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Abstract: This paper concerns with the study of influences of damper 

asymmetry together with the suspension kinematics and tire lateral 

compliance on the kineto-dynamic responses of a roll-plane half-car model. 

Such coupled analysis of kinematic and vertical and roll dynamic measures 

of the vehicle involving asymmetric suspension dampers has not been 

reported in the literature. A 4-DOF, roll-plane model of the road vehicle 

employing a double wishbone type suspension comprising a strut with 

linear spring and asymmetric damper is formulated for the analyses. The 

influences of asymmetric dampers are studied by comparing the sprung 

mass vertical acceleration, chassis roll angle and the dynamic tire forces, 

and the left- and right tires camber angle variation responses of the model 

with asymmetric dampers with those of the model with an equivalent linear 

damper under bump and pothole inputs. The influences of damper 

asymmetry are also investigated under rounded-step lateral excitations. The 

results of the study suggested that the responses are complex functions of 

damper asymmetry ratio, defined as the ratio of damping coefficient in 

rebound to that in compression, vehicle forward speed and type of input. 

The study further suggests that a very low compression mode damping is 

undesirable from both ride and handling dynamic perspectives. 
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1.  Introduction 

The ride and handling performance measures of a vehicle are influenced by the 

suspension geometry and forcing elements including suspension spring and damper in a 

significant and conflicting manner. The kinematic response measures such as bump and 

roll camber angles impose additional conflicting design requirements on the suspension 

components [Milliken, 1995 and Dixon, 2007]. While suspension designs invariably 

include asymmetric damping in compression and rebound, it has been identified that the 

design guidance for such asymmetry has not been explicitly defined in the literature 

[Dixon, 2007]. This is, in part, attributed to the limited understanding of influences of 

damper asymmetry on the kineto-dynamic performance measures. Recent studies based 

on a two-DOF kineto-dynamic quarter-car model have shown strong couplings between 

the kinematic and vertical dynamic responses, which further depend upon the suspension 

damping asymmetry in a complex manner [Balike et al., 2010 (ref 3) and Balike et al., 

2011 (ref 4)]. The complex dependency of damper asymmetry on the dynamic and 

kinematic responses would be expected to increase many folds, when coupled vertical 

and roll motions of the chassis are considered.  

The suspension damping properties and their effects on various vehicle performance 

measures have been extensively investigated under different inputs, including the 

contributions due to gas spring, bushings compliance, and temperature and hysteresis 

effects [Anderson and Fan, 1990, Duym et al., 1997, Basso, 1998, Gacka and Doherty, 

2006, Simms and Crolla, 2002]. These studies have employed different vehicle models, 

excitations and different performance measures, while the majority of them have ignored 

the damping asymmetry. The reported results thus do not permit the design guidance for 

damping asymmetry, which has been limited to a general rule of thumb suggesting that a 

rebound to compression damping ratio in the order of 2 or 3 would reduce the force 

transmitted to the sprung mass, while negotiating a bump [Milliken, 1995,Gillespie, 

1992].  
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A few studies have suggested that damping asymmetry causes suspension ‘packing 

or jacking down’ [Warner and Rakheja, 1996 and Rajalingham and Rakheja, 2003], 

which is apparently change in the ride height and is shown to be dependent upon the low 

speed compression and rebound damping coefficients of the damper. Simms and Crolla 

[2002] showed the presence of this drift under random road excitations using a quarter-

car model incorporating hysteresis model of a damper. The simulation results obtained 

with an asymmetric damper with relatively higher rebound damping revealed large offset 

in the suspension rattle space response compared to that with the linear damping. Verros 

et al. [2000] investigated the transient response of a single-degree-of-freedom (DOF) 

quarter-car model with single-stage asymmetric dampers under pothole excitations.  

Optimal suspension damper synthesis has been considered as a very challenging 

task, as is evident from the number of studies reported on damper synthesis [Balike et al., 

2010 (ref 3), Balike et al., 2011 (ref 4), Fukushima et al., 1983, Gobbi and Mastinu, 

2001, Alkhatib et al., 2004, Verros et al., 2005, Georgiou et al., 2007, Gobbi et al., 1999, 

Bruulsema and McPhee, 2002, He and McPhee, 2007, Georgiou, and Natsiavas, 2009]. 

Majority of these studies have considered simple analytical vehicle models (quarter, half 

or full vehicle) for the selection of damping coefficients and analysis of suspension 

damping properties on the selected vehicle performance measures [Dixon, 2007, Balike 

et al., 2010 (ref 3), Fukushima et al., 1983, Gobbi and Mastinu, 2001, Alkhatib et al., 

2004, Verros et al., 2005, Georgiou et al., 2007]. Many other studies have also employed 

complex multibody dynamic models, developed in platforms such as ADAMS, for the 

selection of optimal damping coefficients [Gobbi et al., 1999, Bruulsema and McPhee, 

2002, He and McPhee, 2007, Georgiou, and Natsiavas, 2009]. The identification of most 

adequate performance measures during damper synthesis is considered to be as 

complicated as the selection of optimal damping coefficients itself [Bruulsema and 

McPhee, 2002]. This can be attributed to the limited understanding of couplings among 

various response measures, particularly when an asymmetric damper is employed in the 

suspension. For example, recent studies using kineto-dynamic quarter-car model 

incorporating linkage kinematics of a double wishbone suspension and tire lateral 

compliance have shown the effects of damper jacking on the kinematic response 

measures (such as camber variation) [Balike et al., 2011 (ref 3)], which were ignored in 

the previous studies. These studies showed that the change in ride height due to damper 

asymmetry would also change the bump camber angle responses under deterministic 

bump/pothole or random road excitations. The studies could not, however, report the 

influences of damping asymmetry on the roll camber responses due to limitations of 

simpler quarter-car model. A systematic study of influences of damper asymmetry on 

various performance measures related to ride and handling dynamics is desirable prior to 

optimal synthesis of an asymmetric damper.  

The levels of required modeling complexity in developing vehicle models for 

dynamic analyses have long been debated. Although complex multi-body dynamic 

models are known to achieve greater accuracy, many researchers have put forward the 

view that typical industry-used vehicle models are too complex and inefficient as design 

and concept analysis tools [Blundell, 1999, Sharp 1991]. Sharp [1991] suggested that an 

ideal model should possess minimum complexity and be capable of solving the 

concerned problems with an acceptable accuracy. Roll-plane dynamic models have 

effectively been used to study the influences of suspension damping properties on the 

ride dynamic and the essential handling behavior of the vehicle [Su, 1990]. A kineto-

dynamic roll-plane model which incorporates the linkage kinematics is necessary for 
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studying the influences of damping asymmetry on the suspension kinematic measures 

and vehicle dynamic responses with a reasonable accuracy.  

This paper concerns with the influences of damper asymmetry together with the 

suspension kinematics and tire lateral compliances on the kineto-dynamic responses of a 

roll-plane half-car model under vertical and lateral inputs. Unlike a few previous studies 

those considered effects of suspension kinematics and tire lateral compliances employing 

quarter-car model, this study is more comprehensive with the inclusion of half-car model. 

A 4-DOF, half-car kineto-dynamic model of the road vehicle employing a double 

wishbone type suspension comprising a strut with linear spring and asymmetric damper 

is formulated for the analyses. The displacement matrix method is employed to derive 

kinematic formulations, while the Lagrange’s method is used to formulate the dynamic 

model. The influences of asymmetric dampers are studied by comparing the sprung-mass 

vertical acceleration, chassis roll angle, normalized load transfer, and the left- and right 

wheel camber angle variation responses of the model with asymmetric dampers with 

those of the model with an equivalent linear damper. The responses of the model are 

further studied under lateral acceleration inputs to the sprung mass corresponding to 

steering inputs or wind gust. 

2.  Development of roll-plane kineto-dynamic vehicle model 
 

The in-plane 4-DOF half-car kineto-dynamic model comprising double wishbone type 

of suspension, employed in this study is illustrated in Fig. 1. The model comprises the 

sprung and two unsprung masses (left and right wheel assemblies), while the unsprung 

masses are assumed to be connected with the chassis through massless control arms. 

Although control arm inertia is expected to cause a small variation to the dynamics of the 

system, its influence is considered insignificant, particularly when the study is focused on 

the comparative performance of different dampers. Each unsprung mass is assumed to be 

lumped at the center of gravity (cg) of the wheel assembly.  The tire is modeled as a 

combination of a vertical linear spring and a viscous damper, while the lateral 

compliance of the tire is represented by a lateral linear stiffness, as shown in the figure. 

The chassis and suspension kinematics are formulated considering the chassis, 

suspension linkages and the wheel spindle as rigid bodies. The model is formulated 

assuming vertical (zs) and roll (φs) displacements of the sprung mass, and left and right 

wheels vertical displacements (zuL and zuR) as the generalized coordinates. The rotation of 

the chassis is assumed to occur about the roll center Rc, as shown in Fig. 1.  

  
Figure 1. Roll-plane kineto-dynamic model of a vehicle with double wishbone type of suspension. 
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2.1 Kinematics of the Chassis and the Suspensions 

 A chassis kinematic model is formulated in order to evaluate instantaneous positions 

of suspension joints on the chassis under chassis rotation and/or vertical motions. The 

suspension kinematic responses are subsequently determined from coordinates of the 

linkage joints. A fixed coordinate system is considered with its origin located in the 

ground, while the sprung mass vertical and rotational displacements are considered about 

the roll center, Rc, of the vehicle body. The initial (Rcy0, Rcz0) and instantaneous (Rcy, 

Rcz) coordinates of the roll center under a finite displacement of the chassis are related 

through a displacement matrix [Suh and Radcliffe, 1978 and Balike et al., 2010 (ref 27)]. 

The y- and z- coordinates of chassis-suspension joints, MR, OR, ML, and OL, shown in the 

Fig. 1 are determined using the displacement matrix, as presented in [Balike et al., 2010 

(ref 27)]. The resulting expressions for the chassis joint coordinates are written as:  

yzkzykyky RcRcMaRcMaM +−+−= )()( 00120011  

zzkzykykz RcRcMaRcMaM +−+−= )()( 00220021  

yzkzykyky RcRcOaRcOaO +−+−= )()( 00120011                                             (1)              

LRkRcRcOaRcOaO zzkzykykz ,                   )()( 00220021 =+−+−=
  

 

where a11=a22=cosφs and a12=-a21=sinφs, with φs being the vehicle body rotation about the 

roll center. The leading subscripts ‘R’ and ‘L’ in Eq (1) refer to the right and left chassis 

joints, respectively, while the second subscripts ‘y’ and ‘z’ represent the lateral and 

vertical axes, respectively. The final subscript ‘0’ refers to the initial coordinate of the 

joint. Furthermore, the instantaneous coordinates of roll center (Rcy, Rcz) are obtained 

from Rcy=Rcy0; and Rcz=Rcz0+zs, respectively. The above equation can be solved to obtain 

instantaneous coordinates of the chassis-linkage joints for a given chassis rotation φs 

about the roll center and/or a vertical displacement of the chassis, zs.  

The kinematic analysis of the suspension links is performed in a manner similar to 

that of the chassis employing displacement matrices defined for the right and left wheel 

spindles. The instantaneous coordinates of the suspension-spindle joints (NR, PR, NL and 

PL), following a wheel spindle displacement, are expressed using the displacement 

matrices written in terms of initial (Cky0, Ckz0) and instantaneous (Cky, Ckz) coordinates of 

the right wheel centers, Ck. The methodology of deriving these kinematic expressions is 

discussed in more detail in [Balike et al., 2010 (ref 27)]. The resulting formulation 

consists of 8 equations with a total of 12 unknown parameters corresponding to the right- 

and left-wheel center displacements zuR and zuL, namely:  the y and z coordinates of joints 

NR, PR, NL and PL; the y coordinates of the wheel centers CR and CL; and the right- and 

left-wheel camber angles φR and φL. The coordinate equations are thus solved in 

conjunction with the constraint equations, which for a planar double wishbone 

suspension may be formulated considering the constant control arm lengths. The 

expressions for the instantaneous coordinates of the suspension joints, NR, PR, NL and PL, 

obtained from the displacement matrices together with the constraint equations thus 

yields a system of 12 non-linear equations, given by [Balike et al., 2010 (ref 27)]: 

kykzkzkkykykky CCNaCNaN +−+−= )()( 00120011  

ukkzkzkzkkykykkz zCCNaCNaN ++−+−= 000220021 )()(
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kykzkzkkykykky CCPaCPaP +−+−= )()( 00120011  

ukkzkzkzkkykykkz zCCPaCPaP ++−+−= 000220021 )()(
 

222 )()( MNkkzkzkyky lMNMN =−+−
                              

LRklOPOP OPkkykykyky ,                              )()( 222 ==−+−
               (2)

   

where a11k=a22k=cosφk and a12k=-a21k=sinφk, k= R, L. In the above equation, lMNk and lOPk 

(k=R, L) are the lengths of upper and lower control arms, respectively.  

Equations (1) and (2) can be simultaneously solved to obtain kinematic responses of 

the suspension for given vertical displacements of the left and/or right wheels, and/or 

vertical and roll displacements of the chassis. Closed form solutions of the unknowns in 

terms of generalized coordinates would be desirable in order to correlate the kinematic 

relations to the dynamic responses, which may be quite complex. A linear system of 

kinematic relations for the chassis joints could be achieved using small angles 

assumptions, such that a11=a22≈1; and a21=-a21≈φs: 

)( 000 zkzskyky RcMMM −+= φ
;  skzykyskz zMRcMM ++−−= 000 )(φ

; 

)( 000 zkzskyky RcOOO −+= φ
; skzykyskz zORcOO ++−−= 000 )(φ

               (3) 

Similarly, the small angle assumptions in the kinematic equations of the suspension 

linkages yield a11k=a22k≈1; and a12k=-a21k≈φk. The small angle assumptions in 

conjunction with the first-order Taylor series approximations of the constraint equations 

yield the kinematic relations in the linear form as: 

)()( 0000 kykykykzkzkky CNCCNN −=−−−φ
 

ukkzkykykkz zNCNN +=−+ 000 )(φ
 

)()( 0000 kykzkykzkzkky CPCCPP −=−−−φ
 

ukkzkykykkz zPCPP +=−+ 000 )(φ
 

kzkzkzkykykykzkzkyky

kzkzkzkzkykykyky

MMNMMNMNMN

NMMNNMMN

)()(                

)2()2( 

0000

2

0

2

0

2

0

2

0

0000

+−+−+++=

−++−+

 

kzkzkzkykykykzkzkyky

kzkzkzkzkykykyky

OMNOOPOPOP

POOPPOOP

)()(               

)2()2(

0000

2

0

2

0

2

0

2

0

0000

+−+−+++=

−++−+

    (4) 

 

Equation (4) is solved to obtain expressions for the kinematic responses of the left- 

and right (k=L and R) suspensions, which include the instantaneous coordinates of the 

joints and the wheel camber angles, in terms of the generalized coordinates, and are 

shown in Appendix I. 

The restoring force developed by each strut is related to the change in the strut length, 

∆lk given by: 
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0 )()( kzkzkykysk BABAll −+−−=∆
                        (5) 

 

where ls0 is the initial strut length, assumed to be identical for the left and right struts. In 

the above expression, (Aky, Akz) and (Bky, Bkz) are the instantaneous coordinates of the 

lower and upper strut mounts, which can be obtained from the kinematics of the chassis 

and suspension, as: 

)( kyky

OP

OA
kyky OP

l

l
OA −+=

;

)( kzkz

OP

OA
kzkz OP

l

l
OA −+=

         

 )( 000 zkzskyky RcBBB −+= φ
;  skzykyskz zBRcBB ++−−= 000 )(φ

          (6) 

 

where lOA and lOP are the distances of the joints AR and PR from point OR (or AL and PL 

from point OL). The deflection rates of left- and right suspension struts are subsequently 

estimated from the time derivatives of the displacement expressions in Eq (6).  

2.2 Kinematics of antiroll bar 

Anti-roll bars are invariably employed in vehicle suspensions in order to enhance roll 

stiffness and to reduce dynamic load transfers. An anti-roll bar couples vertical motions 

of the right and left wheels, and develops a resisting roll moment under chassis roll or 

differential wheel motions. The kinematic motion of a torsion bar thus involves spatial 

kinematic analysis, as illustrated in Fig. 2. The torsion bar is assumed to be coupled to 

the chassis at points TcL and TcR, and to the lower control arms at the points TsL and TsR, 

respectively. The instantaneous z- coordinates of the chassis mounting points Tck (k=L, R) 

are estimated from the kinematics of the chassis as: 

skzykyskz zTcRcTcTc ++−−= 000 )(φ
                                         (7) 

where Tcky0 and Tckz0 are the initial y and z coordinates, respectively, of TcL and TcR. The 

torsional deformation of the torsion bar θT is determined from the changes in the 

coordinates of the mounting points, as: 

( ) ( )[ ] 02
1

TRzRzLzLz

T

T TsTcTsTc
L

θθ −−+−=

                                                     (8) 

where LT is the effective length of the torsion bar between attachment points TsR and TcR, 

and θT0  is the initial deformation angle of the torsion bar arm with respect to the 

horizontal axis of the reference coordinate system. The subscripts ‘z’ and ‘0’ are used to 

represent the z- coordinates and the initial coordinates, respectively. The z- coordinates of 

the torsion bar mounting points at the lower control arms TsRz and TsLz, are obtained from 

the linkage kinematics, as: 

)( kzkz

OP

OTs
kzkz OP

l

l
OTs −+=

           k=R, L                                                   (9) 
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where lOTs is the length of the lower control arm between the torsion bar mounting point, 

TsR and the chassis joint OR. 

Figure 2: Kinematics of the torsion bar 

 

2.3 Kineto-dynamic Analysis of the Half-Car Model 

 The equations of dynamic motion of the kineto-dynamic half-vehicle system are derived 

using Lagrange’s method. The kinetic energy (T) of the system is formulated as: 

( ) ∑∑
==

+++

−++′+′=

LRk

kukx

LRk

ukukuk

szzx

Izym

mRcGIyzmT

,

2

,

22

2

s

2

00

2

s

2

ss

2

1

2

1
     

))((
2

1
)(

2

1

φ

φ

&&&

&&&

                                           (10) 

where ms, muR and muL are sprung mass, and right- and left unsprung masses, 

respectively. In the above expression, Ix and Iukx (k=R, L) are the  mass moment of inertia 

of the chassis and the right- and left wheel spindles about the x- axis, respectively. In Eq 

(10), sz′ and sy′ are instantaneous coordinates of the chassis centre of gravity. The 

potential energy of the system is expressed as: 

( ) 2

,

222

s
2

1
)()()(

2

1
Ttb

LRk

kkuktltktk KRyKzKlKU θφ∑
=

+−+∆+∆=

                          (11) 

where Ks is the suspension spring rate, Kt is the equivalent tire vertical rate, Ktb is the 

linear stiffness of the torsion bar, Ktl is the tire lateral stiffness and Rk is the effective 

radius of wheel k. Moreover, ∆lk are the right- and left suspension spring deflections, as 

described in Eq (5), and ∆ztk are the right- and left tire deflections. The total energy 

dissipated by the system, attributed to the linear strut and tire damping, can be derived as: 

∑∑
==

∆+∆=
LRk

tkt

LRk

ks
zClCD

,

2

,

2 )(
2

1
)(

2

1
&&

                                                  (12) 
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where Cs and Ct are the viscous damping coefficients of the strut and the tire, 

respectively, and kl
&∆   denotes the time derivatives of the right- and left strut deflections, 

and tkl&∆ are the rates of right- and left tires deflections.  

The sprung mass of a vehicle experiences centrifugal acceleration during cornering 

maneuvers or due to crosswinds. The centrifugal force due to lateral acceleration of the 

vehicle encountered during turning maneuvers, denoted as Fy in the Fig.1, can be 

estimated from �� = ����, where ay is the lateral acceleration, which is estimated from  

ay=V
2
/Rturn, assuming steady-state condition. The model is thus formulated to include the 

capability to evaluate in-part the handling behavior of the vehicle. 

The equations of motion for the kineto-dynamic model are formulated from the kinetic 

(T), potential (U) and dissipative (D) energy functions described in Eqs (10) to (12). 

Assuming negligible contributions due to higher order derivative terms, the equations of 

motion are obtained as: 
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where fssk and fsuk (k=R, L) are the right- and left- suspension spring forces acting on the 

sprung and unsprung masses, respectively, fdsk and fduk are the right- and left- damping 

forces acting on the sprung and unsprung masses, respectively, and Tssk and Tdsk are the 

moments due to right- and left- suspension spring and damping forces, respectively. In 

Eq (13), ftlsk and ftluk are the vertical tire forces acting on the sprung and unsprung masses, 

respectively, and Ttlsk are the moments imposed on the sprung mass due to the right- and 

left- tire lateral compliance, respectively. Moreover, ftk are the tire forces, and ftbs, and ftbuk 

are the forces transmitted to the sprung and unsprung masses, and Ttbs is the torque 

transmitted to the sprung mass due to the torsion bar. Assuming linear spring rates, the 

suspension spring forces fssk and fsuk are related to ∆lk, as: 



   

 

   

   

 

   

   Int. Journal of Vehicle Performance., Vol. 1, No. 1, 2013 10    

         
 

Copyright © 2011 Inderscience Enterprises Ltd. 

 

 

( )

s

ks
z

l
lKf k

ssk
∂

∆∂
∆=

; and 

( )

uk

k
kssuk

z

l
lKf

∂

∆∂
∆=

        k=R, L                              (14) 

The torque imposed on the sprung mass due to the right- and left- suspension springs, Tssk 

is related to ∆lk and chassis roll, as: 

( )

s

k
ksssk

l
lKT

φ∂

∆∂
∆=

     k=R, L                                     (15) 

The vertical forces due to the torsion bar exerted on the sprung mass, and left- and right 

unsprung masses, ftbs and ftbuk, and the torque on the sprung mass, Ttbs, are obtained from:   
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Ttbtbs
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; uk

T
Ttbtbuk
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∂

∂
=

θ
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∂
= T

Ttbtbs KT

 k=R,L          (16) 

The nonlinearity associated with potential loss of contact between the ground and the tire 

(wheel hop) is also incorporated in the kineto-dynamic model. The tire forces (ftk), and 

the forces and moments due to the tire lateral compliance ftlsk, ftluk and Ttlsk are formulated 

considering four different possible conditions; namely: (i) both the tires are in contact 

with the ground (zuL-z0L<δu and zuR-z0R<δu), where δu is the static tire deflection; (ii) left 

wheel in contact with the ground, while the right wheel loses the ground contact (zuL-

z0L<δu and zuR-z0R≥δu); (iii) right wheel is in contact with the ground, while the left wheel 

loses the ground contact (zuL-z0L≥δu and zuR-z0R<δu); and (iv) both the wheels lose contact 

with the ground (zuL-z0L≥δu and zuR-z0L≥δu). The corresponding force components are 

illustrated in the Appendix II. 

2.4 Asymmetric Damper Modeling 

The left- and right suspension damping forces, fdsk and fduk acting on the sprung and 

unsprung masses, respectively, and Tdsk, the torque due to the damper forces acting on the 

sprung mass in Eq (13), when equivalent linear damping coefficient is considered, are 

obtained from: 
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lCT

k=R,L         (17) 

where a dot over ∆l denotes the suspension deflection rate. 

Influences of suspension damping asymmetry on the kinematic and dynamic responses of 

the proposed half-car model are evaluated by considering asymmetric viscous damping 

forces acting on the sprung and unsprung masses (fdsk, fduk). The damping forces are 

described through a bilinear force-velocity model [Verros et al., 2000] and the forces in 

compression and rebound, and the corresponding moments imposed on the sprung mass, 

Tdsk-c and Tdsk-r (k=R, L) are formulated considering Cc as the compression damping 

coefficient, ρ as the damping asymmetry ratio (ρ = Ratio of rebound to compression 

damping coefficient), such that:  
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        (18)  

The asymmetric viscous damping forces acting on the sprung and unsprung masses, and 

the corresponding moments imposed on the forces on the sprung mass, as obtained from 

Eq (18), are employed in Eq (13) to attain the solution when an asymmetric damper is 

considered in the model. 

2.5 Performance Analysis Method 

The equations of motion of the proposed kineto-dynamic roll plane model as given in Eq 

(13) are solved to evaluate the influences of damper asymmetry on the kineto-dynamic 

response measures corresponding to ride and handling performances of the vehicle. The 

responses of the proposed roll-plane model are evaluated under transient vertical 

excitations representing idealized bump and potholes defining the inputs at the right 

wheel. The bump excitation is synthesized by a rounded pulse displacement, given by 

[Rakheja and Sankar, 1985, Balike et al., 2011 (ref 29)]: 

dxVt

d

e
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Vte
ztz

/2

2
2

max00 )(
2

4
)(

−









=                                                 (19) 

where z0max is the maximum amplitude, e=2.71828, xd is the distance from the beginning 

of the bump at which peak amplitude occurs and V is the vehicle forward velocity. The 

above formulation is also applied to synthesize a negative displacement, idealizing a 

pothole input, by letting z0max<0. In this study, z0max and xd are considered to be 50 mm 

and 0.4 m, respectively. The responses of the model under above defined bump and 

pothole excitations are evaluated in terms of sprung mass vertical acceleration and roll 

angle, normalized load transfer, defined as the ratio of load transfer to the total load, and 

left- and right wheel camber angle variations. 

The handling performance of the model with asymmetric damper are evaluated under a 

lateral acceleration input induced by a steady steering maneuver or crosswinds, 

approximated by a rounded-step function [Su, 1990], such that: 
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���(1 + �	)                                                      (20) 

where ay is the effective lateral acceleration, Amax is the peak magnitude of acceleration 

and σ is the parameter describing the slope of the lateral acceleration before reaching 

steady-state value. The responses of the model under lateral acceleration excitation are 

evaluated in terms of sprung mass roll angle and roll rate, and left- and right wheel 

camber angle variations. 

Two types of asymmetric dampers were selected for the relative analyses: (a) ζc=0.1 and 

ρ=5; and (b) ζc=0.2 and ρ=2, where ζc denotes the compression mode damping ratio (ζc= 

Ccrit Cc). The responses of the kineto-dynamic roll-plane model with asymmetric dampers 

are compared with those of the model with a linear equivalent damper. The equivalent 

linear damper is realized assuming dissipated energy similarity, such that linear damping 

coefficient, Cs=ζcCcrit(1+ρ)/2 [Milliken and Milliken, 1995, Rajalingham and Rakheja, 

2003], where Ccrit is the critical damping ratio of the model. The model parameters used 

in simulation are summarized in Table 1. 

Table 1: Vehicle and suspension data [Balike et al., 2010 (ref 30)] 

Parameter Value 

Sprung mass (ms) 

Sprung mass moment of inertia about cg (Ix) 

Unsprung mass (muR and muL) 

Unsprung mass moment of inertia about x- axis (Iux) 

Suspension spring stiffness (Ks) 

Suspension damping rate (Cs) 

Tire vertical stiffness (Kt) 

Tire damping rate (Ct) 

Tire lateral stiffness (Ktl) 

Tire effective radius (R) 

Torsion bar stiffness (Ktb) 

878.76 kg 

247.00 kg-m
2
 

42.27 kg 

1.86 kg-m
2 

38404 N/m 

3593.4 Ns/m 

200 kN/m 

352.27 Ns/m 

100 kN/m 

0.35 m 

560 Nm-rad 

 

3.  Results and Discussion 
 
3.1 Kineto-dynamic Ride Performance Evaluation 

The responses of the model with asymmetric damping under 50 mm bump and 

pothole inputs at a forward velocity of 3 m/s are compared with those of the model with 

equivalent linear damper in Figs. 3 (a) and (b), while the camber angle responses of the 

left-and right wheels under these excitations are illustrated in Figs. 4 (a) and (b). The 

kineto-dynamic model with light compression damping (ζc=0.1, ρ=5) yields lower peak 

sprung mass acceleration and roll angle response of the model compared with the other 

dampers. Both the peak acceleration and roll responses of the same damper, however, are 

relatively higher under the pothole input, as seen in Figs. 3(a) and (b). The peak sprung 

mass response of the model with linear and bilinear dampers with compression mode 

damping ratios of 0.2 and 0.1, respectively, are 2.2, 1.8 and 1.5 m/s
2
, under the bump 

input, and -2.25, -2.5 and -2.7 m/s2 under the pothole input. The peak roll responses of 

the model with linear and bilinear dampers with compression mode damping ratios of 0.2 

and 0.1, respectively, are -2.2, -2 and -1.8° under the bump input, and 2.2, 2.55, and 3° 

under the pothole input. The results in the figure thus suggest that the roll angle 
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responses of the model with bilinear dampers are opposite under the bump and pothole 

inputs. The model with lower compression mode damping (ζc=0.1) yields significantly 

larger roll angle response compared to those of the model with linear and bilinear damper 

(ζc=0.2) under the pothole type input. It is thus evident that the damper synthesis 

demands an additional design compromise in terms of conflicting roll angle response 

under bump and pothole excitations.   

Figure 3: Comparisons of sprung mass responses of the kineto-dynamic model with 

bilinear (ζc=0.1; ρ=5 and ζc=0.2; ρ=2) and linear equivalent dampers under idealized 

bump and pothole type excitations (z0max=±50mm): (a) vertical acceleration; and (b) roll 

angle (V=3 m/s). 

 
(a)      (b) 

Damping asymmetry also yields important influence on the camber angle variation 

responses of the suspension, particularly that of the left wheel (when excitation is given 

to the right wheel), as shown in the Figs. 4 (a) and (b). The peak camber variations of the 

unexcited wheel (left wheel) are 2.1, 1.9 and 1.5°, respectively, under the bump 

excitation with the linear and bilinear damper with compression damping ratios of 0.2 

and 0.1. Under the pothole input, the kineto-dynamic model with linear damper exhibits 

considerably smaller left wheel camber variation response compared to those of the 

model with bilinear damper. The influence of damper asymmetry on the camber variation 

response of the right wheel (excited wheel), on the other hand, is less significant, as seen 

in the Fig. 4 (b). It should be noted that the camber responses shown in the figures are the 

net results of bump and roll cambers, and the excited wheel experiences both the bump 

and roll, while the unexcited wheel experiences only the roll camber. This clearly 

suggests that the asymmetric damping could influence roll camber response of a 

suspension apart from the bump camber, as observed in [Balike et al. 2010 (ref 3) and 

Balike et al. 2011 (ref 4)]. Such a coupling between the roll camber and the damper 

asymmetry has not been identified in the reported studies.  

The results in Figs. 3 and 4 show significant influences of asymmetric damping on the 

kinematic and dynamic responses of the roll-plane vehicle model, while the results are 

limited to a very low vehicle speed (3m/s). The influences of damper asymmetry on the 

responses are thus further investigated over a wide range of forward speeds (3 to 15 m/s). 

Figures 5 to 7 illustrate the peak magnitudes of kinematic and dynamic responses of the 

model with three different dampers as a function of vehicle forward velocity. 
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Figure 4: Comparisons of camber angle variations of the kineto-dynamic model with 

bilinear (ζc=0.1; ρ=5 and ζc=0.2; ρ=2) and linear equivalent dampers to idealized bump 

and pothole type excitations (z0max=±50mm): of (a) the left wheel; and (b) the right wheel. 

 
(a)      (b) 

The peak sprung mass acceleration and roll angle responses of the model with linear 

and bilinear dampers are compared in Figs. 5 (a) and (b), respectively, as a function of 

the speed. Under the bump input, the bilinear damper with lower compression mode 

damping (ζc=0.1; ρ=5) yields lowest peak acceleration response at speeds below 7 m/s 

and lowest roll angle at speeds below 12 m/s. The increase in peak acceleration at higher 

velocities is attributable to increase in the second peak rather than the first peak response. 

A similar trend was also observed in the second peak in roll angle response of the model 

with ζc=0.1 under bump input at speeds above 12 m/s. The model with equivalent linear 

damper yields highest acceleration at speeds below 10 m/s and highest roll angle in the 

entire speed range. The bilinear damper with ζc=0.2 yields lowest peak sprung mass 

acceleration and roll angle response to bump inputs at speeds above 7 m/s. Under the 

pothole input, linear damper yields lowest peak acceleration and roll angle responses in 

the entire speed range. The results suggest conflicting design demands on the damper 

synthesis and that a bilinear damper with ζc=0.2 could yield good compromises in 

responses to bump and pothole excitations. 

Figure 5: Comparisons of sprung mass responses of kineto-dynamic model with bilinear 

(ζc=0.1; ρ=5 and ζc=0.2; ρ=2) and linear equivalent dampers under idealized bump and 

pothole type excitations (z0max=±50mm) in the forward velocity range 3 to 15m/s: (a) 

vertical acceleration; and (b) roll angle. 
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The camber angle variation responses of the left- and right wheels of the kineto-

dynamic roll-plane model with linear and bilinear dampers under bump and pothole 

inputs, as function of forward velocity are presented in Figs. 6 (a) and (b), respectively. 

The peak left wheel camber angle response, which is mainly due to contribution of the 

roll camber angle, exhibits trend similar to the peak roll angle response, as shown in Fig. 

5 (b). Under the bump input, higher peak camber angle of the left wheel is observed for 

the model with linear dampers until the speed of 12.5m/s, while above this speed, the 

model with ζc=0.1 yields higher peak camber responses. The left wheel camber variation 

under the pothole input is more uniform, with the linear damper yielding the lowest 

camber variation in the entire velocity range, as seen in Fig. 6 (a). The peak camber angle 

response exhibited by the right wheel of the kineto-dynamic model with bilinear damper 

of  ζc=0.2 is the lower above 5 m/s compared to those with other dampers under bump 

excitation.  At speeds below 7 m/s, the kineto-dynamic model with linear damper yields 

higher right wheel camber response under pothole response, which is attributed to the 

higher roll angle at lower velocities. The bump camber which is opposite in direction to 

that of the roll camber reduces the net camber response (compared to the left wheel 

camber responses). At high velocity bump and pothole inputs, however, the contribution 

of roll camber is higher, as compared to that of bump camber in the camber variation 

response. The results thus suggest that damping asymmetry causes difference in the 

camber angle response under dynamic events like bump excitations.   

Figure 6: Comparisons of camber angle variation responses of kineto-dynamic model 

with bilinear (ζc=0.1; ρ=5 and ζc=0.2; ρ=2) and linear equivalent dampers to idealized 

bump and pothole type excitations (z0max=±50mm), in forward velocity range 3 to 15m/s: 

(a) the left wheel; and (b) the right wheel. 

 

          

(a)      (b) 

 

Lower compression mode damping yields slightly lower normalized load transfer 

response of the model at low velocity (3-5 m/s) bump inputs, while the load transfer 

response of the model with the same damper at velocities above 5 m/s is considerably 

larger compared to those with the other dampers, as seen in Fig 7. Furthermore, under 

bump excitations, the bilinear dampers with ζc=0.1 cause wheel lift-off (normalized load 

transfer=1) at a relatively lower speed of 10 m/s, while the bilinear dampers with ζc=0.2 

and the linear dampers yield wheel lift-off at relatively higher speed of 12.5 and 15 m/s, 

respectively.  Wheel lift-off of the model under pothole input, in general, occurs at much 
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lower velocities than those observed under the bump inputs, irrespective of the type of 

damper employed. The bilinear damper with ζc=0.1 yields normalized load transfer of 1 

at 7.5 m/s, while the linear and higher compression damping bilinear dampers yield 

wheel lift-off at only slightly higher speeds. Ironically, linear damper yields better 

(lower) load transfer response under both bump and pothole inputs in the entire velocity 

range.   

Figure 7: Comparisons of normalized load transfer response of kineto-dynamic model 

with bilinear (ζc=0.1; ρ=5 and ζc=0.2; ρ=2) and linear equivalent dampers under idealized 

bump and pothole type excitations (z0max=±50 mm), in the forward velocity range 3 to 

15m/s. 

 

 
 

 

The results in Figs. 3 to 7 thus suggest significant influences of asymmetric dampers 

on the dynamic and kinematic response measures under road vertical excitations, which 

are also complex functions of the vehicle forward velocity and the type of input. 

Synthesis of an asymmetric damper would also necessitate consideration of the kinematic 

and dynamic responses of the kineto-dynamic half-car model under different inputs 

including random road excitations. The evaluation under random excitations, however, is 

beyond the scope of this study.  

3.2 Handling Performance Evaluations 

The responses of the proposed model are further evaluated under rounded-step lateral 

acceleration excitation, as described in Eq (20), of 6 m/s
2 

magnitude in order to study the 

handling performance of the vehicle with suspension dampers of different rebound to 

compression asymmetry ratios, and are illustrated in Figs. 8 and 9. The peak sprung mass 

roll angle and roll rate responses of the model with a low compression mode damping 

(ζc=0.1) are higher as compared to those with a linear damper or with an asymmetric 

damper of ζc=0.2, as seen in Figs 8 (a) and (b). The roll angle response of the model with 

ζc=0.1 is near 4.75°, which is 5 and 8% more than those with bilinear damper of ζc=0.2 

and the linear damper, respectively. The roll rate responses seem somewhat less sensitive 

to variations in the damping asymmetry ratio (Fig 8 (b)). This can be attributed to the fact 

that all the three dampers considered in this study are equivalent, as far as the effective 

damping is concerned. It needs to be noted that the variations in the roll angle and roll 
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rate responses are due to net damping from left and right suspensions, with one being in 

compression and other in extension. Moreover, the observed oscillations occur about 

intermediate points in compression and extension of the suspension. The degree of 

influence of the damper asymmetry would thus be dependent upon these intermediate 

positions, which are related to the magnitude of lateral acceleration excitation. The 

results in Fig. 8 suggest that a linear damper yields better roll damping under lateral 

acceleration inputs, as compared to that with an asymmetric damper.  

Figure 8: Comparisons of sprung mass responses of the kineto-dynamic model with 

bilinear (ζc=0.1; ρ=5 and ζc=0.2; ρ=2) and linear equivalent dampers under a 6 m/s
2
 

rounded-step lateral acceleration excitation: (a) roll angle; and (b) roll rate.  

 
(a)      (b) 

Figures 9 (a) and (b) illustrate the camber angle response of the left and right wheels 

to the rounded-step lateral acceleration input. The left and right wheels correspond to the 

inner and outer wheels, respectively, of the vehicle negotiating a turn.  The damping 

asymmetry, as in the case of pothole type excitation, affects on the camber angle 

variation responses of the model. The peak roll camber variations of the inner wheel (left 

wheel) are -3.7, -3.85 and -4.1°, respectively, with the linear and bilinear damper with 

compression damping ratios of 0.2 and 0.1. The influence of damper asymmetry on the 

roll camber variation response of the outer wheel, on the other hand, is less significant, as 

seen in the Fig. 9 (b). It has been already shown in Figs. 4 (a) and (b) that the roll camber 

response of the model is influenced by the considered variations of the rebound to 

compression damping asymmetry. The results in Fig. 8 and 9 further suggest that a very 

low damping is not desirable from the perspectives of handling performance measures 

considered in this study. 

The results of this study clearly suggest that the kinematic response measures such as 

camber variations, which are generally considered as pure kinematic phenomena 

necessitate consideration during the dynamic analysis. The study has further shown that 

the proposed model can effectively be employed to study the ride and handling 

performance measures of the vehicle. Although the simulation results from the proposed 

model have yielded important guidelines, validation of the model responses with 

experimental data prior to damper synthesis is essential. Formulation of a performance 

index comprising conflicting performance measures and subsequent solution of the 

optimization problem would be vital for the synthesis of an asymmetric damper. An 

optimal damper synthesis also necessitates consideration of high velocity saturation of 

the damper and extended vehicle models to incorporate pitch mode motion of the sprung 

mass. 
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Figure 9: Comparisons of camber angle variations of the kineto-dynamic model with 

bilinear (ζc=0.1; ρ=5 and ζc=0.2; ρ=2) and linear equivalent dampers under rounded-step 

lateral excitation: of (a) the left wheel; and (b) the right wheel. 

  

(a)      (b) 

        

4. Conclusions 

A kineto-dynamic roll-plane model of a vehicle incorporating linkage kinematics of a 

double wishbone suspension is proposed to investigate the influences of damper 

asymmetry on the kineto-dynamic responses of a vehicle. The proposed model is shown 

to be effective for studying the vehicle responses under vertical road and lateral 

acceleration inputs. The results of the study suggested that the responses are complex 

functions of damper asymmetry ratio, vehicle forward speed and type of input. 

Comparisons of the responses with two different asymmetric dampers of similar effective 

damping coefficients showed that a very low compression mode damping with a large 

rebound mode damping helps reduce the sprung mass vertical acceleration, roll angle and 

wheel camber of the unexcited wheel under a bump input. Under the pothole input, 

however, an opposite trend is observed in these responses. A very low compression mode 

damping is thus shown to be undesirable, while an asymmetric damper with compression 

mode damping ratio of 0.2 coupled with damping asymmetry ratio in the range of 2 

would be a better design compromise. Furthermore, a very low compression mode 

damping is observed to increase the sprung mass roll angle and roll camber of the inner 

wheels under a steady lateral acceleration input. The results show that an asymmetric 

damper synthesis is complex task involving a large number of design compromises 

among the vertical and roll dynamic, and kinematic performance measures. Formulation 

of a performance index comprising dynamic and kinematic responses of the model, and 

subsequent minimization of the performance index would be instrumental in obtaining an 

optimal asymmetric damper.   
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Nomenclature 

a11 = a22 = Components of chassis displacement matrix  

a11k = a22k  = Components of wheel spindle displacement matrix  
ay = Effective lateral acceleration 

fdsk, fduk = Right- and left- damping forces acting on the sprung and unsprung masses 

ftlsk, ftluk = Vertical tire forces acting on the sprung and unsprung masses 

ftk = Tire forces 

ftbs,  ftbuk = Forces transmitted to the sprung and unsprung masses 

fssk, fsuk (k=R, L) = Right- and left- suspension spring forces acting on the sprung and 

unsprung masses  

k = Subscript used to denote suspension side ‘left’ (L) or ‘right’ (R) 

ls0  = Initial strut length  

lMNk and lOPk = Upper and lower control arm lengths (left and right suspensions) 

lOA, lOP  = Distances of the joints AR and PR from point OR (or AL and PL from point OL) 

ms, muk = sprung, left and right unsprung masses 
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xd = Distance from the beginning of the bump 

yuk = Wheel center lateral displacement  

zs, zuk = Sprung mass and unsprung mass vertical displacements 

z0 =Road vertical input 

Amax = Lateral acceleration amplitude  

Aky, Akz, Bky, Bkz  = Instantaneous y- and z- coordinates of lower and upper mounts of left 

and right suspensions. 

Cs, Ct = Suspension and tire damping coefficients 

Ccrit = Critical damping coefficient 

Fy = Lateral force  

Ix, Iukx  = Mass moment of inertia of sprung and unsprung masses about x- axis  

Ks, Kt, Ktl = Suspension spring, tire vertical and lateral stiffness coefficients   

LT = Effective length of the torsion bar between attachment points TsR and TcR 

Mk, Ok, Nk Pk and Ck = Instantaneous coordinates of left and right suspensions joints and 

wheel centers 

Rk = Effective radius of wheel k 

Rc = Roll centre height 

TCk, TSk = Torsion bar attachment points at chassis  

T, U, D = kinetic, potential and dissipative energy 

Tssk, Tdsk = Moments due to right- and left- suspension spring and damping forces 

Ttlsk = Moments imposed on the sprung mass due to the right- and left- tire lateral 

compliance 

Ttbs = Torque transmitted to the sprung mass due to the torsion bar 

V = Vehicle forward velocity 

ρ = Ratio of rebound to compression damping coefficient, damping asymmetry ratio. 

ζc = Compression mode damping ratio 

φs = Sprung mass roll angle motion 

φL,, φR = Left and right camber angles 

∆lk = Left and right strut deflections 
θT = Torsion bar twisting angle angle 

∆zk = Tire deflection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

   

   

 

   

   Int. Journal of Vehicle Performance., Vol. 1, No. 1, 2013 22    

         
 

Copyright © 2011 Inderscience Enterprises Ltd. 

 

 

Appendix I 

The expressions for the kinematic responses of the left- and right (k=L and R) 

suspensions, which include the instantaneous coordinates of the joints and the wheel 

camber angles, in terms of the generalized coordinates:  
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where ak=Nky0-Cky0; bk=Nkz0-Ckz0; ck=Pky0-Cky0; dk=Pkz0-Ckz0; ek=Nky0+Mky0; fk=Nkz0+Mkz0; 
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Appendix II 

The forces due to tire damping, and the lateral and vertical compliance are formulated 

considering four different possible conditions; namely: (i) both the tires are in contact 

with the ground (zuL-z0L<δu and zuR-z0R<δu), where δu is the static tire deflection; (ii) left 

wheel in contact with the ground, while the right wheel loses the ground contact (zuL-

z0L<δu and zuR-z0R≥δu); (iii) right wheel is in contact with the ground, while the left wheel 

loses the ground contact (zuL-z0L≥δu and zuR-z0R<δu); and (iv) both the wheels lose contact 

with the ground (zuL-z0L≥δu and zuR-z0L≥δu).  These are summarized below: 
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