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Abstract

Fault Detection and Isolation of Jet Engines using Neural Networks

Seyed Sina Tayarani Bathaie

The main objective of this thesis is to design a fault detection and isolation (FDI)
scheme for the aircraft jet engine using dynamic neural networks. Toward this end
two different types of dynamic neural networks are used to learn the engine dynamics.
Specially, dynamic neural model (DNM) and time delay neural network (TDNN) are
utilized. The DNM is constructed by using dynamic neurons which utilize infinite
impulse response (IIR) filters to generate dynamical behaviour between the input
and output of the network. On the other hand, TDNN uses several delays associated
with the inputs of the neurons to achieve a dynamic input-output map. We have
investigated the fault detection performance of each structure. A bank of neural
networks consisting of a set of 12 networks that are trained separately to capture
the dynamic relations of all the 12 engine parameters are considered in this study.
The results show that certain engine parameters have better detection capabilities
as compared to the others. Moreover, the fault detection performance was improved
by introduction of the concept of "enhanced fault diagnosis scheme” which employs
several networks and monitors several engine parameters simultaneously to enhance
and improve the accuracy and performance of the diagnostic system.

The fault isolation task is accomplished by using a multilayer perception (MLP)
network as a classifier. The concept behind the isolation is motivated by the fact that
there is a specific map between the residuals of different networks and a particular
fault scenario. We show that the MLP has good capability in learning this map and
isolates the faults that are occurring in the jet engine. To demonstrate our diagnostic
scheme capabilities, 8 different fault scenarios are simulated and according to the
simulation results, our proposed FDI scheme represents a promising tool for fault

detection as well as fault isolation requirements.
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Chapter 1

Introduction

1.1 General Area of Research

Fault diagnosis has been a matter of wide interest during the past few years due to
importance of reliable operation in industry and in everyday life. The ability to detect
the fault in an operation in an early stage is not only important for the safety reasons
but also it can avoid the high cost of a failure and overhaul of a system. Hence,
fault diagnosis is becoming more significant in industry. In aerospace industry jet
engine related costs involve a large portion of the operating cost of an aircraft. Fault
diagnosis of engines allows one to avoid the high costs of a stopped flight or even
unnecessary replacement of parts and elements of the jet engine. Hence, an early
diagnosis of the jet engine can lead to important consequences in the maintenance
cost of the aircraft.

Fault diagnosis algorithms are primarily divided into two different categories,
namely model-based and data-driven (intelligent-based) approaches. Model-based
approaches mostly rely on analytical redundancy and employ analytical mathemat-
ical model of the system [1] [2]. However, it is usually quite challenging to find an
exact mathematical model of the system due to existence of uncertainties, unmodeled

dynamics, noise and disturbances.



In contrast, data driven approaches mostly rely on historical or real-time data
from the system measurements, and do not require detailed mathematical model of
the system. Hence, intelligent-based methods have received lots of attention in the
literature. Among the intelligent-based fault diagnosis approaches, artificial neural
networks (ANN) are among the popular methods due to their promising capabilities in
learning the dynamics and input-output relations of a system. They provide a viable
tool for dealing with nonlinear problems and modelling complex and nonlinear systems
with great flexibility and capability. However, in some cases static neural networks
suffer from some drawbacks. The information flow in a static neural network is always
from the input to the output in feed forward networks and there is no feedback in
the network. Moreover, the static neuron does not model time delays associated with
the dynamics of the system. Due to the fact that practical systems have a dynamic
input-output behaviour, static neural networks cannot be an appropriate tool for
modelling their dynamics. Hence, recently a great deal of attention has been paid to
dynamic neural networks (DNN). Dynamic neural networks employ internal feedback
within the neurons of the network. This implies that the network has a local memory
characteristic and can generate dynamic input-output behaviour.

Due to the fact that the aircraft jet engine is a highly nonlinear dynamic system,
a static neural network is not a proper approach to learn the dynamics of the engine.
Hence, dynamic neural networks are used in the literature for modelling dynamic

systems such as the aircraft engine.

1.2 Statement of the Problem

The main objective of this thesis is to develop a fault diagnosis scheme for a dual
spool turbo fan engine using dynamic neural networks. The engine in a highly non-

linear dynamical system, hence, a dynamic neural network is required to learn the



dynamics of the aircraft engine. Moreover, since there is generally no accurate ac-
cess to the mathematical equations of an engine, therefore developing model-based
approaches would be a challenging task leading to high costs. Therefore, intelligent-
based fault diagnosis schemes are of great interest. Towards this end, two different
types of dynamic neural networks are used in this thesis to learn the dynamics of the
engine namely, dynamic neuron unit and time-delayed neural networks. The fault di-
agnosis capabilities and comparisons between these two approaches are made through
extensive set of simulation scenarios and case studies. An enhanced fault diagnostic
approach is also presented to improve the fault detection performance by employing
a bank of neural networks and residual generators.

The fault isolation task is also accomplished by using a neural network classifier
and the residuals generated by the fault detection module. Simulation results show
that a multi-layer perceptron can be useful tool for performing fault isolation in the

aircraft jet engine.

1.3 Literature Review

1.3.1 Fault Diagnosis and Isolation (FDI)

The term fault is defined in the literature as an unexpected change in the system
function. Faults are generally classified as occurring in the actuators, or sensors or
components of the process.

Fault diagnosis task is carried on after a healthy operation of the system is avail-
able using either model-based approaches or process history-based approaches using
either quantitative or qualitative methods [3] [4]. On the other hand, the difference
between healthy model output and actual output generates a signal that is called a

residual. This signal would be used as a measure to detect the occurrence of a fault in
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Figure 1.1: Classification of the diagnostic methods [10].

the system. This residual can also be post processed using signal processing methods
or frequency analysis for isolation and fault identification tasks.

Quantitative model-based approaches are based on state estimation, parameter
estimation and parity space concepts. The idea behind these methods is that a fault
will cause changes to some physical parameters and can lead to a change in certain
state or model parameters. Therefore, by monitoring the estimated parameters one
can detect and isolate a fault [5].

In contrast, in qualitative model-based approaches the relationships between sys-
tem parameters are used to describe the system behaviour by some qualitative terms
such as if-then and causalities rules. Qualitative model-based methods can be used
either as qualitative causal methods or abstraction hierarchies. The information flow
in the causal models can be developed in various forms such as digraphs, fault trees
or qualitative physics. The details regarding the qualitative methods are presented

in [4].



Another fault diagnosis approach which is shown in Fig. 1.1 is based on the
process history. In these approaches it is assumed that a large amount of historical
data are available. These data can be transformed to useful information for fault
diagnosis through various methods known as feature extraction. Feature extraction
can be either qualitative or quantitative. Qualitative history-based methods can be
mainly by expert systems or qualitative trend analysis [5]. Generally the rule-based
expert systems need an extensive data about the history of the process and the rules
and the diagnosis reasoning corresponding to these rules. Hence, the approach might
be time consuming to develop due to the necessity of processing huge amount of data
[5].

Neural networks and statistical classifiers are the main methods for extracting
quantitative historical information. Main statistical feature extraction methods are
based on partial least square (PLS), principal component analyze (PCA) and statis-
tical pattern classifiers [6]. Generally quantitative feature extraction methods formu-
late the fault diagnosis problem as pattern recognition problem. The details on these
approaches are presented in [6].

The most important classifier that is used also in this thesis is the neural network
classifiers. These networks have been employed extensively in pattern recognition
problems and system identification [7] [8]. The interest towards neural networks in
fault diagnosis is due to their capabilities to cope with uncertainties, nonlinearities
and complexities. Hence, neural networks are considered as powerful modelling tools
for representing highly nonlinear processes.

As presented earlier, fault diagnosis task will carried on after a healthy behaviour
of the system is available using either model-based approaches of process history-based

approaches. It is generally desirable to have knowledge about the system beyond the



presence of a fault, that is fault detection and to actually isolate the location or char-
acteristics of the fault. In the past, fault isolation has been limited to simple cases in
which a single measure was interpreted as a specific fault. However, nowadays more
sophisticated methods of fault isolation have been developed. Usually some form of a
fault evaluator or reasoner is used to provide the fault isolation capability. The exam-
ples of this form are the case-based reasoning which is based on past experiences to
reason ones way from the observed changes and conditions from the normal situation.

Various methods have been used to perform the isolation task in the literature.
Patan et al. [9] presented a multiple model approach for the fault isolation of the sugar
evaporation process. They used three dynamic neural networks which were trained
in the faulty scenario, comparing the residuals of the faulty-trained network with the
residual of the network training in the healthy mode. Therefore, when a fault has
occurred the corresponding faulty network residual will be zero and the fault can be
isolated. In [10] an isolation approach was presented by using a self organizing map
(SOM) network followed by a linear vector quantization (LVQ) network to isolate
the faults in the voltage, current and torque of a satellite. In [11] a recurrent neural
network was used to detect and isolate the faults in the satellite actuators where the
diagnostic scheme was designed to isolate three thruster faults occurring in the first,

the second and the third pair of the satellite actuators.

1.3.2 Engine Fault Diagnosis

Aircraft engine fault diagnosis has been a matter of wide interest in recent years for
performing tasks such as preventing catastrophic failures and costly component dam-
ages, increasing the flight safety by early detection of engine malfunctions, reducing
time for manual fault isolation and reducing delays and cancellations by performing

timely on-wing maintenance. Engine fault diagnosis algorithms can be classified into



model-based or intelligent-based (process history-based) approaches or a hybrid ap-
proach of both model-based and intelligent-based methods. Both model-based and
history-based techniques have been extensively studied in the literature for health
monitoring of aircraft jet engines. Kalman filters are used as one of the most popu-
lar tools in the model-based fault diagnosis that has been extensively studied in the
literature [12] -[13]. A multiple model fault detection and isolation scheme for the
jet engines is proposed in [13], a bank of linear kalman filters is designed where each
filter corresponds to a specific operating mode of the engine and a hierarchical fault
diagnosis architecture is proposed for both single and concurrent faults.

Generally engine performance is represented by commonly called health param-
eters [14]. These parameters are not directly measured and can only be estimated
by the measured data. This procedure is often called the gas path analysis (GPA)
[14]. Gas path analysis is used to monitor the health indicators of the engine. In
this method the health parameters of the engine would be analyzed to monitor the
health status of the engine. Common engine faults consist of various anomalies and
issues such as blade erosion and corrosion, excess clearances or plugged nozzles and
foreign object damage (FOD). These faults result in changes in the thermodynamic
performance of the engine as measured by compressor flow capacities and adiabatic
efficiencies [15].

Various approaches are used to estimate the health parameters in the gas path
analysis, where the most popular methods have been Kalman filter [16] [17], least
squares methods [18], fuzzy logic [19], genetic algorithms [20], and bayesian belief
networks [21]. Yan et al. [22] applied a fusion approach of multiple classifiers for
a gas path fault diagnosis. Urbain [23] employed a gas path analysis to isolate the
single and multiple faults in the turbine engine.

An observer-based fault detection and isolation scheme was presented by Patton et



al. [24]. In their study the observers are used to generate diagnostic residual signals.
They also outlined ideas for improving the robustness properties of the diagnostics
system.

A condition-based monitoring system was constructed in [25] by using a qualitative
model-based approach. In their approach, intelligent computerized systems monitor
gas turbines to satisfy maintenance needs based on the turbine’s condition rather
than on a fixed number of operating hours. They showed that the developed system
cuts costs and improves performance significantly. Recently artificial intelligence
approaches such as neural networks [26], and Bayesian networks [21], fuzzy logic
[27], have also been applied to the GPA.

Although, model-based techniques have their advantages in terms of on-board real-
time applications, their reliability for health monitoring often decreases as the system
complexity and modelling uncertainties increase. In contrast, data-driven approaches
mostly rely on real-time or historical data from the engine measurements, and do not
require a detailed mathematical model of the engine. Neural networks are popular
methods that are widely used in the aircraft engine fault diagnosis [28, 20, 29, 30, 31].
Support vector machine and fuzzy logic networks have also been introduced for fault

diagnosis of jet engine in the literature [32].

1.3.3 Neural Network-Based Fault Diagnosis

A wide range of various neural networks (NNs) has been implemented for the gas
turbine engine fault diagnosis, such as the feed forward back propagation neural
networks [28] and modular neural network system [20]. In [29] a neural network
was used to detect input-output control sensor fault in the single shaft engine. The
diagnosis involves dynamic observers along with a neural network to classify observer

residuals into different fault classes. Joly et al. [30] exploited a NN as a pro-active



engine diagnosis tool which used a large amount of engine data recorded for Rolls
Royce engines. A comparative study was conducted in [31] for an effective feature
extraction using neural networks for novelty detection in highly dynamic systems such
as the gas turbines. In their work several multilayer perceptron, linear networks, radial
basis function network as well as Kohonen and probabilistic networks were constructed
and trained. Multiple neural networks were utilized in [33] along with GPA method
to isolate component-and-sensor faults in the engine. Several hybrid approaches were
also used for fault diagnosis purposes such as a hybrid neural-network where part
of the model was replaced by influence coefficients [34]. They have reported that
the accuracy of such a network was favourable compared with the back-propagation
neural network and the Kalman filter approach. Mohammadi et al. [35] also applied
a hybrid fault diagnosis method to the gas turbine engine using a hybrid automata.
The complete survey of neural network-based methods has been reviewed in [36, 37].

Most of the static neural networks are used for off-line and steady state engine
fault diagnosis. In [38] a back propagation NN was used for fault diagnosis of the
engine where noise-contained training and testing data were generated using influence
coeflicient matrix. In their work the inputs to the network were selected based on the
number of sensors that are available in the engine. The pressure and the temperature
of both the turbine and the compressor as well as the shaft speed are considered as
inputs of the network. They showed that under high level noise condition NN fault
diagnosis can only achieve a 50-60% of success rate. The performance of NN and
Kalman filter in the engine fault diagnosis has also been a matter of interest. Volponi
et al. [39] made a comparative study between the neural networks and Kalman filters
in the gas turbine performance diagnosis.

Several other intelligent-based methods have also been used for fault diagnosis

of aircraft engine in the literature. Bayesian networks are presented in [40] for the



off-line fault diagnosis of industrial gas turbine in the steady state. A hybrid method
of neural networks and a support vector machine (SVM) was used for the health

monitoring of the gas turbine engine [32].

1.3.4 Dynamic Neural Networks

Dynamic neural networks have received a lot of attention recently due to their capabil-
ities in modelling nonlinear dynamical systems. The dynamic behaviour is introduced
to the neural network by either internal feedback inside the neurons or through the
external feedback. The dynamic network with internal feedback normally exploit FIR
(finite impulse response) or IIR (infinite impulse response) filters along with the ac-
tivation function to generate a dynamic characteristic in the network. These filters
are built inside the neurons, therefore the neurons of such a network are generally
known as dynamic neurons [41, 42, 43, 44, 45, 46, 47, 9]. Another form of dynamic
neurons was presented in the time-delay neural networks where the static neuron in
modified by augmenting a delay associated with the weights of the network. This
modified neuron has now the capability to generate dynamical behaviour in the net-
work [48, 49, 50]. The other category of dynamic neural networks is constructed
based on the static neural network concept [7, 51]. In these networks the structure
of the network is changed by using some external feedbacks to generate dynami-
cal behaviour. Various structures are presented in the literature for dynamic neural
network with external feedbacks where tapped delay lines are used [7] along with a
static network to generate dynamics in the structure. Recurrent neural networks are
the other form of dynamic networks which employ extensive feedback between the
neurons of different layers [51]. Li et al. [52] used a recurrent Elman network to
construct a fault diagnosis scheme for the reaction wheel on the satellites. They also

applied a recurrent neural network for failure detection and isolation in the actuator

10



and thruster of the satellite [53].

u,(k) -

"1(“ E
"ru}

Figure 1.2: A dynamic neuron with an internal IIR filter [46].

Ayoubi [41] presented a class of neuro-dynamic structures that employ an internal
feedback between the input and output of the neurons using an IR filter to generate
a local memory characteristic in the overall network based on the concept of dynamic
neuron. The structure of this dynamic neural model (DNM) is shown in Figure 1.2.
In this structure the filter is located prior to the activation function, however, in [50]
another structure was used where the filter is placed after the activation function of
the neuron. This will result in a simpler input-output relationship in the network.
However, Yazdizadeh [49] showed that in order to model a nonlinear dynamical system
using this structure a delayed sample of the output is required as an input to the
network.

Dynamic neural networks have been recently introduced to control and perform
fault diagnosis due to their capabilities in learning the dynamics of nonlinear systems.
In [54] a dynamic neural unit was presented to control an unknown nonlinear system.
In [45] a dynamic neural model was used to detect actuator faults in the attitude
control subsystem of a satellite. Patan et al. [9] employed the DNM for fault detection
of real sugar evaporation processes. They used a simulation perturbation stochastic
approximation for updating the network parameters. Moreover, a multiple model for
healthy and faulty modes was developed to perform the isolation task in the system.
Valdes [44] employed the DNM for fault detection and isolation of thrusters in the

formation flying of satellites in a series-parallel structure where the network is using
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a delayed feedback of the actual output for the training phase and a feedback of the
network activity for the recall phase. Korbicz et al. [55] used the DNM that is used
in this thesis for process modelling and fault diagnosis. They applied their method
for identification of the nonlinear system and for a two tank process [55]. Yazdizadeh
et al. [50] applied their modified form of dynamic neural network for identification of
nonlinear dynamical systems. Later on Mohammadi et al. [43] applied the dynamic
neural network that was developed by [50] for fault detection of the aircraft jet engines.
They considered three engine parameters and three separate networks are trained for
fault diagnosis of the engine. The series-parallel approach was utilized in the recall
phase where the residuals are generated.

Time delayed neural networks (TDNN) is another neuro dynamic structure where
a static neuron is modified by introducing a delay along with each weight to generate
dynamical behaviour in the network. This network was originally introduced by
Wiable [48] and was used for phoneme recognition. The difference between the TDNN
and taped delay network is that in the TDNN the delays exist in all layers whereas in
the taped delay network delays are only presented to the input layer. These networks
are powerful tools for recognition of spatio-temporal patterns and can be trained by
using back propagation algorithm.

In the conventional time-delay neural networks the delays are fixed throughout
the training, hence, to achieve a better performance adaptive neural networks are pre-
sented in the literature [49]. In the adaptive time delayed neural networks (ATDNN)
the delays are also updated in the training procedure as well as the weights of the net-
work. Yazdizadeh [49] applied the ATDNN for identification of four different classes of
nonlinear dynamic systems. Different training structures were presented to guarantee
a stable learning of all the nonlinear classes. The ATDNN was applied for identifica-

tion of a two-link flexible robot in [56]. TDNN was also used in several applications in
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modelling industrial systems. In addition to the original application of the TDNN in
speech recognition, TDNN was also applied to several other applications, such as im-
age sequence analysis [57] and trajectory generation [58]. TDNN was also introduced
for fault diagnosis in some applications such as automobile transmission gears along

with a radial basis function [59] and for damage detection of the railway bridges [60].

1.4 Thesis Contribution

The contributions of the work developed in this thesis are detailed as follows:

e An influence matrix is developed and presented to evaluate the effects of each
fault on all the jet engine parameters. Faults are then classified into three
different classes of High/Normal and Low severity levels using the influence

matrix.

e Twelve different neural networks are trained based on the dynamic neural model
approach. The fault detection performance of each network is presented on all

the eight faults scenarios that are considered.

e Twelve different neural networks are trained based on the time delay neural
networks approach. A series-parallel structure for the TDNN is presented to

detect the faults in the jet engine.

e A single-input single-output TDNN was also developed as a fault detection tool

and its performance was compared with the other neural networks methods.

e A fault isolation scheme was presented by using the MLP to isolate faults that

are occurring in the jet engine.

e An enhanced fault diagnosis scheme was developed and applied to the jet engine

by using a multiple residual generator strategy.
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e [t has been observed through extensive simulations that the SISO TDNN has
better isolation capability in comparison with the DNM. Moreover, for fault
detection, one can conclude that the series-parallel TDNN has the best perfor-
mance as compared to the two other networks in detecting faults as small as 2

percent on average.

1.5 Thesis Outline

The organisation of this thesis is as follow: Chapter 2 includes the background infor-
mation on the input-output behaviour of both the DNM and the TDNN approaches
as well as their updating rules. Moreover, the engine mathematical model and the
equations of a dual spool turbo fan engine are presented. The types of the faults that
are considered in this thesis and the influence coefficient matrix are also presented
in Chapter 2. The proposed fault detection strategies by using the dynamic neural
networks as well as the simulation results and discussions are presented in Chapter 3.
Chapter 4 presents our proposed fault isolation scheme and the corresponding simu-
lation results. The conclusions followed by the future work are presented in Chapter

d.
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Chapter 2

Background Information

2.1 Dynamic Neural Model Approach

A neuro-dynamic structure is presented in this section based on the Ayoubi model [41],
which in thesis is called dynamic neuron model (DNM ). This network is constructed
based on the concept of a dynamic neuron and is constructed by adding internal
dynamics which makes the neuron’s activity depend on the internal neuron states.
This can be obtained by integrating an infinite impulse response (IIR) filter within
the standard static perceptron structure. Figure 2.1, represents the structure of such
a dynamic neuron model.

The input-output relations of the network can be obtained by three main modules.

The first module is the adder, which is similar to the static neuron, that is
2(k) = WTu(k) = ) " wpuy(k) (2.1.1)
p=1

where W = [wy, ws, ...w,|T denotes the input-weight vector, r denotes the number of
inputs, and u(k) = [u;(k), ua(k), ...u,(k)]* denotes the input vector (T denotes the

transpose operator). The output of the adder is passed through an IR filter by which
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a dynamic mapping is created between the input and the output of the neuron. For
example, by applying a second order filter, the output of the filter and filter transfer

function would be respectively:
§(k) = —a15(k — 1) — asg(k — 2) + boz(k) + brz(k — 1) + baz(k — 2) (9.1}
bo +big '+ bag?

H{gH = 5 1.5
() = r— ( )

where z(k) is the filter input, (k) is the filter output, a = [ay, as]” and b = [bg, by, ba|T
are the feedback and feed-forward coefficients of the filter, respectively and ¢ is the
shift operator.

The neuron output can now be expressed as:

y(k) = F(g.y(k)) (2.1.4)

where F'(.) is a nonlinear activation function that produces the neuron output and
g is the parameter of the activation function defining its slope. Introducing g to the
activation function can be very helpful particularly in case of nonlinear activation
functions such as hyperbolic tangent or sigmoidal [61]. Due to the adaptive nature of

this parameter the neuron can better model a biological neuron.

u,(k)

uy(k)

uAk)_.|;]__/

Figure 2.1: A dynamic neuron having an internal IIR filter.

IIR Filter

Let us consider an L-layered network as shown in Figure 2.2 using the dynamic
neurons that are described by a differentiable activation function F'(.). Let N; denote

the number of neurons in the I-th layer, O! (k) denote the output of the nth neuron
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of the [th layer, and ui,(k) denote the input of the [th layer, generated from the p-th
neuron of the previous layer at discrete times k (I = 1,....L; n = 1,..., N;). The

activity of the nth neuron in the [th layer is defined by:

N1 n

Ol (k) = Flghg(k)] = FlghO th, Y whyub(k —d) = > " al,gh,(k — )] (2.1.5)

d=1

It can be seen from equation 2.1.5 that the network outputs depend on the past
outputs y(k — 1), y(k — 2), ..., y(k — n). Since an activation function F(.) is an
invertible function (e.g. tangent hyperbolic), then network outputs will also depend
on past outputs y(k — 1), y(k — 2), ... , y(k —n). Consequently, the expression for
the last layer outputs is given by equation (2.1.6), where I'(.) is a nonlinear function
representing the overall network map. One should note that normally the activation
function of the output layer is linear in this case y(k) = y(k). This shows that the
network outputs are nonlinear functions of the inputs and their delays as well as the

previous outputs samples, that is

OL(k) = [y(k — 1), ...,y(k — my), u(k), u(k — 1), .., u(k — ny)] (2.1.6)

2.1.1 Extended Dynamic Back-Propagation Algorithm

The proposed dynamic neural model parameters will be updated using an extended
dynamic back-propagation which is similar to the static back-propagation algorithm
with some modifications that makes it applicable to the dynamic neuron. The main
objective of the learning process is to adjust all the unknown network parameters so
that the nonlinear system can be identified by the proposed dynamic neural network
by using a given training set of input-output pairs. The unknown network parameters

are w, a, b, g , where w = [wflp]l:17"'7L§n:17m7Nl%P:Lmlefl is the weight matrix, a =

17



i OO - % b0,

ol of
k. "3 H F(Of--3 F(.)
H F(.)—eQ.Z e et 3‘ —F () )
% ok
! 1 ' F(.)
! ! Vi !
; : ."' 1
; ! i A 1
I | N
OL
b N,
A 01{’1 A H F(.)

H %F(-)—%O;’"-D - :‘.\% H{—F0) Eo-':"/,

Figure 2.2: Dynamic neural network architecture.

izt L. Npa—1,...p and b = [bh, li-1 . rae1,. Npa—t,...p are the filter parameters
matrices, where D denotes the order of the IIR filter, and g = (¢ li=1...2n=1...3
denotes the slope parameter matrix.

As stated earlier to adjust the network parameters, pairs of the healthy input
and output data sets are used. The back-propagation error is widely applied for the
purpose of training static networks. Its extension to dynamic applications are known
as the extended dynamic back-propagation algorithm (EDBF) [55]. The objective of
the EDBF is to adjust all the parameters of the network vector v = |w, A, B, g| to
minimize the performance index J based upon the error function e(k) which is defined

by:

N N

T= 23 ek = 5D W) — k)’ (2.1.7)

i=1 i=1
where e;(k) denotes the error of the i® output defined as difference between the
desired response yd(k) and the actual response y;(k) and N denotes the number of
outputs.

The adjustment rule of the EDBA for the network parameters has following form:
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Volk+ 1) = 7, (k) + 0oy, (k) S5, (2.1.8)

where v represents the unknown generalized parameter vector, 7 is the learning rate, S
denotes the sensitivity function for the elements of the unknown generalized parameter
vector and ¢ is the generalized output error which is described separately for the

output layer and the hidden layer as given below:

e Hidden layers generalized output error

Ny
oL = 3 (8L (k) g B et Y Y (3,) (2.1.9)
z=1

e Output layer generalized output error

Sk — e () F'(g) (2.1.10)

The sensitivity function S is also defined as follows:

e Sensitivity with respect to the weight parameters

Stogn (k) = g [Y Ut (k — i) = >~ al, St (k—i)] (2.1.11)
1=0 i=1

e Sensitivity with respect to the feedback parameters
Sein (k) = =T (k — ) (2.1.12)
e Sensitivity with respect to the feed-forward parameters

Sp. = gh XL (k — 1) (2.1.13)

19



e Sensitivity with respect to the slope parameters

St (k) = (k) (2.1.14)

Based on equations (2.1.8)-(2.1.14) the updating law for each network parameters

can be rewritten as follows:

e Hidden layers parameters

- Weight parameters:
Ny

whp (K + 1) = wip, (k) + [y (8, (k)gE bt ) F (G, (k)] (2.1.15)

z=1

mep Zam wp _Z]

- Filter feedback parameters:
Ny

an(k -+ 1) = a, (k) = [y (8,(k)gs 06wl ) ' (51 (k)] g (k — ) (2.1.16)

z=1

- Filter feed-forward parameters:

O, (k + 1) = b, (k) — [ >_ (0}, (k) gt ot i) FY (3, (k)] gh X (ke — 4) (2.1.17)
- Slope parameters:
gk + 1) = gh(k) = 0> (0 (k)gE oG bt FY (31, (k)]G (k) (2.1.18)

e Output layer parameters
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- Weight parameters:

wjzp(k+ 1) - wjzp(k) +77[6n(k)Fl yln me p Zam wpn k—1 ]
(2.1.19)

- Filter feedback parameters:
1) — al (k) — nlen (k) F(§, (kD)o (k — 0 (2.1.20)
- Filter feed-forward parameters:

b (k + 1) = b, (k) = nlen (k) I (51, (k)] 90, X (k = 4) (2.1.21)

- Slope parameters:

In(k + 1) = g (k) — nlen (k) F' (1, (k)] 5(k) (2.1.22)

2.2 Time Delayed Neural Network Approach

Time delayed neural networks was primarily introduced by [48] for phenomena recog-
nition. The structure of this network is similar to a static network with some slight
modifications. In conventional static neuron the activity value of the neuron is the
weighted sum of the inputs whereas in the TDNN certain delays are introduced to
all the weights. Figure 2.3 depicts the structure of such a dynamic neuron. In the
TDNN the number of branches that connect each two neurons may be more than one
depending on the structure of the network while in a static neuron there is only one
connection between each two neurons. In our proposed TDNN the number of connec-

tions between each two neurons is equal to the number of delays associated to all the
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weights of a layer. The number of delays in our proposed TDNN is assumed to be
fixed for the process. The capability of the TDNN for representing an input-output

map of a nonlinear system in shown analyticity below.

Wy
Woq 1 net(t) ()
x(t) : 5 Q) —>
Wr+1q_T

Figure 2.3: Time delay neuron.

The TDNN is constructed based on the concept of the dynamic neuron that is
presented in Figure 2.3. The network consists of L layers with N; neurons in the [**
layer. Since we are dealing with identification of a nonlinear dynamical system of the
aircraft jet engine and the structure of the engine we consider for our investigation
is in the form of a single-input single-output (SISO) system our network will also
have one input and one output. However, as shown subsequently for a series-parallel
structure a multi-input single-output (MISO) network will be used. Every bounded,
monotonically increasing and differentiable nonlinear function may be used as an
activation function. Specially we use a tangent hyperbolic activation function for the
hidden layer neurons and a linear activation function for the output layer .

We use the following notation to present the input-output equations of the net-
work. The output of the j% neuron in the I** layer at time t is denoted by og- (t). The
tis

delay associated to the weights of I*® layer is fixed and is denoted by 7! . where 7

ax

the delay between the neurons of layer [ and neurons of [ — 1 layer and is varying from

0,1,..., 7. The weights connecting the ™ neuron in the [ layer to the i* neuron

) Tmax

in the [ — 1" layer are denoted by w!

it Note that j varies from 1 to N; and 7 varies

from 1 to Ny;. The equations for a typical neuron are now written as:
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Ni_q 7k

mazx

net’; = Z Z wi.”loi_l(t — 7 (2.2.1)

=1 71=0

oé(t) = a(neté(t)) (2.2.2)

where netg- is the weighted input of the j™ neuron in the [** layer at time t. The

output of the i neuron in the first layer is given by

maz

o(D whaz(t—1-7") (2.2.3)

71=0

where x;_; is the external input to the network. If 0]1- is substituted in 0? it yields:

Ny 7—Maz 7—Maz
=D > wia(@(D whaat—1—7"—1))) (2.2.4)
i=1 72=0 71=0

1 1

and 72 vary from 0 to 7} and 0 to 72

Since ¢ varies from 1 to Ny and 7 s s

respectively, then 03(t) can be written as

2(t) = ozt —1),2(t —2)...,2(t — 1 — — 72 (2.2.5)

7 maz max

It can be shown by extension that the output of the last layer is given by:

of(t) = Dla(t — 1), 2(t — 2), ..., x(t — 1 — R S (2.2.6)

7 maz max max

where I'[.] is a nonlinear mapping that the network realizes.

The proposed time-delay neural network parameters are updated by using the
Levenberg-Marquardt algorithm. Levenberg-Marquardt was developed in [62] to ob-
tain a second-order training speed while not requiring the computation of the Hessian

matrix. Provided that the performance index is in the form of a sum of squares, the
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Hessian matrix can be represented as:

H=J"J (2.2.7)

and the gradient can be computed as

g=Je (2.2.8)

where J denotes the Jacobian matrix and e denotes the neural network error. The
Jacobian matrix contains the first derivatives of the network errors with respect to
the biases and weights and is computed by using the ordinary backpropagation al-
gorithm which is generally less complex than computing the Hessian matrix. In the
Levenberg-Marquardt algorithm a Newton-like update approximation is introduced

to the Hessian matrix as follows:

Ty = xp — [JT T+ pl] 7 I e (2.2.9)

where this approximation would be equivalent to the Newton’s method [63] when the
scalar 1 is zero. When g is large, this approximation would be similar to the gradient
descent algorithm having a small step size. Generally, the Newton’s method is more
accurate near the error function minimum and also has a faster performance rate.
Hence, it is desirable to shift towards the Newton’s method as quickly as possible.
Thus, i is decreased after each step and is increased only when a step increase in the
performance function is observed. Using this approximation, one can be assured that
the performance function is always reduced at each iteration of the algorithm.
Based on the equation (2.2.6) one can conclude that this general TDNN has the
capability of learning the dynamical system depending on the past inputs. Hence, it

has been used extensively in the literature for applications such as trajectory planning,
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speech recognition and time series prediction [57, 59, 58]. However, as shown in equa-
tion (2.2.6) the final input-output map does not include past samples of the output,
hence, theoretically the general structure of TDNN cannot be used for identification
of nonlinear class of dynamic system depending on both the delayed samples of the
inputs and outputs. Yazdizade [50], presented four different structures of TDNN for
identifying different forms of nonlinear dynamic systems. In the following section we
will study the series-pararell structure which was used for representing a more general

class of nonlinear systems in the form of:
y(t) - f[y(t - 1)7y(t o 2)7 7y(t - NS),’LL(t o 1),U(t o 2)7 ,U(t - MS)] (2210)

We will see that with a small modification in the structure of the TDNN it is

possible to identify a dynamical system in the most general form.

2.2.1 Series-Parallel Structure

In the series-parallel structure a delayed sample of the output is used as an additional
input which yields the structure of the network as shown in Figure 2.4. This figure
depicts the structure of our proposed neuro-dynamic network, where a feedforward
TDNN is utilized to approximate the nonlinear function f[.] of the engine dynamics.
In this structure a delayed sample of the output is utilized as an input to the network.
Assuming that this input (that is the delayed of the engine output) is denoted as s,
and the original input (of the engine) as x;, the output of 15 layer neuron is given

by:

1 71

7 mazx

mazx

oj(t) = o[> wham(t—1—7)+ > whaza(t—1—7)] (2.2.11)

71=0 T1=0
If o} is substituted in o? following along the same steps for the general TDNN it

can be shown that the output of the second layer neuron can be written by:
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Figure 2.4: Training of the TDNN in the series-parallel structure.

() = olw(t—1), a1 (t—1—7r —72 ), 2a(t—1), e (t—1—7L _—72 ) (2.2.12)

] m max ' mazx

and by substituting x2(t) with y(t) and x; with u(t) in the above equation, the output

of the last layer can be written as:

o) =Tu(t —1),ult —2),..,ut—1—7L  —72 ... —7' ), (2.2.13)

max maxr©*” max

y(t - 1)7y(t - 2)7 7y(t —1 = Tnlzam - Tr%zaz“' - Trlnam)]

The TDNN Recall Architecture

As presented in the previous subsection a series-parallel architecture has the ability
to identify a nonlinear dynamic system and represents its dynamics. However, for
the fault diagnosis problem, some modifications should be made to perform fault

detection of the system. In the fault diagnosis the output of the system is the signal
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Figure 2.5: The TDNN structure in the recall phase.

which is being monitored to detect the occurrence of change or fault and the neural
network is modelling the healthy system. Therefore, the residual signal which is the
difference between the network output and the actual system output is needed.

When a fault occurs in the system, since the delayed sample of the output is
being fed to the neural network the output of the network will not then represent the
healthy engine. For this reason we need to use a different structure in the recall phase.
In this phase the network has already been trained and the weights and the other
network parameters have already been set to fixed values and are frozen. Hence, one
can assume that the difference between the actual output of the healthy system and
its estimated value by the neural network is sufficiently small. Therefore, one can use
the delay of the network produced output instead of the actual system output as an
input to the neural network.

Figure 2.5 depicts the structure of the resulting network in the recall phase. Note
that in this structure the neural network is assumed to have been well trained since

differences between the network output and the actual output could then cause a
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large steady state error in the estimation error.

Moreover, unlike the DNM approach presented in the previous section, this struc-
ture is more useful for an off-line fault diagnosis. This is due to the fact that the
structure of the network should be changed after its training phase and it cannot be
directly used in an on-line diagnosis and should be trained first and then the modified

structure can be used in the diagnosis system.

2.3 Jet Engine Mathematical Model

In this section a nonlinear mathematical model for a dual spool jet engine (Figure
2.6) is presented based on the work of Naderi et al. [64]. For transient response
model of the jet engine, rotor and volume dynamics are considered in the equations
of motions. Considering the volume dynamics, the engine components are assumed
to be volume-less and a volume among the components is considered to model an
imbalance mass flow rate. This modelling consideration allows the elimination of
large algebraic loops and provides a reasonable ground for development of a generic
and a modular model of the jet engine dynamics. The modules and the information
flow among the various components for a dual spool engine are shown in Figure
2.7. In the following, detailed mathematical expressions corresponding to the engine

dynamics as well as each specific component are presented.

2.4 General Overview of the Components of the
Engine

A turbofan engine is a modern variation of the common gas turbine engine. In the

turbofan engine, the core engine which is the combination of high pressure compressor,
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Figure 2.6: The dual spool turbofan engine .

high pressure turbine, and combustion chamber is surrounded by a fan which is in the
front and an additional low pressure turbine at the rear [65]. The fan and the turbine
are composed of many blades and are connected by a shaft. In this type of engine
some of the fan blades turn with the shaft connected to the low pressure compressor
and the low pressure turbine while some other fan blades remain stationary. The
fan shaft passes through the core shaft (high speed shaft) and makes a dual spool
turbofan engine. One spool connecting the fan and the low pressure compressor to the
low pressure turbine and the other corresponds to the core engine and is connecting
the high pressure compressor to the high pressure turbine.

In the turbofan engine the incoming air is captured by the engine inlet. A part
of the incoming air passes through the fan and enters the high pressure compressor
and then into the combustion chamber where it will be mixed with fuel before the

combustion occurs. The hot exhaust passes through the core and the fan turbines
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Figure 2.7: Engine modules and the information flowchart [63].

ential equation:

2.4.1 Rotor Dynamics

dF

dt

30

The ratio of my to 1, is called the bypass ratio.

nmechWT - WO

and then towards the nozzle. This airflow which is used in the dynamic equations of
the turbofan engine is called the core airflow and is denoted by m.. The rest of the
incoming air passes through the fan and bypasses or around the engine. The part of
the air that goes through the fan has a velocity that has been increased from its free

stream value. This airflow is denoted by 72 and is the fan flow, or the bypass flow.

Energy balance between the shaft and the compressor results in the following differ-



J( Négw )2

2

where I/ = , Wr denotes the power generated by turbine, W¢ denotes the
power consumed by compressor, Nyeq, denotes the mechanical efficiency, and N de-

notes the rotational speed.

2.4.2 Volume Dynamics

As mentioned above, the volume dynamics is considered to take into account the
unbalance mass flow rates among various components. Assuming that the gas has zero
speed and has homogenous properties over volumes, this dynamics can be described

by the following equation:

P = g(z Min = Y Mour) (2.4.2)

where P denotes the pressure, T' denotes the temperature, V' denotes the volume,
R denotes the gas constant, 1y, denotes the input mass flow, and 1, denotes the

output mass flow.

2.4.3 Components

Compressor

The compressor behaviour, as a quasi-steady component, is determined by using
the compressor performance map which is obtained from the commercial software
package GSP (gas turbine simulation program) [66]. The GSP, a component based
modelling environment, is a tool for the gas turbine engine performance analysis.
GSP’s flexible object-oriented architecture allows steady-state and transient simula-
tion of any gas turbine configuration by using a user-friendly drag and drop feature.
Gas turbine configurations are simulated by establishing a particular arrangement of

engine component models in a model window. Given the pressure ratio (7o) and
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the corrected rotational speed (N/v/0), one can obtain the corrected mass flow rate
(thev/0/9) and efficiency (ne) from a performance map by using a proper interpola-
tion technique, where 0 = T; /1y and 6 = F,/ R, i.e. mc\/g/é = fmC(N/\/g, 7e) and
ne = foo (N/ V0, 7). Once these parameters are obtained, the compressor tempera-

ture rise and the mechanical power are obtained as follows:

1 y=1
T,=T, |1+ —(rs —1) (2.4.3)
Ne
WO — mccp(To — Tz) (244)

where Ty denotes the output temperature, T; denotes the input temperature, m,.
denotes the compressor mass flow rate, and ¢, denotes the specific heat at constant
pressure.

Turbine

Similar to the compressor, the turbine behaviour is also determined by using the
turbine performance map (from the software package GSP [66]). Given the pres-
sure ratio (mp) and the corrected rotational speed (N/+/6), the corrected mass flow
rate (rv0/6) and the efficiency (nr) are obtained from the performance map, i.e.
mrvV0/8 = fig(N/NVO, 77) and np = fo.(N/V0, 77). The temperature drop and the

turbine mechanical power are obtained as follows:

j;l
T, =T, |1—nr(1 =7y ) (2.4.5)
WT — mTCp(Ti — To) (246)

Combustion Chamber

The dynamics inside the combustion chamber is governed by equations (2.4.7) and
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(2.4.8). In fact, the combustion chamber represents both the energy accumulation
and the volume dynamics between the high pressure compressor and the high pressure

turbine at the same time. In other words, we have

Pec vRIce
Poo = —T,
cc Too cc Voo

(mC +myp — mT) (2.4.7)

TOC —

1 . ) .
[(CpTcmc -+ UccHumf — cpchmT)—
GMco (2.4.8)

ci'lec(e +my — mr)]
where Poe and Toc denote the pressure and temperature of the combustion chamber,
respectively, myr denotes the turbine mass flow rate, C'C' denotes the combustion
chamber, 7 denotes the fuel flow rate, v denotes the heat capacity ratio, ¢, denotes
the specific heat at constant volume, H, denotes the fuel specific heat, and R denotes

the gas constant.

2.4.4 Nonlinear Equations of Motion

In this subsection, a set of nonlinear equations corresponding to a dual spool jet
engine is provided. In the engine intakes, by assuming adiabatic process, the pressure

and the temperature are computed as follows:

Pd Y — 1 a7 1
= 1|1 M 2.4.9
o { T } (2.4.9)

Td vy — 1 2
=14+ —M 2.4.10
Tamb + 2 ( )

For a low pressure compressor, the pressure ratio 7y ¢ is calculated from the volume
dynamics between the high pressure compressor and the low pressure compressor as
described by equation (2.4.2). The rotational speed (N,) is obtained from the solution

to equation (2.4.1) for the spool that is connecting the low pressure compressor to
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the low pressure turbine. According to the pressure ratio and the rotational speed,
the corrected mass flow and the efficiency are obtained from the performance map,
therefore the temperature rise can be obtained from equation (2.4.3). Similar to the
low pressure compressor, for high pressure compressor, pressure is obtained from the
volume dynamics that is described by equation (2.4.7). The rotational speed (/Ny)
is obtained from equation (2.4.1) for a spool that is connecting the high pressure
compressor to the high pressure turbine.

Finally, the pressure ratio of high pressure turbine is obtained from the volume
dynamics between the high and the low pressure turbines, and the pressure ratio
for the low pressure turbine is calculated by using the volume dynamics after the low
pressure turbine. The mass flow rate of the nozzle is computed as follows. If condition
(2.4.11) holds, the mass flow rate is obtained from equation (2.4.12), otherwise, it is

determined from equation (2.4.13). In other words, we have

< {1 + 1;7)} o (2.4.11)

- o (2.4.12)
Pni \/jﬂinZ R PnZ Tno
where \/1%7 = \/QCpnn(l — (]jg—::”)%l), :;:: =1 —n(1— (];?T"Zb)%l), and
mn V Tnz o U An Pcm't 711Z (2 4 13)
Pni N \/jﬂinZ R PnZ Teris o
and where ];;Trjf =(1- nin(:’/—ﬁ))ﬁ, \/1%7 = %}f, and TT—;f = % Here, it is assumed

that P,, = Prr and T,,, = T which is obtained from the energy balance in the mixer

as follows:
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T mrrlTrr + Bmrclre
M= : .
mrr + e

(2.4.14)

where n denotes the nozzle, n; denotes the nozzle input, u denotes the speed, A

denotes the area, n, denotes the nozzle output, crit denotes the critical and LT and

LC' denote the low pressure turbine and the low pressure compressor respectively.
To summarize, the nonlinear set of governing equations of the dual spool jet engine

are given as follows:

1

CoMecc

TCC = [(CpTCmC + nccHum]c — cpchmT) — Cvch(mC + mf — mT)] (2.4.15)

_ UsmcthTCp(THT — Tror) — muccy(Tre — 1a)

N 2.4.16
1 JlNl(;—_O)Q ( )
N, — Ny wenaTcy(Toc — The) — muccy(Tue — Tre) (2.4.17)
Ja Ny (35)? o
. Ry, . ) )
Py = V—M(mLT + Brinpe — 1my,) (2.4.18)
M
. Poo . RT,
Peoc = ﬂTgc + rtiec (ch +myp — mHT) (2.4.19)
Tee Vee
. RT . .
PLC — VLC ((1 — ﬁ)mLc — ch) (2420)
LC
RT
Py = VHT (mpr + Brine — 1hy) (2.4.21)
HT

where 1y = PLA X7, and the PLA (power level angle) is the control signal or
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Engine Measured Parameters | Description

LCy Temperature in the Low Pressure Compressor

LCp Pressure of the Low Pressure Compressor

HCy Temperature of the High Pressure Compressor

HCp Pressure of the High Pressure Compressor

HTr Temperature of the High Pressure Turbine

HTp Pressure of the High Pressure Turbine

LTy Temperature of the Low Pressure Turbine

LTp Pressure of the Low Pressure Turbine

Ny The rotational speed of the spool connecting the low pressure
compressor to the low pressure turbine

Ny The rotational speed of the spool connecting the high pressure
compressor to the high pressure turbine

CCr Temperature of the Combustion Chamber

CCp Pressure of the Combustion Chamber

Table 2.1: Engine measured parameters.

the input u = PLA and m/P** is the maximum fuel flow rate, 1,,,,., and 72, denote
mechanical efficiencies, and J; and J> denote the inertia of high and low pressure
shafts, respectively. Moreover, all the performance maps of the compressors and the

turbines are adopted from the commercial software package GSP [66].

2.5 Engine Data Generation

All the data that is used in this work are generated by using a Simulink mathematical
model of the dual spool jet engine model developed in the previous subsection as well
as in [64]. The engine model is operating in the cruise mode at the low altitude of
4000m. The engine is being controlled by the PLA (power level angel). Hence, the fuel
flow rate is changing from 40% to 95% of the maximum fuel rate. The initial ambient
parameters are set corresponding to the altitude of the cruise mode. This leads to

the ambient condition of Ty, = 262 centigrade and P,,,, = 0.63 atmosphere. The
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Mach number is set to 0.7 and is assumed to be fixed in the cruise mode. To ensure
that the model is as close as possible to the practical engine operation measurement
noise was considered when reading the sensor data.

It is assumed there are 12 measurable parameters in the engine and by changing
the input at each stage the sensor value for all the 12 parameters are collected.
The parameter set is presented in Table 2.1. However, in reality depending on the
engine and the application that the engine is operating the number of the measurable
parameters vary. In [13] the following parameters are considered as the measurement
vector, namely [Ny, No, HCp, HCp, LCp, LCp, HIlr, LTr|. However, in this thesis we

assume all the engine parameters are measurable and accessible to the user.

2.6 Faults in the Jet Engine

The faults in an engine can be classified into sensor faults, actuator faults, and phys-
ical or component faults. A sensor fault occurs when there is a sensor read that is
different from the actual value. The most common sensor faults are bias, drift, noise,
scaling and drop out. On the other hand, component faults may consist of a number
of anomalies such as blade erosion, corrosion, tip clearance, fouling, foreign object
damage, built up dirt, etc. These fault scenarios result in a change in the thermo-
dynamic performance of the engine as measured by the adiabatic efficiencies, and
flow capacities. Therefore, generally a component fault in the jet engine is modelled
indirectly by a decrease in the efficiency of the flow capacities. Other fault scenarios
can also be considered in the jet engine such as the stability bleed leak, start bleed
leak, compressor stator and vane misrigging, which require an additional block and
model to add to our jet engine model.

In this thesis, we only consider the effects of the component faults as decreases

in two health parameters of the engine namely, the efficiency (1) and the mass flow
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Fault Scenario | Description

FmLC Decrease in the Mass flow capacity of Low pressure Compressor
FeL.C Decrease in the Efficiency of Low pressure Compressor

FmHC Decrease in the Mass flow capacity of High pressure Compressor
FeHC Decrease in the Efficiency of High pressure Compressor

FmHT Decrease in the Mass flow capacity of High pressure Turbine
FeHT Decrease in the Efficiency of High pressure Turbine

FmLT Decrease in the Mass flow capacity of Low pressure Turbine
FelLT Decrease in the Efficiency of Low pressure Turbine

Table 2.2: The component faults that are considered in the jet engine.

capacity (). The list of the faults that are considered in this thesis is presented in

Table 2.2.

2.6.1 Fault Influence Matrix

In order to evaluate the importance or significance level of each fault and its effect
on the engine parameters, we have generated an influence matrix of all the engine
parameters and measured the effects of each fault onto all the engine parameters.
The attributes that we used to evaluate the effects of the faults are the percentage of
the changes in the steady state values of the signals when faults occur.

This matrix is denoted by the influence matrix and each row of the matrix rep-
resents the percentage of the change in the steady state of that parameter when a
specific fault occurs.

It is assumed that the faults are occurring in steady state operation of the jet
engine. The changes are measured when the transition signals have settled down. For

each fault scenario we have injected a 2%, a 5% and a 10% decrease in the component
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Fault LCr | LCp | HCr | HCp | HIt | HIp | LTy | LTp | N1 | Ny | CCr | CCp
% % % % % % % % | % | % % %

FmLC | 439 | 827 | 328 | 476 | 1.08 | 477 | 1.92 | 495 |6.73 | 0.87 | 1.07 | 4.76
Fel.C 437 | 741 | 401 | 392 | 372 | 415 | 411 | 3.86 295|162 | 3.85 | 3.92
FmHC || 4.09 | 836 | 1.25 | 3.86 | 1.98 | 426 | 217 | 415 |1.77 | 536 | 2.32 | 3.86
FellC 362 | 731 | 640 | 721 | 810 | 6.79 | 848 | 653 | 263|352 | 744 | 7.21
FmHT | 0.62 | 1.37 | 449 | 1352 | 247 | 7.75 | 1.86 | 4.21 | 0.72 | 1.54 | 2.81 | 13.52
FedT | 471 | 1034 | 1.77 | 10.70 | 11.64 | 827 | 12.08 | 7.99 | 2.98 | 449 | 6.29 | 10.70
FmLT | 7.30 | 1712 | 2.36 | 561 | 7.61 | 13.97 | 471 | 489|124 | 429 | 392 | 561
FeLT 434 110.00 | 201 | 390 | 1.05 | 425 | 437 | 258|280 |267 | 1.31 | 3.90

Table 2.3: The influence matrix corresponding to the average change in the steady
state of the 12 measurements subject to 2%, 5%, 10% faults.

value and measured the percentage changes in each of the engine parameters. The
influence matrix shows the average corresponding to the three percentage changes for
each fault and each engine parameter.

The results are presented in Table 4.1 which shows that the larger the percentage
change of each fault, the larger the correlation between the two parameters. For
instance, it follows that a change in the mass flow rate of the low pressure compressor
(FmLC) has a significantly large effect on the pressure of the low pressure compressor
(LC,) (8.27%). This is quite predictable since the mass flow rate of the compressor

has a direct relationship with the pressure of the compressor.

2.6.2 Fault Classification

Based on the influence matrix results we present a specific classification of the faults
in the jet engine. This classification divides the faults into three classes namely, High,
Normal, and Low severity levels. These classes categorize the faults from the severity
level perspective. To determine the severity level of each fault we assume that the

faults that generate larger percentage changes in all the 12 engine parameters have
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Fault Scenario | Fault Severity Level
FmLC Low

FelL.C Normal

FmHC Low

FeHC High

FmHT Low

Fed'T High

FmLT High

FelLT Normal

Table 2.4: The faults severity levels.

higher severities than others. To evaluate this severity we consider the median of each
row of the influence matrix which is an indicator of the severity of the corresponding
fault. One should note that this classification is based on an overall effect a fault can
have on ALL the engine parameters and is an indication on how to know which faults
cause make more change in the parameters of the jet engine.

In order to generate these classes the median of the percentage changes of each
fault is calculated by using the influence matrix which is basically the median of each
row of the influence matrix. The faults are then classified into three classes by setting
a threshold for each class of fault where the results are presented in Table 2.4.

The classification which is developed here is a simple qualitative representation
of the faults to yield a better understanding of the fault isolation results that will be
presented in Chapter 4. In particular, a more detailed analysis can be performed in
future to yield a thorough presentation of the effects of each fault in the jet engine

parameters.
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2.7 Conclusions

In this chapter the governing equations of two dynamic neural networks namely, the
DNM and the TDNN were presented. The DNM updating algorithm is the extended
dynamic back propagation whereas the TDNN is trained based on the Levenger Mar-
quardt updating algorithm. In order to utilize the TDNN for fault diagnosis purposes
a series-parallel architecture for TDNN was presented.

All the simulations in this thesis will be carried out based on a mathematical model
that is developed by using the Simulink software. The jet engine mathematical model
and the nonlinear equations of motion as well as the components of the jet engine
were introduced in this chapter.

The initial ambient parameters for all the simulations are set corresponding to
the altitude of the cruise mode which in this thesis is assumed to be 4000m. This
leads to the ambient condition of T,,,, = 262 centigrade and F,,,,;, = 0.63 atmosphere.
The Mach number is also set to 0.7 and is assumed to be fixed in the cruise mode.
Moreover, in this chapter a fault influence matrix was presented in order to determine
the effects of each fault in all the engine parameters. This matrix shows the percentage

change of each parameter corresponding to a specific fault.
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Chapter 3

Dynamic Neural Network-based

Fault Detection Scheme

Our aim in this chapter is to develop a fault detection scheme to determine the min-
imum percentage of the detectable fault for all the possible fault scenarios under
consideration in the jet engine. Towards this end, two different dynamic neural net-
work structures are used for fault detection of the jet engine, namely the DNM and
the TDNN. For each method, 12 networks are trained separately for all the 12 existing
engine parameters as presented in the Table 2.1 in Chapter 2. The fault detection
performance of each of these 12 networks is shown and demonstrated. The engine
parameters that have better capabilities in monitoring the engine health status are
then determined. It is shown that by using a bank of neural networks together as
the residual generators one can improve the overall performance of the general fault

detection scheme.
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3.1 Dynamic Neuron Unit Approach

As presented in Chapter 2, a dynamic neuron model is constructed by using an inter-
nal IIR filter in the neuron. This filter generates the dynamical behaviour between
inputs and outputs. One of the advantages of this structure having internal filters
is that there is no need to a series-parallel structure for identifying the nonlinear
dynamics of the engine. In other words, there is a need for having a delayed sample
of the output as an input. Hence, the network can be seen as a SISO system. In
Figure 3.1 the fault detection scheme is depicted for the 12 engine parameters. Each
neural network is working in parallel with the engine to generate a residual signal.
The residual signal is then evaluated for the purpose of fault detection task. The
input and the control signal to the jet engine and to each neural network models is
the power level angle (PLA) or the fuel flow rate and the output would be one of
the 12 engine parameters. Our fault detection scheme consists of two stages, namely
(1) system identification and (2) fault detection. These are described in more details

below.

3.1.1 System Identification

System identification plays an important role in the fault detection algorithm. During
this task dynamic neural networks learns the dynamics of the actual turbo fan engine.
Towards this end, two tasks should be performed, namely the training phase and the

testing and validation phase of the proposed DNM approach.
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Figure 3.1: Fault detection schematic by utilizing a bank of DNM networks.

3.1.2 Training Phase

In this thesis we have developed a bank of 12 different networks where each has
one input (fuel mass flow rate) and one output which is an element of the measure-
ment vector. These networks are designated as Netrc,, Netro,, Netac,, Netuo,
Netpr,, Netyp., Netyr,, Netgr,, Nety,, Netn,, Netoo,, Neloo,. It is assumed that
the engine is operating in the cruise mode and is fault free during the training mode.
Experimenting with several input profiles, it has been observed that by training the
network using a zigzag signal ranging between 40% and 98% of the maximum fuel
mass flow rate, the minimum error and the best performance can be achieved. The
frequency of the signal and the slope of each ramp was considered sufficiently low to
satisfy the engine dynamics.

Due to the high complexity of the engine dynamics, a large number of data is
required for network to learn the dynamics of the engine. For example, the Nety; has

been trained by using 56,000 normalized data points which are generated by using a
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Engine Parameter || Noise Percentage
LCp 2%
LCr 2%
HCp 2%
CCp 2%
HCr 2%
LTp 2%
HTp 2%
CCrp 2%

N1 0.5%

N2 0.5%
HTyp 2%
LTy 2%

Table 3.1: The measurement noise percentage applied to each engine parameter.

Simulink model of the dual spool jet engine and are the sampled data when the engine
was running for about 10 min. To have a realistic model (as provided in Chapter 2) as
close as possible to a practical aircraft engine, all the data for training are considered
under presence of the measurement noise as presented in Table 3.1. The weight
adjustment for the dynamic network was carried out by using an extended dynamic
back propagation algorithm as described in Chapter 2. To make our proposed fault
detection scheme as close as a realistic problem, the training method that is chosen
is the incremental learning. As described in Chapter 2, in this adaptation law the
weights of the (k + 1) sample will be updated based on the errors of the k™ sample.
This results in a point by point update which leads to an on-line weight adjustment

system.
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Both the input and the output of the networks are normalized by using the max-
min normalization method. It has been observed that the training procedure is sen-
sitive to the normalization method. After several investigations it turned out that
by using the max-min normalization scheme, a better performance can be achieved

where both the input and the output are normalized according to:

(X —a)

X, =2
* b—a

(3.1.1)

where a and b denote the maximum and the minimum of the range of the variation
of the variable.

The learning algorithm is initialized with small random values for the network
parameters (weights, feedback filters, activation function slopes) while the IR filter’s
denominator coefficients were set to zero to ensure stable learning. All the neurons in
the network are assumed to be embedded second order IR filters. Due to the internal
filter dynamics in the DNM there would be an internal feedback from the input and
the output into the system, hence a second order filter has the sufficient ability to
capture the dynamics of the system. The filter order is set to 2 as empirically we have
found that there is no significant change in the leaning performance by increasing the
filter order other than increasing the computational complexity.

We have also observed that having only one hidden layer will unnecessarily in-
crease the system complexity as the number of neurons should then be selected to
be relatively large. Hence, we have used two hidden layers for each network to learn
the dynamics of the jet engine. The activation functions in the hidden layers are the
hyperbolic tangent and linear activation functions for the output layer. Starting from
a relatively small structure, we developed an optimal architecture for our proposed
dynamic networks by incrementally increasing the number of neurons in the hidden

layers until a termination criterion (t.c.) is satisfied . The t.c. used is based on the
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mean square error (mse) criterion and the convergence of the weights of the network.
The termination criterion is used as t.c.=.008 and the training is stopped if the mse
is smaller than the t.c. and the weights of the network have converged. Table 3.3
summarizes the characteristics and parameters of the resulting networks.

The training signals and errors as well as the network parameters updates for
the neural networks Netro,, Netrc,, Netyc, and Netyp, are depicted in Fig. 3.2-
3.11. From Fig. 3.2 one can observe that the network output Netye, is following
the engine output after 45,000 iterations quite well. Fig. 3.3 and Fig. 3.4 show the
network parameters updates. It follows that the network weights and error will be
within a certain value after 45,000 iterations of training. This ensures that the neural

network is well trained and is ready to be used in the recall phase.
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To demonstrate the capability of the trained network, it was tested with another
data set that has not been seen previously by the network. Fig. 3.14-3.19 show the
validation /testing phase for two different input profiles defined as input a and input
b. It can be seen that the output of the networks is following the actual output of

the jet engine quite well.
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Figure 3.14: Testing of the trained Netc, network with "unseen” inputs of a and b.
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Figure 3.15: Testing of the trained Netre, network with
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Figure 3.16: Testing of the trained Netye, network with "unseen” inputs of a and b.
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Figure 3.17: Testing of the trained Netyy, network with "unseen” inputs of a and b.
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Figure 3.18: Testing of the trained Net;p, network with
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Figure 3.19: Testing of the trained Nety, network with "unseen” inputs of a and b.
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3.1.3 Fault Detection

The trained bank of neural networks are now used to generate the residual signals.
The residual signal would be the difference between the actual engine output and the
neural network output. When there is a fault in the system the error between these
two outputs will increase and it would then be possible to detect a fault by monitoring
the residual signal using an appropriate threshold level. The decision making system
for our fault detection scheme is based on the concept of the confusion matrix. A
confusion matrix consists of four elements, namely the true positive, the true negative,

the false positive, and the false negative which are defined below:

e True positive (t.p.): the number of samples detected as healthy while the engine

is operating in the healthy mode.

e True negative (t.n.): the number of samples detected as faulty while the engine

is operating in the faulty mode.

e False negative (f.n.): the number of samples detected as healthy while the engine

is operating in the faulty mode.

e False positive (f.p.): the number of samples detected as faulty while the engine

is operating in the healthy mode.

True Positive | False Negative

False Positive | True Negative

Table 3.2: The confusion matrix.

For each residual signal a confusion matrix is constructed and the two parameters

of accuracy and precision are calculated to evaluate the performance of the fault
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detection scheme. These two parameters are defined by:

true posttwve + true negative

Accuracy =
4 true positive + true negative + false positive + false negative
(3.1.2)
. true negative
Precision = (3.1.3)

true negative + false negative

Different fault values ranging from 1% to 12% are injected to the aircraft engine
to determine what is the minimum detectable fault severity for each network with
respect to the chosen threshold. A fault scenario is considered as detectable if the
averages of the accuracy and the precision of the confusion matrix corresponding to
that fault severity level are more than 80%. The threshold for each network was
chosen by conducting Monte Carlo simulations corresponding to random noise levels.
Table 3.7 provides the selected thresholds for each network.

In this thesis, the threshold level was defined by mean(e) + .5 * std(e), where e
denotes the steady state error between the engine output and the network output
and mean denotes the average of the signal and std denotes the standard deviation.
The noise level was chosen as 0.5% for the Ny and Ny and 2% for all the other engine
parameters as shown in Table 3.1 [67].

We observed that a network with 5 neurons in the first hidden layer and 5 neurons
in the second hidden layer has the best performance in learning the dynamics of the
jet engine. Hence, the structure of the neural network was chosen as 1% 5% 5% 1 for
all the engine outputs. However, we have observed that for the Nety; and Netpo
different structures are more desirable, and hence the structure of the network for
these two parameters are selected as 1% 20 x 10 % 1 and 1% 22 % 11 % 1, respectively.
The learning rate for the parameters 7, ,1, ,7, of all the networks are chosen as 0.6

and 7, is chosen as 0.03 for the Nety; and Netn, and 0.03 for all the other engine
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The Trained Network || No. of Iterations | MSE
Netro, 45000 0.0079
Netrop 38000 0.0069
Netpoy 52000 0.0061
Netye, 58000 0.0056
Netyr, 59000 0.0072
Netyr, 58000 0.0057
Netrp, 62000 0.0079
Netrr, 57000 0.0057
Netpy 56000 0.0071
Netps 95000 0.0024
Netoo, 58000 0.0069
Netoeop 58000 .00056

Table 3.3: The DNM training parameters.

parameters.

Table 3.3 summarizes the number of the iterations and the mean square error for
each network during the training phase. The threshold levels for each network are
shown in Table 3.7. It is assumed that the engine is operating in the cruise mode
where the PLA is varying from 50 to 60 degrees. This would bring the W} (fuel flow)
in the range of 72% to 86% of the maximum value. For any specific fault severity,
each network was fed with all the input profiles in the range of 70% to 90% of the
maximum fuel mass flow rate. Although, the fault detection was accomplished in
the steady state of the jet engine operation, in order to show that the network has
learned the aircraft engine dynamics properly the input profile was chosen as a ramp
that starts from 40% of the maximum fuel mass flow rate and reaches a steady state
value between 70% to 90% of the maximum fuel flow rate. Indeed, the input profile
is changing from 70% to 90% at the rate of 5%, which takes the input profiles to 5

different operating settings.
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Fault Scenarios FmlLC | Fel.C | FmHC | FeHC | FmHT | FeHT | FmLT | FeLLT
Trained Network % % % % % % % %
Netpo, N N N 7 N 5 3 8
Netpe, 6 8 N 7 N 4 2 6
Netyo, N 8 12 4 4 N N N
Netye, N 12 N 5 2 3 6 N
Netgr, N N N 5 N 3 5 N
Netyr, N N N 6 N 5 2 N
Netpp, N N N 7 N 5 12 N
Netpr, N N N 6 N 5 9 N
Netny 2 N N N N N N N
Net g 12 10 3 3 11 2 2 6
Netoe, N 11 N 5 N 6 9 N
Neteo, N 12 N 5 3 6 N

Table 3.4: The minimum detectable fault severity level (%) using DNM approach (N
implies that the fault cannot be detected).

Each fault is injected at the time t=15 seconds where the transients of engine
have already settled down. Any fault is said to be detectable if it can be detected
corresponding to all the 5 different input profiles ranging from 70% to 90%. A fault
severity is considered as detectable if the average of the accuracy and precision pa-
rameter corresponding to the network is greater than 80%. If the fault is detected the
average detection time is calculated from the 5 different input profiles. The results
are shown in Tables 3.4 and 3.6. The detecting performance of the fault FeHC for
the network Nety, is shown in Table 3.5. One can observe from Table 3.5 that when
FeHC is 3% the average of the accuracy and the precision is greater than 80% and

the fault severity is considered as detectable.
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Fault severity level (%) | Accuracy (%) | Precision (%) | Confusion matrix
40 32
FmHC=1 % 68.31 61.51 10 50
39 19
FmHC=2% 78.01 77.82 11 63
49 6
FmHC=3% 95.33 93.07 176

Table 3.5: The detection performance for the network Net;, (Note that the values
in the entries of the confusion matrix refer to the actual number of residual signal
samples representing the corresponding characteristic).

Fault Scenarios FmlLC | Fel.C | FmHC | FeHC | FmHT | FeHT | FmLT | FeLLT
Trained Network s s s s s s s s
Netrc, N N N 15.89 N 15.39 | 15.17 | 15.97
Netrc, 16.23 | 16.23 N 15.11 N 15.15 | 15.17 | 15.41
Netye, N 15.26 | 15.43 | 1548 | 15.01 N N N
Netyo, N 15.57 N 15.20 | 16.08 | 15.34 | 15.12 N
Netyrp, N N N 15.36 N 15.12 | 15.31 N
Netgr, N N N 15.59 N 15.32 | 15.84 N
Netpr, N N N 15.16 N 15.41 | 16.29 N
Netpr, N N N 15.97 N 15.02 | 15.07 N
Netn 15.03 N N N N N N N
Netnm 16.02 | 16.54 | 15.38 | 15.19 | 15.52 | 15.26 | 15.16 | 15.71
Neteo, N 15.24 N 15.92 N 15.36 | 16.63 N
Netoe, N 15.25 N 15.19 | 15.01 | 15.24 | 15.35 N

Table 3.6: The average detection time corresponding to the minimum detectable fault
severity level.
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Trained Network || Threshold
Netro, 7.97 °C
Netrep 0.079 atm
Netpe, 11.20°C
Netyep 0.34 atm
Netgrp, 24.77°C
Netyry 0.10 atm
Netrp, 28.79°C
Netrr, 0.0392 atm
Nety 165.42 rpm
Netyo 98.42 rpm
Netoo, 35.15°C
Netcop 0.34 atm

Table 3.7: The threshold levels used for each DNM for fault detection.
3.1.4 Discussions

Table 3.4 summarizes the results of our fault detection scheme by using the DNM. The
minimum detectable faults for each network are presented for all the fault scenarios.
The faults considered in this study can vary between 1% to 12%. We assume any
fault greater that 12% as serious failure which would need an urgent maintenance
action. Hence, the notation N (Not detected) is used to denote when the network
cannot detect the fault values between 1% to 12%. For instance, by monitoring the
residual of the Nety, one cannot detect any fault value between 1% to 12 % decrease
in the mass flow rate of the high pressure turbine.

One can observe from the results that was presented in Table 3.4 that they are
in agreement with our fault severity classification that was presented in Chapter 2.

Our fault detection scheme is performing satisfactorily and detecting smaller fault
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severities that are labelled as High severity. One can compare the detection results
corresponding to the FeHT (High) and FmHT (Low) where in general the networks
are detecting smaller values of the faults for FeHT.

From Table 3.4 one can observe that in general Nety, and Netrc, have the best
performance amongst the networks. On the other hand, using the pressure of the low
pressure compressor as a sighal to monitor the health of the jet engine one can detect
smaller values of the fault in the engine. To demonstrate the function of Netro, as a
residual generator for the fault detection problem a decrease of 5% fault is injected in
all the 8 fault scenarios when the fuel flow mass rate is at 70% of its maximum value.
The residual of Netre, in then monitored. Figures 3.20 and 3.21 show the residual
error signals. It can be seen from the results that the faults in Fe.C and FmHT and
FmHC and Fel'T are not detected due to the fact that the minimum detectable value

for these faults as presented in Table 3.4 are greater than 5% .

Enhanced Detection Scheme

As presented in Table 3.4, each engine parameter has different capability and per-
formance in fault detection of the jet engine. This difference may be used in order
to develop a better performance in the fault detection process for a specific fault
of different networks. Developing a fault detection scheme that consists of several
residual generators working in parallel will improve the overall performance of the
fault detection module. Towards this end, for each fault scenario we will choose the
network that can detect the smaller value of a given fault. It can be easily seen from
Table 3.4 that by choosing the networks Nete,, Nety,, Nety, and Netye, one can
detect smaller fault severities than other networks. The minimum detectable fault
using this new parallel structure is given in Table 3.8.

Comparing Table 3.8 with the results for the Netyc, or Nety, one can observe
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Fault Scenarios FmLC | FeLC | FmHC | FeHC | FmHT | FeHT | FmLT | FeLT | Median
Trained Network % % % % % % % % %
N@thP/N@tHcP/NBtNI/NBtNQ 2 8 3 3 2 2 2 6 3.50

Table 3.8: The minimum detectable fault severity (%) using the enhanced fault de-
tection system and dynamic neural models.

that better results are achieved and all the faults can be detected using the new
structure while in the previous structure which was developed by using only one
residual generator there was generally at least one fault scenario that could not have

been detected.
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Figure 3.20: The Netrq, residuals for the fault case when the input fuel flow is at
the 70% of the maximum value and the fault severity is at 5%.
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Figure 3.21: The Netrc, residuals for the fault case when the input fuel flow is at
the 70% of the maximum value and the fault severity is at 5%.
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Figure 3.22: The TDNN fault detection scheme - Training phase.

3.2 TDNN Approach

As presented in Chapter 2, a TDNN should be utilized in a series-parallel structure
to be able to model the dynamics of the jet engine. Hence, a delayed sample of the
output is required as an additional input while the network is being trained. This can
make our proposed TDNN be seen as a multi-input single-output (MISO) network as
shown in Fig. 3.22.

In order to perform a fault diagnosis task with the trained neural network a
modified architecture is applied as presented in Fig. 3.23. This is motivated by the
observation that after the training phase, one can assume that the difference between
the actual output of the system and its estimated value by the neural network is
sufficiently small. Therefore, one can employ the network’s own delayed output as an
input to the neural network.

The development procedure for this fault detection scheme is the same as the
DNM model that was presented in the previous section. In other words, this new
fault detection scheme also consist of the system identification phase and the fault
detection and residual generation phase.

In the ATDNN that is presented by Yazdiadeh [50] the delays are also updated
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Figure 3.23: The TDNN fault detection scheme - Recall phase

along with the weights. However, there is only one connection between each two
neuron in that study. In our proposed TDNN there are several connections between
two neurons of different layers depending on the number of delays. Moreover, in this
thesis the delay for each layer is fixed and should be defined at the beginning of train-
ing. Hence, the number of delays for each layer, the number of layers and the number
of neurons all play an important role in the performance of the trained network.
In our proposed TDNN each network is trained by using the Levenberg-Marquardt
backpropagation algorithm [62]. The networks are trained by using training samples
under the presence of noise levels as presented in Table 3.1.

The engine is considered to be operating in the cruise mode and is fault free during
the training mode. A zigzag signal ranging between 40% and 98% of the maximum
fuel mass flow rate is chosen for training the network. The activation functions in the
hidden layers are the hyperbolic tangent and linear activation function for the output
layer. Starting from a relatively small structure, we developed an optimal architecture
for the proposed dynamic networks by incrementally increasing the number of neurons
in the hidden layers. We observed that by using a TDNN with one hidden layer and

5 neurons in the hidden layer, the smallest training error (in the mean square error
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sense) can be achieved. The termination criterion is used as t.c.=107° and the training
is stopped if the mse is smaller than the t.c. or if the number of training iterations
reaches to 20. The training signals and errors for the neural networks Netrz,, and
Nety, are depicted in Fig. 3.24-3.25. Table 3.10 summarizes the number of the
iterations and the mean square error for each network during the training phase.

In order to make sure that the neural network is trained well, it should be tested
with another "unseen” input to guarantee the stability and the performance of the
neural network. Hence, to select the proper neural networks for fault detection, the
trained networks were used in the recall phase where the network output is used as an
additional input to the network. If the output of the trained network can follow the
actual output while being used in the recall phase it would be selected as the proper
neural network for our fault detection system. Towards this end, we have trained
each network with a set of different delays and the trained network is then utilized
in the recall structure to evaluate its performance. The structure that yields the best
performance in the recall phase is then used for our fault diagnosis scheme. Table 3.9

shows the structure of the networks and the delays for each neural network.
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Trained Network Delay associated Delay associated
with the weights of with the weights of

the first layer the second layer

Netrep 3 3
Netro, 2 3
Netpep 2 3
Netpe, 1 2
Netpp, 2 6
Netyry 2 1
Netrr, 3 4
Netrr, 3 Y

Netni 1 4

Netno 1 3
Netceo, 6 2
Netcop 6 3

Table 3.9: The delays that are associated with each network.
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The Trained Network || No. of Iterations MSE

Netroy 8 9.76 % 10~°
Netre, 20 1.05 10~
Netyo, 5 1.38 % 10~
Netyc, 7 6.92+ 10~°
Netyp, 9 5.62 % 107°
Netyr, 7 9.06 x 1077
Netrr, 6 7.46 1076
Netyr, 9 2.86 10
Netn, 20 2.33% 107°
Netpo 15 9.27 % 107°
Netoeoy 8 4.09 % 10~°
Netoe, 9 2.15 % 1077

Table 3.10: The series-parallel TDNN training parameters.
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Figure 3.24: The training signal and the training error for the network Netrz,.
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Figure 3.25: The training signal and the training error for the network Nety,.
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Fault Severity Level (%) | Accuracy (%) | Precision (%) | Confusion Matrix
50 73
FmLC=2% 44.69 11.25 0 9
50 65
FmLC=3% 50.75 21.77 0 17
49 51
FmLC=4% 61.28 38.52 1 31
50 34
FmLC=5% 74.28 59.75 0 48
50 21
FmLC=6% 84.3 74.9 0 61

Table 3.11: The detection performance for the network Netrc, (Note that the values
in the entries of the confusion matrix refer to the actual number of residual signal
samples representing the corresponding characteristic).

Our proposed fault diagnosis approach is used to determine the minimum de-
tectable fault for each network. The set of 8 fault scenarios that are presented in the
previous section is considered. Table 3.12 shows the performance of the networks. A
fault severity is considered as detectable if the averages of the accuracy and precision
parameter corresponding to the network are greater than 80%. Table 3.11 shows the
detecting performance of the fault FmLC for the network Nets,. One can observe
that when the fault severity is 6%, the averages of the accuracy and precision are
greater than 80% and the fault would be considered as detectable. To evaluate the
results of our proposed fault detection scheme and to demonstrate the results associ-
ated with the networks, in Table 3.12 the residuals of Netyy, and Netpop are shown
in presence of a 5% fault under various fault scenarios. Figures 3.26 and 3.28 show

the residual of the networks Netrcp and Netys to these faults, respectively.
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Figure 3.26: The TDNN Netr o, residuals for the fault case when the input fuel flow
is at the 70% of the maximum value and the fault severity is at 5%.
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Figure 3.27: The TDNN Netr o, residuals for the fault case when the input fuel flow
is at the 70% of the maximum value and the fault severity is at 5%.
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Figure 3.28: The TDNN Netys residuals for the fault case when the input fuel flow
is at the 70% of the maximum value and the fault severity is at 5%.
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Figure 3.29: The TDNN Netys residuals for the fault case when the input fuel flow
is at the 70% of the maximum value and the fault severity is at 5%.
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Fault Scenarios FmlLC | Fel.C | FmHC | FeHC | FmHT | FeHT | FmLT | FeLLT
Trained Network % % % % % % % %
Netpo, N N N 7 N 4 3 4
Netpe, 6 4 N 7 N 5 2 3
Netyo, N 7 12 4 4 9 N 10
Netye, N N N 6 2 4 7 N
Netgr, N N N 6 N 4 6 N
Netyr, N 8 N 3 N 3 3 9
Netpp, N 5 N 2 N 2 3 5
Netpr, N 12 N 5 N 4 7 N
Netny 1 3 N 2 N 2 7 4
Net g 10 5 2 2 7 1 2 3
Netoe, N 7 N 3 10 3 5 N
Neteo, N 8 N 3 2 2 4 11

Table 3.12: The minimum detectable fault severity (%) for the series-parallel TDNN.

3.2.1 Discussions

It can be seen from the results of Table 3.12 that Nety; and Netns have the best
performance among all the other networks. One can conclude that having Nety, as
a residual generator one can detect on average faults as low severity as 3%. However,
the performance of the other networks are dependent on the fault scenarios that are
considered. One can also note that for instance Nelyyp, is only able to detect three

fault scenarios out of eight.

Enhanced Fault Diagnosis Scheme

By applying our bank of parallel fault detection filters that use several residual gener-
ators as presented in the previous section from Table 3.12 it follows that by utilizing
Nety,, Netn, and Netoe, one can detect lower severity faults.

The selected threshold levels and the minimum detectable faults are given by
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Trained Network | Threshold
Netro, 4.29 °C
Netrep 0.05 atm
Netpe, 7.93 °C
Netyep 0.44 atm
Netgrp, 49.53 °C
Netyry 0.07 atm
Netrp, 9.37 °C
Netrr, 0.045 atm
Netny 34.77 rpm
Netyo 42.75 rpm
Netoo, 19.83 °C
Netcop 0.24 atm

Table 3.13: The threshold levels for series-parallel TDNN.

Fault Scenarios FmLC | FeLC | FmHC | FeHC | FmHT | FeHT | FmLT | FeLT | Median
Trained Network % % % % % % % % %
‘ Nety,, Netn, and Netoe, 1 ‘ 3 ‘ 2 ‘ 2 ‘ 2 ‘ 1 ‘ 2 ‘ 3 ‘ 2 ‘

Table 3.14: The minimum detectable fault severity (%) for the enhanced fault detec-
tion system.

Tables 3.13 and 3.14, respectively.

3.2.2 The SISO TDNN Fault Detection Approach

As presented earlier in this chapter, the DNM fault detection scheme is in the form of
a single-input single-output (SISO) system while the TDNN fault detection scheme
is constructed as a multi-input single-output (MISO) system where the additional
inputs are the delayed versions of the output itself. In this section, an experiment

is conducted to determine how a TDNN can perform if it is utilized in a SISO form
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Figure 3.30: Fault detection structure by using the SISO TDNN.

similar to the DNM model. Hence, we use the TDNN that was presented in Chapter
2 as a SISO structure where the network employs only one input and one output
where the input is the fuel flow rate. By eliminating the feedback from the output
of the system that is shown in Fig. 3.22, the structure of the network would be the
same as the DNM model and in shown in Fig. 3.30. As discussed in Chapter 2 for
the DNM model, the structure of the network for the SISO TDNN would remain the
same in the training and the recall phases. One may note that although the actual
output is not appearing in the input-output relationship of the network, however, it
is appearing in the network parameters indirectly by means of the back-propagated
error which is used to update the weights. In this structure the output of the TDNN
would be only a function of the input and its past values. In this section, we will
discuss the performance of this structure for the problem of fault detection of the
aircraft engine.

Twelve (12) networks are trained by using the zigzag signal that was utilized in
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The Trained Network || No. of Iterations | MSE
Netre, 8 0.0009
Netrep 20 0.017
Netge, 8 0.0006
Netpe, 4 0.0002
Netyr, 8 0.0009
Netyr, 20 0.0011
Netrp, 20 0.0013
Netrr, 7 0.0004
Netny 20 0.0035
Netpo 20 0.0017
Netoeoy 4 0.0004
Netooy 20 0.0007

Table 3.15: The SISO TDNN training parameters.

the previous sections. The termination criterion is used as t.c.=107% and the training
is stopped if the mse is smaller than the t.c. or if the number of training iterations
reaches to 20. Table 3.15 summarizes the number of the iterations and the mean
square error for each network during the training phase and Table 3.16 provides the
selected thresholds for each network. The trained network is used in the recall stage
to detect the minimum detectable faults in the jet engine. The results are shown in

Tables 3.17 and 3.18.

3.3 Conclusions

In this chapter a comparative study is provided first between the DNM approach and
the TDNN series-parallel approach, followed by discussions on the results using the
SISO TDNN approach.
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Trained Network | Threshold
Netro, 7.30 °C
Netrep 0.045 atm
Netyeo, 15.41 °C
Netyep 0.36 atm
Netgrp, 21.82 °C
Netyry 0.08 atm
Netrr, 16.24 °C
Netrr, 0.042 atm
Netny 51.054 rpm
Net o 71.71 rpm
Neteo, 29.71 °C
Netcop 0.33 atm

Table 3.16: The threshold levels for SISO TDNN.

Fault Scenarios FmlLC | Fel.C | FmHC | FeHC | FmHT | FeHT | FmLT | FeLLT
Trained Network % % % % % % % %
Netrc, N N N 9 N 7 4 5
Netpe, 7 4 N 7 N 5 2 3
Netyo, N 12 N 7 6 N N N
Netye, N 9 N 4 2 2 4 12
Netgr, N 9 N 3 N 3 4 N
Netgr, N 8 N 3 N 3 4 10
Netpp, N 8 N 3 N 2 5 8
Netpr, N 10 N 4 N 3 6 N
Netn 2 3 N 2 N 2 10 4
Net g N 6 2 3 9 2 2 4
Netoe, N 8 N 4 12 4 7 N
Neteo, N 9 N 3 2 2 4 12

Table 3.17: The minimum detectable fault severity (%) for the SISO TDNN.
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Fault Scenarios FmLC | FeLC | FmHC | FeHC | FmHT | FeHT | FmLT | FeLT | Median
Trained Network % % % % % % % % %
‘ ]\/velf]\{17 ]\/velf]\{27 NetLCp and N@tccp 2 ‘ 3 ‘ 2 ‘ 2 ‘ 2 ‘ 2 ‘ 2 ‘ 3 ‘ 2.25 ‘

Table 3.18: The minimum detectable fault severity (%) using the enhanced fault
detection system in the SISO TDNN.

In order to present our comparative study more clearly, a set of 5 engine pa-
rameters are chosen. These parameters are chosen by selecting those with better
performance as well as those with worst performance. These parameters are Netyo,
Netni, Netrep, Nelecop, Netygp,. The first four parameters are the outputs that
have good detection capabilities and the last has the least capability in the fault
detection.

A summary of the results presented for each approach is provided in Table 3.19.
Comparing the results in tables for the TDNN and the DNM one can observe at
first glance that the series-parallel TDNN seems to have better performance and the
fault detection scheme using this approach can detect smaller fault severities in the
jet engine system. For instance for the N, parameter it can be seen that the series-
parallel TDNN method can detect a fault as small as 3% on average while for the
DNM the fault is only at 5%. However, there are several other factors that should be
considered for evaluating the performance of these networks.

As we have previously stated the series-parallel TDNN requires a different struc-
ture in the recall phase where it employs a feedback from the network output instead
of the system output. This structure makes the system highly sensitive to the training
phase, the number of neurons and the structure of the network. In other words, when
the network is trained several times with the same structure and the same termina-
tion criterion, the testing results for each network might be different. Note that one
should test the network in the recall phase to ensure that the network performs sat-

isfactorily, otherwise an unacceptable and undesirable error may be possible. Hence,
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Fault Scenarios FmlLC | Fel.C | FmHC | FeHC | FmHT | FeHT | FmLT | FeLLT
Trained Network % % % % % % % %
Net g 10 5 2 2 7 1 2 3
Netn 1 3 N 2 N 2 7 4
Netpe, 6 4 N 7 N 5 2 3
Neteo, N 8 N 3 2 2 4 11
Netgr, N N N 6 N 4 6 N

Series-parallel TDNN approach.

Fault Scenarios FmlLC | Fel.C | FmHC | FeHC | FmHT | FeHT | FmLT | FeLLT
Trained Network % % % % % % % %
Netnm N 6 2 3 9 2 2 4
Netny 2 3 N 2 N 2 10 4
Netrc, 7 4 N 7 N 5 2 3
Neteo, N 9 N 3 2 2 4 12
Netyrp, N 9 N 3 N 3 4 N

SISO TDNN approach.

Fault Scenarios FmlLC | Fel.C | FmHC | FeHC | FmHT | FeHT | FmLT | FeLLT
Trained Network % % % % % % % %
Net g 12 10 3 3 11 2 2 6
Netn 2 N N N N N N N
Netpe, 6 8 N 7 N 4 2 6
Neteo, N 12 N 5 2 3 6 N
Netgr, N N N 5 N 3 5 N

DNM appraoch.

Table 3.19: Comparison between the five (5) parameters of the engine corresponding
to the three approaches.
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the trained network should be examined before being used to function as a residual
generator in the fault detection module. This makes its use difficult to apply in some
practical fault diagnosis problems.

In contrast, the DNM network is robust to the above issue and as long as the
training error is satisfied, one can be highly confident that the network is operating
satisfactory in the recall phase. In other words, as long as the training error remains
the same the network will almost surely have the same behaviour in the recall phase.

Another advantage of the DNM approach is that there is no need to a feedback
from the output of the system as the internal IIR filters of the neurons generate
the desired dynamics in the network. Hence, this network can be used as a SISO
structure. Moreover, the structure of the DNM network remains the same during the
training and the recall phases. In addition, the on-line parameter updating of the
DNM approach makes it more suitable for practical applications where it can be used
in an on-line diagnostic system.

An interesting observation can be made from our simulations of the SISO TDNN
method. As stated in the previous section this structure may not be fully capable
of learning the dynamics of the engine by itself as there is no delayed version of
the output in the final approximated function of the network. However, simulation
results show that one can achieve an acceptable performance for jet engine in terms
of the fault detection performance as shown in Table 3.19. This can be explained as
follows since the fault detection scheme is operating on the condition that faults are
occurring in the steady state of the engine and the effects of the faults in the transient
states of the engine are not significant. Hence, as far as the steady state of the fault
detection scheme is considered this approach can be successfully used. However, we
have observed that the SISO TDNN is not capable of learning the transient overshoots

in the engine, therefore it would not be a reliable approach for fault detection in the
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transient stage of the engine.

97



Chapter 4

Neural Network-based Fault

Isolation Scheme

Our objective in this chapter is to perform the fault isolation task corresponding to
different fault scenarios that are considered in this thesis. Towards this end, a multi-
layer neural network classifier is employed to accomplish the fault isolation task. The
residual signals are first analyzed by using a residual evaluation block that will then
be used as inputs to the classifier. Our fault isolation approach is developed to work
with a number of fault cases as we have limited our study to only three possible fault
scenarios that can occur in the aircraft jet engine. We will show that by using the
three residuals at the same time one can reach acceptable fault isolation by using a
multi-layer perceptron (MLP) network. Hence, the classifier will have three inputs
which are the enhanced residuals and three outputs which are the fault labels and
are determined by using a binary code corresponding to the three fault scenarios that
occur in the jet engine. However, in order to have concrete results we have selected
five sets of fault that each consists of three fault scenarios as shown in this chapter

in Table 4.2.
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4.1 Proposed Fault Isolation Scheme

Based on several experiments conducted we have observed that the change in the
residual percentage has valuable information for fault isolation of the jet engine while
several residual generators are employed and work together in parallel. On the other
hand, the percentage of change of several residuals form a pattern which corresponds
to the type of the fault scenario that is generating the residuals. For example, one can
observe that the pattern which is generated between the three residuals for a 2% fault
of FeHT is different from the pattern of a 2% fault in FmLT. We have also observed
that this pattern is also sufficiently robust to the level of the fault. This enables
us to isolate the fault scenario no matter what is the percentage of the fault that is
occurring in the system. One should note that in this thesis we only consider the
fault isolation problem and we are not interested in the fault identification problem.

The isolation process consists of two subsystems namely, the neural network clas-
sifier and the residual evaluation block. The inputs to the neural network classifier are
a static numerical value while the residuals are time-series data. Hence, in order to
transform the residuals into meaningful quantities for the classifier a series of feature
extraction methods should be applied to the residual signals. This process is denoted
as the residual evaluation. The structure of the general fault isolation schematic is
depicted in Fig. 4.1.

Based on many experiments conducted it turned out that the percentage of change
in the magnitude of the residual signal when a fault occurs can yield a significant
indicator to the fault isolation task. Hence, we have developed a residual evaluation
block which is fed by the residual signals to detect the faults and translate the dynamic
residual signal into a static numerical variable for application and use in a neuro
classifier. The faults are initially detected and then the percentage of the change in

the magnitude of the residuals are measured for use in the neural network classifier.
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Figure 4.1: The fault isolation scheme.

4.1.1 Neural Network Classifier

We have employed a multi-layer perception (MLP) network as a neuro classifier for
the task of fault isolation. The classifier employs the evaluated residual signals as
inputs. The outputs of the classifier would be the fault labels corresponding to each
fault class. We have observed that while several residual generators are employed
together there would be a specific relationship among them corresponding to a fault
class. By training the neuro classifier with several samples of data, it can learn this
relationships among the inputs and can be employed as a classifier for fault isolation
of the jet engine.

Our proposed fault isolation scheme is designed to isolate among three possible
fault severity levels. Basically we assume that the engine is exposed to only three
possible fault scenarios at each stage. However, we have examined different combina-
tions of the faults to cover almost all the possible scenarios. Fig. 4.2 shows our fault

isolation scheme.
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Figure 4.2: The proposed fault isolation scheme.

4.1.2 Residual Evaluation

The neural network classifier requires a numerical static value as an input whereas
the residuals are time series data. In order to make the residuals meaningful to the
clagsifier a number of feature extraction methods can be applied to the residuals.

The main task performed in the residual evaluation module is to determine the
maximum change in the residual when a fault occurs. The percentage of this change
from the steady state before the fault occurs would be an input to the classifier. We
have observed that the maximum change in each output by occurrence of a specific
fault is generally in the same range for all the input profiles (0.7 to 0.9 of the maximum
fuel mass flow rate). Hence, the maximum value of the change in the residual would
be a key indicator for the fault isolation. However, one should note that a residual
cannot individually be used for isolation. Hence, a set of three residuals is required
to construct a map for isolating the corresponding faults in the jet engine.

In the residual evaluation block the maximum residual change is calculated as the
difference between the maximum change after the occurrence of a fault to the value
of the residual before the fault. To consider a margin of error factor and to take

into account inaccuracies due to noise and disturbances we took an average from the
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residual signal after and before the fault occurs in a window of size three seconds. We
have observed that the residuals normally reach to their steady state after the fault
occurs in less than 2 seconds. The output of the residual evaluation module is the
percentage of the change in the output. On the other hand, the input to the neural
network classifier would be the the maximum change in the residual over the steady

state value of the residual before the occurrence of the fault.

4.2 Fault Isolation Scheme

As described earlier, the relationships that are generated between different residuals
can have valuable information on the types of the faults which are occurring. We
have observed that by using three residuals an acceptable fault performance isolation
can be achieved. Considering more than three residuals will increase the size of the
network and the computational cost of the system and not necessarily result in more
improved performance. In contrast, having less than three residuals one may then
not be able to achieve a desirable fault isolation performance.

We have chosen the three residuals that are obtained in the enhanced fault de-
tection module for both the DNM model and the SISO TDNN model for the fault
isolation task. As stated earlier, in each simulation a set of three possible faults will
be considered. We have selected different sets of three faults based on the fault sever-
ity levels which are labelled as High, Normal and Low, as shown in Table 4.1. We
have selected different combinations of these faults as shown in Table 4.2 and applied
our fault isolation approach to each case separately.

A database of all the possible residual signals for our three residual generator
networks was collected for each isolation case as shown in Table 4.2. Fach database
contains 180 samples that are generated when the engine is operating in 5 differ-

ent input levels and under the presence of faults between 1% to 12% of severities.
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Figure 4.3: A neural network classifier.

Considering the three faults at a time, one can observe that the total samples are
5% 12 % 3, which generate 180 sets of residuals. Each sample (input and target pairs
for the MLP) have three residual signals (namely ry, ro and r3) as inputs and the
corresponding fault code targets (f1, fo and f3).

Having this database prepared, one can then perform the isolation task by using
the MLP networks and standard training, testing and validation techniques. To
make our proposed approach close to a practical system, we assume that certain
information on the faulty events in the jet engine system that correspond to the
fault scenarios and the maintenance actions that have been performed in the log and
report files of the service and maintenance department. This information can be
used as training samples for our MLP networks. Moreover, since in practice there
are not too many log files to cover all the possible fault scenarios in the jet engine,
our objective is to minimize the number of the training samples while to keep the
performance acceptable. We have observed that by using 25 random samples out
of the 180 for training, an acceptable isolation result can be accomplished. All the
residuals are generated under the measurement noise as presented in Table 3.1 in

Chapter 3.
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Fault Scenario | Fault Severity Level
FmLC Low (L)

Fel.C Normal (N)

FmHC Low (L)

FeHC High (H)

FmHT Low (L)

FeHT High (H)

FmLT High (H)

FelLT Normal (N)

Table 4.1: The fault severity levels.

4.2.1 DNM Isolation

In this section we use the three engine parameters that are presented as enhanced
fault detection parameters in Chapter 3. These signals are Netpe, , Nely, and
Netpgep,. Our objective is to develop a neural network to learn the relationship
among these parameters for each fault scenario. Starting from a small structure for
the network and increasing the number of neurons in the network we have reached
an optimal structure with two hidden layers with 25 and 2 neurons in each hidden
layer, respectively. The network was trained by using 25 random sample data and
the trained system is tested and validated by using the remaining 155 samples. Table
4.3 shows the fault isolation results for these three residual generators as applied to

all the 5 fault sets.

4.2.2 SISO TDNN Isolation Scheme

In this section we use the residuals that are generating by using the proposed SISO
TDNN for fault isolation. The structure of the fault isolation module is the same as

in the DNM model and three residuals are used to learn the map corresponding to
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Case 1 || High High High
H.HH || FeHC | FeHT | FmLT

Case 2 Low Low Low

LL.L || FmLC | FmHC | FmHT

Case 3 || Low | Normal | High
LN.H || FmLC | FeLC | FeHT

Case 4 || Low | Normal | High
LN.H || FmHC | FeLC | FeHC

Case 5 || Low | Normal | High
LN.H || FmHT | FeLT | FmLT

Table 4.2: The fault sets that are selected for the fault isolation scheme.

each fault scenario. To perform a comparative study the same number of samples
are generated to construct the database. Therefore, the new database would also
contain 180 samples that are generated for 5 different input profiles and in presence
of different fault levels ranging from 1% to 12% for each of the three faults that are
considered at each stage.

The MLP network that is utilized in this section has two hidden layers and the
number of neurons in the hidden layers are 25 and 2, respectively. The activation
functions are selected as hyperbolic tangent for the hidden layers and linear for the
output layer. The MLP network is trained with small random initial weights. The
network is trained by using 25 random samples out of the 180 existing samples. The
trained network is tested by using "un-seen” samples to evaluate the performance
of the fault isolation module. Fach network has three outputs corresponding to one
class of the faults. A post processing is applied to the outputs of the network to

round them to either 0 or 1 where the actual target of the network is defined. The
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Case 1 FeHC FeHT FmLT | Mean
H.H.H 83% 62% 62% 69%
Case 2 FmLC FmHC FmHT
L.L.L 88% 86% 84% 87%
Case 3 FmLC Fel.C FeHT
L.N.H 67% 73% 74% 72%
Case 4 FmHC Fel.C FeHC
L.N.H 5% 65% 73% 1%
Case 5 FmHT FelLT FmLT
L.N.H 89% 63% A7% 67%

Table 4.3: The percentage of correct isolation for each set of faults using the DNM.

output of the network is rounded to 1 if it is greater than 0.5 and is rounded to 0 if it
is less than 0.5. This adjustment will improve the performance of the fault isolation
scheme that is presented in this section.

To achieve a realistic performance and to avoid training for specific samples, the
training procedure is repeated 5 times with different sets of 25 random samples. The
presented results in Table 4.4 correspond to the average of the 5 networks. All the
simulations including the training and the testing are repeated for all the 5 faults

sets.

4.3 Conclusions and Discussion

Tables 4.3 and 4.4 show the fault isolation results for the DNM and the SISO TDNN
structures. For each case the fault scenario and the percentage of correct isolation

are provided. For example, one can see from Table 4.4 that for Case 2, 98% of all the
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Case 1 FeHC FeHT FmLT | Mean
H.H.H 88% 48% 90% 75.3%
Case 2 FmLC FmHC FmHT
L.L.L 99% 98% 100% 99%
Case 3 FmLC FelL.C FeHT
L.N.H 92% 99% 96% 95.7%
Case 4 FmHC FelL.C FeHC
L.N.H 89% 92% 96% 92.3%
Case 5 FmHT FeLLT FmLT
L.N.H 99% 95% 93% 95.7%

Table 4.4: The percentage of correct isolation for each set of faults using the SISO
TDNN.

faults occurring by a decrease in the mass flow rate of the high pressure compressor
(FmHC) can be isolated from the other two cases (that is, FmHT and FmLC). It can
be seen that the performance of the fault isolation is dependent on the structure of the
faults that occur together. For example, one can observe from Table 4.3 that for the
fault set Case 2 has a better performance yield compared to the other combination
of faults. This implies that the structure of these three faults and the effects they
make on the jet engine parameters are quiet distinguishable. We have observed that
the majority of the samples that could not be isolated are occurring when the smaller
fault severities are present. In other words, a 1% fault in the FeHT has a higher
correlation to the 1% FmLT as compared to an 8% fault in the FeHT with that of the
FmLT. In other words, the effects of a 1% change in the FeHT and the FmLT in the
engine parameters are almost the same and indistinguishable, and the fault isolation

scheme is unable to distinguish them. This will make it challenging to isolate these
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cases when compared to larger fault severities. Moreover, by inspecting Tables 4.3
and 4.4 and setting aside the Case 2, one can conclude that the faults with different
severity levels have better isolation capabilities. However, the nature of the faults and
the types of the components where a fault has occurred have an important role in
the overall fault isolation performance. Comparing the results of Tables 4.3 and 4.4,
one can conclude that in general by using the SISO TDNN residuals one can yield a
better fault isolation performance. Moreover, it can be observed that the results are
consistent and broadly are in good agreement collectively. In other words, the faults
sets of Case 2 are being isolated better in both approaches and the fault sets of Case

1 cannot be isolated quite as good in either approach.
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Chapter 5

Conclusions

The objective of this thesis was to develop an intelligent-based approach for fault
diagnosis of aircraft engines. Towards this end, two main dynamic neural networks
and three separate structures were used to construct fault diagnosis schemes for a
dual-spool turbofan jet engine. The neural networks considered in this thesis are
the dynamic neural model (DNM) and the time delay neural network (TDNN). The
proposed fault diagnosis schemes are based on a DNM, a series-parallel TDNN and
a single-input single-output TDNN.

The jet engine considered in this thesis was assumed to have twelve (12) output
measurable parameters which are mostly the thermodynamic parameters of the engine
and can be affected by eight (8) different fault scenarios which are modelled by a
decrease in the efficiency and the mass flow rate of different components of the jet
engine.

For each developed approach, twelve (12) different networks were trained individ-
ually to learn the dynamics of all the twelve (12) engine parameters. Each network
was used as a residual generator and the minimum detectable faults with that net-
work were presented. An enhanced fault detection scheme was developed by using the

top three performing networks that have the best capability in detecting the faults.
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It was observed that by having a multi-network structure as residual generators the
performance of the fault diagnosis scheme can significantly be improved.

The fault detection capabilities of the three structures were compared. The DNM
approach has a robust structure in the training and the recall phases while the TDNN
method is highly sensitive to the training and the network parameters. The DNM
is more reliable and applicable to practical cases where an incremental updating is
required and it can be practically used in an on-board fault diagnosis system. The
TDNN network that is used in this thesis has two different structures in the training
and the recall phases and cannot be used directly in an on-board fault diagnosis
system. The DNM has a simpler feed-forward structure (SISO) without a need for
a feedback from the outputs while in the TDNN a multi-input single-output (MISO)
structure is required to learn the dynamics of the jet engine.

In contrast, the DNM scheme has a number of parameters to be updated (weight
filters, feed forward and feedback coefficients, activation function slopes) and this
results in more complicated and time consuming training procedure. Hence, a large
number of initial parameters should be tested in order to achieve a good training. On
the other hand, in the TDNN approach the only parameters that need to be adjusted
are the weights of the neurons. Fven in the ATDNN scheme the updating parameters
are increased to only the weights and the delays of each layer, which results in faster
training times.

The fault isolation task in this thesis was carried out separately by DNM and SISO
TDNN network. A neural network classifier was used to evaluate the residuals that are
generated from the trained networks. Our fault isolation scheme has the capability
of isolating any set of three faults that can occur in the aircraft engine. It was
observed that the performance of the fault isolation is dependent on the structure of

the faults that occur together and for both of the isolation approaches the combination
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of the faults occurring together play and important role in the isolation performance.
For example, simulation results show that both isolation approaches can perform
quite well on isolating the set of three low severity level faults. This shows that
specific combination of the faults has better isolation capabilities or in other words,
it has distinguishable effects on different engine parameters. Furthermore, from the
simulation results one can conclude that in general the faults with different severity
levels have better isolation capabilities. However, the nature of faults and types of
the components where a fault has occurred have an important role in the overall fault
isolation performance

Moreover, by comparing the fault isolation results for both the DNM and the SISO
TDNN approaches, one can conclude that the TDNN based fault isolation has better
performance and higher accuracy. Therefore, in order to achieve a fault isolation
scheme with high performance this type of dynamic neural network might have better

capabilities and reliabilities for the health monitoring of aircraft jet engines.

5.1 Future Work

Unlike static neural networks, dynamic neural networks generally have more param-
eters that need to be updated. In our proposed DNM model there are four sets of
parameters which need to be updated, namely the feedforward coefficients and the
feedforward filter coefficients, as well as the activation function slope parameters and
the weights of the neurons. To obtain a well-trained neural network all these param-
eters should be optimized collectively. Due to high dimensionality of the updating
parameter vector corresponding to the DNM one might not be able to optimize all the
parameters efficiently. Hence, a neural network with more optimized parameters that
can have better detection capability might still be achievable by optimizing all the

parameters. The parameter optimization can be carried out in future through several
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optimization methods such as simultaneous perturbation stochastic approximation
(SPSA) [9].

The delays associated with the layers of the neurons in the TDNN are assumed to
be fixed. One can analyze the performance of an adaptive time delay neural network
(ATDNN) where the delays themselves are being updated along with the weights of
the network.

From the simulation results and practical observations we have noted that a SISO
TDNN can have a better performance as compared to the two other methods. Further
work should be carried out to explain this performance theoretically. There are several
explanations for these results that should be further examined, such as operating
under a low frequency input signal, and the fact that the jet engine may be assumed
to operate as an approximately linear system.

All the fault diagnosis schemes presented in this thesis have the potential capa-
bility to detect and isolate the faults in both steady state and transient modes of
the aircraft engine. In this thesis, we only considered the cases where faults occur
in the steady state mode of the engine while the proposed fault diagnosis schemes
can be extended in future to operate in both steady state and transient modes. This
capability would be an interesting subject for industrial aerospace companies since
faults can occur in any arbitrary mode that the engine is operating. This results in a
more secure, reliable and applicable fault diagnosis system where the fault diagnosis
module can be used in a practical application.

The fault influence matrix was presented as a reference for the influence of each
fault on all the engine parameters. We have considered the effects of 2%, 5% and 10%
faults on the engine parameters. Further work can be carried out on the influence
matrix by considering the effects of all severity level of faults on the corresponding

percentage of changes they cause to the engine parameters. Considering all fault
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severity levels, one can obtain a more precise fault influence matrix which would have
a higher advantage for having a priori knowledge on the faults and their expected

effects on the engine parameters even before running a simulation model.
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