max Λva 1 , Λvb
1 = Max 5 , 3 = 5.

(a) va (b) vb (c) vmerged

Figure 12: Merging two label-matched vertices

If a vector Λv needs to be merged from multiple vectors Λv1 , ...,ΛvM
,M 1, we

denote it by Λv = Merge Λv1 , ...,ΛvM
. The Merge operation is given below in
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Equation 2: (Note that when the notation A is used, if A is a set, then A is the

cardinality of A; if A is a number, then A is the absolute value of A.)

Merge Λv1 , ...,ΛvM
Max Λvi

1 i 1,M , ...,Max Λvi
n i 1,M (2)

Since the attribute vector of the merged vertex is the absolute ceiling of the

all merging vertices, we denote it by a comparison operator “ ”: Λvmerged
Λvi

,

i 1,M . The definition for the operator “ ” between two data attribute vectors

are given in Equation 3. (Note that we have Λva Λvb
Λ )

Λva Λvb
Λva i Λvb

i , i 1, Λ (3)

According to Equation 2 and 3, it can be inferred that:

Merge Λv1 , ...,ΛvM
Λvi

, i 1, M (4)

Next we take a look at the merging of two non-label-matched vertices. The merged

vertex from two non-label-matched vertices is a vertex-closure which has a list of

attribute vectors of each of the vertex included in the merging. The structure of a

vertex-closure in ECTree index has two parts: a label set and an attribute vector list.

We further discuss two subcases in vertex merging.

The first subcase is that a vertex v is mapped to a dummy vertex vε. Figure

13(a)(b)(c) shows that a vertex va is mapped to a dummy vertex vε and they are

both added to a vertex-closure vmerged. A dummy vertex in ECTree has the same

label as in CTree: ‘ε’, and has an empty attribute vector Λ . When a vertex v is

added to a vertex-closure vmerged, the label of v is added to the label set of vmerged,

each attribute in the vertex attribute vector of v is transformed into the corresponding

absolute value, and then the attribute vector is added to the attribute vector list of

vmerged. If the vertex to be added is a dummy vertex, the label ‘ε’ is added to the

label set of vmerged and Λ is added to the attribute vector list of vmerged.

The second subcase is that a vertex v1 is mapped to another vertex v2 which has

a different label. Both labels of v1 and v2 are added to the label set of vmerged, and

all attributes of vectors of v1 and v2 are transformed into the corresponding absolute

value and added to the attribute vector list of vmerged. Figure 13(d)(e)(f) shows an

example of this case.
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Assume the number of distinctive labels in a graph database is D, the upper

bound for the size of a vertex-closure in the ECTree index is D 1 because of a

possible dummy vertex.

(a) va (b) vε (c) vmerged

(d) vb (e) vc (f) vmerged

Figure 13: Merging two non-label-matched vertex

3.2.2 Merging A Vertex and A Vertex-Closure

In this case, we merge a vertex v and a vertex-closure vc into a new vertex-closure.

There are two possible subcases: 1) the vertex-closure vclosure contains a vertex label

that is the same as the label of v, 2) the vertex-closure vclosure does not contain any

vertex label that is the same as the label of v.

In subcase 1), the merging vertex v has a same label l (l ‘B’ in Figure 14(a))

of one of the labels in the vertex-closure vclosure, we update the vertex attribute

vector Λl in the vertex-closure using the attribute vector Λv according to Equation

2: Λl new Merge Λl,Λv . If the label of the merging vertex v is ε, then the merged

vertex-closure vmerged is the same as the merging vertex-closure vclosure, no operations

are needed. An example of the merging is shown in Figure 14(a)(b)(c).

In subcase 2), the process is similar to merging two unmatched vertices but to

replace one vertex by a vertex-closure in this case. An example is shown in Figure
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(a) va (b) vclosure (c) vmerged

(d) va (e) vclosure (f) vmerged

Figure 14: Merging a vertex and a vertex-closure

14(d)(e)(f).

3.2.3 Merging Two Vertex-Closures

In this case, two vertex-closures vclosure1 and vclosure2 are merged into a new vertex-

closure vmerged. We still have two possible subcases: 1) the two vertex-closure label

sets do not have any vertex labels in common, 2) the two vertex-closure label sets

have some vertex labels in common. The first subcase is similar to merging two

unmatched vertices, we simply add the labels and corresponding attribute vectors

into a new vertex-closure, no further operations are needed. We mainly discuss the

two steps in merging two vertex-closures that have same labels. Assume L1 is the

label set of vclosure1, L2 is the label set of vclosure2.

Step 1:

if the common label l ‘ε’: add l to the label set of vmerge, add Λl new

Merge Λl1 ,Λl2 to the attribute vector list, l1 l2 L1 L2, l1 L1, l2 L2.

if the common label l ‘ε’: add ε to the label set of vmerge, add Λ to the

attribute vector list.
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Step 2, l L1 L2 L1 L2 , add l to the label set of vmerge and add Λl to the

attribute vector list.

(a) vclosure1 (b) vclosure2 (c) vmerged

Figure 15: Merging two vertex-closures

An example of this case is shown in 15, vclosure1 and vclosure2 have two labels in

common: l1 = ‘B’ and l2 = ‘C’, while ‘ε’ and ‘D’ are not common labels. Thus

we use Equation 2 to calculate the new attribute vector in vmerge: Λmerged l1 =

Merge Λclosure1 l1 ,Λclosure2 l1 , Λmerged l2 = Merge Λclosure1 l2 ,Λclosure2 l2 . ‘ε’ and

‘D’ are directly added to the list of attribute vectors without any operations.

3.3 Building the ECTree

We modified the data representation of a graph in the dataset, thus the structure of a

graph-closure and its computing method have to be modified accordingly. Since the

structure of edges and edge closures are not modified, the corresponding methods do

not need modifications. We focus on our new methods of computing graph closures

in this section.

3.3.1 Data Graph Mapping

In CTree, there is no distinguishment between mapping two data graphs and mapping

a query graph and a datagraph. We will introduce the mapping between a query graph

and a data graph for ECTree in Section 3.4.
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In order to make two graphs G1 and G2 into a graph-closure C, it is necessary

to find a possible graph mapping φ initially from G1 to G2. In ECTree, we get the

graph mapping φ by using Neighbor Biased Mapping, ignoring the attributes of the

vertices; then each mapped pair of vertices/vertex-closures are merged using previous

described methods.

We do not do exact matching for data graph mapping for the following reasons.

Firstly, the possibility for two vertices in two graphs to have the exact same label and

attributes is very low; secondly, we still maintain the clustering feature of the tree

index using the vertex merging methods.

3.3.2 An ECTree Building Example

The process of building graph-closures is the process of building an ECTree. We show

an example of building a graph-closure from three graphs in a dataset in Figure 16.

Firstly Closure 1 is computed from Graph 1 and Graph 2. For vertex C in Graph

2, there is no corresponding vertex so it is mapped to a dummy vertex ε, both of

them are put into a vertex-closure C, ε .

Next we compute Closure 2a from Closure 1 and Graph 3 using the same method,

as shown in Figure 16(e). Figure 16(f) shows Closure 2b which is computed from

Closure 1 and Graph 3 as well but using a different graph mapping. Graph mappings

can be obtained using different graph mapping algorithms, but for a chosen algorithm,

the mapping obtained between two graphs is unique. Ideally, the mapping method

should maximize the common structure and attributes of the two graphs. Since we

did not find a proper mapping algorithm for attributed graphs, the NBM [HS06]

method is used.

3.4 A Query Graph Format for ECTree

Just like CTree, we can also use a data graph as a query graph. For instance, to

query the substructure as shown in Figure 11(a), the representation in Figure 11(b)

can simply be used as a query. However, in ECTree, we focus on the graph data

mining of the attributes of the vertices, the use of the format of the data graphs as

query graphs is too simple and does not make full use of the new index. We introduce
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(a) Graph 1 (b) Graph 2 (c) Closure 1

(d) Graph 3 (e) Closure 2a (f) Closure 2b

Figure 16: Computing a graph-closure in ECTree

a query format for ECTree that allows more flexible queries in terms of the attributes

of vertices.

Firstly, we allow the use of intervals to appear in the query graphs. An integer

interval is made up of two integers and two brackets. An open or close bracket means

the integer at that side is not included in the interval, while a square bracket means

the integer at that side is included in the interval.

Two or more intervals can be used together to make up more complex intervals.

Some examples of interval sets are shown in Figure 17(a): I1 0,1 , I2 4, 2 ,

I3 1,2 2,3 4,5 , I4 9. There is only one relational operator “ ” union

supported between the intervals. Since there is only one relational operator, we omit

32



it in the representation and by default, it is implied that the union operation is used

between all the intervals using together.

(a) Four intervals (b) A graph with intervals

Figure 17: Examples of interval sets

Therefore, [-2,2] (5,7] is written as [-2,2](5,7] in plain text format. I3 is written as

I3 1,2 2,3 4,5 . I4 can both be written as 9 or I4 9,9 . But if a single integer

value i is unioned with other intervals, it has to be written in the form of i, i . E.g,

5 [6.8] should be written as [5,5][6,8]. Figure 17(b) shows a query graph Q which

uses the intervals in the graph attribute vectors.

In addition to the integer intervals described above, we use the symbol ‘*’ to

replace the interval , . The symbol ‘*’ cannot be unioned with any other

interval(s). E.g., the plain text format of the query vertex ‘D , [-2,-2]’ is

written as ‘D [-2,-2]’.

In contrast to Definition 8, we give the definitions for Query Attribute Vector,

Query Vertex and Query Graph here:

Definition 9 Query Attribute Vector, Query Vertex and Query

Graph

A query attribute vector is a vector that contains integer interval sets as

its elements. A query vertex is a vertex that has a query attribute vector
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as its attribute vector. A query graph is a graph that contains query

vertices.

Let Ii, i 1, n be a set of integer intervals, we denote the query attribute vector

Λv as follows:

Λv I1, I2, ..., In (5)

3.5 Query Matching

In this section, we discuss the query matching for ECTree graph index. We have

demonstrated different formats of the query graphs and the data graphs as well as

the methods to make the graph-closures in ECTree. There are two different cases in

the query matching: matching a query with a non-closure graph and a graph-closure.

In both cases, we assume the mapping φ between a query graph and a data graph

is obtained by using the graph mapping algorithm Neighbor Biased Mapping from

[HS06].

3.5.1 Matching a Query Vertex and a Data Vertex

There are two cases to discuss: 1) matching a query vertex and a data vertex in a

non-closure graph, 2) matching a query vertex and a data vertex in a graph-closure.

In the first case, a query vertex vQ matches a data vertex vD in a non-closure graph

if ΛvD
i ΛvQ

i , i 1, ΛvQ
. This is easy to understand because a non-closure

data vertex is in the vertex set of a non-closure graph which is in the original dataset.

An example is shown in Figure 18. vQ matches vD1 but does not match vD2.

(a) vQ (b) vD1 (c) vD2

Figure 18: Matching a query vertex and a non-closure data vertex

For simplification, we define the operator “ ” between a query attribute vector

and a data attribute vector of a non-closure vertex in Equation 6:
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Λ Λ Λ i Λ i , i 1, Λ (6)

In the second case, since the attribute vector of a vertex-closure is the absolute

ceiling of all the attribute vectors in the closure, we only compare the values in the

data attribute vector to the minimum absolute values of the intervals in the query

vector. We denote the minimum absolute value within a interval set I by Min-

Absolute(I) = Min i i I . E.g., in Figure 19(a) Min-Absolute(I) = i2, in

Figure 19(b) Min-Absolute(I) = 0. Here the definition of the operator “ ” between

a query attribute vector and a data attribute vector of a graph-closure is given in

Equation 7.

Λ Λ Λ i Min-Absolute Λ i , i 1, Λ (7)

We take a look at the two examples in Figure 19. Assume I i1, i2 i3, is

an interval set in a query attribute vector Λ I , i1 i2 i3, i2 i3 . d1 0, d2

0, d2 d1 are two values in two different data attribute vector Λ1 = d1 and Λ2 d2 .

In Figure 19(a), the query interval requires the value of the data attribute falls in

the interval set I, but for Λ1, the value can only fall within d1, d1 which means

all the values of the attribute of the vertices in the vertex-closure are within d1, d1

thus cannot match I. In this case, only Λ2 satisfies the condition. In Figure 19(b),

the value ‘0’ is included in the interval set I, therefore the minimum absolute value

within I is ‘0’. Since d1 0 and d2 0, they both satisfy the condition.

(a) (b)

Figure 19: Two intervals showing the concept of Minimum-Absolute values

35



We sum the matching between a query attribute vector ΛvQ
and a data attribute

vector ΛvD
as follows:

Λ Λ
Λ i Λ i , i 1, Λ vQ is non-closure

Λ i Min-Absolute Λ i , i 1, Λ vQ is a closure

The modified vertex mapping algorithm is shown in Algorithm 3.

Algorithm 3: VertexMapping Modified(v1, v2)

input : A query vertex v1, a data vertex v2

output: A boolean value, true if mappable, false if not

if label of v1 does not match label of v2 then
return false;

Λ attribute vector of v1 ;
Λ attribute vector of v2 ;

if v2 is from a graph-closure then
for i 1 to Λ do

k Min-Absolute Λ i ;
if Λ i k then

return false ;

else
for i 1 to Λ do

boolean b false;
interval set I Λ i ;
for j 1 to I do

if Λ i I j then
b true;
break;

if b is false then
return false;

return true;

3.5.2 Matching a Query Graph and a Data Graph

Based on our discussion in the previous subsection, we define the subgraph matching

as follows:
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A query graph GQ VQ,EQ matches a data graph GD VD,ED if GQ is subgraph-

isomorphic to GD under graph mapping φ and v VQ,Λv Λφ v .

When a query graph is compared to a data graph, the histogram pruning is used

firstly, followed by the Pseudo Subgraph Isomorphism test, and finally the subgraph

isomorphism test. Assume GQ is a query graph and GD is a data graph, Table 2

shows the descriptions of the symbols to be used.

Symbol Description

n1 the number of vertices in GQ

n2 the number of vertices in GD

d1 the maximum vertex degree in GQ

d2 the maximum vertex degree in GD

l
the pseudo compatibility level defined for the
PSI pruning [HS06]

M
the time complexity of maximum cardinality
matching for bipartite graphs

a the number of vertex attributes

Table 2: Notations

The worst case complexity for the histogram pruning in ECTree is the same

as CTree: O n2
1 , since all calculations are one-time-cost and pre-processed. The

PSI pruning algorithm for ECTree has a worst case complexity of O ln1n2 d1d2

M d1, d2 aM n1, n2 [HS06]. The pseudo compatibility level is defined before

querying and can be adjusted. Hopcroft and Karp’s algorithm [HK71] finds a maxi-

mum cardinality matching in O n2.5 time.

Here we do some further discussions about Exact Matching and Inexact Match-

ing. When we match a query vertex vQ and a data vertex vD1 from a non-closure

graph, we use exact matching. That is, the attribute values of ΛD1 need to be in-

cluded in the corresponding intervals of ΛQ. When we match a query vertex vQ and

a data vertex vD2 from a graph-closure, we use inexact matching which means the

attribute values of ΛD2 do not have to exactly match the corresponding intervals of

ΛQ, but just be larger than the corresponding absolute minimum values. There are

a few reasons why we do not use exact matching:

On memory consumption, storing the exact numerical value in every one of the
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graph-closures at each level will cost a huge amount of space and thus make the

index very large.

On time consumption, if we store a list for each position in an attribute vector,

then matching a query attribute vector and a data attribute vector will be very

trivial and the time cost can be unacceptable. At a relatively higher level, the

lists in the attribute vectors can be very long and hard to update.

The dead space in graph merging needs to be considered as well. Even if a

query graph and a graph-closure are matched using exact matching, there is no

guarantee that there are answer graphs under the branch of this graph-closure

because the matched graph could be in the dead space.

3.6 Conclusion

In this chapter, we have provided description of our extended closure-tree that man-

ages graph data with integer attributes on the vertices, based on the original CTree

index. ECTree is a graph index that specifies the queries on the vertex attributes

and at the same time provides very flexible formats of queries in terms of the at-

tributes. We discussed the new merging and matching methods in ECTree for the

new structure of both data and query graphs which is very different from the CTree

index.

The ECTree index inherits the feature of CTree: graph clustering hierarchically.

An ECTree node is the clustering of both the structure and the attribute of its

descendents.
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Chapter 4

Optimizations for ECTree

According to the features of ECTree, we are able to query a graph dataset with more

flexible query graphs and extended attributes. However, we find it yet not flexible

enough to query the ECTree index on the vertex labels. There are also methods that

we can improve to make the ECTree more efficient, such as the pruning algorithm.

This chapter presents our approaches to make the ECTree more useful.

The rest of the chapter is organized as follows: Section 4.1 introduces a new query

format for ECTree. Section 4.2 presents our novel pruning method which is named

Degree-Attribute pruning.

4.1 A More Flexible Query Format

In CTree, alphabetic letters are used on the vertex labels. As we can see the two

parts from Algorithm 3: 1) the mapping of the vertex label, 2) the mapping of the

attributes of the vertex. At line 1, the mapping of the vertices is simply checking

whether one label matches the other label. Since both labels contain only alphabetic

letters, the check is only string matching.

However, in many cases, fixed labels can lead to time cost redundancy. For in-

stance, a group of query graphs may share some common information on the structure

and labels, and are different in just a few labels. In this case, the fixed label index

will have to run each of the queries separately, but a more flexible query format may

need to combine them into one query and run it only once and save time from the ex-

pensive subgraph-isomorphism test. There are also cases that a query graph contains
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some vertices with unknown labels.

We propose our approach to use Regular Expressions in ECTree, with some query

examples using regular expressions to demonstrate the usefulness. Then we show our

modifications on the mapping algorithms.

4.1.1 Using Regular Expressions on Query Labels

In Figure 20(a) and (c) (drawing using eMolecules [eI]), substructures 1 and 2 are

two real chemical substructures extracted from NCI subset [NCI]. Since they are sub-

structures, other possible bonds are not shown and the hydrogen atoms are omitted.

Figure 20(b) and (d) shows two queries Q1 and Q2 which use substructures 1 and 2.

By observing Q1 and Q2, it is obvious that they have similar structures. If we can

find a way to merge those two queries into one query such that the results from both

queries can be returned as the results of the merged query, then the querying time

may be reduced.

Considering this, if the vertex labels are flexible then multiple queries could be

combined into one query if they have similar structures. Benefits also exists in that a

query graph with undetermined labels can be queried. For example, different metal

atoms. Here we give the definitions for Data Label and Query Label:

Definition 8 Data Label and Query Label

A data label is a string composed of alphabetic letters only. A query label

is either a data label or a regular expression.

In the definition of query label, we use the regular expressions because regular

expressions are very powerful in expressing different types of combination of strings.

Having the regular expressions, queries Q1 and Q2 can be replaced by a single query

Q3 (Figure 21). In some cases, the graphs returned may contain unwanted results

because there are graphs contained in Q3 but are neither Q1 nor Q2. When the

regular expression is used as a query label, we should be careful because if too many

unwanted results are returned, the idea of combining queries becomes inefficient.

Moreover, there is another limitation for using regular expressions to combine queries:

the candidate queries must have the same structures (structurally isomorphic) so as
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(a) Substructure 1 (b) Q1

(c) Substructure 2 (d) Q2

Figure 20: Two chemical structures as queries
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Figure 21: The merged query Q3

for the vertices to be combined. If two query graphs are not structurally isomorphic,

then they cannot be combined.

Moreover, to enhance the usefulness of the system, the wildcard * for vertex labels

is supported. Vertices with the wildcard may be mapped to vertices with arbitrary

labels. Some approaches such as CT-Index [KKM11] discard all vertices and edges

with wildcard labels from the query graph for filtering (CT-Index supports edge

labels). This method leads to possible loss of information of query graph structure

and may increase the false-positive rate, therefore in our approach we keep the vertices

with wildcard labels and their related edges. The matching condition for wildcard

query vertices is directly verified with the subgraph isomorphism algorithm.

4.1.2 Label Groups

In Figure 21, we replace queries Q1 and Q2 by a single query Q3. We find a problem

that both Q1 and Q2 have vertices that have the same labels. For example, both are

‘O’ or both are ‘N’. However, the query results returned from Q3 may not have the

same label: one of the vertices can be ‘O’ and the other one can be ‘N’. Thus we

introduce a way to guarantee two or more labels to be the same in the query: label
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Figure 22: A query Q4 showing the label groups

groups.

We use the notation ‘ ’ followed by a non-negative integer number to stand for a

group of the labels that are logically bound to a string value. The label groups can

be simply understood as ‘variables’. Note that two different label groups cannot be

bound to the same string. That means, for example, if ‘ 1’ is bound to ‘A’, then ‘ 2’

cannot be bound to ‘A’ anymore and has to be bound to another string.

Though the purpose of using the label groups is to provide queries so that vertices

which have the same label but these labels are not determined can be queried, the

label groups can also be used to distinguish labels. If a label group appears only once

in a query graph, that means this label group is used to distinguish itself from any

other label groups.

We use the query Q4 in Figure 22 to replace of the queries Q1 and Q2 so it is

guaranteed that both vertices have the same label. So that the results returned from

Q4 will include the union of the results returned by Q1 and Q2.

However, there is still a limitation to the label groups: we bind each of the label

groups to a different label in the graph mapping process, that means the number

of different labels in the data graph must be no smaller than the number of label

groups in the query graph. We show an example in Figure 23 (the attributes are
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ignored). GQ has three different label groups, GD has only two distinguished labels

but obviously GQ is still mappable to GD.

(a) GQ (b) GD

Figure 23: A matching example for label groups

In our later discussions and experiments, we always assume that the number of

distinguished labels in a data graph is no smaller than the number of different label

groups in a query graph. In addition, since the label groups are treated as variables,

they can be used in regular expressions. For example, ‘[ 1N]’ either matches the

string that is bound to ‘ 1’, or ‘N’.

4.1.3 Implementation

The GNU C Library [GNU] offers a Regular Expressions interface declared in the

header file regex.h. This POSIX standard Regular Expressions tool pseudo compiles

the regular expression and produces a special data structure which enables fast exe-

cution of the pattern using the function regcomp RegExp which returns the pseudo

compiled pattern pattern. Then the boolean function regexec pattern,S can be

called to compare pattern and a string S.

Since the query format has been modified, several related algorithms need to be

modified as well.
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Algorithm 4: GraphMapping(GQ, GD)

input : A query graph GQ and a data graph GD

output: A boolean value, true if GQ and GD are mappable, false if not

VD CountV ertex(VD);

n number of label groups in GQ;

if n 0 then

if n VD then

return false;

// If the number of label groups is bigger than the number

of different labels in VD, then GQ and GD are not

mappable.

for i 1 to n do

B [i] i ;

// B x y means that label group x is bound to label

VD y .label

while true do

Graph GQ VQ,EQ GQ VQ,EQ ;

foreach v VQ do

if j 1, n , label group j in v.label then

Replace label group j by VD B j .label ;

if subgraphIsomorphism GQ,GD is true then

return true;

B FindNewBinding(B, VD ) ;

if B is null then

break while ;

return false;

else

return subgraphIsomorphism GQ,GD ;

45



Algorithm 4 shows the modified graph mapping algorithm. In Algorithm 4, func-

tions CountVertex (V ) and FindNewBinding(B, c) can be found in Appendix B.1.

Function CountVertex (V ) returns a vertex vector which has different vertex labels

from V . Function FindNewBinding(B, c) returns a new binding solution according

to the current binding B and the total number of different labels to bind.

According to the new format, the query label is not only alphabetic letters, there-

fore the vertex mapping algorithm Algorithm 3 needs to be modified as well. As is

shown in Algorithm 5, whether or not the query label maps to the data label is tested

first, if false is returned then the attribute vector testing is bypassed. If the label

mapping test succeeds, then the attributes will be tested further.

4.2 A Novel Pruning Method for ECTree

After we change the query label format, the previous histogram-based label pruning

method from CTree can not be adopted anymore. We discuss the pruning method in

CTree and the reason why it can not be used for the ECTree index. Next we propose

a method to generalize the feature of a graph which we name ‘Degree-Attribute Fea-

ture’. Then a novel pruning method for the ECTree based on the ‘Degree-Attribute

Feature’ is proposed.

This pruning method is based on that all the graphs, both in the dataset and the

queryset, have only fixed alphabetic letters as the vertex labels, so that the number

of appearance of different vertex labels can be calculated as well as for the edges.

Our new query format allows the label of a vertex to be flexible in the query graphs

with wildcard labels allowed and thus it is not clear how to define a histogram for

the query graphs in this case. If the histogram-based feature cannot be calculated,

the pruning cannot work for our ECTree index.

4.2.1 The Degree-Attribute Feature Vector

Though a query vertex no longer has a fixed label, it still has other fixed features: its

attribute vector and its degree. We start by introducing the calculation method of

the Degree-Attribute(DA) feature vector for a data graph. We ignore the labels

of a data graph and the numbers on the vertices are only marks of the vertices. Two
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Algorithm 5: VertexMapping(vQ, vD)

input : A query vertex vQ, a data vertex vD

output: A boolean value, true if mappable, false if not

lD vD.label;
lQ vQ.label;
if lQ is a regular expression then

pattern regcomp lQ ;
bool regexec pattern, lD ;
if bool is false then

return false;

else
if lQ does not match lD then

return false;

Λ attribute vector of vQ, Λ attribute vector of vD ;

if vD is a vertex-closure then
for i 1 to Λ do

foreach element I in Λ i do
k Min-Absolute I ;
if Λ i k then

return false ;

else
for i 1 to Λ do

boolean b false, interval set I Λ i ;
for j 1 to I do

if Λ i I j then
b true;
break;

if not b then
return false;

return true;
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data graphs GD1 VD1,ED1 and GD2 VD2,ED2 are shown in Figure 24(a) and (c).

The numbers in braces mean that the vertex is a vertex-closure.

(a) GD1 (b) Fd(GD1)

(c) GD2 (d) Fd(GD2)

Figure 24: DA feature vectors for a non-closure data graph and a graph closure

We calculate the DA feature vector Fd of a data graph as shown in Equation 8 and

9 (n Λva Λvb
). If the data graph is a graph-closure, then all the vertices within

a vertex-closure have the same degree. MaxDegree V represents the maximum

degree in the vertex set V . Figure 24(b) and (d) show the DA feature vectors of a

non-closure data graph GD1 and a graph-closure GD2.

Λva Λvb
Λva 1 Λvb

1 , ..., Λva n Λvb
n (8)

Fi GD

degree v i

Λv, i 1,MaxDegree VD , v VD (9)

Next we discuss the method to calculate the DA feature vector for a query graph.

Since there are integer intervals in a query attribute so the equation to add two query

attribute vectors is slightly different than Equation 9. We show the calculation of the

DA feature vector Fd for a query graph in Equation 10, 11 and 12 :
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Λva
Λvb

Λva
1 Λvb

1 , ...,Λva
n Λvb

n (10)

Λva
j Λvb

j Min-Absolute Λva
j Min-Absolute Λvb

j , j 1, Λ (11)

Fi GQ

degree v i

Λv , i 1,MaxDegree VQ , v VQ (12)

We also show an example to calculate the DA feature vector for a query graph

GQ in Figure 25:

(a) GQ (b) Fd (GQ)

Figure 25: DA feature vector for a query graph

4.2.2 The Pruning Strategy

Having the DA feature vectors to represent the features of the degrees and attribute

vectors, we introduce the pruning method which we name DA-Pruning. We start by

looking at a an example. Figure 26 shows a query graph GQ1 and a data graph GD1.

For simplification, each vertex attribute has a length of two.

We can observe from Figure 26, if query graph GQ VQ,EQ is a subgraph of data

graph GD VD,ED under graph mapping φ, then the condition v VQ,Degree v

Degree φ v must be satisfied. The degree of a vertex Degree v in the query graph

must be no bigger than Degree φ v under mapping φ. If this condition does not

stand, then GQ cannot be a subgraph of GD.

Now we take a look at Table 3, which shows the DA feature vectors for both GQ

and GD.
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(a) Query graph GQ (b) Data graph GD

Figure 26: A graph and its supergraph

By observing Table 3, there is no mathematical relation between Fd GQ and

Fd GD . But Fd GQ
MaxDegree VD

j d Fj GD , d 1,MaxDegree VQ . Lemma

1 and its proof are given below.

Lemma 1

If GQ VQ,EQ is a subgraph of GD VD,ED under graph mapping φ, then Fd GQ

MaxDegree VD

j d Fj GD , d 1,MaxDegree VQ .

Proof

Because GQ is a subgraph of GD, according to the subgraph matching definition in

Subsection 3.5.2, we have:

Λv Λφ v (13)
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d Fd GQ Fd GD
MaxDegree VD

j d Fi GD

1 3 , 1 3 , 5 18 , 14
2 1 , 0 6 , 7 15 , 9
3 5 , 2 4 , 2 9 , 2
4 0 , 0 5 , 0 5 , 0

Table 3: Feature vector comparison

From Equation 7 we have:

Min-Absolute Λv i Λφ v i , i 1, Λv (14)

Assume vd1, vd2, ..., vdk are vertices in VQ that have the same degree d, according to

Equation 14, d 1,MaxDegree VQ ,

degree v d

Λ i

Λvd1
i Λvd2

i ... Λvdk
i

Min-Absolute Λvd1
i Min-Absolute Λvd2

i ... Min-Absolute Λvdk
i

Λφ vd1
i Λφ vd2

i ... Λφ vdk
i (15)

Since GQ is a subgraph of GD under graph mapping φ, we have

degree v degree φ v , v VQ, φ v VD (16)

From Equation 15 and 16, we can infer:

Λφ vd1
i Λφ vd2

i ... Λφ vdk
i

degree v d

Λv i (17)

From Equation 15 and 17,

degree v d

Λ i
degree v d

Λv i
MaxDegree VD

j d degree v j

Λv j (18)

which can be written as:

degree v d

Λ
MaxDegree VD

j d degree v j

Λv, d 1,MaxDegree VQ (19)
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Also according to Equation 9 and 12, we then have:

Fd GQ

MaxDegree VD

j d

Fj GD , d 1,MaxDegree VQ (20)

QED

Accordingly, if the condition Fd
MaxDegree VD

j d Fj, d 1,MaxDegree VQ

cannot be satisfied between a query graph GQ VQ,EQ and a data graph GD VD,ED ,

the graph (graph-closure) is pruned. We name the pruning method Degree-Attribute

Pruning (DA-Pruning). We use the following example to demonstrate a graph

which is pruned by the DA-Pruning.

Figure 27: The DA-Pruning examples

In Figure 27 there are two chemical structures. GQ is the graph form of Alanine

from Figure 10(a), GD is the graph form of a chemical N,N-Dihydroxyaniline [RSoC]

with hydro atoms ignored. GD is pruned using GQ as a query by the DA-Pruning

method according to Equation 20.
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Algorithm 6: CalculateFeature(G)

input : A graph G V,E
output: A feature vector F if G is a data graph, F if G is a query graph.

1 if G is a data graph then
2 for i 1 to V do
3 Λ V i .attributeV ector;
4 for j 1 to Λ do
5 F V i .degree j F V i .degree j Λ j ;

6 return F ;

7 else
8 for i 1 to V do
9 Λ V i .attributeV ector;

10 for j 1 to Λ do
11 Interval set I Λ j ;
12 F V i .degree j F V i .degree j Min-Absolute(I) ;

13 return F ;

Algorithm 7: DA-Pruning(GQ, GD)

input : A query graph GQ, a data graph GD

output: A boolean value, true if GD not pruned, false if GD should be

pruned

1 F CalculateFeature GD , F CalculateFeature GQ ;

2 if F F then

3 return false;

4 for i 1 to F do

// To calculate sum for each element in F

5 sum i
F
j i F j ;

6 for i 1 to F do

7 if sum i F i then

8 return false;

9 return true;
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There are two main processes in DA-Pruning: the feature vector calculating pro-

cess and the pruning process. Algorithm 6 shows the process which outputs the

feature vector for both a query graph and a data graph. According to Equation 8

and Equation 11, the Min-Absolute value of an attribute interval set is used in the

calculation.

Algorithm 7 shows the pruning process for the DA-Pruning. In line 2, if F F

then the node is pruned. This is because F MaxDegree VD , F MaxDegree VQ .

If MaxDegree VD MaxDegree VQ , then GD can not be a supergraph for GQ,

and is thus pruned.

However, there is still a weakness in our pruning method. When the data graphs

are large or the attribute values are big, but the query graph is relatively small or the

absolute value of the attributes are small, the DA-Pruning might even slow down the

query process because the pruning focuses on the difference of the vertex degrees and

attributes. A vertex-closure in a graph-closure has a bigger chance that its degree

and attribute are large since it is a bounding box of vertices.

4.3 Conclusion

In this chapter, we have provided a more flexible query format which allows the labels

of the query graphs to be more complex. We also provided the modified related

mapping algorithms. We develop a method to generalize a graph without know the

exact labels of vertices which we call feature vectors. A novel pruning method which

is developed based on the feature vector which is described as well as the proof of

the correctness of the pruning. Detailed descriptions of the processing stages and

algorithms are provided.
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Chapter 5

Validation

In this chapter, we validate our index by real dataset and synthetic dataset exper-

iments. We demonstrate that our index is more efficient for the new query format

than CTree. We also demonstrate that our pruning method is effective when using

non-fixed query labels. The validation of this research focuses on the effectiveness of

ECTree itself and the pruning method.

The rest of this chapter is organized as follows: Section 5.1 introduces our experi-

ment setup. Section 5.2 validates the ECTree index on its attribute organization. Sec-

tion 5.3 validates the new query label format. Section 5.4 validates the DA-Pruning

method for the ECTree index.

5.1 Experiment Setup

We implement ECTree based on the original implementation of CTree [He07] using

C++. We conduct all the experiments on a Fedora 13 Linux machine with a dual

processor Inter(R) Core(TM)2 1.8GHz with 2 GBytes RAM.

Datasets

For real datasets, we use the NCI Release 2 Files [NCI] in SDF file format [Sym].

The SDF format contains information of multiple chemical compounds with the name

of the atoms and additional integer attributes such as the mass difference, atom charge

and atom parity. We use a subset of the NCI Release 2 which contains 20,000 raw

chemical structures. The average number of vertices is 17.65 and the average number

of edges is 18.29. The number of distinct vertex labels is 45. We define the attribute
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density of a graph P = # of non zero attributes in G
# of attributes in each vertex # of vertices . The attribute density

of the NCI subset is PNCI subset 0.004.

For synthetic datasets, we use the datasets which are used in [HLPY10] generated

by GraphGen [CKN] in different densities. The density of a graph is defined as
# of edges in G

# of edges in a complete graph . We use the dataset: ‘Synthetic.10K.E30.D3.L50’ where 10K

is the size of the set, E30 means the average number of edges in the set is 30, D3

means the average density of the graphs is 0.3, L50 means there are 50 distinct vertex

labels. Those graphs do not contain any additional attributes, so we use an algorithm

to add random attributes to the synthetic datasets for the testing of ECTree. We vary

P in testing the performance of our index against CTree, the number of attributes is

always set to 3, and the maximum value of the attributes is varied as well in order

to test the pruning power. The name ‘Synthetic.10K.E30.D3.L50.P05.A25’ is used

to specify in addition that the synthetic dataset has an attribute density of 0.05 and

maximum absolute attribute value of 25. Because all synthetic datasets are generated

from ‘Synthetic.10K.E30.D3.L50’, so they all have the same number of graphs, average

number of edges, graph density and number of distinct vertex labels. Thus we use the

name ‘Synthetic.P05.A25’ instead only to specify the attribute density and maximum

value of attributes. The algorithm to add the attributes to a graph can be found in

Appendix B.2.

Query sets

For the NCI Release 2 subset, we use 4 query sets, each of which contains 10

substructures randomly chosen from the dataset for exact matching so they queries

are ensured to be matched. For the synthetic datasets, we generate the queries from

the datasets using randomly selected graphs and remove the vertices and related edges

until the number of vertices meets the requirements. Thus queries for the synthetic

dataset are ensured to be matched too. We also use 4 query sets for each synthetic

dataset. The algorithm to generate the query set for synthetic dataset can be found

in Appendix B.3. Table 4 shows statistics about the query sets.

We test ECTree against the original CTree. Both indexes are implemented using

C++. In order to test both indexes fairly, we set up them as follows:

Since CTree does not support the additional attributes, in order to get the same

query results as ECTree, we use the subgraph isomorphism test and attribute
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Query set name Avg. # of vertices Avg. # of edges # of queries
NCI.Q1 5.9 5 10
NCI.Q2 9.1 8.5 10
NCI.Q3 12.1 11.2 10
NCI.Q4 14.8 15.1 10

Synthetic.Q1 4 3.52 50
Synthetic.Q2 6 7.16 50
Synthetic.Q3 8 9.53 50
Synthetic.Q4 10 16.78 50

Table 4: Query sets statistics

test which are used in ECTree to test the CTree only in the verification

phase. That is, in the index building and query filtering phase, CTree still uses

its own testing methods.

Since CTree does not support the new query label format, we use fixed label

queries for both indexes. The Histogram Pruning and the DA-Pruning are

disabled in both indexes because we want to know the performance of the index

using the new query format without pruning. Then we test them again with the

same dataset enabling the Histogram Pruning. The DA-Pruning performance

is tested separately.

Figure 28: The testing process as a pipe-and-filtering framework

Figure 28 shows our testing framework. The letter ‘H’ stands for ‘Histogram
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Pruning’, the letter ‘S’ stands for ‘Pseudo-Subgraph Isomorphism Test’, the letters

‘DA’ stand for ‘DA-Pruning’. In the following discussions and experiments, we always

enable the Pseudo-Subgraph Isomorphism Test by default. When we test the indexes

using only fixed labeled queries, we enable the Histogram Pruning and denote the

index by ‘+H’. We also test the performance of the indexes on our new query format

but it is hard to generate those queries, so we still adopt the fixed labeled queries but

we disable the Histogram Pruning (see Subsection 2.5.4) that cannot be used when

we use the new query format. When we enable the DA-Pruning for ECTree, it is

denoted as ‘+DA’.

5.2 Effectiveness of the Index

We first compare ECTree to CTree in terms of the results returned from the index to

show the selectivity of our index. We take a look at the time to build the index using

the NCI Release 2 subset for both CTree and ECTree in Table 5.

CTree ECTree
Number of Graphs 20k 20k

Input File Size(MB) 2.6 4.6
Index Size(MB) 3.4 5.5
Time Cost (s) 40.10 77.93

Table 5: Time cost to build index

With the same number of graphs, the size of the dataset that we use for ECTree

is larger than the one for CTree because of the additional attributes for each atom.

Consequently the index of ECTree is larger as well. The time to build the index for

ECTree is almost two times the time to build the index for CTree. One reason is

that according to the feature of ECTree, in order to maintain the structure that all

the descendents of a graph-closure are subgraphs of this node, more calculations are

included in building ECTree than CTree in the vertex/vertex-closure merging.

Figure 29(a) shows the comparison of time to compute the candidate set on the

NCI dataset. When the query graph size gets larger, ECTree gradually costs more

time than CTree because more graphs are likely to get pruned by the Pseudo-Subgraph
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(a) NCI subset (b) Synthetic.P30.A25

Figure 29: Filtering time cost

Isomorphism Test and then the rest of the graphs are likely to survive in the attribute

test because for NCI dataset, the attributes of a vertex is usually one of a few values.

For example, the attribute vector of the label ‘N’ in NCI dataset is usually either

0,5,0 or 0,3,0 . Figure 29(b) shows the comparison for the synthetic dataset.

Our method outperforms CTree significantly when querying the new format. When

querying fixed-label queries, our method outperforms CTree slightly.

Figure 30(a) shows the candidate/answer set size for the NCI subset with respect

to the querysets. As the subgraph-isomorphism problem is NP-complete, the less can-

didates we obtain after filtering, the faster query time we can achieve. The candidate

set size of ECTree is always smaller than that of CTree, and the true-positive rate

is nearly 100% for ECTree. When we enable the Histogram Pruning, the candidate

results are the same because the Pseudo Subgraph Isomorphism (PSI) test is a more

accurate pruning, which means some false-positive results that are not pruned by the

Histogram pruning will be pruned by PSI test. The results show that our index helps

prune more unwanted branches at higher level of the index. Figure 30(b) shows the

verification time for both indexes.

We omit the diagram for synthetic datasets because the true-positive rate for both

CTree and ECTree are close to 100% due to the randomness of the attributes – the

answer set contains only one graph in most cases. Thus the verification time is very
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(a) Candidate/Answer set size (b) Verification time

Figure 30: NCI subset verification statistics using CTree and ECTree

small and does not influence the whole querying process significantly.

Figure 31 demonstrates the overall time for both datasets. Results show that our

index outperforms the CTree in the original query format. For the new query format,

our index gets slower than the CTree as the query graph size gets larger.

5.3 The New Query Label

Next we show the efficiency of the new format of query label. We firstly use the

queries Q1, Q2, Q3 and Q4 described in Section 4.1.1 and 4.1.2 to compare the overall

time. The DA-pruning is enabled and the Histogram-Pruning is disabled when regular

expressions are used. Both prunings are enabled when running queries separately.

The dataset NCI subset is used. Results are shown in Table 6. There is a small

performance difference when we use the regular expressions on the labels because Q2

returns only 1 result thus there is not much benefit from combining queries. We show

the time enhancement with another example where more queries are combined. As

is shown in Figure 32(a), the four queries are real chemical substructures extracted

from the NCI subset. They can be combined into the query shown in Figure 32(b).

The testing method is the same as the previous test. Results are shown in Table 7.
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(a) NCI subset (b) Synthetic.P30.A25

Figure 31: Overall time cost

Method
Candidate
set size

Answer
set size

Overall run time (s)

Run both queries separately
(Q1 and Q2)

892 875 1.87

Using regular expressions
(Q3)

896 875 1.80

Using label groups (Q4) 896 875 5.65

Table 6: Comparison of querying methods 1

As we can see, though when separate queries are used, we can enable the histogram-

based pruning as well as our DA-pruning, it is still slower in time compared to using

a combined query in the condition. The enhancement for this test is 80% when our

method is used.

When the label groups are used, time instead rises, which shows the cost for

enumerating the compositions for the labels is very high.

61



(a) (b)

Figure 32: Four queries and a combined query

5.4 The Pruning Power

This section focuses on the DA-Pruning method for the new query format. We vary

the value of the attribute density P for the synthetic dataset at 0.05, 0.15 and 0.3

to test the efficiency of our pruning. For the synthetic dataset P = 0.3 and the NCI

subset, we use the same query sets used in the previous section. For synthetic dataset

P=0.05 and P=0.15, we generate the query sets using the generating algorithm in

Appendix B.3.

Our purpose is to test the pruning power when using the new query format.

Histogram Pruning is always disabled and Pseudo Subgraph Isomorphism is always

enabled. We first run the queries in ECTree without DA-Pruning, and then we run

the queries again with DA-Pruning, at last we run the queries with DA-Pruning only

at the data level of the index which means the pruning is not enabled at the non-

leaf index level (to distinguish it from DA-Pruning, this method is named ‘DA(d)’).

Results show that for all datasets, enabling DA(d)-Pruning enhances the performance

in terms of overall time. Enabling DA-Pruning gives better time than disabling

it in most cases but fails to give enhancement in some cases. This is because as

the attribute density increases, an index node in the ECTree is likely to have high

attribute density, large attribute values and a high degree. Therefore it is less likely to

62



get pruned by DA-Pruning at a non-leaf index level. For the NCI subset, DA-Pruning

and DA(d)-Pruning do not have significant difference because the attribute density

of the NCI subset is very low and attribute values are very limited.

(a) NCI subset (b) Synthetic.P05.A25

(c) Synthetic.P15.A25 (d) Synthetic.P30.A25

Figure 33: DA-Pruning on different attribute densities

Let t be the time cost without DA-Pruning, and tDA be the time cost with DA-

Pruning, we define the enhancement rate r t tDA

t . Figure 34 shows the enhancement

rate with respect to different query sets. We use the data collected from DA(d)-

Pruning since it gives better results for all query sets. Results show that as P in-

creases, the enhancement rate decreases. DA-Pruning does enhance the performance

of the index in terms of the time with the synthetic datasets and the NCI subset but
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as the query graph size and P gets bigger the pruning power of the method gradually

decreases.

Figure 34: Overall time cost enhance rate using DA(d)-Pruning

We also vary the maximum absolute value of the attributes in order to see the

change of enhancement rate of the DA-Pruning. Including the dataset

‘Synthetic.P15.A25’, seven more synthetic datasets are used. The query sets for

those new datasets are generated using the same methods mentioned in Section 5.1.

The results show that DA-Pruning fails to give enhancement for some query sets

of Q4, however, DA(d)-Pruning always gives better run time for all query sets, as is

shown in Figure 35. Table 8 shows the enhancement rates calculated using DA(d)-

Pruning, which vary from 10.10% to 21.50% due to the randomness of selected queries,

because when a query graph has relatively small values in its DA feature vector, it is

less likely to benefit from the pruning, which is a weak point of our method. However,

the average enhancement rates show no significant difference as the maximum value

of the attribute grows, which can be concluded as our method is effective regardless

of the maximum attribute value.
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Method
Candidate
set size

Answer
set size

Overall run time (s)

Run four queries separately 13 13 3.04
Using regular expressions 13 13 0.62

Table 7: Comparison of querying methods 2
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(a) Synthetic.P15.A50 (b) Synthetic.P15.A75 (c) Synthetic.P15.A100

(d) Synthetic.P15.A125 (e) Synthetic.P15.A150 (f) Synthetic.P15.A175

(g) Synthetic.P15.A200

Figure 35: DA-Pruning on different maximum attribute values
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Table 8: Enhancement rates using DA(d)-Pruning on synthetic datasets
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Chapter 6

Related Work

The graph model has been widely used and has attracted much attention of research.

There have been numerous graph indexes presented in recent research, but there are

no studies of graph indexes that allow the data/query graphs to have numbers/strings

as attributes. To the best of our knowledge no studies of multiple numerical attributed

graph indexing strategies have been done prior to this thesis work. In this chapter,

we review the recent and/or major works that are related to graph database indexing.

The gIndex [YYH04] and FG-Index [CKNL07] are both frequent subgraph based

approaches. gIndex firstly generates the frequent subgraphs of size up to maxL;

the resulting frequent graphs are sequentialized into a unique sequence and inserted

into a prefix tree. In the query phase, gIndex enumerates all its fragments up to a

maximum size and locates them in the index. The ID lists associated to the fragments

are intersected as the candidate set for the latter subgraph-isomorphism test. FG-

Index generates frequent subgraphs regardless of the size as well as an distinct edge

index. If a query is a frequent graph, FG-Index returns the answer set without

verification. Otherwise, FG-Index returns a candidate set according to the subgraphs

of the query graph and its frequent/infrequent edges, if any. The frequent subgraph

based approaches perform very well when the queries are frequent subgraphs in the

data set.

The TreeP i [ZHY07] and Tree+Δ [ZYY07] are tree structure feature based ap-

proaches. They both use frequent sub-trees as indexing structures rather than sub-

graphs because trees are easier to manipulate. TreeP i also adopts a method called
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Center Distance Constraints to prune the search space. Tree+Δ is an index struc-

ture with tree-features plus a small number of discriminative graphs. It is proved

that the most frequent features are non-linear trees and generates all frequent trees

in the offline process by [ZYY07]. In the query phase, Tree+Δ generates the graph

features on demand in order to improve its pruning power. The graph feature gen-

eration starts from choosing each simple cycle from a query graph and extends it by

one vertex at a time and checks whether the extended graph is discriminative to the

previous one with respect to the supergraphs that are associated in the dataset. If

the extended graph qualifies, it is added to Δ. The process is repeated until the size

of the vertex set reaches a predefined maximum value.

A recent work [KKM11] proposed CT-Index which uses exhaustive enumeration

of cycles and trees as features. All trees and cycles of a graph not exceeding a

specified maximum size are enumerated and transformed into unique canonical forms,

then stored using a hash-key fingerprint system [Day]. The size of the index and

the size of the fingerprint can be adjusted to control collisions of elements in the

fingerprint system. In the graph mining phase, CT-Index first enumerates features

of the query graph and the database graph separately, and then runs an inexpensive

bitwise AND-operation using fingerprints extracted from the fingerprint system via

a hash-function using the enumerated features for filtering. For verification, a new

backtracking algorithm similar to VF2[CFSV04] is presented.

[SZLY08] uses QI-Sequence for bounding the search space in the subgraph iso-

morphism test for a given query graph. Then a novel index called Swift-Index where

the mined frequent tree features are represented as QI-Sequences and are organized

as a prefix tree. In the filtering phase, the cost of subgraph isomorphism test can

be largely reduced due to the sharing of structure of the prefix tree index. A new

subgraph-isomorphism testing algorithm called QuickSI is also introduced.

[GS02] proposed GraphGrep, which builds a database to represent the graphs as

sets of paths in the offline index construction. Each query graph is parsed into several

paths and those paths are sent to the index for filtering graphs that clearly do not

contain any occurrences of the query. The remaining graphs are candidates for the

final answer set and are sent to the subgraph-isomorphism test. Since a path does

not contain structural information of a graph, many false positive answers could be

returned in the candidate set. When the graphs and queries in use are relatively
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complex, the path-based approach is not suitable.

The Closure-Tree [HS06] uses a graph bounding box method to organize the tree

index structure called CTree. A CTree has graphs as its nodes, and it is a hierar-

chical tree that each node is a bounding graph of its descent nodes. In the query

process, if a node is disqualified for a query, all graphs recursively contained by this

node are pruned. A pruning method called Pseudo Subgraph Isomorphism is also

introduced. In ECTree, we have extended the concept of bounding graph to the

numerical attributes of the vertices in the graphs.

The gCode [ZCYL08] is a two-step filtering at both the index level and the object

level. gCode computes a signature from a combination of neighborhood information

for each vertex of every graph in the data set. The vertex signatures are later made

into a graph signature as a feature for the graph and indexed in a tree called gCode-

Tree. gCode also maintains a list of binary vectors signatureID, count for each

distinguished vertex signature and how many times this signature appears in this

graph. For each query graph, gCode extracts the graph signature of the query and

finds all qualified signatures from gCode-Tree as the index filtering step. The qualified

graphs are then sent to the object pruning that is done according to the list of pairs of

vertex signatures to perform a “vertex-to-vertex” comparison filtering. The subgraph-

isomorphism test is performed at the final step.

Summarization Graph [ZCZ 08] uses a novel subgraph searching algorithm based

on Summarization Graph Model. Frequent subgraphs are first selected using a feature

selecting algorithm, then each occurrence of frequent subgraphs in a dataset graph

is summarized as a vertex. Each vertex in a summarization graph is a set of pairs

denoted as Label, Length , where Label is the ID of the feature subgraph, and

Length is an integer value that captures the distance between occurrences which is

calculated according to the topology of the dataset graph. Each summarization graph

is a complete graph with unlabeled edges. In the query process, a method of retrieving

objects with set-valued attributes is used to obtain the candidate set.

Other interesting related work includes GString [JWYZ07], GDI [WHW07],

iGraph [HLPY10] and GiS [PR11]. [JWYZ07] proposes GString for chemical com-

pound databases. However, extending GString to other graph database applications
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is not straightfoward. [WHW07] proposes a method to enumerate all connected in-

duced subgraphs in the graph database, then organizes them into a Graph Decomposi-

tion Index (GDI). A GDI contains a graph database Directed Acyclic Graph (DAG)

which is merged from the graph decomposition DAGs of all the database graphs, and

a hash table that cross-references nodes in the database DAG. This method does not

work well with relatively large graphs because of the explosion of enumerations of sub-

graphs. [HLPY10] gives a framework to compare disk-based graph indexes, namely

iGraph. A number of recent graph database indexes are implemented and a number

of indicators such as the number of disk I/Os, elapsed time, etc. are compared against

each other on both real and synthetic data sets. [HPL 11] further presents the visual

tools for iGraph using several real datasets and their workloads. Similar to iGraph,

the GiS [PR11] is a tool for indexing and querying a large database of labeled, undi-

rected graphs. GiS supports various recent indexing techniques and provides both

exact and approximate graph queries.
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Chapter 7

Conclusion

This chapter gives conclusions of the thesis work, states the limitations and outlines

potential future directions.

7.1 Summary of Contributions

This section describes the contributions that have been made in this thesis work. It

describes our approaches to build up a novel graph index and differences from other

indexes.

We have a graph database indexing system ECTree which is based on the design

of Closure-Tree [HS06] that defines an extended data type of graphs which includes

both labels and attributes on the vertices. The numerical attributes of a vertex is

usually ignored when considering the graph indexing problems, but our approach

tries to organize the labels and attributes at the same time. We adopt the concept

of bounding box which is used in Closure-Tree to obtain a graph-closure into our

method of indexing the attributes. We also provide a query format to query our new

index with integer intervals as vertex attributes. We show the efficiency of our index

when querying a graph database with the new graph format against the Closure-Tree.

Our approach reveals that it is possible to index both labels and attributes at the

same time and to improvement the speed.

A more flexible query format for our index which allows the labels of the query

vertices to be non-fixed is applied to our index. The use of Regular Expressions allows

flexible and complex query labels. The definition for Label Groups is provided. The
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new query format helps in reducing the query time when a group of queries share some

common structures and information such as graph structures and labels. Running

each of the queries may require many more subgraph-isomorphism tests than just

running the combined query.

We also develop a pruning method named DA-Pruning which is used for the

new query format that supports non-fixed query labels when querying attributed

graph databases or when certain query labels are unknown. It is a pruning method

based on the joint information from both the degree information and the attribute

information of vertices. We describe in detail the methods to calculate the DA-

feature vector for a data graph/graph-closure and for a query graph and also give

the algorithms for the method. Comparisons are presented between DA-Pruning on

the entire index and implementing it only on the data level which is named DA(d)-

Pruning. We demonstrate that our pruning is effective for random queries extracted

from the datasets by experiments on both real and synthetic datasets.

7.2 Limitations

There are some weak points in our work. Summarized as follows.

Our graph database index ECTree yet does not support large and complex graphs

well (e.g. graphs that have more than 15 vertices and/or have a high density), due

to the characteristic of a bounding box. When a graph database contains mostly

large and complex graphs, the dead space in a graph-closure becomes very large and

unacceptable and therefore reduces the performance of the index.

The sizes of the query sets and data sets are small. The NCI Release 2 contains

250K structures and we only used 20K as the real dataset. The testing factors are

simple and more factors can be added and more tests can be made using various

datasets and data types to further evaluate the index. For example, social networks,

co-authorship networks, and so on.

The performance study is between ECTree and Closure-Tree only. More graph

database indexes can be extended to adopt the new data and query formats so that

they can be compared to our index.
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7.3 Future Work

There are a few areas that we think are worthy looking into for further improvement

and investigation.

Research towards extending other graph indexes to support both label indexing

and attribute indexing can be an interesting direction. Our approach shows that

indexing both labels and attributes is feasible and efficient. There are a lot of other

graph indexes that are mentioned in Chapter 6 which can be considered for extending

and further compared to this work.

We did not study incremental maintenance and updates for the index when a

large number of graphs is involved. Closure-Tree has methods to maintain the index

structurally only. If maintenance needs to be performed for ECTree on inserting,

modifying or removing, finding a fast way for those operations can be an improvement.

ECTree only supports the integer type of attributes. Still, some other types may

be considered such as boolean, float, or even string type. However, more complex data

types involved means a more complex index. Whether our index can be extended to

include such data types remains an open question.

There might also be interest on similarity queries with attributed graphs. The

Closure-Tree index supports similarity queries but in our work we did not extend it

for similarity queries with attributed graphs. The graph index for attributed similarity

graph queries can be an interesting direction of research.

Reducing the structural dead space and the attribute dead space can benefit EC-

Tree for performance enhancement. Though we adopt the Naive Biased Mapping

for the data graph mapping phase, the structural dead space is still a big problem

that prevents CTree and ECTree to be competitive in the large graph indexing realm.

Moreover, ECTree further has the attribute dead space which is produced when merg-

ing the attribute vectors. The index could be more efficient and effective if a proper

way of reducing dead space can be found.
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Appendix A

Meaning of Values in SDF Atom

Block

This appendix presents the detailed SDF atom block meaning introduced in [Sym].

An atom block is made up of atom lines, one line per atom with the following format:

xxxxx.xxxx yyyyy.yyyy zzzzz.zzzz aaaddcccssshhhbbbvvvHHHrrriiimmmnnneee

We show part of the meaning of values in SDF atom block in Table 9. In our

experiments, we only use mass difference, charge and atom stereo parity as attributes.

And in fact most of the non-zero values appear in those attributes and that is why we

keep three attributes for each vertex in our experiments. The manual CTfile Formats

[Sym] can be referred to for full explanations of the SDF file format.
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Field Meaning Values Notes

x y z
atom
coordinates

aaa
atom
symbol

Entry in periodic table or
L for atom list, A, Q,
for unspecified atom, and
LP for lone pair, or R#
for Rgroup label

dd
mass
difference

-3, -2, -1, 0, 1, 2, 3, 4
(0 if value beyond these
limites)

Difference from mass in pe-
riodic table. Wider range
of values allowed by M
ISO line, below. Retained
for compatibility with older
CTabs, M ISO takes prece-
dence.

ccc charge

0 = uncharged or value
other than these, 1 = +3,
2 = +2, 3 = +1, 4 = dou-
blet radical, 5 = -1, 6 =
-2, 7 = -3

Wider range of values in M
CHG and M RAD lines
below. Retained for com-
patibility with older CTabs,
M CHG and M RAD
lines take precedence.

sss
atom
stereo
parity

0 = not stereo, 1 = odd,
2 = even, 3 = either or
unmarked stereo center

Ignored when read.

Table 9: Meaning of values in the atom block [Sym]
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Appendix B

Related Algorithms

B.1 Counting Different Labels and Finding New

Bindings

Algorithm 8 shows the function CountVertex (V ) and Algorithm 9 shows the function

FindNewBinding(B, c), which are used in Subsection 4.1.3.

Algorithm 8: CountVertex(V )

input : A vertex vector V
output: A vertex vector V

V Ø ;
for i 1 to V do

if V i V then
Add V i to V ;

return V ;
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Algorithm 9: FindNewBinding(B, c)

input : An integer array indicating the current binding B, number of
different labels to bind c

output: A new binding array B

B ;
i B ;
while true do

if B i 1 c then
B i B i 1;
foreach j 1, c do

if j appears twice or more in B then
continue while ;

B B;
break while;

else
B i 1;
i i 1 ;
if i equals 0 then

break while ;

return B ;
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B.2 Adding Attributes to Non-Attributed Graphs

Algorithm 10 adds integers as attributes to vertices. The system time is used as a

seed for random integers. In our programming srand(unsigned(time(0))) is used for

seeding and rand() is used to generate random integers.

Algorithm 10: AddAttribute(S, n, P , M)

input : A set of non-attributed graphs S, number of attributes to be
added n, attribute density P , the maximum absolute value of the
attributes M

output: A set of attributed graphs S

Seed the random number generator to system time;
foreach graph G V,E S do

V ;
foreach vertex v V do

for i 1 to n do
x a random integer;
x x mod 100;
y 0;
if x P then

y a random integer, y y mod M ;
z a random integer;
if z mod 2 equals 0 then

y y;

Add y to the attribute list of v;

Add v to vertex set V ;

Add G V ,E to S ;

return S ;
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B.3 Generating Query Sets for Synthetic Datasets

Although our index supports disconnected graph queries, we generate only connected

graphs as queries to avoid possible problems in indexing and querying, as is shown in

Algorithm 11.

Algorithm 11: GenerateSyntheticQueryset(S, n, m)

input : A set of attributed graphs S, number of queries to be generated n,
size of vertex set of each query m,

output: A set of queries Q

Seed the random number generator to system time;
Q ;
while Q n do

x a random positive integer;
x x mod S ;
G V,E S x ;
if V m then

continue;
else

while V m do
Delete a random vertex v from V ;
Delete all edges related to v;
if G is a disconnected graph then

Roll back the deletion of vertex and edges;
continue;

if v V , v has only zero attributes then
continue;

Add G V,E to Q;

return Q;
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