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Almost 80 years ago, Lionel Robbins proposed a highly influential definition of the subject
matter of economics: the allocation of scarce means that have alternative ends. Robbins
confined his definition to human behavior, and he strove to separate economics from
the natural sciences in general and from psychology in particular. Nonetheless, I extend
his definition to the behavior of non-human animals, rooting my account in psychologi-
cal processes and their neural underpinnings. Some historical developments are reviewed
that render such a view more plausible today than would have been the case in Robbins’
time.To illustrate a neuroeconomic perspective on decision making in non-human animals,
I discuss research on the rewarding effect of electrical brain stimulation. Central to this
discussion is an empirically based, functional/computational model of how the subjective
intensity of the electrical reward is computed and combined with subjective costs so as
to determine the allocation of time to the pursuit of reward. Some successes achieved
by applying the model are discussed, along with limitations, and evidence is presented
regarding the roles played by several different neural populations in processes posited
by the model. I present a rationale for marshaling convergent experimental methods to
ground psychological and computational processes in the activity of identified neural pop-
ulations, and I discuss the strengths, weaknesses, and complementarity of the individual
approaches. I then sketch some recent developments that hold great promise for advanc-
ing our understanding of structure–function relationships in neuroscience in general and in
the neuroeconomic study of decision making in particular.
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ROBBINS’ DEFINITION
In his landmark essay on the nature of economics, Lionel Robbins
defined economics as

“the science which studies human behaviour as a relationship
between ends and scarce means which have alternative uses”
(Robbins, 1935, p. 16).

At first glance, this formulation seems a dry and inauspicious
note on which to launch a discussion of the behavioral and neuro-
biological study of economic decision making in animals. Robbins’
definition confines economics to the study of human behavior, he
sought to distinguish economics from the natural sciences, and he
firmly opposed attempts to “vivisect the economic agent” (Maas,
2009).

Why then, use his definition as a starting point? I do so because
deletion of a single word, “human,” frees the core idea underlying
Robbins’ definition to apply as broadly and fundamentally in the
domain of animal biology as in the originally envisaged domain
of human economic behavior. Robbins opined:

“The material means of achieving ends are limited. We have
been turned out of Paradise. We have neither eternal life nor
unlimited means of gratification. Everywhere we turn, if we

choose one thing we must relinquish others which, in differ-
ent circumstances, we wish not to have relinquished. Scarcity
of means to satisfy ends of varying importance is an almost
ubiquitous condition of human behaviour” (Robbins, 1935,
p. 15).

This statement is no less true of the behavior of non-human
animals.

Robbins’ definition is highly general and is not restricted to
exchanges such as barter or market transactions. To illustrate the
point that even“isolated man”engages in economic behavior, Rob-
bins (1935, pp. 34–35) describes a choice facing Robinson Crusoe,
the castaway protagonist of the eponymous classic novel (Defoe,
1719/2010). Crusoe is marooned on a tropical island. A decision
making challenge faced by this solitary individual is positioned by
Robbins firmly within the economic realm:

“Let us consider, for instance, the behaviour of a Robinson
Crusoe in regard to a stock of wood of strictly limited dimen-
sions. Robinson has not sufficient wood for all the purposes
to which he could put it. For the time being the stock is
irreplaceable. [. . .] if he wants the wood for more than one
purpose – if, in addition to wanting it for a fire, he needs it for
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fencing the ground round the cabin and keeping the fence in
good condition – then, inevitably, he is confronted by a [. . .]
problem – the problem of how much wood to use for fires
and how much for fencing.”

Let us now ponder another example, one that illustrates both the
boundary Robbins draws between non-economic and economic
behavior and how readily his definition can be transposed to the
behavior of non-human animals.

SCARCE MEANS WITH ALTERNATIVE USES
Consider the case of a diving duck incubating eggs in a shoreline
nest. In this terrestrial environment oxygen is abundant. Breath-
ing can be performed at the same time as other activities, such
as preening, incubating the eggs, and scanning for predators. The
duck need not forgo engagement in other behaviors in order to
devote time to the exchange of oxygen and carbon dioxide. If we
extend Robbins’ definition to the circumstances of the nesting
duck, we will see that no economic principles govern breathing in
this environment and that no allocation decisions need be made
to ensure the necessary gas exchange.

Now consider the same duck as it forages for fish. Entry into
the aquatic environment renders oxygen a scarce good. Accord-
ing to my extension of Robbins’ definition, the duck’s quest for
oxygen has moved into the economic realm. In the aquatic envi-
ronment, oxygen, in a form exploitable by the duck, is available
only at the surface whereas prey are found only in the depths. Two
vital ends, gas exchange and energy balance, are now in conflict.
The time available for attainment of each of these ends is scarce,
and it has alternative uses. The duck can fish or breathe, but it can-
not do both at the same time or in the same place. To maximize
its rate of energy intake, the duck must draw down its precious
supply of oxygen, traveling to the attainable locations where prey
densities are highest and harvesting what it can while it is able to
remain there. Maximization of net energy intake thus trades off
against conservation of sufficient blood oxygen for a safe return to
the surface. The duck must remain there long enough to at least
partially replenish its oxygen supply. However, if it consistently
lingers too long at the surface, it will starve, and if it tarries too
long submerged, it will drown.

Many means of survival in the natural world are scarce or
tend toward this condition. Consider a population that moves
into a new environment where food is initially abundant. All
else held equal, the population will grow, increasing demand for
food while decreasing supply. Abundance will be fleeting and
self-limiting.

The trade-off between breathing and feeding in aquatic ani-
mals has been modeled by behavioral ecologists using principles
that are economic, in the spirit of Robbins’ definition, and that
reflect the optimal allocation of scarce means with alternative uses
(Kramer, 1988). In the case of the diving duck, such an optimal-
foraging model predicts how variation in the depth and density of
prey alter how the duck distributes its time between the surface and
the underwater environment. More generally, such models predict
how animals allocate their time in the pursuit of spatially con-
strained (“patchy”) resources. Time is the quintessentially scarce
resource, a view Robbins expressed as follows:

“Here we are, sentient creatures with bundles of desires and
aspirations, with masses of instinctive tendencies all urging
us in different ways to action. But the time in which these ten-
dencies can be expressed is limited. The external world does
not offer full opportunities for their complete achievement.
Life is short” (Robbins, 1935, pp. 12–13).

As the duck runs down its oxygen supply on a deep dive that has
yet to yield any fish, the scarcity of time makes itself evident with
particular force.

Later in this essay, I speculate about what Robbins meant by
“sentient,” and I argue that sentience is not a necessary condition
for economic behavior. I discuss the implications of extending
Robbins’ definition into the biological realm, and I describe an
experimental paradigm for the laboratory study of economic deci-
sion making in non-human animals that is based on the allocation
of time as a scarce resource.

THE CONTRIBUTION OF PSYCHOPHYSICS TO VALUATION
Allocation decision are based on information about the external
world, such as distributions of predators and prey, and about the
internal environment, such as the state of energy and oxygen stores.
These exteroceptive and interoceptive data are acquired, processed,
and stored by sensory, perceptual, and mnemonic mechanisms
whose dynamic range, resolution, and bandwidth are limited by
physics, anatomy, and physiology. Veridical representation of the
external world is unfeasible.

Psychophysics describes how objective variables, such as lumi-
nance, are mapped into their subjective equivalents, such as
brightness. Such mappings are typically non-linear and reference-
dependent. Non-linearity is exemplified by the Weber–Fechner
law (Weber, 1834/1965; Fechner, 1860, 1965), which posits that
the smallest perceptual increment in a stimulus is a constant
proportion of the starting value. Such logarithmic compression
sacrifices accuracy as stimulus strength grows but makes efficient
use of a finite dynamic range. Reference dependence is illustrated
by demonstrations that the important information conveyed by
the visual system does not concern luminance per se but rather
relative differences in luminance with respect to the mean (i.e.,
contrast). This feature can be advantageous. Consider a checker-
board made of alternating dark-gray and light-gray squares. The
objective property of the squares that causes them to look dark or
light is called “reflectance,” and the corresponding subjective qual-
ity is called “lightness.” If perception were dependent only on the
processing of local information according to the Weber–Fechner
law, then increasing the intensity of the illumination impinging
on the checkerboard would, in illusory fashion, drive the per-
cept of the lighter squares toward white and the percept of the
dark-gray squares toward a lighter gray. However, the contrast
between adjoining squares remains constant as objective lumi-
nance increases. (By definition, contrast is normalized by the mean
luminance.) Thus, we perceive the lightness of each kind of square
as constant over a wide range of luminance.

In the example of the checkerboard, reference dependence helps
the visual system recover a meaningful property of an object in the
world, the relative reflectances of its components, factoring out the
change in viewing conditions. However, reference dependence can
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also cause the subjective lightness of a region under constant illu-
mination to vary as a function of changes in the illumination of
the surrounding region (simultaneous lightness contrast). In that
case, perhaps an unusual one in the natural environment, reference
dependence leads to a perceptual error. Thus, a mechanism that
normally serves to recover facts about the world can also produce
illusions.

Whereas sensory systems provide information about the loca-
tion, identity, and displacement of objects in the external world,
valuation systems estimate what these objects are worth. Valua-
tion systems provide the data for allocation decisions. The neural
systems subserving valuation cannot put back information that
has been filtered out by their sensory input, and these systems
have information-processing constraints, rules, and objectives of
their own. Thus, a realistic model of allocation decisions must
take into account the psychophysical functions that map objec-
tive variables into subjective valuations. As we will see shortly,
the mappings of variables involved in valuation also tend to be
non-linear and reference-dependent. They, too, embody built-in
rules of thumb that are usually beneficial but that can sometimes
generate systematic errors.

Below, I describe a particular model in which psychophysical
transformations contribute to the allocation of a scarce resource,
and I illustrate how the form of these transformations can be
used strategically to link stages in the processes of valuation
and allocation to specific neural populations. But first, we must
respond to Robbins’ objections to consideration of psychophysics
in economic decision making.

DID ROBBINS PROTEST IN VAIN?
Prominent nineteenth century economists, such as Jevons
(1871/1965) and Edgeworth (1879), incorporated psychophysi-
cal concepts into their theories of valuation (Bruni and Sugden,
2007). For example, the Weber–Fechner law (Weber, 1834/1965;
Fechner, 1860, 1965) was used to interpret the law of diminish-
ing returns (Bernoulli, 1738, 1954), the notion that the subjective
value of cumulative increments in wealth decreases progressively.
Although the practice of incorporating psychophysics into eco-
nomics was commonplace in the late nineteenth century, it was
all but abandoned under the influence of a later generation of
economists led by Pareto (1892–1893/1982, as cited in Bruni and
Sugden, 2007) and Weber (1908), who sought to purge economics
of psychological notions and to treat the principles of choice as
axiomatic (Bruni and Sugden, 2007; Maas, 2009).

By the second edition of his landmark essay, Robbins had
acknowledged that the foundations of valuation are “psychical,”
but he treated such matters as beyond the scope of economics:

“Why the human animal attaches particular values [. . .] to
particular things, is a question which we do not discuss. That
is quite properly a question for psychologists or perhaps even
physiologists. All that we need to assume as economists is the
obvious fact that different possibilities offer different incen-
tives, and that these incentives can be arranged in order of
their intensity” (Robbins, 1935, p. 86).

Robbins shared the firm opposition of Pareto and Weber to basing
an economic theory of subjective value on psychophysics, and he

also endorsed with their strong conviction that “the fundamental
propositions of microeconomic theory are deductions from the
assumption that individuals act on consistent preferences” (Sug-
den,2009). He saw this assumption as self-evident and thus exempt
from the need for experimental validation (Sugden, 2009).

Under Robbins’ influence and that of contemporary economic
luminaries, such as Hicks and Allen (1934), and Samuelson (1938,
1948), the theory, and subject matter of psychology was all but
banished from the economic mainstream by the middle of the
twentieth century (Laibson and Zeckhauser, 1998; Bruni and Sug-
den, 2007; Angner and Loewenstein, in press). The psychophysical
notions entertained by the nineteenth century economists came
to be regarded as unnecessary to the economic enterprise because
powerful, general theories could be derived without them based
on assumptions that seemed irrefutable (Bruni and Sugden, 2007).

The exile of psychology from economics was not to last. At least
a partial return has been driven by developments in the psychol-
ogy of decision making and by the related emergence of behav-
ioral economics as an important and influential sub-discipline
(Camerer and Loewenstein, 2004; Angner and Loewenstein, in
press). The behavioral economic program seeks to base models
of the economic agent on realistic, empirically verified psycholog-
ical principles. Crucial to this approach are challenges to notions
that Robbins, Weber, and Pareto took to be self-evident (Bruni and
Sugden, 2007; Sugden, 2009), such as the consistency and transi-
tivity of preferences (Tversky, 1969; Tversky and Thaler, 1990;
Hsee et al., 1999). The Homo psychologicus who emerges from
behavioral economic research uses an array of cognitive and affec-
tive shortcuts to navigate an uncertain, fluid world in real time.
These shortcuts generate systematic behavioral tendencies that are
economically consequential. Homo psychologicus is more complex
than the Homo economicus erected by the neoclassical economists,
more challenging to model, but more recognizable among the
people we know and observe.

Kahneman and Tversky’s work on heuristics and biases (Tver-
sky and Kahneman, 1974), and on prospect theory (Kahneman
and Tversky, 1979; Tversky and Kahneman, 1992), is seen to have
brought behavioral economics into the economic mainstream
(Laibson and Zeckhauser, 1998). Heuristics are simple rules of
thumb that facilitate decision making by helping an economic
agent avoid the paralysis of indecision and keep up with a rapidly
evolving flow of events (Gigerenzer and Goldstein, 1996; Gilovich
et al., 2002; Gigerenzer and Gaissmaier, 2011). One line of research
on heuristics highlights the ways in which heuristics improve deci-
sion making (Gigerenzer and Goldstein, 1996; Gigerenzer and
Gaissmaier, 2011). Another illustrates how shortcuts that ease the
computational burden may sometimes do so at the cost of gener-
ating errors that Homo economicus would not make (Tversky and
Kahneman, 1974; Kahneman and Tversky, 1996). Because these
errors are not random, they lead to predictable biases in decision
making.

Prospect theory (Kahneman and Tversky, 1979) provides a for-
mal framework for integrating heuristics and mapping functions
analogous to psychophysical transformations. Prospects, such as a
pair of gambles, are first “framed” in terms of gains or losses. This
imposes reference dependence at the outset by establishing the
current asset position as the point of comparison. The position
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of this “anchor” can be displaced by verbal reformulations of a
prospect that do not change its quantitative expectation, e.g., by
casting a given prospect as a loss with respect to a higher ref-
erence point as opposed to a gain with respect to a lower one.
Two mapping functions are proposed, one that transforms gains
and losses into subjective values and a second that transforms
objective probabilities into decision weights (which operate much
like subjective probabilities). The outputs are multiplied so as to
assign an overall value to a prospect. Like common psychophysical
transformations, the mapping functions are non-linear. The shape
of the value function not only captures the law of diminishing
returns (Bernoulli, 1738, 1954), it is also asymmetric, departing
more steeply from the origin in the realm of losses than in the
realm of gains. This asymmetry makes predictions about changes
in risk appetites when a prospect is framed as a loss rather than as
a gain or vice-versa. The decision-weight function is bowed, cap-
turing our tendency to overweight very low-probability outcomes,
to assign an inordinately high weight to certain outcomes, and to
underweight intermediate probabilities.

Prospect theory argues that the form and parameters of the
non-linear functions mapping objective variables into subjective
ones are consequential for decision making. On this view, the
choices made by the economic agent can neither be predicted
accurately nor understood without reference to such mappings.
Thus, prospect theory and related proposals restore psychological
principles of valuation to a central position in portrayals of the
economic agent.

Below, I point out some analogies between prospect theory and
a model that links time allocation by laboratory rats to benefits
and costs (Arvanitogiannis and Shizgal, 2008; Hernandez et al.,
2010). Although they advocate caution when drawing parallels
between decision making in humans and non-human animals,
Kalenscher and van Wingerden (2011) detail many cases in which
departures from the axioms of rational choice, discovered by psy-
chologists and behavioral economists in their studies of humans,
are mirrored in the behavior of laboratory animals. Of particular
relevance to this essay is their discussion of the work of Stephens
(2008) showing how a rule that can generate optimal behavior
in the natural environment can produce time-inconsistent prefer-
ences in laboratory testing paradigms. This is reminiscent of how
simplifying rules that prove highly serviceable to our sensory sys-
tems in natural circumstances can generate perceptual illusions
under laboratory conditions.

VIVISECTING THE ECONOMIC AGENT
Since Robbins published his seminal essay almost 80 years ago,
at least four intellectual, scientific, and technological revolutions
have transformed the landscape in which battles about the nature
of the economic agent are fought. The cognitive revolution, which
erupted in force in the 1960s, overthrew the hegemony of the
behaviorists (labeled a “queer cult” by Robbins), restored inter-
nal psychological states as legitimate objects of scientific study,
and provided rigorous inferential tools for probing such states.
A later revolt, propelled forward by Zajonc’s (1980) memorable
essay on preferences, reinstated emotion as a major determinant
of decisions and focused much subsequent work on the interac-
tion of cognitive and affective processes (LeDoux, 1996; Metcalfe

and Mischel, 1999; Slovic et al., 2002a,b). Meanwhile, progress
in neuroscience has vastly expanded what we know about the
properties of neurons and neural circuitry while generating an
array of new tools for probing brain–behavior relationships at
multiple levels of analysis. Finally, we now find ourselves sur-
rounded by “intelligent machines” with capabilities that would
likely have astounded Robbins. These computational devices have
expanded common conceptions of what can be achieved in the
absence of sentience.

Robbins strove to isolate economics from dependence on psy-
chological theory. Thus, it is not surprising that his essay on the
nature and significance of economics provides only a few indica-
tions of his views regarding the qualities of mind required of the
economic agent. One of these is the ability to establish a consistent
preference ordering. The use of such an ordering to direct purpo-
sive behavior is discussed as requiring time and attention, which
suggests that he had in mind a deliberative process, the working
of which the individual is aware. Robbins also refers to us as “sen-
tient beings.” Webster’s II New Riverside University Dictionary
(Soukhanov, 1984) defines “sentient” as “1. Capable of feeling:
CONSCIOUS. 2. Experiencing sensation or feeling.” The defin-
ition of “purposive” provided by The Collins English Dictionary
(Butterfield, 2003) includes the following:“1. relating to, having, or
indicating conscious intention.” We cannot be sure exactly which
meanings he intended, but Robbins’ text suggests to this reader that
experienced feelings, deliberation and conscious intent were linked
in his conception of what is required for the purposive pursuit of
ends and the allocation of scarce means to achieve them.

Since Robbins wrote his essay, thinking about the role of expe-
rienced feelings, deliberation and conscious intent in decision
making and purposive behavior has evolved considerably. A highly
influential view (Fodor, 1983) links the enormous computational
abilities of our brains to the parallel operation of multiple special-
ized modules that enable us to perform feats such as the extraction
of stable percepts from the constantly changing flow of sensory
information, construction of spatial maps of our environment,
transformation of the babble of speech sounds into meaningful
utterances, near-instantaneous recognition of thousands of faces,
etc. Most of the processing subserving cognition, the workings
of the specialized modules, is seen to occur below the waterline of
awareness. The conscious processor is portrayed as serial in nature,
narrowly limited in bandwidth by a very scarce cognitive resource:
the capacity of working memory (Baddeley, 1992). Thus, con-
scious processing constitutes a formidable processing bottleneck,
and it is reserved for applications of a special, integrative kind
(Nisbett and Wilson, 1977; LeDoux, 1996; Baars, 1997; Metcalfe
and Mischel, 1999).

The resurgence of interest in emotion has brought affective pro-
cessing within the scope of phenomena addressed by a highly par-
allel, modularized computational architecture. In Zajonc’s (1980)
view, evaluative responses such as liking or disliking emerge spon-
taneously and precede conscious recognition – they arise from
fast processes operating in parallel to the machinery of cognition,
as traditionally understood. Indeed, the cognitive apparatus often
busies itself with the development of plausible after-the-fact ratio-
nalizations for unconscious affective responses of which it is even-
tually informed. Zajonc’s ideas have contributed to a dual view of
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decision making in which deliberative and emotional processes vie
for control (Loewenstein, 1996; Metcalfe and Mischel, 1999; Slovic
et al., 2002a,b). Deliberative processing entails reasoning, assess-
ment of logic and evidence, and abstract encoding of information
in symbols, words, and numbers; it operates slowly and is oriented
toward actions that may lie far off in the future. In contrast, emo-
tional processing operates more quickly and automatically; it is
oriented toward imminent action. Under time pressure or when
decisions are highly charged, the affective processor is at an advan-
tage and is well equipped to gain the upper hand. Particularly
important to the dual-process view is its emphasis on opera-
tions that take place outside the scope of consciousness thoughts
and experienced feelings, i.e., beyond sentience. Unlike what I
am guessing Robbins to have assumed, the dual-process view
allows both cognitive and affective processing to influence decision
making without necessarily breaching the threshold of awareness.

It has long been recognized that we share with non-human
animals many of the rudiments of affective processing (Darwin,
1872). In parallel, much evidence has accumulated since Robbins’
time that non-human animals have impressive cognitive abilities,
including the creation of novel tools (Whiten et al., 1999; Weir
et al., 2002; Wimpenny et al., 2011) and the ability to plan for the
future (Clayton et al., 2003; Correia et al., 2007). Thus, both the
reintegration of emotion into cognitive science and new devel-
opments in the study of comparative cognition add force to the
notion that basic processes underlying our economic decisions
also operate in other animals. I leave aside the question of the
degree to which sentience should be attributed to various animals,
but I note that the continuing development of artificial compu-
tational agents has expanded our sense of what is possible in the
absence of consciousness thoughts and experienced feelings. For
example, reinforcement-learning algorithms equip machines with
the ability to build models of the external world based on their
interaction with it and to select and pursue goals with apparent
purpose (Sutton and Barto, 1998; Dayan and Daw, 2008; Dayan,
2009).

Developments since Robbins’ time have not only lent momen-
tum to the behavioral economic program, they have also motivated
initiatives to further “vivisect the economic agent” by rooting it in
neuroscience. Twenty-five years ago, a presentation on decision
making would have evoked puzzlement and no small measure of
disapproval at a neuroscientific conference; now, such conferences
are far too short to allow participants to take in all the new findings
on this topic of burgeoning interest. The emergence of compu-
tational neuroscience as an important sub-field has provided a
mathematical lingua franca and a mutually accessible frame of
reference for communication between scholars in neuroscience,
decision science, computer science, and economics.

The neuroeconomic program (Glimcher, 2003; Camerer et al.,
2005; Glimcher et al., 2008; Loewenstein et al., 2008) seeks to
replace Homo psychologicus with Homo neuropsychologicus. This
program offers the hope that internal states hidden to behav-
ioral observation can be monitored by neuroscientific means and,
particularly in laboratory animals, can be manipulated so as to sup-
port causal inferences. The spirit of the neuroeconomic initiative
shares much with that of the behavioral economic program, which
is also concerned with what is “going on inside” the economic

agent. However, the neuroeconomist draws particular inspiration
from the striking successes achieved in fields such as molecular
biology, where our understanding of function has been expanded
profoundly by discoveries about structure and mechanism.

AN EXPERIMENTAL PARADIGM FOR THE BEHAVIORAL,
COMPUTATIONAL, AND NEUROBIOLOGICAL STUDY OF
ALLOCATION UNDER SCARCITY
A neuroeconomic perspective has informed several different
experimental paradigms for the study of decision making in non-
human animals (Glimcher, 2003; Glimcher et al., 2005, 2008;
Kalenscher and van Wingerden, 2011). One of these entails pur-
suit of rewarding electrical brain stimulation (Shizgal, 1997). In
the following sections, I describe a variant of this paradigm (Bre-
ton et al., 2009; Hernandez et al., 2010), which I relate to Robbins’
definition of economics. At the end of this essay, I sketch a path
from this particular way of studying animal decision making to
broader issues in neuroeconomics.

Rats, and many other animals, will work vigorously to trigger
electrical stimulation of brain sites arrayed along the neuraxis,
from rostral regions of prefrontal cortex to the nucleus of the soli-
tary tract in the caudal brainstem. The effect of the stimulation
that the animal seeks, called “brain stimulation reward (BSR)”,
can be strikingly powerful and can entice subjects to cross elec-
trified grids, gallop an uphill course obstructed with hurdles, or
forgo freely available food to the point of starvation. Although the
stimulation makes no known contribution to the satisfaction of
physiological needs, the animals act as if BSR were highly bene-
ficial, and they will work to the point of exhaustion in order to
procure the stimulation.

Adaptive allocation of scarce behavioral resources requires that
benefits and costs be assessed and combined so as to provide a
result that can serve as a proxy for enhancement of fitness. The
electrical stimulation that is so ardently pursued appears to inject
a meaningful signal into neural circuitry involved in computing
the value of goal objects and activities. For example, the rewarding
effect produced by electrical stimulation of the medial forebrain
bundle (MFB) can compete with, summate with, and substitute
for the rewarding effects produced by natural goal objects, such as
sucrose and saline solutions (Green and Rachlin, 1991; Conover
and Shizgal, 1994; Conover et al., 1994). This implies that the
artificial stimulation and the gustatory stimuli share some com-
mon attribute that permits combinatorial operations and ultimate
evaluation in a common currency.

My coworkers and I have likened the intensity dimension of
BSR to the dimension along which the reward arising from a tas-
tant varies as a function of its concentration (Conover and Shizgal,
1994; Hernandez et al., 2010). On this view, a rat that works harder
for an intense electrical reward than for a weaker one is like a for-
ager that pursues a fully ripe fruit more ardently than a partially
ripe one. Both are relinquishing a goal they would have sought
under other circumstances for a different goal that surpasses it
in value. Viewed in this way, the subjective intensity dimension
is fundamental to economic decision making, as defined in the
broad manner advocated here.

In many experiments on intracranial self-stimulation (ICSS),
the cost column of the ledger is manipulated by altering the
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contingency between delivery of the rewarding stimulation and
a response, such as lever pressing. Conover and I have developed
schedules of reinforcement that treat time as a scarce resource in
the sense of Robbins’ definition (Conover and Shizgal, 2005; Bre-
ton et al., 2009). Like the human economic agents portrayed by
Robbins, our rats have “masses of instinctive tendencies” urging
them “in different ways to action.” Even in the barren confines
of an operant test chamber, rats will engage in activities, such as
exploration, grooming, and resting, that are incompatible with
the actions required to harvest the electrical reward. One of our
schedules imposes a well controlled opportunity cost on the elec-
trical reward (Breton et al., 2009). (The opportunity cost is the
value of the alternate activities that must be forgone to obtain the
experimenter-controlled reward.) On this schedule, the rat must
“punch a clock” so as to accumulate sufficient work time to “get
paid.” This is accomplished by delivering the stimulation once the
cumulative time the rat has held down a lever reaches the cri-
terion we have set, which we dub the “price” of the reward. We
use the term “cumulative handling-time” to label this schedule.
(In behavioral ecology, handling-time refers to the period dur-
ing which a prey item is first rendered edible, e.g., by opening
a shell, and then consumed.) To paraphrase Robbins, the condi-
tions of the cumulative handling-time schedule require that if the
rat chooses to engage in one activity, such as holding down the
lever, it must relinquish others, such as grooming, exploring, or
resting, which, in different circumstances (e.g., in the absence of
BSR), it would not have relinquished. Like stimulation strength,
price acts as an economic variable, as defined in the broad manner
advocated here.

The key to making time a scarce resource is to ensure the exclu-
sivity of the different activities in which the rat might engage. An
exception illustrates the rule. In an early test of our cumulative
handling-time schedule, a rat was seen to turn its back to the lever,
hold it down with its shoulder blades, and simultaneously groom
its face. By repositioning the lever, we were able to dissuade this
ingenious fellow from defeating our intentions, and none of our
rats have been seen since to adopt such a sly means of rendering
their time less scarce.

Traditional schedules of reinforcement (Ferster and Skinner,
1957) do not enforce stringent time allocation. Interval schedules
control when rewards are available, but little time need be devoted
to operant responding in order to harvest most of the rewards
on offer; the subject can engage in considerable “leisure” activ-
ity without forgoing many rewards. Ratio schedules do control
effort costs, but they leave open the option of trading off oppor-
tunity costs against the additional effort entailed in responding
at a higher cadence. In contrast, the cumulative handling-time
schedule enforces a strict partition of time between work and
leisure.

ALLOCATION OF TIME TO THE PURSUIT OF REWARDING
ELECTRICAL BRAIN SIMULATION
Figure 1A illustrates how rats allocate their time while working
for BSR on the cumulative handling-time schedule. We define
an experimental trial as a time interval during which the price
and strength of the electrical reward are held constant. The trial
duration is made proportional to the price, and thus, a rat that

works incessantly will accumulate a fixed number of rewards per
trial. The ordinate of Figure 1A plots the proportion of trial time
(“time allocation”) spent working for the electrical stimulation.
When the price of BSR is low, the rat forgoes leisure activities and
spends almost all its time holding down the lever to earn electrical
rewards. As the price is increased, the rat re-allocates the scarce
resource (its time), engaging more in leisure activities and less in
work. Figure 1B illustrates what happens when the price of the
electrical reward is held constant but its strength is varied. The
stimulation consists of a train of current pulses; under the condi-
tions in force when the data in Figure 1 were collected, each pulse
is expected to have triggered an action potential in the directly
activated neurons that give rise to the rewarding effect (Forgie and
Shizgal, 1993; Simmons and Gallistel, 1994; Solomon et al., 2007).
Thus, the higher the frequency at which pulses are delivered dur-
ing a train, the more intense the neural response, and the more
time is allocated to pursuit of BSR. Figures 1C,D are two views of
the same data, which were obtained by varying both the pulse fre-
quency and the price; the high-frequency stimulation trains were
cheap whereas the low-frequency ones were expensive.

Figure 2A combines the data shown in Figure 1 in a three-
dimensional (3D) depiction. We call the surface that was fit to
the data points (depicted by the black mesh in Figure 2A and the
colored curves in Figure 1) the “reward mountain.” Figure 2B
summarizes the data in Figure 2A in a contour map. To obtain
this map, the reward mountain is sectioned horizontally at regular
intervals and the resulting profiles plotted as black lines; the gray
level represents the altitude (time allocation). The shape of the
reward mountain reflects the intuitive principle that the rat will
allocate all or most of its time to pursuit of stimulation that is
strong and cheap but will allocate less for stimulation that is weak
and/or expensive.

A FUNCTIONAL/COMPUTATIONAL MODEL
Figure 1 shows that the allocation of a scarce behavioral resource,
the time available to obtain BSR, is tightly and systematically con-
trolled by two objective economic variables: the strength (pulse
frequency) and opportunity cost (price) of a stimulation train.
Figure 3 depicts a empirically based model (Arvanitogiannis and
Shizgal, 2008; Hernandez et al., 2010) of why the data in Figures 1
and 2 assume the form they do. Each component is assigned a
specific role in processing the signal injected by the electrode and
in translating it into an observable behavioral output. The mathe-
matical form of each transformation is specified, and simulations
can thus reveal whether the model can or cannot reproduce the
dependence of the rat’s behavior on the strength and cost of the
reward. The correspondence of the fitted surface to the data hints
that it can. Insofar as the model specifies psychological processes
involved in economic decisions, the model is positioned within
the behavioral-economic tradition, and insofar as at least some of
its components are couched in terms of neural activity, it is also
has a neuroeconomic flavor.

Let us consider first the core of the model, the memory vector
in the center of the schema at the top of Figure 3. The elements
of this vector are subjective values. Thus, the top and bottom ele-
ments are simply the subjective mapping of stimulation strength
and opportunity cost. The remaining two elements represent the
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FIGURE 1 | Sample data (Hernandez et al., 2010) showing how the

strength (pulse frequency) and price (opportunity cost) of

electrical stimulation trains influence the proportion of the rat’s

time devoted to seeking out the electrical reward. (A) time
allocation to pursuit of trains of different opportunity cost with reward
strength held constant; (B) time allocation to pursuit of trains of
different strength with opportunity cost held constant; (C) time

allocation to pursuit of trains with inversely correlated strength and
opportunity cost (strong trains are cheap, weak ones are expensive),
plotted as function of opportunity cost; (D) time allocation to pursuit of
trains with inversely correlated strength and opportunity cost (strong
trains are cheap, weak ones are expensive), plotted as function of
strength. Smooth curves are projections of the surface fitted to the
data (shown in Figure 2A).

subjective estimate of the probability of receiving a reward upon
satisfaction of the response requirement and the physical exer-
tion required to hold down the lever. The values in the memory
vector are combined in a manner consistent with generalizations
(Baum and Rachlin, 1969; Killeen, 1972; Miller, 1976) of Her-
rnstein’s matching law (Herrnstein, 1970, 1974): The subjective
reward intensity is scaled by the subjective probability and by the
product of the subjective effort and opportunity costs. We refer to
the result of this scalar combination as the “payoff” from pursuit
of BSR.

Note the analogy between this model and prospect theory. In
both cases, non-linear functions map objective economic variables
into subjective ones, and the results are combined in scalar fashion.
In both cases, the form and parameters of the mapping functions

matter. Changing either can alter the ranking of a given option in
the subject’s preference ordering.

To translate the payoffs obtained by scalar combination of
the quantities in the memory vector into observable behavior, an
adaptation (Hernandez et al., 2010) of McDowell’s (2005) single-
operant version of the generalized matching law is employed. This
expression relates the animal’s allocation of time to the relative
payoffs from work and leisure. With the payoff from BSR held
constant, time allocated to work decreases in sigmoidal fashion as
the payoff from leisure activity grows (green curve in the 3D box
at the right of Figure 3). Similarly, with the payoff from leisure
activities fixed, time allocated to pursuit of a BSR train increases
sigmoidally with the payoff from the stimulation (purple curve in
the 3D box at the right of Figure 3).
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FIGURE 2 |Three-dimensional views of the data in Figure 1. (A)

Scatter plot of data means along the with surface fitted to the data; (B)

contour plot of the fitted surface and the sampled pulse frequencies and
prices. The solid red line represents the position parameter of the
intensity-growth function: the pulse frequency that produces a reward of
half-maximal intensity. This parameter determines the position of the

three-dimensional structure along the pulse frequency axis. The solid
blue line represents the price at which time allocated to pursuit of a
maximal reward falls half-way between its minimal and maximal values;
this parameter determines the position of the three-dimensional
structure along the price axis. Dashed lines represent 95% confidence
intervals.

FIGURE 3 | A functional/computational model of how time allocated to reward seeking is determined by the strength and cost the reward

(Hernandez et al., 2010). The derivation of the expressions and their empirical basis is provided in the cited paper.

The left portion of Figure 3 describes how the parameters of
the pulse train are mapped into the subjective intensity of the

rewarding effect. Several stages of processing are shown, including
one of the four psychophysical functions that generate the values
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stored in the memory vector. The schema at the left represents
the inference that over a wide range of frequencies, each pulse
triggers a volley of action potentials in the directly stimulated
neurons responsible for the rewarding effect (Gallistel, 1978; Gal-
listel et al., 1981; Forgie and Shizgal, 1993; Simmons and Gallistel,
1994; Solomon et al., 2007). The synaptic output of these neu-
rons is integrated spatially and temporally and transformed by
an intensity-growth function. In accord with experimental data
(Leon and Gallistel, 1992; Simmons and Gallistel, 1994; Arvanito-
giannis and Shizgal, 2008; Hernandez et al., 2010), the red curve
in the 3D box on the left of Figure 3 shows that reward intensity
grows as a logistic function of the aggregate firing rate produced
by a stimulation train of fixed duration, and the cyan curve depicts
the growth of reward intensity over time in response to a train of
fixed strength (Sonnenschein et al., 2003). The scaled output of
the intensity-growth function is passed through a peak detector
en route to memory: it is the maximum intensity achieved that is
recorded (Sonnenschein et al., 2003).

Not shown in Figure 3 are the three remaining psychophysi-
cal functions, the ones responsible for mapping reward probability,
exertion of effort, and opportunity cost into their subjective equiv-
alents. Figure 4 presents the prediction of Mazur’s hyperbolic
temporal discounting model (Mazur, 1987) as applied to the psy-
chophysical transformation of opportunity cost; the plotted curves
are based on data from a study of delay discounting in ICSS (Mazur
et al., 1987). Ongoing research (Solomon et al., 2007) is assessing
the relative merits of the Mazur model and several alternatives as

FIGURE 4 | Mazur’s hyperbolic delay-discount function (Mazur,

1987), replotted as a subjective-price function. The price is the
cumulative time the rat must hold down the lever in order to earn a
reward. Thus, from the perspective of the Mazur model, the price is
couched as a delay to reward receipt, and the subjective-price is
inversely related to the discounted value. The value of the reward at
zero delay has been set arbitrarily to one. The delay-discount
constants (Mazur’s k) for the plotted curves are derived from a study
by Mazur et al. (1987); the red curve represents the value for subject
1, the green curve for subject 2, and the blue curve for subject 3.
Alternative models of the subjective-price function are under ongoing
investigation (Solomon et al., 2007).

accounts of the impact of opportunity costs on performance for
BSR. The subjective probability and effort–cost functions have yet
to be described.

The contours in Figure 2B trace out the intensity-growth func-
tion (Hernandez et al., 2010). The non-linear form of this function
makes it possible to discern in what direction the mountain surface
described by these contours has been displaced by experimental
manipulation of the reward circuitry. Figure 5 shows how the
mountain is shifted by treatments acting at different stages of
the model. Interventions in the early stages, prior to the output
of the intensity-growth function, displace the mountain along
the axis representing the strength of the rewarding stimulation
(pink surface). In contrast, interventions in later stages displace
the mountain along the axis representing the cost of the rewarding
stimulation (blue surface). Consequently, the reward mountain
can be used to narrow down the stages of processing at which
manipulations such as drug administration, lesions, or physi-
ological deprivation act to alter reward seeking. Conventional
two-dimensional measurements are not up to this task: identi-
cal displacements of psychometric curves, such as the ones shown
in Figure 1, can be produced by shifting the 3D reward mountain
in orthogonal directions (Hernandez et al., 2010; Trujillo-Pisanty
et al., 2011).

In early work on the role of dopamine neurons in BSR, the
changes in reward pursuit produced by manipulation of dopamin-
ergic neurotransmission were attributed to alterations in reward
intensity (Crow, 1970; Esposito et al., 1978). However, cocaine, a
drug that boosts dopaminergic neurotransmission, displaces the
3D reward mountain rightward along the price axis (Hernandez
et al., 2010). This links the drug-induced change in dopamine
signaling to a later stage of processing than was originally pro-
posed, one beyond the output of the intensity-growth function.
Among the actions of cocaine that are consistent with its effect on
the position of the mountain are an upward rescaling of reward
intensity (Hernandez et al., 2010) and a decrease in subjective
effort costs (Salamone et al., 1997, 2005). Blockade of the CB-
1 cannabinoid receptor also displaces the mountain along the
price axis, but in the opposite direction to the shift produced by
cocaine (Trujillo-Pisanty et al., 2011). These effects of perturbing
dopamine and cannabinoid signaling illustrate why it is impor-
tant to learn the form of psychophysical valuation functions, to
measure them unambiguously, and to take into account multiple
variables that contribute to valuation.

LIMITATIONS OF THE MODEL
The model in Figures 3 and 5 has fared well in initial valida-
tion experiments (Arvanitogiannis and Shizgal, 2008) and has also
provided novel interpretations of the effects on pursuit of BSR
produced by pharmacological treatments (Hernandez et al., 2010;
Trujillo-Pisanty et al., 2011). That said, it important to acknowl-
edge that the current instantiation is a mere way station en route to
a challenging dual goal: a fully fleshed out description of the neural
circuitry underlying reward-related decisions and a set of func-
tional hypotheses about why the circuitry is configured as it is. The
state of our current knowledge remains well removed from that
objective, and the model presented here has numerous limitations.
In later sections, I discuss a strategy for moving forward.
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FIGURE 5 | Inferring the stages of processes responsible for shifts of

the mountain. (A) The mountain model. Experimental manipulations
that act on the early stages of processing, prior to the output of the
intensity-growth function, shift the three-dimensional structure along the
pulse frequency axis (B) whereas manipulations that act on later stages
produce shifts along the price axis (C). Thus, measuring the effects of
such manipulations on the position of the three-dimensional structure

constrains the stages of processing responsible for the behavioral effects
of the manipulations. On this basis, the enhancement of reward seeking
produced by cocaine (Hernandez et al., 2010) and the attenuation of
reward seeking produced by blockade of cannabinoid CB-1 receptors
(Trujillo-Pisanty et al., 2011) were shown to arise primarily from drug
actions at stages of processing beyond the output of the intensity-growth
function.

Let us consider various limitations as we traverse the schemata
in Figures 3 and 5 from right to left. The first one encountered is
the behavioral-allocation function, which has been borrowed from
the matching literature. This application is an “off-label” usage of
an expression developed to describe matching of response rates
on variable-interval schedules to reinforcement rates. As is the
case with ratio schedules, returns from the cumulative handling-
time schedule are directly proportional to investment (of time, in
this case). The predicted behavior is maximization, not matching.
The justification for our off-label usage is empirical: the observed
behavior corresponds closely to the predicted form. That said,
other sigmoidal functions would likely do the job. We have not yet
explored alternative functions in this class and have chosen instead
to investigate behavioral-allocation decisions on a finer time scale.

Data from operant conditioning studies are commonly pre-
sented in aggregate form, as response and reinforcement totals

accumulated during some time interval (i.e., as trial rates). This
is reminiscent of the way behavior is modeled in economic theo-
ries of consumer choice (Kagel et al., 1995). What matters in such
accounts is not the order and timing with which different goods
are placed in the shopping basket but rather the kinds of goods
that make up the final purchase and their relative proportions.
This is unsatisfying to the neuroeconomist. The goods enter the
shopping basket as a result of some real-time decision making
process. What is the nature of that process, and what is its physical
basis? To answer such questions, a moment-to-moment version of
the behavioral-allocation function must be developed. Only then
can the behavioral data be linked directly to real-time measure-
ments such as electrophysiological or neurochemical recordings.
A successful solution would generate accurate predictions both at
the scale of individual behavioral acts and at the scale of aggregate
accumulations. Such a solution should be functionally plausible
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in the sense that the behavioral strategies it generates not be
dominated by alternatives available to competitors.

We have made an early attempt at real-time modeling (Conover
et al., 2001) as well as at development of a behavioral-allocation
model derived from first principles (Conover and Shizgal, 2005).
Work on these initiatives is ongoing, but the formulation presented
here appears adequate for its application in identifying circuitry
underlying BSR, interpreting pharmacological data, and deriv-
ing psychophysical functions that contribute to reward-related
decisions. For these purposes, we need the behavioral-allocation
function to be only good enough to allow us to “see through it”
(Gallistel et al., 1981) and draw inferences about earlier stages.

The computation of payoff is represented in Figures 3 and
5 immediately upstream of the behavioral-allocation function.
“Benefits” (reward intensity) are combined in scalar fashion with
costs, as is the case in matching law formulations (Baum and
Rachlin, 1969; Killeen, 1972; Miller, 1976). This way of combin-
ing benefits and costs contrasts sharply with “shopkeeper’s logic,”
which dictates that both be translated into a common currency and
their difference computed (e.g., Niv et al., 2007). The scalar com-
bination posited in the mountain model is why sections obtained
at different levels of reward intensity are parallel when plotted
against a logarithmic price axis. We have observed such paral-
lelism using a different schedule of reinforcement (Arvanitogian-
nis and Shizgal, 2008), but additional work should be carried out
to confirm whether strict parallelism holds when the cumulative
handling-time schedule is employed.

As we move leftward through the model, we reach the stages
most directly under the control of the stimulating electrode. An
important limitation of the model as it now stands is that even
these stages are described only computationally – the neural cir-
cuitry underlying them has yet to be pinned down definitively,
either in the case of electrically induced reward or of the reward-
ing effects of natural stimuli. Candidate pathways subserving BSR
are discussed in the following section. The key point to make here
is that this crucial limitation is one that the ICSS paradigm would
seem particularly well suited to overcome. The powerfully reward-
ing effect of the electrical stimulation arises from a stream of action
potentials triggered in an identifiable set of neurons. This should
make the ICSS phenomenon an attractive entry point for efforts
to map the structure of brain reward circuitry and to account for
its functional properties in terms of neural signaling between its
components. Section “Linking Computational and Neural Mod-
els” provides some reasons why success has not yet been achieved
and why newly developed techniques promise to surmount the
obstacles that have impeded progress. These new methods should
make it possible to associate the abstract boxes in Figures 3 and
5 with cells, spike trains and synaptic potentials in the underlying
neural circuitry.

CANDIDATE NEURAL CIRCUITRY
In this section, I review some candidates for neural circuitry under-
lying BSR. This brief overview highlights some achievements of
prior research as well as many challenges that have yet to be
addressed in a satisfactory way.

The data in Figures 1 and 2 were generated by stimulation
delivered at the lateral hypothalamic (LH) level of the MFB. Kate

Bielajew and I have provided evidence that the volley of action
potentials elicited by stimulation at this site must propagate cau-
dally in order the reach the efferent stages of the circuit responsible
for the rewarding effect (Bielajew and Shizgal, 1986). Figure 6
depicts some of the descending MFB components that course
near the LH stimulation site as well as some of the circuitry con-
nected to these neurons. Even this selective representation reveals
a multiplicity of candidates for the directly stimulated neurons
and spatio-temporal integrator in Figures 3 and 5.

Dopamine-containing neurons figure prominently in the lit-
erature on reward seeking in general (Wise and Rompré, 1989;
Montague et al., 1996; Schultz et al., 1997; Ikemoto and Panksepp,
1999) and on BSR in particular (Wise and Rompré, 1989; Wise,
1996). Pursuit of BSR is attenuated by treatments that reduce
dopaminergic neurotransmission (Fouriezos et al., 1978; Franklin,
1978; Gallistel and Karras, 1984) and is boosted by treatments
that enhance such signaling (Crow, 1970; Gallistel and Karras,
1984; Colle and Wise, 1988; Bauco and Wise, 1997; Hernandez
et al., 2010). Both long-lasting (“tonic”) and transient (“phasic”)
release of dopamine are driven by rewarding MFB stimulation
(Hernandez and Hoebel, 1988; You et al., 2001; Wightman and
Robinson, 2002; Hernandez et al., 2006, 2007; Cheer et al., 2007).
Figure 6 shows that the axons of midbrain dopamine neurons
course through the MFB, passing close to the LH stimulation sites
used in many studies of ICSS (Ungerstedt, 1971). Direct activa-
tion of dopaminergic fibers by rewarding stimulation was central
to early accounts of ICSS (German and Bowden, 1974; Wise, 1978;
Corbett and Wise, 1980). Nonetheless, these authors did express
some reservations, which turn out to be well founded. The axons
of dopamine neurons are fine, unmyelinated, and difficult to excite
by means of extracellular stimulation (Yeomans et al., 1988; Ander-
son et al., 1996; Chuhma and Rayport, 2005). The mere proximity
of these axons to the electrode tip does not guarantee that a
large proportion of them are excited directly under the conditions
of ICSS experiments. Indeed, the electrophysiological properties
of these fibers provide a poor match to the properties inferred
from behavioral studies of ICSS (Yeomans, 1975, 1979; Bielajew
and Shizgal, 1982, 1986). These behavioral data suggest that non-
dopaminergic neurons with descending, myelinated axons, more
excitable than those of the dopamine-containing cells, compose an
important part of the directly stimulated stage (Bielajew and Shiz-
gal, 1986; Shizgal, 1997). Non-dopaminergic neurons driven by
rewarding MFB stimulation, and with properties consistent with
those inferred from the behavioral data, have indeed been observed
by electrophysiological means (Rompré and Shizgal, 1986; Shizgal
et al., 1989; Kiss and Shizgal, 1990; Murray and Shizgal, 1996).

Figure 6 provides several different ways to reconcile the depen-
dence of ICSS on dopaminergic neurotransmission with the evi-
dence implicating non-dopaminergic neurons in the directly stim-
ulated stage of the circuit. Multiple components of the descending
MFB provide monosynaptic input to dopamine cell bodies in the
midbrain, and glutamatergic neurons are prominent among them
(You et al., 2001; Geisler et al., 2007). Blockade of glutamater-
gic receptors on midbrain dopamine neurons decreases transient
release of dopamine by rewarding electrical stimulation (Sombers
et al., 2009). Cholinergic neurons in the pons constitute one limb
of a disynaptic path that links MFB electrodes to activation of
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FIGURE 6 | Selected descending pathways coursing through a lateral hypothalamic region of the medial forebrain bundle, where electrical stimulation

is powerfully rewarding, and some associated neural circuitry. The lefthand view is in the horizontal plane and the righthand view in the sagittal plane.

dopamine neurons (Oakman et al., 1995). These cholinergic neu-
rons are implicated in the rewarding effect of MFB stimulation
(Yeomans et al., 1993, 2000; Fletcher et al., 1995; Rada et al., 2000).

It has been proposed, in the case of posterior mesencephalic
stimulation, that the spatio-temporal integration of the reward
intensity signal arises prior to, or with the participation of, mid-
brain dopamine neurons (Moisan and Rompre, 1998). Application
of this idea to self-stimulation of the MFB is consistent with
the evidence that excitation driven by the rewarding stimulation
arrives at the dopamine neurons via monosynaptic and/or disy-
naptic routes. Given the important roles ascribed to dopaminergic
neurons in the allocation of effort and in reward-related learning,
it is important to understand how information is processed in their
afferent network. By driving inputs to the dopaminergic neurons
directly, rewarding brain stimulation should play a useful role in
this endeavor and should continue to contribute to the ongoing
debate about the functional roles of phasic and tonic dopamine
signaling (Wise and Rompré, 1989; Salamone et al., 1997, 2005;
Schultz et al., 1997; Berridge and Robinson, 1998; Schultz, 2000;
Wise, 2004; Niv et al., 2007; Berridge et al., 2009).

The preceding paragraphs attest to the fact that it has proved
simple neither to identify the neurons composing the most acces-
sible stage of the circuitry underlying ICSS, the directly activated
stage, nor to determine the precise role played by the neural pop-
ulation most extensively studied in the context of BSR, midbrain
dopamine neurons. In the following section, I discuss in more gen-
eral terms the requirements for establishing such linkages, and I
argue that new research techniques provide grounds for optimism
that long-standing obstacles can be overcome.

LINKING COMPUTATIONAL AND NEURAL MODELS
Multiple, converging, experimental approaches are required to
link an identified neural population to a psychological process
(Conover and Shizgal, 2005). Each approach tests the linkage
hypothesis in a different way, by assessing correlation, necessity,
modulation, sufficiency or computational adequacy. All of these
approaches have been applied in the search for the directly stim-
ulated neurons underlying BSR and in efforts to determine the
role played by midbrain dopamine neurons. Nonetheless, the full
promise of the convergent strategy has yet to be realized.
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An example of a correlational test has already been mentioned.
Inferences are drawn from behavioral data about physiological
properties of a neural population, such as the directly stimu-
lated neurons that give rise to BSR. A method such as single-unit
electrophysiology is used to measure neural properties, which
are then compared to those inferred from the behavioral data.
For example, the experimenter can ascertain, by means of colli-
sion between spontaneous and electrically triggered antidromic
spikes, that the axon of a neuron from which action potentials are
recorded is directly activated by rewarding stimulation. Properties
of the stimulated axon, such as its refractory period and conduc-
tion velocity, are then measured and compared to those inferred
from the behavioral data (Shizgal et al., 1989; Murray and Shiz-
gal, 1996). This approach can provide supporting evidence for a
linkage hypothesis, but it cannot prove it. The portrait assembled
on the basis of the behavioral data is unlikely to be unique, and
the neuron under electrophysiological observation may resemble
those responsible for the behavior in question but, in fact, subserve
another function.

Tests of necessity entail silencing the activity of some popu-
lation of neurons and then measuring any consequent changes
in the behavior under study. Traditional methods include lesions,
cooling, and injection of local anesthetics. Although this approach
can also provide supporting evidence, it is fraught with difficul-
ties. Many neurons in addition to the intended targets may be
affected, and the silencing may alter the behavior under study in
unintended ways, for example, by reducing the capacity of the
subject to perform the behavioral task rather than the subjective
value of the goal. The typically employed silencing methods have
durations of action far longer than those of the neural signals of
interest.

Tests of modulation are similar logically to tests of necessity
but can entail either enhancement or suppression of neural sig-
naling and are usually reversible. Drug administration is typically
employed for this purpose. This approach often achieves greater
specificity than is afforded by conventional silencing methods.
Nonetheless, it is difficult to control the distribution of a drug
injected locally in the brain, and the duration of drug action often
exceeds that of the neural signal of interest by many orders of
magnitude.

Tests of sufficiency entail exogenous activation of a neural
population and determination of whether the artificially induced
signal so produced affects the psychological process under study
in the same way as a natural stimulus. The demonstration that
the rewarding effect of electrical stimulation of the MFB com-
petes and summates with the rewarding effect of gustatory stimuli
(Conover and Shizgal, 1994; Conover et al., 1994) is an example
of this approach. Traditional sufficiency tests, which often entail
delivery of electrical brain stimulation, provide much better tem-
poral control than local drug injection, but they too are plagued by
major shortcomings: Many neurons in addition to the target pop-
ulation are typically activated, and the stimulation may produce
undesirable behavioral side-effects.

Computational adequacy is another important criterion for
establishing linkage. To carry out this test, a formal model is built,
such as the one in Figures 3 and 5, and the role of the neural popu-
lation under study is specified. Simulations are then performed to

determine whether the model can reproduce the behavioral data
using the parameters derived from neural measurement. This is a
demanding test, but it too is not decisive. There is no guarantee
that any given model is unique or sufficiently inclusive.

Although all its elements have shortcomings as well as virtues,
the convergent strategy is nonetheless quite powerful. The virtues
of some elements compensate for the shortcomings of others, and
the likelihood of a false linkage decreases as more independent
and complementary lines of evidence are brought to bear. That
said, one may well wonder why, if the convergent approach is so
powerful, has it not yet generated clear answers to straightforward
questions such as the identity of the directly stimulated neurons
subserving BSR or the role played by midbrain dopamine neu-
rons? As I argue in the following section, many of the problems
are technical in nature, and recent developments suggest that they
are in the process of being surmounted.

THE PROMISE OF NEW RESEARCH TECHNIQUES
Ensemble recording
The example of the correlational approach described above entails
recording from individual neurons, one at a time, in anesthetized
subjects, after the collection of the behavioral data. Newer record-
ing methods have now been developed that register the activity of
dozens of neurons simultaneously while the behavior of interest is
being performed. A lovely example of this substantial advance is
a recent study carried out by a team led by David Redish (van
der Meer et al., 2010). They recorded from ensembles of hip-
pocampal neurons as rats learned to navigate a maze. As the rats
paused at a choice point during a relatively early stage of learning,
these neurons fired in patterns similar to those recorded previ-
ously as the animal was actually traversing the different paths.
This demonstration supports Tolman’s (1948) idea that animals
can plan by means of virtual navigation in stored maps of their
environment. Tolman’s theory was criticized for leaving the rat
“lost in thought.” The study by van der Meer et al. (2010) sug-
gests that the rat is not lost at all but is instead exploring its
stored spatial representation. This is a powerful demonstration
of the potential of neuroscientific methods to open hidden states
to direct observation.

The correlational approach adopted by van der Meer et al.
(2010) was complemented by a test of computational adequacy:
they determined the accuracy with which the population of neu-
rons from which they recorded could represent position within
the maze. Another aspect of their study dissociated the correlates
of hippocampal activity from those of neurons in the ventral stria-
tum, one of the terminal fields of the midbrain dopamine neurons.
Unlike the activity of the hippocampal population, the activity of
the ventral–striatal population accelerated as the rats approached
locations where they had previously encountered rewards (van der
Meer and Redish, 2009; van der Meer et al., 2010). This ramping
activity was also seen at choice points leading to the locations in
question. The authors point out that such a pattern of anticipa-
tory firing, in conjunction with the predictive spatial information
derived from hippocampal activity, could provide feedback to
guide vicarious trial-and-error learning.

Once the neurons underlying BSR have been identified, it
would be very interesting indeed to study them by means of
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ensemble recording methods. Such an approach could provide
invaluable information about the function of the BSR substrate
and might well explain how reward-related information is relayed
to ventral–striatal neurons. In principle, ensemble recording from
the appropriate neural populations could provide physical mea-
surement of the subjective values of economic variables in real-
time. This could go a long way toward putting to rest criticisms
of models that incorporate states hidden to the outside observer,
such as the one detailed in Figures 3 and 5. Ensemble recording
coupled to appropriate computational methods promises to draw
back the veil.

Chronic, in vivo voltammetry
Just as ensemble recording registers the activity of neural pop-
ulations during behavior, in vivo voltammetry (Wightman and
Robinson, 2002) can measure dopamine transients during per-
formance of economic decision making tasks. In early studies,
the measurements were obtained acutely over periods of an hour
or so. However, Phillips and colleagues have now developed an
electrode that can register dopamine transients over weeks and
months (Clark et al., 2010), periods sufficiently long for the learn-
ing and execution of demanding behavioral tasks. Their method
has already yielded dramatic results in neuroeconomic studies
(Gan et al., 2010; Wanat et al., 2010; Nasrallah et al., 2011), and its
application would provide a strong test of the hypothesis that pha-
sic activity of midbrain dopamine neurons encodes the integrated
reward intensity signal in ICSS.

Optogenetics
The recent development with the broadest likely impact is a family
of “optogenetic” methods (Deisseroth, 2011; Yizhar et al., 2011).
These circumvent the principal drawbacks of traditional silencing
and stimulation techniques, achieving far greater temporal, spatial,
and cell-type selectivity, while retaining all the principal advan-
tages of the traditional tests for necessity and sufficiency. This
technology is based on light-sensitive, microbial opsin proteins
genetically targeted to restricted neuronal populations. Following
expression, the introduced opsins are trafficked to the cell mem-
brane, where they function as ion channels or pumps. By means of
fiber-optic probes, which can be implanted and used chronically in
behaving subjects, light is delivered to a circumscribed brain area,
at a wavelength that activates the introduced opsin. Neural activity
is thus silenced or induced for periods as short as milliseconds or
as long as minutes.

The means for specific activation and silencing of dopaminergic
(Tsai et al., 2009), cholinergic (Witten et al., 2010), glutamatergic
(Zhao et al., 2011), and orexinergic (Adamantidis et al., 2007)
neurons have already been demonstrated. Coupled with measure-
ment methods such as the one that generated the data in Figures 1
and 2, application of optogenetic tools should reveal what role,
if any, the different elements depicted in Figure 6 play in BSR.
Indeed, it has already been shown by specific optogenetic means
that activation of midbrain dopamine neurons is sufficient to sup-
port operant responding (Kim et al., 2010; Adamantidis et al.,
2011; Witten et al., 2011). However, it remains unclear whether
such activation fully recapitulates the rewarding effect of electrical
stimulation or only a component thereof; the stage of processing

at which the dopaminergic neurons intervene has not yet been
established.

FROM BRAIN STIMULATION REWARD TO NATURAL
REWARDS
Many decades have passed since BSR was discovered (Olds and
Milner, 1954), but the neural circuitry underlying this striking
phenomenon has yet to be worked out. Ensemble recordings,
chronic in vivo voltammetry, and optogenetics promise to pro-
duce revolutionary change in the way this problem is approached
and to circumvent critical technical obstacles that have blocked or
impeded progress. Once components of the neural substrate for
BSR have been identified, the convergent approaches described
above can be brought to bear, with greatly increased precision and
power, in the growing array of tasks for studying economic deci-
sion making in non-human animals. This will provide a natural
bridge between the specialized study of BSR and the more general
study of neural mechanisms of valuation and choice.

Kent Conover and I have developed a preparation (Conover
and Shizgal, 1994) in which gustatory reward can be controlled
with a precision similar to that afforded by BSR. The gustatory
stimulus is introduced directly into the mouth, and a gastric can-
nula undercuts the development of satiety. Psychophysical data
about the gustatory reward can be acquired from this preparation
at rates approaching those typical of BSR studies. This method
should make it possible to carry out a test, at the neural level, of
the hypothesis that BSR and gustatory rewards are evaluated in a
common currency. It can also render some fundamental questions
about gustatory reward amenable to mechanistic investigation.
For example, it has long been suspected that the thalamic pro-
jection of the pontine parabrachial area mediates discriminative
aspects of gustation whereas the basal forebrain projections medi-
ate the rewarding effects of gustatory stimuli (Pfaffmann et al.,
1977; Spector and Travers, 2005; Norgren et al., 2006). Application
of methodology developed for the study of BSR can put this notion
to a strong test. Other basic questions that beg to be addressed con-
cern the dependence of gustatory reward on energy stores. Within
the framework of the model described in Figures 3 and 5, how
do deprivation states act? Do they modulate early stages of pro-
cessing, thus altering preference between different concentrations
of a tastant of a particular type and/or do they act at later stages
so as to alter preference between different classes of tastants, such
as inputs to short- and long-term energy stores (Hernandez et al.,
2010)?

Questions such as those posed in the preceding paragraph
concern basic topics that economists have long abstained from
addressing: the origin of preferences, their dependence on internal
conditions, and the possibility that an important aspect of individ-
ual differences in valuation derives from constitutional factors. In
Robbins’ account, the agent arrives on the economic stage already
equipped with a set of “tastes” (i.e., preferences in general and not
only gustatory ones). What is the physical basis of these tastes?
What mechanisms change them? What determines when tastes
serve biologically adaptive purposes or lead in harmful directions?
Developments in the neurosciences may have rendered such ques-
tions addressable scientifically and may even be up to the challenge
of providing some answers.
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A QUADRUPLE HERESY
I begin this essay within the canon of Robbins’ greatly influential
definition of economics and then proceed to commit four heresies.
First, I extend Robbins’ core concept of allocation under scarcity to
non-human animals. Second, I make common cause with behav-
ioral economists, who strive to base their theories of the economic
agent on realistic psychological foundations, and I argue that psy-
chophysics constitutes one of the fundamental building blocks of
this structure. Third, I argue that sentience is not necessary for eco-
nomic behavior. Fourth, I advocate grounding the theory of the
economic agent in neuroscience, to the extent that our knowledge
and methods allow. I predict that this initiative should lead to
new insights, render otherwise hidden states amenable to direct
observation, and provide a way to choose between models that
appear equally successful when evaluated on the behavioral and
computational levels alone.

Economic concepts have long played a central role in behavioral
ecological studies of non-human animals (Stephens and Krebs,

1986; Commons et al., 1987; Stephens et al., 2007). It seems to me
highly likely that machinery enabling other animals to make eco-
nomic decisions has been conserved in humans and very unlikely
indeed that this inheritance lies defunct and unused as we strive
to navigate the choices confronting us.
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