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Abstract

Computer-Aided Writeprint Modelling for Cybercrime Investigations

Michael Schmid

E-mail has become the most common way to communicate on the Internet, but e-mail

security and privacy mechanisms are still lacking. This has proven to be a very valuable

characteristic for criminals, who can easily take advantage of e-mail’s various weaknesses

to remain anonymous. Consequently, cybercrime investigators need to rely on computer-

aided writeprint modelling methods and tools to identify the real author of malicious e-

mails with transformed semantic content. In this paper, we propose a customized version

of associative classification, a well-known data mining method, as well as a Support Count

method, to address the authorship attribution problem. Experimental results on real-life

data suggest that our proposed algorithms can achieve good classification accuracy on the

e-mail author attribution problem through the use of writeprint modelling.
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Chapter 1

Introduction

1.1 Motivation

The Internet has revolutionized the world of communications; many malicious entities en-

gaging in illegal activities such as spam, ransom notes, threats, extortion, black mail and

scams have moved their focus online. E-mail has become the standard way to communicate

on the Internet, but e-mail security and privacy mechanisms are still lacking. In many cases

of misuse, it is trivial for criminals to obfuscate their identify. Consequently, cybercrime

investigators [11,12] need to rely on computer-aided writeprint modelling methods [28,48]

and tools to identify the real author of malicious e-mails with transformed semantic content.

Authorship attribution [58] is the statistical study of linguistic and computational charac-

teristics of the written documents of individuals. This scientifically grounded process can

identify the true author [22] of an anonymous textual communication without relying on

the authenticity of e-mail header information.

There are three main security-related weaknesses inherent in e-mail systems. Although

researchers have proposed security enhancements to remedy these problems, there is no

standard that ensures compatibility and so the following issues are still prevalent.

1) E-mail meta data [36] and apparent routing information can be spoofed, making them
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unreliable information to use as evidence. Even the origin of an e-mail can be hidden quite

easily by using anonymous e-mail servers.

2) Computer viruses, Trojan scripts and other executables can be transmitted inside an

e-mail. In fact, e-mails are one of the most common methods of distributing these types of

malicious files, which can have devastating effects on systems.

3) The very nature of Internet e-mail access makes it difficult to link an actual person

with the location the e-mail was sent from. Most e-mail systems are accessible from any-

where, whether it be from an Internet cafe or a public Wi-Fi access point. Even when it

can be determined which computer sent a given message, computers are commonly used

by multiple people. Botnets or other malicious executables can make it possible for an

attacker to remotely send an e-mail using an intermediary’s machine [13], leaving little to

no trace of the real origin of the message.

E-mail misuses cannot effectively be prevented or bypassed by any current mechanism.

However, it has been shown [32, 34] that the transformation of semantic content in e-mails

for the purpose of writeprint modelling can help prosecute an offender by clearly linking

them to a malicious e-mail with tangible supporting evidence.

1.2 Threat Model

Assume that an individual writes a threatening e-mail to a victim, but anonymizes the e-

mail by obfuscating it’s origin and other identifying information. A list of suspects can

be drawn based on who might have negative feelings towards the victims. Armed with a

warrant, the police may seize computers and equipment from the suspects’ properties and

extract all e-mails written by the various suspects. Assuming the author removed any trace

of the threatening e-mail in question, an investigator must model the writeprints of each

suspect and then determine which of the suspects is the most likely author. Whereas it is

trivial and common to spoof e-mail header information, it is more difficult and less well
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known to obfuscate a writing style. We propose that the process of matching a suspect’s

writeprint to malicious e-mails can help prosecute criminals by providing yet another solid

piece of evidence to the case.

1.3 Problem

The problem of identifying the author of an anonymous e-mail in cyber forensics can be

described as follows: a cyber forensic investigator is tasked with determining that the au-

thor of a given malicious e-mail m is likely to be one of the suspects {S1, . . . , Sn}. To

support the finding in a court of law [11], the investigator must gather convincing evi-

dence that identifies the most plausible author from the suspects {S1, . . . , Sn}. Whereas

in forensic science, an individual’s fingerprint can uniquely [23] identify them, in cyber

forensic science, an investigator would like to use advanced data mining methods to model

the writeprint of an individual from his/her e-mails and use it to support whether or not

he/she is the author of a given message. Extracting a writeprint from transformed seman-

tic content using computer systems is by far the most efficient and most accurate way of

achieving this.

A significant amount of research has studied stylistic and structural features [19,51,58],

but very few studies have considered the combination of features that form a writeprint. The

writeprint of a given e-mail is the combination of features that define its lexical, syntactical,

structural, semantic and content-specific attributes. Association rule discovery techniques

can process a set of transformed e-mails written by the same author and then build an

accurate classifier. A classifier consists of patterns that represent the respective author’s

most prominent combinations of features. The notion of frequently occurring combinations

are used by these high performance and highly scalable techniques to extract interesting

information that would be hard to discover otherwise.
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1.4 Contributions of the Thesis

Associative classification [4] (AC) is a data mining method that uses association rule dis-

covery techniques to build a classifier. To our knowledge, this is the first time AC has been

applied to the authorship attribution problem and the results on real-life data suggest bet-

ter accuracy and performance compared with existing techniques. These techniques result

in a concise and representative classifier that can serve as clear evidence to support the

identification of the true author of an e-mail.

There are many different flavors of AC, namely CBA [41], CPAR [30], CMAR [39],

MCAR [52] and others. Given the need to quantify the match between various authors’

writing styles and an anonymous e-mail, we have concentrated our research on CMAR,

Classification by Multiple Association Rule [39]. This variation on AC uses a subset of

rules as opposed to a single best rule, to determine which class, or author in our case, is the

best match. We propose that authorship attribution, being a special case of classification,

can benefit from a class-specific support threshold. This enables the classifier to better

represent each author. Furthermore, we submit that a prioritization of complex patterns

over general patterns in the rule pruning process makes for more accurate classification

while still providing excellent performance enhancing characteristics.

We have also developed a new process called Support Count (SC) that is inspired by our

contributions to CMAR. Support Count simplifies the classification process by examining

features of an author’s writing style as a lump sum score as opposed to discovering specific,

but not necessarily useful patterns. This novel process is described in detail in Section 4.4.

A thorough set of experiments on the Enron [1] e-mail data set suggest that these meth-

ods are more accurate with similar or better performance than current state of the art au-

thorship attribution methods.
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1.5 Thesis Organization

The rest of the paper is organized as follows:

Chapter 2 provides a literature review on authorship analysis and classification.

Chapter 3 formally defines the authorship attribution problem and the notion of writeprint

by class association rule (CAR) list.

Chapter 4 describes our new data mining approach for modelling a writeprint from

transformed semantic content.

Chapter 5 evaluates the accuracy and efficiency of our proposed methods on the Enron

e-mail data set [1].

Finally, Chapter 6 concludes the paper and outlines possible future research directions.
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Chapter 2

Literature Review

2.1 Related Work

Previous works on authorship attribution are mostly applications of text classification anal-

ysis [18, 26, 42, 43]. Authorship analysis [5] is the study of linguistic and computational

characteristics of the written documents of individuals [6,8]. The process starts by extract-

ing writing styles from an author’s previously written texts. Each individual’s writing style

can then be used to differentiate one author from another [45]. Stylometric features [2]

can be broadly categorized into five different types, namely lexical, syntactic, structural,

content-specific, and idiosyncratic features [3, 32, 34].

In this section, we review the commonly employed stylometric features, summarize the

techniques of e-mail authorship attribution found in authorship attribution literature and

then discuss associative classification and its role in this study.

2.2 Writing Style Features

There is no standard predefined set of features [49] that best differentiates the writing styles

of different suspects. However, studies [27] have identified the most representative features
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in terms of accurately classifying an anonymous text. Punctuation and n-gram features

have proven to be the most accurate, but the combination of these features was discovered

to be even more powerful. Typically writing patterns contain the characteristics of word

usage, composition and structure, common spelling and grammatical mistakes, words se-

quence, vocabulary richness, hyphenation and punctuation. One comprehensive study on

stylistic features presented by Abbasi et al. [3] discusses this in more detail. The most

common writing style features, namely, lexical, syntactical and structural are outlined in

the following paragraph.

Textual measurements of both characters and words or tokens are called lexical fea-

tures. The most relevant character measurement features are frequency of letters, number

of characters per token and number of characters per sentence. Word-based lexical [50]

features may include word length distribution, words per sentence and vocabulary richness.

Initially, researchers thought that vocabulary richness [55, 56] and word usage [31] were

discriminating features to be used for authorship attribution, but these have proven more

useful in authorship characterization problems. Syntactic features include the distribution

of function [57] words, such as about, at, each, in, of, if, to. Punctuation, another syntactic

feature, plays a significant role in authorship attribution [9,24,53]. Paragraph structure and

punctuation also have semantic content, measured as structural and syntactic features. Av-

erage paragraph length and number of paragraphs per document are commonly measured

structural features. The presence of a sender signature [10] including contact information

is a domain specific structural feature considered in the analysis of e-mail documents.

2.3 E-mail Authorship Analysis

Authorship analysis has resolved authorship attribution disputes over literary and con-

ventional writings [44]. However, e-mail authorship attribution poses special challenges

due to its characteristics of size, vocabulary and composition when compared to literary
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works [20]. Literary documents are usually large in size, comprising of at least several

paragraphs; they have a definite syntactic and semantic structure. In contrast, e-mails are

short and usually do not follow well defined syntactic or grammatical rules. Thus, it is

harder to model the writing patterns of their author. Ledger et al. [37] established that au-

thorship analysis results would not be significant for texts containing less than 500 words,

creating the need for better models [32, 34] able to handle the characteristics inherent in

e-mails. Moreover, e-mails are more interactive and informal in style, and people are not

as conscious about spelling and grammatical mistakes particularly in informal communi-

cations. Therefore, techniques that are successful in literary and traditional works are not

always applicable in e-mail authorship attribution problems.

Iqbal et al. [33] have shown that the e-mail authorship attribution problem deserves

special attention and can be solved by designing algorithms that deal with the specific

challenges related to e-mail authorship analysis. Our research differs from that work by

applying a popular data mining technique called associative classification whereas Iqbal et

al. [33] concentrated on frequent item sets. Our proposed method boasts improved classifi-

cation accuracy and performance, as will be shown in detail in Chapter 5.

A popular classification method, the Support Vector Machine [7, 16, 21, 35] (SVM),

was applied [18, 51] over a set of stylistic and structural features for e-mail authorship

attribution. de Vel et al. [15,19] performed extensive experiments and concluded that clas-

sification accuracy decreases when the training data set size decreases, when the number of

authors increases, or the average length of documents decreases. This helps to explain the

decline in classification accuracy seen when processing documents with e-mail-like char-

acteristics. de Vel et al. [18] further found that the performance of SVM was reduced by

increasing the number of function words from 122 to 320, contradicting the argument that

SVM supports high dimensionality and leading to the conclusion that adding more features
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does not necessarily improve accuracy. However, it has been proposed [32, 34] that iden-

tifying combinations of key features that are able to differentiate between writing styles of

different suspects and filtering out useless features can improve accuracy.

Generally each type of the four feature sets are applied independently, which sometimes

produces conflicting results [18]. For example, word usage and composition style may vary

from one structural pattern to another. Previous authorship attribution techniques also suf-

fered from the problem of having too many features, making it difficult to determine the

right feature sets to use for a given set of e-mails. de Vel et al. [18] have shown that adding

useless features may decrease classification accuracy when a classifier captures these fea-

tures as noise. Using noisy features for classification also diminishes the justification of

evidence for supporting the finding, creating a legal problem from a technical problem.

One of our approaches overcomes this limitation by flexibly extracting the evidence (com-

binations of frequently occurring features) from the data itself, automatically filtering out

noise with user-supplied thresholds that are not content or domain specific. The default

values of these thresholds are sufficient but there is great value in allowing the user to set

values based on the specific nature of a given problem.

2.4 Associative Classification

LetA = {A1, . . . , Am} be a set of features. A record r is a set of feature items {a1, . . . , am}

where ai ∈ Ai. Features can be categorical or continuous and we assume that all possible

feature items are mapped to a set of consecutive positive integers. To map continuous

features into consecutive positive integers, their ranges are discretized into intervals. By

doing so, all features are treated uniformly and can therefore appropriately factor into the

frequent pattern set discovery process. Since these features represent a value of a writing

style feature, their combined effect makes it simple and intuitive to model an author’s

writeprint.
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Let C be a finite set of distinct class labels, each representing an author in our context.

A training data set is a set of records, each with an associated class label c ∈ C. A classifier

L is a function that maps a record r to a class c ∈ C.

Associative classification (AC) is an association rule discovery process in which only

one class is considered as a rule’s consequent; in any given rule such as A → B, B must

always be a class and B will never be in any rule’s antecedent. Therefore, the intersection

of the set of feature items and class labels is always empty, A ∩ C = ∅.

The task of classification in general is to build a classifier from a training data set to ac-

curately classify each test record from a test data set. There are many different approaches

used for classification, such as decision tree [47], naive Bayesian [25, 45, 46], neural net-

work [40], etc. A more recent approach is to explore strong relationships between specific

sets of object features and their class labels; frequent patterns in records with the same

class label can then be used to infer the class of other records with similar patterns. The

important advantage in using AC over classical classification approaches is that the output

of an AC algorithm is represented by simple If-Then rules which are easy and intuitive to

understand and interpret.

Definition 1 (Match). Let p = {a1, . . . , ak} be a set of distinct feature items called a

pattern, where aj is a feature item of some attribute Ai ∈ A. A record r matches a pattern

p if p ⊆ r.

Definition 2 (Support). Given a training data set T , let c be a class label. For rule R :

P → c, the number of records in T matching pattern p and having class label c is called the

support of R, denoted as sup(R).

Definition 3 (Confidence). The ratio of the number of records matching pattern p with

a class label c versus the total number of records matching that pattern p is called the

confidence of R, denoted as conf(R).
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For example, if 90% of suspect Si’s e-mails contain 3 paragraphs, then the confidence

of rule R : 3 paragraphs → Si is 90%. We can use this rule to classify future records

that match this pattern. The support threshold is used to avoid noise; without a minimum

support threshold, even non-representative relationships might become rules. Typically AC

finds the complete set of class association rules (CAR) that pass the user-supplied minimum

support and confidence thresholds. When a new record requires classification, the classifier

will select the matching rule with the highest confidence and support and use it to predict

the class label. Newer AC techniques will prune and rank rules and sometimes even use

multiple rules to predict the class label of an unknown record as there are situations in

which the single best rule may not be the most intuitive or even most appropriate choice.

Many studies [30, 39, 41, 52] show that AC is intuitive, efficient and effective.

Authorship attribution requires special attention when it comes to using AC techniques

to obtain the best results; with multiple distinct classes and the need to consider much more

than simply the strongest class, it becomes evident that a classifier should consider as much

information as possible.

Example 1 demonstrates why a single matching rule may not always be the best choice.

Example 1. Suppose we want to determine who the author of an anonymous e-mail with

feature items (2, 5, 8) is. The top 3 most confident rules matching the e-mail are as follows:

Rule R1: 2→ Author 0 (support: 100, confidence: 90%)

Rule R2: 5→ Author 1 (support: 200, confidence: 89%)

Rule R3: 8→ Author 1 (support: 150, confidence: 88%)

Most AC techniques that select the most confident rule would classify this e-mail as

belonging to Author 0, but a closer look suggests that this decision has been made with

little regard to the rest of the rule list. All three rules have similar confidence but both R2

andR3 have higher support, which means that the values of those features were found more

often in the training data set for Author 1. Author 1 is therefore a more intuitive choice and

11



our algorithm should reflect that.

Situations like this make it clear that in order to make a reliable and accurate predic-

tion, especially when the result could mean the difference between guilty and innocent, an

aggregate measure analysis based on multiple rules intuitively and reliably leads to better

quality classification, as shown in the literature [39].
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Chapter 3

The Problem

Let {S1, . . . , Sn} be the set of suspected authors of an anonymous e-mail e and let Ei

be a collection of e-mails, consisting of at least 30 messages, written by suspect Si ∈

{S1, . . . , Sn}. The problem of authorship attribution by multiple class association rule is

to identify the most plausible author Sa from the suspects {S1, . . . , Sn}, whose collection

of e-mails Ea best matches with the feature items in the malicious e-mail e. Intuitively,

a collection of e-mails Ei matches e if Ei and e share similar patterns of writing style

features in strongly representative combinations. The primary objective of cyber forensic

investigators is to automatically and efficiently model the patterns, or writeprint, of each

suspect. They can then present such patterns as evidence identifying the author of the

malicious e-mail e.

In terms of associative classification, what exactly is suspect Si’s writeprint? Specifi-

cally, we want to extract [54] rules derived from patterns that uniquely and strongly repre-

sent the writing style of each suspect Si, but do not represent the writing style of any other

suspect Sj , where i 6= j. In the rest of this section, we discuss the pre-processing of e-mails

and formally define the notions of frequent patterns, classification rules and the problem of

accurately quantifying the similarity between each set Ei and an anonymous e-mail e.

13



3.1 Pre-processing

Each author has a folder containing his/her e-mails, with headers and appended forward

or reply content removed. The selection of e-mails has been performed manually because,

unlike header information, the body section of an e-mail is unstructured and must be eval-

uated on a case by case basis. E-mails with less than a few sentences or attached content

are not included, as they would not represent an author’s writing style. Once the data has

been vetted, pre-processing [17] can begin.

Let Ei be a collection of e-mails written by suspect Si. The goal of pre-processing is

to output a set of records listing the feature values for each e-mail in Ei. In the rest of this

section, the term feature refers to one of the many stylometric features described in Section

2.2.

We discretize each normalized feature into a set of intervals, for example, [0−0.25], (0.25−

0.5], (0.5− 0.75], (0.75− 1]. Each interval is called a feature item. The normalized feature

frequency is then matched with these intervals. We assign a value of 1 to the feature item

if the interval contains the normalized feature frequency; otherwise we assign a value of 0.

This simplifies the procedure by determining the presence or absence of a pattern. Some

commonly used discretization techniques are:

• Equal-width discretization, where the range of each interval is equivalent.

• Equal-frequency discretization, where each interval contains approximately the same

number of records.

• Clustering-based discretization, where clustering is performed on the distance be-

tween neighbouring points.

The discretization technique used in our study is called equal-frequency discretization,

where each interval contains approximately the same number of records. This method

14



Table 1: Feature Vectors

E-mails Features
Feature X Feature Y Feature Z

X1 X2 X3 Y1 Y2 Z1 Z2 Z3
e1 1 0 0 1 0 1 0 0
e2 0 1 0 0 1 0 1 0
e3 0 1 0 1 0 0 0 1
e4 1 0 0 1 0 0 1 0
e5 0 1 0 0 1 0 1 0
e6 0 1 0 0 1 0 0 1
e7 0 0 1 1 0 0 1 0
e8 0 0 1 0 1 0 1 0
e9 1 0 0 0 1 1 0 0
e10 0 1 0 1 0 1 0 0

was chosen because it allows for each interval of the feature vector to be split according to

the training data. This ensure that each feature item is as distinct as possible from the other

authors.

Example 2 demonstrates the typical pre-processing algorithm.

Example 2. Consider the ten e-mails in Table 1 from which we extract three features

{X, Y, Z}. We first discretize each feature into feature items. For example, a stylomet-

ric feature X having a normalized range of [0, 1] can be discretized into three intervals

X1 = [0, 0.33], X2 = (0.33, 0.66] and X3 = (0.66, 0.1], representing three feature items.

Similarly, feature Y is discretized into Y 1 = [0, 0.5] and Y 2 = (0.5, 1], and feature Z

into Z1 = [0, 0.33], Z2 = (0.33, 0.66] and Z3 = (0.66, 01]. An e-mail e1 having features

Z = 0.3, Y = 0.25, and Z = 0.25 can be represented by the following feature vector:

〈1, 0, 0, 1, 0, 1, 0, 0〉.
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3.2 Frequent Patterns

Intuitively, the writing style of a collection of e-mailsEi written by suspect Si is a combina-

tion of feature items that frequently occur in the training set of e-mailsEi. These frequently

occurring patterns are modelled with the concept of frequent itemset [4] described as fol-

lows.

Let V = {f1, . . . , fn} denote the universe of all feature items. LetEi be a set of e-mails

where each e-mail e is represented by a set of feature items such that e ⊆ V . An e-mail

e contains a feature item fi if the numerical feature value of the e-mail e falls within the

interval of fi. For example, e-mail e1 in Table 1 can be represented by a set of feature items

e1 = {X1, Y 1, Z1}. Table 2 lists the ten e-mails from Table 1 in feature item set notation.

Let F ⊆ V be a set of feature items called a pattern. An e-mail e contains a pattern F if

F ⊆ e. Let us assume that a pattern that contains k feature items is called a k-pattern. For

example, the pattern F = {f1, f4, f6, f8} is a 4-pattern and F = {f2, f5} is a 2-pattern.

The support of a pattern F , with regard to a single author, is the number of e-mails in Ei

that contain F . If the support of F is greater than or equal to a user-specified minimum

support threshold, then F is considered a frequent pattern in the set of e-mails Ei.

Definition 4. (Frequent pattern). Let Ei be the set of e-mails written by suspect Si. Let

sup(F |Ei) be the number of e-mails in Ei that contain the pattern F , where F ⊆ V . A

pattern F is a frequent pattern inEi if sup(F |Ei) ≥ min sup, where the minimum support

threshold min sup is a real number representing the minimum number of times a pattern

must appear or a minimum percentage of records that contain the pattern.

The writing style of a suspect Si is therefore represented as a set of frequent patterns,

denoted by FP (Ei) = {F1, . . . , Fk}, extracted from the set of e-mails Ei. These patterns

are used to derive a high quality class association rule list that consists of the strongest

frequent patterns by means of pruning and ranking. The pruning and ranking of rules

differs from one technique to another. These differences will be outlined in Chapter 4.
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Table 2: Feature Items

E-mail Items
e1 {X1, Y1, Z1}
e2 {X2, Y2, Z3}
e3 {X2, Y2, Z3}
e4 {X1, Y1, Z2}
e5 {X2, Y2, Z3}
e6 {X2, Y2, Z3}
e7 {X3, Y1, Z2}
e8 {X3, Y1, Z2}
e9 {X1, Y1, Z1}
e10 {X2, Y2, Z2}

Example 3. Consider Table 1. Suppose the user-specified thresholdmin sup = 0.3, which

means that a pattern F = {f1, . . . , fk} is frequent if at least three out of the ten e-mails

contain all feature items in F . {X3} is not a frequent pattern because it has support 2/10 =

0.2. {X2} is a 1-frequent pattern because it has support 0.5 and {Y 2} is also a 1-frequent

pattern with support 0.5. {X2, Y 2} is a 2-frequent pattern as X2 and Y 2 appear together

five times. Finally we have a 3-frequent pattern with {X2, Y 2, Z3} with a support of 0.4.

Example 4 will show how to efficiently compute all frequent patterns.

3.3 Associative Classification Writeprint

Fingerprint identification in forensic science, known as dactyloscopy, is the process of

comparing two instances of friction ridge skin impressions to determine whether these im-

pressions could have come from the same individual. In authorship attribution applied by

cyber forensic specialists, we can do something similar by identifying the writeprint of an

individual from his/her written text as a distinguishable writing style. Writeprints, as de-

scribed in this thesis, can not uniquely tell apart every individual in the world, but a properly

identified writeprint is accurate enough to identify the writing pattern of an individual. It

is our prerogative to show that the author of an anonymous text can be determined given a
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list of suspects and a sufficient quantity of their previously written texts.

The notion of frequent patterns in Definition 4 captures a suspect’s writeprint. However,

two suspects Si and Sj may share some similar writing patterns. Therefore it is helpful to

filter out common frequent patterns and retain only the frequent patterns that are unique

to each suspect. Setting a confidence threshold in typical associative classification (AC)

techniques does something similar, by discarding patterns that are not mostly associated

with a single class. This leads us to the notion of writeprint: a writing style that strongly

represents an individual.

Once a set of class association rules (CAR) is discovered, it is trivial to remove com-

mon rules and group them into a list for each author. These grouped rules consist of the

strongest unique patterns that make up each author’s writing style. In cases where there

are many authors, AC may not create enough rules to represent every one. Whereas the

goal of authorship attribution is to most accurately associate an anonymous e-mail with its

most probable author, the goal of classification is simply to associate a given feature set

with the best class. This notion of best class is not always compatible with the goals of

authorship attribution. For example, AC is most often used to predict the outcome of some

situation, whereas authorship attribution attempts to associate an author with his unique

writing style. Therefore, some classes may be neglected if their frequent patterns do not

have enough support or confidence, or if the training data set is too small. This is not an

acceptable situation in authorship analysis as each author should have an equally represen-

tative writeprint if an e-mail is to be classified correctly in cases where there are rules with

low support and/or confidence for some suspect.

Many studies have presented ways of greatly reducing the number of class association

rules for reasons of efficiency, given that usually only the strongest rule would be used for

classification anyway. Our approach uses multiple rules [39] and so it is important not to

prune or discard too much information. In general, rules with low support and confidence
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are pruned or outranked by more powerful rules, regardless of their class association. This

means that a given author may be assigned to an unknown e-mail simply because he/she

has a stronger writeprint than the true author, and not based on a normalized measure of

similarity. This would be the equivalent of identifying a matching fingerprint against two

samples: one with a full print and another just with a partial print. The full print has more

potential to match or to mismatch the unknown print, whereas the partial sample, even if it

matches the unknown print very well, could still be discarded as its potential to fully match

the unknown print is inherently lower.

Definition 5. A writeprint, denoted by WPCAR(Ei), is a set of patterns where each

pattern F has sup(F |Ei) > min sup and sup(F |Ej) < min sup for any Ej where

i 6= j, min sup is a user-specified minimum threshold. In other words, WPCAR(Ei) ⊆

FP (Ei), and WPCAR(Ei) ∩WPCAR(Ej) = ∅ for any 1 ≤ i, j ≤ n and i 6= j.

A CAR list encapsulates the writeprint of each author and as such is different from the

typical notion of writeprint.

The first distinction is that the combination of feature items that composes the writeprint

of a suspect Si is dynamically generated based on the embedded pattern in e-mails Ei.

This flexibility allows us to succinctly model the writeprint of different suspects by using

different combinations of feature items. In contrast, the traditional notion of writeprint

considers one feature at a time without considering combinations thereof.

Second, every rule R in our notion of writeprint captures a writing pattern that can only

be found in one suspect’s collection of e-mails but not in any other suspect’s collection

of e-mails. The cyber forensic investigator could precisely point out a matched pattern in

the malicious e-mail to support his/her conclusion of authorship identification. In contrast,

a traditional classifier like decision tree could use the same set of features to capture the

writeprint of different suspects. It is quite possible that the classifier would capture some

common writing patterns and use them as evidence that points to multiple authors, drawing
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a conclusion based on ambiguous evidence. Our notion of writeprint avoids this ambiguity

and, therefore, provides more convincing and reliable evidence.

The removal of common patterns certainly improves the quality of the derived writeprint,

especially for the purpose of evidence collection. However, one must understand the ad-

vantages as well as the disadvantages inherent in this technique. If there are a large number

of suspects, it is entirely possible for one author’s writeprint to completely intersect with

the union of the other authors’ writeprints, leaving the first author without any writeprint at

all. This could happen if the set of common rules is equivalent to the total set of rules for

one class.

A unique writeprint would intuitively derive more accurate matches and provide better

evidence, however, there are some situations where discarding common patterns between

authors could be detrimental to classification accuracy. Furthermore, the common pattern

removal process is not particularly efficient, as every rule must be checked against every

other rule; this notion makes for poor scalability and is readily apparent in the run-time

numbers when AuthorMiner [32] is run with more than 3 authors.

3.4 Refined Problem Statement

The problem of authorship attribution by multiple class association rules can be refined into

three subproblems:

(1) to discover the writeprint class association rule list WPCAR(Ei) from the training

set of e-mails Ei ∈ {E1, . . . , En}.

(2) To determine the author of the malicious e-mail e by classifying WPCAR(Ei),

. . . ,WPCAR(En) using all matching rules.

(3) To extract evidence for supporting the conclusion on authorship. The evidence has

to be intuitive enough to convince a judge and jury in a court of law.

These three subproblems summarize the challenges in a typical investigation procedure
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and reflect the use of associative classification in this process.

To solve subproblems (1) and (2), we mine rules by extracting the set of frequent pat-

terns FP (Ei) from Ei all while ranking and pruning them to build a representative final

CAR list. For subproblem (3), the matching group of rules with the best score serves as

evidence for supporting the conclusion.
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Chapter 4

Authorship Classification Explained

In Section 4.1 to 4.3, we present a data mining approach that utilizes the concept of fre-

quent stylometric patterns and associative classification (AC) to address the three author-

ship analysis problems described in Section 3.4. Section 4.4 introduces a novel associative

classification inspired algorithm called Support Count.

4.1 Mining Classification Rules

A class association rule (CAR) list is compiled by mining a training data set to find the

complete set of rules passing user-supplied minimum support and confidence thresholds.

This is comparable to any frequent pattern mining or association rule mining task. Classi-

fication by Multiple Association Rule (CMAR) [39] and its implementation [14] by Frans

Coenen form the basis of the two AC methods described in this study. The algorithm we

use to mine rules is a variant of FP-growth [29]: the most scalable and efficient mining

algorithm, both in terms of performance and memory usage. Making use of efficient tree

structures [14], first a partial support tree and then a total support tree, database scans are

minimized and there is no need to generate candidate sets. The benefits of this method are

especially apparent when processing large data sets with a low support threshold and a large
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Table 3: Training Records

Row Feature A Feature B Feature C Feature D Author ID
1 a2 b1 c2 d1 A
2 a1 b1 c2 d3 B
3 a3 b2 c1 d2 A
4 a1 b1 c3 d3 C
5 a1 b1 c2 d3 C

number of features. This situation is commonly seen in authorship attribution problems.

Furthermore, accuracy is generally better when low support and confidence thresholds are

used, making this choice of algorithm a fitting decision.

Example 4 demonstrates the concept of class association rule mining.

Example 4. Let T be a training data set as shown in Table 3. Setting the support threshold

to 2 and confidence to 50%, the algorithm extracts class association rules as follows.

1) The training set T is scanned, retrieving the set of feature items that pass the mini-

mum support threshold . The set F = {a1, b1, c2, d3} is called a frequent item set, as each

element in the set appears at least twice. All other feature items appear only once and are

pruned.

2) The feature items inF are then sorted in descending order to becomeF = {b1, a1, c2, d3}.

The database is then scanned again to construct an FP-tree as shown in Figure 1a. A FP-

tree is a prefix tree with regard to the F -list. For each tuple in the training data set, feature

items appearing in the F -list are extracted and sorted accordingly. For example, for the

first tuple, (b1, a1) are extracted and inserted in the tree as the left-most branch. The author

ID is attached to the last node in the path. For efficiency, tuples in the training data set

share prefixes. For example, the second tuple carries feature items (b1, c2, a1) in the F -list

and shares a common prefix b1 with the first tuple. The sub-path with the left-most branch

is therefore shared. All nodes with the same feature items are linked together as a queue

starting from the header table.

3) The set of class association rules based on the F -List can be divided into 4 subsets

23



Figure 1: FP-Tree

without overlap:

-those with d3

-those with a1 but not d3

-those with c2 but not d3 or a1

-those with b1 exclusively

These subsets are discovered iteratively one at a time.

4) Finding the subset of rules having d3, the algorithm traverses nodes having feature

item d3 and looks upwards to construct a d3-projected database, which contains three tu-

ples: {b1, c2, a1, d3} : C, {b1, c2, d3} : C and d3 : A. Given that all tuples containing d3 are

included, the problem of finding all frequent patterns with d3 in the entire training set can

be simplified to mining patterns in our d3-projected database. Passing the support thresh-

old, b1 and c2 are frequent feature items in the d3-projected database. d3 does not count

as a local frequent attribute because in a d3-projected database, d3 is present in every tuple

and therefore is trivially frequent. The projected database can be mined recursively by con-

structing FP-trees and other projected databases, as described in detail by Han et al. [29].

In our d3-projected database, b1 and c2 always appear together, they are both sub-patterns
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of b1c2 and have the same support count as b1c2. The rule R : b1c2d3 → C with support 2

and confidence 100% is generated based on author distribution. After processing all rules

that include d3, those nodes can be merged into their parent nodes. This means that any

class association registered in any d3 node is registered with its parent node, effectively

shrinking the FP-Tree to what is shown in Figure 1b. This operation is performed while the

d3-projected database is built. This process is then repeated for the remaining subsets of

rules.

4.2 Pruning Classification Rules

Class association rule mining can generate an enormous number of rules; it is advantageous

and rather simple to prune redundant or noisy rules in order to build a concise yet high

quality classifier.

The associative classification variant [39] used in this study employs the same rule

ordering protocol as described by Liu et al. [41]. The final rule list will thus be ordered

according to three ranking rules.

Given two rules R1 and R2, R1 has a higher rank than R2, denoted R1 > R2, if the

following conditions are met:

1) conf(R1) > conf(R2)

2) conf(R1) = conf(R2) but sup(R1) > sup(R2)

3) conf(R1) = conf(R2) and sup(R1) = sup(R2) but |ant(R1)| < |ant(R2)|

Rule R1 : P → c is said to be a general rule with regard to rule R2 : P ′ → c′, if and

only if P ⊆ P ′.

The first round of pruning uses general and high-confidence rules to prune more specific

and lower confidence rules. Given two rules R1 and R2, where R1 is a general rule with

regard to R2. CMAR [39] prunes R2 if R1 also has a higher rank than R2. The rationale

is that we only need to consider general rules with high confidence, and thus more specific
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rules with low confidence should be pruned. However, we will see that this is not ideal

behaviour in an authorship attribution problem.

Rule R1 : P → c is said to be specific with regard to rule R2 : P ′ → c′, if and only if

P ⊇ P ′.

While in general this pruning is harmless to accuracy and effective at making the pro-

cess more efficient, one of our contributions is to prioritize more specific rules rather then

more general rules. Therefore CMARAA orders rules slightly differently, changing condi-

tion 3) above to:

3) conf(R1) = conf(R2) and sup(R1) = sup(R2) but |ant(R1)| > |ant(R2)|

Part of the first round of pruning in CMARAA is therefore the opposite of what is done

in CMAR [39]. More specific rules with higher ranking are selected over more ambiguous

rules. Intuitively the writing style patterns of an author should be as precise as possible in

order to most accurately represent their more frequently occurring textual measurements.

This change, in concert with other contributions that define CMARAA, allows the orithm

to achieve better results in terms of classification accuracy.

More general and more specific rule pruning is pursued when the rule is first inserted

into the classification rule (CR) tree. When this happens, retrieval over the tree is triggered

to check if the rule can be pruned or if it can prune other rules that are already inserted.

Our experimental results suggest that this pruning is effective.

The second round of pruning is done by selecting only positively correlated rules. For

each rule, we test whether P is positively correlated with c by chi square testing. Only

the rules that are positively correlated, i.e., those with a value passing a significance level

threshold, are used for classification. All rules that fail the correlation test are pruned.

Chi square correlation based pruning is used to reflect only strong implications to per-

form classification. By removing rules that are not positively correlated, we reduce noise

and make the classification process more efficient without negatively affecting accuracy.

26



This pruning is done when a rule is being inserted into the CR-tree since the values nec-

essary for performing the chi square test are readily available at this point, making this

process very efficient with negligible cost in terms of run-time. The specifics of chi square

testing are outside the scope of this paper.

The third pruning method selects a subset of high quality rules for classification by

pruning rules based on database coverage. A database coverage threshold [38] is used

to reduce the number of CAR’s significantly, while maintaining the same representative

number of rules per training record. This process is described in Algorithm 1.

Algorithm 1 Database coverage rule based selection
Input: a list of rules and a database coverage threshold τ
Output: a concise but representative subset of class association rules
Protocol:
1. Order rules by rank;
2. For each training record, set the cover-count to zero;
3. For each rule R, find all matching training records. If rule R can appropriately classify
at least one record, increase the cover-count of all records matching ruleR by one. Remove
a training records once its cover-count passes the database coverage threshold τ .

The database coverage method used by Li et al. [39] is similar to the one used by Liu et

al. [41]. The major difference is that, instead of removing one data object from the training

data set immediately after it is covered by some selected rule, it is left in the training set

until it is covered by at least three rules. The effect of this difference is that there will be

more rules to consult when classifying a new data object and therefore the unknown object

will have a better chance of being classified accurately.

This pruning is pursued when the rule mining process is complete and it is the last

pruning of rules described in CMAR [39].

One of this thesis’ contributions is the addition of another round of pruning for CMARAA.

This last pruning method has been brought over from Iqbal et al. [32,34], and is called com-

mon frequent item set elimination. When rules are being inserted into the CR-tree, any rule
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with the same antecedent as another distinct rule with a different class is flagged for re-

moval. Once the CR-tree is processed, the flagged rules are removed. The reason that

common rules are not removed immediately once discovered is that another rule for an-

other author that is also common may also exist. It is necessary therefore to leave all rules

in place until the process of generating all CAR’s is complete.

4.3 Authorship Classification

Once a set of rules is discovered and pruned for classification, as discussed in Sections

4.1 and 4.2, we are ready to classify anonymous e-mails. Given a test record, we collect

the subset of matching rules from the CAR list. The rest of this section outlines how to

determine the class label based on this subset of rules.

If all the rules matching the new object have the same class label, the test record is

classified without contest.

If there exist two or more rules with different class labels, we create groups of rules for

each class. All rules in a group share the same class label and each group has a distinct label.

We then compare the strength of each group and associate the record with the strongest one.

To compare the strength of groups, we need to measure the combined effect of each

group. Intuitively, if the rules in a group are highly positively correlated and have good

support, the group should have a strong effect.

Liu et al. [39] performed an empirical study to determine the most accurate way to

measure the strength of groups. Typical AC algorithms use the strongest rule as a repre-

sentative, which means that the single rule with the highest rank is selected. The danger

of simply choosing the rule with the highest rank is that this may be favorable to minority

classes, as illustrated by Example 5.

Example 5. In an authorship attribution exercise, there are two rules:
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(a) R1 Observed

R1 Author A Author B Total
Feature A 410 40 450
No Feature A 20 30 50
Total 430 70 500

(b) R2 Observed

R2 Author A Author B Total
Feature B 209 1 210
No Feature B 241 49 290
Total 450 50 500

(c) R1 Expected

R1 Author A Author B Total
Feature A 387 63 450
No Feature A 43 7 50
Total 430 70 500

(d) R2 Expected

R2 Author A Author B Total
Feature B 189 21 210
No Feature B 261 29 290
Total 450 50 500

Table 4: Observed and Expected Values
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R1 : FeatureA = no→ AuthorB(support = 450, confidence = 60%)

R2 : FeatureB = yes→ AuthorA(support = 200, confidence = 99.5%)

See observed and expected values for rules R1 and R2 in Table 4.

Based on the observed and expected values, the chi square value is 97.6 for R1 and 36.5

for R2. For an anonymous email with no feature A and feature B, we may predict that the

author would be Author B rule R1, if the choice between rules is based only on chi square

values. However, rule R2 is intuitively much better than rule R1 since rule R2 has much

higher confidence. This presents a challenge in determining which rule is the strongest.

Using the compound of correlation of rules as a measure is one alternative. For exam-

ple, we can sum up the values in a group as the strength measure of the group, but this

would suffer from the same problem that it may favor minority classes.

A better way would be to integrate both correlation and popularity into the group mea-

sure and in this spirit, we have adopted a weighted measure [38] called Weighted Chi

Square (WCS). For each rule R : P → c, let sup(c) be the number of records in the train-

ing data set that are associated with class label c and let |T | be the number of data records

in the entire training data set. Equation 1 defines the max chi square value, used as the

upper bound of the chi square value of the rule.

maxχ2 = (min(sup(P ), sup(c))− sup(P )sup(c)

|T |
)2|T |e (1)
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where

e =
1

sup(P )sup(c)
+

1

sup(P )(|T | − sup(c))
+

1

(|T | − sup(P )sup(c))
+

1

(|T | − sup(P ))(|T | − sup(c))

For each group of rules, the weighted measure of the group is calculated using Equa-

tion 2.

∑ (χ2)2

maxχ2
(2)

As demonstrated, the ratio of the chi square value against its upper bound, max chi

square, is used to overcome the bias of the chi square value favoring any minority class.

Liu et al. [39] noted that it was difficult to theoretically verify the soundness or effect of

measures on strength of groups of rules. Instead, they explored the effect of measures

empirically, and according to their experimental results, WCS was the best of a good set of

candidate measure formulas.

4.4 Support Count Algorithm

This section describes an associative classification (AC) inspired technique, called Support

Count (SC), that simplifies frequent pattern mining into frequent item counting. The rest of

this section explains why some of the hard work performed on the training data set during

the AC rule mining process is not necessarily useful to the final classification step.

During the course of this study, it became evident that the goals of AC in light of

authorship attribution were to match the patterns in an anonymous e-mail with the frequent

patterns extracted from a collection of e-mails Ei written by a suspect Si ∈ {Si, . . . , Sn}.

A typical step in evaluating classifiers of this sort is to separate a data set into training and
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testing sets, and classifying a single e-mail was essentially the same concept as performing

a leave one out test. Therefore, discovering all possible feature item combinations could be

a waste of time if the test data did not include certain feature items. To maximize efficiency,

we use the test data set to determine what patterns to look for. For example, if a feature

item never appears in the test data set, it does not make sense to consider that feature item

in the CAR discovery process.

In most criminal investigations, an investigator would have a very small number of

anonymous e-mails to classify, and not large collections that constantly change as in the

case of most AC problems. Therefore it makes sense to concentrate solely on the anony-

mous e-mail.

Clearly, it would be efficient and harmless to discard feature items that do not appear in

a given test object before beginning the frequent item set discovery process, as those feature

items will not be considered. Furthermore, it is not necessary to consider all possible

combinations of feature items, as simply counting the occurrences in the training set is

sufficient. This is achieved by naturally attributing more points to training records that

contained the same features as the test object. Therefore if a pattern is present in the

anonymous e-mail and a given training record, their match would be strong.

Algorithm 2 demonstrates the process undertaken in SC and shows how very simple it

is. The algorithm can be implemented with a very small amount of code. In Lines 1 through

10, SC looks at the anonymous test object and counts the occurrences of each feature item

in the various authors’ training sets. In this manner, each author is given a total support

count. In Lines 12 through 14 the total score for each author is divided by the number of

rows in each author’s training set in order to normalize the scores. This avoids a situation

where an author with a larger training set would be favored. Lines 15 through 28 return the

author with the highest score and then verify the result to determine overall accuracy. This

process is simple, yet effective.
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Algorithm 2 Support Count
Input: Anonymous e-mail {A1, · · · , An} represented by {Fi1, · · · , F in}
Input: Sets of training e-mails {M1, · · · ,Mn} by {S1, · · · , Sn}.

1: //create array AC to hold one integer counter for each author
2: for all Ai ∈ {A1, · · · , An} do
3: for all Fii ∈ {Fi1, · · · , F in} do
4: for all Mi ∈ {M1, · · · ,Mn} do
5: if Fi ∈M then
6: AC[S|M ] + +;
7: end if
8: end for
9: end for

10: end for
11: //normalize count
12: for all Si ∈ {S1, · · · , Sn} do
13: AC[S] = AC[S]/totalRecordsForAuthor(S);
14: end for
15: //find best count/author
16: bestCount = 0;
17: bestAuthor = 0;
18: for all Si ∈ {S1, · · · , Sn} do
19: if AC[S] > bestCount then
20: bestCount = AC[S];
21: bestAuthor = S;
22: end if
23: end for
24: if M |S == bestAuthor then
25: correct++
26: else
27: incorrect++;
28: end if

SC’s strength lies in its ability to consider the complete training set. No information is

discarded as noise or redundancy, since that noise will exist for the other authors as well.

The greatly reduced execution complexity allows for this lack of pruning, something that

would not be possible for a typical associative classification task due to the potentially

incredibly high number of different combinations of frequent item sets. Furthermore, with

the test data record setting the stage for information discovery, only useful information

from the data set is explored.

These characteristics allow for SC to outperform the other algorithms in terms of per-

formance and accuracy. The fact that SC is simpler is also an advantage as the concept

33



may be explained in brief to a judge and/or jury with a much higher chance of being un-

derstood, and thus deemed reliable. Whereas AuthorMiner [32] and CMAR [39] provide

strong tangible evidence, they are far from simple and would require a much higher level

of understanding and expertise to fully grasp. In light of that, a jury would most likely

feel better about information they can understand themselves as opposed to only trusting

an expert’s opinion on a complicated data mining task’s reliability.

Thus, in addition to the implementation of CMAR [39], CMARAA and CBA [41], we

have implemented the SC algorithm as well, initially out of curiosity, but the results are very

interesting. The SC method differs from AC in that it does not use support or confidence

thresholds, so there are no variations in the results from the use of different values for

these user-supplied inputs. This makes the algorithm require less oversight and function

optimally regardless of context. Execution complexity is proportional to the number of

stylometric features used, the number of e-mails in the training set and the number of e-

mails in the test set. This is all true for associative classification implementations as well,

but the difference is that the SC method does not need to discover frequent item sets, mine

rules, or even construct a classifier.

Experimentally this method produces the best accuracies with the smallest memory

requirement, as will be shown in Chapter 5.
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Chapter 5

Experimental Evaluation

To evaluate the accuracy, efficiency and scalability of the Classification by Multiple Associ-

ation Rule (CMAR) [39] algorithm, our proposed augmented implementation of it, CMAR

for Authorship Attribution (CMARAA), and our novel Support Count (SC) method, we

have performed an extensive performance study. In this chapter, we report our experi-

mental results on comparing CMAR [39], CMARAA, and SC against two well known

classification methods: Classification by Association (CBA) [41] for comparison against

a baseline associative classification (AC) algorithm and AuthorMiner [32, 34] (AM), the

previous leader in data mining based authorship attribution. It shows that CMARAA and

SC outperform both CBA [41] and AM [32, 34] in terms of average accuracy.

5.1 Experiment Setting

All tests have been performed on a 3.4GHz Core i7 with 12G main memory, running

Mac OS 10.7.3. CMAR [39] and CBA [41] were implemented by Frans Coenen, in the

course of demonstrating the power and scalability of their Apriori-TFP method [14]. Au-

thorMiner [32, 34] was implemented by Iqbal et al. [32, 34].

The e-mail collections used in this study are all from the publicly available Enron e-mail
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data set [1]. Specifically, hundreds of e-mails have been selected from authors Paul Allen,

John Arnold, Sally Beck, John Dasovich, Mark Headicke, Vince Kaminsky, Steven Kean,

Kam Keiser, Philip Love, Kay Mann, Susan Scott, Carol St Clair, Kate Symes and Kim

Watson. E-mail headers were removed using a bash script and all content not written by

the respective authors for the specific message has been removed manually. The purpose of

this cleaning was to ensure that each e-mail consisted of text written solely by their author

with no content included from attachments, forwards, replies, etc. In general only about

20% of e-mails in the original data set were retained as the rest consisted of text shorter than

five sentences, forwarded materials or attachments, and incoming e-mails. Similarly for test

objects, it would not prudent to expect the accurate classification of any message consisting

of a few words or a single sentence. Messages that short would be trivial to alter in such a

way that they contain no specific writing style whatsoever, or even a spoofed writing style

if the malicious entity was well versed in authorship attribution methodologies.

All results are accuracy averages compiled from running the various algorithms on

data sets with the same number of authors but each containing a different combination of

authors, in order to show that results are stable and not simply the result of lucky guesses

or hand picked sets that support our conclusions. As to be expected, sets of authors with

low accuracies show lower accuracies across the board and vice-versa. Each test is fair and

the data sets have not been altered in any way to give advantage to any one algorithm over

the others.

For the experiments, the parameters are set as follows.

For CBA and CMAR, we set the support threshold to 10% and the confidence thresh-

old to 0%. The reason the confidence threshold has been set to 0% is to demonstrate

the effect the final round of pruning in CMARAA has on accuracy. A high confidence

threshold would effectively eliminate common rules among multiple authors as explained

previously. Furthermore, setting a different confidence threshold for the various algorithms
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would make fair comparison impossible. Given that the confidence threshold in CMAR,

CBA and CMARAA does not affect accuracy, it was deemed safe and fair to simply set it

to 0%. Please note that the confidence and support thresholds are set mainly to improve

efficiency, not accuracy. CMAR’s database coverage threshold is set to 3 as per its original

implementation. The chi square test in the second round of pruning is performed with a 5%

confidence threshold.

CMARAA uses the same support and confidence thresholds as CBA and CMAR but the

support threshold is considered on a per author basis instead of applying it to the size of the

entire training data set. This allows for better extraction of frequent patterns on a per author

basis. This is important because without this distinction, CMARAA would technically be

looking for frequent patterns across all authors instead of patterns that are representative

for a single author. Without this contribution, it would be harder to associate anonymous

e-mails with their author, as the results demonstrate quite clearly.

The Support Count method does not take confidence or support into account.

All figures and results consider that the authorship identification accuracy is measured

by the percentage of correctly matched authors in the testing set. For example, if there are 4

test records and 3 of them are correctly matched to an author, the accuracy will be 75%. The

tests have been performed by splitting the entire data set into training and testing partitions

with a ratio of 90% training data to 10% testing data. This means that if there are 1000

records in the entire data set, 900 records will be used for training and 100 for testing. This

ratio best represents a real life scenario where there would be a small number of records

in need of classification and a large number of training records. Whereas generally there

might only be only one email requiring classification during an investigation, it is necessary

to classify multiple records for the sake of determining general accuracy. If only one test

record were to be used in our tests, the accuracy would obviously be 100% or 0%.

For AuthorMiner and the AC algorithms, the training sets are used to discover frequent
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Figure 2: Accuracy vs. Number of Authors

patterns for the classifier and then each e-mail in the test set is classified and verified. The

training and test set splits are done on a per author basis so each author’s data set is split

by the user-supplied percentage and the respective author sets are combined into a global

training set and testing set. This separation is done using the same method for all tested

algorithms in order for results to be directly comparable.

For tests to be repeatable, the training and testing set split is done in order and not

at random, with the first portion belonging to the training set and the rest to the test set.

E-mails are named numerically and are input in ascending alphabetical order. This does

potentially cause the results to be skewed towards how easy or hard it is to classify e-mails

found at the end of each set, but each algorithm must deal with this issue, again ensuring

that results are comparable and fair to the strengths of each algorithm. The rest of this

section describes the figures showing the results of the various tests.
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5.2 Accuracy

Figure 2 shows average classification accuracies over sets of collections of e-mails for 2 to

5 authors for each algorithm tested in this study. Accuracies range from 30% to 92% with

the most accurate algorithms being Support Count (SC), CMAR for Authorship Attribution

(CMARAA), Classification by Association (CBA), Classification by Multiple Association

Rule (CMAR), and AuthorMiner (AM), respectively. The various methods’ accuracies

decrease similarly when the number of authors increases, with CMAR seeing the biggest

drop when there are 5 authors or more. We did not include the tests for more than 10

authors in this figure as most investigations consider a low number of suspects according

to a source on a cyberforensics team; additionally the graph itself would be harder to read

with any more information.

With the minimum support threshold held constant, CMAR no longer generates rules

with every run when there are many authors; this is due to the fact that the writing styles of

authors are usually distinct from one another and so feature items count will not always pass

the minimum support threshold, which is a percentage of records across the entire training

set. For example, if the support threshold is 10%, and there are 10 authors with 100 e-

mails each, then a feature item unique to one author would need to appear in every single

e-mail in order to be considered frequent. This characteristic hurts CMAR as the number of

authors increases. One of the main contributions of this study, implemented in CMARAA,

reduces the support threshold to consider only one author’s training set, allowing feature

items that are frequent, even if unique to one author, to be considered. The results support

the implementation of this contribution.

Figure 3 shows average accuracies for each algorithm tested on ten distinct sets contain-

ing 2 authors each. Accuracies range from 65% to 92% with the most accurate algorithms

being SC, CMARAA, CBA, CMAR and AM respectively. Each of the ten 2-authors tests,
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Figure 3: Accuracy of Different Algorithms (2 authors)

Figure 4: Accuracy of Different Algorithms (2 authors)
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Figure 5: Accuracy of Different Algorithms (3 authors)

as shown in Figure 4 demonstrate accuracy similarities in their results. Set 2j, for exam-

ple, scores lowest across the board, whereas higher scoring sets generally scored higher

for each algorithm. This characteristic says more about how unique the writing styles of

the included authors are than the strength of the algorithms; naturally, two authors who

have similar writing styles will be harder to tell apart, regardless of which technique is

employed.

Figure 5 shows average accuracies for each algorithm tested on six distinct sets contain-

ing 3 authors each. Due to the relatively limited number of complete author collections,

some sets do contain common authors, but all sets compare a different combination of

authors. The same is true for future graphs showing 4, 5, 6, 7, 8 and 10 authors.

Average accuracies range from 51% to 82% with the most accurate algorithms being

SC, CMARAA, CBA, CMAR and AM respectively. Each of the six tests, as shown in

Figure 6 once again show similar results from one set to another. The range of accuracies

grows from 27% to 30% between the highest and lowest average, showing that differen-

tiating between more authors makes for more variance in results. The algorithms largely

maintain their respective strength in accuracies, with few exceptions of data sets being bet-

ter represented by one algorithm over another. The SC method is 10% better on average

than the runner up, CMARAA, compared to its previous lead of only 5% on average for 2

authors.
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Figure 6: Accuracy of Different Algorithms (3 authors)

Figure 7: Accuracy of Different Algorithms (4 authors)

Figure 7 shows average accuracies for each algorithm tested on five distinct sets con-

taining 4 authors each. Again, some sets do contain common authors, but all sets compare

a different set of authors. Accuracies range from 39% to 65% with the most accurate algo-

rithms being SC, CMARAA, CBA, CMAR and AM respectively. Each of the five tests, as

shown in Figure 8 show a little bit less variability in scores for algorithms for specific sets.

The overall range decreases to 25% between AM and SC. The tendencies remain constant

though, with the same order of best accuracies. This time, however, some algorithms show

better results than other algorithms that had done better for every set before. CBA and

CMAR, for example, each win twice against each other, tying for set 4e.

Figure 9 shows average accuracies for each algorithm tested on five distinct sets con-

taining 5 authors each. Some sets do contain common authors, but all sets compare a
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Figure 8: Accuracy of Different Algorithms (4 authors)

Figure 9: Accuracy of Different Algorithms (5 authors)

different set of authors. Accuracies range from 28% to 61% with the most accurate algo-

rithms being SC, CMARAA, CBA, CMAR and AM respectively. Each of the five 6-author

tests, as shown in Figure 10 show a little bit more variability in scores. The overall range

increases to 36% between CMAR and SC. This time, however, some algorithms show bet-

ter results than other algorithms that had done better for every set before. For example,

AM’s strategies give it the win over CMAR for 5 authors.

Figure 10: Accuracy of Different Algorithms (5 authors)
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Figure 11: Accuracy of Different Algorithms (6 authors)

Figure 12: Accuracy of Different Algorithms (6 authors)

Figure 11 shows average accuracies for each algorithm tested on four distinct sets con-

taining 6 authors each. Some sets do contain common authors, but all sets compare a dif-

ferent set of authors. Accuracies range from 26% to 60% with the most accurate algorithms

being SC, CMARAA, CBA, CMAR and AM respectively. Each of the four 7-author tests,

as shown in Figure 12 show a similar variability in scores. The overall range decreases to

33% between AM and SC. This time, however, CMAR’s accuracy bests AM as it did for

the first few experiments on 2, 3 and 4 author sets.

Figure 13 shows average accuracies for each algorithm tested on four distinct sets con-

taining 7 authors each. Some sets do contain common authors, but all sets compare a

different set of authors. Accuracies range from 26% to 60% with the most accurate algo-

rithms being SC, CMARAA, CBA, CMAR and AM respectively. Each of the four 7-author

tests, as shown in Figure 14 show a similar variability in scores. The overall range increases

to 34% between AM and SC from the 6-author tests.
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Figure 13: Accuracy of Different Algorithms (7 authors)

Figure 14: Accuracy of Different Algorithms (7 authors)

Figure 15 shows average accuracies for each algorithm tested on four distinct sets con-

taining 8 authors each. All sets contain common authors but each compares a different set

of authors. Accuracies range from 19% to 50% with the most accurate algorithms being

SC, CMARAA, CBA, AM and CMAR respectively. Each of the 4 tests, as shown in Fig-

ure 16 show less variability in scores for algorithms for specific sets. The overall range

decreases to 30% between CMAR and SC. For test set 8a, CMAR was unable create any

classification rules, most likely due to the support threshold issue discussed previously.

Even though we don’t include this as 0% accuracy, the results for CMAR with 8 authors

is significantly lower, coming in last place this time. CMARAA’s second place score again

demonstrates why changes were made to CMAR in customizing AC for authorship attribu-

tion. Even as CBA and AuthorMiner’s scores continue their decline, CMARAA’s decline

is much less drastic. SC dips below 50% for the first time, but this may be due to the lack

of enough data to fully separate the four 8-author data sets.

Figure 17 shows average accuracies for each algorithm tested on three sets containing
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Figure 15: Accuracy of Different Algorithms (8 authors)

Figure 16: Accuracy of Different Algorithms (8 authors)

a different set of 8 authors. There is significant overlap in these sets, which is why we test

fewer sets. The results show the same tendencies as the majority of the other tests. Accura-

cies range from 15% to 50% with the most accurate algorithms being SC, CMARAA, CBA,

AM and CMAR respectively. This is the largest variance between results as of yet, with

45% separating AM and SC. Execution time becomes an issue for AuthorMiner which uses

a more traditional Apriori algorithm for Frequent item set discovery. CMAR and CBA are

not affected as they use the CR-Tree [14] structure, which allows for much more efficient

storage and execution time. Running AM on set 10c took more than a day of execution

time, as well as a whooping 8GB of memory all the while; given that it did not finish

within what we consider a reasonable amount of time, the result for 10c has been discarded

and does not affect the average score.
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Figure 17: Accuracy of Different Algorithms (10 authors)

Figure 18: Accuracy of Different Algorithms (10 authors)

5.3 Efficiency

We do not provide extensive CPU or I/O metrics in this study. In the context of a criminal

investigation, we assume that execution time is of little importance compared to the qual-

ity of classification and evidence collection. With that said, Figure 19 shows the average

number of seconds each algorithm took to complete the classification process on sets of

2, 3, 4 and 5 authors. The algorithms that required the least CPU time for 2 authors were

CBA, CMAR, SC, CMARAA and AM respectively. For 3 authors, CMAR came in first,

with CBA, SC, CMARAA and AM in second, third, fourth and fifth place respectively.

The same order of fastest times held true for 4 authors. For 5 authors, SC came in first

place followed by CBA, then CMAR, then CMARAA and finally AuthorMiner. This trend

continues as more authors are added, but given that this was not a focus of our study, we

do not include them here.

The runtime presented in Figure 19, with the exception of SC, is primarily the result of
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Figure 19: Efficiency

their respective frequent item set discovery processes. AuthorMiner uses the original Apri-

ori [4] algorithm for discovering frequent item sets, whereas CMAR, CBA and CMARAA

all use a much faster variant of the FP-Growth [29] algorithm, using more efficient tree

structures to represent frequent item sets and class association rules. Technically AM could

use the FP-growth [29] method, but improving its performance was not a goal of this study.

SC does not store any data or require any sort of frequent pattern discovery process, which

becomes more important as the number of authors increases.

These results demonstrate reliable and repeatable proof that authorship attribution data

mining methods can be very powerful. This also proves, once again, that the writing styles

of authors can be modelled by extracting patterns from transformed semantic content to

create individually recognizable writeprints.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Cybercrime investigations are in need of a state of the art computer aided writeprint mod-

elling algorithm that can provide reliable evidence to support attribution. When someone’s

innocence or guilt is on the line, it is very important to have access to the most accurate and

reliable methods of linking suspects to the evidence collected.

This thesis explores the application of a promising data mining technique called asso-

ciative classification on the e-mail authorship attribution problem for the first time. Addi-

tionally, we propose that class-based associative classification allows for the extraction of

a more accurate and complete writeprint. We also submit that modifying the rule pruning

and ranking system described in the popular Classification by Multiple Association Rule

(CMAR) algorithm to prioritize more specific patterns can also provide a more accurate

writeprint. The removal of common patterns between authors from the extracted writeprint

also makes for more convincing evidence in a court of law thanks to a disambiguation

of each writing style. The novel Support Count algorithm does even better in terms of

accuracy and efficiency by utilizing the entire training set and concentrating solely on sup-

port count. Thus, associative classification and the Support Count algorithm can help fight
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crime by solving the e-mail authorship attribution problem and providing investigators with

convincing evidence using our new computer-aided method.

6.2 Limitations

Although our proposed technique can achieve good accuracy in a reasonable span of time,

it must be noted that there certainly are limitations. First of all, a writeprint can only be

modelled given a sufficient quantity of training data. This means one of the suspects must

be the criminal and the investigator must be able to legally obtain at least 50 e-mails from

each suspect. Without meeting those requirements, the conclusion on authorship would be

poorly supported and therefore should not hold much weight as evidence.

It is also possible that a malicious entity with knowledge of stylometry would be able

to obfuscate their writing style using a variety of manual and automatic methods. It has

been proposed that simply passing a text through a translation processor twice, to and from

another language, would sufficiently alter the text to remove many aspects of characteristic

writing style features. A malicious entity could even develop a model of some one else’s

writeprint and replicate those styles in their own writings, this would effectively change the

writing style to point to an innocent person and leave no trace of the true author.

Furthermore, this method does not replace the need for an expert in authorship attribu-

tion, but instead attemps to automate the process, perhaps simply to guide an investigation

or guide the expert. Manually determining similarities in writing styles is an expensive and

time consuming process that could be streamlined using techniques like our own.

6.3 Future Work

The contributions of this thesis allow for better accuracies in authorship attribution prob-

lems by means of associative classification. It is highly possible that the modifications
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made to our variant of associative classification would also benefit other domains that use

similar techniques. Therefore future research could explore our extensions on other clas-

sification problems to see if the advantages of our changes are domain specific or perhaps

more general in nature.

This paper focuses solely on the problem of authorship attribution of emails; our tech-

nique could also be applied to other types of written work. For example, the anonymous

nature of the journal paper review process could be explored in order to attempt to deter-

mine the reviewer of a given paper by extracting a writeprint from a review and comparing

it to other known texts written by the known list of reviewers. Another type of short writ-

ten document of interest to cybercrime investigations are chat logs; it would be interesting

to see if our technique could accurately identify a suspect based on his/her chat sessions.

Given that people may use aliases when communicating online, it would be useful to asso-

ciate different aliases to the same person and developing a writeprint would certainly help

achieve that goal.

Our novel Support Count method may also be applied to other domains that rely on

classification. The simplicity and novel nature of this algorithm would make for a very

interesting study to see if the excellent accuracy and performance gains can be achieved on

problems other than authorship attribution.

The Support Count method is not optimized to provide the same level of quality evi-

dence that CMARAA and AM provide naturally. However, a simple extension of the code

that would allow SC to count individual features and then display the top few features in

terms of support could provide a similar measure of convincing evidence. Future work may

require this contribution if law enforcement wishes to implement our techniques for use in

real investigations.

The Internet has brought the world of crime online and as crime prevention is still

prevalent, cybercrime prevention is much less developed. Laws, rules and regulations in
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the cyber world are still being drafted to try to contain the explosion of cyber-criminal

activities of the past 15 years. There is still much research to be done and much progress to

be made in this regard. The key is to keep pushing forward and try to make our world safe,

fair and orderly.
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