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ABSTRACT

Development of Fault Diagnosis and Fault Tolerant Control Algorithms with

Application to Unmanned Systems

Hadi Amoozgar, M.A.Sc.
Concordia University, 2012

Unmanned vehicles have been increasingly employed in real life. They include
unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), unmanned space-
crafts, and unmanned underwater vehicles (UUVs). Unmanned vehicles like any other
autonomous systems need controllers to stabilize and control them. On the other hand un-
manned systems might subject to different faults. Detecting a fault, finding the location
and severity of it, are crucial for unmanned vehicles. Having enough information about a
fault, it is needed to redesign controller based on post fault characteristics of the system.
The obtained controlled system in this case can tolerate the fault and may have a better
performance. The main focus of this thesis is to develop Fault Detection and Diagnosis
(FDD) algorithms, and Fault Tolerant Controllers (FTC) to increase performance, safety
and reliability of various missions using unmanned systems.

In the field of unmanned ground vehicles, a new kinematical control method has been
proposed for the trajectory tracking of nonholonomic Wheeled Mobile Robots (MWRs). It
has been experimentally tested on an UGV, called Qbot. A stable leader-follower forma-
tion controller for time-varying formation configuration of multiple nonholonomic wheeled
mobile robots has also been presented and is examined through computer simulation.

In the field of unmanned aerial vehicles, Two-Stage Kalman Filter (TSKF), Adap-
tive Two-Stage Kalman Filter (ATSKF), and Interacting Multiple Model (IMM) filter were
proposed for FDD of the quadrotor helicopter testbed in the presence of actuator faults. As
for space missions, an FDD algorithm for the attitude control system of the Japan Canada
Joint Collaboration Satellite - Formation Flying (JC2Sat-FF) mission has been developed.
The FDD scheme was achieved using an IMM-based FDD algorithm. The efficiency of the
FDD algorithm has been shown through simulation results in a nonlinear simulator of the
JC2Sat-FF.

A fault tolerant fuzzy gain-scheduled PID controller has also been designed for a
quadrotor unmanned helicopter in the presence of actuator faults. The developed FDD algo-
rithms and fuzzy controller were evaluated through experimental application to a quadrotor
helicopter testbed called Qball-X4.
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Chapter 1

Introduction

1.1 Motivation

Unmanned vehicles have been increasingly employed in real life. They become more and

more popular in military and civil applications. These autonomous unmanned vehicles

include unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), unmanned

spacecrafts, and unmanned underwater vehicles (UUVs).

Reliability, maintainability and survivability of unmanned systems have been the

issue of many researches over the last decades. Unmanned vehicles like any other au-

tonomous systems need controllers to stabilize and control them. On the other hand un-

manned systems might subject to different faults. Detecting a fault, finding the location

and severity of it, are crucial for unmanned vehicles. Having enough information about a

fault, it is needed to redesign controller based on post fault characteristics of the system.

The obtained controlled system in this case can tolerate the fault and may have a better

performance.

In the area of Unmanned Ground Vehicles (UGV), different methods have been pro-

posed for the trajectory tracking of wheeled mobile robots. In kinematical control level,

determination of the most appropriate heading angle of the robot is one of the fundamental

1



problems in the trajectory tracking of WMRs. In some researches such as [2], a pursuit

guidance law is used to determine appropriate heading angle of the vehicle during opera-

tion. Although pursuit guidance is straightforward, the tracking performance is not always

satisfactory. In [3] a new fuzzy scheduler has been devised to compute appropriate heading

angle of the vehicle instantly, in addition to two fuzzy controllers which separately control

linear and angular velocities. The main drawback of the aforementioned research work is

the lack of explicit mathematical method to prove stability of the proposed a set of fuzzy

controllers. Motivated by this fact, as a part of work in this thesis, a new stable controller

is developed for trajectory tracking of mobile robots.

Various studies have also been done in both theoretical and application aspects for the

robots formation. Different approaches and strategies have been proposed for the formation

control of multiple robots. Typically, using a more strict coordination strategy attempts to

provide the desired configuration of the robotic group. The ability to change configuration

is crucial to group of robots in formation, for example before the group passes through a

corridor, the robots should be aligned. In lots of researches, switching between two config-

urations is discussed, for example wedge to column, or line to wedge. Very few numbers of

researches focused on the transition period between two configurations, while the perfor-

mance of the group may drastically decrease during the transition. This was the motivation

to design a stable leader-follower formation controller for time-varying formation configu-

ration of nonholonomic wheeled mobile robots.

In the area of Unmanned Aerial Vehicles (UAV) and over the last two decades, relia-

bility, maintainability and survivability of UAVs have drawn significant attention into Fault

Tolerant Control (FTC) and Fault Detection and Diagnosis (FDD) problems. Accurate in-

formation about the time, location and severity of the fault help designers to reconfigure

the control structure and will help them to avoid system’s unexpected shut down, break

down or even facility damages in the event of the fault. One of the key challenges in this

area is to design an FDD scheme which is highly sensitive to faults and less sensitive to

2



external disturbances. In some research works on FTC, it has been assumed that perfect in-

formation of the fault is available [4] while such an assumption may not be realistic in real

world applications. Indeed, to design a reconfigurable fault-tolerant controller, the FDD

scheme should provide detailed information of the post-fault system as accurate as possi-

ble [5]. This fact became a motivation to implement and verify some FDD algorithms with

application to rotary-wing UAV available at the Diagnosis, Flight Control and Simulation

Lab (DFCSL) of the Department of Mechanical and Industrial Engineering at Concordia

University in this thesis.

On the other hand, efficient FDD of faulty components in satellite missions can also

significantly increase the spacecraft reliability and has been the subject of interests in recent

years [6, 7]. This is more appreciated in case of satellite formation flying missions because

of the more stringent safety requirements when a group of spacecrafts fly in close proximity.

A part of the current thesis is dedicated to move a step forward towards the effective fault

protection of the satellites. Specifically, it will present a FDD algorithm for the momentum

wheels (MWs) of the attitude control system of the satellites.

One of the other objectives of this thesis is to propose fault tolerant control meth-

ods that are effective, simple to be implemented for real-time applications and robust to

model uncertainties and external disturbances including actuator faults. PID (Proportional

- Integral - Derivative) controllers are the most well-known controller in the society of

automation and control, due to their simple structure and wide variety of usages. These

kinds of controllers are classified into two main categories in terms of parameters selec-

tion strategies. In the first group, controller gains are fixed during operation while in the

second group, gains change based on the operating conditions. In the first group, gains

are tuned by the designer and remain invariable during the operation. One of the most

well-known methods for choosing control gains in this group is Ziegler-Nichols method

which has been addressed in lots of research works [8]. Although this method is simple

and straightforward, fine tuning is required for different applications. In most applications,
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due to structural changes the controlled system may lose its effectiveness, therefore the

PID gains need to be continuously retuned during the system life span. To reduce the effort

of retuning the gains and also in order to increase system’s performance, an adaptive gain

scheduler based on fuzzy inference system is developed for application to rotary-wing UAV

in this thesis.

1.2 Literature Review

This section presents a review of the relevant literature on Unmanned Systems. First a

review on trajectory tracking control of wheeled mobile robots will come, followed by a

brief review on formation control of multiple mobile robots. Then a review of different

Fault Tolerant Control (FTC) and Fault Detection and Diagnosis (FDD) algorithms with

application to aircrafts and spacecrafts will be presented.

Mobile robots, like unicycle and car-like vehicles, have considerably wide range of

applications including discovery, observation, search and rescue, and mapping of unknown

or partially known environments [9] (Fig. 1.1). One of the difficulties in the control of

mobile robots lies in the fact that ordinary vehicles possess only two degrees of freedom

(linear velocity and rotational velocity) for locomotion control, whereas vehicles have three

degrees of freedom, x, y and θ in its positioning [10] (Fig. 1.2). These kinds of mobile

robots are classified as underactuated systems.

Under the assumption of no slippage in robot’s base, the system will be imposed

upon by a nonholonomic constraint. Nonholonomic control problems are quite challeng-

ing making them an attractive research area in control fields [11]. A complete study of

nonholonomic control problems have been presented in [12], [13].

During the past 30 years extensive research works have been devoted to the problem

of trajectory tracking control of nonholonomic WMRs. In majority of these researches

the control inputs are obtained by a combination of feedforward inputs, calculated from a

4



Figure 1.1: Different applications of wheeled mobile robots.

Figure 1.2: The schematic of the mobile robot.

reference trajectory, and a feedback control law, as in [14].

Lyapunov stable, time-varying, state-tracking control laws were presented in [10].

Many variations and improvements of this simple and effective state-tracking controller

were followed by latter research works [14]. An adaptive extension of this work was intro-

duced in [15], where adaptive capabilities are included to increase the robustness to robot

modelling uncertainties.
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A model predictive controller based on a linearized error dynamics was presented

in [16], which minimizes the difference between the future trajectory-following errors of

the robot and the reference robot. Reference [17] presents a nonlinear model predictive

controller to solve the problem of combined trajectory tracking and path following. An

adaptive controller in the presence of unknown skidding and slipping is designed in [18],

where nonholonomic constraints assumed to be perturbed. In [19] an adaptive controller

has been developed in the presence of uncertainties in both dynamic and kinematic param-

eters of a mobile robot.

In addition, various control methods such as backstepping [20], reinforcement learn-

ing [21], transfer function approach [22], neural network [23, 24], sliding mode [25], fuzzy

logic [3] have also been exploited for the control of WMRs.

In later research studies combinations of these methods are also considered. Dual

adaptive neural network controller is designed in [26]. Genetic algorithm was used to

optimize parameters of fuzzy controllers, as in [27, 28].

Formation control problem simply means the problem of controlling the relative po-

sitions and orientations of robots in a group while allowing the group to move as a whole

[29, 30]. There are many potential advantages of a group of robots over a single robot,

including greater flexibility, adaptability, robustness, sharing the sensor data, and robot

parallelism [31]. In addition, added interests will result in the cooperating teams when

the tasks may be inherently too complex for a single system to accomplish. This can help

build and use several simpler and more flexible, fault-tolerant or cheaper systems rather

than using one single and large system [32]. Numerous application issues, such as search

and rescue [33, 34], intelligent automatic navigation systems in highways [35], air traffic

control [36], and soccer robots can be found, where the use of several robots as a coordi-

nated team is more effective than those which work separately without any coordination. In

addition, there are various applications of formation control of a collection of robots such
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as military applications, field surveillance and exploration [37], application in hazard sit-

uations, mapping of unknown or partially known environments, distributed manipulation,

and transportation of large objects [29].

These benefits have put forward an active field for some researchers of robotics com-

munity in recent years to examine the solution of this challenging problem. Various studies

have been done in both theoretical and applied aspects for the robots formation. Various

approaches and strategies have been proposed for the formation control of multiple robots.

Typically, using a more strict coordination strategy attempts to provide the desired config-

uration of the robotic group. These approaches can be roughly categorized into three main

methods: virtual structure, behavior-based approach, and leader-follower, each of which

has advantages and weaknesses.

Some research works use virtual structure approach in the formation control [38, 39,

40, 41]. The virtual structure scheme considers the whole formation as a single virtual rigid

arrangement. Desired motion is assigned to the virtual structure as a group, which in turn

results into the trajectories for each robot in the formation to follow. The main advantages

of the virtual structure approach is that it is fairly easy to prescribe the coordinated behavior

for the group, and the formation can be maintained very well during the maneuvers, that is,

the virtual structure can evolve as a whole in a given direction with some given orientation

and maintain a rigid geometric relationship among multiple vehicles [42]. The main disad-

vantage of the virtual structure implementation is the centralization, which leads a single

point of failure for the whole system [43]. Furthermore, if the formation has to maintain the

exact same virtual structure all the time, the potential applications are limited, especially

when the formation shape is time-varying or needs to be frequently reconfigured [42].

In the behavior-based scheme, a number of desired activities are considered for each

robot, and then the final behavior of each robot is determined by weighting the comparative

importance of each behavior. Several probable behaviors contain obstacle avoidance, colli-

sion avoidance, goal searching and formation maintenance [44, 45]. The advantage is that
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it is natural to derive control strategies when vehicles have multiple competing objectives,

and an explicit feedback is included through communication between neighbors [42]. The

main drawback of the behavior-based approach is that due to the lack of explicit dynamical

functions involved, the formation performance cannot be analyzed mathematically [46].

In the leader and follower method [47, 48], one of the robot members of the group

is considered to be the leader and the other members are expected to follow the leader.

Consequently, the formation control problem converts into two simple problems including

trajectory tracking by the leader robot and control/maintenance of the formation by the

rest of the components. There may be cases where a robot can be a leader of another robot

while it may be the follower of a different one. In order to keep the desired formation during

a maneuver, the follower robots should adjust their positions relative to the leader robot.

Proper controllers can be designed in order that the desired relative positions between the

leader and the followers are generated.

In the leader-follower method, the position of the follower is determined with respect

to the leader robot by either a distance-angle (l−ϕ) or a distance-distance (l− l) model (see

Fig. 1.3). In the distance-angle model, the robots are controlled like the rings of a chain

in such a way that each robot simply follows another single robot. In the distance-distance

model, each robot follows two other robots simultaneously. The arrangement of the robots

can be made in various shapes such as a line, column, diamond, and a wedge.

It should be pointed out that the simplicity of mathematical analysis and a higher

safety measures for the motion of the collection of the robots as well as keeping the for-

mation configuration are the main advantages of the leader-follower approach. In addition,

the formation can still be maintained even if the leader is perturbed by some disturbances

[42].

Due to the above mentioned advantages of leader-follower approach, a number of

researches have focused on this method [47, 48, 49, 50, 51, 52]. The main disadvantage of

the leader-follower method is the necessity of availability of leader’s controlled input to the
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Figure 1.3: Distance-angle and distance-distance models.

follower for each pair of leader and follower [46]. Also, there is no explicit feedback to the

formation, that is, there is no explicit feedback from the followers to the leader in this case

[42].

Reference [49] designed the backstepping leader-follower formation controller to re-

lease the perfect velocity assumption at the dynamics level. In [50] an adaptive leader-

follower formation controller was presented which does not require velocity information

of the leader robot. It used smooth projection algorithm to estimate the unknown velocities

of the leader robot. The leader’s trajectory constraints in the presence of constraints for

followers have been discussed in [51], so that the followers can follow the relative lead-

ers while respecting their input constraints. In [52], two model predictive controllers were

proposed for both formation keeping and obstacle avoidance.

Relatively small number of researches addressed the problem of fault detection of

helicopter [53, 54]. Heredia et al. [55, 56] used a simple observer to detect and diagnose

the fault in helicopter’s actuator. Differential flatness techniques are employed to detect

and diagnose sensor faults in [57] and actuator faults in [58]. The approach introduces

non-linear observers and takes profit of differential flatness of the system dynamics to de-

sign a fault detection analytical redundancy scheme. Observer-based FDD techniques are

the most common in the literature: in [59], Thau’s observer is employed to generate a set
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of residuals for detection and diagnosis of accelerometers and inclinometers faults. Thau’s

observer is also employed in [60] for actuator faults. In [61], a set of N sensors (accelerom-

eters, magnetometers and rate gyros) is embedded in the quadrotor. For the N available

measurements, N +1 non-linear observers are designed. The first observer uses the whole

set of measurements (i.e. N measurements), while the remaining observers use a subset of

sensors. Therefore, these N observers are insensitive to faults in the discarded sensors. A

fault-tolerant switching is then designed for the quadrotor system under consideration. At

each instant of time, the attitude estimate that presents the smallest error when compared

to the reference attitude is selected to be fed to the control law. In [62], the problem of

simultaneous observer based sensor diagnosis and speed estimation of the quadrotor UAV

is investigated. The main features lie in the use of a useful bank of reduced order observers

to detect and isolate faulty sensors and at the same time to provide unbiased speed estima-

tion of UAV from accelerometers. The work in [63] compares two diagnostic techniques

applied to MEMS sensors of an Inertial Measurement Unit (IMU). The first approach is

based on parameter estimation with nonlinear optimization technique while the second one

makes use of set membership estimation. Both techniques are applied to the detection of

faults in the IMU fixed on a quadrotor in quasi-static movement.

Number of fault protection techniques has been presented in literature for space-

craft. Morgan [6] discussed detailed protection techniques that are general to different

types of spacecraft. Olive [7] discussed fault protection techniques for next generation of

autonomous satellites which include such research tracks as active diagnosis and hybrid

diagnosis. Ruiter et. al [64] developed a fault tolerant controller for magnetic torque rods

in the presence of partial failure of the magnetorquers. In regard to fault protection of mo-

mentum wheels, Tehrani et.al [65] used model-based fault detection methods and artificial

intelligence techniques to detect and isolate faults. Reference [66] uses artificial intelli-

gence techniques to detect and isolate faults. For a complete survey on the methods of fault

protection techniques for momentum wheels the readers are referred to [67].
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Two-Stage Kalman Filter (TSKF) proposed by Keller and Darouach in [68]. In [69],

the authors proposed the use of forgetting factor technique (which is widely used in system

identification applications) for TSKF. As an extension, in [70, 71] an adaptive algorithm is

added to the TSKF to make it more responsive to abrupt changes in the control effective-

ness factors. The Interacting Multiple Model (IMM) method is one of the most efficient

approaches for FDD applications, which was first published in [72]. By extending the Inter-

acting Multiple Model (IMM) based FDD scheme to nonlinear systems, Unscented Kalman

Filter (UKF) is combined with the IMM for detecting sensor faults in fixed-wing UAVs in

[73]. A Dual Unscented Kalman Filter (DUKF) was also applied to a NASA fixed-wing

Generic Transport Model (GTM) UAV in [74].

Gain-scheduled controller can also be categorized as Fault Tolerant Control (FTC)

like Gain-scheduled PID Controllers. Several methods have been proposed in the litera-

ture for gain scheduling PID. In [75] a stable gain-scheduling PID controller is developed

based on grid point concept for nonlinear systems, in which gains switch between some

predefined values. Different gain scheduling methods were studied and compared in [76].

In [77] a new PID scheme is proposed in which the controller gains were scheduled by a

fuzzy inference scheme. Many variations and improvements of this simple and effective

method were followed by latter research works [78, 79, 80]. A particle swarm optimization

method is used in [78] to design membership functions of fuzzy PID controller. In [81],

an accumulated genetic algorithm is proposed which learns the parameters and number of

fuzzy rules in the fuzzy PID controller. An adaptive fuzzy PID using neural wavelet net-

work is presented in [82]. The interested readers can find a brief review of different fuzzy

PID structures in [83].

A Gain-Scheduled PID (GS-PID) is designed for the quadrotor system in [84]. The

GS-PID has been implemented for different sections of the entire flight envelope by prop-

erly tuning the PID controller gains for both normal and fault conditions. The switching

from one PID to another is then based on the actuator’s health status. It is worthy to note
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that the above method requires a Fault Detection and Diagnosis (FDD) scheme to provide

the time of fault occurrence as well as the location and the magnitude of the fault during

the flight.

1.3 Problem Formulation

Based on the state of the art and advantages and disadvantages of the existing methods

discussed in the previous section, this section formulates the main objectives of the thesis

and original contributions.

1.3.1 Thesis Objectives

The main objective of the presented thesis is to develop fault detection and diagnosis al-

gorithms and fault tolerant controllers to enhance performance, safety and reliability of

various missions using unmanned systems.

As one of the objectives of the current thesis, new control methodology has been

developed for trajectory tracking of nonholonomic wheeled mobile robot which makes the

robot catch its desired trajectory faster with less control efforts.

Another objective is to design a stable controller for group of multiple vehicles in

time-varying formation configurations.

To increase reliability of quadrotors, different Fault Detection and Diagnosis and

Fault Tolerant Control approaches have been developed for the presence of actuator faults.

Attitude Control System (ACS) is one of the main satellite subsystems, which is

to detect, estimate, and control the orientation of the satellite. One of the objectives is

to present FDD algorithms for ACS actuators, which are the components used to generate

torques. The types of ACS actuators frequently seen in practice include reaction/momentum

wheels, magnetorquers, and thruster pairs. In this work, the FDD algorithms are developed

for momentum wheels. It is our intention that the FDD algorithms shall be integrated into
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spacecraft on-board software and be able to autonomously detect and identify hardware

failures, and in addition, to autonomously reconfigure the attitude control system if neces-

sary. To get our research into perspective of practical missions, the scenarios of a spacecraft

formation flying mission, called JC2Sat-FF [85], will be used which is introduced in more

details later on.

1.3.2 Case Studies

For the purpose of testing and validation of the proposed methods and algorithms, different

testbeds have been used.

Quadrotor Helicopter: The quadrotor helicopter is relatively a simple, affordable

and easy to fly system. It has been widely used to develop, implement and flying-test meth-

ods in control, fault diagnosis, fault tolerant control as well as multi-agent based technolo-

gies in formation flight, cooperative control, distributed control, surveillance and search

missions, mobile wireless networks and communications. Some theoretical works consider

the problems of control [86], formation flight [87] and fault diagnosis [62] of the quadro-

tor Unmanned Aerial Vehicle (UAV). However, few research laboratories are carrying out

advanced theoretical and experimental works on the system. Among others, one may cite

for example, the UAV health management project of the Aerospace Controls Lab. at MIT

[88], the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control project [89]

and the Micro Autonomous Systems Technologies project [90]. A team of researchers

is also currently working at the Department of Mechanical and Industrial Engineering of

Concordia University to develop, implement and test approaches in Fault Detection and

Diagnosis (FDD), Fault Tolerant Control (FTC) and cooperative control with experimental

application to the quadrotor unmanned helicopter system. For more information on the re-

search activities carried out, interested readers are referred to the Networked Autonomous

Vehicles (NAV) laboratory [91].

Wheeled Mobile Robot: As a testbed for wheeled mobile robot’s related applications
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a robot vehicles called “Qbot” is used. Qbot ia a multi-purpose research robotic developed

by Quanser Inc. Qbot has two differentially driven wheels, and a caster wheel (to maintain

its stability).

Satellite Mission: As a testbed for spacecraft applications JC2Sat is chosen. The

JC2Sat-FF is a joint Canadian Space Agency/Japan Aerospace Exploration Agency tech-

nology mission consisting of two nano-satellites and weighing approximately at 18kg each.

The main objective of this mission is to demonstrate the feasibility of maintaining along-

track spacecraft formation by using only differential atmospheric drag control between the

two satellites and GPS-based relative navigation (Fig. 2.6).

1.3.3 Original Contributions

This part summarizes the contributions of the presented thesis as follows.

• Inspired by logics which have been used in [3], a new control structure for trajec-

tory tracking of mobile robots, named Lyapunov-based Guidance, is presented in

this thesis. The performance of the proposed control method is compared to that of

Model Predictive Control (MPC), Linear State Tracking Control (LSTC) and Non-

linear State Tracking Control (NSTC) methods in terms of tracking performance and

control effort, through real time application to Qbot testbed. It is also proved that the

controlled system with the proposed controller is stable.

• A stable leader-follower formation controller for time-varying formation configu-

ration of nonholonomic wheeled mobile robots is presented. Separation-bearing is

used to describe relative coordination of leader-follower pairs of robots. It’s assumed

that the transition between two configurations is described as a function of time in

both separation distance and bearing angle. A virtual follower is used to specify the

desired coordination of the real follower, and then a controller is designed to make

the follower robot as close as possible to its virtual one.
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• A Two-Stage Kalman Filter (TSKF), an Adaptive Two-Stage Kalman Filter (ATSKF)

and an Interacting Multiple Model (IMM) have been implemented on the quadrotor

helicopter for detection, isolation and identification of actuator faults.

• As further extension, IMM-based FDD [72] is also applied to the nonlinear dynamics

of the satellite. The IMM-based FDD scheme has the advantage of not only detecting

faults but also providing the information on location and magnitude of the fault. For

partial faults, the magnitude can be determined by the probabilistically weighted sum

of the fault magnitudes of the corresponding partial fault model. In addition, FDD is

integrated with state estimation. As mentioned above, these proposed FDD schemes

are illustrated via a nano-satellite formation flying mission, JC2Sat-FF. However, it

should be emphasized that the proposed methodologies are rather generic and can be

readily extended and adapted to the cases of other types of momentum wheels found

in space missions.

• An adaptive PID controller is also proposed for fault tolerant control of a quadrotor

helicopter system. A fuzzy inference scheme is used to tune in real-time the con-

troller gains, where the tracking error and the change in tracking error are used in

this fuzzy scheduler to make the system act faster and more effectively in the fault-

free case as well as in the event of fault occurrence. The proposed PID controller

is compared with the conventional one through an experimental application to the

quadrotor helicopter testbed at the NAV Lab.

1.3.4 Thesis Outline

The outline of the thesis is given below.

• Chapter 1: The introduction, contributions and thesis outline are presented in this

chapter.
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• Chapter 2: Description and dynamic equations of the testbeds are presented in this

chapter.

• Chapter 3: This chapter presents three Fault Detection and Diagnosis algorithms for

the purpose of actuator fault detection and diagnosis in unmanned systems.

• Chapter 4: This chapter presents some control algorithms including fault tolerant

control for unmanned systems.

• Chapter 5: In this chapter simulation and experimental results of developed methods

and algorithms are presented.

• Chapter 6: This chapter concludes the thesis and makes some recommendations for

future work.

1.4 Publications

The following publications were written during the course of the thesis work.

1. M. H. Amoozgar, A. Chamseddine, and Y. M. Zhang, “Experimental Test of a Two-

Stage Kalman Filter for Actuator Fault Detection and Diagnosis of an Unmanned

Quadrotor Helicopter,” Accepted for publishing in The Journal of Intelligent and

Robotic Systems (JINT), Springer, July, 2012 [ID: JINT-D-12-00148].

2. A. Chamseddine, M. H. Amoozgar, and Y. M. Zhang, “Experimental Validation of

Fault Detection and Diagnosis for Unmanned Aerial Vehicles,” Book Chapter Sub-

mitted to Handbook of Unmanned Aerial Vehicles, Springer, May, 2012.

3. M. H. Amoozgar, A. Chamseddine, and Y. M. Zhang, “Experimental Test of an In-

teracting Multiple Model Filtering Algorithm for Actuator Fault Detection and Diag-

nosis of an Unmanned Quadrotor Helicopter,” Accepted by the International Confer-

ence on Intelligent Robotics and Applications (ICIRA12), October, 2012, Montreal,
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Quebec, Canada.

4. M. H. Amoozgar, A. Chamseddine, and Y. M. Zhang, “Fuzzy Gain-Scheduled PID

for Payload Drop: Application to an Unmanned Quadrotor Helicopter Testbed,” Ac-

cepted by the International Conference on Intelligent Unmanned Systems (ICIUS

2012), October, 2012, Singapore.

5. M. H. Amoozgar and Y. M. Zhang, “Varying-Configuration Formation Control of

Multiple Wheeled Mobile Robots,” Accepted by the International Conference on

Intelligent Unmanned Systems (ICIUS 2012), October, 2012, Singapore.

6. M. H. Amoozgar, Y. M. Zhang, J. Lee, and A. Ng, “A Fault Detection and Diagnosis

Technique for Spacecraft in Formation Flying,” Accepted by the IFAC Symposium

on Fault Detection, Supervision and Safety for Technical Processes (Safeprocess12),

August, 2012, Mexico City, Mexico.

7. M. H. Amoozgar and Y. M. Zhang, “Trajectory Tracking of Wheeled Mobile Robots:

A Kinematical Approach,” IEEE/ASME International Conference on Mechatronic

and Embedded Systems and Applications (MESA12), July, 2012, Suzhou, China.

8. M. H. Amoozgar, A. Chamseddine and Y. M. Zhang, “Experimental Test of a Two-

Stage Kalman Filter for Actuator Fault Detection and Diagnosis of an Unmanned

Quadrotor Helicopter,” Proceedings of the IEEE 2012 International Conference on

Unmanned Aircraft Systems, June, 2012, Philadelphia, USA.

9. M. H. Amoozgar, A. Chamseddine, Y. M. Zhang, “Fault-Tolerant Fuzzy Gain-Scheduled

PID for a Quadrotor Helicopter Testbed in the Presence of Actuator Faults,” Proceed-

ings of the IFAC Conference on Advances in PID Control, March, 2012, Brescia,

Italy.

10. M. H. Amoozgar, N. Gollu, Y. M. Zhang, J. Lee, and A. Ng, “Fault Detection and

Diagnosis of Attitude Control System for the JC2Sat-FF Mission,” Proceedings of the
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4th International Conference on Spacecraft Formation Flying Missions and Technol-

ogy, May, 2011, Saint Hubert, QC, Canada.

1.5 Chapter Summary

In this chapter, the thesis objectives and the state of the arts were discussed. The next

chapter will discuss the description and dynamics the testbeds models.
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Chapter 2

Testbeds Description and Dynamics

This chapter is dedicated to describe the testbeds models used in the current research. First

a brief description of a quadrotor helicopter called Qball-X4 comes, followed by its sub-

systems, configuration and mathematical dynamic model. Then characteristics of nonholo-

nomic wheeled mobile robot including kinematical equation of motion is presented. And

finally a spacecraft testbed model called JC2Sat is discussed.

2.1 Description and Dynamics of the Quadrotor UAV Sys-

tem

The Qball-X4 testbed is developed by Quanser Inc. through an NSERC-SPG project led

by Concordia University (Fig. 2.1). It is enclosed within a protective carbon fiber round

cage (therefore a name of Qball-X4) to ensure safe operation of the vehicle and protection

to the personnel who is working with the vehicle in an indoor research and development

environment. It uses four 10-inch propellers and standard motors and speed controllers.

It is equipped with the Quanser Embedded Control Module (QECM), which is comprised

of a Quanser HiQ aero data acquisition card and a QuaRC-powered Gumstix single-board

embedded computer where QuaRC is Quanser’s Real-time Control software. The Quanser
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HiQ provides high-resolution accelerometer, gyroscope, and magnetometer IMU sensors as

well as servo outputs to drive four motors. The on-board Gumstix computer runs QuaRC,

which allows to rapidly develop and deploy controllers designed in MATLAB/Simulink

environment to real-time control the Qball-X4. The controllers run on-board the vehicle

itself and runtime sensors measurement, data logging and parameter tuning are supported

between the ground host computer and the target vehicle [92].

Figure 2.1: The Quanser Qball-X4 quadrotor UAV.
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Figure 2.2: The Quanser Qball-X4 quadrotor UAV and its schematic representation.
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The block diagram of the entire UAV system is illustrated in Figure 2.3. It is com-

posed of three main parts:

• The first part represents the Electronic Speed Controllers (ESCs), the motors and the

propellers in a set of four. The input to this part is u= [u1 u2 u3 u4]
T which are Pulse

Width Modulation (PWM) signals. The output is the thrust vector T = [T1 T2 T3 T4]
T

generated by four individually-controlled motor-driven propellers.

• The second part is the geometry that relates the generated thrusts to the applied lift

and torques to the system. This geometry corresponds to the position and orientation

of the propellers with respect to the system’s center of mass.

• The third part is the dynamics that relate the applied lift and torques to the position

P, velocity V and acceleration A of the Qball-X4.

ESCs +
Motors +
Propellers

u

PWM
Geometry UAV

Dynamics

P

V

A

Lift

Torques

Thrusts

Qball-X4

Figure 2.3: The UAV system block diagram.

The subsequent sections describe the corresponding mathematical model for each of

the blocks in Figure 2.3.

2.1.1 Qball-X4 Dynamics

The Qball-X4 dynamics in a hybrid coordinate system are given hereafter where the posi-

tion dynamics are expressed in the inertial frame and the angular dynamics are expressed
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in the body frame [93]:

mẍ = uz (cosφ sinθ cosψ + sinφ sinψ)− kxẋ

mÿ = uz (cosφ sinθ sinψ − sinφ cosψ)− kyẏ

mz̈ = uz (cosφ cosθ)−mg− kzż

Jx ṗ = up +(Jy − Jz)qr− JT q Ω− kp p

Jyq̇ = uq +(Jz − Jx) pr− JT p Ω− kqq

Jzṙ = ur +(Jx − Jy) pq− krr

(2.1)

where x, y and z are the coordinates of the quadrotor UAV center of mass in the inertial

frame. m is the system mass and Jx, Jy and Jz are the moments of inertia along y, x and

z directions respectively. θ , φ and ψ are the pitch, roll and yaw Euler angles and p, q

and r are the angular velocities in the body-fixed frame. kx, ky, kz, kp, kq and kr are drag

coefficients and are constant. JT is the moment of inertia for each motor and Ω is the overall

speed of propellers:

Ω =−Ω1 −Ω2 +Ω3 +Ω4 (2.2)

where Ωi is the ith propeller speed.

The angular velocities in the inertial frame (Euler rates) can be related to those in the

body frame as follows:

⎡
⎢⎢⎢⎢⎣

p

q

r

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 0 −sinθ

0 cosφ cosθsinφ

0 −sinφ cosθcosφ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

φ̇

θ̇

ψ̇

⎤
⎥⎥⎥⎥⎦ (2.3)

Close to hovering conditions, the matrix in the above equation is close to identity

matrix and therefore the angular velocities in the body frame can be seen as the angular
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velocities in the inertial frame. The model (2.1) can then be written as:

mẍ = uz (cosφ sinθ cosψ + sinφ sinψ)− kxẋ

mÿ = uz (cosφ sinθ sinψ − sinφ cosψ)− kyẏ

mz̈ = uz (cosφ cosθ)−mg− kzż

Jxθ̈ = uθ +(Jy − Jz) φ̇ ψ̇ − JT φ̇ Ω− kθ θ̇

Jyφ̈ = uφ +(Jz − Jx) θ̇ ψ̇ − JT θ̇ Ω− kφ φ̇

Jzψ̈ = uψ +(Jx − Jy) θ̇ φ̇ − kψψ̇

(2.4)

where up, uq, ur, kp, kq and kr have been respectively changed to uθ , uφ , uψ , kθ , kφ , kψ for

notation convenience. At low speeds, one can obtain a simplified nonlinear model of (2.4)

by neglecting drag terms and gyroscopic and Coriolis-centripetal effects:

mẍ = uz (cosφ sinθ cosψ + sinφ sinψ)

mÿ = uz (cosφ sinθ sinψ − sinφ cosψ)

mz̈ = uz (cosφ cosθ)−mg

Jxθ̈ = uθ

Jyφ̈ = uφ

Jzψ̈ = uψ

(2.5)

A further simplified linear model can be obtained by assuming hovering conditions

(uz ≈ mg in the x and y directions) with no yawing (ψ = 0) and small roll and pitch angles:

ẍ = θg; Jxθ̈ = uθ

ÿ =−φg; Jyφ̈ = uφ (2.6)

z̈ = uz/m−g; Jzψ̈ = uψ
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2.1.2 ESCs, Motors and Propellers

The motors of the Qball-X4 are outrunner brushless motors. The generated thrust Ti of the

ith motor is related to the ith PWM input ui by a first-order linear transfer function:

Ti = K
ω

s+ω
ui ; i = 1, ...,4 (2.7)

where K is a positive gain and ω is the motor bandwidth. K and ω are theoretically the

same for the four motors but this may not be the case in practice and therefore, this can be

one of sources of modeling errors/uncertainties for the FDD schemes.

2.1.3 Geometry

A schematic representation of the Qball-X4 is given in Figure 2.2. The motors and pro-

pellers are configured in such a way that the back and front (1 and 2) motors spin clockwise

and the left and right (3 and 4) motors spin counter-clockwise. Each motor is located at

a distance L from the center of mass o and when spinning, a motor produces a torque τi.

The origin of the body-fixed frame is the system’s center of mass o with the x-axis pointing

from back to front and the y-axis pointing from right to left. The thrust Ti generated by the

ith propeller is always pointing upward in the z-direction in parallel to the motor’s rotation

axis. The thrusts Ti and the torques τi result in a lift in the z-direction (body-fixed frame)

and torques about the x, y and z axes. The relations between the lift/torques and the thrusts

are:

uz = T1 +T2 +T3 +T4

uθ = L(T1 −T2)

uφ = L(T3 −T4)

uψ = τ1 + τ2 − τ3 − τ4

(2.8)
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The torque τi produced by the ith motor is directly related to the thrust Ti via the

relation of τi = KψTi with Kψ as a constant. In addition, by setting Ti ≈ Kui from (2.7), the

relation (2.8) reads:

uz = K(u1 +u2 +u3 +u4)

uθ = KL(u1 −u2)

uφ = KL(u3 −u4)

uψ = KKψ(u1 +u2 −u3 −u4)

(2.9)

where uz is the total lift generated by the four propellers and applied to the quadrotor UAV

in the z-direction (body-fixed frame). uθ , uφ and uψ are respectively the applied torques in

θ , φ and ψ directions (see Figure 2.2).

2.2 Description and Dynamics of Wheeled Mobile Robot

In this section, kinematical model of mobile robot is described with consideration of the

nonholonomic constraint. To simulate the robot behavior, an exact mathematical model is

required. A complete study of the kinematical model of WMRs could be found in [94].

In the current study, a three-wheeled mobile robot is considered as depicted in Fig. 2.4.

The platform is differentially-driven, so the front wheels are active and independent, hence

performing both the driving and the steering of the system. The other wheel, point ‘C’ as

shown in Fig. 2.4, is a caster and just adds stability to the system.

In order to describe the platform position, the middle point of the rear axle, point

‘G’, is considered as a reference point. The coordinates of this point are represented as

(X(t),Y (t)). The angle between the longitudinal axis of the robot and the horizontal axis is

called heading angle and denoted by θ(t), which is assumed to be in the range −π ≤ θ ≤ π .

Besides, v(t) and ω(t), in Fig. 2.4, represent the linear and angular velocities of the robot,

respectively. Moreover, the ‘XY ’ coordinate system denotes an inertial frame of reference,

whereas ‘xy’ represents the moving and rotating coordinate frame attached to the platform
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at point ‘G’.

Figure 2.4: The schematic of the mobile robot.

The governing kinematical equations of motion of the robot are written as (2.10):

Ẋ = v(t)cos(θ(t))

Ẏ = v(t)sin(θ(t))

θ̇ = ω(t)

(2.10)

If the reference trajectory of the robot is considered as (Xr(t),Yr(t)), then other kine-

matical characteristics of reference trajectory can be obtained as (2.11-2.13):

vr(t) =±
√

Ẋr(t)2 + Ẏr(t)2 (2.11)

ωr(t) =
Ÿr(t)Ẋr(t)− Ẍr(t)Ẏr(t)

Ẋr(t)2 + Ẏr(t)2 (2.12)

θr(t) = atan2(Ẏr(t), Ẋr(t)) (2.13)
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where vr(t), ωr(t) , θr(t) are reference linear velocity, reference angular velocity, and ref-

erence heading angle of the robot respectively. In (2.11), the ‘+’ sign corresponds to the

forward motion while the ‘-’ sign is used for backward motion.

2.2.1 Qbot

As a testbed for wheeled mobile robot’s related applications a robotic vehicles called

“Qbot” is used (Fig. 2.5). Qbot ia a multi-purpose research robotic system developed

by Quanser Inc. It has two differentially driven wheels, and a caster wheel (to maintain its

stability).

Figure 2.5: Qbot, unmanned ground vehicle developed by Quanser Inc.

2.3 JC2Sat-FF Mission and JC2Sat Attitude Model

2.3.1 JC2Sat Formation Flying Mission

The JC2Sat-FF is a joint Canadian Space Agency/Japan Aerospace Exploration Agency

technology mission consisting of two nano-satellites and weighing approximately at 18kg

each. The main objective of this mission is to demonstrate the feasibility of maintaining
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along-track spacecraft formation by using only differential atmospheric drag control be-

tween the two satellites and GPS-based relative navigation (Fig. 2.6). During nominal

mission operations, the satellites are three-axis stabilized with the pitch axis of each satel-

lite body frame aligned with the orbit normal [1]. The differential drag between the two

satellites is controlled by simply varying the pitch angle of each satellite, which results in

a change of the frontal drag area. The pitch manoeuvre is provided by the attitude control

system which uses magnetic torque rods and momentum wheels as actuators.

Figure 2.6: JC2Sat-FF mission concept [1].

The sensors and actuators of the Attitude Control System (ACS) of each satellite in-

clude two medium accuracy digital sun sensors, one three-axis magnetometer, three mag-

netic torque rods and two momentum wheels with spinning axes aligned with the pitch axis

of the satellite. In nominal mission operations, the magnetorquer provide roll and yaw con-

trol and momentum wheel de-saturation, while the two momentum wheels provide the bias

momentum about satellite pitch axis and the fast pitch control [64]. Figure 2.7 demonstrates

mission stages with respect to satellite configurations. The two satellites will be launched

together in stack configuration. Prior to inter-satellite separation, only ACS of the leader

satellite is active which detects and controls the attitude of the satellite stack. Inter-satellite
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separation has special requirements on stack attitude to prevent loss of formation and to

avoid collision of the two satellites. In preparing for the separation, the satellite stack is

maneuvered to track a predefined separation frame whose pitch axis is inertially fixed in

space. At the point of separation, the satellite stack is nadir pointing with body pitch axis

pointing 10 degrees away from the orbit normal. The onboard actuators of the satellites are

basically single string with little redundancy. Therefore, their reliability and availability

are very important for the success of the mission.

Figure 2.7: Mission stages with respect to satellite configurations [1].

In nominal mission operations, the magnetorquers provide roll and yaw control and

momentum wheel de-saturation, while the two momentum wheels provide the bias mo-

mentum about satellite pitch axis and the fast pitch control [1]. The momentum wheels
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also play an important role during the inter-satellite separation of the two satellites (which

are tied together during launch) by providing bias momentum about the stack pitch axis

and the pitch manoeuvre.

2.3.2 JC2Sat Attitude Model

In this subsection nonlinear attitude model is presented based on the reference frames pre-

sented in Fig. 2.8. Based on the Newton-Eulers moment equation the spacecraft dynamics

can be written as (2.14):

M = ḢI = ḢB +ωH (2.14)

where M is the total external torque, HI is the angular momentum in inertial reference

frame, HB is angular moment in body reference frame, and ω is angular velocity of the

satellite. Thus the complete nonlinear dynamic model of the spacecraft attitude is given in

Eq. (2.15) as follows:

Mx = Ḣx +Hzωy −Hyωz

My = Ḣy +Hxωz −Hzωx

Mz = Ḣz +Hyωx −Hxωy

(2.15)

Figure 2.8: Reference frames and nominal attitude of the JC2Sat-FF satellite.

In the JC2Sat, magnetorquers provide roll and yaw control and momentum wheel de-

saturation. Pitch control is provided by the momentum wheel (spinning axes of the wheels
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are aligned with satellite body pitch axis). During a coarse earth pointing operation mode,

or so-called acquisition mode [1], only one of the two momentum wheels is in operation at

low spin speed. In this mode, the satellite is controlled as a non-gyroscopic rigid body. A

Proportional-Derivative (PD) control law for each axis is used to achieve three-axis control.

The FDD algorithm will be designed for this operation mode.

Let ϕ , θ , and ψ be the roll, pitch and yaw angles describing the rotation from the

flight frame to the satellite body-fixed control frame as shown in Fig. 2.8. The control laws

in attitude control system for each axis are summarized in Eq. (3). Tcx, Tcy, Tcz represent

control torque in each axis and Kp, Kd represent proportional and derivative controller

gains. As shown in Eq. (2.16), for pitch axis the control torque is obtained from the

momentum wheel Tcy = TMW . More detailed information can be found in [1].

Tcx =−Kpxϕ −Kdxϕ̇

Tcy = TMW =−Kpyθ −Kdyθ̇

Tcz =−Kpzψ −Kdzψ̇

(2.16)

Given the spacecraft attitude model along with the controller the objective of the next sec-

tion is to design FDD algorithm for controller in the closed-loop momentum wheel actuator

faults detection and diagnosis.

2.3.3 Dynamic Model of JC2Sat’s Momentum Wheel

The actuator which is the momentum wheel (Fig 2.9) used in JC2Sat-FF is manufactured

by Sinclair Interplanetary in collaboration with the Space Flight Laboratory of University

of Toronto [95]. Two identical momentum wheels are used. Each wheel provides 0.05

Nm-sec bias momentum with 0.5 W power consumption. The spin axes of both wheels are

aligned with the pitch axis of the satellite. The momentum wheel is specifically designed

and manufactured for spacecraft in the 2-20 kg range. The main benefits of this particular

momentum wheel include scalability and low-cost by virtue of a custom motor that does
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not require a pressurized container. The specifications of the momentum wheel can be

found in [95], as given in Table 2.1.

Figure 2.9: JC2Sat-FF momentum wheel [1].

Fig. 2.10 shows a detailed block diagram of momentum wheel used for simulation

purposes. In this model V is the input voltage of the electrical motor, RM is the electrical

resistance of the motor armature, and KM is the torque coefficient of the motor. B is friction

coefficient and KBEMF is back electromotive force coefficient. The term Iw denotes the

overall moment of inertia of the rotor including the flywheel, and Is is the moment of

inertia of the satellite.

Figure 2.10: A detailed block diagram of momentum wheel.

The primary task of the electrical motor is to provide the necessary angular torque

to the satellite. According to Euler’s moment equation of angular motion, if there are no
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Table 2.1: Specifications of momentum wheel used in JC2Sat-FF mission

Product number RQ-0.06-28-ASYNC-2-1-x
Mass 25g
Dimensions 65mm x 65mm x 37.5 mm
Power consumption 2W at full torque,

0.5 W @ 5000 RPM,
0.2 W @ 2000 RPM

Operating voltage 7.5V to 35 V
Rotor imbalance force < 130mN @ 5000RPM
Rotor imbalance torque < 3mNm @ 5000RPM
Angular momentum 60mNm-sec
Maximum speed > 8000RPM
Communication Asynchronous serial
Bearings Hybrid/Diamond ABEC7
Redundancy Dual wound
Radiation Standard parts
Operating temperature -40c to 70c
Control mode Speed or Torque,

built-in control CPU

external disturbances or inertial control torques acting on the satellite then ḣw+ ḣs = 0. This

means that, in order to apply a torque on the body about an axis, a torque in the opposite

direction must be produced by the rotor of the electrical motor. Designing a model-based

FDD method involves the mathematical model of the momentum wheel. The linearized

equation of momentum wheel can be written in the state-space form as shown in Eq. 2.17.

It is assumed that the states are angular velocity of the wheel and angular velocity of the

spacecraft. The outputs are the angular velocities of spacecraft along with motor current

(Eq. 2.18).

⎡
⎢⎣ ω̇s

ω̇w

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣
−KMKBEMF

RMIs
− B

Is

KMKBEMF

RMIs
+

B
Is

KMKBEMF

RMIw
+

B
Iw

− KMKBEMF

RMIw
− B

Iw

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎢⎣ωs

ωw

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

KM

RMIs

KM

RMIw

⎤
⎥⎥⎥⎥⎥⎦Vin (2.17)
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Z =

⎡
⎢⎣ωs

i

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 0

KBEMF

RM
−KBEMF

RM

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎣ωs

ωw

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

1
RM

⎤
⎥⎥⎥⎥⎦Vin (2.18)

2.4 Chapter Summary

In this chapter, dynamics and mathematical models of three types of testbeds were de-

scribed. Description and dynamics of Qball-X4 were presented firstly. The characteristics

of nonholonomic wheeled mobile robot including kinematical equation of motion was pre-

sented secondly. Finally JC2Sat space mission was discussed. Next chapter will present

some Fault Detection and Diagnosis (FDD) methods for application to Unmanned Aerial

Vehicles (UAV) and Spacecrafts.
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Chapter 3

Fault Detection and Diagnosis

Algorithms

This chapter is dedicated to description of three different FDD methods which have been

used in this thesis for the purpose of fault detection, isolation and identification. Firstly,

a Two-Stage Kalman Filter is presented. Then Adaptive Two-Stage Kalman Filter is ex-

plained and finally an Interacting Multiple Model is presented.

3.1 Two-Stage Kalman Filter

The advantage of using Two-Stage Kalman Filter (TSKF) is to simultaneously estimate

both states and fault parameters, for the purpose of fault detection, isolation and identifi-

cation as well as providing full state estimation for state feedback-based controllers when

state vector is not available through measurements. To explain the basic idea of the TSKF

the following discrete linear state-space model is considered:

xk+1 = Akxk +Bkuk + vx
k

yk+1 =Ckxk+1 + vy
k+1

(3.1)
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where xk ∈ Rn, uk ∈ Rl and yk+1 ∈ Rm are the state, control input and output vectors respec-

tively. vx
k and vy

k+1 are uncorrelated Gaussian random vectors with zero means and covari-

ance matrices Qx
k and Rk, respectively. In the application of Kalman filtering techniques, an

accurate model of the process dynamics and measurements is required. However, in many

practical cases, constant bias affects the system dynamics and observations, and may lead

to performance degradation of the filter if the bias is not incorporated in the model. By

considering a bias vector γk ∈ Rl in the state-space equation, model (3.1) can be written as:

xk+1 = Akxk +Bkuk +Fγk + vx
k

γk+1 = γk + vγ
k

yk+1 =Ckxk+1 + vy
k+1

(3.2)

where vγ
k is an uncorrelated Gaussian random vector with zero mean and covariance matrix

Qγ
k . One possible solution to estimate the bias vector γk is to augment it into the state vec-

tor to make an augmented state vector which is estimated by using the Augmented State

Kalman Filter (ASKF). The augmented state vector is of dimension n+ l which makes

the ASKF computationally expensive. Another drawback of this method is that numeri-

cal problems may arise during implementation. To reduce the complexity of this problem,

Keller and Darouach [68] presented two parallel reduced-order filters which optimally im-

plement the augmented state filter. The proposed algorithm is called Two-Stage Kalman

Filter (TSKF). In the context of fault detection and diagnosis, Wu et al. [69, 71] modeled

actuator faults (loss of control effectiveness) as a bias vector in state equations then used

TSKF to estimate the bias vector. In [69], the authors proposed the use of forgetting factor

for TSKF.

In the current study, the effectiveness of actuators is estimated as the random bias

vector in the TSKF structure. By referring to (3.2), the loss of control effectiveness modeled
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as a bias vector is:

γk =

[
γ1k γ2k ... γlk

]T

; 0 ≤ γik ≤ 1 ; i = 1,2, . . . , l (3.3)

where γik = 0 and γik = 1 means that the ith actuator is completely healthy or fully damaged,

respectively. By incorporating actuator faults in (3.2), the bias augmented discrete linear

time-varying state-space model is written as:

xk+1 = Akxk +Bkuk −BkUkγk + vx
k (3.4)

γk+1 = γk + vγ
k (3.5)

yk+1 =Ckxk+1 + vy
k+1 (3.6)

where Uk is:

Uk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1k 0 . . . 0

0 u2k

...
... . . . 0

0 . . . 0 ulk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

Since the additive noise vγ
k introduced into the bias evolution equation bears no re-

lation to either the process noise vx
k or the measurement noise vy

k+1 in the dynamic system

model, the two-stage filtering algorithm by Keller and Darouach can be applied with some

modification to obtain the bias estimates [71]. It’s worthy to note that the choice of Qγ
k

plays an important role in the performance of the filter. In the most of real world situations

the loss of control effectiveness occurs abruptly while in (3.4) it is modeled as a bias. To

make the bias vector change fast enough (and also to track the true values) one may think

of a large value for bias covariance. On the other hand once the steady-state condition is

reached, the bias covariance must be small to reduce the estimation steady-state error. Then
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there is a trade-off between convergence speed and the accuracy of steady-state estimation

of control effectiveness. The minimum variance solution to estimate the true values of bi-

ases is obtained by application of the TSKF.

Like other types of Kalman filters, the equations can be divided into two sets: the

time-update equations and the measurement-update equations. The time-update equations

which can be distinguished by the (k+1|k) subscription, are responsible to obtain a priori

estimates by moving the state and error covariances one step ahead in the time domain. The

measurement-update equations, shown by the (k+1|k+1) subscription, are responsible to

obtain a posteriori estimates through feed-backing measurements into the a priori esti-

mates. In other words time-update equations are used for prediction, while measurement-

update equations are used for correction. Indeed the whole prediction-correction process

is used to estimate the states as close as possible to their real values. Figure 3.1 shows a

schematic flow diagram of the TSKF and its implementation is given hereafter.

Figure 3.1: The schematic diagram of the Two-Stage Kalman Filter (TSKF).

Estimate the bias-free state:

x̃k+1|k = Akx̃k|k +Bkuk +Wkγ̂k|k −Vk+1|kγ̂k|k (3.8)

P̃x
k+1|k = AkP̃x

k|kAT
k +Qx

k +WkPγ
k|kW

T
k −Vk+1|kPγ

k+1|kV
T
k+1|k (3.9)
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x̃k+1|k+1 = x̃k+1|k + K̃x
k+1(yk+1 −Ck+1x̃k+1|k) (3.10)

K̃x
k+1 = P̃x

k+1|k +CT
k+1(Ck+1P̃x

k+1|kC
T
k+1 +Rk+1)

−1 (3.11)

P̃x
k+1|k+1 = (I − K̃x

k+1Ck+1)P̃x
k+1|k (3.12)

Determine the filter residual and its covariance:

r̃k+1 = yk+1 −Ck+1x̃k+1|k (3.13)

S̃k+1 =Ck+1P̃x
k+1|kC

T
k+1 +Rk+1 (3.14)

Estimate the optimal bias:

γ̂k+1|k = γ̂k|k (3.15)

Pγ
k+1|k = Pγ

k|k +Qγ
k (3.16)

γ̂k+1|k+1 = γ̂k+1|k +Kγ
k+1(r̃k+1 −Hk+1|kγ̂k|k) (3.17)

Kγ
k+1 = Pγ

k+1|kHT
k+1|k(Hk+1|kPγ

k+1|kHT
k+1|k + S̃k+1)

−1 (3.18)

Pγ
k+1|k+1 = (I −Kγ

k+1Hk+1|k)P
γ
k+1|k (3.19)

Calculate the coupling equations:

Wk = AkVk|k −BkUk (3.20)

Vk+1|k =WkPγ
k|k(P

γ
k+1|k)

−1 (3.21)

Hk+1|k =Ck+1Vk+1|k (3.22)

Vk+1|k+1 =Vk+1|k − K̃x
k+1Hk+1|k (3.23)
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Estimate the compensated error and its covariance:

x̂k+1|k+1 = x̃k+1|k+1 +Vk+1|k+1γ̂k+1|k+1 (3.24)

Pk+1|k+1 = P̃x
k+1|k+1 +Vk+1|k+1Pγ

k+1|k+1 +V T
k+1|k+1 (3.25)

3.2 Adaptive Two-Stage Kalman Filter

The Adaptive Two-Stage Kalman Filter (ATSKF) is addressed for the purpose of adaptive

estimation of control effectiveness factors. To make the ordinary TSKF more responsive

to abrupt changes in control effectiveness factor (which has been modeled as a bias vector

in (3.4)) some modification has been suggested in [71]. A common way to make recur-

sive algorithm (like Kalman filter’s family) less sensitive to previous data history is to

use forgetting factor. In other words, the main goal of using forgetting factor is to make

the Kalman filter more sensitive to abrupt changes in the control effectiveness parameters.

When a forgetting factor is added to the optimal bias estimator part in (3.16), the new time

updated equation of bias covariance is written as:

Pγ
k+1|k = Pγ

k|k/λ +Qγ
k , 0 < λ ≤ 1 (3.26)

where λ is a forgetting factor which can have a predefined constant value. Using a con-

stant value for forgetting factor may lead to instability of the TSKF. Indeed estimation error

covariance matrix may increase rapidly due to the recursive nature of the algorithm. One

way to prevent “blow up” in TSKF is to keep Pγ
k+1|k in a certain range. Parkum et al. [96]

used a non-uniform forgetting factor in recursive least-square-based parameter identifica-

tion schemes. The idea is that, under the normal system operation condition, the error

covariance matrix Pγ
k|k describes the bias estimation error. The bias estimation error should

be kept in a range means that the error covariance matrix should not be so large or so small.
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Inspired by this fact, an adaptive technique is suggested in [96] and considered later in

[70, 71]. This adaptive technique forces the error covariance matrix Pγ
k+1|k to stay within

pre-described limits:

σminI ≤ Pγ
k+1|k ≤ σmaxI (3.27)

where σmin and σmax are positive constants and I is the identity matrix. A Dyadic expansion

of Pγ
k|k is given as:

Pγ
k|k =

l

∑
i=1

α i
k|kei

k(e
i
k)

T , ‖e1
k‖= · · ·= ‖el

k‖= 1 (3.28)

where e1
k , . . . ,e

l
k and α1

k , . . . ,α
l
k are the eigenvectors and eigenvalues of Pγ

k|k respectively.

Substituting (3.28) into (3.26) gives:

Pγ
k+1|k =

l

∑
i=1

α i
k|k

λ i
k

ei
k(e

i
k)

T +Qγ
k , 0 < λ i

k ≤ 1 (3.29)

Replacing (3.16) by (3.29) the TSKF will turn to ATSKF. As suggested in [96] the

forgetting factor λ i
k can be chosen as a decreasing function of the amount of information

received in the direction ei
k. Since eigenvalue α i

k|k of Pγ
k|k is a measure of the uncertainty in

the direction of ei
k, a choice of forgetting factor λ i

k based on the above constraints can be:

λ i
k =

⎧⎪⎨
⎪⎩

1 if α i
k|k > αmax

α i
k|k

[
αmin +

αmax −αmin

αmax
α i

k|k

]−1

if α i
k|k ≤ αmax

(3.30)

where αmax and αmin are positive constants. The choice of αmax and αmin is made by

the designer. If the ratio αmax/αmin is close to one then the adaptive forgetting factor

approaches a constant value.
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3.3 Interacting Multiple Model Filter

The Interacting Multiple Model (IMM) method is one of the most efficient approaches for

FDD applications, which was first published in [72]. The IMM runs a bank of filters in par-

allel, each based on model matching to a particular mode (healthy or faulty) of the system

and by switching from one model to the other in a probabilistic manner. Each filter interacts

with each other in a highly cost-effective fashion and thus leads to significantly improved

performance. The initial estimate at the start of each cycle for each filter is a mixture of

all most recent estimates from each filter. It is this mixing and interacting that offers ad-

vantages in IMM to effectively consider the small changes induced by fault quickly, which

is mostly failed to be recognized by conventional multiple model approaches. Such a sig-

nificant feature makes IMM approach much more suitable for FDD or manoeuvring target

tracking applications. A summary of the IMM method is provided below and for a com-

plete description of IMM the interested readers are referred to [72]. The IMM algorithm

in each step (cycle) consists of four steps which are interacting/mixing, filtering, mode

probability update and final combination of the models which provides the combined state

estimate and its associated covariance matrix. In addition, for the above-mentioned four

steps, fault isolation can also be performed based on the probability function. All the five

steps are shown in Fig. 3.2.

The IMM-based FDD scheme assumes that the actual system at any time can be

modelled sufficiently by a stochastic hybrid system given in (3.31).

x(k+1) = F(k,m(k+1))x(k)+G(k,m(k+1))u(k)

+T (k,m(k+1))ε(k,m(k+1))

z(k) = H(k,m(k))x(k)+D(k,m(k))u(k)+η(k,m(k))

(3.31)

with the system mode sequence assumed to be a first-order Markov chain with following

transition probabilities:
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Figure 3.2: Block diagram of IMM-based FDD.

P{m j(k+1)|mi(k)}= πi j(k) ∀mi,m j ∈ S (3.32)

and

∑
j

πi j(k) = 1 i = 1, . . . ,s (3.33)

here x ∈ Rnx is the base state vector, z ∈ Rnz is the measurement vector, u ∈ Rnu is con-

trol input vector, ε ∈ Rnn and η ∈ Rnz are mutually independent discrete-time process and

measurement noises with mean ε̄ and η̄ , covariance Q(k) and R(k); P{.}denotes proba-

bility; m(k) is the discrete-valued modal state at time k, which denotes the mode in effect

during the sampling period ending at tk; πi j is the transition probability from mode mi

to mode m j; the event that m j is in effect at time k is denoted as m j(k) � {m(k) = m j}.

S = {m1,m2, . . . ,ms} is the set of all possible system modes; the initial state is assumed to

have mean x̂0 and covariance P0 and be independent of ε and η .
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The mathematical description of IMM-based FDD scheme is given in the following

equations. As mentioned earlier, we will divide the IMM procedure for FDD into 4 different

steps. The first involves interacting/mixing of the estimates for the four different models

considered. The predicted mode probability and mixing probability at one cycle is given in

Eq. (3.34).

μ j(k+1|k)� P{m j(k+1)|zk}=
s
∑

i=1
πi jμ j(k)

μi| j(k)� P{m j(k)|m j(k+1),zk}= πi jμi(k)
μ j(k+1|k) i, j = 1, . . . ,s

(3.34)

Based on the mixing probability and mode probability, the mixed initial state and

covariance estimates to be used for next time-step of filter update are given in Eq. (3.35).

x̂0
j � E

[
x(k)|m j(k+1),zk]= s

∑
i=1

x̂i(k|k)μi| j(k) j = 1, . . . ,s

P0
j (k|k)� cov

[
x̂0

j |m j(k+1),zk
]

=
s
∑

i=1

[
Pi(k|k)

[
x̂0

j(k|k)− x̂ j(k|k)
][

x̂0
j(k|k)− x̂ j(k|k)

]T
]

μi| j(k)

j = 1, . . . ,s

(3.35)

The next step involves the filtering calculation for each healthy and faulty mode,

respectively. The predicted state for each model and its associated covariance matrix is

given in Eq. (3.36).

x̂i(k+1|k)� E
[
x(k+1)|m j(k+1),zk]

= Fj(k)x̂0
j +G j(k)u(k)+Tj(k)ε̄ j(k)

Pi(k+1|k)� cov
[
x̂ j(k+1|k)|m j(k+1),zk]

= Fj(k)P0
j (k|k)Fj(k)T +Tj(k)Q j(k)Tj(k)T j = 1, . . . ,s

(3.36)
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The measurement residual covariance is computed using Eq. (3.37).

v j(k+1)� z(k+1)−E
[
z(k+1)|m j(k+1),zk]

= z(k+1)−Hj(k+1)x̂i(k+1|k)−D j(k+1)u(k)− η̄(k+1)

j = 1, . . . ,s

(3.37)

and the residual covariance and filter gain are obtained as Eq. (3.38).

S j(k+1)� cov
[
v j(k+1|k)|m j(k+1),zk]

= Hj(k+1)Pj(k+1|k)Hj(k+1)T +R j(k+1)

Kj(k+1) = Pj(k+1|k)Hj(k+1)T S j(k+1)−1 j = 1, . . . ,s

(3.38)

Using the above residuals, the updated state for each mode (healthy or faulty) is given

in Eq. (3.39).

x̂ j(k+1|k+1)� E
[
x(k+1)|m j(k+1),zk+1]

= x̂i(k+1|k)+Kj(k+1)v j(k+1)

Pj(k+1|k+1)� cov
[
x̂ j(k+1|k+1)|m j(k+1),zk]

= Pj(k+1|k)−Kj(k+1)S j(k+1)Kj(k+1)T j = 1, . . . ,s

(3.39)

The equations (3.36) to (3.39) form the model conditional filtering for each mode.

The third step involves the mode probability update for FDD decision making. The likeli-

hood function at each step is given in Eq. (3.40).

L j(k+1|k+1)� N
[
v j(k+1),0,S j(k+1)

]
=

1√|(2π)S j(k+1)|e
[− 1

2 v j(k+1)T S j(k+1)−1v j(k+1)] j = 1, . . . ,s
(3.40)
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The mode probability is obtained as Eq. (3.41).

μ j(k+1)� P{m j(k+1)|zk}= μ j(k+1|k)L j(k+1)
N
∑

i=1
μi(k+1|k)Li(k+1)

j = 1, . . . ,s
(3.41)

The fault decision logic is obtained using the Eq. (3.42).

μp(k+1)
max(μi(k+1))

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

≥ μ ′
T = Hj : f ault j occurred

< μ ′
T = H1 : no f ault

i = 1, . . . , p−1, p+1, . . . ,s (3.42)

where μp(k+1) is:

μp(k+1) = max(μi(k+1)) i = 1, . . . ,s (3.43)

The following equations provide the combination of estimates of overall estimates

and its covariance.

x̂(k+1|k+1)� E
[
x(k+1)|zk+1]= s

∑
j=1

x̂ j(k+1|k+1)μ j(k+1)

P(k+1|k+1)� E [[x(k+1)− x̂(k+1|k+1)]

[x(k+1)− x̂(k+1|k+1)]T |zk+1]
=

s
∑
j=1

[
Pj(k+1|k+1)+

[
x̂(k+1|k+1)− x̂ j(k+1|k+1)

]
[
x̂(k+1|k+1)− x̂ j(k+1|k+1)

]T
]

μ j(k+1)

(3.44)

Equations can be divided into two sets; the time update equations and the mea-

surement update equations. The time update equations which can be distinguished by
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′′(k + 1|k)′′ subscription are responsible to obtain a priori estimates by moving the state

and error covariances one step ahead in the time domain. While the measurement update

equations, shown by ′′(k + 1|k + 1)′′ subscription are responsible to obtain a posteriori

estimates through feed-backing measurements into the a priori estimates.

This summarizes the complete cycle of the IMM-based FDD scheme using Kalman

filters as its mode matched filters. Equation (3.42) not only provides fault detection but also

provides isolation, magnitude and fault occurrence time.

3.4 Chapter Summary

In this chapter three different FDD methods named Two-Stage Kalman Filter (TSKF),

Adaptive Two-Stage Kalman Filter (ATSKF) and Interacting Multiple Model (IMM) have

been presented. They are mainly aimed for application to Unmanned Aerial Vehicles

(UAV) and Space missions to detect, isolate and identify possible actuator faults. Next

chapter will present some control algorithms for application to unmanned systems.
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Chapter 4

Control Algorithms

In this chapter the proposed control algorithms for unmanned systems are presented. First

trajectory tracking control of wheeled mobile robots is discussed. A new controller called

“Lyapunov-based Guidance Control” (LGC) method is presented. For validation and com-

parison purposes, a Linear State Tracking Controller (LSTC), a Nonlinear State Tracking

controller (NSTC) and a Model Predictive Controller (MPC) are used to validate the pro-

posed control methodology (Lyapunov-based Guidance). For the convenience of reading, a

brief description of these algorithms is presented in this chapter. Then the proposed stable

formation controller for time-varying configurations of multiple mobile robots is presented.

And finally designed Fault Tolerant fuzzy Gain-Scheduled PID (FGS-PID) controller is dis-

cussed.

4.1 Trajectory Tracking Control of Wheeled Mobile Robots

4.1.1 Tracking Control Using Lyapunov-Based Guidance Method

In this subsection, design of the proposed controller for trajectory tracking of Wheeled

Mobile Robot (WMR) is described in details. As observed in Fig. 4.1, the actual and de-

sired translational/angular positions of the robot have been shown by (X(t),Y (t),θ(t)) and
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(Xr(t),Yr(t),θr(t)) respectively. In this figure Virtual Reference Robot shows the desired

location and orientation of the Real Robot on the Reference Trajectory.

Figure 4.1: The schematic of the robot tracking the reference trajectory. Virtual reference
robot shows the desired location and orientation of the real robot on the reference trajectory.

The distance from the real position to the reference position is denoted by L, which

is called as “Line of Sight, as given in (4.1):

L =
√
(Xr −X)2 +(Yr −Y )2 =

√
e2

x + e2
y (4.1)

The angle between the line of sight and x axis is called as “Angle of Sight, as given

in (4.2):
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ϕ = atan2((Yr −Y ),(Xr −X))−θ

= atan2(ey,ex)

(4.2)

The error in polar coordination system is defined as in (4.3):

qe =

⎡
⎢⎢⎢⎢⎣

L

ϕ

eθ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

√
e2

x + e2
y

atan2(ey,ex)

θr −θ

⎤
⎥⎥⎥⎥⎦ (4.3)

Assuming the perfect velocity tracking, robot’s kinematic equation can be rewritten

as the form in (4.4):

q̇e =

⎡
⎢⎢⎢⎢⎣

L̇

ϕ̇

ėθ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

cos(ϕ)(vrcos(eθ )− v)+Lsin(ϕ)sin(eθ )

vsin(ϕ)+Lω − vrsin(ϕ − eθ )

ωr −ω

⎤
⎥⎥⎥⎥⎦ (4.4)

The control objective is to make the error vector approach to zero, or in other words

the control objective is to use two control inputs (v,ω) for making the mobile robot to track

the reference/desired trajectory.

Based on what has been stated, when L approaches zero and θ approaches θr, then

the total error of the system will be zero and the desired trajectory would be tracked.

A common and simple solution for trajectory tracking problem could be pursuit guid-

ance [2], in which the vehicle is always driven to its current desired position in reference

trajectory. In other words, during the tracking procedure, desired heading angle of the

robot is always set to be its angle of sight (ϕ). Although pursuit guidance algorithm is

quite straightforward and easy to use, it is not satisfactory in terms of tracking performance

in applications with high manoeuvrability.
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Inspired by our previous work [3], to increase tracking performance, the control

inputs should not necessarily take the vehicle as close as possible to its current desired

position, but they should make the robot approach to the desired trajectory. In other words,

the controlled system should have a sense of possible future trajectory and devise a timely

and appropriate policy to catch the desired trajectory as fast as possible.

To this end, a good strategy is to continuously reduce the distance L which is more

in line with human’s natural behaviour and hence a more intelligent method to be pursued

here. To make the distance L approaches zero, one can imagine of two different components

for linear velocity. To keep the robot in the vicinity of desired trajectory, linear velocity

of reference trajectory (vr) should be considered as one of the components (See Fig. 4.1).

To decrease distance L, another component should be toward the desired trajectory and in

the direction of line of sight. This component can be simply achieved through a simple

proportional relation to distance L as follows (See Fig. 4.1):

vls = KvL (4.5)

where Kv is a strictly positive constant. Now, the vector summation of these two compo-

nents could be counted as a proper linear velocity of the robot (4.6).

�vmd =�vr +�vls

vmd =
√

v2
r + v2

ls +2vrvlscos(ϕ − eθ )

(4.6)

where vmd is the “modified desired” linear velocity of the robot. Since the robot is of non-

holonomic type, due to geometrical constraint, the computed linear velocity vmd cannot be

rendered, unless current heading angle of the robot (θ ) changes to the direction of modified

desired velocity, which is called “modified desired” heading angle (θmd).

Based on the strategy discussed above, “modified desired” heading angle can be

achieved through (4.7).
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θmd = atan2
(

vlssin(ϕ − eθ )

vr − vlscos(ϕ − eθ )

)
+θr (4.7)

It is worthy to note that, based on (4.7), when L approaches zero, θmd approaches

θr, otherwise desired tracking will not be achieved. Considering θmd as a new heading

objective one can define a new heading error as (4.8).

éθ = θmd −θ (4.8)

The effective linear velocity is calculated as the projection of the two discussed com-

ponents into the robots heading direction (4.9).

v = vlscos(ϕ)+ vrcos(eθ ) (4.9)

Replacing vls from (4.5) into (4.10) yields:

v = KvLcos(ϕ)+ vrcos(eθ ) (4.10)

Now the remaining part of the control problem is to choose angular velocity (ω) to

stabilize the closed-loop controlled system. Angular velocity is proposed as (4.11).

ω = θ̇md + vmd (Kω(vlssin(ϕ)+ vrsin(eθ ))+Lsin(ϕ)) (4.11)

where Kω is a strictly positive constant. To calculate input angular velocity, (4.7) is derived

as in (4.12):
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θ̇md = [(v̇lssin(ϕ − eθ )+ vls(ϕ̇ − ėθ )cos(ϕ − eθ ))

(vr + vlscos(ϕ − eθ ))]/v2
md − [(vlssin(ϕ − eθ ))

(v̇r + v̇lscos(ϕ − eθ )− vls(ϕ̇ − ėθ )sin(ϕ − eθ ))]/v2
md +ωr

(4.12)

which yields to (4.13):

θ̇md = [(vrv̇ls − v̇rvls)sin(ϕ − eθ )+ v2
ls(ϕ̇ − ėθ )

+vrvls(ϕ̇ − ėθ )cos(ϕ − eθ )]/v2
md +ωr

(4.13)

Eq. (4.13) can be rewritten in the form of (4.14).

θ̇md = β1ω +β2 (4.14)

where β1 and β2 are:

β1 = (vrvlscos(ϕ − eθ )+ v2
ls)/v2

md

β2 = [(vrv̇ls − v̇rvls)sin(ϕ − eθ )+ v2
ls(ϕ̇ −ωr)

+ vrvls(ϕ̇ −ωr)cos(ϕ − eθ )]/v2
md

(4.15)

where v̇ls = Kv(vrsin(ϕ)sin(eθ )−KvLcos2(ϕ)). Substituting (4.14) into (4.11) and solving

for ω , yields (4.16).

ω = [β2 + vmd (Kω(vlssin(ϕ)+ vrsin(eθ ))+Lsin(ϕ))]/(1−β1) (4.16)

Theorem 1. Using (4.10) and (4.16) as control inputs, the closed-loop control system

is stable.

Proof: Taking Lyapunov candidate function as (4.17),
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V = 1
2L2 +1− cos

(
atan2

(
KvLsin(ϕ − eθ )

vr +KvLcos(ϕ − eθ )

)
+ eθ

)

= 1
2L2 +1− cos(θmd −θ)

(4.17)

where V is a positive definite function (V ≥ 0). V = 0 if and only if qe = 0. If qe > 0, then

V > 0 and vice versa.

Deriving Lyapunov candidate function:

V̇ = L̇L+(θ̇md −ω)sin(θmd −θ)

= (eyω − v+ vrcos(eθ ))ex +(−exω + vrsin(eθ ))ey

+(θ̇md −ω) sin
(

atan2
(

vlssin(ϕ − eθ )

vr + vlscos(ϕ − eθ )

)
+ eθ

)

= Lcos(ϕ)(vrcos(eθ )− v)+Lvrsin(ϕ)sin(eθ )

+ [((β1 −1)ω +β2)(vlssin(ϕ − eθ )cos(eθ )

+(vr + vlscos(ϕ − eθ ))sin(eθ ))]/vmd

= Lcos(ϕ)(vrcos(eθ )− v)+Lvrsin(ϕ)sin(eθ )

+ [((β1 −1)ω +β2)(vrsin(eθ )+ vlssin(ϕ))]/vmd

(4.18)

Substituting vls, v, w from (4.5), (4.10), and (4.16) into (4.18):

V̇ = Lcos(ϕ)(vrcos(eθ )−KvLcos(ϕ)− vrcos(eθ ))

+Lvrsin(ϕ)sin(eθ )

+(kω(vlssin(ϕ)+ vrsin(eθ ))+Lsin(ϕ))(kvLsin(ϕ)+ vrsin(eθ ))

=−KvL2 −Kω(KvLsin(ϕ)+ vrsin(eθ ))
2 � 0

(4.19)

where in (4.19), V̇ = 0 if and only if q̇e = 0. Based on Lyapunov theory [97], V is a

Lyapunov function and the closed-loop control system is asymptotically stable.
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4.1.2 Model Predictive Controller

Benefited by its unique features such as feasibility and stability, MPC has been widely and

successfully applied to systems with physical constraints. The objective of the MPC is to

drive the predicted robot trajectory as close as possible to the future reference trajectory,

i.e., to track the reference trajectory [16].

The robot’s kinematic (2.10) can be rewritten as (4.20):

⎡
⎢⎢⎢⎢⎣

ėx

ėy

ėθ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

cos(eθ ) 0

sin(eθ ) 0

0 1

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎣vr

ωr

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎣
−1 ey

0 −ex

0 −1

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎣ v

ω

⎤
⎥⎦ (4.20)

In (4.20) controlled input signals (v and ω) can be written as a combination of a

feedforward and a feedback commands as shown in (4.21).

⎧⎪⎨
⎪⎩

v = v f + vb

ω = ω f +ωb

(4.21)

where v f = vrcos(eθ ) and ω f = ωr. By linearizing (4.20) around a reference trajectory

(ex = ey = eθ = 0, vb = ωb = 0), the linearized model can be described as (4.22):

ṗe =

⎡
⎢⎢⎢⎢⎣

0 ωr 0

−ωr 0 vr

0 0 0

⎤
⎥⎥⎥⎥⎦pe +

⎡
⎢⎢⎢⎢⎣
−1 0

0 0

0 −1

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎣vb

ωb

⎤
⎥⎦ (4.22)

where pe is the error vector ( pe = [exeyeθ ]
T ). The idea of the moving-horizon control

concept is to find the control-variable values that minimize the receding-horizon quadratic

cost function (in a certain interval denoted by h) based on the predicted robot-following

error (4.23):
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J(vb,ωb,k) =
h

∑
i=1

(
[er(k+ i)− e(k+ i|k)]T Q[er(k+ i)− e(k+ i|k)]

+[vb(k, i)wb(k, i)]R[vb(k, i)wb(k, i)]T
) (4.23)

where er(k + i) and e(k + i) are the reference robot-following trajectory and the robot-

following error, respectively. Q and R are the weighting matrices where Q ∈ Rn ×Rn and

R ∈ Rm ×Rm, with Q ≥ 0 and R ≥ 0.

Using discrete linear model of error dynamic, one can calculate the feedback control

signal by applying Model Predictive Control Algorithm as (4.24):

⎡
⎢⎣vb

ωb

⎤
⎥⎦= (GT Q̄G+ R̄)−1GT Q̄(Fr −F)pe(k) (4.24)

where Q̄, R̄, and Fr are design parameters (For detailed description please refer to [16]).

4.1.3 Linear State Tracking Controller

As previously stated in the Introduction, Kanayama et al. [10] proposed a controller which

is locally stable around reference trajectory. With the system structure described as in Fig.

4.1, Linear State Tracking Control (LSTC) law can be given in (4.25):

⎡
⎢⎣ v

ω

⎤
⎥⎦=

⎡
⎢⎣ vrcos(eθ )+Kxex

ωr + sign(vr)Kyey +Kθ eθ

⎤
⎥⎦ (4.25)

where Kx,Ky, and Kθ are calculated as (4.26):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kx = 2ξ ωn

Ky = (ω2
n −ω2

r )/vr i f vr > vswitch

Kθ = 2ξ ωn

(4.26)
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where ωn and ξ ∈ (0,1) are strictly positive constants. If the reference velocity goes to zero

then the gain Ky may goes to infinity. A possible gain scheduling solution is to use (4.27)

in this case.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kx = 2ξ
√

ω2
r +gv2

r

Ky = gvr i f vr ≤ vswitch

Kθ = 2ξ
√

ω2
r +gv2

r

(4.27)

where g > 0. Readers are referred to [10] for detailed description.

4.1.4 Nonlinear State Tracking Controller

The main advantage of NSTC over LSTC is that it is globally asymptotically stable. With

the same system structure described as in Fig. 4.1, Nonlinear State Tracking Control

(NSTC) law can be given in (4.28):

⎡
⎢⎣ v

ω

⎤
⎥⎦=

⎡
⎢⎣ vrcos(eθ )+Kxex

ωr +Kysin(eθ )ey/eθ +Kθ eθ

⎤
⎥⎦ (4.28)

where Kx,Ky, and Kθ are calculated as (4.29):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kx = 2ξ
√

ω2
r +gv2

r

Ky = g

Kθ = 2ξ
√

ω2
r +gv2

r

(4.29)

where g > 0. Readers are referred to [14] for detailed description.
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4.2 Varying-Configuration Formation Control of Multi-

ple Wheeled Mobile Robots

4.2.1 Modeling of Robot’s Motion in the Leader-Follower Approach

Kinematical model of mobile robot is described in 4.1.1. In order to describe the position of

each follower relative to the leader, the distance-angle method is adopted. In other words,

to express the desired position of each robot member in the group, and hence describe the

complete configuration or arrangement of the total robots, it is sufficient that the distance

Ll f of the follower robot from the leader and the angle ϕl f between the heading direction

and the line connecting them (known as the line of sight angle) be determined (see Fig.

4.2). Using this geometry, it is possible to describe the various configurations of the robots

group.

In Fig. 4.2, vl denotes the linear velocity of the leader and θl represents heading

angle of the leader with respect to horizontal direction. It is assumed that, if the leader and

follower robots have any given arbitrary configuration relative to each other, then the fol-

lower can measure its distance Ll f from the leader. Furthermore, the follower can provide

the line of sight angle ϕl f between itself and the leader.

Separation-bearing is used to describe the desired configuration of each pair of leader-

follower in formation. The desired position of the follower robot is shown as Virtual Fol-

lower. dl f is the desired separation distance between leader and follower and ψl f is the

desired separation angle. To investigate the transition mode both dl f and ψl f are assumed

to be known as a function of time (Fig. 4.3).

The desired linear velocity of follower (or the linear velocity of virtual follower)

is the sum of three elements. One is the linear velocity of the leader (vl), the others are

changes in separation distance (ḋl f ) and the effects of rotational velocity of the leader and

changes in bearing angle which are represented as d(ωl + ψ̇l f ). Then the desired linear
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Figure 4.2: Geometry for the relative configuration of the leader and follower robots. The
real follower and virtual follower robots indicate the real and desired instantaneous posi-
tions of the follower, respectively.
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Figure 4.3: Separation-Bearing configuration of leader and virtual follower.
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velocity of follower is calculated as Eq. 4.30.

vd f =
√

(vlsin(ψl f )−d(ωl + ψ̇l f ))2 +(vlcos(ψl f )+ ḋ)2 (4.30)

The desired heading angle of the follower (or the heading angle of virtual follower)

is aligned to follower desired linear velocity vd f . Based on the represented geometry in

Fig. 4.3 it is calculated in Eq. 4.31.

θd f = θl +ψl f −atan2

(
vlsin(ψl f )−d(ωl + ψ̇l f )

vlcos(ψl f )+ ḋ

)
(4.31)

The desired angular velocity of follower robot can also be calculated by deriving 4.31

as shown in Eq. 4.32.

ωd f = ψ̇ +ωl − [vlv̇lsin(ψl f )cos(ψl f )+ v2
l ψ̇l f

− vlḋ(ωl + ψ̇l f )cos(ψl f )−dvl(ω̇l + ψ̈l f )cos(ψl f )

+ ḋv̇lsin(ψl f )+ vlḋψ̇l f cos(ψl f )− ḋ2(ωl + ψ̇l f )

−dḋ(ω̇l + ψ̈l f )− vlv̇lsin(ψl f )cos(ψl f )

+ v2
l ψ̇l f sin2(ψl f )

− vld̈sin(ψl f )+dv̇l(ωl + ψ̇l f )cos(ψl f )

−dvl(ωl + ψ̇l f )ψ̇l f sin(ψl f )+dd̈(ωl + ψ̇l f )]/v2
d f

(4.32)

4.2.2 Formation Controller

In this subsection, design of the proposed formation controller is described in details. As

observed in Fig. 4.2, the actual and desired translational/angular positions of the follower

robot have been shown by (Xf (t),Yf (t),θ f (t)) and (Xd f (t),Yd f (t),θd f (t)) respectively.

The distance from the position of the real follower to the position of virtual follower

is denoted by hl f , which is called as “Virtual Line of Sight”, as given in (4.33):

60



hl f =
√

(Xd f −Xf )2 +(Yd f −Yf )2 =
√

e2
x + e2

y (4.33)

The angle between the virtual line of sight and x-axis is called as “Virtual Angle of

Sight, as given in (4.34):

βl f = atan2((Yd f −Yf ),(Xd f −Xf ))−θ f

= atan2(ey,ex)
(4.34)

The error in polar coordination system is defined as in (4.35):

qe =

⎡
⎢⎢⎢⎢⎣

hl f

βl f

eθ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

√
e2

x + e2
y

atan2(ey,ex)

θd f −θ f

⎤
⎥⎥⎥⎥⎦ (4.35)

Assuming the perfect velocity tracking, robot’s kinematic equation can be rewritten

as the form in (4.36):

q̇e =

⎡
⎢⎢⎢⎢⎣

˙hl f

˙βl f

ėθ

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

cos(βl f )(vd f cos(eθ )− v f )+hl f sin(βl f )sin(eθ )

v f sin(βl f )+hl f ω f − vd f sin(βl f − eθ )

ωl f −ω f

⎤
⎥⎥⎥⎥⎦ (4.36)

The formation control objective is to make the error vector approach to zero, or in

other words to use two control inputs (v f ,ω f ) for making the real follower to track the

virtual one.

Based on what has been stated, when hl f approaches zero and θ f approaches θl f ,

then the total error of the system will be zero and formation is shaped.

To this end, a good strategy is to continuously reduce the distance hl f which is more

in line with human’s natural behaviour and hence a more intelligent method to be pursued
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Figure 4.4: The schematic of the real follower and its desired velocity components.

here. To make the distance hl f approaches zero, one can imagine of two different compo-

nents for linear velocity. To keep the follower robot in the vicinity of its virtual one, linear

velocity of virtual follower (vd f ) should be considered as one of the components (See Fig.

4.4). To decrease distance hl f , another component should be toward the virtual follower

and in the direction of virtual line of sight. This component can be simply achieved through

a simple proportional relation to distance hl f as follows (See Fig. 4.4):

vvls = Kvhl f (4.37)

where Kv is a strictly positive constant. Now, the vector summation of these two compo-

nents could be counted as a proper linear velocity of the real follower (4.38).

�vmd f =�vd f +�vvls

vmd f =
√

v2
d f + v2

vls +2vd f vvlscos(βl f − eθ )

(4.38)

where vmd f is the “modified desired” linear velocity of the real follower. Since the robots

are of nonholonomic type, due to geometrical constraint, the computed linear velocity

(vmd f ) cannot be rendered, unless current heading angle of the follower (θ ) changes to the
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direction of modified desired velocity, which is called “follower’s modified desired heading

angle” (θmd f ).

Based on the strategy discussed above, “modified desired” heading angle can be

achieved through (4.39).

θmd f = atan2
(

vvlssin(βl f − eθ )

vd f − vvlscos(βl f − eθ )

)
+θd f (4.39)

It is worthy to note that, based on (4.7), when hl f approaches zero, θmd f approaches

θd f , otherwise desired formation will not be achieved. Considering θmd f as a new heading

objective one can define a new heading error as (4.40).

éθ = θmd f −θ f (4.40)

The effective linear velocity is calculated as the projection of the two discussed com-

ponents into the robot’s heading direction (4.41).

v f = vvlscos(βl f )+ vd f cos(eθ ) (4.41)

Replacing vvls from (4.5) into (4.42) yields:

v f = Kvhl f cos(βl f )+ vd f cos(eθ ) (4.42)

Now the remaining part of the control problem is to choose angular velocity (ω f ) to

stabilize the closed-loop controlled system. Angular velocity is proposed as (4.43):

ω f = θ̇md f + vmd f
(
Kω(vvlssin(βl f )+ vd f sin(eθ ))+hl f sin(βl f )

)
(4.43)

where Kω is a strictly positive constant. To calculate input angular velocity, (4.7) is derived

as in (4.44):
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θ̇md f = [
(

v̇vlssin(βl f − eθ )+ vvls( ˙βl f − ėθ )cos(βl f − eθ )
)

(
vd f + vvlscos(βl f − eθ )

)
]/v2

md f − [
(
vvlssin(βl f − eθ )

)
(

v̇d f + v̇vlscos(βl f − eθ )− vvls( ˙βl f − ėθ )sin(βl f − eθ )
)
]/v2

md f +ωd f

(4.44)

which yields to (4.45):

θ̇md f = [(vd f v̇vls − v̇d f vvls)sin(βl f − eθ )+ v2
vls(

˙βl f − ėθ )

+vd f vvls( ˙βl f − ėθ )cos(βl f − eθ )]/v2
md f +ωd f

(4.45)

Eq. (4.13) can be rewritten in the form of (4.46).

θ̇md f = α1ω +α2 (4.46)

where α1 and α2 are:

α1 = (vd f vvlscos(βl f − eθ )+ v2
vls)/v2

md f

α2 = [(vd f v̇vls − v̇d f vvls)sin(βl f − eθ )+ v2
vls(

˙βl f −ωd f )

+ vd f vvls( ˙βl f −ωd f )cos(βl f − eθ )]/v2
md f

(4.47)

where v̇vls = Kv(vd f sin(βl f )sin(eθ )−Kvhl f cos2(βl f )). Substituting (4.14) into (4.11) and

solving for ω f , yields (4.48):

ω f = α2/(1−α1)

+ vmd f
[
Kω(vvlssin(βl f )+ vd f sin(eθ ))

]
/(1−α1)

+hl f sin(βl f )/(1−α1)

(4.48)

Theorem 1. Using (4.10) and (4.16) as control inputs, the closed loop control system is
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stable.

Proof: Taking Lyapunov candidate function as (4.49):

V = 1
2h2

l f +1− cos
(

atan2
(

Kvhl f sin(βl f − eθ )

vmd +Kvhl f cos(βl f − eθ )

)
+ eθ

)

= 1
2h2

l f +1− cos(θmd f −θ)
(4.49)

where V is a positive definite function (V ≥ 0). V = 0 if and only if qe = 0. If qe > 0, then

V > 0 and vice versa.

Deriving Lyapunov candidate function:

V̇ = ˙hl f hl f +(θ̇md f −ω f )sin(θmd f −θ f )

= (eyω f − v f + vd f cos(eθ ))ex

+(−exω f + vd f sin(eθ ))ey +(θ̇md f −ω f )

sin
(

atan2
(

vvlssin(βl f − eθ )

vd f + vvlscos(βl f − eθ )

)
+ eθ

)

= hl f cos(βl f )(vd f cos(eθ )− v f )

+hl f vd f sin(βl f )sin(eθ )

+ [((α1 −1)ω f +α2)(vvlssin(βl f − eθ )cos(eθ )

+(vd f + vvlscos(βl f − eθ ))sin(eθ ))]/vmd f

= hl f cos(βl f )(vd f cos(eθ )− v f )

+hl f vd f sin(βl f )sin(eθ )

+ [((α1 −1)ω f +α2)(vd f sin(eθ )+ vvlssin(βl f ))]/vmd f

(4.50)
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Substituting vvls, v f , ω f from (4.5), (4.10), and (4.16) into (4.18):

V̇ = hl f cos(βl f )

(vd f cos(eθ )−Kvhl f cos(βl f )− vl f cos(eθ ))

+hl f vd f sin(βl f )sin(eθ )

+(kω(vvlssin(βl f )+ vd f sin(eθ ))+hl f sin(βl f ))

(kvhl f sin(βl f )+ vd f sin(eθ ))

=−Kvh2
l f −Kω(Kvhl f sin(βl f )+ vd f sin(eθ ))

2 � 0

(4.51)

where in (4.19), V̇ = 0 if and only if q̇e = 0. Based on Lyapunov theory [97], V is a

Lyapunov function and the closed-loop control system is asymptotically stable.

4.3 Fault Tolerant Fuzzy Gain-Scheduled PID Control for

Quadrotor UAV

Conventional PID controllers are frequently and widely used in vast number of industrial

applications. They are simple and easy to use due to the fact that they do not need any

mathematical model of the controlled process or complicated theories. But one of the

main drawbacks of these controllers is that there is no certain way for choosing the control

parameters which guarantees good performance of the system.

The transfer function of a conventional PID controller is:

G(s) = Kp +
Ki

s
+Kds (4.52)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, respectively. Al-

though PID controllers are robust against structural changes and uncertainties in the system

parameters, their performance may be affected by such changes or may even lead to system
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instability. Therefore in real world applications these gains need to be fine-tuned to keep

the required performance. To overcome this shortcoming, Fuzzy Logic Controller (FLC)

is used to tune PID gains online where the tracking error and the change of the tracking

error are used to determine control parameters. Fig. 4.5 shows a schematic of Fuzzy Gain

Scheduling PID controller.

Figure 4.5: Fuzzy gain scheduling scheme for PID controller.

Controller gains can be calculated through a simple linear transformation:

Kp =
(
Kp,max −Kp,min

)
K′

p +Kp,min (4.53)

Ki =
(
Ki,max −Ki,min

)
K′

i +Ki,min (4.54)

Kd =
(
Kd,max −Kd,min

)
K′

d +Kd,min (4.55)

with
[
Kp,min,Kp,max

]
,
[
Ki,min,Ki,max

]
and

[
Kd,min,Kd,max

]
are predefined ranges of Kp, Ki,

and Kd respectively. A set of linguistic rules in the form of (4.56) is used in the FLC

structure to determine K′
p, K′

i and K′
d:

If e(k) is Ai and Δe(k) is Bi then K′
p is Ci, K′

i is Di, and K′
d is Ei (4.56)

where Ai, Bi, Ci, Di, and Ei are fuzzy sets corresponding to e(k), Δe(k), K′
p, K′

i , and K′
d

respectively. Three sets of 49 rules are used to determine controller gains. Tables 4.1-

4.3 show the linguist rules used in the FLC. In these tables, N, P, ZO, S, M, B represent

67



negative, positive, approximately zero, small, medium, and big respectively. For example

NB means Negative Big, and so on.

Table 4.1: Fuzzy tuning rules for K′
p

Δe(k)
NB NM NS ZO PS PM PB

NB B B B B B B B
NM S B B B B B S
NS S S B B B S S

e(k) ZO S S S B S S S
PS S S B B B S S
PM S B B B B B S
PB B B B B B B B

Table 4.2: Fuzzy tuning rules for K′
i

Δe(k)
NB NM NS ZO PS PM PB

NB S S S S S S S
NM B B S S S B B
NS B B B S B B B

e(k) ZO B B B B B B B
PS B B B S B B B
PM B B S S S B B
PB S S S S S S S

The membership functions for input variables are defined with triangular and trape-

zoidal shapes and those for output variables are singleton (Figures 4.6 and 4.7). All the

fuzzy sets for input and output values are normalized for convenience.

The generated surfaces for the FLC are shown in Figures 4.8-4.10.
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Table 4.3: Fuzzy tuning rules for K′
d

Δe(k)
NB NM NS ZO PS PM PB

NB B B B B B B B
NM M M B B B M M
NS S M M B M M S

e(k) ZO ZO S M B M S ZO
PS S M M B M M S
PM M M B B B M M
PB B B B B B B B

Figure 4.6: Membership function for e(k) and Δe(k).

Figure 4.7: Membership function for K′
p, K′

d and K′
i .

4.4 Chapter Summary

In this chapter some control algorithms for application to unmanned systems have been

presented. First Four controller have been discussed for trajectory tracking control of non-

holonomic wheeled mobile robots. Then a stable formation controller for time-varying

configurations is presented at the end. Finally a fault tolerant fuzzy gain-scheduled PID

controller has been presented for application to quadrotor helicopters. Next chapter will
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Figure 4.8: Surface for K′
p.

Figure 4.9: Surface for K′
i .

Figure 4.10: Surface for K′
d .

present the simulation and experimental results of applying developed FDD methods in

Chapter 3 and Control algorithms which have been developed in this chapter (Chapter 4)

70



into testbeds described in Chapter 2.
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Chapter 5

Simulation and Experimental Results

with Unmanned Systems

In this chapter simulation and experimental results of developed methods and algorithms

are presented. First the effectiveness of proposed trajectory tracking controller is exam-

ined via real-world application to the Qbot ground vehicle. Then simulation result of the

proposed formation controller is presented. The purposed Fault Detection and Diagnosis

methods have been experimentally tested on the Qball-X4 and results will be discussed in

this chapter. Then simulation results of fault detection and diagnosis of the momentum

wheel fault for JC2Sat is presented. Finally experimental result on application of Fault

Tolerant Fuzzy Gain-Scheduled PID controller on Qball-X4 is discussed.

5.1 Experimental Testing Results for Trajectory Tracking

Control of Wheeled Mobile Robot

In this section, the effectiveness of the proposed trajectory tracking controller is examined

through a real world application to the Qbot test-bed available at Concordia University

as shown in Fig. 5.1. The obtained results of the proposed controller are also compared

with those of Model Predictive Control (MPC), Linear State tracking Control (LSTC) and

Nonlinear State Tracking Control (NSTC) methods respectively. The parameters of the
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WMR are adopted from an autonomous three-wheeled mobile robot made by Quanser Inc.,

as shown in Eq. 5.1 and Fig. 5.1.

m = 2kg, I = 0.017Kg.m2,

vmax = 0.3m/s, ωmax = 1.5rad/s,

amax = 0.2m/s2, ω̇max = 1rad/s2

(5.1)

An 8-shaped reference trajectory is chosen as (5.2):

Figure 5.1: The Qbot mobile robot and the OptiTrack camera system set-up at the Net-
worked Autonomous Vehicles Laboratory (NAVL) of Concordia University.

⎧⎪⎪⎨
⎪⎪⎩

Xr(t) = 1.1+0.7sin
(

2πt
60

)
m

Yr(t) = 0.9+0.7sin
(

4πt
60

)
m

(5.2)

The initial conditions of the robot are set as follows:

X(0) = 1 m, Y (0) =−1 m, θ(0) = π/3 rad

The constant values of the Lyapunov-based Guidance Controller (LGC) proposed in this

work and three other methods (MPC, LSTC and NSTC) were tuned as indicated in Table

5.1. In Table 5.1, h is the prediction horizon and T is the time constant of the discrete

model of the robot.
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Table 5.1: Design constants of LGC, MPC, LSTC and NSTC
LGC MPC LSTC NSTC

Kv = 0.8 h = 8 g = 40 g = 80
Kω = 2 T = 0.01sec ξ = 0.7 ξ = 0.8

R = 10−4I2×2 vswitch = 0.1

Ar =

⎡
⎣0.8 0 0

0 0.8 0
0 0 0.3

⎤
⎦ ωn = 2

Q =

⎡
⎣0.4 0 0

0 4 0
0 0 0.1

⎤
⎦

The responses of the proposed algorithm and those of MPC, LSTC and NSTC meth-

ods have been compared in Figs. 5.2-5.5. Most of the diagrams presented here for this case

indicate that the proposed method has better performance over MPC, LSTC and NSTC

techniques. Fig. 5.2 shows the trajectories of four methods. It also shows that LGC moves

Figure 5.2: Path tracking performance of the LGC versus those of the MPC, LSTC and
NSTC techniques in real world implementation based on the Qbot test-bed.

closer to its desired path compared to other methods.
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Figure 5.3: Distance between desired and actual positions achieved using LGC versus those
of the MPC, LSTC and NSTC techniques in real experimental test on the Qbot.

As it can be seen from Fig. 5.3, the proposed method takes less time (faster tracking)

to catch its desired position in reference trajectory compared to other methods.

Figure 5.4: Controlled linear velocity of LGC versus those of the MPC, LSTC and NSTC
techniques in real experimental test on the Qbot.

Figs. 5.4 and 5.5 show controlled input signals to the robot. As can be seen from Fig.

5.4, the controlled linear velocity is smoother for LGC compared to other methods.

Overall experimental tests through a wheeled mobile robot (Qbot) demonstrated a

faster and smoother tracking performance with smoother control inputs requirement by the

proposed Lyapunov-based Guidance Controller (LGC) compared to Model Predictive Con-

trol (MPC), Linear State Tracking Control (LSTC) and Nonlinear State Tracking Control

(NSTC) techniques.
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Figure 5.5: Controlled angular velocity of LGC versus those of the MPC, LSTC and NSTC
techniques in real experimental test on the Qbot.

5.2 Simulation Results for Time-Varying Formation Con-

trol of Multiple Wheeled Mobile Robots

In this section, the effectiveness of the proposed formation controller is examined. For

the simulation purposes, following limitations have been taken into account for linear and

angular velocities of the robots.

vmax = 0.3 m/s, ωmax = 1.5 rad/s,

amax = 0.2 m/s2, ω̇max = 1 rad/s2

The reference trajectory of the leader robot has also been arbitrarily chosen as:

vl = 0.1 m/s;

ωl = 0.01sin
( 2πt

400

)
rad/s;

A set of five wheeled mobile robots is used to simulate a time-varying formation

control over 500sec of simulation time. Follower 1 and Follower 2 are made to follow the

leader. Follower 3 and Follower 4 also follow Follower 1 and Follower 2 respectively. Fig.

5.6 represents a schematic of each leader-follower pairs. Table 5.2 shows the evolution of

desired formation configuration of the group over the time.
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Figure 5.6: The schematic of the robots in formation.

Table 5.2: Formation Configuration
Time (sec) 0 ∼ 150 150 ∼ 200 200 ∼ 250 150 ∼ 350 350 ∼ 500
dLF1 (m) 2 2(1+ sin( 2π(t−150))

200 ) 4 2(2− sin( 2π(t−250))
400 ) 2

ϕLF1 (rad) π
6

π
6

π
6

π
6 cos( 2π(t−250)

200 ) −π
6

dLF2 (m) 2 2(1+ sin( 2π(t−150)
200 )) 4 2(2− sin(2π(t−250)

400 )) 2
ϕLF2 (rad) −π

6 −π
6 −π

6 −π
6 cos( 2π(t−250)

200 ) π
6

dF1F3 (m) 0.7 0.7(1+ sin( 2π(t−150)
200 )) 1.4 0.7(2− sin( 2π(t−250)

400 )) 0.7
ϕF1F3 (rad) 5π

9
5π
9

5π
9

5π
9 cos( 2π(t−250)

200 ) − 5π
9

dF2F4 (m) 0.7 0.7(1+ sin( 2π(t−150
200 )) 1.4 0.7(2− sin( 2π(t−250)

400 )) 0.7
ϕF1F3 (rad) − 5π

9 − 5π
9 − 5π

9
5π
9 cos( 2π(t−250

200 )) 5π
9

The simulation results is presented in Fig. 5.7 to Fig. 5.10.

Fig. 5.7 represents the path of each follower during the simulation. The initial po-

sition of the robots are chosen arbitrarily. This figure shows the smooth switching among

different configurations.

Fig. 5.8 shows the virtual line of sight distance between each follower and its virtual

one. This distance can be interpreted as an error factor of the whole formation mission. As

it is shown in the figure even during the formation switching the error remains very close

to zero. Figures 5.9 and 5.10 show the linear and angular speed of the robots respectively.
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Figure 5.7: Paths of the leader and follower robots.
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Figure 5.8: Distance between the desired and actual positions (error) of the follower.

5.3 Fault Detection and Diagnosis of the Quadrotor UAV

5.3.1 Actuator Fault Modelling for the Quadrotor Helicopter

Fault detection and diagnosis (FDD) aims to detect abnormal behaviors of a process due to

a component failure and eventually isolate the exact location of the failed component and

78



0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

Li
ne

ar
 s

pe
ed

 (m
/s

)

Leader
Follower #1
Follower #2
Follower #3
Follower #4

Figure 5.9: Linear speed of the follower robots.
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Figure 5.10: Angular speed of the follower robots.

identify the failure type and its severity. This problem has been extensively considered in

the literature (see for example [98, 99] and the references therein) since a better knowledge

of the failure location, type and amplitude greatly helps in minimizing the fault effects on

the process behavior. This is particularly important for safe operation and/or fault tolerant

control of safety-critical systems, such as aircrafts, spacecrafts, nuclear power plants, and

chemical plants processing hazardous materials where the consequences of a minor fault in

a system component can be catastrophic.

This section considers the FDD problem for the quadrotor helicopter in the presence
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of actuator faults. Such faults can be modeled as follows:

u f
i = (1− γi)ui ≤ (1− γi)umax ; (i = 1, · · · ,4) (5.3)

where γi represents the loss of effectiveness in the ith rotor. γi = 0 denotes a healthy rotor,

γi = 1 denotes a complete loss of the ith rotor and 0 < γi < 1 represents a partial loss of

control effectiveness. During the mission and after the occurrence of a fault in one of the

UAV rotors, two cases can be distinguished: a) the damaged UAV cannot recover and the

system is lost; b) the damaged UAV recovers and maintains its stability. It can be shown

from (2.6) and (2.9) that the required PWM inputs to keep a quadrotor UAV in hovering

flight condition (i.e. for x = 0, y = 0 and ψ = 0) are u∗i = mg/4K for i = 1, ...,4. Thus, a

damaged quadrotor can always maintain its altitude if:

u∗i =
mg
4K

≤ (1− γi)umax ; i = 1, ...,4 (5.4)

or

γi ≤ 1− mg
4Kumax

; i = 1, ...,4 (5.5)

The system parameters along with their numerical values are given in Table 5.3.

Substituting Qball-X4 numerical values in 5.5, the maximum tolerable loss of control ef-

fectiveness can be calculated as:

γ = 1− 1.42×0.81
4×120×0.05

� 0.4 (5.6)

Table 5.3: Qball-X4 Parameters
Parameter Description Value

K Thrust gain 120
ω Motor bandwidth 15 rad/sec
L Distance from motor to CG 0.2 m

Kψ Thrust-to-moment gain 0.023
m Mass 1.42 kg
g Gravity 9.81 m/s2

J1;J2;J3 Moments of inertia 0.03; 0.03; 0.04 kg.m2
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5.3.2 Linearized Model of the Quadrotor UAV

The application of the TSKF, ATSKF and IMM to the quadrotor UAV starts by deriving a

linearized state-space model. Combining (2.6) and (2.9) yields to the linearized state-space

model:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẍ

ẏ

ÿ

ż

z̈

θ̇
θ̈
φ̇
φ̈
ψ̇
ψ̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 g 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −g 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

ẋ

y

ẏ

z

ż

θ
θ̇
φ
φ̇
ψ
ψ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

K/m K/m K/m K/m

0 0 0 0

KL/J1 −KL/J1 0 0

0 0 0 0

0 0 KL/J2 −KL/J2

0 0 0 0

KKψ/J3 KKψ/J3 −KKψ/J3 −KKψ/J3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

−1

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

ẋ
...

ψ
ψ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

5.3.3 Fault Modeling Using Multiple Models

Sixteen different model have been used as Multiple-Models inside the FDD block. One

represents healthy mode, and other fifteen models represent faulty modes. In real fly, due

to actuator saturation, the Qball-X4 cannot tolerate more than 40 ∼ 45 percent loss of

effectiveness in each actuator. In other words, if the fault goes beyond 40 ∼ 45 percent,

Qball-X4 cannot be recovered and will crash. Tacking this fact into consideration, faulty

models are designed based on 40 percent loss of actuator’s effectiveness. Table 5.4 shows

description of models used as multiple models. For example Model 7 is used to show the

case in which Actuator 1 and 3 perform normally, while Actuator 2 and 4 lose 40 percent

of their effectiveness.
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Table 5.4: Description of models used in IMM, H: Actuator is Healthy, F: Actuator is
Faulty
Rotor � Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actuator 1 H F H H H F H F H H F H F F F F
Actuator 2 H H F H H H F F F H H F H F F F
Actuator 3 H H H F H F H H F F H F F H F F
Actuator 4 H H H H F H F H H F F F F F H F

5.3.4 Implementation of TSKF, ATSKF and IMM on Qball-X4

Experimental Results

The TSKF, ATSKF and IMM have been tested on the Qball-X4 testbed of the NAV lab

(Figure 5.11). Several experiments are carried out in the presence of actuator faults, flight

data is collected and then the filters are applied to the data off-board to diagnose faults. The

experiments are taking place indoor in the absence of GPS signals and thus the OptiTrack

camera system from NaturalPoint is employed to provide the system position in the 3D

space. In all experiments, the system is required to hover at an altitude of 1 m and the faults

are taking place at time instant t = 15 s.

Figure 5.11: The NAV Lab of Concordia University.

The covariance matrices for the implementation on the Qball-X4 UAV are set to:

Qx =

[
10−6 × I6×6 06×6

06×6 10−12 × I6×6

]

R =

[
10−6 × I3×3 03×3

03×3 10−12 × I3×3

]

Qγ = 10−1 × I4×4

The transition probability used is given as:
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π16×16 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.995 3×10−4 3×10−4 . . . 3×10−4

0.005 0.995 0 . . . 0

0.005 0 0.995
. . .

...
...

...
. . . . . . 0

0.005 0 . . . 0 0.995

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Single fault scenario: control effectiveness loss in the third motor

In the first scenario, a loss of control effectiveness of 45% is simulated in the third motor

(i.e. γ3 = 0.45). As can be seen in Figure 5.12, this fault does not affect the system along

the x-direction but it results in loss of altitude of 20 cm and a deviation of 80 cm from

the desired position along the y-direction. Due to the presence of a controller, the system

recovers and goes back to the desired hover position. Figure 5.13 shows the behavior

of system in the 3D space upon fault injection. The PWM inputs to the four motors are

illustrated in Figure 5.14. It is clear that before fault (up to 15 seconds), all the four PWM

inputs are almost the same. After fault injection in the third motor, the baseline controller

reacts by automatically increasing the third PWM input to compensate the occurred fault.

The estimations of the actuator fault provided by the TSKF and the ATSKF are given in

Figures 5.15 and 5.16 respectively. The experimental application shows a fast and precise

estimation of the fault amplitude despite model uncertainties. The estimates of γ1, γ2 and γ3

remain close to zero whereas that of γ3 converges to a value close to 0.45. The experimental

results using IMM are show in Figures 5.17 and 5.18. As it can be seen from Figure 5.17

the probability of the first model (represents healthy model) is the highest (around 0.9). In

the 15 second when the fault is occurred probability of the forth model (represents fault

in third actuator) increases (around 1). Figure 5.18 also show the effective model over the

time.

Simultaneous faults scenario: control effectiveness loss in all motors

In the second scenario, a loss of control effectiveness of 40% is simulated in all motors (i.e.

γi = 0.4 for i = 1, . . . ,4). Unlike the previous case, this fault does not affect the system po-

sition in the x and y directions but results in a larger loss in altitude due to the feature of the

faults, where the system drops to 0.4 m (see Figure 5.19). Figure 5.20 shows the system’s

behavior in the 3D space upon fault injection. The PWM inputs to the four motors are illus-

trated in Figure 5.21. Up to 15 seconds and before fault injection, all the four PWM inputs

are almost the same. After fault injection, the baseline controller automatically increases
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Figure 5.12: System position along x, y and z directions for single fault scenario.
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Figure 5.13: System’s 3D position for single fault scenario.

the PWM inputs to compensate the occurred faults. The estimation of the actuator faults

using TSKF and ATSKF is given in Figures 5.22 and 5.23 respectively. Once again, the

experimental application shows a fast and good estimation of all fault amplitudes despite

model uncertainties. The experimental results using IMM are shown in Figures 5.24 and
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Figure 5.14: The PWM inputs generated by the controller for single fault scenario.
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Figure 5.15: TSKF control effectiveness factors estimation for single fault scenario.

5.25. The mode probabilities of all sixteen models is given in Figure 5.24. As it can be

seen from Figure 5.24 the probability of the first model (represents healthy model) is the

highest (around 0.9). In the 15 second when the fault is occurred probability of the first

model decreases (around 0.3) and the probability of the sixteenth model (represents fault
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Figure 5.16: ATSKF control effectiveness factors estimation for single fault scenario.

in all actuator) increases (around 0.7). Figure 5.25 also show the effective model over the

time.

The application of TSKF, ATSKF and IMM to the Qball-X4 has shown to be effective
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Figure 5.17: Mode probabilities for single fault scenario.
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in estimating actuator faults. A comparison of the obtained results does not allow to draw

an obvious superiority of one approach over the others. Moreover, fine tuning the filter

parameters can always improve the results, making them dependent on the gains selection.

The results show that ATSKF and TSKF were very close to each other in terms of fault

estimation time and IMM reacted a little bit slower than TSKF and ATSKF.

Due to the limited calculation capabilities of the on-board microcomputer, the com-

putational complexity of the filters is an important factor to investigate. In the current situa-

tion, the Gumstix embedded computer runs with a frequency of 200 Hz which is equivalent

to a sample time of 0.005 seconds. In real-time systems, the timing behavior is an impor-

tant property of each task. It has to be guaranteed that the execution of a task does not take

longer than a specified amount of time. Thus, a knowledge about the maximum execution

time of programs is of utmost importance [100]. In terms of computational complexity,

IMM needs more powerful processor and cannot be implemented on board. TSKF and

ATSKF both seem work well, although ATSKF puts more load on the system compared to

TSKF.

For comparison purpose, TSKF and ATSKF are implemented on a desktop computer

running Intel Core i5 CPU with 2.67 GHz processing speed and 2.99 GB of RAM. More-

over, 100 different runs are carried out to reduce possible effects of programs running in

the background. Table 5.5 gives a quantitative comparison of the mean time (in seconds)
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Figure 5.18: Effective model index for single fault scenario.
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Figure 5.19: System position along x, y and z directions for simultaneous faults scenario.
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Figure 5.20: System’s 3D position for simultaneous fault scenario.

taken by each filter to execute. One can see that the ATSKF is twice slower to execute than

the TSKF. Figure 5.26 shows the execution times for each of the filters in the single fault

case. The left hand side of the figure illustrates the mean of the execution times for the 100

runs. The right hand side shows one of the 100 runs and the execution time for each sample
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Figure 5.21: The PWM inputs generated by the controller for simultaneous fault scenario.
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Figure 5.22: TSKF control effectiveness factors estimation for simultaneous fault scenario.
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Figure 5.23: ATSKF control effectiveness factors estimation for simultaneous fault sce-
nario.

Table 5.5: Mean of execution times (in seconds) for 100 runs.
Fault case TSKF ATSKF
Single fault 3.4478×10−4 7.2427×10−4

Simultaneous faults 3.5102×10−4 7.3627×10−4

5.4 Fault Detection and Diagnosis of the Momentum Wheel

Fault in JC2Sat

In this section simulation results of using Interacting Multiple Model for the purpose of

fault detection and diagnosis of different probable fault scenarios on momentum wheel of

JC2Sat is presented and discussed.

5.4.1 Fault Modeling for JC2Sat

As shown in Fig. 5.27, the FDD scheme receives inputs from the controller output to be

sent to actuators and output of the spacecraft. In FDD block, first a residual is generated

between the true signal and the estimated signal. If the residual is zero it is understood

that there is no fault and if the residual is non-zero then a fault has occurred in an actuator.

Knowing that there is a fault in the system the next step is to estimate the faulty parameters.
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Figure 5.24: Mode probabilities for simultaneous fault scenario.

To estimate the faulty parameters in the actuator, the actuator model (Momentum

Wheel) has been presented in subsection 2.3.3.

Based on the state-space model Eq. 2.17 and Eq. 2.18, a FDD scheme can be de-

signed. Before proceeding to the FDD algorithm, potential faults in momentum wheels

are discussed first. One of the most probable fault scenarios in momentum wheels is the

change in friction. Usually when momentum wheels are aged, wear of bearings and co-

efficient of viscous friction gradually increase when the inner surface of bearings corrode.

Increase in friction will also decrease actuation power of momentum wheel, which may

affect overall performance of the controlled system and in a worse situation may lead to

instability of the system. The second potential fault in momentum wheel is the change in

electrical characteristics of the motor. The electrical resistance may face abrupt changes

due to tear of winding in armature of motor. The faults in the electrical characteristics can

be modelled as change in the motor torque coefficient KM. Correct estimation of these

parameters will help to reconfigure control structure. This motivates to estimate both the

states and parameters. On a general point of view, this problem may be addressed as a dual

estimation technique to simultaneously estimate both the states and the parameters of the

system. These trigger the design of a FDD algorithm to estimate coefficient of friction and

current coefficient in a model of momentum wheel along with the state of the process. An

IMM-based FDD strategy is used for this purpose and is discussed in the next section. As

discussed earlier, an Adaptive Two-Stage Kalman Filter (ATSKF) (Amoozgar et al., 2011)
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Figure 5.25: Effective model index for simultaneous fault scenario.

has been designed for such a problem. Although ATSKF was designed successfully for this

mission, there was a limitation about the detection of simultaneous faults. In other words,

the pitch control channel of JC2Sat-FF is controlled just with one commanded input, while

to detect simultaneous faults in the system, ATSKF needs at least two commanded inputs.

Therefore based on the above limitations an IMM-based FDD strategy is used to overcome

this shortage. More design details are discussed in the next section.

5.4.2 Simulation Results of IMM on JC2Sat

In this part simulation results in the MATLAB/Simulink environment are presented. The

simulation parameters used are given in Table 5.6. First, spacecraft dynamics along with a

controller is simulated for fault-free case. Since the momentum wheel is used only in the

pitch axis, only simulation results for pitch axis is shown. However, it should be noted that

algorithms were tested in entire 6 DOF nonlinear model. In addition, as the mission is to

demonstrate the feasibility of maintaining along-track spacecraft formation by using only

differential atmospheric drag control between the two satellites, the change in orientation

of one satellite changes the orientation of the other. Keeping this in mind, simulations for

one satellite are performed.
The initial conditions for the simulations are described below. As mentioned earlier,

four multiple models, one healthy model and three faulty models, have been modelled for
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Figure 5.26: Execution times of TSKF and ATSKF in the single fault case.

Figure 5.27: Schematic of spacecraft system.

FDD purpose. The three faults considered are 1) fault in current coefficient, 2) fault in
friction, and 3) a simultaneous fault mode induced by both current coefficient and friction.
These four models are given as:

x̂1 = x̂2 = x̂3 = x̂4 =

[
0

0

]
P1 = P2 = P3 = P4 = 10× I2×2
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Table 5.6: Simulation parameters of the JC2Sat-FF mission

Ix 0.5845kg.m2

Is = Iy 0.5584kg.m2

Iz 0.5320kg.m2

Iw 8.8147×10−5kg.m2

Rm 2Ω
Km 1×10−3N.m/A
B 9.8×10−4N.m.s
KBEMF 1×10−3V.s

Q1 = Q2 = Q3 = Q4 =

[
1×102 0

0 1×10−7

]
R1 = R2 = R3 = R4 =

[
1×101 0

0 1×10−7

]

The transition probability used in these simulation results is given as:

π =

⎡
⎢⎢⎢⎢⎢⎣

1−3×10−4 1×10−4 1×10−4 1×10−4

2×10−4 1−2×10−4 0 0

2×10−4 0 1−2×10−4 0

2×10−4 0 0 1−2×10−4

⎤
⎥⎥⎥⎥⎥⎦

The simulation results are provided for four scenarios. The scenarios consider all the possi-

ble faults, single fault, and multiple faults occurring consequently and simultaneously. First

the simulations start with a healthy mode and at 200 seconds a fault in current coefficient

is initiated. This is followed by a fault in friction at 400 seconds. The faults are injected

consequently in a single run. To further validate the performance of the algorithm, a simul-

taneous fault is injected at 600 seconds, a fault in friction and fault in current coefficient.

In Fig. 5.28, the commanded voltage is shown. The commanded voltage is the input

to the momentum wheel. It is obtained from the controller. The controller is based on the

LQR design. As shown in the figure, the commanded voltage changes in lieu of the fault

injection at 200, 400 and 600 seconds respectively.

In Fig. 5.29, the pitch angle response is shown. The controller tries to stabilize the

spacecraft in pitch axis at about the first 50-75 seconds. This is followed until there is a

fault injection in the current coefficient at 200 seconds. As noticed, the response is delayed

by a couple of seconds before the effect is noticed. At 400 seconds, a fault in friction is

injected, as can be seen in the zoomed figure, it is noticed that there is indeed a change in the

behaviour which is larger than the current coefficient fault. At 600 seconds, simultaneous

94



Figure 5.28: Commanded voltage.

fault is injected and a small change in the behaviour can be observed. The reason behind

the small changes is because the simulations are performed in a closed-loop environment

and therefore the controller is robust enough to stabilize the spacecraft for small faults,

which also makes the detection and isolation of faulty mode more challenge and difficulty.

The future work of this paper would be to identify the severe faults when the controller

cannot stabilize the spacecraft any more.

Figure 5.29: Pitch angle for the commanded torque voltage.

Figure 5.30 shows the mode probabilities for the above mentioned faults occurred

at 200, 400 and 600 seconds, respectively. As noticed there are 4 scenarios shown in the

figure. The first scenario refers to the healthy mode. The second scenario is at 200 seconds,

which involves fault in current coefficient. Fault in friction is injected at 400 seconds as

the third scenario and finally the fourth scenario is the case when both faults are injected
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simultaneously. The probability of each mode varies between 0 and 1. From the figure it is

evident that which mode is active. Figure 5.31 shows the probability index of all the four

modes. As noticed there is not much deviation in between each mode which explains that

there is no incorrect information about mode estimation.

Figure 5.30: Mode probabilities of healthy and faulty modes.
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Figure 5.31: Valid mode of operation.

5.5 Experimental Testing Results of Fault Tolerant Fuzzy

Gain Scheduling PID Control on Qball-X4

The fuzzy PID controller proposed in Section 4.3 has been experimentally tested on the

Qball-X4 testbed. The controller is built using Matlab/Simulink and downloaded on the
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Gumstix emdedded computer to be run on-board with a frequency of 200 Hz. The experi-

ments are taking place indoor in the absence of GPS signals and thus the OptiTrack camera

system from NaturalPoint is employed to provide the system position in the 3D space. In

all experiments, the system is required to hover at an altitude of 1 m and the faults are

taking place at time instant t = 20 s.

5.5.1 First Fault Scenario

In the first fault scenario, it is assumed that a loss of control effectiveness of 15% is taking

place in the four motors. This kind of fault results in a loss of altitude and does not really

produce significant movement along the x or y directions. The gains of the conventional

PID for the height control are Kp = 0.0122, Ki = 0.0079, and Kd = 0.0093. The predefined

ranges of Kp, Ki, and Kd for the fuzzy gain-scheduled PID in the height control are Kp,min =

0.010, Kp,max = 0.015, Ki,min = 0.007, Ki,max = 0.010, Kd,min = 0.0085, and Kd,max = 0.0095.

Figure 5.32 shows a comparison between the conventional and the fuzzy adaptive PID

controllers for the height holding flight. It is clear that the fuzzy adaptive PID controller

reduces the fault effect on the system by reacting faster and returning the system quicker to

its hovering position.
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Figure 5.32: Comparison between conventional and fuzzy PID.

The time evolutions of the fuzzy PID gains are illustrated in Figure 5.33. Unlike

those of the conventional PID, the fuzzy gains are time-varying to adapt to uncertainties,

disturbances and faults as can be clearly seen at t = 20 s.

It can be seen in Figure 5.33 that after the fault occurs, Kp decreases to avoid system

overshoot due to increase in tracking error. The derivative gain Kd remains fixed with a

high value to make a fast response to sudden changes in tracking error. When the system

stops descending (loosing altitude) Kd decreases to let the system recovers faster and goes
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Figure 5.33: Gains Kp, Ki, and Kd in the first scenario.

back to its desired position. After the fault, integrator gain Ki also increased to help the

recovery process.

Table 5.7 gives a quantitative comparison between the conventional and the fuzzy

PID. The Root Mean Square (RMS) is calculated for the tracking error before fault oc-

currence and for the 5 seconds after fault. One can see that before fault occurrence, the

performance of both controllers are close. However, in the fault case the fuzzy PID greatly

reduces tracking error.
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Table 5.7: RMS of tracking error
Before Fault After Fault

Conv. Fuzzy Conv. Fuzzy

z-direction 88 ×10−4 84 ×10−4 127 ×10−4 98 ×10−4

5.5.2 Second Fault Scenario

In the second fault scenario, it is assumed that a loss of control effectiveness of 20% is

taking place in the third motor. This kind of fault results in a loss of altitude and drift

along the y direction. The gains and predefined ranges for the PID controllers along the

z-direction remain the same as given in the previous section. The gains of the conventional

PID for the y-direction are Kp = 0.2137, Ki = 0.258, and Kd = 0.238. The predefined ranges

of Kp, Ki, and Kd for the fuzzy PID in the y-direction are Kp,min = 0.09, Kp,max = 0.35, Ki,min

= 0.13, Ki,max = 0.35, Kd,min = 0.023, and Kd,max = 0.029. Figure 5.34 shows a comparison

between the conventional and the fuzzy PID controllers along the height and y-direction.

As in the first scenario, the fuzzy PID allows the system to react and return faster to its

hovering position. The time evolutions of the fuzzy PID gains are illustrated in Figure

5.35. These gains are related to the fuzzy PID controller in the y-direction.
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Figure 5.34: Comparison between conventional and fuzzy PID.

As in the first scenario, Table 5.8 gives an quantitative comparison between both

99



controllers using the RMS of the tracking errors along z and y directions. Once again, the

fuzzy PID improves system’s performance specially when faults occur.

Table 5.8: RMS of tracking errors
Before Fault After Fault

Conv. Fuzzy Conv. Fuzzy

z-direct. 89 ×10−4 84 ×10−4 44 ×10−4 32 ×10−4

y-direct. 21 ×10−4 7.6 ×10−4 191 ×10−4 132 ×10−4
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Figure 5.35: Gains Kp, Ki, and Kd in the second scenario.
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5.6 Chapter Summary

In this chapter the simulation and experimental results of applying developed FDD methods

in Chapter 3 and Controllers developed in Chapter 4 into testbeds described in Chapter 2

have been presented and discussed.
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Chapter 6

Conclusions and Future Work

In this chapter the main contributions of this thesis are summarized. Further, potential

extensions of the developed methods are then discussed.

6.1 Conclusions

The main focus of this thesis is to develop trajectory tracking and formation controllers

under normal (fault-free) conditions, Fault Detection and Diagnosis (FDD) algorithms, and

Fault Tolerant Controllers (FTC), to enhance performance, safety and reliability of various

missions using unmanned systems. In the following, the limitations raised in Chapter 1 are

revisited considering the contributions of this work.

• A new kinematical control method has been proposed for the trajectory tracking of

nonholonomic WMRs. The controller is designed based on the concept of guiding

the robot to its proper orientation in each instant. In order to derive an appropriate

heading angle for the robot, a heading angle scheduler was devised. To investigate

the effectiveness of the proposed approach, it has been compared with three well-

known algorithms: Model Predictive Control (MPC), Linear State Tracking Control

(LSTC) and Nonlinear State Tracking Control (NSTC) methods in experimental tests

based on a three-wheeled mobile robot, called Qbot. The real world implementation

confirms the advantages with the simplicity, and improved tracking performance with

less and smoother control efforts requirements in the proposed controller.

• A stable leader-follower formation controller for time-varying formation configura-

tion of multiple nonholonomic wheeled mobile robots has been presented. It has
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been assumed the transition between two configurations is described as a function

of time in both separation distance and bearing angle. Then a stable controller was

designed to keep the formation during the course of switching between two configu-

rations. The obtained simulation result shows that the group of robots can maintain

their desired configuration even during the transition period.

• Two-Stage Kalman Filter (TSKF), Adaptive Two-Stage Kalman Filter (ATSKF), and

Interacting Multiple Model (IMM) filter were proposed for Fault Detection and Di-

agnosis (FDD) of the quadrotor helicopter testbed in the presence of actuator faults.

The developed FDD algorithm were evaluated through experimental application to a

quadrotor helicopter testbed called Qball-X4. Two fault scenarios were investigated:

the loss of control effectiveness in all actuators and the loss of control effectiveness

in one single actuator. The obtained results showed the effectiveness of the proposed

method in terms of both rapid fault detection, correct isolation, and accurate identifi-

cation of faults.

• FDD algorithm for the attitude control system of the Japan Canada Joint Collabo-

ration Satellite - Formation Flight (JC2Sat-FF) mission has been developed. The

FDD scheme was achieved using an Interacting Multiple Model (IMM)-based FDD

algorithm. The efficiency of the FDD algorithm has been shown through simula-

tion results in a nonlinear simulator of the JC2Sat-FF. Two different faults in viscous

friction and current coefficient have been simulated. From the simulation results it

is observed that the algorithm performs satisfactorily in terms of fault detection and

diagnosis objectives.

• A fuzzy gain-scheduled PID controller has been designed for a quadrotor unmanned

helicopter in the presence of actuator faults. The proposed controller has been tested

and compared with the conventional PID controller based on experimental test of

the Qball-X4 UAV. The obtained results revealed the effectiveness of the proposed

method and its ability to adapt in the presence of uncertainties and external distur-

bances.

6.2 Future Work

Here after some suggestions and comments regarding further extension of this work is

presented.
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• For trajectory tracking control of wheeled mobile robots, perfect velocity tracking is

assumed and a kinematical controller is proposed. One may design a controller based

on the same strategy and in dynamic level.

• The suggested formation controller were examined through simulation, while imple-

mentation on a real set of mobile robots can make a huge impact on the validity of

it.

• Some FDD algorithms have been successfully implemented on a quadrotor test-bed.

The obtained results were promising. As an extension, one may design reconfig-

urable fault tolerant model-based controller(s) to form a truly active fault tolerant

control system.
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