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Abstract—This paper is concerned with development of novel
fault detection and isolation (FDI) strategies for the Markovian
jump linear systems (MJLS’s) and the MJLS’s with time-
delays (MJLSD’s). First a geometric property that is related
to the unobservable subspace of MJLS’s is presented. The
notion of a finite unobservable subspace is then introduced
for the MJLSD’s. The concept of unobservability subspace is
introduced for both the MJLS’s and the MJLSD’s and an
algorithm for its construction is described. The necessary and
sufficient conditions for solvability of the fundamental problem
of residual generation (FPRG) for the MJLS’s are developed by
utilizing our introduced unobservability subspace. Furthermore,
sufficient solvability conditions of the FPRG for the MJLSD’s are
also derived. Finally, sufficient conditions for designing an H .-
based FDI algorithm for the MJLS’s with an unknown transition
matrix that are also subject to input and output disturbances are
developed.
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[. INTRODUCTION

In the past three decades various model-based approaches
for fault detection and isolation (FDI) of linear systems have
been developed in the literature [1]-[4]. One way of enhancing
the performance of FDI algorithms involves generating resid-
uals that in response to a particular fault only a fault-specific
subset of residuals becomes nonzero. This is designated as
the structured residual set [5]. In this paper, we develop a
geometric framework for design of structured residual set for
Markovian jump linear systems (MJLS’s) and MJLS’s with
time-delays (MJLSD’s).

A great deal of attention has recently been devoted to
MILS’s [6]-[9] which comprise an important class of hybrid
systems. This family of systems is generally modeled by a
set of linear systems with transitions between models that
are determined by a Markov chain taking values in a finite
set. Markovian jump systems are popular in modeling many
practical systems where one may experience abrupt changes in
the system structure and parameters. These changes are quite
common and do frequently occur in manufacturing systems,
power systems, etc. Recently, MJLS’s have also gained interest
for their capability in modeling behaviors and phenomenon in
networks that are manifested among sensors, actuators and
processors [10], [11]. Furthermore, the study of MJLSD’s has
received considerable interest during the past few years [12]—
[14].
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In recent years, only a few work on FDI of MJLS’s have
appeared in the literature. In [15]-[18], a robust fault detection
(and not an isolation) filter for MJLS’s is developed based on
an H, filtering framework, in which the residual generator
is also an MJLS. A linear matrix inequality (LMI) approach
is developed for solving the problem. In [19], a robust fault
identification filter for a class of discrete-time MJLS’s with
mode dependent time-delays and norm bounded uncertainty is
developed based on an H, optimization technique where the
generated residual signal is an estimate of the fault signal.
In [20], [21], the FDI problem for discrete-time MILS’s
is solved based on a geometric framework. However, the
problem of fault isolation for continuous-time MJLS’s with
and without time-delays has not been completely solved and
fully addressed in the above references.

In this paper, we have adopted a geometric approach to
the FDI problem of MIJLS’s. Towards this end, the first
contribution of this paper is in the derivation of a geometric
property for the unobservable subspace of MJLS’s (Theorem
3.3) based on the notion of weak observability that was
introduced recently in [22] and the development of a new
approach for determining the weak-observability (Algorithm
1). It should be pointed out that recently in [9], invariant
subspaces for discrete-time infinite MJLS’s is introduced for
defining detectability of these systems. However, in our work
the stronger notion of weak observability is utilized for intro-
ducing the concept of unobservability subspaces.

The notion of a finite unobservable subspace for the
MIJLSD’s is subsequently introduced and its geometric prop-
erties are investigated. It is shown that there exist similarities
between the unobservable subspaces in the MJLS’s and the
MILSD’s. This similarity leads us to introduce the notion of
an unobservability subspace for both systems. To propose an
algorithm for obtaining this subspace, an alternative definition
of an unobservability subspace is introduced in Theorem 4.5
which only depends on the matrices of the system. Based on
this alternative definition, an algorithm for constructing the
smallest unobservability subspace containing a given subspace
is proposed (Algorithm 3). It should be noted that our pro-
posed unobservability subspace is the most general concept
of its own and all the previously developed unobservability
subspaces for linear [2], LPV [23], bilinear [24], time-delay
systems [25], [26] and the MJLS’s with irreducible Markov
process [27] can be considered as a special case of our
proposed unobservability subspace.

By utilizing the developed geometric framework, necessary
and sufficient conditions for solving the fundamental problem
in residual generation (FPRG) [2] are derived for the MJLS’s
(Theorem 5.2). Moreover, sufficient conditions for solving the
FPRG are derived for the MJLSD’s (Theorem 5.3). Finally,
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we investigate the problem of designing an H..-based FDI
algorithm for an MJLS that has an unknown transition matrix
and is subjected to external disturbances. These results are
obtained by integrating our proposed geometric approach with
an H., disturbance attenuation technique (Theorem 6.3). To
summarize, the contributions of this work are as follows:

1) Derivation of a geometric property of an unobservable
subspace for the MJLS’s.

2) Development of a finite unobservable subspace for the
MILSD’s.

3) Introducing the notion of unobservability subspace for
the first time in the literature for continuous-time
MIJLS’s and MJLSD’s.

4) Derivation of necessary and sufficient conditions for
solving the FPRG for the MJLS’s.

5) Derivation of sufficient conditions for solving the FPRG
for the MJLSD’s.

6) Development of a robust fault detection and isolation
algorithm for the MJLS’s.

The remainder of this paper is organized as follows. In
Section II, a brief background on geometric properties of linear
systems as well as Markov processes is provided. In Section
III-A, geometric characteristics of unobservable subspaces for
the MJLS’s are developed. The notion of a finite unobservable
subspace for the MJLSD’s is then introduced in Section
III-B. In Section IV, an unobservability subspace is introduced
formally for both the MJLS’s and MJLSD’s. In Section V,
the solvability conditions for the FPRG for the MJLS’s and
the MJLSD’s are obtained. An H.-based fault detection and
isolation strategy for the MJLS’s is developed in Section VI.
Conclusions and future work are presented in Section VIL.

The following notation is used throughout the paper. Script
letters X ,U,),..., denote real vector spaces. 5 = ImB
denotes the image of B and KerC' denotes the kernel of C.
We say a map C' : X — Y is monic if KerC' = 0 and is
epic if ImC' = Y. If a map C is epic, then C'~" denotes a
right inverse of C' (i.e., CC~" = I). For any positive integer
k, k denotes the finite set {1,2,--- ,k}. The cardinality of a
set N is denoted by |N|. A subspace S C X is termed A-
invariant if AS C S. For an A-invariant subspace S C X,
A : S denotes the restriction of A to S, and A : X/S denotes
the map induced by A on the factor space X'/S. For a linear
system (C, A, B), < KerC|A > denotes the unobservable
subspace of (C, A). For a given subspace £, dim(L£) denotes
the dimension of L. For given maps A;, i € ¥ and a subspace
KC, the largest A;-invariant subspace ¢ € W that is contained
in K is denoted by << K|A4; >>;cy. We denote by ||.|| the
standard norm in R™. .%,[0, oo] stands for the space of square
integrable vector functions over [0, c0). For d(t) € %40, o0},
[|d||2 denotes the #-norm of d(t). The asterisk (*) is used
to denote a matrix which can be inferred by symmetry. It
is assumed throughout the paper that the reader is familiar
with basic geometric concepts for analysis and design of linear
systems (refer to [28] and [29]).

II. BACKGROUND
A. Geometric FDI Approach

Consider the linear system &(t) = Axz(t), y(t) = Cx(t),
where z € X is the state of the system and y € ) is the
output signal.

Definition 1: A subspace W C X is said to be (C, A)-
invariant (conditioned invariant) if A(WW N KerC) C W.

It can be shown [29] that W C X is (C, A)-invariant if and
only if there exists an output injection map D such that (A +
DCYW C W. In the geometrical approach to the FDI problem
the concept of unobservability subspace plays a central role
[2] as defined below.

Definition 2: A subspace S is an (C, A) unobservability
subspace (v.0.8.) [2] if S =< KerHC|A + DC > for some
output injection map D and measurement mixing map H.

It can be shown that for an unobservability subspace S,
S =< § + KerC|A + DC >. The next theorem provides an
alternative characterization of the u.o.s. which is independent
of the maps D and H (this is dual to Theorem 5.3 in [28] for
controllability subspaces).

Theorem 2.1: Let S C X and define the family G4 ) =
{1 =S+ AL NKerC}. S is said to be an (C, A)
u.0.s. if and only if S is conditioned invariant and S = %,
where " is the maximal element of G4 .

The family of u.o.s. that is containing £ C & is closed
under intersection and is nonempty; therefore, it contains an
infimal element S*. In [2], an algorithm for constructing S&*
is proposed.

B. Modes Classification of Markov Processes

In this section, modes classification of continuous-time
Markov processes is reviewed [30]. Consider a continuous-
time Markov process {\(¢),? > 0} taking values in the finite
set U = {1,..., N} with the following probability transitions:

. o 7Tijh/+0(h) Z#]
P{A(t +h) = jIA(E) = i} = { 14 mih+o(h) i=j
where 7;; is the transition rate from mode ¢ to mode j with
m; = 0 when @ # j, m; = —EjN:L#i mi;, and o(h) is a
function that satisfies limh_,()# =0. Let I = [m;;], 4,7 €
V. The mode j is accessible from mode ¢ (denoted by ¢ ~» j)
if there is a nonzero probability that the state j can be reached
from mode 7 in some finite number of transitions. Moreover,
the mode j is said to be directly accessible from mode j if
m; > 0. Modes i and j communicate (denoted by i «~ j) if
both 7 ~» j and j ~» 7. A subset & C W is a communication
class of the Markov process A(t) if every pairs of modes in
® communicate.

A communicating class ® is closed if no mode outside
the class is accessible from a mode in the class. A com-
municating class ® is open if it is not closed; i.e. if there
is a nonzero probability for the Markov process to leave ®.
Hence, a Markov process can be partitioned into § disjoint
communicating classes ¢, « = 1, ..., 3, where the first § < 3
classes are closed and the remaining ones are open. Moreover,
for an open communicating class ®,, a > 9, the set N,
denotes the set of all classes that are accessible from modes
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in ®,. We also denote the set of all classes that are directly
accessible from modes in @, as N%. It follows that N¢ C N,,.
For a Markov process \(t) with 3 classes, one can define a
Markov process A(t) taking values in ¥ = {1, ..., 3}, which
represents jumps between the classes of A(t).

A Markov process transition matrix II is said to be in a
canonical form if the modes are relabeled (re-ordered) so that
states within the closed communication classes appear together
first, followed by the modes in the open communication classes
appear together. The open communicating classes are relabeled
such that for each open communicating class ®,, none of the
classes ®;, j > «a is accessible from modes in ®,,. It follows
that a canonical form of II is not unique and is a block lower-
triangular matrix.

For an open class ®,, we denote N2 and N¢, as the sets of
open and closed classes, respectively, that are accessible from
®,,. Furthermore, we set N° = {a‘{,...,arNgl} and N¢ =
{aﬁ,...,alcN; }, where f < a§ < - < af < ad < -
For each class ®;, | € N, we denote I'}* as the set of all
classes in N, U « such that ®; is directly accessible from
them. Moreover, we define T'%" C T'¢ as the set of classes
J € I'f" such that they are not accessible from each other and
if there exist j,k € I'}* such that j € Ny, then j € Fla* and
k¢ I‘lo‘*. In other words, for constructing ', if there exists
a pair of classes j,k € I'Y* such that j € Ny, then the class
k will not be included in Flo‘*. The following example shows
how one can obtain a canonical form of II.

Example 1: Consider a continuous-time Markov process on
U ={1,2,3,4,5,6, 73 with the following transition rate ma-

10 1 00 O

1 -20 010 0
. 1 0-1000 0 .
trixII= | o 2 1 —41 0 o |.]Itis clear that modes 1 and
00 0 000 O
0 0 1 00-10
0O 111 —6

3 form one CIIOSQed communication class ®1, the mode 5 forms
the second closed class ®5, and modes 2, 4, 6 and 7 form four
disjoint open classes, where ®3 = {6}, ®, = {2}, &5 = {4},
and &g = {7}. By re-ordering the modes according to the
sequence 1, 3, 5, 6, 2, 4, and 7, the following0 cgnoonicgl form

-1 1 0
1 -100 0 0 O

. 0 000 0 0 O

of II can be obtained, namely I = | 0 1 0-1 0 0 0
1 010 -20 0

0 110 2 -40

1 012 1 1 —6

For instance, we have Ng = {1,2,3,4,5}, I'$" = {3,4},
I'Y = {3,4,5,6}, IS = {4}, and TS = {4,5,6}. Moreover,
the associated A(t) for the above Markov process has 6 modes.

ITI. UNOBSERVABLE SUBSPACE

In this section, a geometric property of an unobservable
subspace for the MJLS’s is derived based on the notion of
weak observability that was introduced in [22]. Moreover,
the notion of finite unobservable subspace is introduced for
the MJLSD’s. This is a crucial step for defining the notion
of unobservability subspaces for both the MJLS’s and the
MILSD’s. It will be shown subsequently that there exist
similarities between the notion of finite unobservable subspace
for the MJLSD’s and the notion of unobservable subspace for
the MJLS’s. We will use these similarities in Section IV to

introduce the notion of an unobservability subspace for the
MILS’s and the MJLSD’s.

A. Unobservable Subspace for the MJLS'’s

Consider the following Markovian jump linear system
(MIJLS)

i(t) = Axpyz(t)
y(t) = Capyz(t) x(0) =20, A(0) =1o

where z € X is the continuous-time state of the system
with dimension n; y € ) is the output with dimension
q; and {\(¢),t > 0} is a continuous-time Markov process
taking values in the finite set ¥ = {1,..., N} as defined in
Section II-B. The Markov process A(t) describes the switching
between different system modes. It is assumed that matrix I is
in a canonical form. The matrices A ;) and C) ) are known
constant matrices for all A(t) = ¢ € V. For simplicity, we
denote the matrices associated with A(t) = i by Ayu) = A;
and Cy«) = C;. Furthermore, the MILS (1) is represented
by (%, €, II), where 2l = (A, ..., Ay) and € = (C, ..., Cy).
We first start with the definition of weak observability for the
MILS (1).

Definition 3 ( [22]): The system (2, &, II) is said to be
weakly (W-) observable when there exist t; > 0 and v > 0
such that W (x,4) > ~|x|? for each € X and i € ¥ where
W(x,4) is defined as

IE{ /0 t 2 (T)Ch ) Crgmyx(7)dr|2(0) = 2, A(0) = z}

In [22], a collection of matrices O = {Oy,...,On} is
introduced for testing the W-observability of the MJLS (1) ac-
cording to the following procedure. Let O;(0) = C/C;, i € ¥,
and define the sequence of matrices as

(1)

N
Oz(k’) = A;Oz(k’ — 1) + Ol<k‘ — 1)Al + ijOj(k: — 1)
j=1

where £k > 0 and ¢ € W. The matrix O; is then defined
according to O; = [0;(0) O;(1)---0;(n®>N —1)]".

Theorem 3.1 ( [22]): The MJLS (1) is W-observable if and
only if O; has a full rank for each ¢ € U.

By considering the above definition of W-observability, one
can define the set of unobservable states for each mode ¢ as
follows.

Definition 4: A state (z,i) is said to be unobservable if
Wt(z,i) =0 for all t > 0.

Let Q; denote the mode i unobservable (i-unobservable)
set of the MILS (1), i.e. Q; = {z € X|W!(x,i) = 0,Vt >
0}. It is shown in [22] that z € N{O;} and W(z,i) = 0,
for all ¢ > 0 are equivalent. Hence, it follows that Q; =
N {O;}. Therefore, Q; is the subspace of X’ and is called the
i-unobservable subspace of the MJLS (1). Next, we show that
Q, is A;-invariant.

Lemma 3.2: The i-unobservable subspace is A;-invariant,
ie. A;9; C Q,.

Proof: 1t is shown in [22] that if i ~ j, then N{O;} C
N{0O;}. Hence, Q; C N{0O,} for all modes j such that i ~ j.
Let x € Q;. Our goal is to show that A;x € Q;. We have,
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z € N{O;j(k—1)} and z € N{O;(k)}, Vk and for all modes
7 such that ¢ ~» j. Therefore,

O;(k)x =A;0;(k — D)z + O;(k — 1) A+
N
> mi0;(k — Dz = Oi(k — 1) Ajz =0
Jj=1

since O;(k — 1)x = O;(k)x = 0 (x € Q;) and for all j such
that 7;; # 0, we have ¢ ~ j and O;(k — 1) = 0. Hence,
A;x € N{O;(k — 1)} for all k and Q; is A;-invariant. [ |

As shown in [22] if i «~ j, then N{O;} = N{O,}, and
hence Q; = Q;. In other words, the unobservable subspaces
of all modes in a communicating class are identical. There-
fore, for each class ®,, we denote Q, as the unobservable
subspace of all modes in ®,. The next theorem characterizes
a geometric property of Q.

Theorem 3.3: For aclass ¢, Q,, is the largest A;-invariant
subspace (i € ®,) that is contained in ﬂie% KerC; N Ka,
ie. Qo =<<(icq, KerCiNKa|Ai >>ica, where if @, is
closed then K, = X, and if ¢, is open then K, = ﬂleNd Q.
Proof: Consider a class ®, where we have Q, = N{O;},
i € ®,. It is clear that Q, C Ker(C;, i € P, and hence
Q. C ﬂie% KerC;. Moreover, according to Lemma 3.2 and
the fact that Q; = Q; = Q, for all i,j € ®,, Q, is A;-
invariant, ¢ € ®,.

First assume that ®, is closed. We show that Q, =<<
ﬂie% KerC;|A; >>;cqa, . Let V be an A;-invariant subspace
(¢ € ®,) that is contained in ﬂie% KerC;. Clearly, V C
KerC; = N{Ol(O)}, 1€ ®,. Lety C N{Ol(k‘—l)}, ESKN
and x € V), then

Oz(k)fll‘ :A;Ol(k‘ — 1).23 + Ol(k’ — 1)Al$+
N
Zﬂ—ijOj(k - ].)(E =0
i=1

since A;x € V (V is A;-invariant) and for all j such that
mi; # 0, we have j € &, (P, is closed) and O;(k — 1)z = 0.
Hence, z € N{O;(k)}, i € ®, for all kK and V C Q,,. This
shows that 9, contains all the subspaces that are A;-invariant
(i € ®,) and is contained in ﬂie% KerC;.

Now if &, is an open class, then for all modes that are
accessible from modes in ¢, ie. Vj € &1 € N,, we
have Q, C N{O;} = Q;. Moreover, we have (o Q1 =
nleNg Qy, since if there exists a class j € N, and j ¢ N¢,
there must exist a class &y, k € NjfK such that j € N which
leads to Q; C Q;. Hence, Q, C ﬂie% KerC; ﬂleNg Q.
Next, we show that Q,, is the largest A;-invariant i € ¢, that
is contained in ﬂie% KerC; (K4. Let V be an A;-invariant
(i € ®,) subspace that is contained in ﬂie% KerC; N Ka.
Clearly, V C KerC; = N{0;(0)}, i € ®,, and V C
N{O;(k)} for all k > 0 and j € ®;,1 € N¢. Let
V C N{Oi(k - 1)}, i € &, and = € V, then O;(k)x =
AOi(k — D+ Oy(k — 1) Az + SN 71,0, (k — 1)z = 0,
since A;x € V and for all j such that m;; # 0, whether
j € ®yorje€ ®,leNL we have Oj(k — 1)z = 0. Hence,
V C N{O;(k)} for all k and V C Q,,. [ ]

Motivated from Theorem 3.3, the following algorithm pro-
vides a procedure for constructing the required subspace Q..

Algorithm 1: The subspace 9 is obtained
from the sequence Z;, = [ o, KerC; N K. with
Z, = Nica, KerCiNKaNjea, A7'Z, 1 such that

whenever Z, = Z,,11, then Z,, = Q,.

B. Unobservable Subspace for the MJLSD's

In this section, we introduce the notion of finite unobserv-
able subspace for the Markovian jump linear systems with
time-delays (MJLSD’s). Consider the following MJLSD

E(t) = Axwyz(t) + Axphz(t — ™A (1))
y(t) = Capyx(t)  x(0) = o(0), 0 € [—p,0]

where z € X is the continuous-time state of the system with
dimension n, y € ) is the output with dimension ¢, and
w = max; {7;(t)}. We denote the matrices AY ;) that are
associated with A\(t) =i by A7. Furthermore, the MILSD (2)
is represented by (2(, 27, €, II), where A™ = (A7, ..., A}). In
system (2), Tx()(t) denotes a time-varying delay for the mode
A(t).

Since the behavior of system (2) in each mode is governed
by the retarded time-delay equation, we need to first define an
unobservable subspace for each mode of the system. Recently,
the notion of finite unobservable subspace is introduced for
retarded time-delay systems in [25]. Consider the following
time-delay system that corresponds to the i-th mode of the
MIJLSD (2), namely

#t) = Awe(t) + ATa(t — (1)
y(t) = Ciw(t)’ 11(9) = ¢(9)7 e [—/J,O}

Definition 5 ( [25]): A finite unobservable subspace (de-
noted by Q7%) for system (3) is defined as the largest (A4;,
AT)-invariant subspace contained in KerC;.

It is shown in [25] that for all x € Q7%, we have y(t) = 0.
Based on the above definition and the results of Section III-B,
we formally define the notion of finite unobservable subspace
Q7 for each class of the MJLSD (2) as follows.

2

3)

Definition 6: For a class ®,, Q] is the largest
(A;,A7)-invariant ~ subspace (i € $,) that is
contained in (.4, KerC;MNKa, ie  QF =<<

ﬂje@a KerC} NKalAi, AT >>ica,, where if ®, is closed
then K, = X, and if ®, is open then K, = ﬂleNg 9j.

It is clear from Definition 6 that if x € Q] and i € ¥,
then W'(z,i) = 0. Moreover, according to Theorem 3.3 and
Definition 6, Q,, and Q, are the largest finite A;-invariant and
(A;,A7)-invariant subspaces, respectively, that are contained
in (;cq, KerC;j [ Kq. In the next section, we will use this
similarity to develop the concept of unobservability subspaces
for both the MJLS’s and the MJLSD’s.

IV. UNOBSERVABILITY SUBSPACE

The concept of an unobservability subspace was used in
[2] to solve the fundamental problem of residual generation
(FPRG) for linear systems. In [31], the similar notion of
observability codistribution is introduced for nonlinear systems
and is shown that it can be used to address the nonlinear fun-
damental problem of residual generation (INLFPRG). Similar
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problems are also considered for LPV and bilinear systems in
[23] and [24], respectively.

In this section, the notion of unobservability subspace is
formally introduced for both the MJLS’s and the MJLSD’s.
To develop an algorithm for constructing this subspace, an
alternative definition of unobservability subspace is presented,
which only depends on the matrices of the system. Based on
this alternative definition, an algorithm for constructing the
smallest u.o.s. containing a given subspace is proposed. As
shown in Section V, unobservability subspaces play a central
role in solving the fault detection and isolation (FDI) problem
for the Markovian jump systems.

A. Unobservability Subspace for the MJLS’s

In this section, the notion of unobservability subspace for
the MJLS’s is formally introduced. We start by defining the
notion of conditioned invariant subspace for a class ®,,.

Definition 7: A subspace W, is said to be conditioned
invariant for all the modes i € @, of (A, €, II) if A;(Ws N
KerC;) CW,, i € ®,.

It is clear that if W, is conditioned invariant for (%, &, II),
then W, is (C;, A;)-invariant for all ¢ € ®,. Therefore, there
exist maps D; such that (A; + D;C;)W, C W,, i € ®,. One
can also define the notion of conditioned invariant for more
than one class of (2, €, II). Let ' be the subset of {1,...,3}
which represents a subset of classes of A(t). A subspace Wr is
then said to be conditioned invariant for I" if it is conditioned
invariant for each class in T, i.e. A;(Wr N KerC;) C Wr,
1€®,lel.

We denote the families of conditioned invariant subspaces
for a class @, and for a subset of classes I of (2, €, 1I)
by Wi,y (A, €) and Wr (A, €), respectively. It is clear that
for ' = {a}, these two families are identical. Hence, we
will focus on the more general family, i.e. Wr(2A, ). If
Wr € 20r (%, €), we write D (Wr) for the family of maps
D; where (4; + D;C;)Wr C Wr, i € ®;, 1 € T. The notion
of conditioned invariant subspace for (2, €, II) is a dual to that
of the robust maximal controlled invariant which is introduced
in [32]. By duality it can be shown that 20 (2, &) is closed
under the operation of subspace intersection and is nonempty,
and consequently for any given subspace £ C X, the family
of conditioned invariant subspaces that contains £ (denoted
by 20r(2, ¢, £)) has the infimal element which is denoted
by Wi = inf W (2, €, L£). The following algorithm can be
invoked for constructing Wt

Algorithm 2: The subspace W} is obtained from the se-
quence Wy = L+ > 1cr D icq, Ai(Wik-1 N KerC;) with
Wo = L such that whenever Wy, = Wi41, then W) = Wj,.

Definition 8: A subspace S, is an unobservability sub-
space for all the modes i € @, of (A, & II) if there exist
output injection maps D; and measurement mixing maps H;
such that~ <S~'a is an unolgservable subspace of class ®, of
system (2, &, II), where 2 = {A; + D1C1, ..., AN + DNCn'}
and € = {chh ceny HNCN}.

It follows that Sp =<< [);cq, KerH;CjNKald;i +
D;C; >>;cq,, where if @, is closed, then K, = X, and
if @, is open, then I, = ﬂleNg S;, where S; is an u.o.s. for
class ®;.

Remark 1: 1t should be noted that the notion of unobserv-
ability subspace in Definition 8 is the most general concept of
u.o.s. introduced in the literature and the ones that have been
presented for linear [2], LPV [23], bilinear [24], and time-
delay [25], [26] systems can be considered as a special case of
our proposed unobservability subspace. Indeed, for C; = C,
i € P4, (identical output measurements) and C = X, the
above definition coincides with the unobservability subspace
for the LPV and the bilinear systems as stated in [23] and
[24], respectively.

We denote the class of all unobservability subspaces in X
for (2, ¢, II) by 6,(2, ). In the following, our goal is to
derive an alternative characterization for the unobservability
subspace which is independent of the maps D; and H; as used
in Definition 8 (the idea is similar to that in Theorem 2.1). As
shown subsequently, this alternative definition provides us with
means to obtain the unobservability subspaces more readily.
The following lemma presents a result that is necessary for
formulating our alternative definition.

Lemma 4.1: Let S; C X such that KerC; C S, j €
Oo and << N;eq, SjNKaldi >>ica,= Sa. then <<
ﬂje% (So + KerCy) N Ka|Ai >>icw,= Sa. Conversely, if
<< ﬂje%(Sa + KerC) (N Ka|Ai >>ica,= Sa, then there
exist maps H,, j € ®, such that

<< ﬂ KerH;C; ﬂICth >>ico.= Sa
jEPa
Proof: We have S, C miecpa Sj NKa Sj and KerC}
Sj, J € P, so that (g (Sa + KerCj)(Kq
Njce. Sj N Ka. Consequently,

<< ﬂ (Sa —+ Keer) ﬂ}Ca|A1 >>ico,
JEP
<< () & KalAi >>ica, = Sa
JEPa
On the other hand, A;S, C S,, So C K4, and

[ (Sa+KerCj) 2 So+ (] KerC; 2 S,
JEP JED,

Hence, S, C<< ﬂje% (Sa+KerCj) N KalAi >>ico,, and
consequently

Sa =<< [ (Sa + KerCy) (| KalAi >>ica,

j€EPA

To show the converse part, let {c],....;cl} be a basis for
S + KerC such that {ci_pﬁ_l, ..., ¢l } is the basis for KerC)

(dim(KerC}) = p;). Therefore, y;; = Cjcg, i=1,...,r—p;
are independent. Let {y;1, ..., ¥iq} be a basis for ), and define
ijij = O,Z = 1, ey T — DPys and iju = yij7i =T —Dj +
1,...,q. Consequently, KerC; + S, = KerH;C;, and therefore
mjéé(, (Sa + KCI'Cj) = ﬂqu)a KGI'H]‘Cj. |
We are now in a position to state our next result.
Theorem 4.2: S, € S,(A,€) if and only if there exist
maps D; such that So =<< (;cq, (Sa +KerCj) N Kaldi +
D;C; >>icd, -
Proof: The proof follows readily from Lemma 4.1 by taking
Sj = KerHjCj. |
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The above theorem eliminates the need for the maps H;
from Definition 8. For a given u.0.s. S,, the maps H;’s
can be computed by solving the equations KerH;C; =
So + KerCy,i € ®,. Next, we try to the characterize the
unobservability subspace with an algorithm that computes S,
without explicitly constructing D;,i € ®,. For an arbitrary
subspace S, C K, let us define a family Q(O‘Qw) ={sY =
Nica, (Sa+ (A7 1.7 NKerC;)) N Ka}. Below, we first show
that g&w) has a unique maximal member.

Lemma 4.3: There exists a unique element .#* € g(am,c‘)
such that .%¥9 C ./*, V.¥ € g&[,@).
Proof: Define a sequence .¥# C X according to .¥° = X,
I =Nico, (Sa + (A7t 7P~ 1 NKerC;)) (N Ka» it € 0. The
sequence .#* is non-increasing since .1 C .#°, and if .#* C
P=1 we have

S = () (Sa + (A7 NKerCh)) () Ka
i€d,,
C () (Sa+ (A7 7" nKerCy)) [ Ko = S+

i€d,

Therefore, there exists a k < n such that %1 = % g0 that
we set ./ = .7%. Clearly, .7* € G(g(,¢). Next, we show that
Z* is the maximal element. Let . € g(am), then .7 C .¥0,
and if . C ., we have

= ) (Sa+ (A7 NKerCy)) [ Ka
i€Py
C () (Sa+ (A7 " NKerC)) (Ko = 74!

1€Py

Consequently, . C &* for all u, and hence ./ C .*. N

The next lemma provides an important property of the
maximal element .¥’* which will be used for introducing our
suggested alternative characterization of the u.o.s. for system
(2, ¢, 1I0).

Lemma 4.4: Let S, € W, (A,€) and D; € Dy3(Sa)s
then .* is the largest (4; + D;C;)-invariant (i € ®,) that
is contained in ();cq (Sa + KerCj) (Ko, ie. S =<<
mjeba (Sa + KCI‘Cj) mKa|Az + D;C; >>ica,,-

Proof: First we show that any . € Q(O‘Qw) is (A; + D;C;)-
invariant (z € ¢,). We have

(Aj + DjCj)j” - (A] + DjCj)(Sa + Aj_ljﬂ N KGI‘C]‘)
- (Aj + DjCj)Sa + AJ(A;ly N KCI‘CJ‘)
CS+7Cs

where we used the relationship . = (;c4_(Sa + (A7L7n
KerC;)) N Ka 2 (Sa 4+ Nico, (4717 NKerCy)) N Ko 2 Sa
(since S, C K,) and Aj(AJ-_15”) C . Therefore, (A; +
D;C;). C 7, j € ®,; and hence ¥ € W,y (A, <€) and
D; e @{a}(y).

Consequently, we have .7* € 2y, (2, ). Next, we show
that for any subspace W such that it is (A4; + D;C;)-invariant
(i € ®,) and is contained in ﬂje% (So + KerCj) N Ky, we
have W C .*. If W C S,, then it follows that YW C .¥*,
since S, C .*. Therefore, we consider the case where S, C
W. We have, A;lw N KerC; = (A; + D;C;)~'W N KerC;,

and consequently

) (Sa+ A7'W N KerCy)
i€P,
= ﬂ (So + (A; + D;C;) ™' W N KerC;)
€D,

It follows that W C .0, If W C .+~ then
S = (Sa+ (A7 7" N KerC)) () Ka

Zeaa(sa + (AW KerGy)) () Ka

Ze(;a(sa + (A + DiC) "' WnKerCy)) [ Ka
ze(%a(sa + (W nKerCy)) () Ka

zeﬁa(w N (Sa + KerCy)) [ Ka =W

i€,

where we used the fact that W C (A;+D;C;) ='W, the modu-
lar distributive rule [28] (if S,, C W, then S, +(WNKerC;) =
W N (S, + KerC;)), and W C ﬂje% (Sa + KerC) N Ka.
Consequently, W C .¥#; and hence W C .*. This shows
that .* is the largest (A; + D;C;)-invariant (i € ®,) which
is contained in ;. (Sa + KerCi) (M Ka. [ ]

We are now in the position to introduce our proposed
alternative characterization of an unobservability subspace for
system (2, &, II).

Theorem 4.5: Let S, C K, and consider the family

Q(“Qm) = {7 = Nica, (Sa + (A1 NKerC)) N Ko}
Then S, € 6, (2, €) if and only if S, € W,y (A, €) (S, is
conditioned invariant for class ®,) and S, = .¥*, where .¥*
is the maximal element of gam,c .
Proof: (If part) If S, € W, (A, €) and S, = " hold, then
according to Lemma 4.4, it follows that So =<< (¢4, (Sa+t
KerC;) N KuolA; + D;C; >>;ca,, and hence using Theorem
4.2, one gets S, € 6,(2, ).

(Only if part) If S, is an unobservability subspace for
class @, it follows that S, € W,y (A, €), and according to
Lemma 4.4 one gets S, = .&*. |

The above theorem provides a characteristic for the u.o.s.
of the MJLS’s that is similar to what Theorem 2.1 provides
for u.o.s. of a system having only a single mode. Let £ C C,,
be an arbitrary subspace and let us denote &, (2, €, £) as the
family of u.o.s. for a class ®,, of (A, €, II) that contains L. It
can be shown that &, (2, €, L) is closed under the operation of
subspace intersection. The next lemma provides the necessary
and sufficient conditions for &, (%, €, £) to be nonempty.

Lemma 4.6: The family of subspaces G&,(%, €, L) is
nonempty if and only if the family of conditioned invariant
subspaces for ®,, in K, that contains £ is nonempty, i.e. there
exists a subspace W, such that W, € ;. (A, ¢, L) and
Wea C Ky

Proof: (If part) If there exists an W, such that W, €
Wiy (A, €, L), then there exist D; € D41 (Wa),i € P such
that W, is (A; + D;C;)-invariant. Define H; = 0,5 € @, It
follows that [ o, KerH ;Ci N Ko = Kq. Let us define S,

V)

1
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as the largest element of a class of (A; + D;C;)-invariant
subspaces (¢ € ®,) that is contained in K, (denoted by
‘Ba(lCa)), ire. S, =<< ICQ|A¢ + D;C; >>icq,,- It follows
that B, (K, ) is nonempty since W,, € U, (K, ). Moreover,
B, (Ky) is closed under the operation of subspace addition,
and hence it has a supremal element which is S,. Moreover,
we have £ C S,, since L C W, and W, C S,. Therefore,
So € 6,2, ¢, L).

(Only if part) If there exists an S, € &,(2, €, L), then it
is clear that S, € W41 (A, €, L) and S, C K. [ ]

Consequently, if the conditions of Lemma 4.6 are satisfied
then G, (%, €, £) has as an infimal element (denoted by S7).
This property is crucial for application of the u.o.s. to the
FDI problem of the MJLS’s. The next algorithm provides a
procedure for constructing S7.

Algorithm 3: Let W}, = inf 0,1 (2, €, L) and conditions
of Lemma 4.6 be satisfied. Define the sequence Z* according
to

20=x; z2¢= () Wi+ (47 2" nKerCy)) [ Ka
€D,

Consequently, S = Z*, whenever Zt+1 = ZH,

To analyze the above algorithm note that the sequence Z*
is non-increasing and Z**1 = Z* for k > n — dim(W}).
Let Z* = 2% According to Lemma 4.4 and the fact
that W, C Ko (Lemma 4.6), Z* =<< (e W5 +
KerC;) N KalAi + D;iCi >>ies,, for some D; € D1 (Wy).
Following along the same lines as in Lemma 4.1, one can
obtain the maps H;’s such that W}, + KerC; = KerH;C)
and Z*¥ =<< ﬂjE‘I’a KerHjC'j ﬂK(¥|A1 + D;C; >>icdys
therefore Z* is an u.o.s. according to Definition 8. Moreover,
it follows that £ C W; C Z2* (2" € Wiy (A, ¢, L) and
Wi = inf 7, (™A, &, L)); hence Z* € &,(A, ¢, L), and
consequently Si C Z*.

On the other hand, according to Theorem 4.5 we have S} =
8", where 8% = X and S* = (o, (Si + (A71s+=1n
KerC;)) N Ka» 1+ € n. Since W* C SZ, it can be shown by
induction that Z# C S*, 1 € n. Indeed, Z° = SY, and if
Zr=1 C §r=1 then

2= () Wi+ (A7 2" nKerCh)) () Ka
€D,
C () (Si+(A7'8# ! nKerCy)) [ Ko = S*
€D,
Consequently, Z2* C S;.

It follows from the above algorithm and Lemma 4.4 that
Diay(WS) C Da(S}). Therefore, the maps D;’s for S}, can
be found from W} and once S} is found from Algorithm 3, the
maps H,’s can also be computed from S and the expression
S} + KerC; = KerH,;C}.

Consequently, for a closed class ®,, a < §, we have
Ko = X, and hence the conditions of Lemma 4.6 are
satisfied. However, for an open class ®,, o > §, we have
Ko = Miena St = ien, Si- Hence, the unobservability
subspaces S; for all classes ®;, [ € N, that are accessible
from the class ®, should be constructed in such a way that
the conditions of Lemma 4.6 are satisfied. In other words, for
an open class ®,,, the [N, |+1 subspaces should be constructed

in such a way that the conditions of Lemma 4.6 are satisfied.
The following algorithm provides a procedure for constructing
N |+ 1 subspaces for an open class ®,,.

Algorithm 4: Step 1: First, construct the unobservability
subspaces for the closed classes in N¢ as follows. For each
class ®,¢, af € Ny, the sequence of subspaces are generated
as follows

ZM =inf Gue (U, €, 217Y), ZMH! = inf Wra- (A, €, 2¥)

where Z° = £ and the subspaces inf S,¢(2, €, Z#~1) and
inf Wr.- (A, €, Z*) can be found from Algorithms 3 and 2,

respecti\;ely. Whenever Z# = ZHT1 then Sae = ZM. Due to
the fact that ¢ is closed, the subspace K¢ in Algorithm 3
is the same as X. '

Step 2: Second, construct the unobservability subspaces for
open classes in N? one by one from the first open class af
as follows. For each open class o, the sequence of subspaces
are generated as follows

ZF =inf Gae (A, €, Z¢71),  ZM! = inf Wra- (A, €, Z4)

with Z2° = £. Whenever Z# = ZFT1 then Soo = 2.
For obtaining the subspace inf &, (2, €, Z#r=1), the subspace
Kaz = Nien,, St can be found easily from the subspaces that
are constructed in Step 1 and the subspaces that are obtained
for classes @a;, 7 <.

Step 3: Finally, S is found from Algorithm 3 by setting
Ko = ﬂzeNg Si.

To analyze the above algorithm note that every subspace of
the sequence in Step 1 contains the previous one (i.e. Z*~1 C
ZM). Whenever Z = Z+H1 it follows that Soe = ZH €
Gac (2, €, L) and Spe = Z# € Wra: (A, ¢, L). Hence, S,e
is both u.o.s. for class CIJQ;; and conditioned invariant for all
classes in Fg: . In Step 2, since the unobservability subspaces
are found sehuentially, it follows that for each open class
@0, the subspace Kno = nleNio S = mleNiO,ageF;’* S €

Wiaey (A, €, L) (the class Qﬁ{ag}(ﬂ, ¢, L) is closed under
intersection operation). This is due to the fact that for all
classes [ € Nfi? either a¢ € T¢" or there exists k € Ngg
such that [ € Ny, and o € 9.

For the first scenario, according to Steps 1 and 2, we have
Si € Wiaey (A, €, L). For the second scenario, we have Sj, C
Sy and S, € Waey (A, €, £). This shows that it is not required
to construct all S;, I € N, in a manner that they belong to
Qﬂ{ag}(%, ¢, L). In other words, only u.o.s. of classes | €
Ngf,ozf € F?* are required to belong to Wy,0y (A, E, L).
Hence, the necessary and sufficient conditions of Lemma 4.6
are satisfied and S,¢ can be found by invoking Algorithm 3.
Similarly, in Step 3 it is clear that IC, satisfies the conditions
of Lemma 4.6 and S can be easily determined.

Remark 2: As shown subsequently in Section V, for an
open class the unobservability subspace S;° is required to
contain the other given subspace (here denoted by £;) which
represents fault signatures in the [-th operational mode of the
MILS. In this case, Algorithm 4 can be invoked by setting
Z0 = L+ L.
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As discussed above, for an open class ®,, one needs to
find |N,| + 1 unobservability subspaces S, and S;, | € N,,.
Moreover, we have S, C S;. Let us define P, and P, [ €
N, as the canonical projections of X on X/S, and X/S;,
respectively. Moreover, for each class [ € N, and a class
k € I'®, we have S, C S;. We need to define the canonical
projection 7; ;, of X'/Sy on X/S;. Note that P, = T; 1 Px.
Consider the following MJLS

2(t) = (Axey + DOy (t)
§(t) = HaCrpyz(t)

where z(0) = =z, A(0) = 1ig, and the maps D;, H;
are found such that S, =<< ﬂke% KerHiCr N KalA; +
D;C; >>icd, and §; =<< ﬂkeq>1 KerH;,C, ﬂK,”AZ +
D;C; >>icd;s l € Ng.

We are interested in investigating the convergence properties
of the trajectories of the factor system of (4) on subspace
X /S, when \(t) € ®,, and on subspaces X' /S; when \(t) €
®;,l € N,,. It is assumed that the initial mode 7( belongs to an
open class ®,. Let us define Z,(t) = Pyz(t) for A(t) € @,,.
Whenever A(t) leaves the class @, at time ¢ = v and enters
®;, | € N, we define the factor state Z;(t) = Px(t) for
all ¢ such that \(t) € ®,. Consequently, we have Z;(v) =
T1.0Zo(v™) and the dimension of x; is not greater than that of
Z.. Moreover, for each i € &, and j € ®;, one can determine
the induced maps A; = (A; + D;C; : X/S,) and A; =
(Aj+D,C; : X/S;), where we have P, (A; +D;C;) = A; P,
and ]Dl(A] + D,‘Cj) = Alf)l Let M;,i € ®, and M;, j € &,
be unique solutions to M;P, = H;C; and M; P, = H;C},
respectively.

Let us define {v,k = 0,1,..., 0} as the jump instants of
A(t) satisfying 0 = vg < 1 < va < -+ < 1,. It follows that
when iy € ®,, the maximum number of jumps g between the
classes is [N, |. This corresponds to the case when there exists
only one closed class in N, (i.e. N&, = {a$}), and for the open
classes we have Ng, = {af, ..., afy |_,}, where af € Nqo_,
j=1,...,[Na| =2, and af € No. In other words, there exists
a nonzero probability for a sequence of jumps that has started
from class @, to (I)O‘ONM—l’ to be followed by jumps from <I>a§
to ®qe . j =|No|—1,...,2, and finally the last jump taking
place from class ‘I’ag to <I>a§. The factor system of (4) on the
subspaces X'/S,, and X' /S; can be written as

Iy (t) = Ay Txn (), t# vk, At) € D5y

X () (k) = TZ\(uk),I\(u;)ff;\(y;)(VE)a t =g,

“4)

(&)

with measurement §(t) = M) Tx ) (1)

We now would like to investigate the stochastic convergence
of system (5) with an initial mode 7, i.e. to determine whether
there exists a finite positive constant T'(Zo) such that for any
initial condition Zo, we have E[ [ [|Z5, (t)[|%dt|Zo, 4] <
T(Zp). Due to the fact that the number of jumps among the
classes are finite, one can guarantee the stochastic convergence
of system (5) by ensuring the stochastic convergence of each
class of operations in (5) individually, i.e. for each A(t) €
N, U a.

Lemma 4.7: System (5) is stochastically convergent with
an initial mode iy € ®, if the following systems are all

stochastically convergent, namely
zj(t) = AA®)Z;(1), A(t) € 25,V €N U (6)

Proof: Let us assume that the maximum number of jumps
among the classes is denoted by o where the jump instants
are specified by v, k = 1,..., 0. Therefore, system starts
from an initial mode iy and then jumps to the next class
®;, 1 € N, at t = vq. Due to the fact that each class is
stochastically convergent there exists a constant T'(Zg, i9) such
that E[ [ [|Za(t)]|2dt|Zo,i0] < T(Zo,i0). Moreover, the
initial condition corresponding to the trajectory of the second
class is set as Z;(v1) = Tj,o%Ta(vy ). Similarly, due to the
convergence of the second class we have E | f:f ||z ()| ]2dt] <
T(Z(v1),i1), where i3 = A(v1). Similar arguments can
be made for all the other classes. Consequently, we have
E[ [y |5y (®12dt] < 3°5_o T(2(v;),i;), which shows that
system (5) is stochastically convergent. |

Remark 3: 1t is known that if system (6) is stochasti-
cally convergent then it is also mean-square (MS)-stable,
ie. limyo ||Z;(t)]|* = 0. Therefore, it can be concluded
that if the conditions of Lemma 4.7 are satisfied then
limy— oo [[T31) (t)]|? = 0, and system (5) is MS-stable.

It should be noted that if the initial condition ¢y belongs to
the closed class ®,, we will have A(t) = «, t > 0, and the
dimension of the factor system (5) is constant. Our last result
in this section is concerned with MS-detectability of the MJLS
(5).

Definition 9 ( [22]): System (5) is said to be MS-
detectable when there exist maps G;, i € ®y, k € Ny U «
for which the following system

Zx) (1) = (Axee) + GagyMa))Zx ) (1), T # vi, A(t) € By
i) k) = T3 awo ) Baws) W )t =1

is MS-stable. Moreover if system (5) is MS-detectable, the
subspaces S, and S;, I € N, are said to be outer MS-
detectable.

According to Lemma 4.7, system (5) is MS-detectable if
there exist X; > 0 and L;, i € ®;, k € N, U « having
appropriate dimensions such that [22]

JEPK

for i € ®;, and k € N, U a.

Remark 4: s should be noted that only accessibility is im-
portant for defining the concept of unobservability subspaces
and the exact values of the transition probabilities do not
affect an unobservability subspace. However, the outer MS-
detectability of a subspace does depend on the values of the
transition probabilities. Moreover, in Section VI outer MS-
detectability is shown for systems where uncertainties exist in
the transition probabilities.

B. Unobservability Subspace for the MJLSD’s

In this section, the concept of the unobservability subspace
that was introduced in the previous subsection for the system
(2, €, 1I) is generalized to the system (2(, A7, €, II). We start
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by defining the notion of conditioned invariant subspaces for
a class @, of (2,27, ¢ II).

Definition 10: A subspace W, is said to be conditioned
invariant for all modes i € ®,, of the system (2, A7, €, II) if
A;(WINKerC;) C W, and AT(WZNKerC;) CW?, i € D,,.

We denote the class of conditioned invariant subspaces of a
class @, of (A, A7, &, II) by W,y (A, AT, €). It follows that
if W7, € Wiq) (A, A7, €), then there exist maps D;, D] such
that (AZ + chi)W; - W; and (A;r + DZ—CZ)W; - W;,
1 € ®,. Similar to the conditioned invariant subspace for
the MJLS’s, the family of conditioned invariant subspaces
of @, for (A, A7, ¢, II) which contains a given subspace L
(denoted by W1 (A, A7, &, L)) is closed under the operation
of subspace intersection and is nonempty. The following
algorithm can be used for obtaining its smallest element W .

Algorithm 5: The subspace W7 is determined from
the last term of the following sequence W, = L +
Zie{)a A; (Wk,1 ﬂKeI’Ci) + Zie@, AZ (Wk,1 ﬂKerCi) with
Wo = L.

Definition 11: A subspace S is a finite unobservability
subspace for all modes i € @, of (A, 2A7, € II) if there exist
output maps D;, DT and H;, i € ®,, such that S, is a finite un-
observable subspace of class @, of the system (ﬁl, AT, é, 1),
where 24 = {Al + D,Ch, ,A~N + DNCN}, AT = {A‘lr +
D{Cl, ey Ay + D}—VCN}, and € = {chh ey HNCN}.

It follows that S =<< [);cq, KerH;CjNKald; +
D,C;, AT + DIC; >>jco,, where if &, is closed, then
Ko = X, and if ®,, is open, then K, = mleNa S/.

For a given subspace £, we denote the class of all un-
observability subspaces for class ®, of (2,247, € II) which
contains £ by &, (2,47, €, £). Following the same procedure
as in Section IV-A, it can be shown that &, (2, A, <, L) is
closed under operation of subspace intersection. Moreover, the
necessary and sufficient conditions for &, (2,7, €, L) to be
nonempty is that there exists W7 € Wi, (™A, A7, &) such
that W2 C K. Similar as in Section IV-A, the following
algorithm can be used for determining the infimal element
ST =inf G, (2, AT, ¢, L).

Algorithm 6: Let WT~ = inf Wiy (A,A7, €&, L) and con-
ditions for non-emptiness of &, (2, A7, €, L) be satisfied.
Define the sequence Z* according to

20=x; z2t= ()WL + (4, 2" NKerCy))
i€P,
() WVE + (AT 27 N KerC)) [ Ka

1€P,

Then S]" = Z#, whenever Z++! = ZK,

Remark 5: It should be emphasized that the notion of u.o.s
for the MJSLD’s only depends on the matrices A;, A7 and C;’s
and is not affected by the values of the delays 7;,7 € ¥ as
well as the values of the transition probabilities.

Finally, similar procedure as in Algorithm 4 can be derived
for constructing the unobservability subspaces for an open
class ®,. The details are not included due to space limitations.
We are now in the position to formally introduce the FPRG
for the Markovian jump systems.

V. FUNDAMENTAL PROBLEM IN RESIDUAL GENERATION

In this section, the fundamental problem in residual genera-
tion (FPRG) is investigated for the MJLS’s and the MJLSD’s.
This problem was originally considered for linear systems
in [2] and was extended to LPV [23], bilinear [24], time-
delay [25], [26], and nonlinear [31] systems. The objective in
this section is to generalize these results to Markovian jump
systems with and without time-delays.

A. FPRG for the MJLS’s

Consider the following Markovian jump linear system

(1) = Axyz(t) + Bagyu(t) + Ly yyma(t) + L3y ma(t)
y(t) = Caxpyz(t), =(0) =z0, A0)=1o ®)

where it is assumed that the matrices Ay(;) and C)(;) are the
same as in (1) and u € U is the input with dimension m. The
matrices L}, and L3, represent the fault signatures and
are monic and m;(t) € M; C X, i = 1,2 denote the fault
modes. We denote the matrices B)(y), L}\( + and Li( ;) that are
associated with A\(t) =i by B;, L} and LZ, respectively.

Remark 6: The extension of this problem to multiple (that
is more than two) faults is trivial and is not included for
notational simplicity. Notwithstanding this an H,-based FDI
strategy for the MIJLS’s is introduced in Section VI which
treats the multiple faults scenario.

The FPRG for each initial operational mode 7y of system
(8) with possible jumps among classes at time instants vy, k =
0,...,0, vop = 0 is concerned with the design of a Markovian
jump residual generator of the form

Wy () =Fxywxp (1) — Exy(t)
+ Kapyu(t), t#vi, A(t) € Py
W) (V) :TX(uk),X(u;)WX(V,;)(Vk_)v t=vg
) (8) =Mx@ywx (1) — Hayy(t)

where )\(0) = io, w;\(o)(O) = 0, U)j\(t)(t) S fj\(t) c X
is the continuous-time state of the above detection filter
with non-increasing dimension, and 75 (¢) is the residual
signal that satisfies the following properties, namely (a) the
response of 75, (t) is affected by the fault mode m;(¢) and
is decoupled from mq(t), and (b) if m; is identically zero
then lim, E||7"5\(t)(t)|\2 = 0 for any input signal u(t).

Let us define the extended space A, = X & F5() and
U¢ = U D Mas, so that equations (8) and (9) can be re-written
as follows

50y () =AS )50 (8) + By (t)

€))

+ L§iyma(t), t# vk, A(t) € ygy (10)
i () :Hi(t)xi(t)(t)v A(0) =g
where xi(%)(uk) = TS\(%)J\(V;)JJX(V’:)(V,:) for t = 21/k,
€ € € € € A1 e __ 7 i
m;\(t)(t) € X° u® elU, A = [—Eici FO] Bf = [ﬁ Lo}

and TX(uk),S\(u,:)

I 0 . . .
075, 50 |- IN order to investigate the criteria for deter-
Vi) Ay

(& R € R 1
HE = [omeo), 1 = [4])

mining whether a nonzero mq (¢) affects the residual signal
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7x(#)(t), the notion of an input observability for the MJLS’s
is first defined and formalized below.

Definition 12: The input signal mq(t) is called input ob-
servable for a class ®,, of system (10) if L¢, is monic and the
image of L§; does not intersect with the unobservable subspace
S¢ for a class @, of system (10).

Based on the above definition, the FPRG can now be
formally stated as the problem of designing the dynamical
detection filter (9) so that (a) ry)(t) is decoupled from u(%),
(b) m4 (¢) is input observable in (10) for i and all j such that
io ~ J, and (¢) lim; o E{||r5¢)(t)|[*} = 0, for my(t) =
0,Vzg € X°.

We need to first derive a preliminary result for obtaining the
solvability condition for the FPRG. The following embedding
map Q;\(t) X — X, is defined according to [2], namely

At
Qs = [§] where if V C X5 (1) We have Q)\(t V={z¢
+ and Q)\(t) for A(t) = a by Q,

X|[§] € V}. We denote Q5

and @, respectively. Our first result is the generalization of
Proposition 1 that was obtained in [2] to the MJLS’s (8) and
(10).

Lemma 5.1: Let S¢ be the unobservable subspace for a

class ®, of system (10) and let S; be the unobservable
subspace for all modes | € ®,. It can be concluded that
So = Q'S¢ and S; = Qfle, |l € &, are the unobserv-
ability subspaces for (2, &, II).
Proof: Consider the unobservable subspace of system (10)
with ig € ®, (denoted as S5). Due to the fact that the initial
condition of the detection filter in (9) is known, we can write
8¢ =[S ]. Following the results in Section III-A, it is known
that for all ¢ in @, S is A§-invariant. This is due to the fact
that while system (10) remains in class ®,, the dimension of
the system is fixed and the results of Section III-A can be used.
Moreover, when \(t) leaves the class ®, and enters another
class ®; then T}, S5 C Sf, where S is an unobservable
subspace for class ®; which has a similar structure as that of
Sg,ie S = [0] However, we have T}, S = [Se], and
consequently, Sa € Nien,, S

Next, we show that for each class @, the subspace S, =
Q'S¢ is conditioned invariant for the class ®,. Let z €
So [ KerC;, therefore one needs to show that A;z € S, i €
®,,. This follows by noting that [4:=] = [_Ji, 2 ][§] €
S, since S¢ is A§-invariant with ¢ € ®,. Therefore, A,z €
S, and S, is conditioned invariant. Now if x € S,, then
Qo € 8¢, and therefore [§] € (;cq, KerH¢. This shows
that H;C;x = 0; and hence z € ﬂie% KerH;C;. It follows
that for the closed class ®,,, we have S, C ﬂjé% KerH;Cj.
Hence, according to the definition of the unobservable sub-
space S, (the largest Af-invariant subspace in (), 4 KerHY),
S, is the largest conditioned invariant subspace contained in
ﬂie% KerH;C;, and therefore S, € &, (2, ©).

For an open class ®,, note that for all the closed class
®;, j € N¢, it is shown above that S; = QJTIS; is an
u.o.s. for the class ®;. Therefore, let us start with <I>ag (the
first open class in N¢). It follows that all the classes in Ne
are closed. Moreover, one has Sag <N ieN.o S;. Therefore,

1
Sag € Njea, , KerH;C; ﬂjeNai) S;. Similarly, one can show
that S is the largest conditioned invariant subspace contained

in(N;cq,, KerH;Cj(jen., ot S;. Following along similar lines
one can s1110w that for all open classes ®,, o as well as ¢, one
gets S, = Q'S¢ as an u.o.s. [ ]

We are now in the position to derive the solvability condi-
tions for the FPRG corresponding to the MJLS (10).

Theorem 5.2: The FPRG has a solution for the augmented
MILS (10) and initial mode iy € ®, only if S} ﬂﬁjl =0,

j € @4, where S = inf&,(A,C, Y, 4 L7) and for
an open class ®,, S*ﬂ£1 =0 j € ®,1 € N,
where §§ = inf 6,(2, €, El) and L1 = Y icque, L7+

de%,keNa,leN L%. On the other hand, if S and S}, I € N,
Gf @, is open) ex1st such that they are also outer MS-
detectable, then the FPRG has a solution for the initial mode
ig € O, of the MILS (10).

Proof: (Only if part) Let S be an unobservable subspace
of system (10). To satisfy the condition (a) of the FPRG,
we should have Bf C S5,1 € ®, and B C &f,j €
®;,l € N,. Hence, £? C Q,'Bf C Q 18" = S, and
E2 cQ 1[36 CQy 1Sf =& By invoking Lemma 5.1, we
obtain Sa ¢ oA, €, ce. L7). Moreover, for any class
®;, | € Ny Uaq, it is shown in Lemma 5.1 that S; C &,
j € Ng, I € Ny, and hence Zje@;c,keNa,leNk E? c §.
Therefore, S; € 6;(2, €, L;). For condition (b) of the FPRG
to hold, according to the Definition 12, Lfl should be monic
for all modes accessible from « (which is already assumed to
hold) and L' (N SE =0, i € &, and /.Z"lﬂSf =0,j¢ <I>l
and | € N,. Therefore, Q (EelﬂSe) LN Sa

i € @, and Q; (E"lﬂS‘”) LINS =0,7€®,1 eN
Consequently, the above condltlons hold only if §* El =0,
J € ®q, where S = inf & (A, &, 3y £2) and for an
open class ®,, S; ﬂﬁl = 0,5 € &, I € N,, where
Sl inf 6](9[ Qt El)

(if part): First, we consider the case where ®,, is a closed
class. Given the unobservability subspace S which is outer
MS-detectable, there exist D; and H;, ¢ € &, such that
Sy =<< Njca, KerH;Cj|A; + D;C; >>cq,,. Let P, be
the canonical projection of X on X' /S and M;,i € @, be
a unique solution to M;P, = H;C; and A; = (A; + D;C; :
X/S¥), where P,(A; + D;C;) = A;P,, i € ®,. Due to
the fact that S is assumed to be outer MS-detectable, there
exist Gy, i € ®, such that (Ag,II) is MS-stable, where
Q[G = {A] + Gij,j S ‘I)a}.

Let us define F; = A; +G;M;, E; = Po(D; + P;"G;H;),
K; = P,B;, i € O, and e,(t) = wy(t) — Pyx(t). By
invoking equation (9) for A(t) = « and ¢ = 0 (no jumps
among classes since @, is closed) we obtain

éa(t) =Fwa(t) — Eiy(t) + Kiu(t)
— P (Asz(t) + Biu(t) + Limy(t)) + L2ma(t))

=Fywy(t) — PyLimi(t)

— Po(4Ai + DiCy)a(t) — Cm()
=Fjwa(t) — PoLimy(t) — A;Poa(t) — G M; Pyx(t)
=Fieq(t) — PLImy (t)

Note that P,L? = 0,i € ®,, since £Z C Si,i € P,.
Also, 7o(t) = Mwa(t) — Hiy(t) = Mjwa(t) — HiCiz(t) =
M;e,(t). Consequently, the error dynamics can be written
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according to

éa (t) = F)\(t)ea(t) — PaLi\(t)ml(t>

(11)
Toz(t) = M/\(t)eoz(t)v )‘(t) € (ba

It follows that the fault mode m4(¢) does not affect the residual
signal r,(t) and since the dynamics (11) is observable, con-
dition (b) of the FPRG also holds. Moreover, for mq(t) = 0
the system is MS-stable and lim;_o E{||r(t)||?} = 0.

Next, we consider the case where ®, is an open class.
Given the unobservability subspaces S} and S, | € @,
which are outer MS-detectable, there exist D; and H;, i € &,
and D; and H;, j € ®;,1 € N, such that §; =<<
njecba KerHjCj mlENa Sl|A1 + D;C; >>icq, and Sl* =<<
ﬂj&'@z KerHjCj ﬂkENz Sk|AZ + D;C; >>icd, if ®; is open
and §; =<< ﬂjeq,l KerH;C;|A; + D;C; >>cq, if @ is
closed. Let P, and P, be the canonical projections of X
on X'/S} and X /S, respectively and T; , be the canonical
projection of X'/S} on X/S;.

Let M;,i € ®, be a unique solution to M;P, = H;C;
and A; = (A; + D;C; : X/S?), where P,(A; + D;C;) =
A;P,, i € ®,. Moreover, the maps M; and Aj = (4, +
D;C; : X/S;), j € ®;,1 € N, can be found from expressions
M;P, = H;C; and P/(A; + D;C;) = A;P, respectively.
Due to the fact that S and S;° are assumed to be outer MS-
detectable, there exist G, i € ®, and G;,7 € ®;, 1 € N,
such that system (g, II) is MS-stable where Ag = {4; +
GiM;, A; + G;M;,i € 4,5 € O;,1 € Ny} Let us define
F;, = /L—l—GlMZ, E;, = Pa(DZ'—I—Pa_TGiHZ‘), K,=P,B;, i €
Co, Fj = Aj+ G;Mj, E; = Po(Dj + Py"GiHy), K; =
PBj, j €, eq(t) = wa(t) — Pyx(t) and e;(t) = wy(t) —
Pz(t). Following along the similar lines as in the case for the
closed class ®,,, the error dynamics for e, (t) can be written
as

ea(t) = F)\(t)ea(t) — PaL}\(t)m]_(t)
ra(t) = M@ eal(t)

as long as A(t) € ®,. When A(t) leaves the class @, att = v
and enters another class ®;, the error dynamics for e;(t) can
be expressed as follows

é(t) = Fawer(t) — BIL) yma(t)
r(t) = Mxye(t)

where we have ¢;(v1) = T} q€q(v1). Similarly, if ®; is an
open class, once A(t) leaves ®; and enters @, the error
dynamics for ey (t) = wy(t) — Pra(t) can be found similar
to (13). Consequently, the fault mode ms(¢) does not affect
the residual signal 75 (t) and the terms Py Ly, and PiL} ;)
are nonzero. Moreover, for m;(t) = 0 the error dynamics are
MS-stable and lim; o E{||75,(t)|[*} = 0. This completes
the proof of the theorem. |

Based on the results in Theorem 5.2, for the case when ®,, is
an open class, the detection filer in (9) has different dimensions
as specified by S when A(t) € ®,, and as specified by S;°
when A(t) € ®;. Moreover, when the filter is initiated from
mode ig € ®,, the dimensions of the filters are non-increasing
due to the fact that S C S;. Whenever A(¢) leaves a class
®; and enters ®; at time ¢ = vy, the initial conditions of the

12)

13)

filters w; () can be found from the elements of w;(v, ) as

w;(vy) = Tjwi (v, ). However, for the closed class @, the

dimension of the filer is fixed and is specified by S7.
Example 2: Consider the MJLS (8) with N = 4 and matri-

32
_[-1020 _fos-72 _[-1221
CeSAl—[—331—1}7142—[00—20}7143—[—3—22—3}7
s 1223 12 0 3 2 136
Ay = [93320 0y =0 = [0 10), 05 = C
4 = 1 4-10]" 1 — 2 — ?%é?a 3 — 4 —
2101°
22 = (4] ie () 12 = 13 = |8
é%éll%,i—_z,l yees Xy = b2 = o
1 0
0 11 0 0

13=13=[3]. Bi=oand 1= 2 2 % § |1t follows
1 -
that there exist two classes ®; = {%,22} a2nd oy, = {3,4}
which are closed and open, respectively. It is assumed that
the initial mode is 4. According to Theorem 5.2, one first
needs to find S = inf&o(A, ¢, L3 + L3). Since Py is
an open class, one is also required to find S such that
Z?:l L? C Sf. According to Algorithm 4, S; can be found
be setting Zy = Z?:l L2 which will result in S§ = L3 + L2.
Consequently, S5 can be found by invoking Algorithm 3
by setting Ky = Sf, which yields S; = L2. Therefore,
SiNLH =0,i=1,2and S§NL = 0,47 = 3,4, and
consequently the FPRG has a solution for the above system
provided that S and S5 are also outer MS-detectable. The
detection filters can be designed by following the steps that
are provided in the proof of Theorem 5.2. It should be noted
that according to Sf and S5, the dimension of the filters for
A(t) € ®3 and A(t) € Py is 3 and 2, respectively. The map
T2 can also be easily found from the canonical maps P; and
Py as Ty o = PP, ". The details are omitted due to space
limitations.

B. FPRG for the MJLSD

Consider the following MJLSD

&(t) =A@z (t) + Al gzt — Taw (1)

+ Bawyu(t) + Li(t)ml(t) + L?\(t)mg (t)

y(t) =Cxwyz(t) =(0) = ¢(0), 0 € [-p,0], i € ¥
where all the matrices are the same as in the dynamical model
(2) and uw € U 1is the input with dimension m. The matrices
Li( " and L?\(t) represent the fault signatures and are monic
and m;(t) € M; C X, i =1,2 denote the fault modes.

In system (14), 75(;)(t) denotes a time-varying delay when
the mode is in A(¢) and satisfies 0 < 7;(t) < p; < 00, 7;(t) <
h; < 1,V ¢ € U, where u; and h; are real constant scalars
for any ¢ € ¥ and p := max{u;,i € V}. In the following,
it is assumed that iy belongs to a closed class ®,. Similar
results can be derived for an open class following along the
same steps as in Section V-A. These results are omitted due
to space limitations.

The FPRG for the MJLSD (14) is concerned with design
of a residual generator that is governed by the detection filter
dynamics of the form

w(t) =Fy@yw(t) + FYpyw(t — ma@(t))
— Ex(yy(t) — E{ny(t — Ta@) () + Kxyult)
r(t) =Mymw(t) — Hawyy(t) (15)

(14)
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such that (a) the response of r(t) is affected by the fault
mode mq(t) and is decoupled from my(t), and (b) if m;
is identically zero then lim; ., E||r(¢)||> = 0 for any input
signal u(t). The MS-detectability for the MJLSD’s is defined
next.

Definition 13: We say that the system (2,27, & II) is
MS-detectable when there exist & = (Gy,...,Gy) and
&" = (G7,...,G%) of appropriate dimensions for which
system (Ag,A%,II) is MS-stable, where As = {A; +
G1Cq, ..., AN + GNCN} and A7, = {AI + GiCT, ..., A7]—V +
GLCL T

The following LMIs can be used for testing the MS-
detectability of a MJLSD [13], namely

Tt Yl mi X+ (L)@ XiA7 + LICH] _
* ~(1-h)Q
(16)

where J; = A; X, + X;A; + L;,C; + C/L;, n = max{|m|,i €
U} and the unknowns X; ,Q > 0, L;, and L7 having
appropriate dimensions.

The next theorem provides sufficient conditions for solv-
ability of the FPRG for system (14).

Theorem 5.3: The FPRG has a solution to the Marko-
vian jump system (14) with mode-dependent time-delays
and initial mode 79 € ®, (P, is closed) if there ex-
ists outer MS-detectable unobservability subspace S =
inf &, (A, A7, €, "o, £7) such that S5 L =0, i € Dy,

Proof: The proof is immediate by following along the same
lines as that we have already developed for the proof of the
sufficient condition in Theorem 5.2, and is therefore omitted
due to space limitations. ]

Remark 7: 1t should be noted that Theorem 5.3 provides
the sufficient conditions for solvability of the FPRG for the
MIJLSD’s. The advantage of this result is that it only uses finite
dimensional tools and avoids the complexity of dealing with
infinite dimensional systems.

VI. H,,-BASED FAULT DETECTION AND ISOLATION
DESIGN FOR THE MJLS’Ss

In this section, we consider Markovian jump systems that
are subjected to both external input and output disturbances
and that are governed by

k
() = Anwz(t) + Bapyult) + D L] ymy(t) + Bl d(t)
j=1

y(t) = Cagyz(t) + DSy d(t) (17)

where all the matrices are defined as in (8), Li\(k), 7 € k are
the fault signatures, and m;(t) € M;, j € k are the fault
modes. The signal d(t) € RP represents an unknown additive
disturbance at the input and output channels. We denote the
disturbance matrices Bf\l( £ and Df( ) and the fault signatures

Ly, i by By Dgi, i € N and
Lf,i € N,j € k, respectively. It is further assumed that the
disturbance input d(t) belongs to .%,[0, oc]. It should be noted
that similar results can be derived for the MJLSD. However,

due to space limitations, only the results for the MJLS’s

) associated with A\(t) =

without time-delays is considered in this section. Moreover, for
the same reason it is assumed that A(¢) is irreducible. Similar
results can be derived for a general Markov process A(t) by
partitioning it into closed and open classes as in Section V-A.
Based on the above assumption, there exists only one closed
class &; = .

It is assumed that the mode transition matrix II is not
known precisely. In other words, it belongs to the following
admissible uncertainty domain [33], namely

Pn :{I:[-i-AHZ |A7Tij| < €ij, €ij >0, Vi,j €N, Z?é]}

(18)
where II = [;;] is a known constant matrix and denotes
the estimated value of II, and AIl = [Am;;] denotes the

uncertainty in the mode transition rate matrix. Based on the
above formulation of the MILS (17), an H..-based Extended
Fundamental Problem in Residual Generation (HEFPRG) is
introduced now which is concerned with the design of a set
of detection filters

w;(t) = F,{(t)wj(t) - Ei(t)y(t) + Ki(t)u(t)

such that a fault in the I-th component m;(t) # 0 can only
affect the residual r;(¢) and no other residual 7;(¢)(j # [) and

19)

Irlles = {E [ ritom@ariioo. )]} <l
’ 0)

for all d(t) € %, and II € 2y, where v > 0 is a prescribed
level of disturbance attenuation.

Below we first present a preliminary result on disturbance
attenuation of the MJLS’s.

Lemma 6.1 ( [7]): Let v be a given positive constant. If
there exists a set of symmetric and positive-definite matrices
R = (Ry,..., Ry) > 0 such that the following set of coupled
LMIs hold for every 7 € N, namely

Ji C!{Dg; + R;By;

« D,Du-2I | <"

21

where J; = A;Rl + R;A; + Z;\Izl Finj + C{Cl, then the
system (17) with u(t) = 0 and m;(t) = 0,j € Kk is
stochastically stable and for zero initial conditions satisfies
the inequality ||y||2.z < ¥||d]||2-

A system that satisfies the above conditions is said to be
stochastically stable with a y-disturbance attenuation property.
In the next lemma, we consider the effects of uncertainties
on the mode transition matrix II for analyzing the stochastic
stability properties of system (17).

Lemma 6.2: Let v be a given positive constant. Let there
exists a set of symmetric and positive-definite matrices R =
(R1,...,Rn) > 0and {§; > 0,4,5 € N,i # j} such that the
set of coupled LMIs holds for every 7 € N, that is

Qi CiDg4i+ R;Bg; M,
£ DyDg—~1 0

* * —o

<0 (22)
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where @Q; = A;Rl + R;A; + Zjvzl ﬁ'inj + C{CZ +
Z;V:LJ#'L SZ E?JI’ Mz = [RZ - R17 e 7Ri -

i-1.Ri — Rip1,---,R; — Ry], and ZE; =
diag(&in 1, ..., §ii—1y L, Siiey L5 -, &in ). Tt now follows that

the uncertain system (17) with u(¢) = 0 and m;(t) = 0,5 € k
is stochastically stable. Moreover, for zero initial conditions
the system satisfies the inequality ||y||2,z < ~||d||2 for all
II € 9.

Proof: According to Lemma 6.1, the uncertain system (17)
with u(t) = 0 and m;(t) = 0,5 € k is stochastically stable
with a y-disturbance attenuation property if

N

A;Rl + R;A; + Z(ﬁ'ij + ATl'ij)Rj + C{Cl—
=1

(C!Dgi + RiBy;)(Dly;Dg; —v*1) "' (ClDgi + R;By;) < 0

for all © € N. The above inequality can be rewritten as [33]
N
A;Rz + R;A; + Z ﬁ'inj + C;Ci—

j=1

(C(Ddi + R;Bg;) (Dl Dai — 1)~

Py

Jj= 1:]752

(C!Dg; + R;Ba;)'

AWUR R+ A%(R R)] <

The above inequality holds for all |Am;;| < ¢;; if there exist
&j > 0,1,7 € N,i # j such that
N
j=1
— (C{Ddi + R'Bdi)(DéliDdi — 721)71(C£Ddi + Rini)/
+ Z 5” 21+—(R —R)? <0
Jj=1,j#i
It can be shown easily that the above is equivalent to the in-
equality (22) by using the Schur complement. This completes
the proof of this lemma. ]

We are now in the position to derive our sufficient condi-
tions for determining the solvability of the HEFPRG for an
uncertain MJLS.

Theorem 6.3: The HEFPRG has a solution for the MJLS
(17) with an uncertain mode transition matrix according to (18)
if there exist k outer MS- detectable unobservability subspaces
S =inf &, (A, ¢, 1Zl”;ﬁjﬁ)jeksuchthm

S N£Li=o,

ieN,jek (23)

as well as the matrices Tj;, positive-definite matrices R;;, ¢ €
N, j € k, and {gil > 0,4,l € N,i#1,j € k} such that

Qij T Ojj

«  DLH HyDy—~1 0 | <0 (4

* * _Eij
for all i € N, j € k with Q;; = Aj;R;j + M{7TZ’J
Rij Aij+Tiy Mg+ 500 Ry + M Mg+ 500, St T,
Yij = =M];H;jDg;— Ri; P;D;; Dgi — Rij Py Bai —Tij Hij D
©ij = [Rij—Ruj, -, Rij—R(i—1)j, Rij— Ry, Rij—

Ryjl. Sy = diag(€h 1, €)L&, Ely]) and
where P; is the canonical projection of X on X /Sy , the
pairs (M”,A ), @ € N, j € k are the factor system of
the pairs (Cj, 4;),i € N on X/Sj , H;; is the solution to
KerH,;;C; = 8/ +KerC; and 8 =<< N, KerH;;Cy|A;+
DijCi >>ieN, J €k

Proof: Given P; as the canonical projection of X on X /Sj *,
let M;;,7 € N be a unique solution to M;;P; = H;;C;
and define A;; = (A; + D;;C; : X/8)),i € N. Let
Gi; = Ry 1T”, i € N,j € k where T;; and R;; are the
solutrons to the inequality (24). Define Fi; = A;; + G5 M5,
Eij = Pj(Dij+ P;"G;jH;;) and K;; = P;B; fori € N, j €
k. Furthermore, define e;(t) = w;(t) — ij(t), so that by
using (19) we have

éj(t) =Fjjw;(t) — Eiyy(t) + Kiju( )

— Pj(Aiz(k) + Byu(k +Zlel ) 4 Baid(t))
=(Aij + Gij Mij)e;(t) — P'L'mj( )
— P;jD;;Dg;d(t) — P;By;d(t) — Gij Hij Da;d(t)

Furthermore, we have r;(t) = M;w;(t) — Hjyt) =
M;e;(t) — H;jDgd(t). Therefore, the residual r; is only
affected by the fault m; and according to Lemma 6.2 and
inequality (24), the inequality (20) holds for all the residuals
Tj (t), jek |

Remark 8: 1t should be noted that the above theorem
results can be easily extended to the case where A(t) is not
irreducible. In that case, similar filters as in (9) with time-
varying dimensions are required and for each initial mode
i9 € ®, the solvability conditions of the HEFPRG depend
on the [N, |+ 1 unobservability subspaces for classes N, U .

Once the residual signals r;(t),j € k are constructed and
generated, the final step in developing a reliable fault detec-
tion and isolation strategy deals with the residual evaluation
process which involves determining the evaluation functions
Jrj and their associated thresholds Jt;,,j. Once the thresholds
and evaluation functions are selected, the occurrence of a fault
can be detected and isolated by using the following decision
logics, namely J,., > Jy, = m; #0, j ek

Finally, it should be emphasized that the fault sensitivity of
the residuals can be improved by explicitly incorporating fault
sensitivity in the design process. However, this topic is beyond
the scope of the present work and is left as a topic of future
research.

VII. CONCLUSIONS

A geometric approach to the problem of fault detection
and isolation (FDI) of continuous-time linear Markovian jump
systems with (MJLSD’s) and without time-delays (MJLS’s)
is developed in this paper. Starting with a new geometric
characterization of the unobservable subspace of a Markovian
jump system, the concept of unobservability subspaces is
formalized and an algorithm for constructing these subspaces
is presented. By invoking the notion of an unobservability
subspace, the necessary and sufficient conditions for solving
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the fundamental problem of residual generation (FPRG) for
Markovian jump systems is formally derived and investigated.
Moreover, for MJLSD’s, sufficient conditions for solvability
of the FPRG are derived by utilizing only finite dimensional
tools. For uncertain MJLS’s, an H,-based FDI strategy is
proposed and developed where a set of residual signals are
constructed such that each residual is only affected by one fault
and is decoupled from the others while the H., norm of the
transfer function between the unknown input (additive external
disturbance in the input and output channels) and the residual
signals is guaranteed to be less than a prescribed desired value.
One of the future directions of research will be in investigating
fault sensitivity for the MJLS’s and the MJLSD’s.
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