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Abstract

Reliability analysis of combinational circuits has become imperative these
days due to the extensive usage of nanotechnologies in their fabrication.
Traditionally, reliability analysis of combinational circuits is done using sim-
ulation or paper-and-pencil proof methods. But, these techniques do not
ensure accurate results and thus may lead to disastrous consequences when
dealing with safety-critical applications. In this paper, we mainly tackle the
accuracy problem of these traditional reliability analysis approaches by pre-
senting a formal reliability analysis framework based on higher-order-logic
theorem proving. We present the higher-order-logic formalization of the no-
tions of fault and reliability for combinational circuits and formally verify the
von-Neumann fault models for most of the commonly used logic gates, such
as, AND, NOT, OR, etc. This formal infrastructure is then used along with
a computer program, written in C++, to automatically reason about the
reliability of any combinational circuit within a higher-order-logic theorem
prover (HOL). For illustration purposes, we utilize the proposed framework
to analyze the reliability of a few benchmark combinational circuits.
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1. Introduction

Reliability analysis involves the usage of probabilistic techniques for the
prediction of reliability related parameters, such as a system’s resistance
to failure and its ability to perform a required function under some given
conditions. This information is in turn utilized to design more reliable and
secure systems. The reliability analysis of combinational circuits has been
conducted since their early introduction [20, 22]. However, the ability to
efficiently analyze the reliability of combinational circuits has become very
challenging nowadays because of their growing sizes and complexity and the
inherent variability in the nanoscale fabrication processes.

Traditionally, simulation has been the most commonly used computer
based reliability analysis technique for combinational circuits, e.g., see [18, 11,
12]. Most simulation based reliability analysis software provide a program-
ming environment for defining functions that approximate random variables
for probability distributions. The sources of error and the input patterns in
combinational circuits are random quantities and are thus modeled by these
functions and the system is analyzed using computer simulation techniques
[7], such as the Monte Carlo Method [19], where the main idea is to approx-
imately answer a query on a probability distribution by analyzing a large
number of samples. Statistical quantities, such as expectation and variance,
may then be calculated, based on the data collected during the sampling
process, using their mathematical relations in a computer. Due to the inher-
ent nature of simulation coupled with the usage of computer arithmetic, the
reliability analysis results attained by the simulation approach can never be
termed as 100% accurate.

The accuracy of reliability analysis results has become imperative these
days because of the extensive usage of hardware systems in safety critical
areas, like medicine, military and transportation, where an erroneous analysis
could even result in the loss of human lives. Formal methods are capable of
conducting accurate system analysis and thus overcome the above mentioned
limitations of simulation [10]. The main principle behind formal analysis of
a system is to construct a computer based mathematical model of the given
system and formally verify, within a computer, that this model meets rigorous
specifications of intended behavior. Two of the most commonly used formal
verification methods are model checking [2] and higher-order-logic theorem
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proving [8]. Model checking is an automatic verification approach for systems
that can be expressed as a finite-state machine. Higher-order-logic theorem
proving, on the other hand, is an interactive verification approach that allows
us to mathematically reason about system properties by representing the
behavior of a system in higher-order logic.

We believe that due to the recent developments in the formalization of
probability theory concepts in higher-order-logic [17, 14], we are now at the
stage where we can handle the reliability analysis of a variety of combina-
tional circuits in a higher-order-logic theorem prover with reasonable amount
of modeling and verification efforts. The main motivation of using a higher-
order-logic theorem prover for this purpose is the ability to formally analyze
a broader range of combinational circuits and reliability properties by lever-
aging upon the high expressiveness of the underlying logic. But, this option
involves two main challenges. The first one is that we need a foundational
infrastructure to be able to formally specify and reason about the reliability
of erroneous behavior of logical gates, which is unpredictable in nature, in
logical terms. Whereas, the second one is related to the inherent nature of
the higher-order-logic theorem proving, i.e., the tedious user efforts involved
in interactively reasoning about the reliability properties of the system in
hand. The second point mentioned here is one of the major limitations as-
sociated with the theorem proving approach and is the biggest reason why
theorem proving has not been widely accepted as a verification tool in the
industry.

This paper tackles both of the above mentioned challenges and, to the
best of our knowledge, presents the first automatic theorem proving based ap-
proach for the reliability analysis of combinational circuits. The proposed ap-
proach is primarily inspired by the probabilistic gate models (PGM) method
[11, 12, 25]. The main idea behind this approach is to formally represent
the erroneous behavior of all the basic logical gates (AND, OR, NOT etc.)
in terms of the probabilities of obtaining True or a logical 1 at their in-
puts. These expressions, also referred to as the von-Neumann error models
for combinational gates, can then be used to evaluate the reliability of a com-
binational circuit that is essentially a structure composed of the basic logical
gates. We have also developed a C++ program that translates a combina-
tional circuit, expressed in the hardware description language VHDL, to its
corresponding logical description, writes the reliability theorem and gener-
ates its proof script, based on a rich library of formally verified theorems
corresponding to the PGMs, that we have developed in this work. This kind
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of a setting makes the approach automatic, which is an attractive feature
for the microelectronic design engineers, who are usually not comfortable in
working with pure formal verification based approaches or logical reasoning.

The definitions and theorems, related to the von-Neumann error models
for the basic gates and the generic reliability expression of a combinational
circuit, exhibit random and probabilistic behaviors, due to the random na-
ture of gate-faults. Therefore, they have been formally defined by building
upon the methodology for higher-order-logic formalization of probabilistic
algorithms given in [17]. Since this formalization has been done using the
HOL theorem prover [9], the proposed work has also been done using HOL.

To illustrate the practical effectiveness and demonstrate the utilization
of the proposed framework, we use it to assess the reliabilities of a compara-
tor, a full adder and five benchmarks, i.e., LGSynth’91-C17, LGSynth’91-
Majority, LGSynth’91-Parity, ISCAS-85-74283 (4-bit Adder) and ISCAS-85-
C6288 (16x16 multiplier). The comparator is a simple combinational circuit
and is used to illustrate the working of the proposed automated framework.
The simulation based PGM approach [12] was used to assess the reliability
of the full adder circuit and therefore we assess its reliability using the pro-
posed approach to highlight the accuracy of our results. The four benchmarks
LGSynth’91-C17, LGSynth’91-Majority, LGSynth’91-Parity, and ISCAS-85-
74283 have been analyzed to demonstrate the applicability of the approach
to analyze real-world problems. We report some statistics, like the size of the
circuit and the analysis time, for these benchmarks. Finally, the ISCAS-85-
C6288 benchmark has been picked up due to its comparatively larger size,
i.e., approximately 2400 gates. Instead of modeling this circuit at the gate
level, we illustrate how the proposed approach can be used to model the
given circuit using full adder cells, which significantly reduces the size of
the model and thus demonstrates the scalability of the proposed approach
towards hierarchical designs.

We have already presented some of the ideas and formalization related
to the formalization of von-Neumann error models for the basic gates in a
workshop [15]. The current paper is an extension to that work as we present
further formalization details. Likewise, the idea of automatically reasoning
about the reliability of combinational circuits is novel. The extensive case
studies, presented in the current paper, is also one of the major extensions
to our first paper [15] in the area.

The rest of the paper is organized as follows. Section 2 provides a review
of the related work. In Section 3, we present a brief overview of the HOL the-
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orem prover and the theorem proving based probabilistic analysis. Sections
4 and 5 present the description of the core formalizations of this paper that
allow us to automatically conduct the reliability analysis of combinational
circuits, i.e., the formalization of von-Neumann models for the basic logical
gates and the generic reliability expression, respectively. Then, we illustrate
the proposed framework using the comparator circuit example in Section 6.
The case studies are given in Section 7. Finally, Section 8 concludes the
paper.

2. Related Work

A number of reliability analysis approaches for combinational circuits
have been recently proposed that tend to somewhat meet the accuracy and
scalability challenges. The first worth mentioning approach is based on rep-
resenting the erroneous behavior of a gate as a matrix, referred to as the
probabilistic transfer matrix (PTM) [18]. Depending on the interconnections
of the gates, their PTMs are then utilized to attain the erroneous behavior of
the whole circuit as a relatively large PTM by performing matrix operations
like dot or tensor products [18]. The PTM of the whole circuit can then be
used with the input and output probabilities of the combinational circuit to
compute its reliability. Since the PTM evaluation is based on the exhaustive
listing of all input and output probabilities, a circuit with i inputs and j
outputs is represented by a PTM with 2(i+j) entries. Thus, as the circuits
grow bigger in size, their PTMs require a significant amount of memory for
storage and computational time for their reliability evaluation. Algebraic de-
cision diagrams have been utilized to minimize these requirements but still
the scalability remains a big issue for the PTM based approach. A similar
approach, but a lot more efficient in terms of space and time complexity than
the PTM based approach, has been proposed in [11, 12, 25] that calls for de-
veloping von-Neumann models, called the probabilistic gate models (PGMs),
for unreliable logic gates. These models are used to analytically analyze the
reliability for a single output and an input pattern. Such a capability has
been found to be particularly useful for the reliability modeling of certain
critical paths in a circuit.

Both of the above mentioned techniques have been utilized to analyze
the reliability of many frequently used and some benchmark combinational
circuits. Thus, as far as conducting the analysis of the large combinational
circuits is concerned, these techniques are quite efficient but in terms of the
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accuracy of the results, the analysis cannot be termed as 100% accurate. The
main reason behind that is the fact that the analysis in these approaches is
primarily based either on paper-and-pencil proof methods or simulation [7].
The paper-and-pencil proof methods have always some risk of an erroneous
analysis due to the lengthy nature of computations involved in the case of
conducting reliability analysis of present age combinational circuits coupled
with the human-error factor. Whereas, due to the reasons mentioned in the
previous section, the results from computer simulations cannot be termed
as accurate. The proposed higher-order-logic theorem proving approach is
primarily based on the PGM method but due to its inherent soundness over-
comes the inaccuracy limitation of the simulation based PGM approach.
We also provide the reliability results automatically, just like the simulation
approach, and a variety of circuits can be analyzed as will be illustrated in
Section 7 of this paper. As far as the scalability of the approach is concerned,
the proposed is very similar to the simulation based PGM method.

Given the dire need of accuracy in the area of reliability analysis of com-
binational circuits, probabilistic model checking [1, 24], which enables ana-
lyzing systems with random or unpredictable behaviors, has been recently
used in this domain as well [3, 4]. More specifically, reliability-redundancy
trade-offs for NAND multiplexing have been evaluated and the reliability of
some fixed bit adders has been assessed. Due to the inherent nature of model
checking, the worst case space and time complexity for the reliability anal-
ysis of a combinational circuit with i inputs and j inputs is O(2(i+j)). This
limits the applicability of probabilistic model checking approach for such an
analysis due to its well-known state-space explosion problem [6]. Similarly,
to the best of our knowledge, it has not been possible to precisely reason
about most of the commonly used reliability related statistical quantities,
such as averages and variances, using probabilistic model checking so far.
The proposed approach tends to overcome the limitations of probabilistic
model checking as well in the reliability analysis of combinational circuits
domain. First of all it is not a state-based approach and thus does not suffer
from the associated problems like the state-space explosion. Secondly, due to
the high expressiveness of higher-order logic, it can be used to reason about
any property, including the statistical ones, that can be expressed in a closed
mathematical form.

The foremost criteria for implementing a theorem proving based reliabil-
ity analysis framework is to be able to formalize and verify random variables
in higher-order logic. Hurd’s PhD thesis [17] can be considered a pioneering
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work in this regard as it presents a methodology for the formalization and
verification of probabilistic algorithms in the HOL theorem prover. Ran-
dom variables are basically probabilistic algorithms and thus can be formal-
ized and verified, based on their probability distribution properties, using
the methodology proposed in [17]. In fact, some of the commonly used
discrete random variables along with their verification, based on the corre-
sponding Probability Mass Function (PMF) properties has been presented
in [17]. Building upon Hurd’s formalization [17], verification of the sampling
algorithms of a few continuous random variables based on their Cumula-
tive Distribution Function (CDF) properties has been reported as well [14].
For comparison purposes, it is frequently desirable to summarize the char-
acteristic of the distribution of a random variable by a single number, such
as its expectation or variance, rather than an entire function. For exam-
ple, it is easier to compare the reliability of two implementations of the full
adder circuit based on the expected values of their radiabilities rather than
the probabilities of their failures. Hurd’s formalization was extended with
a formal definition of expectation in [14]. This definition is then utilized to
formalize and verify the expectation and variance characteristics associated
with discrete random variables that attain values in positive integers only.
All of this formalization can play a pioneering role in the proposed theorem
proving based reliability analysis framework. In particular, we built upon
Hurd’s approach [17] to interactively reason about the reliability properties
of combinational circuits in [15].

3. Preliminaries

In this section, we give a brief introduction to the HOL theorem prover
and present an overview of conducting probabilistic analysis using the HOL
theorem proving. The intent is to introduce the main ideas along with some
notation that is going to be used in the rest of the paper.

3.1. HOL Theorem Prover

HOL is an interactive theorem prover which is capable of conducting
proofs in higher-order logic. It utilizes the simple type theory of Church
[5] along with Hindley-Milner polymorphism [21] to implement higher-order
logic. HOL has been successfully used as a verification framework for both
software and hardware as well as a platform for the formalization of pure
mathematics.
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In order to ensure secure theorem proving, the logic in the HOL system
is represented in the strongly-typed functional programming language ML
[23]. An ML abstract data type is used to represent higher-order-logic theo-
rems and the only way to interact with the theorem prover is by executing
ML procedures that operate on values of these data types. The HOL core
consists of only 5 basic axioms and 8 primitive inference rules, which are
implemented as ML functions. Soundness is assured as every new theorem
must be verified by applying these basic axioms and primitive inference rules
or any other previously verified theorems/inference rules. The HOL theorem
prover includes many proof assistants and automatic proof procedures [13] to
assist the user in directing the proof. The user interacts with a proof editor
and provides it with the necessary tactics to prove goals while some of the
proof steps are solved automatically by the automatic proof procedures.

In order to facilitate reutilization of verified theorems, HOL allows its
users to store a collection of valid HOL types, constants, axioms and theo-
rems as a HOL theory file in computers. Once stored, HOL theories can be
loaded in the HOL system and the corresponding definitions and theorems
can be utilized right away. Thus, HOL theories allow us to build upon ex-
isting results in an efficient way without going through the tedious process
of regenerating these results using the basic axioms and primitive inference
rules. Various mathematical concepts have been formalized and saved as
HOL theories by the HOL users. Out of this useful library of HOL theo-
ries, we utilized the theories of Booleans, lists, sets, positive integers, real
numbers, measure and probability in this paper. In fact, one of the primary
motivations of selecting the HOL theorem prover for our work was to benefit
from these built-in mathematical theories.

Table 1 provides the mathematical interpretations of some frequently used
HOL symbols and functions, which are inherited from existing HOL theories
and will be used in this paper.

3.2. Probabilistic Analysis in HOL

The foremost criteria for implementing a theorem proving based reliability
analysis framework is to be able to formalize random variables in higher-
order logic and verify their probabilistic properties. Random variables are
fundamentally probabilistic functions that can be modeled in higher-order
logic as deterministic functions with access to an infinite Boolean sequence
B∞; a source of infinite random bits [17]. These deterministic functions make
random choices based on the result of popping the top most bit in the infinite
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HOL Symbol Standard Symbol Meaning

∧ and Logical and
∨ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list
++ append Joins two lists together
hd L ℎead Head element of list L
tl L tail Tail of list L

mem a L member True if a is a member of list L
(a, b) a x b A pair of two elements
fst fst (a, b) = a First component of a pair
snd snd (a, b) = b Second component of a pair
¸x.t ¸x.t Function that maps x to t(x)

{x∣P(x)} {x∣P (x)} Set of all x such that P (x)

Table 1: HOL Symbols and Functions

Boolean sequence and may pop as many random bits as they need for their
computation. When the functions terminate, they return the result along
with the remaining portion of the infinite Boolean sequence to be used by
other programs. Thus, a random variable which takes a parameter of type ®
and ranges over values of type ¯ can be represented by the function.

ℱ : ® → B∞ → ¯ ×B∞

Consider the following formalization of the Bernoulli(1
2
) random variable

that returns 1 or 0 with equal probability 1
2
:

bit = (¸s.if shd s then 1 else 0,stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The probabilistic programs
can also be expressed in the more general state-transforming monad where
the states are the infinite Boolean sequences.

∀ a s. unit a s = (a,s)

∀ f g s. bind f g s = g (fst (f s)) (snd (f s))
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The HOL functions fst and snd return the first and second components of
their argument, which is a pair, respectively. The unit operator is used to
lift values to the monad, and the bind is the monadic analogue of function
application. All monad laws hold for this definition, and the notation al-
lows us to write functions without explicitly mentioning the sequence that is
passed around, e.g., function bit can be defined as

bit monad = bind sdest (¸b. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (sℎd s, stl s)

and (¸x.t) denotes the lambda abstraction function in HOL that maps its
argument x to t(x).

Hurd [17] also presents some formalization of the mathematical measure
theory in HOL, which can be used to define a probability function ℙ from sets
of infinite Boolean sequences to real numbers between 0 and 1. The domain
of ℙ is the set ℰ of events of the probability. Both ℙ and ℰ are defined using
the Carathéodory’s Extension theorem, which ensures that ℰ is a ¾-algebra:
closed under complements and countable unions. The formalized ℙ and ℰ
can be used to prove probabilistic properties for random variables such as
the following Probability Mass Function (PMF) property can be verified for
the function bit.

⊢ ℙ {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair and {x∣C(x)}
represents a set of all x that satisfy the condition C in HOL.

The measurability and independence of a probabilistic function are impor-
tant concepts in probability theory. A property indep, called strong function
independence, is introduced in [17] such that if f ∈ indep, then f will be
both measurable and independent. It has been shown in [17] that a func-
tion is guaranteed to preserve strong function independence, if it accesses the
infinite Boolean sequence using only the unit, bind and sdest primitives.
All reasonable probabilistic programs preserve strong function independence,
and these extra properties are a great aid to verification.

The above approach has been successfully used to formalize most of the
commonly used random variables and verify them based on their correspond-
ing probability distribution properties. In this paper, we utilize the model
for the Bernoulli random variable, formalized as the function bern rv, and
verified using the following PMF relation [17]:
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Lemma 1: PMF of Bernoulli(p) Random Variable
∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ ℙ {s | fst (bern rv p s)} = p

The function bern rv for the Bernoulli(p) random variable models an exper-
iment with two outcomes; True and False, whereas p represents the proba-
bility of obtaining a True.

4. Formalization of a Faulty Gate

The foremost step in the proposed theorem proving based reliability anal-
ysis framework is to formally express the behavior of a faulty gate or com-
ponent using the von-Neumann model [11].

Definition 1: von-Neumann Faulty Component
(rv list [] = (unit [])) ∧
∀ h t. (rv list (h::t) =

bind h (¸x. bind (rv list t) (¸y. unit (x::y))))

∀ f P e. faulty comp f P e =

bind (bern rv e) (¸x. bind (rv list P)

(¸y. unit (if x then ¬(f y) else (f y))))

The first function rv list accepts a list of random variables and returns the
corresponding list of the same random variables such that the outcome of
each one of these random variables is independent of the outcomes of all the
others. This is done by recursively using the remaining portion of the infinite
Boolean sequence of each random variable to model its subsequent random
variable in the list using the monadic functions unit and bind. The second
function faulty comp accepts three variables. The first one is a function
f that represents the Boolean logic functionality of the given component
with data type bool list → bool, where the bool list represents the list of
Boolean values corresponding to the inputs of the component and the return
type bool corresponds to the output of the component. The second input
to the function faulty comp is a list of Boolean random variables P, which
corresponds to the values available at the input of the component. Whereas,
the third input is the probability e of error occurrence in the component. The
function faulty comp returns a Boolean value corresponding to the output
of the component with parameters f and e, when its inputs are modeled by
calling the random variables in the list of random variables P independently.
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It is important to note here that the output of such a faulty component is
an unpredictable quantity, which is dependant on the error probability e and
the input random variable list P. Therefore, this function is formally modeled
using the approach explained in Section 3. Another point worth mentioning
here is that we have used the function bern rv for the Bernoulli random
variable to model the random behavior associated with the error occurrence
in the component. Therefore, the function faulty comp basically models the
erroneous behavior of a component based on the von-Neumann model [11],
which assumes that the component flips its output with a probability e, given
that the input and output lines function correctly.

Next, we verify a general expression for the probability of obtaining a
True or a logical 1 at the output of the von-Neumann model of a component,
which is very closely related to the gate reliability in the PGM approach [11].

Theorem 1: Probability of a True output in a Faulty Component
⊢ ∀ e f P. (0 ≤ e) ∧ (e ≤ 1) ∧

(∀x. mem x P ⇒ x ∈ indep) ⇒
ℙ {s | fst (faulty comp f P e s)} =

e (1 - ℙ {s |f (fst (rv list P s))}) +

(1 - e) (ℙ {s | f (fst (rv list P s))})

The theorem is verified under the assumption that the error probability of
the component e is bounded in the closed interval [0, 1] and every member
of the random variable list P is measurable, i.e., ∈ indep. The right-hand-
side (RHS) of the theorem represents the given probability in terms of the
probability of obtaining a True from an error-free component, which is much
easier to reason about. The HOL proof of this theorem is based on the
independence of the error occurrence, the PMF of the Bernoulli random
variable, given in Lemma 1, and some basic probability axioms.

Theorem 1 can now be used to formally reason about the probability of
obtaining a logical 1 from any logical gate that may exhibit a faulty behavior.
In order to be able to automatically reason about the reliability of digital
circuits, we now verify this probability for some of the commonly used gates.
Note that all of these theorems are verified under the assumption that e lies
in the interval [0, 1] and all the concerned random variables are measurable,
i.e., they ∈ indep.
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4.1. AND and NAND Gates

For the sake of generality, first consider an N-input AND-gate. Its Boolean
functionality can be formally defined as follows:

Definition 2: N-Bit AND Gate
and gate [] = True ∧
∀ h t. and gate (h::t) = h ∧ (and gate t)

The function and gate accepts a list of Boolean values and recursively returns
the logical conjunction of these values. The theorem corresponding to the
probability of obtaining a True from this component can be expressed as
follows:

Theorem 2 Probability of True in a N-Bit AND Gate
⊢ ∀ e P. (0 ≤ e ≤ 1)∧

(∀x. mem x P ⇒ x ∈ indep) ⇒
ℙ {s | fst (faulty comp and gate P e s)} =

e (1 - prob rv list mul P) +

(1 - e) (prob rv list mul P)

The function prob rv list mul recursively returns the multiplication of the
probabilities of each random variable being equal to True in the given list of
random variables as follows:

(prob rv list mul [] = 1) ∧
∀ h t. (prob rv list mul (h::t) =

ℙ {s | fst (h s)} * (prob rv list mul t))

The proof of Theorem 2 is based on Theorem 1 along with the fact that the
probability of obtaining a logical 1 at the output of an error-free AND-gate
is equal to the product of the probabilities of obtaining all logical 1’s at its
inputs. The result of Theorem 2 is generic and can be specialized for any
AND-gate with a specific number of inputs. For example, the theorem for a
2 input AND-gate is as follows:

Theorem 3: Probability of True in a 2-Bit AND Gate
⊢ ∀ x1 x2 e. (0 ≤ e ≤ 1) ∧

(x1 ∈ indep) ∧ (x2 ∈ indep) ⇒
ℙ {s | fst (faulty comp and gate [x1;x2] e s)} =

(ℙ {s | fst (x1 s)})(ℙ {s | fst (x2 s)}) +

e (1 - 2(ℙ{s | fst (x1 s)})(ℙ{s | fst (x2 s)}))
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where x1 and x2 are Boolean random variables and [x1;x2] is a list con-
taining these two random variables, which represent the inputs of the 2-input
AND-gate. Theorem 3 allows us to evaluate the probability of obtaining a
logical 1 at the output of a 2-input AND-gate, which may contain an error,
if we know the probabilities of obtaining a logical 1 at both of its inputs
individually.

The NAND function is basically the complement of AND and thus an
N-input NAND-gate can be modeled as follows:

Definition 3: N-Bit NAND Gate
∀ l. nand gate l = ¬(and gate l)

The types of the function nand gate are the same as the ones of and gate.
The theorem for the probability of obtaining a True from the NAND gate
can be expressed as follows:

Theorem 4 Probability of True in a N-Bit NAND Gate
⊢ ∀ e P. (0 ≤ e ≤ 1)∧

(∀x. mem x P ⇒ x ∈ indep) ⇒
ℙ {s | fst (faulty comp nand gate P e s)} =

e (prob rv list mul P) +

(1 - e) (1 - prob rv list mul P)

The proof of Theorem 4 is based on Theorem 2 along with the complement
law of probability (ℙ(Ā) = 1 − ℙ(A)). Specializing the result of Theorem 4
for the case of two inputs we get

Theorem 5: Probability of True in a 2-Bit NAND Gate
⊢ ∀ x1 x2 e. (0 ≤ e ≤ 1) ∧

(x1 ∈ indep) ∧ (x2 ∈ indep) ⇒
ℙ {s | fst (faulty comp nand gate [x1;x2] e s)} =

(1 - e) +

(2e - 1) (ℙ {s | fst (x1 s)})(ℙ {s | fst (x2 s)})

4.2. OR and NOR Gates

Besides the AND and NAND gates, other widely used logical gates are
the OR and NOR gates. Following the approach for the formalization of
AND gate, the OR gate can be modeled as the following recursive function.
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Definition 4: N-Bit OR Gate
or g [] = False ∧
∀ h t. or gate (h::t) = h ∨ (or gate t)

Similarly, the NOR gate can be modeled as the complement of the OR gate
as follows:

Definition 5: N-Bit NOR Gate
∀ l. nor gate l = ¬(or gate l)

The theorem for the probability of obtaining a True from the NOR gate can
be expressed as follows:

Theorem 6: Probability of True in a N-Bit NOR Gate
⊢ ∀ e P. (0 ≤ e ≤ 1) ∧

(∀x. mem x P ⇒ x ∈ indep) ⇒
ℙ {s | fst (faulty comp nor gate P e s)} =

e (1 - prob neg rv list mul P) +

(1 - e) (prob neg rv list mul P)

Where the function prob neg rv list mul recursively returns the multipli-
cation of the probabilities of each random variable being equal to False in
the given list of random variables as follows:

(prob neg rv list mul [] = 1) ∧
∀ h t. (prob neg rv list mul (h::t) =

ℙ {s | ¬ fst (h s)} (prob neg rv list mul t))

The proof of Theorem 6 is done using induction on the variable P and it
involves reasoning based on Theorem 1 along with the independence of the
random variables involved. Now, Theorem 6 can be used to verify the relation
for the probability of obtaining a True output for the n-bit OR gate using
Definition 5 and the complement law of probability (ℙ(Ā) = 1− ℙ(A)).
Theorem 7: Probability of True in a N-Bit OR Gate
⊢ ∀ e P. (0 ≤ e ≤ 1) ∧

(∀x. mem x P ⇒ x ∈ indep) ⇒
ℙ {s | fst (faulty comp or gate P e s)} =

1 - (e (1 - prob neg rv list mul P) +

(1 - e) (prob neg rv list mul P))

15



Based on Theorems 6 and 7, the corresponding theorems for OR and
NOR gates with any specified number of inputs can also be verified in a very
straightforward way. For example, we verified the theorem for the 2-input
NOR gate as follows:

Theorem 8: Probability of True in a 2-Bit NOR Gate
⊢ ∀ x1 x2 e. (0 ≤ e ≤ 1) ∧

(x1 ∈ indep) ∧ (x2 ∈ indep) ⇒
ℙ {s | fst (faulty comp nor gate [x1;x2] e s)} =

(1 - (ℙ {s | fst (x1 s)}) - (ℙ {s | fst (x2 s)}) +

(1 - 2 e) (ℙ {s | fst (x1 s)}) (ℙ {s | fst (x2 s)}) +

e (2 (ℙ {s | fst (x1 s)}) + 2 (ℙ {s | fst (x2 s)}) - 1))

4.3. Interconnect and the NOT Gate

For reliability assessment of a combinational circuit, we treat the inter-
connect between two logical gates as a gate as well. This way, we can include
the effect of interconnect failures in our reliability evaluations. Ideally, the
job of the interconnect is to pass an incoming signal as-is to the output and
thus its functionality can be formally modeled as follows:

Definition 6: Interconnect
∀ l. xconnect l = hd l

The function xconnect accepts a list of Boolean inputs, in order to be con-
sistent with our other logical gate models, and returns the head of that list.

The inverter, or the NOT gate, is very similar to our interconnect model
except the fact that it provides the logical negation of the input signal. This
functionality can be formally modeled in terms of the interconnect function-
ality as follows:

Definition 7: NOT Gate
∀ l. not gate l = ¬(xconnect l)

Like the previous gate models, we are interested in the expression for the
probability of getting a logical 1 at the output. The corresponding theorem
for the Interconnect is as follows:

16



Theorem 9: Probability of True in the Interconnect
⊢ ∀ x1 e. (0 ≤ e ≤ 1) ∧

(x1 ∈ indep) ⇒
ℙ {s | fst (faulty comp xconnect [x1] e s)} =

(ℙ {s | fst (x1 s)}) +

e (1 - 2 (ℙ {s | fst (x1 s)}))

The proof is based on Theorem 1 along with the definition of the function
xconnect. Similarly, using the above theorem, the definition of the NOT
gate along with the complement law of probability, we verified the following
theorem for the NOT gate.

Theorem 10: Probability of True in the NOT Gate
⊢ ∀ x1 e. (0 ≤ e ≤ 1) ∧

(x1 ∈ indep) ⇒
ℙ {s | fst (faulty comp not gate [x1] e s)} =

1 - (ℙ {s | fst (x1 s)}) -

e + 2 e (ℙ {s | fst (x1 s)})

4.4. Exclusive-OR (XOR) Gate

The XOR gate is also considered to be a basic logic gate and is very
frequently used in a variety of combinational circuits. The functionality of
a 2-input XOR gate can be expressed using our formalization approach as
follows:

Definition 8: 2-Input XOR Gate
∀ l. xor gate l = (hd l) ∧ ¬(hd (tl l)) ∨

¬(hd l) ∧ (hd (tl l))

The function xor gate accepts a list of Boolean values and uses the list oper-
ations ℎead(ℎd) and tail(tl) to access its two top most elements to compute
the respective output. Based on this function, we verified the expression for
the probability of getting a True at the output of a faulty XOR gate.

Theorem 11: Probability of True in a 2-Bit XOR Gate
⊢ ∀ x1 x2 e. (0 ≤ e ≤ 1) ∧

(x1 ∈ indep) ∧ (x2 ∈ indep) ⇒
ℙ {s | fst (faulty comp nor gate [x1;x2] e s)} =

(ℙ {s | fst (x1 s)}) + (ℙ {s | fst (x2 s)}) -
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2 (ℙ {s | fst (x1 s)}) (ℙ {s | fst (x2 s)}) +

e (4 (ℙ {s | fst (x1 s)}) (ℙ {s | fst (x2 s)}) -

2 (ℙ {s | fst (x1 s)}) - 2 (ℙ {s | fst (x2 s)}) + 1)

The proof is based on the definition of the XOR gate, Theorem 1, the
independence of error random variables and some basic probability axioms.

4.5. Majority Gate

Majority gate returns a True if and only if more than half of its inputs
are True. Besides the basic logic gates covered so far, we also present a
formalization of a 3-input Majority gate along with the verification of its
probability for obtaining a logical 1 at the output under erroneous conditions.
The main motivation for this choice is to be able to assess the reliability of a
full-adder circuit that is based on the majority gate and has been analyzed
previously using the PGM approach. We present the formal reliability of
this full-adder circuit in Section 7 of this paper and then compare our results
with the ones obtained using the informal PGM approach.

Instead of modeling the majority gate using its behavioral description,
we model it using its logical model as follows:

Definition 9: 3-Input Majority Gate
∀ l. majority gate l =

((hd l) ∧ (hd (tl l)) ∧ ¬(hd (tl (tl l)))) ∨
((hd l) ∧ (hd (tl (tl l))) ∧ ¬(hd (tl l))) ∨
((hd (tl l)) ∧ (hd (tl (tl l))) ∧ ¬(hd l)) ∨
((hd l) ∧ (hd (tl l)) ∧ (hd (tl (tl l))))

The function majority gate accepts a list of Boolean values and uses the
list operations ℎead(ℎd) and tail(tl) to access its three top most elements
to compute the respective output. Based on this function, we verified the
expression for the probability of getting a True at the output of a faulty
majority gate in HOL as follows:

Theorem 12: Probability of True in a 3-Bit Majority Gate
⊢ ∀ x1 x2 x3 e. (0 ≤ e ≤ 1) ∧

(x1 ∈ indep) ∧ (x2 ∈ indep) ∧ (x3 ∈ indep) ⇒
ℙ {s | fst (faulty comp majority gate [x1;x2;x3] e s)} =

(ℙ {s | fst (x1 s)}) (ℙ {s | fst (x2 s)}) +
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(ℙ {s | fst (x1 s)}) (ℙ {s | fst (x3 s)}) +

(ℙ {s | fst (x2 s)}) (ℙ {s | fst (x3 s)}) -

2 (ℙ {s | fst (x1 s)}) (ℙ {s | fst (x2 s)})
(ℙ {s | fst (x3 s)}) +

e ( 4 (ℙ {s | fst (x1 s)}) (ℙ {s | fst (x2 s)})
(ℙ {s | fst (x3 s)}) -

2 (ℙ {s | fst (x1 s)}) (ℙ {s | fst (x2 s)}) -

2 (ℙ {s | fst (x1 s)}) (ℙ {s | fst (x3 s)}) -

2 (ℙ {s | fst (x2 s)}) (ℙ {s | fst (x3 s)}) + 1)

Like other similar theorems considered so far, the proof of Theorem 12 is
based on the definition of the majority gate, Theorem 1, the independence
of error random variables and some basic probability theory axioms.

The theorems corresponding to the probability of obtaining a logical 1
from the faulty models of basic logic gates, verified in this section, are sum-
marized in Table 2. In this table, the probability of an input xi being equal
to 1, i.e., ℙ{s∣fst(xi s)}, is represented as Xi. These results are exactly the
same as the relations verified using paper-and-pencil proof methods in [11],
which reassures us of the correctness of our definitions. It is important to
note that the left-hand-side (LHS) of all these theorems is a function of the
probability of obtaining a logical 1 at each input of the corresponding gates
and the error probability e. This means that the probability of obtaining a
logical 1 for a combinational circuit with erroneous gates can be evaluated
based on these theorems by simple rewriting. This fact plays a vital role in
the automatic reasoning about the reliability of combinational circuits as will
be seen in the coming sections.

5. Formalization of Combinational Circuit Reliability

The next step in the proposed reliability analysis framework is to formally
define the reliability of a combinational circuit. Reliability of a system or
component is defined as the probability that it performs its intended function.
Based on this definition, the reliability for a logical gate or a combinational
circuit can be represented as the probability that it produces the error free
result [11]. This can be formally expressed using the function faulty comp,
given in Definition 1, as follows:
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Gate Theorem

2-input AND Gate
ℙ{s∣fst(faulty comp and gate[X1;X2]e s)}
= X1X2 + e(1− 2X1X2)

2-input NAND Gate
ℙ{s∣fst(faulty comp nand gate[X1;X2]e s)}
= (1− e) + (2e− 1)X1X2

2-input NOR Gate
ℙ{s∣fst(faulty comp nor gate[X1;X2]e s)}
= 1−X2 −X1 +X1X2(1− 2e) + e(2X1 + 2X2 − 1)

Interconnect ℙ{s∣fst(faulty comp xconnect[X]e s)} = X + e(1− 2X)

NOT Gate ℙ{s∣fst(faulty comp not gate[X]e s)} = 1−X − e+ 2eX

2-input XOR Gate
ℙ{s∣fst(faulty comp xor gate[X1;X2]e s)}
= X2 +X1 − 2X1X2 + e(4X1X2 − 2X2 − 2X1 + 1)

3-input Majority Gate

ℙ{s∣fst(faulty comp majority gate[X1;X2;X3]e s)}
= X1X2 +X1X3 +X2X3 − 2X1X2X3+

e(4X1X2X3 − 2X1X2 − 2X1X3 − 2X2X3 + 1)

Table 2: Probability of Output 1 for commonly used Faulty Gates

Definition 10: Reliability
∀ f L e. reliability f L e =

ℙ {s | fst(faulty comp f (L e) e s) =

fst (faulty comp f (L 0) 0

(snd (faulty comp f (L e) e s)))}

The function reliability accepts three parameters, whereas, just like the
function faulty comp, the variables f and e represent the Boolean logic
functionality of the given component and the probability of error occur-
rence in the component, respectively. The third variable L represents a
function that accepts an error probability as a real number and returns a
list of Boolean random variables with the same type as the variable P in the
function faulty comp. The LHS term in the set represents the output of
the component while considering the effect of error, by using e as the in-
put to the function L, and the RHS term represents the error free output
of the given component, as the input of the function L is 0. This way, the
function reliability returns the desired reliability of the component with
functionality f and error probability e. It is important to note that the re-
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maining portion of the infinite Boolean sequence from the LHS side term is
used to model randomness in the RHS term in order to ensure probabilistic
independence between them.

Building upon the above definition of reliability and using some proba-
bility theoretic reasoning, we formally verified the following alternative ex-
pression for reliability of a component. This is the same expression that has
been used to assess the reliability of logical circuits in the PGM approach
[25].

Theorem 13: Alternate Expression for Reliability
∀ f L e. 0 ≤ e ≤ 1 ∧

(∀x. mem x (L e) ⇒ x ∈ indep) ∧
(∀x. mem x (L 0) ⇒ x ∈ indep) ∧ ⇒
(reliability f L e =

ℙ {s | fst (faulty comp f (L e) e s)}
ℙ {s | fst (faulty comp f (L 0) 0 s)} +

(1 - ℙ {s | fst (faulty comp f (P e) e s)})
(1 - ℙ {s | fst (faulty comp f (P 0) 0 s)}))

The theorem is verified under the assumptions that the error probability is
bounded in the interval [0, 1] and all random variables in the lists L e and L

0 are measurable.
The main advantage of Theorem 13 is that it can be used to evaluate

the reliability of a logical gate or a combinational circuit in terms of the
probability of attaining a logical 1 at its output. This is a very useful result
in terms of automatically reasoning about the reliability in a theorem prover
since we have already verified the relations, given in Table 2, for finding the
probability of attaining a logical 1 at the output for most of the commonly
used logical gates. This infrastructure, i.e., the theorems given in Table 2
and Theorem 13, is based on the formally verified results in the HOL theorem
prover and hence the results attained by formally building on top of it can
be regarded as 100% accurate unlike all the available combinational logic
reliability analysis approaches.

6. Proposed Reliability Analysis Framework

The above mentioned formalization can be used to reason about reliabil-
ity properties of combinational circuits in an interactive way. The user input
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is required in translating the circuit model to its higher-order-logic counter-
part, writing the reliability theorem and finally to interactively verify it in
the HOL theorem prover. In this paper, we propose a framework, illustrated
in Figure 1, that allows us to tackle these tasks automatically. The proposed
framework accepts the VHDL model of the combinational circuit, the output
port name in the circuit, the error probability and a combination of circuit’s
input values for which the reliability needs to be analyzed. Whereas, it re-
turns the accurate reliability of the given circuit under the given conditions
without any user interaction. The reliability problem is first translated to
its corresponding higher-order-logic proof goal by a C++ translator mod-
ule. This goal is then automatically verified based on the already verified
von-Neumann error models for the basic logical gates along with a formally
verified generic expression for reliability of combinational circuits. It is im-
portant to note that the initial verification of the von-Neumann error models
for the basic logical gates and the generic reliability expression is not auto-
matic and is one of the main contributions of this paper. But based on these
formally verified results, we can automatically reason about the reliability
of any combinational circuit in a theorem prover. Since the analysis is per-
formed in the sound core of a theorem prover, the reliability analysis results
can be termed as 100% accurate.
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Figure 1: Proposed Reliability Analysis Framework
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For illustrating the role of each module in the proposed framework, con-
sider the example of assessing the comparator circuit given in Figure 2.

The proposed framework accepts the concurrent VHDL model of the cir-
cuit, the output node for which the circuit reliability needs to be assessed,
the probability of error and an input pattern (00, 01, 10 or 11 in the case of
the comparator circuit corresponding to the two inputs A and B). The frame-
work has a built-in Translator, written in C++, that converts the concurrent
VHDL model of the given circuit to its corresponding higher-order-logic de-
scription using the function faulty comp, explained in Section 5. The output
of the Translator in the case of analyzing the output O1 or O3 for an input
pattern (pA,pB) is given below.

and gate

(¸x.[(faulty comp xconnect [bern rv pA] x);

(faulty comp xconnect [(faulty comp nand gate

[(faulty comp xconnect [bern rv pA] x);

(faulty comp xconnect [bern rv pB]) x])x])x])

The interconnect between a primary input port and a gate or between two
gates has been modeled using the function xconnect in the above expression.
This way, we consider the reliability impact of the interconnect as well in our
reliability computations. The function and gate above corresponds to the
AND-gate in Figure 2, the output of which is the one that we are interested
in finding the reliability for. It is a two input gate and its list of random
variables, which corresponds to the inputs of the gate, contains two random
variables. The first input is coming from a primary port and therefore we
use the Bernoulli random variable function bern rv with input probability
pA of getting a logical 1 at this input in the input random variables list.
Thus, ensuring that if pA is 1 then the probability of getting a logical 1 at
this input is 1 and if pA is 0 then the probability of getting a logical 1 is 0.
The second input of the AND-gate is coming from a 2-input NAND-gate, for
which the inputs are in turn connected to the primary ports A and B via
the interconnect and these connections can be observed in the input random
variable list for the function nand gate in the output of the Translator.

The second C++ module, i.e., the Goal Generator given in Figure 1, uti-
lizes the output of the Translator to first generate the following goal:
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Figure 2: A 2-bit Comparator

∀ pA pB e. 0 ≤ e ≤ 1 ∧
0 ≤ pA ∧ pA ≤ 1 ∧ 0 ≤ pB ∧ pB ≤ 1 ⇒

(reliability and gate

(¸x.[(faulty comp xconnect [bern rv pA] x);

(faulty comp xconnect [(faulty comp nand gate

[(faulty comp xconnect [bern rv pA] x);

(faulty comp xconnect [bern rv pB]) x])x])x]) e = Z)

The LHS of the proof goal represents the reliability of the given comparator
circuit, using the function reliability given in Definition 10, and the RHS
is set to an arbitrary real number Z. At this point, the goal is fed to the
HOL theorem prover and is simplified using the theorems given in Table 2
and Theorem 13. Once the most simplified form is obtained, the expression
is fed back to the Goal Generator module, which replaces the real number Z
by the simplified expression and generates the following new proof goal:

Theorem 14: Reliability for Comparator Output O1/O3
∀ pA pB e. (0 ≤ e ≤ 1) ∧

(0 ≤ pA ≤ 1) ∧ (0 ≤ pB ≤ 1) ⇒
(reliability and gate

(¸x.[(faulty comp xconnect [bern rv pA] x);

(faulty comp xconnect [(faulty comp nand gate

[(faulty comp xconnect [bern rv pA] x);

(faulty comp xconnect [bern rv pB]) x])x])x]) e =

(pA(1 - e + (2e - 1)(pA + e(1 - 2pA))(pB + e(1 - 2pB))) + e(

1 - 2pA(1 - e + (2e - 1)(pA + e(1 - 2pA))(pB + e(1 - 2pB)))))

(pA(1 - (pApB))) +

(1 - (pA(1 - e + (2e - 1)(pA + e(1 - 2pA))(pB + e(1 - 2pB)))+e(

1 - 2pA(1 - e + (2e - 1)(pA + e(1 - 2pA))(pB + e(1 - 2pB))))))

(1 - pA(1 - (pApB))))
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Figure 3: Majority Gate based Full Adder

The new goal is now fed to HOL and this time is automatically verified using
the theorems given in Table 2 and Theorem 13. The distinguishing feature
of the above theorem is its generic nature, i.e., it is true for all values of e, pA
and pB. In other words, once this theorem is verified it can be readily used
to evaluate the reliability of outputs O1 or O3 for any values of e, pA and
pB.

Next, we illustrate the practical effectiveness of our approach by providing
the reliability analysis of some interesting real-world problems.

7. Experimental Results

We first present the analysis of a full adder circuit and provide a compar-
ison of our results with the ones obtained using the informal PGM approach.
We then analyze a few benchmark circuits to illustrate the usefulness of the
proposed approach. This will be followed by the analysis of the benchmark
ISCAS-85-C6288, where we illustrate the scalability of the proposed approach
for hierarchical designs.

7.1. Comparison with the Classical PGM Approach: Full Adder Circuit

We now assess the reliability of a majority gate based full adder, given in
Figure 3. The overall reliability of the full adder can be assessed by multi-
plying the individual reliabilities of the two outputs since both of them are
independent. Just like the comparator circuit, analyzed in the last section,
a generic expression for the reliability of the full adder circuit is formally
verified in HOL automatically. This generic expression is then used to ob-
tain the reliability values for a set of different allowable values for the error
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Figure 4: Reliability for Majority Gate based Full Adder

probability e and the results are summarized as the dotted line in Figure 4.
Reliability analysis for the same full adder circuit was done in [12] using the
simulation based PGM approach and Figure 4 also presents those results as
the solid line. The reliability results of the two approached are clearly differ-
ent and the difference gets more prominent as the probability of gate error
e increases beyond 10−3. The results obtained from the proposed approach
exactly match the ones from paper-and-pencil based analysis and thus can
be regarded as 100% accurate. Thus the differences in the simulation based
PGM results can be attributed to the usage of approximate random vari-
able models and the inherent nature of simulation. It is important to note
that the simulation discrepancies are clearly visible even for such a small
reliability analysis problem. Obviously, the scale of the discrepancies would
increase as the number of gates in the circuits are increased. These results
clearly indicate the importance of the proposed formal reliability analysis
approach, which is capable of addressing the inaccuracies of the traditional
simulation based approach and thus can prove to be quite useful for the
reliability analysis of combinational circuits used in safety-critical domains.

7.2. Practical Effectiveness: Benchmark Circuits

In order to demonstrate the practical effectiveness of our approach, we
now present the reliability analysis of some benchmark combinational cir-
cuits. Just like the comparator circuit, we first automatically verify generic
reliability expressions for the benchmarks the LGSynth’91-C17, LGSynth’91-
Majority, LGSynth’91-Parity, and ISCAS-85-74283 in HOL. These formally
verified reliability expressions are then evaluated for the case when all their
inputs are set to logical 1’s and gate error probability e is equal to 0.05
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Benchmark Circuit No. No. No. of Name of Reliability Time(s)

Name of gates of inputs outputs outputs

LGSynth’91

C17 6 5 2
O1 0.8788 3.66

O2 0.6972 4.17

majority 13 5 1 F 0.8644 230.42

Parity 15 16 1 Q 0.5235 462.61

C 0.9477 27.22

ISCAS’85 4-bit S0 0.6998 26.00

74X Adder 36 9 5 S1 0.7075 57.02

series (74283) S2 0.7101 214.43

S3 0.6844 240.27

Table 3: Reliability with all inputs set to True and gate error e = 0.05

and the results are summarized in Table 3. The experiments were run on a
Unix workstation with Sparc-v9 processor operating at 1015 MHz with 4096
Megabytes of memory. The successful handling of these reliability analysis
problems clearly demonstrates the practical effectiveness of the proposed ap-
proach. Due to the inherent soundness of our approach, these results can
be regarded as 100% accurate. This accuracy is the main motivation of the
proposed approach and to the best of our knowledge, cannot be achieved by
any other existing reliability analysis approach. It is also important to note
that these results have been obtained automatically and no user guidance
was required during this process, which is also a distinguishing feature of our
approach when compared to other higher-order-logic theorem proving based
analysis frameworks. Another worth mentioning point here is that the times
reported against the reliability computations in Table 3 may seem a bit high
for the given benchmarks. The reason for these somewhat larger times is
that they include the verification time for the generic reliability theorems
like Theorem 14 for the benchmark circuits. This means that once these re-
lations have been verified, the times for evaluating reliabilities for other input
combinations and/or error probabilities for the same benchmarks would be
almost negligible since the same theorems can be reutilized.

7.3. Scalability for Hierarchical Circuits: ISCAS-85-C6288

ISCAS-85-C6288 is a 16x16 multiplier that is hierarchically constructed
using 240 full and half adder cells. An implementation with full adder cells
only is given in Figure 5. The gate count for this benchmark is approximately
2400. The formal reliability analysis approach, outlined in Figure 1, do not
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scale very well to a flattened gate-level netlist of ISCAS-85-C6288 due to its
high gate count and the complex interconnectivity and thus we end up having
either memory problems or very long proof times. Similar problems are also
encountered in the other state-of-the-art reliability analysis tools based on
PTM, PGM and probabilistic model checking (PMC) approaches and thus
they cannot handle the analysis of ISCAS-85-C6288 or other similar or larger
sized combinational circuits. However, the proposed approach is flexible
enough to cater for such hierarchical designs in a hierarchical way. The
main idea is to leverage upon the independence of faults between gates and
construct formal von-Neumann fault models of the frequently used modules
in the hierarchical design just like we built the models of basic logic gates in
Section 4. Based on this idea, we can construct formal von-Neumann models
of the full-adder cells of the ISCAS-85-C6288 benchmark and then formally
analyze its reliability by modeling it as a structure of 240 full adder cells.
This way, we considerably reduce the size of the generic reliability expression
that needs to be verified and thus the associated memory requirements, which
in turn allows us to assess the reliability of the benchmark.

For illustration purposes, we now apply the idea outlined above for for-
mally analyzing the reliability of output P2 of the ISCAS-85-C6288 bench-
mark. The reason for picking up a lower order output is to be able to express
the formalization in a compact way and thus facilitate understanding of the
approach. Though, the same method can be applied to assess the reliability
equations for higher order output bits as well, but their expressions would
obviously be much longer. The first step in this regard is to formally verify
the probability for having a logical ‘1‘ at the sum and carry outputs of the
faulty ISCAS-85-C6288 full adder cell, given in Figure 6. The corresponding
HOL theorem for the sum output is as follows:

Theorem 15: Probability of True in the ISCAS-85-C6288 Full Adder
⊢ ∀ ac ar br ci e. (0 ≤ e ≤ 1) ∧

(ac ∈ indep) ∧ (ar ∈ indep) ∧
(br ∈ indep) ∧ (ci ∈ indep) ⇒

ℙ {s | fst (faulty comp nor gate

(full adder sum iscas85 list ac ar br ci e) e s)} =

1 - (1 - ℙ {s | fst (ar s)})(ℙ {s | fst (br s)}) +

e (1 - 2 ℙ {s | fst (ar s)})(ℙ {s | fst (br s)}) -

⋅ ⋅ ⋅
The RHS of the expression has been truncated due to its relatively large
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Figure 5: ISCAS-85-C6288 Benchmark
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Figure 6: ISCAS-85-C6288 Full Adder Cell

size. The approach described to model the comparator circuit has been again
adopted to model the full adder circuit above but in order to facilitate the
reusability of the full adder cell, the details of the gates accept the last NOR
gate have been represented as the function full adder sum iscas85 list,
which is defined as follows:

Definition 11: ISCAS-85-C6288 Full Adder List
∀ ac ar br ci e. full adder sum iscas85 list ac ar br ci e =

[(faulty comp nor gate

[(faulty comp and gate [ar; br] e); (faulty comp nor gate

[(faulty comp and gate [ar; br] e); (faulty comp nor gate

[(faulty comp nor gate[ac;

(faulty comp nor gate [ac; ci] e)] e);

(faulty comp nor gate

[(faulty comp nor gate[ac; ci] e); ci] e)] e)] e)] e);

(faulty comp nor gate

[(faulty comp nor gate[(faulty comp and gate[ar; br] e);

(faulty comp nor gate

[(faulty comp nor gate[ac;

(faulty comp nor gate[ac; ci] e)] e);

(faulty comp nor gate

[(faulty comp nor gate[ac; ci] e); ci] e)] e)] e) ;
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(faulty comp nor gate

[(faulty comp nor gate[ac;

(faulty comp nor gate [ac; ci] e)] e);

(faulty comp nor gate

[(faulty comp nor gate[ac; cin] e); ci] e)] e)] e)]

It is important to note that we have kept the inputs as generic random
variables in the above definition and theorem just like what was done in the
case of basic logic gates in Section 4. This allows us to use the probability
expression of Theorem 15 to assess the reliability of a circuit where the full
adder is used as the first (Bernoulli random variables would be used to model
the input random variables) or an intermediate cell (the output of the pre-
vious full adder cell would be to model input random variable). The above
theorem and definition have been written manually as our C++ module can
only handle flattened gate level netlists but we were able to verify Theorem
15 automatically using the proposed framework.

Now, the ISCAS-85-C6288 benchmark can be modeled in terms of Defi-
nition 11 and its reliability can be formally reasoned about using Theorem
15. This way, we avoid working at the gate level and hence the large def-
initions and theorems. The formally verified theorem corresponding to the
probability of getting a logical ‘1‘ at output P2 of the ISCAS-85-C6288 is
given below:

Theorem 16: Probability of getting a True at output P2 of
ISCAS-85-C6288
⊢ ∀ pA0 pA1 pA2 pB0 pB1 pB2 e. (0 ≤ e ≤ 1) ∧

(0 ≤ pa0 ≤ 1) ∧ (0 ≤ pa1 ≤ 1) ∧
(0 ≤ pa2 ≤ 1) ∧ (0 ≤ pb0 ≤ 1) ∧
(0 ≤ pb1 ≤ 1) ∧ (0 ≤ pb2 ≤ 1) ∧ ⇒

ℙ {s | fst (faulty comp nor gate

(full adder sum iscas85 list

(full adder sum iscas85 list

(faulty comp and gate [(bern rv pA2); (bern rv pB0)] e)

(bern rv pA1)

(bern rv pB1)

(¸s. (F, s)) e) e)

(bern rv pA0)

(bern rv pB2)
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(faulty comp nor gate

(full adder carry iscas85 list

(faulty comp and gate [(bern rv pA1); (bern rv pB0)] e)

(bern rv pA0)

(bern rv pB1)

(¸s. (F, s)) e) e) e) e s} =

1 - (1 - (pA0 pB2 + e (1 - 2 pA0 pB2)) -

(1 - (pA0 pB2 + e (1 - 2 pA0 pB2)) -

(1 - (1 - ℙ {s | fst ((faulty comp nor gate

(full adder sum iscas85 list

(full adder sum iscas85 list

(faulty comp and gate [(bern rv pA2); (bern rv pB0)] e)

(bern rv pA1)

(bern rv pB1)

(¸s. (F, s)) e) e) s)} -

⋅ ⋅ ⋅

The RHS expression above has been again truncated due to its large size.
The above theorem can now be used along with Theorem 13 to obtain a
generic expression for the desired reliability, which can in turn be used to
evaluate the reliability just like the previous examples. With this result, we
demonstrated the scalability of the proposed approach towards analyzing the
reliability of hierarchical circuits. This is another distinguishing feature of
the proposed approach besides its accuracy. Though, we had to compromise
the automatic nature of the analysis to achieve the above result. However,
most of the user interaction was required in the formalization step as all the
verification was almost done automatically.

Based on the above examples, comparing the proposed approach to the
other existing approaches [11, 18], it can be observed that our approach does
not rely on paper-and-pencil proof methods or simulation, which are the ma-
jor sources of error in the PTM and PGM based approaches. Whereas, PMC
based reliability analysis [3, 4] is based on formal methods but is severely
limited by the state-space-explosion problem. For example, Table 1 in [4]
reports on the state-space-explosion problem in the reliability analysis of
adder circuits with more than 4 inputs using PMC. Similarly, the analysis
done based on the PMC approach does not provide generic results, like the
proposed theorem proving based approach does, and thus the whole analysis
needs to be repeated if some parameter changes. For example, the reliability
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of combinational circuits have been assessed in [4] for only a specific set of
values of error probabilities. Henceforth, the scalability and the generic na-
ture of the above examples clearly demonstrate the usefulness of the proposed
approach compared to PMC.

8. Conclusions

The paper presents the first theorem proving based automatic framework
for the reliability analysis of combinational circuits. Due to the formal nature
of the approach, the reliability results are 100% accurate; a feature that is
very useful for the analysis of combinational circuits that are used in safety-
critical applications. The proposed framework is primarily based on the PGM
method as we present the formalization of combinational gate faults and the
notion of reliability for a combinational logic gate. Due to the undecidable
nature of the underlying higher-order logic, these results had to be interac-
tively verified in HOL. This part consumed around 120 man hours and is
composed of approximately 2000 lines of HOL code. These formally verified
theorems are then leveraged upon to automatically assess the reliability of
combinational circuits using some C++ modules.

The paper also presents some interesting case studies to support the for-
mal automatic reliability analysis approach and we have been able to evaluate
the reliability for combinational circuits with up to 36 gates. With a little
bit of user interaction, i.e., 16 man hours, we were also able to analyze a
hierarchical combinational circuit of about 2400 gates by expressing the cir-
cuit at the module level, using full adders, then the gate-level. In a similar
way, by compromising upon the automatic nature of the approach, we can
formally verify reliabilities of very large circuits, in terms of gate counts, at
the module level. This fact makes the proposed approach quite scalable when
compared to other existing reliability analysis approaches for combinational
circuits. Besides the accuracy and scalability, another distinguishing feature
of the proposed approach is its generic nature. It verifies generic reliabil-
ity expressions for combinational circuits that can be simply instantiated to
evaluate the reliabilities of the given circuit under different inputs and error
probabilities. To the best of our knowledge, no other publicly available relia-
bility analysis approach provides these kind of features and thus the proposed
approach is very promising for the microelectronic design community where
the accurate reliability analysis of combinational circuits is a major issue.
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This work opens the doors of many new areas in the direction of theorem
proving based reliability analysis of combinational circuits. First of all, one
of our ongoing projects is to analyze some statistical aspects, such as average
or variance, of reliability of combinational circuits by building on top of our
generic higher-order-logic based reliability analysis approach [16] instead of
evaluating the reliability for individual input patterns. Similarly, in order to
ensure 100% accurate results from the proposed reliability assessment frame-
work, given in Figure 1, we are planning to formally verify the functional
correctness of the C++ blocks, which have been verified using informal test-
ing techniques so far. Another potential extension worth mentioning here is
to lift the independence of signals assumption from the analysis presented in
this paper. The independence assumption simplifies the analysis but leads
to an abstract modeling of the real scenario, where the signals are somehow
correlated. Such correlations can be integrated in the models presented in
this paper using mathematical concepts of joint and conditional probabilities
based on the approach presented in [25].
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