
BARUA - KHORASANI 1

Hierarchical Fault Diagnosis and Health Monitoring
in Satellites Formation Flight

A. Barua, Student Member, IEEE, and K. Khorasani, Member, IEEE

Abstract— Current spacecraft health monitoring and fault
diagnosis practices involve around-the-clock limit-checking and
trend analysis on large amount of telemetry data. They do
not scale well for future multi-platform space missions due
the size of the telemetry data and an increasing need to
make the long-duration missions cost-effective by limiting the
operations team personnel. The need for efficient utilization of
telemetry data achieved by employing machine learning and
reasoning algorithms has been pointed out in the literature
for enhancing diagnostic performance and assisting the less-
experienced personnel in performing monitoring and diagnosis
tasks. In this paper, we develop a systematic and transparent
fault diagnosis methodology within a hierarchical fault diagnosis
framework for a satellites formation flight. We present our
proposed hierarchical decomposition framework through a novel
Bayesian Network (BN) whose structure is developed from the
knowledge of component health state dependencies. We have
developed a methodology for specifying the network parame-
ters that utilizes both node fault diagnosis performance data
and domain experts’ beliefs. Our proposed model development
procedure reduces the demand for expert’s time in eliciting
probabilities significantly. Our proposed approach provides the
ground personnel with an ability to perform diagnostic reasoning
across a number of subsystems and components coherently. Due
to the unavailability of real formation flight data, we demonstrate
the effectiveness of our proposed methodology by using synthetic
data of a leader-follower formation flight architecture. Although
our proposed approach is developed from the satellite fault
diagnosis perspective, it is generic and is targeted towards other
types of cooperative fleet vehicle diagnosis problems.

Index Terms— Fault Diagnosis; Model-based Reasoning;
Bayesian Networks; Integrated Vehicle Health Management;
Decision Support Systems; Spacecraft Formation Flight.

I. INTRODUCTION

INTEGRATED Vehicle Health Management (IVHM) refers to
the integration of techniques and technologies to provide a

health management system for a vehicle or fleet of vehicles.
Although the requirements are unique to a specific type of
vehicle, health management has become increasingly important
to automotive, commercial and military aircraft, rotorcraft, un-
manned and manned vehicles, spacecraft, and satellites. In the
space and commercial aviation sectors, the concept of IVHM is
used to describe the automation of activities that are performed
onboard as well as offboard by the ground support teams and
maintenance personnel. Fault diagnosis is the part of an IVHM
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system which aims to identify the root causes of faults and
performance degradations.

In the case of satellites that operate in near-Earth orbits, it
has been possible to manage and operate these systems through
additional design margins and extensive ground-based monitoring
and control efforts. Fault diagnosis and health monitoring in the
Earth orbiting single spacecraft missions are mostly accomplished
by human operators at ground through around-the-clock limit-
checking and trend analysis on large amount of telemetry data
by utilizing software tools. Current spacecraft diagnosis practices
do not scale well for future multi-platform space missions due to
the size of the telemetry data and an increasing need to make the
long-duration missions cost-effective by limiting the operations
team personnel. On the other hand, the effectiveness of spacecraft
autonomy, which may be an ideal solution to this problem, is yet
to be fully demonstrated. This is mainly constrained due to the
existence of perceived risks for a fully autonomous system, which
has necessitated that the expert human operators be involved in the
spacecraft operations and diagnosis processes [1]. Furthermore, in
order to enhance the diagnostic performance and assist the less-
experienced personnel in performing monitoring and diagnosis
tasks at ground stations, there is a need for efficient utilization of
the telemetry data [2].

Within an IVHM framework, offboard diagnosis of various
components and subsystems are carried out by employing differ-
ent types of reasoning algorithms. It is well-known within the Ar-
tificial Intelligence (AI) community that the diagnostic reasoning
methods [3] are commonly classified into three main categories,
namely (1) Case Based Reasoning (CBR), (2) Rule Based Rea-
soning (RBR), and (3) Model Based Reasoning (MBR). Other
approaches are mainly pure data-driven that include machine-
learning (ML) and Neural Network (NN)-based strategies. The
MBR approach includes graph-based models such as logical
causal graph models as well as Bayesian network (BN) models.
The fault diagnosis approach developed in this paper is basically
a model-based reasoning method that utilizes a Bayesian network
model which we have identified as the Component Dependency
Model (CDM) in the subsequent paragraphs and sections. As
an alternative to the above-mentioned AI-based methods, model
based Fault Detection and Isolation (FDI) methods [4] are exten-
sively developed and utilized by the control community. Model
based FDI methods are primarily based on precise mathematical
models of the system under consideration. In our work, we use the
terms ”fault diagnosis”, ”fault identification” and ”fault isolation”
interchangeably.

For complex systems such as satellites, it is often the case
that different design and development teams are involved in
developing diagnostic algorithms for various components and
subsystems. When these algorithms are employed independently
and in isolation for diagnosing a specific component or subsystem,
correlating faults that are identified at separate locations will lead
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to difficulties in assessing the overall system health. Therefore, a
decision support system should be developed that would provide
the ground personnel with an ability to perform diagnostic reason-
ing coherently. The focus of this work is to develop a methodol-
ogy for ground station based diagnosis of complex multi-vehicle
systems such as a formation flight of satellites where telemetry
data is available, and access to precise mathematical models of
the system under consideration is limited. Since it is desired that
the diagnosis model would provide decision support to human
experts, it is reasonable to decompose the overall system into
simpler subcomponents, and to develop a Bayesian network-based
(whose capability for human-like reasoning under uncertainties
are well-known) fault diagnosis model to relate the faults that
are occurring at the subcomponents. This is the rationale behind
developing a Bayesian network type model in the present work.
Our proposed Bayesian network-based diagnosis model is generic
in the sense that it does not impose any restrictions on the type
of diagnosis algorithms that one may employ at a given node of
the model as long as its performance evaluation matrix (this will
be discussed later in detail) is available.

To address the above problems and requirements for coherent
diagnostic reasoning, in this paper we develop a systematic and
transparent fault diagnosis methodology within the hierarchical
fault diagnosis concepts and framework that we introduced in
[5], [6] for multi-platform space systems or satellites formation
flight. In this framework, as shown in Figure 1(a), we consider
the satellites in a formation flight system as a set of hierarchically
decomposed modules where entities at different levels correspond
to formation, system, subsystem, etc. depending on the location
of the entity in the hierarchy.

We present our proposed hierarchical decomposition by a
Component Dependency Model (CDM) by using a novel Bayesian
network (BN) [7], [8] structure. The structure of our CDM is
determined from the knowledge of the component health state
dependencies. A methodology is developed for specifying the
CDM parameters that quantify the health state dependencies and
domain experts’ beliefs. The present work is an extension and a
complete version of our earlier work [9], [10] on spacecraft fault
diagnosis. Although, our proposed approach is developed from
a satellite fault diagnosis perspective, it is generic and can be
targeted towards other types of cooperative fleet vehicle diagnosis
as long as it is viable to accommodate the unique requirements
of the application area.

A. Related Work

A hierarchical Fault Detection, Isolation and Recovery (FDIR)
concept for a single satellite system was presented in [11] in
order to streamline and manage FDIR designs of multiple teams
across a large number of spacecraft subsystems during various
project phases. However, the authors in [11] present the concept
mainly from the FDIR task management perspective without pro-
viding details on the systematic development of frameworks and
methodologies. A generic hierarchical fault diagnosis approach
is available in [3]; however, the properties of their hierarchical
structure are much restrictive for applications to complex systems
with multiple interactive subsystems. Furthermore, the structure
does not take into account uncertainty that is related to component
interactions or the health state dependencies. The applicability of
hierarchical fault diagnosis methodologies that are based on the
discrete-event systems theory is available in [12]. The method in

[12] is restricted to systems that are characterized by discrete
events, and does not take into account uncertainties in the
diagnosis model. A systems analysis method known as the fault
propagation analysis (FPA) is available in [13] that facilitates a
systematic design of fault tolerant control systems by identifying
all possible faults in various components and their effects on
the system. The method requires an in-depth knowledge of the
components interactions and serves mostly as an analysis tool for
early design modifications as opposed to a tool for operational
fault diagnosis which is the primary focus of our current work.
Furthermore, unlike our proposed method, FPA does not address
uncertainties in the fault manifestations at different components
of the FPA model.

Rule-based reasoning have been extensively used in various
applications [14]–[20] including fault diagnosis. The author in
[20] has pointed out that when the system or the application
domain is very large and complex, an entirely rule-based repre-
sentation and associated inference leads to a large and inefficient
knowledge base, causing a poor quality in diagnosis. The author
in [20] has reported a method of data analysis that is intended
for autonomous real-time fault detection and characterization in
spacecraft by utilizing both rule-bases and causal system models
without providing much detail on how the models are developed
and integrated. The rule-based diagnosis schemes in [17]–[19]
appear to be suitable for fault diagnosis of a small set of
actuators that are operated and diagnosed in isolation. Eventhough
a number of research on dynamic neural networks [21]–[25] and
machine learning techniques [22], [26] have been related to the
fault diagnosis of subsystem components, they do not provide
details on how the methodologies can be applied in the presence
of a large number of interactive components and subsystems.
Furthermore, on-board design and implementation of model-based
FDI methods that include parameter estimation, robust observers
and filter design techniques [4], [27]–[29] may be cost-prohibitive
for a large number of subsystems and their components even if
sufficiently accurate mathematical models are available.

An overview of the methods that are commonly employed
for probability elicitation exhaustively from domain experts is
available in [30]. The main drawback of these methods is their
biased assessments by experts although various methods for
interviewing experts have been developed in literature to reduce
such biases. These include probability-scale method, gamble-
like method, and the probability wheel method. Other methods
are available in [31] and [32]. The methodology that we have
developed in this work for quantifying our CDM parameters is
the result of and is being motivated by the inapplicability of the
existing methods (for example, the ones in [31], [32]) to our
system. The method available in [31] utilizes domain-dependent
constraints that are not relevant to our problem. The method that
is available in [32] is also not applicable because it was developed
for ranked nodes whose states are expressed on an ordinal scale
which is mapped to a continuous, monotonically ordered, bounded
numerical scale. Note that several belief or evidence propagation
methods in BN are available in the literature [7], [8], and the
methods require that the BN parameters of the nodes be specified
numerically. Our focus in the present paper is on the BN-based
fault diagnosis model development (structure and parameters) as
opposed to the development of a belief propagation method.

It should be pointed out that the need for spacecraft autonomy is
extensively discussed, and onboard planning, execution, diagnosis
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and recovery have been demonstrated in a deep space mission
[33], [34]. A framework that facilitates reducing the operational
cost at the ground station for NASA’s Deep Space Network is
available in [35]. However, in the operation of the Earth-orbiting
satellites the implementation of such onboard autonomous diagno-
sis and recovery functions have yet to become a common practice
due to cost considerations and perceived risks.

The organization of the remaining parts of this paper is as
follows: in Section II, we develop a generic BN-based CDM
that represents our proposed hierarchical framework for formation
flight fault diagnosis. We discuss the purpose of our model,
explain how the health states are defined at different nodes,
develop procedure for specifying model parameters, and briefly
discuss how evidences are generated at different nodes. In Section
III, we provide a description of the formation flight system
simulation that we have utilized for synthetic data generation,
and demonstrate our proposed fault diagnosis approach. In Sec-
tion IV, we present performance evaluation results, and discuss
advantages, limitations and possible validation procedures of our
model. Finally, conclusions are stated in Section V.

II. BAYESIAN NETWORK MODEL FOR HIERARCHICAL FAULT

DIAGNOSIS

Though the development of our proposed methodology is based
on the health management of satellites formation flight, the
methodology is generic enough to be applicable to other systems
or a fleet of systems that require health monitoring decision
support systems (DSS). Our proposed fault diagnosis strategy
aims to perform diagnostic reasoning in complex systems such as
a “formation flight system” by decomposing its complex structure
hierarchically into simpler modules or components. This idea was
introduced in our earlier work [5], [6]. The decomposition is
driven by the need, from project management perspective, for
supporting the development of the components/subsystems of the
overall system by a number of teams and performing integration at
the end. As illustrated by the perspective of the attitude and orbital
control of the satellites in a formation flight in Figure 1(a), fault
diagnosis at level 1 (subsystem component level) corresponds
to sensor and actuator fault diagnosis. Fault diagnosis at level
2 (subsystem level) corresponds to different subsystems such
as attitude, orbital, power, etc. Level 3 (system level) diagnosis
corresponds to individual satellites. In level 4 (formation level)
diagnosis, individual spacecraft in the formation are considered
as different “components” of the formation flying system.

First, we take into consideration that even if a fault is originated
in a subsystem component, the fault is assumed to have various
levels of manifestations in the hierarchy. In other words, for
performing diagnosis at different levels, it is assumed that fault
symptoms/manifestations are available. As an example, consider
the specific fault of “increase in friction” in the pitch axis reaction
wheel (subsystem component). At the subsystem component level,
one of the fault manifestations would be “high current drawn by
the wheel motor”. In the attitude control subsystem (ACS) level,
one of its manifestations would be “deviation from the expected
pitch angle”. The system level manifestations can be described in
terms of deviations from some relative subsystem specifications.
Finally, at the formation level the fault manifestations can be
“deviation from the expected relative attitude with respect to
other satellites”. Therefore, in this case, there is a need for
identifying faults differently at various levels in the hierarchy

based on the “level of abstraction” at a particular level and the
manifestation of fault at that particular level. On the other hand,
in the case of a system level anomaly that leads to a situation in
which a wrong command is sent to the actuator, the subsystem
component, or even the subsystem, it would follow the “wrong”
command without being aware of the anomaly. Based on the
above observations, the definition of an “level l fault” [6] is
formally stated as follows:

Definition 2.1 (Level l Fault [6]): A fault occurring in a sys-
tem that is hierarchically decomposed into L levels is said to be
an “level l fault” (l = 1, 2, ..., L) and is denoted by fault f lk (k-th
fault mode) if and only if its manifestations are only observable
in the fault signatures that belong to level l and in higher levels
for the fault severity level(s) under consideration.

Distinguishing faults at different levels based on the above
definition would allow one to avoid cycles in our Bayesian
network (BN)-based fault diagnosis model which we will describe
in the subsequent sections.

A. Proposed Bayesian Network Model Structure and Node States

We represent our proposed hierarchical decomposition with a
novel Bayesian network-based Component Dependency Model
(CDM) as shown in Figure 1(b). The entire system under con-
sideration is described by a single node at the highest level and
which consists of sub-components that are located at lower levels.
We denote the p-th component at level l in the hierarchy as
Clp. For example, if we consider a 4-level decomposition of a
fleet of systems as shown in Figure 1(a), for l = 1, C1

p would
correspond to the p-th sensor or actuator (subsystem component)
whereas for l = 4, C4

1 would correspond to the “fleet”. For
the intermediate levels, i.e., l = 2 and l = 3, a component Clp
would correspond to the p-th subsystem and system, respectively.
Let L denote the total number of levels in the hierarchy, and
for any Clp, the set of components that are parents of Clp (as
represented in Figure 1(b)) is denoted by pa(Clp). At this point,
it is important to describe the main objective of our proposed
hierarchical fault diagnosis and health monitoring approach in
detail. We intend to utilize our scheme as follows: when the faulty
or healthy state of a node is observed by executing a diagnosis
algorithm, the evidence (refer to Section II-C for the specific
approach adopted in this paper) is introduced to our proposed
CDM by instantiating that node. The evidence is then propagated
in the CDM by utilizing a standard propagation algorithm (such
as the junction tree algorithm, recursive conditioning algorithm,
etc.). In the nodes that have updated health states corresponding
to the faulty states with high probabilities, diagnosis algorithms
are executed to confirm the hypotheses. When a fault evidence
is determined at some intermediate level in the hierarchy, the
evidence is propagated downwards to identify the component
in which the fault has originated from. On the other hand, the
evidence is propagated upwards to identify components that are
probably affected by the fault, and to determine if higher level
specifications are still possible to be accomplished since the diag-
nosis algorithms at higher levels are usually based on certain rules
that check the system (or, system of system) level specifications. It
is possible to encounter situations where there is no identification
of a faulty state at a higher level, whereas a low level fault is
actually identified at a lower level. However, in such cases, it is
worthwhile to propagate the evidence upwards in the hierarchy to
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(a) A 4-level hierarchical fault diagnosis framework for a leader-follower
satellites formation flight [6].

(b) Bayesian network representation of an L level hier-
archical decomposition.

Fig. 1. Proposed hierarchical decomposition of satellites formation flight.

identify the high level components that are possibly impacted by
the identified fault. On the other hand, when the diagnosis at a
higher level is accurate, it is worthwhile to propagate the evidence
downwards in the hierarchy to identify the components where one
should expect to observe fault manifestations eventhough fault
identification cannot be performed at the current instant.

It should be noted that there are certain cost that is associated
with performing fault diagnosis at each node in terms of data
processing, algorithm development, validation and performance
evaluation. Furthermore, in case of having a large number of
components, it is natural from the users’ resource considerations
that the number of nodes that are to be actively/ round the clock
monitored is as few as possible. Consequently, it is possible
that diagnosis algorithms are not employed at some of the
intermediate nodes but it is desired that the nodes be included in
the diagnosis model to determine which subsystem or system a
faulty node at lower levels belongs to. Such representation allows
a systematic fault cause identification. In subsequent paragraphs,
we will investigate a general case of an L level hierarchical
decomposition.

Node Health States: The possible states of a given node in our
proposed CDM represent the health states of the corresponding
component. It should be clear, according to Definition 2.1 that
the origin of a fault (level l fault) is at one of the nodes Clp
(refer to Figure 1(b)) for which pa(Clp) = ∅. If pa(Clp) 6= ∅, the
states of the parent nodes have impact on the states of Clp, and
the fault may manifest at Clp after originating from some other

node at lower levels. Depending on whether a node Clp has parent
nodes or not, we assign its health state as follows: given a com-
ponent Clp and its parents pa(Clp) = {Cl−1

1 , ..., Cl−1
m , ..., Cl−1

M },
the possible health states Xl

p of Clp are represented as Xl
p =

{x0, ..., xm, ..., xM}; where x0 corresponds to the state “healthy
Clp” and xm corresponds to the state “component Cl−1

m fault in
Clp”. If pa(Clp) = ∅, the possible health states Xl

p of Clp are
represented as Xl

p = {x0, ..., xk, ..., xK}; where xk corresponds
to the level l fault f lk that originates at Clp.

Note that it is possible to represent an anomaly in a node that
corresponds to multiple simultaneous faults by a health state of
the node. However, the diagnosis algorithm that is employed at
that node must be capable of distinguishing among say, two single
faults and their simultaneous occurrences. In such a case, from
fault identification perspective, the anomaly involving multiple
faults can be treated as a “single fault” while generating a node
performance evaluation matrix such as a confusion matrix [36].
For sake of simplicity, in this paper we do not consider health
states xm ∈ Xl

p (or xk ∈ Xl
p) that correspond to multiple fault

scenarios.
It is worthwhile to note that in Bayesian modeling, it is required

that the possible node’s states are exhaustive and mutually exclu-
sive to ensure that the entire state space is under consideration
and the node is in a single state at a given instant. These
requirements are satisfied in a practical environment by taking
into account all the possible, or at least the dominant, faults
corresponding to that node that are determined through the well-
known Failure Mode Effect and Criticality Analysis (FMECA)
procedures. As mentioned above, node states are observed by
executing appropriate fault diagnosis algorithms at that node.
Therefore, evidence should be introduced to the network nodes
when the states are identified by the diagnosis algorithms without
ambiguity. It is possible to design diagnosis algorithms that
provide information on such ambiguity as we have demonstrated
in our earlier work [6], [9]. In the present work, we have employed
fuzzy Rule Based Reasoning (RBR) to identify the states of a
node and to generate evidences that are introduced to the node
which we discuss in detail in Section II-C. However, our proposed
hierarchical approach is generic for accommodating any type
of reasoning algorithm; i.e., at a particular node, Case Based
Reasoning (CBR) or Model Based Reasoning (MBR) algorithms
may be employed as well.

B. Determination of Model Parameters

Parameters of our proposed Bayesian network-based CDM
are the conditional probabilities that are specified in the form
of Conditional Probability Tables (CPT). It is well-known that
the CPT that is specified at Clp has a number of parameters
(conditional probabilities) that are exponential in the number
of parents pa(Clp); i.e., one must specify P (Xl

p|pa(Xl
p)) for

each configuration of the parents. As mentioned in Section I-
A, an overview of the methods that are commonly employed
for probability elicitation from domain experts is available in
[30], and the limitations of eliciting probabilities exhaustively
with domain experts are well-known. Detailed discussions on the
benefits and drawbacks of these methods are available in [30],
and reviewing them is therefore beyond the scope of this paper.

In our case, elicitation of CPTs from the domain expert
opinions will be difficult because as the possible number of faults
becomes large in the parent nodes of a given node, the number of
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parent configurations will become too specific for the expert to
specify a distribution of the node’s health state. Furthermore, it is
not reasonable to assume that real data corresponding to different
faults and all of their combinations are available. Generating
synthetic data for combinations of fault occurrences will be
cost prohibitive and challenging, if not impossible, eventhough
a high fidelity simulator is available. Therefore, a requirement
for parameter learning from data is likely to impose a significant
barrier in model development and deployment.

Note that existing methods for generating CPTs are not useful
in our case because of the following reasons, namely, though
noisy-OR [8] is a well established method, it applies only to
boolean nodes. The method available in [31] utilizes domain-
dependent constraints that are not relevant to our problem. The
method that is available in [32] is also not applicable because it
was developed for ranked nodes whose states are expressed on
an ordinal scale which is mapped to a continuous, monotonically
ordered, bounded numerical scale. The above-mentioned difficul-
ties in eliciting probabilities from experts and the unavailability
of sufficient data that are always barriers in deploying diagnostic
schemes for real systems, have motivated us to investigate alter-
native methods for generating CPTs.

Uncertainty Information: Recall that our central problem at
hand is to manage and utilize the health observations that are
available from different subsystems and components. A frame-
work and methodology is proposed in our work for health
monitoring of complex systems where it is desired that diagnostic
decisions are to be made by taking into account the uncertainty
that is associated with health state observations at different nodes
in the hierarchy. The uncertainty is quantified by the conditional
probabilities that, as indicated above, are commonly elicited by
utilizing information from the various sources [37] such as: (a)
physical or numerical models (b) results of experiments or passive
observations, and (c) opinions of domain experts.

In the area of health monitoring, the performance metrics for
fault detection and identification/isolation are specified separately
for both temporal and static performance evaluations [38], [39].
Since our work is concerned with fault identification by using
a probabilistic reasoning model, we concentrate on confusion
matrices that are used to evaluate static performance of isolation
algorithms, and which also provide statistical or probabilistic
information.

In our proposed CDM, the health state of a given node is
observed by first employing the most appropriate fault diagnosis
algorithms that are feasible. Despite the fact that these algorithms
are developed by different teams separately and are often propri-
etary to the teams, it is expected that the diagnosis algorithms that
are employed at different nodes have their respective performance
evaluation data available, in the form of confusion matrices
[36]. A confusion matrix consists of the elements representing
the proportion of correct and incorrect classification rates. It is
possible to obtain the following conditional probabilities form the
confusion matrix that is associated with a given node: P (Xl

p =

xk|Ilp = xn); where N is the maximum possible value of k
(and n), k = 0, ..., N , n = 0, ..., N , and Ilp is the health state
identification at the node. By utilizing these local conditional
probabilities, one can derive the conditional probabilities that are
necessary to specify P (Xl

p|pa(Xl
p)), and qualify the uncertainty

in our proposed CDM as described in the subsequent paragraphs.

Overview of the Proposed Procedure: In [40], it is argued that
the care with which any given probability distribution needs to
be elicited in a BN model depends strongly on the structure of
the model and the queries that are intended to be processed. Our
proposed procedure for CPT generation focuses on a set of initial
distributions that are easily verifiable by a human expert. The idea
is to construct a set of initial distributions from the information
that is available in the confusion matrices, and provide a flexibility
to a human expert for modifications, if necessary. There may
not be a need for any modification if the expert agrees with
the initial distributions. Therefore, instead of asking an expert to
provide a new distribution, a procedure is developed to construct
distributions that the expert can modify, if necessary, according
to his/her belief. These initial distributions mainly correspond
to non-simultaneous sub-component (parent node) faults within
a component (child node). Another rational for providing the
non-simultaneous sub-component faults significance is due to the
fact that most diagnosis algorithms are designed by incorporating
this assumption. Furthermore, it is reasonable to assume that
the probability of occurring simultaneous n component faults
in a set of components decreases as the number of faults n

increases. Once the initial distributions are determined, remaining
distributions are derived from these initial ones.

Initial Distributions: Consider a generic segment of our pro-
posed model as shown in Figure 2, where the child node Clp
at level l has N parent nodes at level l − 1; i.e., pa(Clp) =

{Cl−1
1 , ..., Cl−1

n , ..., Cl−1
N } and their corresponding number of

health states are (m1+1), ..., (mn+1), ..., (mN+1). Consequently,
the possible health sates of Clp are Xl

p = {x0, ..., xn, ..., xN} and
the possible health sates of the n-th parent node are Xl−1

n = {xi};
i = 0, 1, ...,mn. In other words, the possible number of parent
configurations is

∏N
n=1(mn + 1). Our objective is to determine

a CPT that specifies P (Xl
p|Xl−1

1 , ..., Xl−1
N ). Let Ilp denotes the

Fig. 2. Health states of a child node at level l and its parent nodes at level
l − 1.

output of the health state identification algorithm that is employed
at the node Clp. Hence, the possible outputs of Ilp correspond to
the possible node health states Xl

p; i.e., Ilp = {x0, ..., xn, ..., xN}.
From the confusion matrix it is possible to obtain the following
information: P (Xl

p = xk|Ilp = xn); where, k = 0, ..., N , and
n = 0, ..., N . Similarly, at level l − 1, the information available
at the n-th sub-component of Clp are: P (Xl−1

n = xk|Il−1
p = xi);

where k = 0, 1, ...,mn and i = 0, 1, ...,mn.
In order to determine the

∏N
n=1(mn + 1) belief or probability

distributions P (Xl
p|Xl−1

1 , ..., Xl−1
N ) from the conditional proba-

bilities above, first we focus on the distributions that correspond to
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single (non-simultaneous) component faults at level l− 1 and the
one that corresponds to the healthy states of all the components at
level l−1. Our objective is to determine Nλ+1 initial distributions
over Xl

p, where Nλ =
∑N
j=1mj . Note that these distributions

correspond to the parent configurations which can be verified
relatively easily by a human expert. The Nλ initial distributions
that correspond to the fault occurrences at level l − 1 are in the
following general form:

P (Xl
p|Xl−1

1 = x0, ..., X
l−1
n−1 = x0, X

l−1
n = xi, X

l−1
n+1 = x0,

..., Xl−1
N = x0)

(1)

where n = 1, ..., N and i = 1, ...,mn. The remaining one initial
distribution is as follows:

P (Xl
p|Xl−1

1 = x0, ..., X
l−1
n = x0, ..., X

l−1
N = x0) (2)

Computation of Initial Distributions: First, we note that there
is a systematic pattern by which the health states at level l−1 are
mapped to the health states Xl

p at level l in our proposed CDM
which is as follows:

Observaton 2.1 (Health State Mapping): The health states
Xl
p of a component at level l and its sub-components at level

l − 1 are mapped as follows:
• Xl−1

n = xi; i = 1, ...,mn are mapped to the state Xl
p = xn

for a given component at level l − 1.
• Xl−1

n = x0;n = 1, ..., N (non-faulty states of multiple
components) are mapped to a single state Xl

p = x0.

It is important to note that according to the way node health
states are mapped in our modes, and as stated in Observation 2.1,
Xl
p = x0 is to be considered “true” only when all the parent

nodes are healthy; i.e., Xl−1
n = x0; ∀n. It is now reasonable to

state the following assumption.

Assumption 2.1 (Independent Influences of Parent Nodes):
Faults or faulty states of the components at level l − 1 influence
the component health states at level l independently.

Assumption 2.1 is particularly valid if the target severity range
(refer to the Definition 2.1) is low and the components are
monitored frequently enough so that the occurrences of faults
in one component do not affect the fault identification in other
components [6]. Based on this independence assumption, the
distribution in (1) is approximated as follows

P (Xl
p|Xl−1

1 = x0, ..., X
l−1
n−1 = x0, X

l−1
n = xi, X

l−1
n+1 = x0,

..., Xl−1
N = x0)

≈
(
P (Xl

p = x0|Xl−1
1,...,N = x), P (Xl

p = x1|Xl−1
n = xi),

..., P (Xl
p = xn−1|Xl−1

n = xi), P (Xl
p = xn|Xl−1

n = xi),

P (Xl
p = xn+1|Xl−1

n = xi), ..., P (Xl
p = xN |Xl−1

n = xi)
)

(3)

where the first term is conditioned on the health states of all the
parent sub-components at level l − 1 with x 6= x0 for the n-th
sub-component, and x = x0 otherwise. Since P (Xl

p) = 1, the
distribution in (3) is subjected to the constraint

N∑
j=1

P (Xl
p = xj |Xl−1

n = xi) = 1 (4)

As indicated above, the conditional probabilities that are avail-
able from the confusion matrices at levels l and l− 1 are local to

the nodes at a given level. On the other hand, our problem is to
quantify dependencies between levels l and l − 1. The difficulty
is that due to different sensitivities of the diagnostic signals at the
two levels there is no guarantee that whenever a fault is identified
at level l− 1 at a given instant, its manifestation at level l− 1 is
also identified at that instant as well or vice versa. One way to
determine the dependencies is to conduct extensive experiments
to observe the relative diagnostic performances of the nodes at the
two levels for obtaining each CPT which is quite difficult, if not
impossible. Alternatively, according to the way the health state
mapping is set up in our model it is easy to see that whenever a
faulty state Xl−1

n = xi is identified at level l− 1, the component
Clp becomes faulty (since Cl−1

n is a sub-component of Clp) —
whether the health state of Clp is identified as Xl

p = xn or not.
In the case where the fault is not identified al level l, the fault
is latent in the sub-component Cl−1

n within Clp. Based on the
above observations, one can make approximations that if a state
at level l − 1 is faulty, the state at level l is the corresponding
faulty state as well. Consequently, one can utilize the conditional
probabilities that are available from the confusion matrices at
level l − 1 to specify the distributions in (1) and (2). Therefore,
to practically overcome an unrealistic requirement of conducting
extensive experiments, we propose to quantify dependencies by
introducing the notion of hierarchical health state agreement as
follows:

Definition 2.2 (Hierarchical Health State Agreement):
Given the health state mapping in the Observation 2.1, and
an identified fault that is manifested as Xl

p = xn, (n 6= 0) at
level l and Xl−1

n = xi, (i 6= 0) at level l − 1, the health state
identifications are in agreement if whenever Ilp = xn at level l,
Il−1
n = xi, at level l − 1.

Based on the Definition 2.2, if Ilp and Il−1
n are known to be

in agreement, given Il−1
n = xi, the probabilities of Xl

p and Xl−1
n

are the same. However, it is necessary to specify the “degree
of agreement” to quantify the Definition 2.2 in presence of the
above-mentioned uncertainties. We propose the following policy
to quantify the degree of agreement by a belief adjustment factor
that is denoted by hp,nn,i as follows:

hp,nn,i =

{
al−1
xi /alxn if al−1

xi < alxn
alxn/a

l−1
xi if al−1

xi > alxn
(5)

where alxn is the accuracy with which the health state xn is
identified at level l. The notion of accuracy is computed by
constructing a “one-versus-all” decision matrix (as discussed in
[6]) from the confusion matrix by following the procedure that is
described next.

Let Ccon denote an (N + 1)× (N + 1) confusion matrix that
is associated with N + 1 health states of a node at level l in
which the actual and the identified health states are along the
rows and the columns, respectively. To compute the accuracy in
identifying the n-th state, a 2 × 2 dimensional “one-versus-all”
decision matrix Cn is constructed as follows. Let ci,j denote the
element in the i-th row and the j-th column of Ccon, and c′i,j
denote the element in the i-th row and the j-th column of Cn.
The elements of the Cn matrix are computed from c′2,2 =cn,n,
c′2,1 =(

∑N
k=1 cn,k) − cn,n, c′1,2 =(

∑N
k=1 ck,n) − cn,n, and

c′1,1 =(sum(Ccon)− c′2,2−c′2,1−c′1,1). The accuracy of identify-
ing the n-th state is now defined as alxn = trace(Cn)/sum(Cn).
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Similar procedure is followed to determine al−1
xi . The super-

scripts p, n in hp,nn,i correspond to the p-th component Clp and
its n-th health state. The subscripts n, i correspond to the n-th
sub-component of Clp and its i-th health state. It is important
to note that the belief adjustment factor provides one’s degree
of belief (in terms of probabilities) about the health states that
should be decreased when the level l is changed. Therefore, if
the probability of Xl−1

n is known given certain condition I, to
find the probability of Xl

p given the same condition I, P (Xl−1
n |I)

should be multiplied by the belief adjustment factor. We consider
(1− hp,nn,i ) to be a representative of the degree of disagreement.

It is not unusual that in most cases a diagnosis algorithm
that is employed at a specific module or component meets the
user specified accuracy (say, γspec) in identifying the component
health states by using the test data. For example, in [36], the
acceptance criteria for fault isolation/identification given a detec-
tion is recommended as γ = 0.95 in a major component; i.e.,
the deployed fault identification algorithms should be capable
of identifying 95% of the faults that are detected by the fault
detection mechanism. Consequently, γspec ≤ alxn ≤ 1, γspec ≤
al−1
xi ≤ 1, and it follows that 0 < hp,nn,i ≤ 1; where hp,nn,i = 1

represents the highest degree of hierarchical agreement. Note that
at any two consecutive levels it is possible to have low accuracies
but high belief adjustment factors. Furthermore, it is important to
point out that the above policy is not precise, since as stated
in Observation 2.1 all the faulty health states of the n-th sub-
component at level l−1 are mapped to one health state Xl

p = xn
at level l. Consequently, alxn does not entirely correspond to the
health state Xl−1

n = xi, (i 6= 0). However, it should be clear that
with the accuracy γspec ≤ al−1

xi ≤ 1 in identifying Xl−1
n = xi,

i = 1, ...mn, the policy is expected to be well-behaved. Next,
we determine the probability values that are corresponding to the
approximated distribution in (3) which are categorized into the
following three cases:

Case 1: Computation of P (Xl
p = xk|Xl−1

n = xi) for k = n

This is the probability that the state Xl
p is in its n-th faulty state

given that the fault has been identified in its n-th subcomponent;
i.e., Xl−1

n = xi. Since all faulty states of a particular parent
node are mapped to a single faulty state of the child node (refer
to Observation 2.1), as long as the fault is identified at the n-
th subcomponent (Xl−1

n 6= x0), it is desired that the state at
level l be Xl

p = xn. Therefore, one must take into account both
the correctly classified faults and the misclassified (with other
faults in the subcomponent) faults at level l− 1 while computing
P (Xl

p = xn|Xl−1
n = xi).

The probability P (Xl
p) is conditioned on a faulty state which is

identified by observing the output of Il−1
n . Therefore, assuming a

hierarchical health state agreement (Definition 2.2) with the belief
adjustment factor hp,nn,i , we propose the following:

P (Xl
p = xn|Xl−1

n = xi)

≈ P (Xl
p = xn|Il−1

n = xi)

= hp,nn,i

(
P (Xl−1

n = xi|Il−1
n = xi)

+

mn∑
j 6=i,j=1

P (Xl−1
n = xj |Il−1

n = xi)
) (6)

It may be worthwhile to emphasize that the last term in (6) is
necessary since when a fault is misclassified as another fault (but

not as “healthy”) in a component at level l − 1, the health state
of the child component remains the same (faulty).

Case 2: Computation of P (Xl
p = xk|Xl−1

1,...,N = x) for k = 0

The probability P (Xl
p = x0|Xl−1

n = xi) is the probability that
level l is at a healthy state given that it’s n-th sub-component
at level l − 1 is at a faulty state xi. Since this is a case of
disagreement between the two levels, we use the belief adjustment
factor (1 − hp,nn,i ) in our following computations. Furthermore,
since the state Xl

p = x0 is dependent on all the parent sub-
components (Observation 2.1), we need to take into account the
probabilities that are related to all the sub-components’ healthy
states as follows:

P (Xl
p = x0|Xl−1

1,...,N = x)

≈ P (Xl
p = x0|Il−1

n = xi)

N∏
j 6=n,j=1

P (Xl
p = x0|Il−1

j = x0)

= (1− hp,nn,i )P (Xl−1
n = x0|Il−1

n = xi)

N∏
j 6=n,j=1

hp,0j,0P (Xl−1
j = x0|Il−1

j = x0)

(7)

Case 3: Computation of P (Xl
p = xk|Xl−1

n = xi) for k 6= 0 and
k 6= n

As in Case 2 above, this is a case of disagreement as well.
However, in this case since k 6= 0 and k 6= n, when the level
l is at the state xk there is no dependency that is represented in
our dependency model (Observation 2.1) through which xk can
be related to the health state of the n-th sub-component at level
l− 1. Therefore, the set of probabilities P (Xl

p = xk|Xl−1
n = xi),

k = 1, ..., N (k 6= 0 and k 6= n) represent uncertainties that are
related to un-modeled dependencies. Given that the distribution
in (3) has to satisfy the constraint in (4), we propose to distribute
beliefs equally among the set as follows:

P (Xl
p = xk|Xl−1

n = xi)

=
1

N − 1

(
1− P (Xl

p = xn|Xl−1
n = xi)

− P (Xl
p = x0|Xl−1

1,...,N = x)
) (8)

where k 6= 0 and k 6= n. The procedure for computing P (Xl
p =

xn|Xl−1
n = xi) and P (Xl

p = x0|Xl−1
1,...,N = x) are described in

Case 1 and Case 2, respectively.
Next, in order to determine the distribution in (2) we observe

that Xl
p = x0 only when all the parent sub-components are

healthy. To avoid any ambiguity, we denote the distribution in
(2) by P (Xl

p|Xl−1
1,...,N = x0). By Assumption 2.1, we propose to

compute the distribution as follows:

P (Xl
p = x0|Xl−1

1,...,N = x0)

= 1− P (Xl
p = x̄0|Xl−1

1,...,N = x0)

= 1−
N∏
j=1

(1− hp,0j,0 )P (Xl−1
j = x̄0|Il−1

j = x0)

(9)

where x̄0 corresponds to the set {Xl
p}\x0 or {Xl−1

n }\x0 depend-
ing on the level in the hierarchy. The remaining probabilities in
the distribution in (2), i.e., P (Xl

p = xk|Xl−1
1,...,N = x0) where

k = 1, ..., N , represent un-modeled dependencies since according
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to Observation 2.1, non-faulty states at level l−1 are not mapped
to faulty states at level l. In such a situation, as in Case 3 above,
we propose to distribute beliefs equally among the set as follows:

P (Xl
p = xk|Xl−1

1,...,N = x0)

=
1

N

(
1− P (Xl

p = x0|Xl−1
1,...,N = x0)

) (10)

Computation of Initial Distributions When Nodes Are Not Actively
Monitored: As mentioned in Section II-A, it may be the case that
some nodes in our proposed CDM are not monitored actively.
Consequently, fault diagnosis algorithms are not deployed in those
nodes. However, since our proposed node health state assignments
follow a systematic pattern (refer to Section II-A and Observation
2.1), it is easy to observe that the distributions in (1) or (3) are
expected to be maximum at Xl

p = xn assuming that the accuracy
of the diagnosis algorithm satisfies the user specification γspaec.
Similarly, the distribution in (2) is expected to be maximum at
Xl
p = x0. Therefore, the initial distributions are specified such

that the following conditions are satisfied:

argmaxxn∈XlpP (Xl
p|Xl−1

1,...,N )

=

{
xn for the distributions in (1)
x0 for the distribution in (2)

(11)

In order to satisfy the above conditions, in the case of missing
information first we assume a near-maximum hierarchical agree-
ment and set hp,nn,i (in (6) and (7)), and hp,0j,0 (in (7) and (9)) a
value that is close to 1. Next, we assume “ideal” probabilities
by setting P (Xl−1

n = xi|Il−1
n = xi) = β11 (in (6)), P (Xl−1

n =

x0|Il−1
n = xi) = β01 and P (Xl−1

j = x0|Il−1
j = x0) = β00

(in (7)), and P (Xl−1
j = x̄0|Il−1

j = x0) = (1 − β00) (in (9));
where β11 ≈ γspec, β01 ≈ (1 − γspec), β00 ≈ γspec, and γspec
is the desired (design specification) probability of the correct
health state given an identification in the parent nodes if suitable
diagnosis algorithms were employed.

Finally, in the case of a component Cl−1
p that does not have a

confusion matrix available, but has a similar component Cl−1
q

with the same health states (for example, the reaction wheel
actuators in a three-axis active attitude control subsystem) and
a common child node Clp, the confusion matrix of Cl−1

p may
be considered to be the same as that associated with Cl−1

q in
order to specify the distributions in the CPT at the child node
Clp. For such a set of similar components, it is also possible to
construct a common confusion matrix by including data from the
components.

Computation of the Remaining Distributions: Once the ini-
tial distributions are determined, we propose to compute the
remaining distributions by using a weighted-sum of the initial
distributions, as in (1) and (2), as follows:

P (Xl
p|Xl−1

1,...,N ) =

Nλ+1∑
j=1

wjPj(X
l
p|Xl−1

1,...,N ) (12)

where P (Xl
p|Xl−1

1,...,N ) represents P (Xl
p|Xl−1

1 , Xl−1
2 , ..., Xl−1

N ),
Pj is an initial distribution, wj ∈ W , and W is an (Nλ + 1)
dimensional weight vector that is subjected to the constraint∑Nλ+1
j=1 wj = 1. It is suggested that the human experts are

provided with the initial distributions and are asked to decide
the weights wj based on their judgements. Therefore, given the
initial distributions, our proposed procedure would require that

the number of weight parameters wj grows linearly with the total
number of the parent nodes’ health states.

It is worthwhile to note that as pointed out in [32], it is easy
for the human experts to express their opinions in terms of such
weight assignments. Therefore, eventhough our procedure is sim-
ple, it is consistent with how human experts develop their beliefs
by starting from some “anchor” values and adjusting them to
specify probabilities (adjustment and anchoring heuristics) [41].
Alternatively, one may choose to develop a weight assignment
policy that is based on prior probabilities of the faults in the initial
distributions under consideration. However, in order to minimize
biases towards certain types of faults that are frequently identified,
the policy should include other considerations such as component
operating hours since some faults may develop only toward the
end of life of the component whereas others may develop at the
early stages. Development of such a policy is beyond the scope
of this work and has been left as part of our future work.

C. Evidence Generation

By evidence generation at a node Clp with health states xk ∈
Xl
p, k = 0, 1, ...,K we refer to the construction of a K dimen-

sional vector elp = {x0 = 0, ..., xk = 1, ..., xK = 0} of zeros and
ones that is used to instantiate the node when its health state is
identified as xk by employing a suitable fault diagnosis algorithm.
As mentioned in Section II-B, component/node health states
are identified by employing appropriate/available fault diagnosis
algorithms in our CDM nodes. We obtain fault evidences by
utilizing fuzzy Rule-Based Reasoning (RBR) at various nodes of
our proposed CDM. The methodology for performing fuzzy RBR
at different levels of the hierarchy was presented in our earlier
work [6], [9]. Here we provide an overview of the method for
sake of completeness.

To perform fuzzy RBR, with a given node/component Clp, we
associate diagnostic signals, fault manifestations, and fault signa-
ture models that are denoted by Slp, M l

p, and FSM l
p, respectively.

By utilizing our earlier experiences on both synthetic and actual
telemetry data [22], [26], we extract features from process states
and/or variables and utilize them as diagnostic signals. A fault
manifestation of a specific fault in our work is considered to be
some pre-identified value(s) of a diagnostic signal that indicates
the presence of that fault, and the fault signature is represented
in the form of rule(s) that identifies all the fault manifestations
of interest for that specific fault. A fault signature model of a
component refers to a set of rules that corresponds to all the
faults that are to be identified in that component.

One or more rules are specified for each possible health state
xk ∈ Xl

p of Clp. In the general case, for a given health state xi
and Nd diagnostic signals sln, we synthesize fuzzy rule(s) in the
following form:

If (sl1 ∈M l
1,k) and (sl2 ∈M l

2,k), ..., and (slNd ∈M
l
Nd,k)

then xk

where xk ∈ Xl
p, and M l

n,k ∈ M l
p is a (set of) value(s) of the

n-th diagnostic signal (characterized by the fuzzy membership
function(s)) when the component health state is xk. The health
state with maximum rule activation level is considered as the
identified fault in the node. It is important to note that the fuzzy
rule activation values are not considered as probabilities since they
are fundamentally different from each other. If pa(Clp) = ∅, the
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rules corresponding to the faulty states of Clp identify faults that
originate in Clp with some common and reasonable assumptions
in diagnosis, such as non-simultaneous faults within a time step
over which the health state of Clp is identified and introduced to
our proposed CDM.

On the other hand, if pa(Clp) 6= ∅, the health state of Clp
is identified by the rules that are synthesized based on the
relative behavior specifications of pa(Clp) (sub-components of Clp)
assuming that the interactions of the sub-components are charac-
terized by a leader-follower or master-slave control configuration
and ensuring that the master component is in its healthy state
before determining the rule activation levels of the slave sub-
components. More detail and discussions on the conditions for
fault identifiability are available in [6].

Once the health state xk ∈ Xl
p of Clp is identified by employing

the above procedure (or any other reasoning algorithm that is
employed at Clp) at a given instant, an evidence over the K

possible states of Clp is generated as follows: elp = {x0 =

0, ..., xk = 1, ..., xK = 0}, and is subsequently introduced to the
Clp node of our proposed CDM.

III. FAULT DIAGNOSIS RESULTS FOR SATELLITES

FORMATION FLIGHT CASE STUDY

In this section, we demonstrate the application of the fault
diagnosis methodology that was introduced in the previous section
by utilizing synthetic data. Note that utilization of synthetic
formation flying system data has been necessary due to the
unavailability of actual telemetry data from multi-platform space
missions which are still mostly in the planning and design stages.
We first provide a brief description of our data generation model
before presenting the fault diagnosis results.

In a leader-follower formation flight, since the leader acts as
a reference point, and the formation flying mission is subjected
to a single-point failure of the leader satellite, we propose to
reduce the health management workload for only the follower
satellites by utilizing our proposed solution. In other words, it is
assumed that the leader satellite is healthy as far as our analysis is
concerned. This can be ensured if we assume that the components
of the leader satellite are monitored and diagnosed frequent
enough to ensure that the leader is fault free before carrying out
the monitoring and diagnosis of the follower satellites.

A. Formation Flying Mission and System Description

For synthetic fault data generation, first we have implemented
and simulated high fidelity attitude control subsystem (ACS)
and electrical power subsystem (EPS) models of a planetary
environment orbit (PEO) formation flying system with 5 identical
small satellites (150 kg) in a leader-follower (LF) configuration
as shown in Figure 3. An arrow from Sat-j to Sat-i indicates
that attitude measurements of Sat-i are available with respect
to Sat-j. A Sun-synchronous Lower Earth Orbit (LEO) with
550 km altitude (orbital period: 95 min (approximately)) was
selected as the leader’s Keplerian orbit. Followers are assumed
to follow fuel-optimal trajectories around the leader [42], [43].
In the subsequent paragraphs we briefly introduce and describe
the two subsystems that are used for generating the synthetic data
for demonstrating and illustrating our fault diagnosis approach. A
detailed description of the system under consideration is available
in our earlier work [9].

Fig. 3. Formation flight of five satellites.

(a) Functional diagram of the ACS.

(b) A simplified schematic of a RW (adopted from [46]).

Fig. 4. Functional diagram of the ACS and a simplified schematic diagram
of its reaction wheel (RW) component.

Attitude Control Subsystem: The main purpose of an attitude
control subsystem (ACS) is to orientate the main structure/body
of a satellite at desired angle(s) within required accuracy that
is set by the payload, communication devices, etc. mounted on
the main structure of the satellite. Attitude of a satellite can
be represented in different ways with sets of variables such as
Euler angles, direction cosine matrix (DCM), Euler parameters
(also known as quaternion), etc. To avoid the well-known short-
coming of the Euler angles for large rotations, in this work we
have utilized quaternion representation [44], [45] to implement
the attitude dynamics of each satellite. However, for diagnosis
purposes, it is convenient to work with Euler angles as they
provide easy visualization of the rotations and orientation of the
satellite. Hence, the ground support personnel responsible for
fault diagnosis are more comfortable dealing with Euler angles.
We assume a fixed formation configuration; i.e., the followers
are required to maintain the same attitude as that of the leader
relative to the inertial frame. The functional diagram of the
implemented model of the ACS for an individual satellite is shown
in Figure 4(a), in which the “ACP” consists of the PID controllers
corresponding to the three axes of the satellite’s body frame and
the “Reaction Wheel Assembly” consists of the corresponding
set of three actuators that are used for maintaining the required
attitude of the “Satellite Body”. For synthetic data generation, we
have also incorporated a high fidelity mathematical model of the
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Fig. 5. Functional diagram of the electrical power subsystem (EPS) (adopted
from [47], [48]) depicting the locations of fault injections under the assumed
EPS fault scenarios.

Ithaco Type-A reaction wheel (RW) that is available in [46] and
is shown in Figure 4(b). Worst-case environmental disturbances
such as the magnetic torque, gravity-gradient torque, atmospheric
drag, and solar radiation pressure corresponding to the selected
orbit have been applied to the attitude dynamics model. Finally,
ideal attitude sensors (operate without any transients, error or time
delay) have been assumed.

Electrical Power Subsystem: We have incorporated a simplified
satellite electrical power subsystem (EPS) model with our ACS
model for each satellite. The EPS model [47], is modified which
is available in [48] and is developed in the virtual test bed (VTB)
environment [47], [49], to incorporate fault injection capabilities
and to ensure the supply of the desired bus voltage to the ACS
reaction wheels. A functional diagram of the EPS model of an
individual satellite is shown in Figure 5, which consists of a solar
array illumination model, solar array model, the controller or
simplified power distribution and control unit (PDCU), a battery
model, and a voltage regulator that delivers regulated bus voltage
to the load; i.e., in our case, the reaction wheels.

It is important to note that the interaction between the ACS
and the EPS is of the master-slave type in the sense that any fault
in the EPS may manifest in the ACS but the converse is not true.
Such simulation setup is justified by the fact that the target ACS
fault severities do not lead to excessively large deviations in the
satellite attitude that may significantly affect the Sun pointing of
the solar arrays, and hence the performance of the EPS.

Fault Models (refer to Figure 6): Within the ACS, two types
of intermittent faults are considered and are injected at the
subsystem component (reaction wheel) level, namely (a) friction
fault (increase in the viscous friction), and (b) reaction wheel
motor current fault (decrease in the motor gain). Within the EPS,
two types of faults are considered at the subsystem level, namely
(a) intermittent bus voltage drop due to the voltage regulator
malfunctioning, and (b) intermittent bus voltage drop due to the
anomaly in the battery.

Each fault is injected with 3 (three) severity levels, that is
gradually increasing from the lowest to the maximum severity
and then gradually decreasing before a complete fault removal.
Note that the faults considered are intermittent and non-abrupt
in nature. Although, we are considering component level faults
within the ACS, the faults corresponding to the EPS are consid-
ered at the subsystem level due to the lack of detailed models of
the EPS components within the EPS. Consequently, the EPS fault
diagnosis is performed only up to the subsystem level.

B. Implementation of Our Proposed Model and Fault Diagnosis
Results

We have implemented a 4-level Bayesian network-based Com-
ponent Dependency Model (CDM) for the formation flight of 5

satellites that was described earlier (refer to Figure 3). Towards
this end, we have used the open source BN tool that is available
from [50]. We have used the well-known recursive conditioning
algorithm [8] for belief propagation and updating. Figure 6
shows the implemented CDM where “Sat-1” ... “Sat-5” represent
the five satellites in the formation, and “RW-X”, “RW-Y”, and
“RW-Z” represent the reaction wheels (RW) in the X, Y , and
Z directions, respectively. First, we assign the states of the
components Clp with pa(Clp) = ∅ by following the procedure
that was described in Section II. Each of the 15 RWs, denoted as
C1
i ; where i = 1, ..., 15 at level 1 (identified as the “subsystem

component level”) is assigned the following 3 health states: X1
i =

{Healthy, frictionfault, currentfault} (the fault models were
discussed above). Each of the 5 electrical power subsystem (EPS)
nodes, denoted as C2

i ; where i = 2, 4, 6, 8, 10 at level 2 (identified
as the “subsystem level”) is assigned the following 3 health
states: X2

i = {Healthy, regulatorfault, batteryfault} (the fault
models were discussed above). We assume that at the beginning
of the formation operation, the system is healthy and assign prior
probabilities X1

i = {0.9, 0.05, 0.05}; where i = 1, ..., 15, and
X2
i = {0.9, 0.05, 0.05}; where i = 2, 4, 6, 8, 10, that represent

the above assumption.
We assign the states of the components with pa(Clp) 6= ∅ by fol-

lowing the procedure that was specified in Section II. Each of the
5 attitude control subsystems (ACS) nodes, denoted as C2

i ; where
i = 1, 3, 5, 7, 9 at level 2 is assigned the following 4 health states:
X2
i = {Healthy,RW.Xfault, RW.Y fault, RW.Zfault}. Each

of the system level (level 3) nodes or satellites is assigned
the following 3 health states: X3

i = {Healthy, ACSfault,
EPSfault}. In the case of the formation component (C4

1 ), note
that |pa(C4

1 )| = 5 and each parent has 3 states which would lead
to a large (35) number of parent configurations. Consequently,
first we have implemented 5 intermediate nodes between the
levels 3 and 4 (not shown in Figure 6 to avoid confusions)
which we denote as “C4

1 , C
3
i ”; where i = 1, ..., 5. We assign

to each of the “C4
1 , C

3
i ” nodes 2 states {Healthy, Sat.ifault}.

Finally, we assign to the formation component (C4
1 ) 3 health

states: X4
1 = {Healthy, Leaderfault, followerFault}. Since

the health states of the nodes “C4
1 , C

3
i ” and C4

1 are binary, we
have implemented a noisy-OR model (as mentioned in Section II)
above level 3. In the nodes with pa(Clp) 6= ∅, we specify CPTs
by following our proposed procedure in Section II.

In the subsequent discussion, we demonstrate how the CPTs in
the ACS nodes in Figure 6 are specified by using our proposed
procedure. Since we are considering identical satellites, we con-
structed a single confusion matrix for the 15 RWs (C1

1 , ..., C
1
15).

Therefore, in this case, the CPTs that are specified in each of the 5

ACS nodes C2
i (i = 1, 3, 5, 7, 9) are the same. For demonstration

purposes and without loss of generality, we consider the ACS of
only Sat-1, i.e., the node C2

1 in the subsequent discussion.

Specification of the CPTs: To specify the CPT node C2
1 , first note

that the parent nodes are three RWs; i.e., pa(C2
1 ) = {C1

1 , C
1
2 , C

1
3}.

Therefore, the number of parent nodes is N = 3. Consequently,
the possible number of health states of C2

1 is N + 1 = 4,
which are given by X2

1 = {x0, x1, x2, x3} = {Healthy, C1
1fault,
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Fig. 6. A 4-level Bayesian network-based component dependency model (CDM) for hierarchical fault diagnosis.

C1
2fault, C

1
3fault}. The possible number of the health states of

the parent nodes are (m1 + 1) = (m2 + 1) = (m3 + 1) = 3.
The possible states of each of the parent nodes, as mentioned
above, are X1

i = {x0, x1, x2} = {H, ff , fc}; where i = 1, 2, 3,
H represents “Healthy”, ff represents a “friction fault”, and fc
represents a “current fault”. The total number of distributions that
are required to be specified is

∏N
n=1(mn+1) = 27. Now, we need

to identify the Nλ + 1 initial distributions over X2
1 , where Nλ =∑N

j=1mj = 6. The Nλ + 1 = 7 initial distributions over X2
1 are

given as follows:
(a) P (X2

1 |X1
1 = x0, X

1
2 = x0, X

1
3 = x0)

(b) P (X2
1 |X1

1 = x1, X
1
2 = x0, X

1
3 = x0)

(c) P (X2
1 |X1

1 = x2, X
1
2 = x0, X

1
3 = x0)

(d) P (X2
1 |X1

1 = x0, X
1
2 = x1, X

1
3 = x0)

(e) P (X2
1 |X1

1 = x0, X
1
2 = x2, X

1
3 = x0)

(f ) P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x1)

(g) P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x2)

Note that the initial distribution (a) above corresponds to equa-
tion (2) and the remaining distributions correspond to equation
(1). To specify the distribution (a) above, we need to compute
the following conditional probabilities: (a.1) P (X2

1 = x0|X1
1 =

x0, X
1
2 = x0, X

1
3 = x0), (a.2) P (X2

1 = x1|X1
1 = x0, X

1
2 =

x0, X
1
3 = x0), (a.3) P (X2

1 = x2|X1
1 = x0, X

1
2 = x0, X

1
3 = x0),

and (a.4) P (X2
1 = x3|X1

1 = x0, X
1
2 = x0, X

1
3 = x0).

Note that we have employed fuzzy rule-based component
fault diagnosis (refer to Section II-C) in the following nodes
of Figure 6 that is the 15 RWs (C1

1 , ..., C
1
15), the five EPSs

(C2
2 , C

2
4 , C

2
6 , C

2
8 , C

2
10), and the formation component (C4

1 ). For
computing the conditional probability (a.1), we refer to equation
(9). Since the confusion matrices that are associated with the three
parent nodes C1

1 , C1
2 , and C1

3 are the same, the corresponding
belief adjustments factor are the same. In addition, since we do not
have any diagnosis algorithm deployed in C2

1 , the information (the
values a2

xn ;n = 0, 1, 2, 3; refer to the policy that is related to the
belief adjustment factor as mentioned in Section II-B) necessary
to determine the belief adjustment factor is not available. How-
ever, in this case, we have a1

xi ; i = 0, 1, 2. We assume a2
xn = 0.95;

for n = 0, 1, 2, 3 (close to 1 as mentioned in Section II-B),
and from the “one-versus-all” decision matrices (as described
in Section II-B) that are obtained from the confusion matrices
(associated with the employed rule based reasoning at nodes C1

1 ,
C1

2 , and C1
3 , and not shown here due to space limitations), we

have, a1
x0 = 0.937, a1

x1 = 0.893, and a1
x2 = 0.941. Consequently,

we have h1,0
1,0 = h1,0

2,0 = h1,0
3,0 = 0.937/0.95 = 0.986, h1,1

1,1 =

h1,2
2,1 = h1,3

3,1 = 0.893/0.95 = 0.940, and h1,1
1,2 = h1,2

2,2 =

h1,3
3,2 = 0.941/0.95 = 0.991. Since all the parent nodes are

associated with the same confusion matrix, as indicated earlier
from the confusion matrix we obtain, P (X1

1 = x̄0|I11 = x0) =

P (X1
2 = x̄0|I12 = x0) = P (X1

3 = x̄0|I13 = x0) = 0.071.
With these values, the conditional probability (a.1) is computed
as follows: P (X2

1 = x0|X1
1 = x0, X

1
2 = x0, X

1
3 = x0) =

1− {(1− h1,0
1,0)P (X1

1 = x̄0|I11 = x0) (1− h1,0
2,0)P (X1

2 = x̄0|I12 =

x0) (1− h1,0
3,0)P (X1

3 = x̄0|I13 = x0)} = 0.999.
For computing the conditional probabilities (a.2), (a.3), and

(a.4) we refer to equation (10) and compute the following
probabilities: P (X2

1 = xi|X1
1 = x0, X

1
2 = x0, X

1
3 = x0) =

(1/N)
(
1−P (X2

1 = x0|X1
1 = x0, X

1
2 = x0, X

1
3 = x0)

)
= 0.0003.

Therefore, the initial distribution (a) is computed as P (X2
1 |X1

1 =

x0, X
1
2 = x0, X

1
3 = x0) = (0.999, 0.0003, 0.0003, 0.0003). Next,

to specify the distribution (b), we need to compute the following
probabilities: (b.1) P (X2

1 = x0|X1
1 = x1, X

1
2 = x0, X

1
3 = x0),

(b.2) P (X2
1 = x1|X1

1 = x1, X
1
2 = x0, X

1
3 = x0), (b.3) P (X2

1 =

x2|X1
1 = x1, X

1
2 = x0, X

1
3 = x0), and (b.4) P (X2

1 = x3|X1
1 =

x1, X
1
2 = x0, X

1
3 = x0).

For computing the conditional probability (b.2), we refer to
equation (6). The value P (X1

1 = x1|I11 = x1) = 0.644 is
obtained from the confusion matrix. Using the value of the belief
adjustment factor that was computed earlier as h1,1

1,1 = 0.940, the
conditional probability is obtained as follows: P (X2

1 = x1|X1
1 =

x1) = h1,1
1,1

(
P (X1

1 = x1|I11 = x1) + P (X1
1 = x2|I11 = x1)

)
= 0.877.

For computing (b.1), we refer to equation (7) and use the con-
ditional probabilities that are available from the confusion matrix
according to the following computations: P (X2

1 = x0|X1
1 =

x1) = P (X2
1 = x0|I11 = x1)

∏3
j=2 P (X2

1 = x0|I1j = x0)

= (1 − h1,1
1,1)P (X1

1 = x0|I11 = x1)h1,0
2,0P (X1

2 = x0|I12 = x0)

h1,0
3,0P (X1

3 = x0|I13 = x0) = 0.003.
For computing (b.3) and (b.4), we refer to equation (8) and com-

pute the conditional probabilities as follows: P (X2
1 = xk|X1

1 =

x1) = (N − 1)
(
1− P (X2

1 = x1|X1
1 = x1)− P (X2

1 = x0|X1
1 =

x1)
)

= 0.060.
Therefore, the initial distribution (b) is obtained as P (X2

1 |X1
1 =

x1, X
1
2 = x0, X

1
3 = x0) = (0.003, 0.877, 0.060, 0.060). By

following the same procedure, the initial distribution (c) is
computed as P (X2

1 |X1
1 = x2, X

1
2 = x0, X

1
3 = x0) =

(0.000, 0.991, 0.0045, 0.0045). Now, since we have a single con-
fusion matrix for all the three parent nodes, in this particular
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case, the remaining initial distributions, i.e., (d), (e), (f ), and
(g) are obtained as P (X2

1 |X1
1 = x0, X

1
2 = x1, X

1
3 = x0)

= (0.003, 0.060, 0.877, 0.060), P (X2
1 |X1

1 = x0, X
1
2 = x2, X

1
3 =

x0) = (0.000, 0.0045, 0.991, 0.0045), P (X2
1 |X1

1 = x0, X
1
2 =

x0, X
1
3 = x1) = (0.003, 0.060, 0.060, 0.877), and P (X2

1 |X1
1 =

x0, X
1
2 = x0, X

1
3 = x2) = (0.000, 0.0045, 0.0045, 0.991), respec-

tively.
The remaining distributions in the CPTs are generated by using

equation (12). As an example, the distribution associated with two
different faults (a “friction fault” in the RW-1 and a “current fault”
in the RW-3) is computed by assigning weights (this should be as-
signed by the human expert) as P (X2

1 |X1
1 = x1, X

1
2 = x0, X

1
3 =

x2) = w2(b) + w7(g) = (0.0015, 0.4407, 0.0323, 0.5255); where
w2 = 0.5 and w7 = 0.5 (the two faults are believed to be
eually possible), and the remaining weights are set to zero.
The computation of the distribution (g) and that of the other
distributions are quite similar and are not shown here due to space
limitations.

Node Health State Identification and Evidence Generation: In
order to generate the health state evidences that are to be
introduced at different nodes of our CDM, we have performed a
fuzzy rule-based component fault diagnosis (refer to Section II-C)
for the following components of Figure 6. Specifically, we have
the 15 RWs (C1

1 , ..., C
1
15), the five EPSs (C2

2 , C
2
4 , C

2
6 , C

2
8 , C

2
10),

and the formation component (C4
1 ).

For the health state identification of the RWs (C1
1 , ..., C

1
15), we

have obtained the diagnostic signals by extracting features from
the following reaction wheel (RW) measurements, namely (a)
motor current, (b) torque command voltage, and (c) wheel speed.
Based on our earlier experience with an actual attitude control
subsystem telemetry data [22], we have extracted simple features
that include (over an invocation window of 512 seconds; that is
approximately 11 invokes per orbit) mean, standard deviation,
minimum value, peak value, energy, and the first 5 components
of the Fast Fourier Transform (FFT) energy spectrum. The rules
corresponding to the healthy RW condition as well as to the two
faults under consideration are determined (the general form of
the rules is given in equation (13) and the details are available in
[6] and are not discussed here), and the rule activations in each
invocation are computed.

Similarly, to identify the health states of the EPSs (C2
2 , C

2
4 , C

2
6 ,

C2
8 , C

2
10), we have obtained the diagnostic signals by extracting

features from the following EPS measurements, namely (a) bus
voltage, (b) regulator output current, and (c) battery current.
We have extracted simple features that include (over the above-
mentioned invocation window of 512 seconds) mean, standard
deviation, minimum value, and the one component of the Fast
Fourier Transform (FFT) energy spectrum. Rules corresponding
to the healthy EPS condition as well as to the two faults under
consideration are determined by utilizing the above features. For
the health state identification of the formation (C4

1 ), mean of
the relative attitude measurements over an invocation window is
utilized as a diagnostic signal. As in the case of RWs, the rule
activations in each invocation are computed for EPSs and for the
formation level. Note that the health state evidences corresponding
to the formation node are introduced at the intermediate nodes
(as indicated earlier). Here, as an example, for fault diagnosis of
the formation component (C4

1 ), we depict the Sat-3 rule activation
when the above-mentioned friction fault was injected in the Z-axis
reaction wheel (subsystem component level) between t = 7500

sec and t = 9480 sec. Figure 7 shows the rule activations

Fig. 7. Sat-3 rule activations (the width of each bar-graph is 512 seconds).

in the intermediate node “C4
1 , C

3
3” (as explained earlier) where

µ(C4
1 , C

3
3 ) and µ(H) represent the rule activations corresponding

to a faulty and a healthy condition of Sat-3, respectively. Given
the rule activations as shown in Figure 7, an evidence e = {0, 1}
(which is introduced in the intermediate node as described above)
is generated whenever the rule activation µ(C4

1 , C
3
3 ) > µ(H) is

satisfied.

Hierarchical Diagnosis: We have introduced fault evidences at
different levels to our CDM, and have propagated evidences and
updated belief distributions of the CDM nodes by using the well-
known recursive conditioning algorithm [8]. In most cases, the
computed distributions clearly justified the existence of faults. For
example, the fault evidence e1

9 = {0, 1, 0} (friction fault at Sat-3
RW-Z) is introduced, the probability distributions over the health
states of Sat-3 under the fault free condition as well as under the
injected friction fault at Sat-3 RW-Z are shown in Figure 8. The
distributions clearly justify the existence of a fault in the ACS.

The distributions corresponding to the other fault scenarios
are not graphically presented here due to space limitations.
Instead, the accuracy of the hierarchical fault diagnosis results
are summarized under various scenarios in the next section.

IV. PERFORMANCE EVALUATION AND VALIDATION

In the subsequent paragraphs, we evaluate the performance,
identify advantages and limitations, and describe possible valida-
tion methods of our proposed method.

(a) Before the presence of the fault.

(b) During the presence of the fault.

Fig. 8. P(X3
3 ) of Sat-3 when an evidence of a fault is introduced at the

subsystem component level.
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Model Accuracy: We evaluate the performance of our proposed
CDM by using a set of fault scenarios under which the actual
health states of all the nodes in the CDM are known. The
accuracy is computed in terms of the % of nodes in the CDM
that are “representative” of their true known health states. The
representativeness is determined as follows: let a fault evidence
el1p1 be introduced at node Cl1p1 and the known actual health state
of a component Cl2p2 be x∗ ∈ Xl2

p2 . Furthermore, let π(Cl1p1) and
σ(Cl1p1) be the sets of predecessors and successors of node Cl1p1 ,
respectively in the CDM. We consider the health state of Cl2p2 to
be representative of its true health state x∗ when the following
specifications or conditions hold:

1) Let Cl2p2 ∈ σ(Cl1p1), then belief about Xl2
p2 = x∗ increases

with the introduction of the evidence; i.e., P (Xl2
p2 =

x∗|el1p1) > P (Xl2
p2 = x∗|∅).

2) Let Cl2p2 ∈ π(Cl1p1) and the actual known state be faulty
(x∗ 6= x0), then belief about Xl2

p2 = x∗ increases with the
introduction of the evidence, and the belief is higher than
(or, at least equal to) that of other fault states at level l2;
i.e., P (Xl2

p2 = x∗|el1p1) > P (Xl2
p2 = x∗|∅) and P (Xl2

p2 =

x∗|el1p1) ≥ P (Xl2
p = xj |el1p1); where xj 6= x0, xj 6= x∗ and

p represents the component at level l2 at which no evidence
has been introduced.

3) Let Cl2p2 ∈ π(Cl1p1) and the actual known state be healthy
(x∗ = x0), then the belief about the faults in Cl2p2 are lower
than that in the faulty components at level l2; i.e., P (Xl2

p2 =

x|el1p1) < P (Xl2
p = xj |el1p1); where x ∈ {Xl2

p2\x
∗}, xj 6= x0

and p represents the faulty component, if any, at level l2 at
which no evidence has been introduced.
If there is no known faulty component at level l2 (fault
originated at Cl3p3 , l1 < l3 < l2), then the belief distribution
over Xl2

p2 is maximum at x∗ and P (Xl2
p2 = x|el1p1) <

P (Xl3
p3 = xj |el1p1); where x ∈ {Xl2

p2\x
∗} and xj 6= x0.

4) Let Cl2p2 /∈ {π(Cl1p1 ∪ σ(Cl1p1)}, then the belief distribution
over Xl2

p2 remains unchanged with the introduction of the
evidence; i.e., P (Xl2

p2 |e
l1
p1) = P (Xl2

p2 |∅).

Table I shows the computed accuracy under various scenarios
with single as well as multiple fault evidences that are introduced
in the follower satellites in the CDM as shown in Figure 6.
By “conflicting” evidence in Table I we imply that for the two
evidences that are available in two nodes connected through a
directed path, one evidence indicates a healthy state while the
other indicates a faulty state. Such a scenario is possible when,
for example, a fault evidence in a node at the high level is obtained
but at the low level the fault is not identified or vice-versa. Note
that although the scenarios are not the only possible cases, they
represent some of the most common cases that may occur in
practice. The average accuracy is computed over all the scenarios
under consideration. Row 1 represents scenarios where a single
fault evidence is introduced at a given node and the accuracy
is computed for each scenario (by using the conditions above).
It is observed that when one additional evidence is introduced
(refer to row 2), the average accuracy increases. However, if
the additional evidence is conflicting and the mis-identification
is at the low level, the average accuracy decreases (refer to
row 3). Furthermore, if the additional evidence is conflicting but
the mis-identification is at the high level, the accuracies remain
unchanged (refer to row 4). Finally, the last row shows accuracies
for two simultaneous faults in two different follower satellites

where the scenarios consist of both conflicting and non-conflicting
evidences.

As in any large Bayesian network model, building a BN-
based hierarchical fault diagnosis model as proposed in this paper
involves a careful trade-off between a rich hand-crafted model
versus generic dependency model. The design considerations to
take into account are model parameters and result accuracies, the
cost of construction (including the demand for human experts’
time), maintenance (including the cost of model updating), and
the complexity of the probabilistic inference. Consequently, in
practice, building such a model requires multiple iterations over
these tasks until a satisfactory model and solution is achieved.
Below, we provide a brief discussion on some important aspects
of our proposed methodology.

Advantages and Comparisons: First it should be noted that our
proposed component dependency model (CDM) is a generic
model that can be used to decompose a complex system hi-
erarchically in order to perform coherent fault diagnosis. The
model is generic in the sense that (a) the health states of a given
component is not defined subjectively, rather they are identified
by the known dominant fault modes of the component, and (b)
our proposed method does not impose any restrictions on the
type of diagnosis algorithms that one may employ at a given
node of the model as long as its performance evaluation matrix is
available. Furthermore, our proposed method for obtaining model
parameters overcomes the limitations of the other probability
elicitation methods [30]–[32] as discussed in Section II-B.

Second, our proposed approach requires less demand on do-
main experts’ time for obtaining the model parameters, which is
known to be a costly commodity. Instead of entirely depending on
interviewing domain experts, the initial distributions are obtained
from node fault diagnosis performance data and known health
state dependencies. This minimizes the well-known limitations
of eliciting probabilities exhaustively with domain experts.

Third, our model parameters are easy to update when node
performance matrix changes due to the availability of new data
and improved versions of the node fault diagnosis algorithm. In
this case, the initial distributions can be re-computed by following
our proposed well-defined procedure (this avoids the repetition
of the time consuming interview of domain experts), and the
weights, if necessary, may be updated.

Finally, for formation flight fault diagnosis, our proposed CDM
enables one to hierarchically decompose a complex system in
order to use the data that are available from different system
components systematically, and to perform diagnostic reasoning
coherently. By propagating fault evidences from a node in the
CDM, one is able to update the probable health state of the other
nodes, and perform in-depth investigation of the nodes of interest
only (based on the updated health states). This avoids exhaustive
plotting and trend analysis across a large number of components
manually which requires extensive effort by human operators.
Therefore, our approach has the potential for reducing the size
of the operations team. Furthermore, since the performance eval-
uation matrix data represents an expert human’s observations to a
great extent, and the method obtains model parameters by utilizing
such matrices, less-experienced personnel will be benefited while
performing monitoring and diagnosis tasks at ground stations by
utilizing our proposed model.

Note that there will always be a trade-off between a
rich/detailed hand-crafted model versus a generic dependency
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TABLE I
PERFORMANCE EVALUATION OF THE IMPLEMENTED CDM

Number of Number of Maximum Accuracy Minimum Accuracy Average Accuracy Comments

Evidences Scenarios (in % Nodes) (in % Nodes) (in % Nodes)

Single Fault in a Follower Satellite
1 16 100% 83.33% 97.91% None

2 20 100% 100% 100% Evidences introduced

at different levels

2 8 91.67% 86.11% 90.28% Conflicting evidence

at levels 1 or 2

2 8 100% 100% 100% Conflicting evidence

at formation level

Two Simultaneous Faults in Two Follower Satellites
2, 3, 4 72 100% 77.78% 90.43% Different evidence types

and combinations

model. It is clear from the above discussion that our proposed
model will reduce the cost of model construction (the demand
for human experts’ time) and maintenance (the cost of model
updating).

The framework of the proposed hierarchical fault diagnosis
approach was first introduced briefly in our earlier work in
[5]. However, that work did not discuss component dependency
models. Later on a hierarchical fault diagnosis approach similar
to the current work was developed in [6], where it was possible
to specify the dependencies only with absolute certainty by using
ones and zeros to indicate connectivity/dependency as opposed
to using BN-based models and CPTs. Consequently, if a fault
evidence is found at a given node, fuzzy rule activations had
to be computed at all the parent nodes, and it was not possible
to propagate beliefs to update and estimate health states without
computing the rule activations. Given the fault evidence(s) and
updated belief distributions, in our present work we compute
the rule activations at only those nodes that have high fault
probabilities to confirm the identification of a fault. The work
in [6] does not propose any Bayesian network-based model
for hierarchical fault diagnosis. Our work in [9] presents the
idea of our proposed CDM but does not provide any detail
on the computations of the model parameters. Our work in
[10] presents the computations of CPTs which are explained in
detail in the current paper along with the detailed explanation of
our proposed approach, a clear and revised presentation of the
proposed framework, and a detailed description of the formation
flight system under consideration. Finally, performance evaluation
results associated with our proposed CDM have been included
in the current paper, and a possible validation method was also
discussed.

Limitations: The main limitation of our proposed method is that
the faults that originate in a component at a particular level
are implicitly assumed to be non-interfering with the diagnostic
signals of other components (that have a common child node)
at the same level. This assumption is reasonable when the fault
diagnosis algorithms that are deployed in those nodes are designed
to identify faults with a severity range that is low enough not to
affect the performances of the other nodes in the same level.
Consequently, their influences on the child nodes are to be
considered as independent. Note that this limitation arises from
the type of information that is made available to our model

development. Specifically, according to our problem in hand, the
node fault diagnosis algorithms are developed in isolation, and
are often proprietary to the development teams. Nevertheless, one
should investigate the validity of the independence assumptions
by using design information and experimental data as reported in
our earlier work [9].

Validation Methods: One way to validate our proposed model
would be to compare the initial distributions (and hence the
CPTs) that are specified by using our proposed procedure with
those that are obtained by using the expert beliefs or another
method, if available. As an alternative, we have been investigating
well-known formal Verification and Validation (V&V) techniques
for Bayesian networks such as sensitivity analysis [37], [51] to
validate our proposed model. Biases that are introduced by the
prior probabilities and the inaccuracies in conditional probabilities
influence the reliability of a BN model’s output. Sensitivity anal-
ysis is a technique for systematic investigation of the influences
of the model input and parameters on its outputs (which may
result due to the changes in accuracies in a node diagnosis and
leading to a change in the corresponding confusion matrix). Since
a brute-force method which involves the variation of every single
conditional probability, for performing sensitivity analysis is both
highly time-consuming and computationally an intensive process,
our ongoing research is focused on the development of a formal
validation procedure for our proposed model. However, this
problem is beyond the scope of this paper and is not investigated
any further.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a hierarchical fault diag-
nosis methodology which allows systematic and coherent fault
diagnosis in different components or subsystems of a complex
formation flight of satellites. The general idea is to decompose
a complex system hierarchically into simpler modules or nodes,
and perform diagnostic reasoning hierarchically by utilizing the
fault diagnosis algorithms that are deployed at different nodes and
which are connected via our proposed Bayesian network-based
Component Dependency Model (CDM). The model structure was
developed from the knowledge of the component health state
dependencies. A methodology for determining model parameters
was developed which demands considerably less effort from the
domain experts, and easy to update when node fault diagnosis
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performances change. To determine the probability distributions
that are required and that need to be specified in the Conditional
Probability Tables (CPT), our proposed method obtains certain
initial probability distributions from the node fault diagnosis per-
formance matrices. Subsequently, by taking the domain experts’
opinion into account, the remaining probability distributions are
specified.

We have demonstrated the effectiveness of our proposed
methodology by using synthetic data of a leader-follower for-
mation flight of satellites. The data generation model consists of
two subsystems, namely the attitude control subsystem and the
electrical power subsystem for each satellite in the formation.
We have implemented our proposed CDM by decomposing the
formation flying system hierarchically into 4 levels. We have
introduced the evidences that are generated via fuzzy rule-based
reasoning of faults at different levels in the hierarchy. Our results
show that when fault evidences are introduced at a node, the states
of the remaining nodes of the implemented CDM are updated to
reflect the correct health states of the corresponding components.

As part of our ongoing as well as future work, we plan to
investigate the validation of our proposed model as well as to
conduct cost-benefit analysis in a practical environment with
real system data. Extension of the proposed CDM to a dynamic
Bayesian network-based CDM will also be an interesting research
problem that may be pursued.
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