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ABSTRACT 

Influence of Rotating Tire Dynamics on Vehicle System Vibrations  

Khodabakhsh Saeedi 

Concordia University, 2012 

 

In the present study, a new two-dimensional hybrid quarter-car model has been 

developed. The hybrid model takes into account the inertia of the discrete vehicle body 

mounted on suspension and the dynamics of the rotating tire modeled as a continuous 

ring. The contact force between the tire and road is defined as a function of the bounce 

vibration of the vehicle as well as a function of the radial and tangential displacements 

and accelerations of the tire. The effects of the vibrating system on the contact force are 

investigated. Three different types of solution are presented: the Galerkin method, the 

finite element method, and the exact analytical method. Different solutions are used to 

validate the accuracy of the results. The mode shapes of the center-fixed rotating ring are 

used as admissible functions in the Galerkin method. In the finite element method, a 

curved beam is used as the element. The equations are derived in a non-rotating 

coordinate system. In other words, the nodes do not rotate. However, the material of the 

ring does rotate by flowing through the non-rotating nodes. The analytical study presents 

the closed-form solutions of the horizontal displacement and of the vertical displacement 

of the center of the tire (unsprung mass) as well as the displacement of the vehicle body 

(sprung mass). This method also provides the radial displacement and the tangential 
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displacement of the rotating ring in the non-rotating coordinate system, all the 

displacements of the ring being measured with respect to the center of the ring. The 

results obtained by the different methods are compared and discussed. The natural 

frequencies of this hybrid system are compared with those obtained for a center-fixed 

ring. Also the damped frequencies of the system are obtained for different velocities of 

the vehicle. The mode shapes of the hybrid model are complex because of the rotating 

tire. Moreover, the response of the hybrid model to the random excitation caused by the 

road is studied. Results show that the rotation of the tire and the bounce vibration of the 

vehicle body affect the dynamic forces at the contact point. These results are compared 

with those of the conventional 2-DOF quarter-car model.  
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CHAPTER 1 INTRODUCTION 

Tire dynamics has been of interest to researchers in recent years in view of its impact on 

vehicle ride vibrations. The effects of tire design on the vibration transmitted to a vehicle 

body and on the noise produced and transmitted have been studied extensively by 

researchers. Tire is part of the vehicle suspension system and the vibrations transmitted to 

the vehicle, driver, and the passengers depend on tire vibrations also. In addition to the 

ride vibrations, the noise produced contributes to the road traffic noise prevalent in 

crowded communities. The road traffic noise is a crucial issue and the two major 

contributors to this noise are engine noise and tire-road noise. For riders and for others in 

the vicinity, the tire-road noise becomes a serious problem particularly at higher driving 

speeds. Two different mechanisms for the tire-road noise generation are the vibration of 

the tire body and the air flow around the tire body.  

Tires are composite structures made of steel and rubber. As such it is necessary to apply 

theory of composite mechanics in order to analyze the displacements and accelerations of 
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the continuum. Since tires are always in contact with the road and the forces are applied 

through the contact surface, a third crucial issue is the contact mechanics and 

deformation. 

1.1. MOTIVATION 

Studies done in the past treated the vehicles as multi degree of freedom vibrating systems 

where tires form part of the vehicle suspension system. In these studies the tire rotation 

dynamics is not considered. However, when tires are studied separately, the tire rotation 

dynamics is considered. In earlier studies, tire contact mechanics has been studied by 

considering the tire as a ring or shell, but the relationship between vehicle dynamics and 

tire dynamics has not been combined. The contact surface between the tire and the road 

has been analyzed by using different methods. Finite element models as well as 

mathematical models have usually taken into account the deflection in both the tire and 

the road. In numerous studies, different models of tire including ring and shell models 

have been considered. These studies have also taken into account the effects of the tread 

band, of the rotation, of the Coriolis acceleration, and of the centrifugal acceleration. 

The present study proposes a new model by replacing the position of the constraint in the 

tire. In the conventional ring or shell type model, the center of the tire is fixed. It is 

assumed that the tire body rotates around it. Then the contact forces are applied or the 

amount of stationary deformation due to the static loads is noted. In the present model, 

the location of the constraint is chosen to be at the tire-road contact region. The center is 

allowed to move vertically and horizontally. The vehicle body undergoing the bouncing 

motion is supported by the suspension system. Moreover, contact with the road restricts 
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the tire dynamics. Hence, the contact force is obviously dependent on the dynamic 

response of the tire as well as on the motion of the vehicle body. 

1.2. LITERATURE REVIEW 

The aim is to study the dynamics of the vehicle including the suspension and the 

dynamics of the rotating tires. The literature survey is carried out keeping the following 

three categories in mind:  

 Vehicle as a component that is mounted on the suspension. This model does not 

include the rotating tires and the contact forces. 

 Tire as a single component, both non-rotating and rotating where the dynamics of 

the vehicle is not taken into account.  

 The combination of the vehicle body and the tire and the contact in which the 

effects of the kinetics of the vehicle body is combined with the effect of the 

vibration of the rotating tire.  

Vehicle System 

Several past studies have attempted to develop a realistic equivalent model for on-road 

vehicles. In the late 1980s and 1990s, the design of an active suspension system raised 

the importance of having an accurate model [1, 2].  

In 1999, Kim et al. [3] used a model built in ADAMS to evaluate the parameters of an 

equivalent quarter-car model with two degrees of freedom. They compared the results of 

three different suspension models: one was simulated by ADAMS; the second was a 
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nominal quarter-car model with two degrees of freedom. The parameters of this nominal 

model were equal to the mass of the vehicle body, the mass of the tire, the stiffness of the 

tire, and the spring constant of the suspension system. The third type of model was 

identified as a model with two degrees of freedom and with parameters obtained after 

system identification. To achieve this identification, the results of the ADAMS model 

were analyzed in such a way as to obtain equivalent parameters. The system 

identification enabled Kim et al. to study different layouts of the suspension system. In 

other words, they changed the suspension system parameters such as the strut-inclination 

angle, the swing-arm length, and the lower-strut mounting-point. They compared the 

equivalent systems of both double-wishbone suspension and Macpherson suspension. 

They discovered deviations between the nominal model and the identified model both in 

double-wishbone suspension and in Macpherson suspension. The deviation of the double-

wishbone suspension is more significant. 

In a report published in 2002 [4], Lu Sun used a three-degree-of-freedom model of a 

vehicle to optimize the suspension parameters. This model is called a walking-beam 

model. A spring, a mass, and a damper in combination form the right wheel. The left 

wheel is composed of a similar combination. A third mass-spring-damper combination is 

used to represent the driver and the driver seat. Sun first calculated the Frequency 

Response Functions for both the driver and the tire. Then he used the Power Spectral 

Density (PSD) of a standard road profile [5, 6]. He did this in order to calculate and then 

to optimize driver comfort and tire loads. In the transformation of the road profile into a 

system excitation profile, the effect of the vehicle velocity was taken into account. The 
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results showed that the pavement loads are the primary concern of vehicle suspension 

design.  

Hong et al. [7, 8] used a linear model of Macpherson suspension in which the rotation of 

the control arm as well as of the upper strut was allowed. The model had two degrees of 

freedom. The linear model was used as a part of a quarter-car model to design a skyhook 

controller. In this design, the vehicle speed and the road characteristics were used as 

parameters having a significant effect on the response. Hence, the variables of the 

skyhook controller were designed accordingly. Using a robust control scheme, M. S. 

Fallah et al. [9, 10, 11, 12, 13] studied the control of a model similar to that of Hong et al. 

[7]. The focus of their study was on the ride comfort and the stability of vehicles.  

The vehicle chassis as a continuous system and its influence on the vehicle system 

vibration have been considered in several studies. The vehicle chassis can be considered 

as a beam with suspended masses representing the engine and the driver [14]. System 

identification was used to find the transfer function of a chassis by Seba et al. [15]. They 

designed an H∞ controller to reduce the low frequency noise of the engine. Olsson used a 

robust control approach to isolate the engine vibration from the vehicle body vibration 

[16, 17]. Moreover, a magnetorheological damper was used to reduce the vibration of a 

flexible structure caused by engine excitation or road excitation [18, 19].  

The study of Dekker in 2009 [20] is one of the rare studies in which the influence of the 

flexibility of buggies on the dynamic response of non-rigid bodies is addressed. Although 

the subject of this study is the railway, the results and models can be used for the study 

on vehicles, too. The model of Dekker shows that, at certain velocities, the frequencies of 
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the non-rigid body vibration may be similar to the frequencies based on the road profile. 

Therefore, resonance is possible.  

Studies report the effects of the deformation of soil on the dynamics of vehicles. In 1997, 

Fassbender [21] et al. reported the self-excitation of vehicle wheels on soft soil. This 

effect becomes severe if the residual soil-deformation caused by the front wheel excites 

the second wheel of the vehicle, too. 

Park et al. [22] also studied the influence of soil deformation on heavy off-road vehicle 

dynamics. They used three different models of the vehicle:  

(1) A conventional quarter-car model with a point contact on rigid ground  

(2) A quarter-car model with a rigid wheel moving on deformable ground. This model 

consisted of the following: 

a spring and a damper, which represented the suspension system, 

a mass representing the vehicle body, and 

a rigid cylindrical object as the tire.  

(3) A quarter-car model with only a rigid tread band in contact with deformable ground. 

In this model, the soil was modeled as an elasto-plastic material. The tire could move 

vertically because it was modeled with a mass and a spring, but the tire surface was a 

circular rigid object. Park et al. discovered that the first model (a point-contact model) 

was good for the light vehicles on paved roads. However, the accuracy of this model was 

reduced by increasing the mass of vehicles and the elasticity of the ground. For heavy 
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vehicles working off-road, the ground should be considered elastic and the tire of the 

vehicle, rigid. 

The vehicle vibration response is the result of the interaction of the vehicle with the road 

roughness. In addition to the studies carried out to develop accurate models for vehicles, 

numerous studies are available where the profile of the road is focused. Yong and Foda 

have studied the stress distribution in the contact patch between a tire and a deformable 

road [23]. Yong and Eiyo [24] have investigated the response of a pneumatic tire rolling 

on a rough, non-deformable road. They used an ultrasonic distance detector to measure 

the road profile. Then, they performed frequency domain analysis to represent the 

theoretical relationship between the road and the tire as a multi-degree-of-freedom 

(MDOF) system. Their results showed that the tractive efficiency was reduced by 

increasing both the traveling speed and the road roughness. Also, the higher inflation 

pressure provided better tractive efficiencies at the expense of reducing ride quality. The 

PSD of the road roughness in the study of Yong and Eiyo [24] appeared to be a straight 

line. However, in 1992, Xu et al. [25] presented a new method for measuring road surface 

roughness. In their method, a pulse was transmitted to the road and the echo was received 

by a non-contact acoustical transducer. The transmission time was used in the road 

profile measurement. The authors discovered that the PSD of the road roughness on a 

logarithmic scale deviated from a perfect line.  

Tire Dynamics 

In one of the earliest and most famous studies, Soedel [26] considered the tire as a non-

rotating thin circular structure. The contact with the road was neglected, but it was 
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assumed that the contact force was rotating around the tire. The natural modes and 

frequencies of the non-contacting tire were then calculated. These results were used to 

approximate the response of the tire to a vertical contact load by defining the three-

dimensional dynamic Green functions.  

In subsequent studies by Soedel et al. [27, 28], a similar model was assumed, but in this 

case the lowest point of the tire was fixed on the ground such that it did not move 

vertically. In other words, another constraint had been added to the center-fixed structure 

thereby restricting the radial displacement at the contact point to zero. The same method 

as that used in Soedel [26] was used to find the natural frequencies of the tire. The results 

show a significant increase in the natural frequencies of the tire. Distorted mode shapes 

are reported and compared with the experimental results as well, thereby explaining the 

importance of the ground contact. 

Hunckler et al. [29] introduced a finite element model in which the nonlinear geometry of 

the tire cross section was considered. The tire used in their analysis was modeled as a 

non-rotating shell. The center of the tire was fixed, and the road contact was neglected. 

Also the static deformation due to the inflation pressure of the tire was taken into account 

as a large nonlinear deformation, and the corresponding potential energy is taken into 

account mathematically. The axisymmetric modes and frequencies were presented. Later, 

the results of this study were used by Chang et al. [30] in order to find, first, the 

frequency response of a ring type shell under a point harmonic load excitation and, 

secondly, the steady state response of a ring type shell to travelling loads, which can 

either be a rotating point load or a rotating distributed load. Another study Chang et al. 

[31] used the same model to study the response of tires to the travelling load induced by 
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road roughness. That study investigated the effects of harmonic force and random force, 

both of which are functions of the velocity of the vehicle. Finally, Kung et al. [32] used 

the finite element approach to estimate the cross section profile of the tire. Kung et al. 

presented the natural frequencies and mode shapes of the tire, which they verified 

experimentally.   

The effects of Coriolis and centrifugal accelerations are included by Huang and Soedel 

[33] in their discussion of the dynamic response of a rotating ring. Their study shows that 

it is reasonable to assume that the internal pressure of tires act as an elastic foundation. 

Also, for the first time, the researchers in the same study take into account the resultant 

force due to the centrifugal acceleration in the equations of motion. Moreover, two 

different cases of extensional and in-extensional ring theories are also compared, and it is 

indeed shown that the latter is not applicable to the model of a rotating ring. It is 

inapplicable since higher natural frequencies of the ring are missed when the in-

extensional ring model is applied. Also the practical model of a rotating ring with a 

stationary point load is compared with the simplified model of a stationary ring with a 

travelling load, which has been the subject of previous studies. It is observed that in the 

case of a rotating ring with a stationary point load, there is no critical speed whereas the 

second model results in a critical speed due to rotation. Moreover, as the Coriolis 

acceleration increases, the results of the two models differ significantly, especially when 

the damping ratio is higher. The study also reported the bifurcation of natural frequencies 

and the on-going mode shapes for the rotating ring. In a later study [34], the harmonic 

response of the model with the rotating ring is compared with that of the stationary ring 

with travelling force. Huang and Su [35] modeled the tire belt as a rotating ring that is 
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supported by an elastic foundation with radial and tangential stiffnesses. This elastic 

foundation represents the sidewall. In-extensional ring theory is used to study the eigen-

properties of the tire. They set up the model with the wheel axle fixed in space. Huang 

and Su simulated the road contact by constraining the displacements in both radial and 

tangential directions instead of representing the road contact by a simulated external load. 

The results show an increase in the natural frequencies of the rolling tire due to ground 

contact. However, they decrease at higher rotational speeds. 

Stutts and Soedel [36] modeled the tire as a tension band on a viscoelastic foundation. 

They obtained the analytical solution for the model by not taking into account the 

bending stiffness and instead by analyzing the effects of the rotation as well as the 

contact region. In their work, they discovered the existence of a stationary contact region 

and that this region is a function of the rotating speed. The results show that the ground 

region shifts forward in the rolling direction. 

Working on the same problems but using a finite element model instead, Padovan [37] 

found the natural frequencies of a rotating shell. In that study, he investigated the Coriolis 

acceleration, pre-stress loads, and material anisotropy by using the same model and 

verified the results by the analytical model presented in [38]. It was observed that 

bifurcation in the natural frequencies was caused by the angular velocity of the shell.  

Padovan [39] carried out the finite element analysis of a rotating ring that was supported 

on an elastic foundation (modeled as a spring) and subjected to a stationary contact load. 

The radial force was applied at the contact point in order to model the weight of the 

vehicle. The radial displacement was analyzed at different rotating speeds. Later, this 
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study was expanded to include the transient response due to a rotating force on a center 

fixed ring [40].   

Padovan et al. [41, 42, 43] investigated the steady state response and the transient 

response of a nonlinear viscoelastic structure by introducing a new finite element model. 

This model was used to study how rolling and contact affect a center-fixed 2-D ring or a 

center-fixed 3-D shell that are subject to a traveling load. The response of the system to 

bumps and impacts was also modeled. 

Brockman et al. [44] introduced a new semi-analytical method which combines the finite 

element method on the cross section of the tire with the sinusoidal basis functions in the 

circumferential direction. Reducing the amount of calculation by turning a three-

dimensional problem to a two dimensional problem, this method allows one to consider 

the static deformation of the inflation pressure. 

Zegelaar and Pacejka [45] used a center-fixed inextensible ring model to study the in-

plane response of a tire to a rectangular bump. In their model, the vehicle moves at a 

velocity of 3 km/h. The tire in their model rotates at such a very low rotational speed that 

the effect of rotation can be neglected. The results from their model are compared with 

those from their experiments on a center-fixed tire rotating over a big wheel. At higher 

velocities, the center-fixed inextensible tire is replaced by a four-degree-of-freedom 

model. 

The study by Iwao and Yamazaki [46] describes the mechanism of tire and road noise 

generation. As stated in the report, about one third of vehicle noise is caused by tire-road 

contact. The most important parameters in this noise generation are the surface roughness 
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of the road, the pattern of the tread in contact with the road, and the torque that exists 

during acceleration. The results, measured by a laser displacement meter, show that the 

noise generated by different portions of a tire has different characteristics. The noise in 

the range of 400 to 600 Hz is mainly radiated from the side-wall, whereas the higher 

frequency noise, between 800 to 1600 Hz, corresponds to the tread vibration. Moreover, 

the wheel housing helps the lower frequency waves resonate more than it does the higher 

frequency waves. In other words, the contribution of the housing is less for higher 

frequency waves. 

Kim et al. [47] reported the use of a microphone in order to measure the structure-borne 

noise inside a vehicle. The test set-up consisted of a stationary vehicle excited by a 

dynamic shaker, with a random signal input. The focus of the study was on the waves 

below 1 KHz. Excited by the tread-road interaction, the side-wall vibration generated the 

waves below 1 KHz. The study identified the tread pattern of the tire, the non-uniformity 

of the tire, the tire-road contact, and the road roughness as the major sources of the tire 

side-wall vibration and consequently of the generated noise. The study presented the 

influences of the tread vibration, the side-wall vibration, and the rim vibration on the 

vehicle interior noise. 

Pinnington and Briscoe [48] described tire dynamics by using a one-dimensional wave 

equation. In their study, the tire belt was modeled as a Timoshenko beam. As functions of 

the bending stiffness of the beam, the axial tension in the tread, and the rotary inertia of 

the tire cross section, the different modes of vibration were categorized into those related 

to tension waves, bending waves, rotational waves, and longitudinal waves. Pinnington 

and Briscoe realized that the majority of the waves with frequencies below 100 Hz are 
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mostly tension waves, whereas above 200 Hz, the majority of the waves are shear waves. 

In the mid-frequencies, the majority of the waves are bending waves. 

Dihua et al. [49, 50] presented a geometric model of the tire-road contact. That model 

took into account the radial force and the tangential force in the contact area. These 

forces were derived from the radial and tangential displacements. The effects of rotation 

were not taken into account in that study. The authors described the enveloping 

phenomenon, in other words, the ability of the tire to follow the road-obstacle profile 

while it rolls with adequate rotational speed over the obstacle. To achieve that, they 

simulated the vertical force and the longitudinal force at the axle of the tire. Dihua et al. 

used the experimental modal parameters presented by Yam et al. [51] to carry out the 

simulation. The results were similar to those presented by Zegelaar and Pacejka [45]. 

Dihua and Chengjian [52] investigated the effects of the cutoff frequency range and of 

the side-wall nonlinear stiffness in a subsequent study. 

In 2003, Muggleton et al. [53] reported a study in which a plate was used as the tread and 

another plate as the sidewall. They assumed that both plates vibrate out of plane, and 

solved the problem by using wave propagation analysis. The compatibility equations 

between the two plates were employed to join these two plates. However, the effects of 

the contact were ignored in the solution. The analytical results were compared with those 

from an experiment, where the tire was fixed at the center and then excited. The study 

concluded that at lower frequencies, the response was controlled by sidewall properties, 

and at higher frequencies, the response was more dependent on tread properties. 
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Bashmal et al. [54, 55, 56, 57, 58] investigated the in-plane vibration of circular annular 

disks and the generated sound. They modeled a railway wheel as a disk that has 

combination of different boundary conditions at the inner and outer edges. They used the 

Rayleigh-Ritz method to obtain the frequency parameters for the required number of 

modes for a wide range of radius ratios and Poisson’s ratios of annular disks under 

clamped, free, or flexible boundary conditions. Although the focus of that study is on 

railway wheels, the results can be used to investigate the vibrations of the tire-rim 

assembly.  

Bolton et al. [59, 60] investigated the effect of rotation on wave propagation and on the 

natural frequencies of an inflated circular shell, which they used as a model of the tire. In 

their study, they assumed that the center of the shell is fixed and the body rotates around 

it. The equations of motion were written by defining non-rotating system of coordinates, 

namely, Eulerian coordinates. Employing a wave-like solution for the free vibration 

analysis of the assumed model, they solved for the natural frequencies, which showed 

that the effect of rotation was not significant. Then, in the next step, the response of the 

system to a harmonic force at the contact point was obtained by employing the basis 

functions. It was shown that the natural frequencies of a rotating shell with fixed 

coordinates were divided into those corresponding to positive-going waves and negative-

going waves. This behavior is in contrast with the behavior of a stationary shell. The 

Coriolis acceleration creates a difference between the natural frequencies of the positive-

going and negative-going waves and the natural frequencies of the waves of the non-

rotating shell. In another study, where the tire was considered as a shell, Jia et al. [61] 

approximated the geometry of a pneumatic tire cross section by using Bezier functions. 
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They applied the theory of composite materials to calculate the kinetic and potential 

energies of the shell. The finite element method was employed in that study to investigate 

the effects of the tread patterns, the inflation pressure, and the ply-angles of the steel 

belts. Since the shell in their study is fixed in the center, there is no translational motion 

to be studied. The rotation and the contact are not investigated.  

In 2007, Civalek [62] presented a three-dimensional analytical solution for a rotating 

laminated cylindrical shell. This composite shell rotated around the symmetric axis, 

which was considered fixed in space. Transformed reduced stiffness matrices of different 

layers were used to build up the stiffness terms of the equations of motion. The 

centrifugal and Coriolis accelerations were also included in the equations of motion. 

Trigonometric functions were employed to find the solution to these equations. The 

effects of different types of laminations were discussed. Civalek and Gürses presented a 

new technique for that problem in 2009. [63] 

Rustighi and Elliott [64] used the same tire model proposed by Huang and Soedel [33] to 

investigate the response of a tire to stochastic excitation from the road. The Rustighi and 

Elliott study took into account the stiffness of the sidewalls and the inflation pressure. 

However, this model did not take into account the effects of the rotation such as the 

centrifugal and Coriolis accelerations. Hence, the Doppler shift caused by the Coriolis 

term did not occur. The stiffness of the suspension system was also neglected. A 

simplified contact model was used in the study mentioned above. The study considered 

that the contact patch was stationary, and the tire was always in touch with the road. After 

applying a standard road profile, Rustighi and Elliott used a discretization method to 

study the Root Mean Square (RMS) of the kinetic energy, RMS of the radial 
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displacement of the tire, and RMS of both vertical and horizontal forces, which are at the 

center of the ring. The investigation is further extended to three-dimensions by using 

finite element model [65].  

Kim et al. [66] used three different models to investigate the frequencies of a tire. At 

frequencies below 80 Hz, they used a spring-mass system, the side-wall acting as a spring 

and the tread acting as a mass. In the frequency range of 80-300 Hz, since the significant 

modes were the bending waves in the tread, Model 2, a beam supported on an elastic 

foundation was used. At the frequencies above 300 Hz, the modes turned from one-

dimensional waves to two-dimensional waves. Consequently Kim et al. used a shell 

model with a cylindrical shape. 

In 2008, Delamotte et al. [67] carried out analytical and experimental research on a 

center-fixed ring. As their report states, a closed-form analysis was performed in order to 

explain the irregular wear on the tire as well as its critical rotating speed, and the noise 

radiation. The model included a center-fixed ring, which was allowed to undergo two-

dimensional in-plane displacements. There was a force that rotated around the ring. The 

equations of motion were solved without taking into account the Coriolis and centrifugal 

accelerations. Delamotte et al. studied the influence of the internal pressure on the free 

and forced vibrations of their model. The analytical solution presented in this paper was 

new. However, it did not reveal any new information about the dynamic response of the 

tire. A model, similar to that of Delamotte et al. [67], was used by Kindt et al. in 2009 

[68]. Kindt et al. combined the ring model of a tire with the dynamics of the wheel to 

study the modes and frequencies below 300 Hz.  
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Another study carried out by Wullens and Kropp [69], concentrated on a three-

dimensional model of a contact area between a rotating tire with a rigid surface. The 

formulation of the problem in the time domain was carried out after taking into account 

the local deformation caused by the road roughness as well as by the radial contact 

forces. This contact model was used by Wullens and Kropp to find a wave-based solution 

to the problem of the natural frequencies of the tire [70]. The Green functions of a center-

fixed rolling tire are used to find the dynamic response of the tire to the contact forces.  

Since the contact surface and the contact forces have a significant effect on the ride 

quality, the generated noise, and the vibration of the tire body, many experimental studies 

have been carried out on the tire-ground contact issue. In a study that appeared in 2002, 

Perisse [71] investigated the mechanism of tire–road noise by setting up a center-fixed 

tire rolling above a large wheel drum in a laboratory. Because the diameter of the drum 

was large enough, the contact patch was considered to be flat. A smooth tire was used to 

eliminate the vibration caused by the tread pattern. Experimental measurements were 

performed to find the acceleration on both tread band and sidewall at different angular 

velocities. Spectral analysis showed that most of the energy in the system was 

concentrated in the waves below 500 Hz. Moreover, the response on the tread was larger 

than the response on the sidewall, especially at higher frequencies. The radial 

displacement was also obtained by integrating the acceleration to provide two different 

types of responses: the stationary deformation caused by the vehicle weight; the bending 

vibration caused by the tire-ground interaction forces. 

Since it is difficult to model the contact deformation, and to model the complicated 

geometrical and structural properties of the tire, many researchers have used the finite 
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element method to analyze tire dynamics. The study of these contact forces has been 

combined with the study of the dynamics of the rotating tire. Brinkmeier et al. 

investigated the eigen-solutions of the three-dimensional finite element model of a tire 

and the noise produced as a result of road roughness [72]. In the Brinkmeier study [73], 

the contact surface is approximated by the Arbitrary Lagrangian Eulerian (ALE) 

formulation proposed by Nackenhorst. The ALE is based on the mathematical concept of 

kinematics, on the curvature of both surfaces, on the balance of mass, and on the balance 

of momentum.  Brinkmeier et al. decomposed the problem into three parts: a stationary 

rolling case, the vibration in the deformed state, and the noise radiation. They found that 

splitting in the natural frequencies happens only when a rotating ring is perfect and 

without contact. For a rotating tire in contact with the ground, the positive going and 

negative going waves do not occur. Moreover, the modes are complex. 

The finite element model of a stationary tire was first developed by Lopez et al. [74] 

using a standard FE package. In that study, the effects of rotation were added, and then 

the matrices were transformed into Eulerian coordinates in order to perform the Eulerian 

finite element analysis of a rotating tire. Lopez et al. investigated the wave propagation 

and the natural frequencies of a circular rotating ring and a circular rotating shell. The 

equations of motion were written so as to take into account the Coriolis effect and the 

stiffening effect of the rotation when the inertial terms are transformed into the non-

rotating coordinates. It is assumed that the center of the tire is fixed and the body rotates 

around it. In this model, there is bifurcation of the natural frequencies, caused by 

immobilization of the center of the tire. In another study, Lopez et al. [75] presented the 

effects of contact deformation in a three-dimensional model developed in the study 
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previously referred to. The contact is frictionless and hence, the road surface and the tire 

are both smooth. In order to simulate the deformation caused by the static loads, the 

center of the tire is fixed, a vertical displacement is applied to the bottom of the tire, and 

the displacements and the forces are measured. The natural frequencies show that “the 

neat eigen-value distribution for an undeformed rotating tyre predicted by the Doppler 

shift is not directly applicable to a deformed rotating tyre.” [75] 

Geng et al. [76, 77] performed an experimental modal analysis of a tire and compared the 

results with those from an analytical model to find the damping value of a tire. 

Displacements of 16 points of a tire were measured. These displacements were used by 

Geng et al. to determine the mode shapes and the Frequency Response Functions. Then, 

the natural frequency and the damping ratio of each mode were analyzed corresponding 

to the model of a center-fixed tire. Finally, the damping matrix was developed. The 

overall results revealed an efficient method that helped the researchers to overcome the 

restrictions of proportional damping assumptions. However, the effects of contact 

between the tire and ground and the effects of the inertia of the vehicle body were not 

discussed in that study. 

The study by Kindt et al. [78, 79, 80, 81] is based on the measurement of the forces at the 

hub of the wheel and the displacements at the tread of the tire. This set up consists of two 

tires. One of the tires is driven by an electromotor and it is referred to as the driver tire. 

The other tire, which is fixed at the center by using a multi-axial wheel hub 

dynamometer, is called the driven tire and is the subject of the test. The dynamometer 

measures the forces at the tire center in three dimensions. The distance between the 

centers of these two tires is adjustable so that one can simulate the contact deformation 
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and the static loads on the driven tire. A Laser Doppler vibrometer was used to measure 

the displacements of fifty eight points on the tread of the driven tire. The natural 

frequencies of the tire were calculated by analyzing the forces in the frequency domain. 

In the first place, it was verified experimentally that the splitting of the natural 

frequencies does not occur for a tire in contact. Secondly, the mode shapes are complex. 

Thirdly, the road impact excites the tire in frequencies below 300 Hz.   

To study the free vibration of tires, Sabiniarz and Kropp [82] used a waveguide finite 

element method. In this study, the center of the tire was fixed; the tire was stationary; and 

the tire was not in contact with the ground. The authors focused on frequencies in the 

range of 0-1500 Hz. The results showed both curve veering and bifurcation. The 

influence of different types of modes on sound radiation was discussed.  

Zimmer and Otter developed a tire-ground model progressively [83]. The model at first 

started as an ideal rigid rolling wheel. At the second step, the slipping of the wheel on the 

ground was added to the model and the corresponding equations were developed. 

Zimmer and Otter [83] inserted a spring and a damper at the third step in order to model 

the contact deformation and contact force. Rolling resistance was also taken into account 

in this development. At the fourth step, smooth tire was replaced by a tire with treads. 

This replacement allowed the researchers to study the deflection and the elasticity of the 

treads in the contact area, as well as the nonlinear effect of the normal load. Lateral slip 

and self-aligning torque were taken into account at this level, too. At the next step, the 

effects of tire deformation in both lateral and longitudinal directions were studied by 

adding a spring and a damper in each direction. The last step was to model the actual shift 

of the contact point caused by rotation. Equations of the models at each level were 
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derived for a bicycle and were solved by using commercial software. The results of 

different models showed that the friction, the slippage, and the tire deformation have a 

damping effect that makes the vehicle much more stable. The study of Zimmer and Otter 

showed the importance of complex models for the simulations of maneuvers. However, 

this study did not take into account the effects of the tire structure and vehicle-body 

inertia.  

Imperfect Ring  

In addition to the structure of tire, the effect of unbalance also has received attention by 

the researchers. In 1986, Allaei et al. [84] used the Galerkin method to study the 

influence of ring imperfections on the natural frequencies and the modes of the tire. The 

tire was modeled by a non-rotating center-fixed ring. Their study covered three types of 

imperfections: a non-uniform mass at the circumference of the ring, a non-uniform linear 

spring in the radial direction, and a non-uniform torsional spring at the circumference of 

the ring. Later, the study was extended to treat the case of multiple springs [85]. In a 

subsequent study, Allaei et al. [86] performed the analysis with a three-dimensional 

model of a tire obtained by the finite element method. The analysis revealed that a non-

uniformity caused by a point mass changes the higher frequencies of the tire more than it 

does the lower frequencies. In contrast with the non-uniform mass case, the shift caused 

by a non-uniform stiffness is more significant at lower frequencies. 

In 1995, Stutts et al. [87] reported the use of a rigid ring as the model of the tread-band of 

a tire. The tread-band was supported on a visco-elastic foundation. In addition to the 

visco-elastic foundation, there was a linear spring representing the non-uniform stiffness. 
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They discovered that the non-uniformity created a harmonic force, the frequency of 

which was twice the frequency of the rotations.  

Fox [88] proposed a method to modify the frequency of a ring according to three types of 

imperfections. He assumed that the imperfections were small, and he could therefore use 

the Rayleigh-Ritz method. As mentioned in his report, the effect of the imperfections is 

significant. Fox’s study was extended by Rourke et al. [89, 90] in order to correct the 

imperfections of the rings. Also, Eley et al. [91] followed the method presented in Fox’s 

study [88] to analyze the effect of the Coriolis accelerations on the frequencies of a ring 

with imperfections, rotating in three perpendicular axes. Moreover, in 2005, the 

methodology presented in Fox’s report [88] was used by McWilliam et al., [92] to study 

the effects of the random distribution of imperfect mass. McWilliam et al. investigated 

three types of random distributions:  

1) Random harmonic variations in the mass per unit length around the circumference of 

the ring 

2) The attachment of random point masses at random locations on the ring  

3) The attachment of random point masses at uniformly spaced positions on the ring 

In 2007, Bisegna and Giovanni [93] presented a closed-form solution to the problem of 

an imperfect ring by using the perturbation method. The ring that they considered had 

two types of non-uniformity. The mass density and the in-plane bending stiffness could 

vary along the circumference of the ring. They proposed solutions by using two different 

theories: the linear theory, which was efficient for small non-uniformities; the enhanced 



23 

theory, which required an iterative solving procedure, but was accurate for large non-

uniformities.  

In 2008, Dillinger et al. [94] presented a discrete model of a tire with non-uniformities. 

Non-uniformities consisted of mass imbalance, stiffness non-uniformity, and radial run-

out. They assumed that the center of the wheel was fixed. Their discrete model was used 

to predict the forces at the wheel hub. The predicted forces were compared with the 

experimental results in order to perform system identification. Their simulation 

demonstrated that the non-uniformities caused significant forces, at frequencies close to 

the natural frequencies of the system, thereby resulting in a large amplitude vibration of 

the different components. 

Combined Models 

Most of the research, dedicated to the vibration and frequencies of tire, consider the tire 

as an individual elastic object. The contribution of the vibration of tires in the multibody 

dynamics is not concentrated very often.  

In the study by Kung et al. [95] the tire-wheel unit is modeled as a combination of a rigid 

center mass, which is free to move vertically, and of an elastic ring supported by 

distributed springs in radial and tangential directions. The distributed springs are attached 

to the rigid center mass. The effect of the contact with the road surface is not taken into 

account. The results obtained by the analytical solution are verified by comparing them 

with those obtained by the finite element approach of [29–32]. Kung et al. concluded that 

the free movement of the wheel center affects only the first mode and only the first 

natural frequency of the ring. In a further study by Kung et al. [96, 97], this model was 
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expanded into a tire-wheel-suspension assembly, which was used by the same authors to 

find the response of the assembly to harmonic excitation caused by the road. 

In another study, Huang and Hsu [98] studied the effect of a suspension system on tires. 

They considered the damping and the stiffness of the wheel, as well as the inertia of its 

vertical motion. The results obtained in their study did not take into account the mass of 

the vehicle. The kinetic energy caused by the vertical motion of the wheel center was also 

not taken into account. 

An instantaneously centered Lagrangian observer was defined in order to make it 

possible to follow the displacement of the tire [99, 100]. The finite element approach was 

used to study the steady and transient responses of structures consisting of rotating 

components. The idea of a Lagrangian observer is further employed by Padovan et al. in 

their 1992 study [101].  

A tire wheel suspension assembly was introduced by Dohrmann [102] to study the effects 

of the tire-ground contact as well as the suspension system on the natural frequencies of 

the rotating tire. Linear spring elements and dashpot elements were used to model the 

suspension system. The suspension was assumed to be connected to a rigid body located 

at the center of a ring. This rigid body represents the mass of the wheel, and its rotational 

speed is constant. An inextensible circular ring on a foundation was used to model the tire 

body. The wheel-and-tire assembly was released to move vertically, and the kinetic 

energy added by this degree of freedom was taken into account. The equations of motion 

were solved in the fixed-frame coordinates instead of in the rotating frame. The contact 



25 

surface deformation and the contact force distribution over this surface were calculated 

and were linearized so that they could be used in the equations of motion.  

An experimental set-up to similar to that used in [71] was used to analyze the effect of a 

bump impact on passenger ride comfort [103]. The accelerometer was mounted on the 

axis of the vehicle in order to measure the acceleration of the center of the tire. The 

experimental results were compared to those of a seven-degree-of-freedom model. A 

parametric study of the tire was carried out to analyze the effects of the tread rubber on 

the vibration energy. Their study also took into account the effects of the tire tread belt on 

the vibration energy. The effects of the sidewall characteristics were also analyzed. 

Mohd Nor et al. [104] introduced the Vehicle Acoustical Comfort Index (VACI) and the 

Vehicle Acoustical Comfort Factor (VACF) as two parameters used to measure the noise 

in a vehicle compartment. They presented results that were obtained by performing tests 

on different types of roads. The noise inside the vehicle was recorded. The data was then 

compared with those obtained under other road conditions.  It is shown that as the degree 

of loudness increases, the Vehicle Acoustical Comfort Factor decreases. Moreover, the 

roughness of the road does not affect the Vehicle Acoustical Comfort Factor. Another 

report [105] revealed the results of a similar test, which considered the effect of road 

roughness and the driving speed on the vibration of the driver’s seat. In a subsequent 

study [106], the influence of the vibrations of the engine and the tire on the seat vibration 

was studied while the vehicle was being driven on different roads. The sources of 

excitation were separated. In other words, the effects of the road roughness were ignored, 

and only the tire vibration and engine vibration were taken into account. The results 

showed that only the frequencies below 400 Hz had significant impact on the vibration 
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recorded for the seat. Also the excitation caused by the engine was comparable to that 

caused by the tires for a smooth road. However, tire vibration rises on bumpy roads so 

that it turns out to be the dominant source of excitation. The Frequency Response 

Functions of the engine mount and the tire damper show that these parts efficiently 

dampen the vibration below 1400 Hz and 200 Hz, respectively. 

Nguyen and Inaba [107] have reported the use of accelerometers and strain gages in order 

to measure roll, bounce, and pitch accelerations, as well as the forces on the rear wheels. 

The vehicle used in the test procedure was an agricultural tractor driven on an asphalt 

road and a sandy loam field. The wavelet and the Fourier analyses were used in order to 

study the effects of the variation of tire characteristics such as non-uniformity and 

inflation pressure for different tractor forward speeds. 

1.3. OBJECTIVES AND SCOPES 

As mentioned earlier, most of the studies carried out on vehicle dynamics considered the 

vehicle, the suspension, and the non-rotating tires as a multi degree of freedom system, 

while the tire alone was considered as an isolated stationary or rotating ring or shell. The 

objectives of this thesis are as follows: 

1) To develop a new model that takes into account the inertia of the vehicle body and the 

dynamics of the rotating tire. Although this model is two-dimensional, it can easily be 

extended to three-dimensional problems.  

2) To investigate the effect of the vibration of the rotating tire on the contact force. The 

contact force is a dynamic force, which is function of the bounce vibration of the 
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vehicle as well as the tire rotational dynamics including the radial and tangential 

displacements and accelerations of the tire.  

3) To explore various solutions for the model. Different methods are employed, as each 

one has pros and cons. The finite element method will be used to study problems with 

complicated cross sections, while the analytical method provides the exact natural 

frequencies and modes. 

4) To study the response of the system to the random excitation applied by the profile of 

the road. The free vibration response is used in mode summation method to 

investigate the contact forces in both vertical and horizontal directions as a function 

of forward speed of the vehicle. Also the displacements of the passenger and of the 

rotating tire are studied.  

In the present study, some of the previous studies on the dynamics of a rotating tire are 

reviewed. Then, the conventional ring model for the tire is briefly analyzed in Chapter 2 

in order to better comprehend the nature of the parameters affecting the dynamics of a 

rotating tire. These parameters include the Coriolis acceleration and the centrifugal 

acceleration, the bifurcation of natural frequencies, and the stiffening of the tire because 

of rotation. Then the new model is described in Chapter 3. The equations of motion are 

derived by applying the Hamilton principle. The Galerkin method is used to solve the 

equations in Chapter 4. Also the results for both cases of the non-rotating ring and the 

rotating ring are obtained and compared. Comparison of the results of the new model 

with those available in the literature is carried out wherever possible. Finite element 

analysis is employed in the second part of this chapter. Eulerian finite element is used to 
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find the free vibration response of the hybrid quarter car model. In Chapter 5, the basics 

of the model are reviewed and the analytical solution is introduced. This analytical 

solution, provided for a two-dimensional model of the hybrid quarter car model, enables 

us to find the frequency response more conveniently. The frequency response is used in 

Chapter 6 to investigate the response of the model to road excitation. The spectral 

densities and the mean value of the displacement and the contact forces are presented and 

compared.  

Chapter 7 summarizes the conclusions arising out of the results of the investigations. 

Moreover, it provides suggestions for further investigations that could provide more 

clarity and context to the present study.  
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CHAPTER 2 CENTER-FIXED RING 

2.1. INTRODUCTION 

In this chapter, the equations of motion for the traditional model of a tire are derived and 

solved. The tire is modeled as a ring with a uniform rectangular cross section. It is 

assumed that the center of the ring is fixed and that the ring rotates around it. In the 

following, the equations of motion of such a ring are presented in both the rotating and 

the non-rotating systems of coordinates. The analytical solutions of the equations are 

presented and compared. Moreover, the bifurcation of the natural frequencies of the 

rotating ring in both rotating and non-rotating coordinate systems is studied. Such a study 

would help in better understanding the concept of the bifurcation of the natural 

frequencies of tires as well as the effect of the Coriolis and centrifugal accelerations. The 

model and the results are also helpful in developing the equations solved by the Galerkin 

method and the finite element analysis, both of which are presented in Chapter 4.  
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Figure 2.1: Schematic of the 2-D model of a tire: ring rotating about a fixed center 

 

2.2. FREE VIBRATION OF A CENTER-FIXED RING IN ROTATING 

COORDINATE SYSTEM 

Figure 2.1 shows the ring model of a tire. The ring presents the thread of the tire. It is 

assumed that point O, the center of the ring, is fixed and the ring is rotating around this 

point. Two different coordinate systems are defined. One is the local system of 

coordinates xz, rotating with an angular velocity ഥ߱. The angular position in this 

coordinate system is defined by θ. The other system of coordinates, used as a reference, is 

called the non-rotating coordinate system XZ. The angular position in this coordinate 

system is shown by φ. The radial displacement u, and the tangential displacement v, are 

defined in the rotating coordinate system. The effects of the inflation pressure of the tire 
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and of the rotational stiffening are taken into account by defining the resultant force N0. 

This circumferential resultant force, caused by the angular velocity and the internal 

pressure of the tire, is defined as follows [108]: 

2 2
0N abp Aa

 
(2.1) 

The static deformation of the tire as a result of this initial tension in the ring is a constant 

radial displacement, calculated as follows:  

2

0
2

2

pb Aau EA A
a

 (2.2) 

The general solution for the rotating ring is given by the superposition of the static 

deformation and of the dynamic response. The following equations, describing the 

dynamic behavior of the ring, do not include the constant static response. The following 

equations describe the equations of the motion of a ring in the rotating coordinate system 

xz, which is also called the local coordinate system [108]: 

4 3 2
20

4 4 3 2 2 2 2 0NEI u v EA v uu A u v u
a a a

u 2 222 22 2u 2 2  (2.3) 

3 2 2
2

4 3 2 2 2 2 0EI u v EA v u A v u v
a a

v u 222 22 2v 2 2  (2.4) 

It should be mentioned that the nonlinear effects of the circumferential resultant force are 

neglected. The free vibration response of the model is expressed in the variable 

separation form as follows: 
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( , ) ( ) j tu t u e( ) j te) tt( )( )  (2.5) 

( , ) ( ) j tv t v e( ) j te) tt( )( )  (2.6) 

Substituting Equations (2.5) and (2.6) in Equations (2.3) and (2.4) results in the following 

equations, where uu  and vv  are functions of θ, only. 
4 3 2

2 20
4 4 3 2 2 2 2 0NEI d u d v EA dv d uu A u j v u

a d d a d a d
EA 2d u2N3u d v33 dvdvu d v dv 2 0u22

2 22 A u j vA u v222
20

2 2 A uA 2 2 2u 2d u0N0 A 20 d u0N0 A 20 AA 2  (2.7) 

3 2 2
2 2

4 3 2 2 2 2 0EI d u d v EA d v du A v j u v
a d d a d d

2A 2
2 2u d v EA d v duEA2 22

A 2A 2u d v EA d v duEAEAEA 2 0v22v j uu 2v 2 2  (2.8) 

In order to satisfy the continuity conditions of the ring, the eigen-functions of the 

equations above must be assumed in the following form:  

ˆ( )
ˆ( )

jn

jn

u Ae

v Be

ˆ( ) ju Ae( )( )( )
ˆ( ) jBe)v(( )( )

 (2.9) 

where n is an integer. By substituting Equation (2.9) in Equations (2.7) and (2.8), one can 

arrive at the following algebraic system of equations: 

4 2 2 2 30
4 2 2 4 2

3 2 2 2 2
4 2 4 2

2 ˆ 0
ˆ 0

2

NEI EA EI EAn n A j n n A
Aa a a a a

EI EA EI EA Bj n n A n n A
a a a a  

(2.10)
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The eigen-values of this system of equations are the natural frequencies of a rotating ring 

in the rotating coordinate system. Table 2.1 presents the natural frequencies of non-

rotating ring (i.e. ഥ߱=0) with the following values: 

3 8206910 ; 1200 / ; 4.9 10 ; 0.16 ; 0.008 ; 0.32 ;p Pa kg m E Pa b m h m a m  

Table 2.1: The natural frequencies of a non-rotating center-fixed ring 

n ω (rad/s) 
0 1996.91  
1 2830.11 183.12 
2 4471.61 465.21 
3 6320.17 746.06 
4 8238.13 1028.15 
5 10186.48 1316.34 
6 12150.66 1614.05 
7 14124.07 1923.91 
8 16103.32 2248.07 
9 18086.49 2588.36 

10 20072.43 2946.38 
 

Table 2.2: The natural frequencies of a center-fixed ring rotating with angular velocity ഥ࣓=100 rad/s 

in the rotating coordinate system 

n ω (rad/s) 

0  2004.38   
1 2731.00 2930.99 96.19 296.18 
2 4393.02 4554.41 413.84 575.24 
3 6261.59 6383.28 733.27 854.96 
4 8192.29 8288.02 1047.16 1142.89 
5 10149.05 10227.46 1362.09 1440.51 
6 12119.08 12185.33 1683.09 1749.34 
7 14096.78 14154.08 2013.71 2071.01 
8 16079.30 16129.77 2356.63 2407.10 
9 18065.04 18110.14 2714.02 2759.12 

10 20053.05 20093.82 3087.69 3128.46 
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As can be seen, substituting each n in Equation (2.10) results in two different natural 

frequencies except for n=0. Table 2.2 shows the natural frequencies of the same ring 

when the angular velocity is ഥ߱=100 rad/s. Each natural frequency for n ≥1 in Table 2.1 

has been split into two groups in Table 2.2. For example, ω=183.12 rad/s and ω=2830.11 

rad/s obtained as the natural frequencies of the first wave (i.e. n=1) along the non-

rotating ring have been split into two different frequencies, (96.19, 296.18) and (2731.00, 

2930.99), respectively. For each pair, the higher value corresponds to the negative-going 

wave, whereas the lower value corresponds to the positive-going wave. The following 

calculations show the corresponding natural frequencies and eigen-vectors of n = ±1. 

( 96.1889 )

( 296.1794 )

1
2731.0016
296.1794

96.1889
2930.9921

for 96.1889
ˆ ˆ1 and 1.01
( , )

positivegoing wave

for 296.1794
ˆ ˆ1 and 1.01
( , )

negativegoing wave

j t

j t

n

A B j
u t e

A B j
u t e

 

( 96.1889 )

( 296.1794 )

1
2930.9921
96.1889
296.1794

2731.0016

for 96.1889
ˆ ˆ1 and 1.01
( , )

positivegoing wave

for 296.1794
ˆ ˆ1 and 1.01
( , )

negativegoing wave

j t

j t

n

A B j
u t e

A B j
u t e

 

As the sample calculation above shows, the natural frequency of 96.1889 rad/s 

corresponds to a positive-going wave, which can be demonstrated to be a sinusoidal wave 
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moving in the direction of tire rotation. The frequency of 296.1794 rad/s corresponds to a 

negative-going wave. This wave can be illustrated as a sinusoidal wave rotating in a 

direction that is opposite to the direction of the rotation of the tire. It should be noted that 

these frequencies have been defined in the rotating coordinate system, which rotates with 

an angular velocity of ഥ߱=100 rad/s. Among the two lower frequencies obtained for each 

n, the smaller frequency is a positive-going wave and the larger frequency is the 

negative-going wave. Also among the two higher frequencies, the larger corresponds to 

the positive-going wave. 

Figure 2.2 and Figure 2.3 show the bifurcating natural frequencies of the center-fixed tire 

in the rotating system of coordinates. It can be seen from Figure 2.2 that there is no 

bifurcation for n=0. The natural frequencies corresponding to n=0 are quite high 

compared to those for n = 1, because n=0 corresponds to a “breathing” type mode 

involving circumferential stretching and compression. This mode has a higher stiffness 

compared to the “bending” type deformation for n > 0. Also it can be seen that the 

bifurcating behavior decreases as the natural frequency of the ring increases. In other 

words, the difference between the positive-going and the negative-going waves is greater 

at the lower frequencies, whereas at the higher frequencies this difference is smaller.  
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Figure 2.2: The bifurcating natural frequencies (less than 2000 rad/s) of the center-fixed ring in the 

rotating system of coordinates vs. different angular velocities. 
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Figure 2.3: The bifurcating natural frequencies (higher than 2000 rad/s) of the center-fixed ring in 

the rotating system of coordinates vs. different angular velocities. 
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2.3. FREE VIBRATION OF A CENTER-FIXED RING IN NON-ROTATING 

COORDINATE SYSTEM 

A tire modeled as a ring, as shown in Figure 2.1, is considered again, with the equations 

of motion presented in the non-rotating system of coordinates as follows:

 4 3 2 2
20

4 4 3 2 2 2 2 2 0NEI U V EA V U D U DVU A U
a a a Dt Dt

 (2.11) 

3 2 2 2
2

4 3 2 2 2 2 2 0EI U V EA V U D V DUA V
a a Dt Dt

 (2.12) 

Here, U(φ,t) and V(φ,t) are defined in the non-rotating coordinate system and are 

functions of φ. Since φ can be written as:  
t
 

(2.13) 

the first and second time derivatives of U(φ,t) and V(φ,t) in the non-rotating coordinate 

system are given by: 

D
Dt t  

(2.14) 

2 2 2 2
2

2 2 22D
Dt t t  

(2.15)

 
The solution of the equations of motion is assumed to be in the form of a product of 

functions of position and time, in the following form: 
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( , ) ( ) j tU t U e( ) j te( ) tt( )  (2.16) 

( , ) ( ) j tV t V e( ) j te( ) tt( )  (2.17) 

Substituting Equations (2.14)– (2.17) in Equations (2.11) and (2.12) results in the 

following spatial differential equations: 

4 3 2
0

4 4 3 2 2 2

2
2 2 2 2

22 2 2 0

NEI d U d V EA dV d UU
a d d a d a d

dU d U dVA U j j V U
d d

2d U2N3U d V EA dVEA dV33U d V EA dVEAEAEA 0
2

d0N0UUU d0N0

2U d U dV2

0dU 2 2 2222 2 2222 22 22 2 22U 2 2 222 22 22 2 222 2
2

2U d U dV2 22 2 22 22 2 22 22

 

(2.18) 

3 2 2

4 3 2 2 2

2
2 2 2 2

22 2 2 0

EI d U d V EA d V dU
a d d a d d

dV d V dUA V j j U V
d d d

2 2U d V EA d V dUEA2 22U d V EA d V dUEAEAEA

2V d V dU2

0dV 2 2 2222 2 2222 22 22 2 222V 2 2 222 22 22 2 222 22
2 02V d V dU2 22 2 22 22 222 222 22

 

(2.19) 

Since the response of the ring should be periodic in the circumferential direction φ, one 

can assume the solution in the following form: 

ˆ( ) jnU Aeˆ( ) jU Ae( ))
 

(2.20) 

ˆ( ) jnV Beˆ( ) jV Be( ))
 

(2.21) 

where n is an integer. Therefore, the natural frequencies and the ratio of ˆˆ /B A can be 

obtained by solving the following eigen-value problem: 
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24 2 2 30
4 2 2 4 2

23 2 2 2
4 2 4 2

2 ˆ 0
ˆ 0

2

NEI EA EI EAn n A n j n n A n
Aa a a a a

EI EA EI EA Bj n n A n n n A n
a a a a  

(2.22)

 

The determinant of the equation above is calculated and solved for each n. Table 2.3 

tabulates the natural frequencies of a ring with the same mechanical and geometrical 

properties of the ring in Section 2.2, when its angular velocity is ഥ߱=100 rad/s. The results 

in this table are presented from n=0 to n=10. All the results are for the natural frequencies 

in the non-rotating coordinate system XZ. As can be seen, four distinct frequencies are 

obtained for each n > 0 in the case of the rotating ring in contrast to the non-rotating ring 

(Table 2.1) which has only two natural frequencies.  

Table 2.3: The natural frequencies of a center-fixed ring rotating with an angular velocity ഥ࣓=100 

rad/s in the non-rotating coordinate system 

 

 

As explained in the previous section, the natural frequencies of a rotating ring can be 

specified as those corresponding to positive-going waves and to negative-going waves. 

This phenomenon is named the bifurcation of natural frequencies [59]. There is no 

n ω (rad/s) 
0  2004.38   
1 2631.00 3030.99 196.18 196.19 
2 4193.02 4754.41 375.24 613.84 
3 5961.59 6683.28 554.96 1033.27 
4 7792.29 8688.02 742.89 1447.16 
5 9649.05 10727.46 940.51 1862.09 
6 11519.08 12785.33 1149.34 2283.09 
7 13396.78 14854.08 1371.01 2713.71 
8 15279.30 16929.77 1607.10 3156.63 
9 17165.04 19010.14 1859.12 3614.02 

10 19053.05 21093.82 2128.46 4087.69 
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bifurcation for frequencies corresponding to n=1, because the positive-going waves and 

negative-going waves coalesce at ω=196.19 rad/s. The following calculations show the 

natural frequencies and the modes of a rotating ring with an angular velocity of ഥ߱=100 

rad/s obtained for n = +2 and n = –2 separately, in the non-rotating system of coordinates 

XZ.  

(2 613.8414 )

(2 613.8414 )

(2 375.2395

2
4193.0157
375.2395
613.8414
4754.4138

for 613.8414
ˆ ˆ1 and 0.5111

( , )
( , ) 0.5111

positivegoing wave

for 375.2395
ˆ ˆ1 and 0.5036

( , )

j t

j t

j

n

A B j
U t e
V t je

A B j
U t e )

(2 375.2395 )( , ) 0.5036
negativegoing wave

t

j tV t je  

(2 613.8414 )

(2 613.8414 )

(2 3

2
4754.4138
613.8414
375.2395

4193.0157

for 613.8414
ˆ ˆ1 and 0.5111

( , )
( , ) 0.5111

positivegoing wave

for 375.2395
ˆ ˆ1 and 0.5036

( , )

j t

j t

j

n

A B j
U t e
V t je

A B j
U t e 75.2395 )

(2 375.2395 )( , ) 0.5036
negativegoing wave

t

j tV t je  

It should be noted that the multiples of the angular velocity are added to and subtracted 

from the positive-going and negative-going natural frequencies in the rotating coordinate 

system, respectively, in order to obtain the natural frequencies in the non-rotating system 

of coordinates. For example for n=2 and ഥ߱=100 rad/s 
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Figure 2.4 shows the variation of natural frequencies of the center-fixed ring with the 

angular velocity of the ring. Figure 2.5 represents the natural frequencies above 2000 

rad/s. All the frequencies are calculated in the non-rotating system of coordinates, and the 

bifurcation is shown. The difference between the frequencies of the positive- going and 

the negative-going waves increases as the rotating speed of the tire increases.  

The results for each n can be split into two groups of natural frequencies: the lower 

frequencies and the higher frequencies. For instance as n=2 and ഥ߱=100 rad/s the couple 

of (375.24 , 613.84) is the group of lower frequencies. In contrast to the frequencies in 

the rotating coordinate system, presented in the previous section, the larger value in this 

group is the positive-going wave i.e. 613.84 rad/s. Also in the pair of higher frequencies, 

the larger value corresponds to the positive-going wave.  

Figure 2.6 shows the radial displacement of the ring at different modes. It can be seen 

that n=0 corresponds to the breathing mode, whereas the bending of the ring is clear for 

n=2. The effect of the tangential displacement is more dominant at the higher frequencies 

obtained for each n. The lower frequencies correspond to the modes in which the effect of 

radial displacement is more dominant. For example for n=2:
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Figure 2.4: The bifurcating natural frequencies (less than 2000 rad/s) of the center-fixed ring in the 

non-rotating system of coordinates vs. different angular velocities. 
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Figure 2.5: The bifurcating natural frequencies (higher than 2000 rad/s) of the center-fixed ring in 

the non-rotating system of coordinates vs. different angular velocities. 
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Figure 2.6: The radial displacement of a center-fixed ring for n=0 (left) and for n=2 (right) 

 

2.4. CONCLUDING REMARKS 

The equations of motion for a center-fixed ring in both the rotating and non-rotating 

systems of coordinates are discussed. The effects of tire-road contact and the deformation 

at the contact area were not taken into account. The effects of the inflation pressure of the 

a=0.32 m
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tire were taken into account. Also the transformation of the equations of motion from one 

coordinate system to another was analyzed. It was shown that the frequencies of one 

system of coordinates can be transformed into the frequencies of the other system of 

coordinates by using multiples of the angular velocity of the ring. Also the bifurcation 

phenomenon was shown. Bifurcation splits the natural frequencies of a non-rotating ring 

into two groups as the tire starts rotating. These groups are called positive-going and 

negative-going waves. The analysis of the modes reveals the dominance of the radial 

displacement at lower frequencies, whereas at the higher frequencies the tangential 

displacement is more dominant. 

In the next chapter, the equations of the motion of the ring are used to develop the 

equations of the motion of the hybrid quarter-car model. This hybrid quarter-car model 

consists of sprung mass, a suspension system and a rotating ring as a tire that is in contact 

with the road.  
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CHAPTER 3 HYBRID QUARTER-CAR 

MODEL 

3.1. INTRODUCTION 

In the previous chapter, the vibrations of both non-rotating and rotating center-fixed rings 

were discussed. The center-fixed ring is the traditional model of a tire and consists of a 

ring that is allowed to rotate about a fixed center. The simpler versions of this model 

ignore the Coriolis and centrifugal accelerations. These versions may also use the 

assumption of an inextensible ring, which simplifies the radial and tangential 

displacements. The model shown in Chapter 2 takes into account the Coriolis and the 

centrifugal accelerations, as well as the initial tension on the ring circumference caused 

by the inflation pressure and the rotations. The most important weakness of this model is 

that the effects of the contact of the tire with the road and of the dynamics of the vehicle 

body are not considered. In the present chapter, a hybrid model is presented taking into 
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account the significance of road contact and vehicle body inertia. This model combines a 

rotating ring with a discrete system that represents the vehicle body and the suspension 

system. Since a vehicle tire carries the dynamic loads of the vehicle system vibrations, 

the rotating ring is considered to be in contact with the road. Through the contact point, 

all the dynamic forces are applied to the hybrid system.  

3.2. MODELING 

A model of a vehicle with suspension system and a tire is presented in Figure 3.1. This 

model consists of a mass that represents the vehicle body, a rotating ring that represents 

the tire, and a set of spring and damper that represents the suspension system. In this 

model, the center of the ring can translate horizontally and vertically. The position of the 

center of the ring in the global system of coordinates is measured by Xu(t) and Zu(t), in the 

horizontal and vertical directions, respectively. The vertical position of the vehicle body 

is denoted as Zs(t), which is also measured in the global system of coordinates. Figure 3.2 

shows more details of the deflections and displacements of the ring. Two different 

systems of coordinates are defined: one is xz, rotating with the tire and the other is XZ, 

which does not rotate. The origins of both of these coordinate systems are located at the 

center of the ring, which is moving in both horizontal and vertical directions. The radial 

and tangential displacements of an arbitrary point on the ring, U(φ,t) and V(φ,t), 

respectively, are defined in the non-rotating system of coordinates, whereas the radial and 

tangential displacements, u(θ,t) and v(θ,t), respectively, are defined in the rotating 

coordinate system xz. These displacements are all measured from the center of the ring.  
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Figure 3.1: Schematic of a 2-D model of a vehicle: a rotating ring with the center that moves 

horizontally and vertically 

 

It is assumed that the bottom point of the tire, S, always remains in contact with the 

ground and the contact force is introduced as T(t). In other words, the following 

conditions in the dynamic solution of the model are written: 
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Figure 3.2: The undeformed ring (left) and the deformed ring with a free center (right) 

 

( ) ( , )uX t V t
 (3.1)

 

( ) ( , )uZ t U t
 (3.2) 

meaning that the radial displacement of the tire at the contact point, measured with 

respect to the non-rotating coordinate system XZ, causes the vertical displacement of the 

ring. Also the tangential displacement of the tire at the contact point causes the horizontal 

displacement of the ring.  

In order to obtain the equations of motion, the variation of the kinetic energy of the 

system must be obtained. Accordingly, the velocity of an arbitrary point on the 

circumference of the ring in the rotating system of coordinates xz is written as: 
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where rere  is the radial unit vector and ee  is the tangential unit vector. Since the total 

kinetic energy of the system is: 
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(3.4) 

the following equation, obtained by substituting Equation (3.3) in Equation (3.4), 

describes the kinetic energy in terms of the displacements in the rotating coordinate 

system: 
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(3.5) 

Hence, in order to use the Hamilton’s principle, the variation of the kinetic energy is 

obtained as follows: 
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Also the potential energy of the system is obtained as [108]: 
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in which the energy stored in the system due to bending, circumferential deformation, 

spring deformation, and gravity are taken into account. Therefore, using Equation (3.6) 

and the variation of Equation (3.7), the equations of motion can be introduced as: 
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where Tx is the horizontal component of the force at the contact point and Tz is the 

vertical force. By using Equations (2.14) and (2.15), the equations of motion are 

transformed into the non-rotating system of coordinates as: 
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(3.15) 

The contact forces Tz and Tx are given by: 
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Substituting Equations (2.14) and (2.15) in Equations (3.16) and (3.17), and after some 

mathematical simplification, one can rewrite the contact forces Tz and Tx as: 
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In order to satisfy the continuity conditions, the last three integrals on the right-hand side 

of both Equations (3.18) and (3.19) are equated to zero. The contact force components 
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are only functions of the accelerations of the tire. The following gives the vertical and 

horizontal contact forces, respectively: 

2 22
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(3.21) 

Equations (3.13)–(3.15) and (3.20)–(3.21) provide the equations of motion of the hybrid 

quarter-car model with a rotating tire. In these equations, the radial and tangential 

displacement of the tire, the vertical displacement of the sprung mass, and the horizontal 

and vertical components of the contact force are unknown.  

3.3. SUMMARY 

In the present chapter, a new vehicle-tire-ground model is introduced. Since this model 

combines the effect of the vibration of a rotating ring with the bounce vibration of the 

traditional quarter-car model, it is called a hybrid quarter-car model. This model takes 

into account the effects of the rotation including the Coriolis and centrifugal acceleration 

as well as the axial force at the circumference of the ring. After adding the contact point 

as a constraint to the hybrid quarter-car model, the equations of motion are developed and 

simplified according to the continuity conditions. The center of the tire was assumed to 

be free to move in both the vertical and horizontal directions. The contact is considered as 

a point through which the horizontal force Tx and the vertical force Tz are applied. These 
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forces are functions of the radial and tangential displacements of the tire as well as the 

displacements of both the center of the tire and the vehicle.  

In the next chapter, the approximate solutions of the equations of motion, first by using 

the Galerkin method and then by using a finite element analysis are presented. Also in 

Chapter 5 an analytical solution of the model is presented. This model enables us to 

analyze the effect of tire rotation on the contact forces and on the natural frequencies and 

mode shapes of the system. Also the influence of the vehicle body inertia on the contact 

forces and the tire vibration is investigated. 
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CHAPTER 4 APPROXIMATE SOLUTIONS 

BY GALERKIN METHOD AND FEM 

4.1. INTRODUCTION 

In the previous chapter, a hybrid quarter-car model consisting of a rotating ring with 

constraint at the bottom and a spring-mass system as the suspension and mass of the 

vehicle was introduced. In this chapter, the free vibration response of this model is 

studied by using two approximate methods. The Galerkin method with trigonometric 

admissible functions is used to obtain the equations of motion in the matrix form, which 

are solved to obtain the natural frequencies. Afterwards, a finite element model is 

developed by using the energy equations of the system, in order to find the natural 

frequencies of the quarter-car model. The natural frequencies of the hybrid quarter-car 

model with both non-rotating and rotating tires are obtained.   



58 

4.2. GALERKIN SOLUTION 

The Galerkin method is used to solve the equations of motion of the hybrid system 

consisting of the rotating ring type tire and the vehicle. The effect of gravity and the static 

deformation of the tire are neglected in Equations (3.13), (3.14), (3.15), (3.20), and 

(3.21). The equations of motion are rewritten as: 
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(4.5) 

In order to find the solution by using the Galerkin method, a finite number of linear 

independent functions that satisfy all the boundary conditions are required. The solutions 

of the radial and tangential displacements are assumed as [109]: 
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(4.6)

 
( , ) ( ) ( )V t tΦ β  (4.7) 

where, α(t) and β(t) are unknown coefficients that should be identified by solving the 

eigen-value problem, and ( )Φ is a collection of periodic exponential functions as:  

( ) ... 1 ...jn j j jne e e eΦ
 

(4.8) 

( )Φ  is a 1× ܰ vector and ܰ=2n+1. The functions used in Equation (4.8) are orthogonal 

functions. By substituting Equations (4.6) and (4.7) in Equations (4.1)–(4.5) and 

integrating in the interval of [0,2π], one can obtain a set of ܰth order ordinary differential 

equations as follows:  
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In the equation above, the mass, the damping, and the stiffness matrices are composed of 

sub-matrices as: 
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By using the following operator: 

... 0 ...diag nj j j njD
 

(4.13) 

each sub-matrix is defined as:
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(4.16) 

in which I is the identity matrix. The Galerkin method is used to solve the equations 

above. The mechanical and geometrical properties of the tire are the same as the one used 

in Chapter 2. The data for the sprung mass and wheel assembly mass is as follows:   

ms = 200 kg, mw = 30 kg 
 

The equivalent stiffness of the hybrid quarter-car model is obtained by analyzing the 

McPherson suspension spring. Figure 4.1 shows the McPherson suspension system of a 

vehicle. This figure shows the displacements of the sprung mass (vehicle body) and the 

unsprung mass (tire center) as well as the configuration of the control arm and the spring 

and damper.  
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Figure 4.1: Schematic of a McPherson suspension system 

 

The angle between the Y axis and line OA is α0. This angle is constant. The angular 

position of the control arm with respect to the Y axis is θ. The initial value of θ when the 

vehicle is not vibrating is called θ0. Accordingly, the initial length of the spring L0 and the 

length of the deformed spring L can be written as: 

2 2
0 0 02 sin sin 2 cos cosB A A B A BL l l l l l l

 

(4.17)

 
2 2 2 sin sin 2 cos cosB A A B A BL l l l l l l  (4.18) 
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The potential energy stored only at the spring can be written as the following: 

2
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1 ( )
2 sP k L L

 

(4.19) 

In order to linearize the equation, the variation of the potential energy is calculated as: 
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P k L L L
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(4.20) 

where the variation of the spring length is obtained from Equation (4.18) as follows:  

2 2

2 sin cos 2 cos sin
2 2 sin sin 2 cos cos

A B A B

B A A B A B

l l l lL
l l l l l l  (4.21) 

Substituting Equation (4.18) in Equation (4.21) results in:  

sin cos cos sin
A BL l l

L  (4.22)

 

On the other hand, the vertical distance between point O and the center of the tire is 

written as: 

0sin sinC C s ul l Z Z  (4.23) 

and its variation is written as: 

1cos ( )s u
C

Z Z
l  (4.24) 

Substituting δθ from Equation (4.24) in Equation (4.22) results in: 
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By using the equation above, the variation of potential energy is simplified as:  

01 sin cos tan ( )A B
s s u
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(4.26) 

Neglecting the ratio of initial length to actual length of the spring L0/L, the variation of 

the potential energy stored at the spring is linearized as: 

0sin cos tan ( )A B
s s u
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l lP k Z Z
l

 

(4.27) 

Consequently, the equivalent spring is defined as: 

0sin cos tanA B
s

C

l lk k
l  (4.28) 

The information provided in [7], [110] is used to calculate the equivalent stiffness of the 

McPherson suspension system as: 

k=17800 N/m 

Table 4.1 shows the natural frequencies of the quarter car model with a non-rotating ring 

i.e. a stationary vehicle. It should be noted that n refers to the highest harmonic of 

trigonometric functions used in Equation (4.8), and ܰ refers to the total number of 

admissible functions. For example, n=5 means that ܰ =11 functions are used as 

admissible functions. Figure 4.2 and Figure 4.3 present the rate of convergence for the 
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data shown in Table 4.1. The comparison has been done for the results of n=1 to n=5, 

where more than three frequencies are available. They are all normalized with respect to 

the frequencies obtained for n=5. The frequencies below 1000 rad/s are compared in 

Figure 4.2. The maximum error is about 17% where only three functions as 

1j je e are used. The convergence speeds up as the number of admissible 

functions is increased.  Figure 4.3 demonstrates the convergence rate of the frequencies 

above 1000 rad/s when =0. All frequencies converge very quickly so that the use of 

few functions seems satisfactory, except for the breathing mode with =1905.483 rad/s.  

Table 4.2 presents the natural frequencies of the hybrid quarter-car model when the tire 

rotates with angular velocity ഥ߱=100 rad/s. The natural frequencies are not much different 

from those of the non-rotating ring, but there is a considerable difference between these 

results and those of the conventional model. It must be noted that the frequencies of the 

system at different rotating velocities are compared in the next chapter, and only the 

convergence of the results is considered in this chapter. All the frequencies of the hybrid 

quarter-car model are calculated in the non-rotating coordinate system. 

 

 

 

 

 



66 

Table 4.1: The natural frequencies of the hybrid quarter-car model with a non-rotating ring =0 

for the different number of functions employed in the Galerkin Method 

n=0 ࡺ =1 
 

n=1 ࡺ =3 
n=2 ࡺ =5 

n=3 ࡺ =7 
n=4 ࡺ =9 

n=5 ࡺ =11 

9.480 8.739 8.577 8.508 8.400 8.378 
 63.650 57.893 55.900 54.899 54.303 
 141.822 140.525 140.266 140.173 140.135 
  321.305 304.441 297.024 292.876 
  427.245 425.583 425.097 424.890 
   629.217 611.551 602.829 
   718.655 717.349 716.895 
    924.117 907.141 
    1005.895 1004.832 
     1217.920 
     1296.345 
      

583.877 1302.540 1649.652 1790.868 1861.938 1905.483 
 2316.856 2289.179 2282.010 2281.390 2284.443 
 2510.260 2578.853 2637.716 2679.794 2710.364 
  3852.260 3771.079 3732.847 3710.664 
  4317.903 4351.090 4375.411 4392.647 
   5715.085 5620.508 5570.825 
   6236.691 6252.064 6263.629 
    7657.796 7560.753 
    8186.488 8194.657 
     9628.651 
     10151.570 
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Figure 4.2: The convergence rate of the natural frequencies of a hybrid quarter-car model with a non-rotating ring vs. the number of functions applied 

in the Galerkin method (frequencies lower than 1000 rad/s) 
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Figure 4.3: The convergence rate of the natural frequencies of a hybrid quarter-car model with a non-rotating ring vs. the number of functions applied 

in the Galerkin method (frequencies higher than 1000 rad/s) 
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Table 4.2: The natural frequencies of the hybrid quarter-car model with a rotating ring with ഥ࣓ =100 

rad/s, for a different number of functions employed in the Galerkin Method 

n=0 ࡺ =1 
n=1 ࡺ =3 

n=2 ࡺ =5 
n=3 ࡺ =7 

n=4 ࡺ =9 
n=5 ࡺ =11 

9.480 8.826 8.670 8.585 8.547 8.524 
 67.492 60.819 58.467 57.300 56.608 
 137.801 135.401 134.903 134.728 134.650 
  308.233 298.400 293.791 291.127 
  477.174 443.259 433.489 428.527 
   543.779 543.088 542.784 
   900.333 699.971 694.101 
    903.585 856.794 
    1320.416 951.636 
     1313.869 
     1723.260 
      

583.394 1303.650 1651.749 1793.582 1866.833 1926.020 
 2233.986 2233.021 2243.285 2255.756 2271.841 
 2594.544 2632.548 2673.658 2705.403 2730.002 
  3759.752 3708.821 3686.143 3673.799 
  4418.358 4415.781 4422.282 4428.669 
   5580.805 5523.585 5493.548 
   6384.655 6351.660 6338.860 
    7464.196 7413.760 
    8400.368 8344.133 
     9366.577 
     10443.079 

Since the natural frequencies tabulated in Table 4.2 belong to the hybrid system, whole 

the system undergoes a vibration at each frequency. However, at each frequency the 

magnitude of one of the displacements may be higher than the others. For instance, the 

first frequency correspond to the vehicle bounce mode and the dispalacement of the 

sprung mass is larger. The mode shapes are plotted in the next chapter.  
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Figure 4.4: The convergence rate of the natural frequencies of a quarter-car model with a rotating ring ഥ࣓ =100 rad/s vs. the number of functions applied 

in the Galerkin method (frequencies lower than 1000 rad/s) 
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Figure 4.5: The convergence rate of the natural frequencies of a quarter-car model with a rotating ring ഥ࣓ =100 rad/s vs. the number of functions applied 

in the Galerkin method (frequencies higher than 1000 rad/s) 
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Figure 4.4 and Figure 4.5 show the normalized natural frequencies of the hybrid quarter-

car model with a rotating ring. The convergence of the frequencies obtained by using a 

different number of functions (maximum n=5) is compared. Adding the number of 

functions reveals a greater number of natural frequencies. It can be seen that the 

convergence rate significantly increases when more than three functions are used. 

However, the use of less than three functions is not recommended.  

 

4.3. FINITE ELEMENT METHOD 

The rotating ring type model for a tire is modeled with curved beam finite elements. 

Figure 4.6 presents a curved element that is used in the finite element model. It is 

assumed that the radial and tangential displacements at any arbitrary position of the 

element can be described by the following equations, respectively. 

( )v d ψ  (4.29) 

( )u c ψ  (4.30) 

where [d] and [c] vectors consist of six unknown elements, each as follows: 

1 2 3 4 5 6d d d d d dd  (4.31) 

1 2 3 4 5 6c c c c c cc  (4.32) 
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Figure 4.6: A curved beam element for the circular ring 

 

and [ψ(β)] is a spatial vector. This is used as a vector of shape functions obtained by 

using differential equations of static deformation of the element as [111]: 

( ) 1 sin cos sin cos Tψ  (4.33) 

The spatial derivative of the vector of interpolating functions is written as: 

( ) ( )ψ D ψ  (4.34) 

where D is defined as: 
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0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 0 0 1
0 0 0 1 1 0

D  (4.35) 

Then by considering static curved-beam equations, the coefficient of [c] can be written in 

terms of [d] as:  

1c d T  (4.36) 

where T1 is: 

1
3 4 20

1 4 2 4 2 2

NEI EA EI EA
a a a a a

T D D D I D  (4.37) 

Vector U is defined as follows to obtain the coefficients in vector [d] in terms of the 

radial and tangential displacements of the endpoints and in terms of the slope at the end 

points as follows: 

1 1 1
p p

j j j j j jv u u v u uU
 

(4.38)
 

By using Equations (4.29), (4.30), (3.35), and (4.36), U can be written as:  

1 1 0 1 0 1 0(0) (0) (0) ( ) ( ) ( )U d ψ Tψ TDψ ψ Tψ TDψ
 

(4.39)
 

Therefore, the vector [d] can be rewritten as: 

2d UT  (4.40) 
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where, 

1
2 1 1 0 1 0 1 0(0) (0) (0) ( ) ( ) ( )T ψ Tψ TDψ ψ Tψ TDψ  (4.41) 

The potential energy of a curved beam can be written as:  

0 2 2 20
4 2 20

1
2

NEI EAP u v u v u ad
a a a

 (4.42) 

However, to use the finite element method, the potential energy is sought in the form of: 

1
2

TP UKU  (4.43) 

Transforming all the unknown coefficients to U, the following equation for the stiffness 

matrix of such an element is obtained: 

0

0

0

2 2
2 1 2 2 1 24 0

2 1 2 2 1

0
2 1

22 0

12 0 2( ) T T T

TT

T T

T

EI ad
a
EA ad
a

dN
a

a

K T T D T D ψ ψ T TD T D

T T T D ψ ψ T T T

T Dψ T

D

T D Tψ

 (4.44) 

The kinetic energy of the curved beam as a function of u, v, Xu and Zu is written as 

follows:  

0 2

0

2

1 sin( ) cos( )
2

( ) cos( ) sin( )

u u

u u

K Aa u v X t Z t

v a u X t Z t d

i ( ) ( )i ( ) () (X i ( ) ()) ( )X sin( ) cos() cos() cos(X sin( ) cos()) cos() cos(Xu v Xu v XXXX

( ) i ( )( ) i () i (( ) i ( )( ) i () i (cos( ) sin(((v ((v (
 (4.45) 
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The radial and tangential displacements are replaced by U, and the kinetic energy is 

rewritten. The variation of the kinetic energy of the element in a non-rotating coordinate 

system is written as follows:  

0 0

0

0 0

0

0

0

2 2 2 20 0

2 2
2 20

2
2 1 2 2 1 20 0

2
2 20

2 0

2 0

/ ( )

2

( )

2 2

sin( )

cos( )

T TT T T T T

T T T T

T TT T T T T T T

T T T

u

K Aa

d d

d

d d

d

t d Z

t

UT ψ ψ T U UT ψ ψ D T U

UT ψ ψ D T U

UT ψ ψ T T U UT ψ ψ D T T U

UT ψ ψ T U

UT ψ

UT ψ

T0 T T TT0 T0 T0 D T U2
T TT Td0 T0

22T 2

2 22

Z

0 0

0

0 0

0

0

2 1 1 2 2 1 1 20 0

2 2
2 1 1 20

2
2 1 2 2 1 20 0

2
2 1 1 20

2 1 0

2

( )

2 2

cos( )

u

T TT T T T T T T

T T T T T

T TT T T T T

T T T T

u

d X

d d

d

d d

d

t d Z

UT T ψ ψ T T U UT T ψ ψ D T T U

UT T ψ ψ D T T U

UT T ψ ψ T U UT T ψ ψ D T U

UT T ψ ψ T T U
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X
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2 sin( )
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T T T T
u

t d X
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(4.46) 
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0
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sin( )
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The mass matrix and the stiffness matrix are assembled for N elements. There are (N+ 1) 

nodes in the finite element model. In order to satisfy the continuity of the ring, the 

(N+1)th node lies on the first node. The contact forces Tx and Tz, which are functions of 

the displacements and accelerations, are applied as the external forces to the element that 

is in contact with the ground. These forces are functions of ω. The mass, stiffness, 

damping, and external forces create an eigenvalue problem where the radial and 
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tangential displacements and the slopes are eigenvectors. The natural frequencies are the 

eigenvalues. 

Table 4.3 presents the first twenty natural frequencies of the hybrid model when the 

vehicle is stationary, i.e. ഥ߱=0. Increasing the number of elements reveals a greater 

number of frequencies. Also this table tabulates the relative error between the natural 

frequencies obtained by using N=60, N=72, and N=144 elements along the ring. The 

maximum error between the results from N=60 and from N=144 is about 2.8% showing a 

satisfactory convergence in the finite element model. The accuracy gained by doubling 

the number of the elements from 72 to 144 does not compensate for the time spent.  

Table 4.4 presents the natural frequencies of the hybrid quarter-car model with a rotating 

tire when ഥ߱=100. This angular velocity corresponds to the forward speed of 115 km/h. 

However, the convergence is evident. Since the influence of rotation will be discussed in 

the next chapter, only the variation of the natural frequencies with different numbers of 

elements is shown as well as the relative error. The results for N=144 are taken as 

reference to calculate the relative error. The relative error, calculated between the results 

gained by using N=60 and N=144 shows a maximum improvement of 5.5%. However 

this error reduces to 2.8% if N=72 elements are used.  
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Table 4.3: The natural frequencies of the hybrid quarter-car model with a non-rotating ring ( ഥ࣓ =0) obtained by FEA  

N=18 N=36 N=60 N=72 N=144 

ω(rad/s) ω(rad/s) ω (rad/s) relative error % ω(rad/s) relative error % ω(rad/s) 

9.496 9.489 9.489 0.0053 9.4886 0.0011 9.4885 
287.670 283.046 280.711 0.7730 280.2655 0.6131 278.5577 
397.544 390.063 388.385 0.1768 388.1638 0.1197 387.6997 
609.466 592.687 587.556 -0.4424 587.2234 -0.4987 590.1668 
709.856 681.175 674.717 0.2645 673.9935 0.1570 672.9370 
943.220 892.582 878.743 0.5672 877.1284 0.3824 873.7872 

1070.434 1000.557 984.657 0.4297 982.9822 0.2588 980.4445 
1320.987 1206.893 1178.710 0.2407 1176.0714 0.0163 1175.8800 
1445.722 1291.998 1255.710 0.7834 1251.7973 0.4694 1245.9489 
1731.861 1522.362 1473.494 0.5489 1469.2357 0.2584 1465.4496 
1900.481 1635.521 1564.396 1.8782 1555.4809 1.2976 1535.5551 
2228.650 1761.295 1669.505 1.5478 1660.3096 0.9885 1644.0581 
2385.411 1899.409 1800.103 1.0674 1790.0587 0.5035 1781.0916 
2590.987 2051.672 1953.007 0.9917 1943.9218 0.5219 1933.8293 
2978.033 2230.574 2092.292 1.4196 2079.3519 0.7924 2063.0046 
3014.081 2361.155 2207.593 1.5129 2192.6317 0.8250 2174.6911 
3477.653 2488.322 2321.271 1.3643 2305.9802 0.6966 2290.0282 
3690.971 2735.396 2513.676 1.5859 2492.7444 0.7400 2474.4347 
4068.384 2849.169 2622.601 1.7575 2600.9741 0.9183 2577.3061 
4388.903 3199.793 2880.545 2.8295 2847.1965 1.6390 2801.2840 
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Table 4.4: The natural frequencies of the hybrid quarter-car model with a rotating ring ( ഥ࣓ =100 rad/s) obtained by FEA  

N=18 N=36 N=60 N=72 N=144 

ω (rad/s) ω (rad/s) ω (rad/s) relative error % ω (rad/s) relative error % ω (rad/s) 

9.4871 9.4869 9.4869 0.0000 9.4869 0.0000 9.4869 
288.6579 282.9018 280.1268 0.6300 279.6865 0.4718 278.3731 
407.9175 392.2881 386.8513 0.3083 386.1597 0.1290 385.6622 
569.353 549.5164 544.124 -0.2202 543.8248 -0.2751 545.3250 

747.6596 679.6672 659.2539 0.7708 656.9629 0.4206 654.2115 
906.1717 850.2398 827.4082 0.2935 824.9562 -0.0037 824.9869 

1106.6979 956.3364 917.3778 0.9227 913.5292 0.4994 908.9901 
1338.1405 1175.1526 1108.6844 1.2915 1102.0692 0.6872 1094.5480 
1525.9204 1305.1307 1238.4693 1.5554 1230.0898 0.8683 1219.5011 
1833.8494 1497.4557 1391.4747 1.0590 1382.7982 0.4289 1376.8929 
1999.5993 1633.2825 1516.4997 2.6106 1501.7285 1.6112 1477.9168 
2340.1814 1812.8222 1639.2701 2.4430 1622.6213 1.4026 1600.1772 
2582.5449 1909.0480 1762.4836 2.1736 1744.325 1.1210 1724.9887 
2867.2631 2133.5335 1915.6631 2.1564 1895.5956 1.0863 1875.2256 
3123.1556 2272.0614 2063.5632 2.7177 2039.4547 1.5176 2008.9665 
3252.9017 2435.1601 2187.7658 2.8131 2158.6905 1.4467 2127.9051 
3810.3735 2650.9184 2312.3594 2.1755 2288.3644 1.1152 2263.1249 
4009.491 2779.1708 2496.6086 4.1152 2447.3679 2.0617 2397.9294 

4430.9489 3130.7555 2634.2192 2.3504 2605.7666 1.2449 2573.7258 
4723.0362 3261.8872 2859.793 5.4715 2787.1358 2.7919 2711.4355 
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4.4. CONCLUDING REMARKS  

In this chapter, the equations of the motion of the model, which was introduced earlier, 

was solved by using two approximate methods. The first method was the Galerkin 

method. The trigonometric functions, which are the modes of the center-fixed ring as 

shown in Chapter 2, were used as admissible functions. The natural frequencies were 

obtained, and the convergence was studied. Although the model is a complicated model, 

it was shown that even using the first five harmonics of the ring produces excellent 

results.  

In the second part of this chapter, the finite element solution of the model was analyzed. 

It can be seen that the results of FEA are similar to those obtained using the Galerkin 

method. The convergence is also investigated. These two approximate methods can be 

used when dealing with a three-dimensional model. For instance the Galerkin method can 

be used to solve the equations of motion when the tire is modeled as a rotating shell. Also 

the finite element method is applicable to problems with more complicated geometries. 

The finite element method can take into account the sidewall of the tire as well as the 

thread pattern.  

In the next chapter, the equations of motion of the hybrid model are solved analytically. 

A closed-form solution is presented for the rotating ring in contact with the road. The 

natural frequencies are obtained and the mode shapes are presented. The comparison of 

both the rotating and non-rotating rings is performed.  



82 

CHAPTER 5 ANALYTICAL SOLUTION 

OF THE HYBRID MODEL 

5.1. INTRODUCTION 

An analytical solution of the hybrid quarter-car model is presented in this chapter. The 

rotating ring model is considered, and the boundary conditions and the external forces are 

applied. The contact point between the rotating tire and the road is treated as the 

boundary condition of the rotating ring, where the radial displacement and the tangential 

displacement of the tire create the vertical and horizontal displacement of the center of 

the tire, respectively. The forces and the moments at the contact point, which are 

functions of the dynamic response of the system, are employed in the eigen-value 

problem. A new method is introduced to investigate the effects of the displacements and 

the accelerations of the center of the ring, as well as the effects of the rotating tire 

dynamics, on the dynamic response of a vehicle system. The analytical solution enables 
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us to find the exact natural frequencies and the mode shapes of the hybrid model. It also 

provides the exact expressions for the horizontal and vertical components of the contact 

force that is used in the calculation of the response to the road excitation.  

5.2. METHODOLOGY OF ANALYTICAL SOLUTION 

Figure 5.1 shows the hybrid model of a vehicle. The forces and the moments at the 

contact point are shown in detail. The contact point is located at φ=π. In order to solve the 

equations of motion analytically, the vertical and horizontal components of the contact 

force are removed from the equations of motion and considered as boundary conditions. 

After neglecting the effects of gravity and of static deflection, the equations of motion are 

rewritten as: 

4 3 2
0

4 4 3 2 2 2

2
2

2 2 cos sin 0u u

NEI U V EA V UU
a a a

D U DVA U Z X
Dt Dt

iiisincos sincoscos  

(5.1) 

3 2 2

4 3 2 2 2

2
2

2 2 sin cos 0u u

EI U V EA V U
a a

D V DUA V Z X
Dt Dt

iiiii cosi cossinsin  

(5.2) 

2 2

2 2( ) cos sinz w u t u u s
U VT m Z m Z k Z Z a A d
t t

Z Z k Z(Z m Z kZ (ttt (

 

(5.3)
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Figure 5.1: The schematic of a 2-D model of a vehicle: Forces and moments at the contact area 

 

2 2

2 2sin cosx w u t u
U VT m X m X a A d
t t

X X AX m X a Am Xtt A

 

(5.4)

 

( ) 0s s s um Z k Z ZZ k(k(

 

(5.5) 

The angular coordinate of the ring is considered in the interval of (-π,π), enabling us to 

use symmetry in the solutions. Accordingly, in Equations (5.3) and (5.4) the limits of 
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integration are changed to (-π,π). The ring is considered an open ring with a cut at the 

contact point. The boundary conditions are defined as: 

( , ) ( , ) xN t N t T

 

(5.6) 

( , ) ( , ) zS t S t T

 

(5.7) 

( , ) ( , )M t M t

 

(5.8) 

( , ) ( , )U t U t

 

(5.9) 

( , ) ( , )V t V t

 

(5.10) 

( , ) ( , )U t U t

 

(5.11) 

As can be seen, the equations above satisfy the continuity of the radial and tangential 

displacements, the slope, and the bending moment at the contact point as well as the 

discontinuity in both axial and shear forces. The axial force, bending moment, and shear 

force at the cross section of the ring are defined as:  

EA VN U
a

 

(5.12) 

2

2 2

EI V UM
a

 

(5.13) 

2 3

3 2 3

EI V US
a

 

(5.14)
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The separation of variables is used to solve Equations (5.1)–(5.5). By assuming a 

harmonic solution with a frequency of ω for the time part of the solutions, one can write 

the following equations: 

4 3 2
20

4 4 3 2 2 2

2 2 2 22 2 2 cos sinu u

NEI U V EA V UU A U
a a a

jU U jV V U A Z X  

(5.15) 

3 2 2
2

4 3 2 2 2

2 2 2 22 2 2 sin cosu u

EI U V EA V U A V
a a

jV V jU U V A Z X  

(5.16) 

2 2 2( ) cos sinz w u t u u sT m Z m Z k Z Z a A U V d

 

(5.17)

 

2 2 2 sin cosx w u t uT m X m X a A U V d

 

(5.18)

 
2 ( ) 0s s s um Z k Z Z

 

(5.19) 

The equations above are non-homogenous ordinary differential equations. The solutions 

of U and V are assumed as: 

( ) ( ) ( )h pU U U

 

(5.20) 

( ) ( ) ( )h pV V V

 

(5.21) 

where the index h and p refer to the homogenous solutions and the particular solutions, 

respectively. The homogenous solution of a system of ordinary differential equations 

with constant coefficients is assumed as:   
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( )hU e

 

(5.22) 

( )hV e

 

(5.23) 

In order to find the homogenous solutions, the right hand sides of Equations (5.15) and 

(5.16) are considered zero, and, then, Equations (5.22) and (5.23) are substituted for U 

and V, respectively. The results are expressed in the following format:  

24 2 2 30
4 2 2 4 2

23 2 2 2
4 2 4 2

2
0
0

2

NEI EA EI EAA j A j
a a a a a

EI EA EI EAA j A j
a a a a  

(5.24) 

The equation above is solved for λ which is a function of ω. The determinant is a 6th 

order equation. Therefore, the homogenous solutions of U and V are written as:  

6

1
( ) j

h j
j

U e

 

(5.25) 

6

1
( ) j

h j
j

V e

 

(5.26) 

In the equations above, αjs are six constants, which are to be determined by using the 

boundary conditions at the contact point. βjs are obtained as functions of αjs and ω 

according to Equation (5.24).  

In order to find the particular solution of Equations (5.15)–(5.16), the following identities 

are used: 
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cos sin
2 2

j j j je e e e
j

 

(5.27) 

and Equations (5.15)–(5.16) are rewritten as: 

4 3 2
0

4 4 3 2 2 2

2
2 2 2 2
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2 2 2
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j
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j
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EI U V EA V U
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(5.29)

 

At this step, Xu and Zu are treated as temporarily unknown constants that are multiplied 

by the exponential function. First, the responses of the equations above to je  are 

obtained: 

4 3 2
0

4 4 3 2 2 2

2
2 2 2 22 2 2

2
j

NEI U V EA V UU
a a a

AA U jU U jV V U e  

(5.30) 

3 2 2

4 3 2 2 2

2
2 2 2 22 2 2

2
j
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AA V jV V jU U V je  

(5.31)
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The solution is assumed in the form of 

( ) ( )j j
p pU e V e

 

(5.32) 

in which αp and βp are obtained from the following equation:  

2 20
4 2 2 4 2 2

2 2
4 2 4 2

2
1

2
2

p

p

NEI EA EI EAA j A
a a a a a A

jEI EA EI EAj A A
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(5.33)

 

Finally, the particular solutions of Equations (5.28)–(5.29) are written as: 

( ) j j
p u u p u u pU Z jX e Z jX e

 

(5.34) 

( ) j j
p u u p u u pV Z jX e Z jX e

 

(5.35) 

in which p and p  are the conjugates of p and p , respectively. By substituting the 

coordinate of the contact point in equations (5.20) and (5.21) as: 

( ) ( ) ( )h pU U U

 

(5.36) 

( ) ( ) ( )h pV V V

 

(5.37) 

and using the fact that the displacements of the center of the tire are related to the radial 

and tangential displacements of the contact point, i.e.  

( )uX V
 

(5.38) 

( )uZ U
 

(5.39)
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the following equations are written: 

( ) j j
u h u u p u u pZ U Z jX e Z jX e

 

(5.40) 

( ) j j
u h u u p u u pX V Z jX e Z jX e

 

(5.41) 

The equations above are rewritten in the matrix form as shown below. Solving these 

equations, one can obtain Xu and Zu in terms of αjs and ω. 

1 ( )
1 ( )

p p p p u h

p p p p u h

j j Z U
j j X V

 

(5.42) 

Finally, U, V, Xu, and Zu are substituted in Equations (5.6)–(5.11) resulting in an eigen-

value problem. The eigen-values are the natural frequencies. Also the eigen-vectors 

demonstrate the six αjs that determine the mode shapes.   

5.3. FREE VIBRATION RESPONSE  

Table 5.1 tabulates the natural frequencies of the hybrid quarter-car model for different 

angular velocities of the tire and Figure 5.2 demonstrates the variation of the frequencies 

at different angular velocities. The comparison is done for the angular velocity in the 

range of ഥ߱=0 to ഥ߱=120 rad/s. The conversion of each angular velocity to the 

corresponding forward speed of the vehicle is shown in Table 5.2.  
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Table 5.1: The natural frequencies of the hybrid quarter-car model at different angular velocities 

 ഥ࣓=0 ഥ࣓=20 ഥ࣓=40 ഥ࣓=60 ഥ࣓=80 ഥ࣓=100 ഥ࣓=120 

ω1 8.380 8.383 8.396 8.414 8.439 8.471 8.505 

ω2 52.704 52.788 53.041 53.455 54.021 54.726 55.556 

ω3 140.054 139.817 139.110 137.958 136.406 134.527 132.426 

ω4 282.201 282.247 282.398 282.683 283.178 283.939 285.022 

ω5 424.466 424.236 423.503 422.128 419.932 416.789 412.689 

ω6 582.362 579.636 572.432 562.739 552.296 542.085 532.375 

ω7 716.056 716.978 717.473 712.690 700.179 682.278 662.632 

ω8 875.084 867.741 852.951 840.772 832.957 822.770 804.420 

ω9 1003.374 1008.419 1010.539 993.939 968.110 946.861 932.526 

ω10 1167.301 1153.913 1137.199 1135.350 1126.000 1096.160 1062.735 

ω11 1293.591 1304.467 1301.896 1272.402 1254.024 1247.173 1220.209 

  

Table 5.2 The conversion of the angular velocity of the tire to the forward speed of the vehicle ഥ࣓  angular velocity of tire 
(rad/s) 

0 20 40 60 80 100 120 

forward speed of vehicle 
(m/s) 

0 6.4 12.8 19.2 25.6 32 38.4 

forward speed of vehicle 
(km/h) 

0 23.04 46.08 69.12 92.16 115.2 138.24 

 

As discussed in Chapter 2, the analytical solutions for the free vibration of a circular ring 

show that each natural frequency of a non-rotating ring splits into two natural frequencies 

for the rotating ring because of the effects of the rotation. Also it was shown that the 

breathing mode is an exception (n=0). The tire, in contact with the road, is no longer a 

center-fixed circular ring, free at the circumference. Consequently, the bifurcating natural 

frequencies, which increase and decrease with the multiple of the angular velocity of the 

ring, do not occur [72, 75]. “Occasionally a gyroscopic split can be detected, when the 



92 

contact state does not disturb the eigenmode” [72]. The effect of the rotation on the lower 

natural frequencies is not significant, such that the difference between the frequency at ഥ߱=0 and the one at ഥ߱=100 rad/s is about 1%. The first and the second frequencies of the 

hybrid system are very close to those of a two degree-of-freedom quarter-car model. 

However, the higher frequencies mostly decrease by increasing the angular velocity of 

the ring. 

The natural frequencies obtained by using the three different methods of the Galerkin, the 

FEA, and the exact solution, are compared in Figure 5.3. The results of the analytical 

solution are taken as the reference. The frequencies obtained by using the Galerkin 

method and the finite element Method are normalized with respect to those from the 

analytical method. The comparison has been done for two different cases:  

(a) a hybrid quarter-car model with a non-rotating ring ( ഥ߱=0)  

(b) a hybrid quarter-car model with a rotating ring ഥ߱=100 rad/s  

Since the finite element method did not provide reliable answers for the second and the 

third natural frequencies of the model, these results are not included in the comparison. It 

can be seen that the results by using the different methods are more or less similar. Both 

cases show a maximum deviation of about 13 %, which occurs at the first frequency. 
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Figure 5.2: The natural frequencies of the hybrid quarter-car model for different angular velocities 

of the ring 



94 

 

 

Figure 5.3: Comparison of the natural frequencies obtained by using different methods (a) non 

rotating ring (b) rotating ring ഥ࣓ =100 rad/s 
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Figures 5.4 to 5.7 demonstrate the first four modes of the model with a non-rotating ring. 

The radial and the tangential displacements are shown for each mode as well as the 

vertical and the horizontal displacements of the center of the tire and the vertical 

displacement of the vehicle body. The radial displacement of the ring is shown in a polar 

coordinate system. The un-deformed tire is also shown as a dashed circle. The 

displacements in each mode are relative, so that they can be multiplied by an arbitrary 

number. In order to make the comparison easier, the maximum radial displacement of the 

ring is considered as one, and the rest of the displacements are normalized accordingly. 

For the first mode, the sprung mass displacement is more dominant, whereas the radial 

and the tangential displacements are moderate. At this mode, the displacement of the 

sprung mass is 4.55 times larger than the displacement of the center of the wheel 

(unsprung mass). These displacements are in phase. The tangential displacement at the 

tire-road contact is zero. Therefore, the horizontal displacement of the center of the tire is 

zero, too. 
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Figure 5.4: The first mode of the hybrid quarter-car model with a non-rotating tire. The radial 

displacement of tire U (top) and the tangential displacement of tire V (below). ω= 8.3803 rad/s, Zs= -

4.552, Zu=-1, Xu=0 
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As shown in Figure 5.5, the radial displacement and consequently the vertical 

displacement of the unsprung mass are the most dominant displacements for ω=52.7044 

rad/s. The sprung mass moves with a small amplitude in the opposite direction of the 

unsprung mass. The maximum tangential displacement is about half of the maximum 

radial displacement, occurring at φ = ± π/2. The tangential displacement at the contact 

area and Xu are both zero.  

The third mode shows a large amplitude of vibration for V and Xu. The maximum 

tangential displacement is twice as large as the maximum radial displacement of the ring. 

However, the maximum U occurs at φ = – π/2, and the maximum V occurs at φ = 0. The 

fourth vibration mode of the system is shown in Figure 5.7. At this mode, the vertical 

displacement of the unsprung mass is almost 1000 times larger than the sprung mass 

displacement. The maximum radial displacement occurs at the top of the ring, and the 

radial displacement at the contact point is 0.0313 times of that displacement. 
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Figure 5.5: The second mode of the hybrid quarter-car model with a non-rotating tire. The radial 

displacement of the tire U (top) and the tangential displacement of tire V (below). ω=52.7044 rad/s, 

Zs= 0.0335, Zu=-1, Xu=0 
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Figure 5.6: The third mode of the hybrid quarter-car model with a non-rotating tire. The radial 

displacement of tire U (top) and the tangential displacement of tire V (below). ω=140.0543 rad/s, Zs= 

0, Zu=0, Xu= 0.1783 
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Figure 5.7: The fourth mode of the hybrid quarter-car model with a non-rotating tire. The radial 

displacement of the tire U (top) and the tangential displacement of the tire V (below). ω=282.2011 

rad/s, Zs=3.5357×10-5, Zu= -0.0313, Xu=-2.1152×10-8 
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Figure 5.8: The first mode of the hybrid quarter-car model with a rotating tire ഥ࣓ =100 rad/s. The 

radial displacement U (top) and tangential displacement V (below). ω=8.4712 rad/s, Zs=-4.9300–

0.2114i, Zu= –0.9991–0.0428i, Xu≈0 
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Figure 5.9: The imaginary parts of the displacements of the rotating ring at the first mode ഥ࣓ =100 

rad/s. ω=8.4712 rad/s radial displacement (left) and tangential displacement (right) 

 

Figure 5.8 demonstrates the first mode of the hybrid quarter-car model with a rotating 

ring ( ഥ߱=100). The radial and tangential displacements are similar to those of the model 

with a non-rotating ring (Figure 5.4). The difference is that the modes become complex 

when there is rotation. Figure 5.8 shows only the real parts of the radial and tangential 

displacements of the ring. Figure 5.9 demonstrates the imaginary parts of U and V at the 

first mode. The maximum of the imaginary parts reaches 4% of the maximum of the real 

parts for the first natural frequency. Similar to the results for the model with a non-

rotating ring, the amplitude of the sprung mass vibration is larger than the amplitude of 

Zu. Both displacements are in phase.  
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Figure 5.10: The second mode of the hybrid quarter-car model with a rotating tire ഥ࣓ =100 rad/s. The 

real and imaginary parts of the radial displacement of the ring U (top) and real and imaginary parts 

of the tangential displacement of the ring V (below). ω=54.7260 rad/s, Zs=0.0298 + 0.0085i, Zu= -

0.9618 – 0.2736i, Xu= –0.0021 + 0.0072i 
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of the real and the imaginary parts. Apparently, at the higher modes, the magnitudes of 

the radial and tangential displacements that occur at the ring are larger than the 

displacement of the sprung mass or those of the unsprung mass.  

 

Figure 5.11: The third mode of the hybrid quarter-car model with a rotating tire ഥ࣓ =100 rad/s. The 

real and imaginary parts of the radial displacement of the ring U (top) and the real and imaginary 

parts of the tangential displacement of the ring V (below). ω=134.5266 rad/s, Zs=1.6857×10-5 -

8.7983×10-6i, Zu=  -0.0034 + 0.0018i, Xu=  -0.1028 - 0.1970i 
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Figure 5.12: The fourth mode of the hybrid quarter-car model with a rotating tire ഥ࣓ =100 rad/s. The 

real and imaginary parts of the radial displacement U (top) and the real and imaginary parts of the 

tangential displacement V (below). ω=283.9394 rad/s, Zs=5.5252×10-6 –3.8434×10-5i, Zu= – 0.0049 – 

0.0344i, Xu= –0.0061 + 0.0009i 
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Figure 5.13: The fifth mode of the hybrid quarter-car model with a rotating tire ഥ࣓ =100 rad/s. The 

real and imaginary parts of the radial displacement U (top) and the real and imaginary parts of the 

tangential displacement V (below). ω= 416.7889 rad/s, Zs= 1.3268×10-6 – 2.7162×10-6i, Zu=-0.0026 + 

0.0052i, Xu=-0.0033 - 0.0016i 
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displacement is larger in the first mode, moving in phase, whereas in the second mode, 

the vertical displacement of the sprung mass is smaller and it moves out of phase with 

respect to the unsprung mass.  

5.4. CONCLUDING REMARKS 

The analytical solution of a hybrid quarter-car model was obtained. The significance of 

the solution is that, unlike the rings that are fixed at the center, the center of the ring was 

free to move horizontally and vertically. The constraint was located at the contact point. 

This ring represented the model of a tire as a part of the hybrid quarter-car model. The 

ring is in contact with the road at all times, and the dynamic forces are applied through 

the contact area. The natural frequencies were obtained and compared with those 

obtained by using the approximate methods. The modes were presented. It was shown 

that the modes become complex when the ring rotates. This phenomenon was discovered 

in the experiments performed by Kindt et al. [78, 81]. Also the sprung mass displacement 

reduces at the higher modes, indicating that at the higher modes the tire displacements are 

more dominant.  

In the next chapter, a mode summation solution is presented using the natural frequencies 

and the mode shapes obtained in this chapter. The purpose of the mode summation is to 

find the frequency response of the quarter-car model to harmonic road excitation. The 

frequency response is used to investigate the response of the vehicle system with a 

rotating tire to a random road excitation.  



108 

CHAPTER 6 VEHICLE RESPONSE TO 

ROAD EXCITATION 

6.1. INTRODUCTION 

The response of the hybrid quarter-car model of a vehicle to the excitation applied by the 

road is studied in this chapter. The road roughness Zr is taken into account and its effects 

on the boundary conditions of the ring and on the kinetics of the tire are included. Also, 

the damping of the suspension system, which was neglected in previous chapters, is 

added. In the following sections, first the response of the hybrid quarter-car model to an 

external excitation is obtained by using the mode summation method. Then, by using 

these results, the frequency response of the system is obtained. Finally, the spectral 

densities of the contact forces and the displacement response of the model are studied 

when subjected to random road excitations corresponding to a standard road profile.  
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6.2. MODAL ANALYSIS 

Figure 6.1 shows the hybrid quarter-car model subjected to road roughness. The vertical 

position of the center of the tire is introduced as Z'u, which is equal to the sum of the 

displacements caused by the road roughness and by the tire deflection. In other words, the 

vertical position of the unsprung mass can be written as: 

( ) ( ) ( )u u rZ t Z t Z t

 

(6.1) 

u

v
θ

φ Z

t

Zr(t)

S

O

msZs(t)
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X
x

z

Xu(t)

Z'u(t)

Zu(t)

 

Figure 6.1: Schematic of a hybrid quarter-car model of a vehicle subjected to road roughness 
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where Zr(t) is the road profile and Zu(t) is the vertical displacement at the center of the tire 

caused by the radial displacement of the ring: 

( ) ( , )uZ t U t

 

(6.2)

 
By replacing Equation (6.1) in the equations of motion, the following equations are 

obtained.  
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Since the road excitation is an input to the system, nonhomogeneous terms Zr and its 

derivatives appear on the right-hand side of the equations above. Also, the damping of the 

suspension system is added.  

In order to use the mode summation method, the solutions of Equations (6.3)–(6.7) are 

expressed as: 

1
( ) ( )u un n

n
Z t Z q t

 

(6.8) 

1
( ) ( )u un n

n
X t X q t

 

(6.9) 

1
( ) ( )s sn n

n
Z t Z q t

 

(6.10) 

1
( , ) ( ) ( )n n

n
U t U q t

 

(6.11) 

1
( , ) ( ) ( )n n

n
V t V q t

 

(6.12) 

where Zun and Xun are the vertical and horizontal displacements of the center of the tire in 

the nth mode of the system. Zsn is the displacement of the vehicle body for the nth mode, 

and Un and Vn are the radial and tangential displacements of the nth mode of the ring, 

respectively. The series above are truncated at the Nth terms and then substituted in 

Equations (6.3)–(6.7). After some mathematical operations, the equations are cast in the 

matrix form as: 



112 

M q C q K q Fq C q K q

 

(6.13) 

in which [M], [C], and [K] are N×N matrices. The external excitation on the right hand 

side of the equations consists of the forces caused by the road excitation as follows:  

( )cos ( )sin 1,2,...,

( )

m r m r m

w t
r um r um r um r sm r sm

AZ U d AZ V d m N

m m k c k cZ Z Z Z Z Z Z Z Z Z
a a a a a

F Z U d AZ V ( ) i( ) inZ ( )sin(Z U d AZU d AZ( )U ( )U ( )cos(
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(6.14) 

Solving Equation (6.13) will provide us with the radial and the tangential displacements 

of the ring and the displacements of the center of the tire (unsprung mass) and the vehicle 

body (sprung mass). Moreover, the damped frequencies of the hybrid quarter-car model 

can be obtained by equating the right-hand side of Equation (6.13) to zero. Table 6.1 

tabulates the damped frequencies of the hybrid quarter-car model at different angular 

velocities. The first column refers to the model with a non-rotating ring. In other words, it 

means the frequencies of a vehicle that is not moving. The first, second, and the fourth 

frequencies are complex because of the addition of the damping. At the other frequencies, 

the real parts of the frequencies are negligible. As the angular velocity of the ring is 

increased, the real parts also increase. Also the damped frequencies are lower than the 

natural frequencies. For example, the fifth and sixth natural frequencies of the model with ഥ߱=100 rad/s are 416.789 rad/s and 542.084 rad/s but the corresponding damped natural 

frequencies are –21.14×10-3± j 399.56 rad/s and  –1.07×10-3± j 472.13 rad/s.  
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Table 6.1: Comparison of the damped frequencies of the hybrid quarter-car model at different velocities ഥ࣓=0 (rad/s) ഥ࣓=20 (rad/s) ഥ࣓=40 (rad/s) ഥ࣓=60 (rad/s) ഥ࣓=80 (rad/s) ഥ࣓=100 (rad/s) 

-2.62 ±j 8.27 -2.62 ±j 8.27 -2.64 ±j 8.28 -2.66 ±j 8.29 -2.69 ±j 8.30 -2.74 ±j 8.31 

-27.62 ±j 41.45 -27.62 ±j 41.56 -27.59 ±j 41.88 -27.55 ±j 42.40 -27.49 ±j 43.11 -27.42 ±j 43.99 

-1.46×10-12 ±j 140.05 -6.92×10-5 ±j 139.81 -0.27×10-3 ±j 139.10 -0.60×10-3 ±j 137.94 -1.40×10-3 ±j 136.38 -2.93×10-3 ±j 134.45 

-0.42 ±j 282.11 -0.42 ±j 282.09 -0.43 ±j 282.04 -0.44 ±j 281.96 -0.46 ±j 281.88 -0.48 ±j 281.71 

1.16×10-13 ±j 424.46 -0.79×10-3 ±j 423.82 -3.08×10-3 ±j 421.77 -7.46×10-3 ±j 417.86 -13.33×10-3 ±j 411.15 -21.14×10-3 ±j 399.56 

-1.67×10-3 ±j 582.36 -1.56×10-3 ±j 578.22 -1.62×10-3 ±j 566.07 -0.46×10-3 ±j 546.23 0.21×10-3 ±j 517.54 -1.07×10-3 ±j 472.13 

5.95×10-13 ±j 716.05 -1.57×10-3 ±j 713.95 -0.29×10-3 ±j 704.35 0.34×10-3 ±j 674.78 -0.98×10-3 ±j 601.68 0.44×10-3 ±j 486.09 

-0.107×10-3 ±j 875.08 -9.68 ×10-5 ±j 861.63 -8.02×10-5 ±j 826.06 -0.11×10-3 ±j 772.18 -0.49×10-3 ±j 671.14 -1.49×10-3 ±j 585.52 

-4.46×10-13 ±j 1003.37 -5.76 ×10-5 ±j 999.04 -0.17×10-3 ±j 966.62 1.95×10-3 ±j 869.76 -0.85×10-3 ±j 798.27 -1.38×10-3 ±j 785.47 

-1.46×10-5 ±j 1167.30 -8.85×10-5 ±j 1138.32 -2.31×10-3 ±j 1076.97 -4.35×10-3 ±j 1032.55 -1.90×10-3 ±j 1009.72 0.92×10-3 ±j 1008.46 

-7.14×10-13 ±j 1293.59 -3.07×10-5 ±j 1284.44 -1.91×10-3 ±j 1238.74 -1.70×10-3 ±j 1182.44 0.38×10-3 ±j 1151.64 2.28×10-3 ±j 1135.58 
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6.3. RANDOM VIBRATION ANALYSIS 

The modal analysis introduced in the previous section is used to find the frequency 

response of the hybrid quarter-car model to the road harmonic excitation. Attention is 

given to the vertical contact forces Tz, the horizontal contact force Tx, the vertical 

displacement of the unsprung mass (center of the tire-wheel assembly) Zu, the horizontal 

displacement of the tire hub Xu, the vertical displacement of the sprung mass (vehicle 

body) Zs, and the vertical acceleration of the vehicle body ܼ௦̈. The parameters mentioned 

above are calculated for the frequency range of ω = 0  ̶ 1000 rad/s for the tire angular 

velocity of ഥ߱=20, ഥ߱=40, ഥ߱=60, ഥ߱=80, ഥ߱=100 rad/s. Each angular velocity corresponds 

to a forward speed of v = ഥ߱a, where a is the radius of the ring. These forward speeds are 

23, 46, 69, 92, and 115 km/h, respectively. The frequency response H(ω) that is obtained 

by applying a harmonic excitation in Equations (6.13) and (6.14) will be used in the 

calculation of the spectral densities. For example, the spectral density of the vertical 

contact forces Tz is obtained by using the following equation: 

2
( ) ( ) ( )

z zT T rS H S

 

(6.15) 

where, Sr(ω) is the spectral density of the road. Many forms of road roughness spectral 

density models are available, corresponding to the type of the road. The present study 

uses the spectral density of the smooth road that is used by Sun [4] given by:  

2.01
61( ) 3.37 10rS

v v
 

(6.16) 
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where v is the forward speed of the vehicle in m/s. Figure 6.2 shows that the spectral 

density of the road roughness corresponds to an angular velocity of 60 rad/s and a 

forward speed of 69 km/h. The spectral density of the road roughness and the frequency 

response of the hybrid quarter-car model to a harmonic excitation are used to obtain the 

spectral density of the response of the hybrid model to road excitations. The results are 

presented in Figures 6.3 to 6.11.  

 

 

Figure 6.2: The spectral density of road roughness experienced by a passenger of a vehicle moving at 

v= 69 km/h and tire angular velocity ഥ࣓ =60 rad/s 
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Figure 6.3 shows the spectral density of the vertical contact force, Tz, of the hybrid 

quarter-car model at different velocities. Also the spectral density of the vertical contact 

force, Tz, of a traditional two degrees-of-freedom quarter-car model at different velocities 

is shown in Figure 6.4. Two damped frequencies of the 2DOF model are clear at the 

spectral density of the vertical contact force. However, Figure 6.3 shows the resonance at 

all the frequencies of the hybrid model.  

Increasing the velocity of the vehicle causes a larger vertical force at the contact area. 

The magnitude of the mean square of the vertical contact force is tabulated in Table 6.2. 

Comparison shows that increasing the angular speed of the rotating tire from 20 to 100 

rad/s makes the dynamic vertical force at the contact point 10 times larger. Although the 

vertical contact force for the 2 DOF model increases by increasing the speed, the rate is 

slower. The reason is that this model does not include the frequencies of the continuous 

system.  

Figure 6.5 shows the horizontal force at the contact point between the rotating tire and the 

road. Since the 2-DOF system does not provide any results regarding the horizontal force, 

it is not possible to compare the two different models. The effect of the rotating velocity 

of the tire on the first five damped frequencies of the hybrid model is negligible. 

However, the frequencies above 400 rad/s decrease as the angular velocity increases. The 

mean square of the horizontal force, shown in Table 6.2, illustrates how the horizontal 

contact force increases at higher velocities.  
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Figure 6.3: The spectral density of the vertical contact force of the hybrid quarter-car model 
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Figure 6.4: The spectral density of the vertical contact force of a 2-DOF quarter-car model 
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Figure 6.5: The spectral density of the horizontal contact force of the hybrid quarter-car model 
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Figure 6.6: The spectral density of the vertical displacement of the center of tire for the hybrid quarter-car model 
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Figure 6.7: The spectral density of the vertical displacement of the unsprung mass (center of tire) for the 2DOF quarter-car model 
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Figure 6.8: The spectral density of the horizontal displacement of the center of the tire for the hybrid quarter-car model
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Figure 6.6 and Figure 6.7 show the spectral density of the vertical displacement of the 

center of the tire for the hybrid model and for the traditional 2-DOF model, respectively. 

In both figures, the results are shown for five different velocities. The magnitude of the 

displacement response for the hybrid model is higher than that obtained for the 2-DOF 

model. However, the mean square of the vertical displacement Zu, presented in Table 6.2, 

indicates that the vertical displacement of the unsprung mass for the hybrid model is 100 

times smaller, reflecting the effect of the dynamics of the rotating tire at higher 

frequencies. In other words, Zu obtained by 2-DOF model is much larger than Zu of the 

hybrid model. Figure 6.8 shows the spectral density of the horizontal displacement of the 

center of the tire for the hybrid model. Figure 6.6 and Figure 6.8, both show how the 

vehicle encounters higher displacement at higher speeds. Moreover, the magnitude of Xu 

is smaller than Zu. There is also a difference between the vertical displacement and the 

horizontal displacement of the center of the tire. Zu decreases quite rapidly as the 

frequency increases, but Xu does not show such behavior. Xu is obtained for a quarter-car 

model without the spring and the damper in the horizontal direction. In a real vehicle, the 

tire-road contact area acts like a spring in the horizontal direction. This characteristic is 

neglected in the present model. 

Figure 6.9 and Figure 6.10 show the spectral density of the passenger vertical 

displacement in the case of the hybrid model with a rotating tire and in the case of the 

traditional 2-DOF model, respectively. The magnitude of the displacement decreases with 

increasing the frequency. The peaks at the damped natural frequencies of the hybrid 

system in Figure 6.9 are visible. There is a chance that these frequencies cause resonance 
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in the vehicle body. It should be noted that the peaks at a real vehicle are smaller because 

of the structural damping in the material of the tire.  

Figure 6.11 shows the spectral density of the acceleration applied to the passenger in the 

hybrid quarter-car model. This acceleration directly affects passenger ride comfort. Until 

ω=200 rad/s, the magnitude of the spectral density of the acceleration decreases as ω 

increases, whereas for the frequencies above 200 rad/s, the spectral density of the 

acceleration increases. Figure 6.12 shows the spectral density of the acceleration applied 

to the passenger in the traditional 2 DOF quarter-car model. Compared with the results of 

the hybrid model, acceleration decreases as the frequency increases. This behavior 

happens because the 2 DOF model is not able to predict the behavior of the system at 

higher frequencies. A comparison of the mean square of the passenger acceleration in 

Table 6.2 shows that the increase of the speed increases the ride discomfort. The increase 

is more visible in the hybrid model with a rotating tire.   
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Figure 6.9: The spectral density of the vertical displacement of the passenger for the hybrid quarter-car model 
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Figure 6.10: The spectral density of the vertical displacement of the passenger for the traditional 2DOF quarter-car model
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Figure 6.11: The spectral density of the vertical acceleration of the passenger for the hybrid quarter-car model  
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Figure 6.12: The spectral density of the vertical acceleration of the passenger for the traditional 2-DOF quarter-car model 
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Table 6.2: Comparison of the mean value of the responses to road excitation at different velocities ഥ࣓  

(rad/s) 

E(Tz) 

(N2) 

E(Tx) 

(N2) 

E(Zu) 

(m2) 

E(Xu) 

(m2) 

E(Zs) 

(m2) 

E(as) 

(m2/s4) 

 2 DOF Hybrid 
Model 

Hybrid 
Model 2 DOF Hybrid 

Model 
Hybrid 
Model 2 DOF Hybrid 

Model 2 DOF Hybrid 
Model 

20 1.662×107 1.187×107 3.245×106 5.130×10-4 3.951×10-6 7.912×10-9 5.222×10-4 5.290×10-4 0.5606 0.6051 

40 3.348×107 2.705×107 8.338×106 1.033×10-3 9.331×10-6 8.063×10-7 1.052×10-3 1.067×10-3 1.1289 2.1116 

60 5.042×107 1.972×107 7.573×107 1.556×10-3 1.712×10-5 8.351×10-8 1.584×10-3 1.610×10-3 1.7002 5.4917 

80 6.742×107 2.125×108 2.055×108 2.081×10-3 2.815×10-5 5.493×10-7 2.118×10-3 2.156×10-3 2.2735 11.7902 

100 8.446×107 1.280×109 7.985×108 2.607×10-3 4.296×10-5 8.127×10-7 2.653×10-3 2.700×10-3 2.8483 21.5608 

 



130 

6.4. CONCLUDING REMARKS 

The effects of the suspension damping were considered in the hybrid vehicle model. The 

equations of motion were solved using the mode summation method. The damped 

frequencies were obtained for different angular speeds of the tire. Afterwards, the 

frequency responses and the spectral densities of the response, including the contact 

forces in both the vertical and horizontal directions, were studied. 

The results showed that the higher frequencies of the tire affect the spectral densities of 

the response. All the spectral densities show a regional increase at the damped 

frequencies of the hybrid model. This phenomenon, if considered in combination with the 

higher frequencies of the body, will affect passenger ride comfort.  

The next chapter presents the conclusions arrived at based on the results in this study. 

Chapter 7 also contains some suggestions for future studies on the dynamics of the 

rotating tire as well as the dynamics of vehicle systems.  
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CHAPTER 7 CONCLUSIONS AND 

SUGGESTIONS FOR FUTURE STUDIES 

7.1. SUMMARY 

The dynamics of the rotating tire are important from the point of view of the road induced 

vehicle vibrations, ride comfort, and noise. The tire also transfers the loads from the 

vehicle to the road. The unevenness of the road, which influences the passenger ride 

comfort, is applied initially to the tire, as it intervenes between the vehicle and the road. 

The core of the present study is to present a new dynamic model for a vehicle system, 

taking into account the effects of the rotating tire. A quarter-car model of the vehicle is 

used where a rotating ring represented the tire. The center of the ring was connected to 

the suspension system of the vehicle. The ring was in contact with the road, and the 

unevenness of the road is applied to the rotating ring. 
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The conventional model of a tire is a center-fixed ring. The effects of tire-road contact 

and the deformation at the contact area are not taken into account in the conventional 

model. At the beginning of this study, the dynamics of a center-fixed ring in both a 

rotating coordinate system and a non-rotating coordinate system were investigated. The 

bifurcation of the natural frequencies was discussed. Bifurcation splits the natural 

frequency of a non-rotating ring into a positive-going wave and a negative-going wave.  

In the third chapter, the hybrid vehicle-tire-road model was introduced, and the equations 

of motion were derived. This model consists of a rotating ring and a spring-mass system 

that represents the vehicle body and suspension of the vehicle. In contrast to the 

conventional model, the center of the tire is not fixed. It is free to move in both the 

vertical and horizontal directions. The contact force, which is a function of both the 

dynamic response of the vehicle body and of the ring, is applied through the contact 

point. 

The fourth chapter presented the natural vibration response of the model by using two 

different approximate methods: The Galerkin method and the finite element method. In 

the Galerkin method, the mass, stiffness, and damping matrices were obtained by using 

trigonometric admissible functions. On the other hand, in the finite element analysis, non-

rotating elements in a non-rotating coordinate system were used. The rate of convergence 

for both methods was investigated. These approximate solutions have significant 

importance when the tire is modeled as a rotating shell or when the geometry of the side 

wall and thread patterns are investigated.  
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The closed-form solution of the hybrid quarter-car model was also obtained. The radial 

and tangential displacements of the ring were defined as relative displacements with 

respect to the center that moves horizontally and vertically. The natural frequencies were 

obtained and compared with those obtained by using the approximate methods. The 

complex mode shapes of a rotating ring in contact with the road were presented. The 

bifurcation of the frequencies does not occur in the hybrid model because of the forces 

and deformations at the contact point. The displacements of the sprung mass and of the 

unsprung mass at different modes, obtained for different velocities, showed the 

significance of the hybrid quarter-car model with a rotating ring.  

Moreover, the mode summation method was used to obtain the damped frequencies of 

the hybrid model at different angular velocities. The functions, used in the mode 

summation method, were those of the undamped hybrid system obtained by using the 

analytical method. The spectral density of the response was obtained. The following 

parameters were investigated: 

 The vertical displacement and acceleration of the passenger 

 The vertical and horizontal displacements of the center of the tire (unsprung mass) 

 The vertical and horizontal forces at the contact point 

The responses were compared with the traditional 2 DOF quarter-car model. 

It was shown that the road excitation creates large responses while the frequency of the 

excitation approaches the frequencies of the hybrid model. This phenomenon causes a 

large displacement, a large acceleration, and consequently considerable fatigue for both 
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the passenger and the vehicle body. Also the dynamic forces at the contact point affect 

the handling of the vehicle system. 

The results of the present study are summarized as: 

1. In both of the approximate solutions, the convergence rates of the response were 

investigated. It was shown that by using an adequate number of admissible functions 

in the Galerkin method or by using significant number of elements in the finite 

element analysis accurate answers are obtained. The maximum error between the 

results of the approximate methods and those of the closed-form solution is 13 % at 

the first frequency. However, in most of the cases the error is below 5%. The results 

can be improved by changing the admissible functions of the Galerkin method or 

interpolating functions in the finite element method. On the other hand, the analytical 

solution of a 2-D model is computationally more expensive than the approximate 

solutions. The approximate solutions are expandable to 3-D problems.  

2. The natural frequencies of a rotating center-fixed ring, as a conventional model of the 

tire, bifurcate. The rate of the bifurcation is a function of the angular velocity of the 

ring. The symmetry of the rotating ring creates the bifurcation. The bifurcation 

disappears as the ring is used in the hybrid quarter-car model. There are distinct 

frequencies unlike the center-fixed ring. The realistic model of a tire carries the 

vehicle body and suspensions. Due to the weight of vehicle, the tire is deformed at the 

contact, and the symmetry of the ring is distorted. However, the frequencies of the 

hybrid quarter-car model show a slender curve-veering behavior.  
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3. The mode shapes of the hybrid quarter-car model are real only when the tire is 

stationary. The rotation of tire creates complex modes. The level of complexity 

increases with the angular velocity of the tire. Also, the higher modes of the vehicle 

show a larger level of complexity compared to lower modes. Measuring the modes of 

the tire using a laser instrument, Kindt et al. reported the existence of the complex 

mode shapes of the tire and the phase lag between the displacements of different 

points [79–81]. However, the angular velocity of the tire in their test was small, 

causing insignificant level of complexity. In the present study, it was shown that that 

the ratio of the real part of the mode to the imaginary part is considerable.  

4. The conventional two degree-of-freedom model of a vehicle provides the first two 

frequencies of the vehicle. In the first frequency, the displacement of the sprung mass 

is more dominant, while in the second one the displacement of the unsprung mass is 

more dominant. However, the conventional 2-DOF model does not consider the 

effects of the rotation. Similarly, the first mode of the hybrid quarter-car model 

presents the dominance of the vertical displacement of the body while the second 

mode shows the supremacy of the vertical displacement of the center of the tire. Both 

of these frequencies are affected by the angular velocity of the tire. Increasing the 

speed increases the natural frequencies of the hybrid model. Another advantage of the 

hybrid model is its ability to estimate the frequency response of the displacements of 

the passenger and the tire at higher frequencies. Comparisons show that at higher 

frequencies, the spectral densities of these displacements in the hybrid model are 

larger than those in 2-DOF model. This can be explained by noting that the 2-DOF 

model does not contain the higher natural frequencies of the vehicle. Consequently, 
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the mean value of the vertical acceleration felt by the passenger in the hybrid model is 

greater than that of the conventional 2-DOF model. Moreover, the hybrid model 

provides more information about the horizontal force at the contact and the horizontal 

displacement of the center of the tire. 

5. All of the damped natural frequencies of the hybrid model are functions of the 

angular velocity of the tire. The first four frequencies are slightly changed by 

increasing the angular velocity. However, the variation of the damped natural 

frequencies by angular velocity of the tire significantly increases at higher 

frequencies. For instance, a 25 percent increase of the angular velocity of the tire 

caused a 20 % decrease of the 7th damped natural frequency of the hybrid model. The 

damping in the suspension of the vehicle only influenced the first and the second 

frequencies of the hybrid model significantly.  

6. The spectral densities of the response for the hybrid model show large amplitudes at 

the frequencies close to the natural frequencies of the system, influencing the ride 

comfort and the ride noise considerably. Moreover, the spectral density of the 

response is larger for a higher angular velocity. However, this increase has 

significantly more important effect on the contact forces and the vertical acceleration 

of the passenger, compared to the increase of the displacement of the tire center. For 

instance, the mean value of the spectral density of the vertical contact force and the 

acceleration of the passenger at ഥ߱=100 rad/s are 100 and 35 times as large as those at ഥ߱=20 rad/s, respectively.   
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7.2. SUGGESTIONS FOR FUTURE STUDIES 

In order to study the influence of the rotational dynamics of the tire on the vehicle bounce 

vibrations, the following investigations are suggested for future study: 

 Analyzing the effect of a contact surface instead of a contact point 

As explained, the assumption of the contact point between the road and the tire is an ideal 

assumption that helps to avoid non-linearity. In reality, the tire lies on a contact surface 

area due to the static deformation of the tire caused by the weight of the vehicle. It is 

preferable to replace the contact point by a contact surface, as shown in Figure 7.1.  The 

contact patch can be assumed as a beam to which the forces are applied. Then, the 

equations of the beam and of the ring should be solved simultaneously in order to satisfy 

the compatibility conditions between the ring and the beam.  

 Comparing a 2-D model with an equivalent 3-D model 

A shell should be considered as a 3-D model, and then the contact force and constraint 

would be applied. The contact force could be applied through a line of contact. This 

would enable an investigation of the effects of the contact force in the third dimension 

perpendicular to the rotation plane and would enable a comparison of the results with 

those of a 2-D model. The effect of the lateral vibration and of the lateral force could be 

investigated. 



138 

 

Figure 7.1: Schematic of a 2-D model of a vehicle. The contact area is assumed as a beam 

 

 Modeling a rotating tire with a side wall and a contact patch by using a 3-D finite 

element analysis  

A finite element model of a tire with a road contact could be analyzed. The cross section 

of a real tire could be modeled, and the effect of the vibration of the side wall could be 

added. Also the Coriolis and centrifugal accelerations would be taken into account, and a 

finite element approach in a non-rotating coordinate system would be used to solve the 
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problem. Similar to this study, the center of the tire should be released so that it could 

move freely in any direction. 
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Figure 7.2 Two rotating tires combined with the vehicle body and the suspension system of the 

vehicle 

 

 Using a half-car model with rotating tires. 

The theory explained in the present thesis could be used in a half-car model as shown in 

Figure 7.2. Two rotating rings present the front and rear tires. The sprung mass could be 

modeled as a rigid bar with mass and moment of inertia. In an advance model, the rigid 

bar could be replaced by a flexible beam to take into account the deformations of the 

vehicle system. A reduced order finite element model of the vehicle body could also be 

used. 



140 

REFERENCES 

 
[1] K. Yi, J. K. Hedrick, “Observer-based identification of nonlinear system 

parameters,” Journal of Dynamic Systems Measurement and Control, 1995, 

Vol. 117, pp. 175–182. 

[2] C. Kim, P. I. Ro, “A sliding mode controller for vehicle active suspension systems 

with non-linearities,” Proceedings of the Institution of Mechanical Engineers, Part D: 

Journal of Automobile Engineering, 1998, Vol. 212, pp. 79–92. 

[3] C. Kim, P. I. Ro, H. Kim, “Effect of the suspension structure on equivalent 

suspension parameters,” Proceedings of the Institution of Mechanical Engineers, Part D: 

Journal of Automobile Engineering, Vol. 213, 1999, pp. 457–470. 

[4] L. Sun, “Optimum design of 'road-friendly' vehicle suspension systems subjected 

to rough pavement surfaces,” Applied Mathematical Modelling, Vol. 26, 2002, pp. 635–

652. 



141 

 
[5]  L. Sun, T. W. Kennedy, “Spectral analysis and parametric study of stochastic 

pavement loads”, Journal of Engineering Mechanics, ASCE, Vol. 128, 2002, pp. 318–

327. 

[6]  L. Sun, “Simulation of pavement roughness and IRI based on power spectral 

density,” Mathematics and Computers in Simulation, Vol. 61, 2003, pp. 77–88. 

[7] K. S. Hong, D. S. Jeon, H. C. Sohn, “A new modeling of the Macpherson 

suspension system and its optimal pole-placement control”, Proceedings of the 7th 

Mediterranean Conference on Control and Automation (MED99), Haifa, Israel, 1999. 

[8] K. S. Hong, H. C. Sohn, J. K. Hedrick, “Modified Skyhook control of semi-active 

suspensions: A new model, gain scheduling, and hardware-in-the-loop tuning,” Journal 

of Dynamic Systems, Measurement, and Control, Vol. 124, 2002, pp. 158–167. 

[9] M. S. Fallah, R. B. Bhat, W. F. Xie, “Influence of different semi-active control 

strategies on the performance of Macpherson suspension kinematic parameters,” SAE 

International Journal of Commercial Vehicles, Vol. 1, 2009, pp. 222–229. 

[10] M. S. Fallah, R. B. Bhat, W. F. Xie, “New model and simulation of Macpherson 

suspension system for ride control applications,” Vehicle System Dynamics, Vol. 47, 

2009, pp. 195–220. 

[11] M. S. Fallah, R. B. Bhat, W. F. Xie, “H∞ robust control of semi-active 

Macpherson suspension system: new applied design,” Vehicle System Dynamics, Vol. 48, 

2010, pp. 339–360. 

[12] M. S. Fallah, “New dynamic modeling and practical control design for 

Macpherson suspension system,” PhD Thesis, 2010, Concordia University, Montreal, 

QC, Canada. 



142 

 
[13] M. S. Fallah, R. B. Bhat, W. F. Xie, “Optimized control of semi-active suspension 

systems using H∞ robust control theory and current signal estimation,” IEEE/ASME 

Transactions on Mechatronics, (Article in Press) 

[14]  K. Saeedi, R. J. Alkhoury, R. B. Bhat, A. K. W. Ahmed, “Ride dynamic analysis 

of a hybrid discrete and continuous vehicle model,” SAE Commercial Vehicle 

Engineering Congress & Exhibition, October 2008, Rosemont, IL, USA. 

[15] B. Seba, N. Nedeljkovic, J. Paschedag, B. Lohmann, “H∞ Feedback control and 

Fx-LMS feedforward control for car engine vibration attenuation,” Applied Acoustics, 

Vol. 66, 2005, pp. 277–296. 

[16] C. Olsson, “Structure flexibility impacts on robust active vibration isolation using 

mixed sensitivity optimization,” Journal of Vibration and Acoustics, Vol. 129, 2007, pp. 

179–192. 

[17]  C. Olsson, “Active automotive engine vibration isolation using feedback control,” 

Journal of Sound and Vibration, Vol. 294, 2006, pp. 162–176. 

[18]  S. Choi, S. Hong, K. Sung, J. Sohn, “Optimal control of structural vibrations 

using a mixed-mode magnetorheological fluid mount,” International Journal of 

Mechanical Science, 2008, Vol. 50. pp. 559–567. 

[19]  K. Saeedi, M. S. Fallah, R. B. Bhat, “Semi-active ride comfort evaluation of 

heavy vehicles using a hybrid dynamic model,” SAE World Congress, April 2010, 

Detroit, MI, USA. 

[20] H. Dekker, “Vibrational resonances of nonrigid vehicles: Polygonization and 

ripple patterns,” Applied Mathematical Modelling, Vol. 33, 2009, pp. 1349–1355. 



143 

 
[21] F. R. Fassbender, C. W. Fervers, C. Harnisch, “Approaches to predict the vehicle 

dynamics on soft soil,” Vehicle System Dynamics, Vol. 27, 1997, pp. 173–188. 

[22] S. Park, A. A. Popov, D. J. Cole, “Influence of soil deformation on off-road heavy 

vehicle suspension vibration,” Journal of Terramechanics, Vol. 41, 2004, pp. 41–68. 

[23] R. N. Yong, M. A. Foda, “Tribology model for determination of shear stress 

distribution along the tyre-soil interface,” Journal of Terramechanics, Vol. 27, 1990, pp. 

93–114. 

[24] R. N. Yong, F. Eiyo, “Road surface roughness and tyre performance,” Journal of 

Terramechanics, Vol. 27, 1990, pp. 219–239. 

[25] D. M. Xu, A. M. O. Mohamed, R. N. Yong, F. Caporuscio, “Development of a 

criterion for road surface roughness based on power spectral density function,” Journal of 

Terramechanics, Vol. 29, 1992, pp. 477–486. 

[26] W. Soedel, “On the dynamic response of rolling tires according to thin shell 

approximations,” Journal of Sound and Vibration, Vol. 41, 1975, pp. 233–246. 

[27] W. Soedel, M. G. Prasad, “Calculation of natural frequencies and modes of tires 

in road contact by utilizing eigenvalues of the axisymmetric non-contacting tire,” Journal 

of Sound and Vibration, Vol. 70, 1980, pp. 573–584. 

[28] S. C. Huang, “Vibration of rolling tyres in ground contact,” International Journal 

of Vehicle Design, Vol. 13, 1992. pp. 78–95. 

[29] C. J. Hunckler, T. Y. Yang, W. Soedel, “A geometrically nonlinear shell finite 

element for tire vibration analysis,” Computers & Structures, Vol. 17, 1983, pp. 217–225. 



144 

 
[30] Y. B. Chang, T. Y. Yang, W. Soedel, “Linear dynamic analysis of revolutional 

shells using finite elements and modal expansion,” Journal of Sound and Vibration, Vol. 

86, 1983, pp. 523–538. 

[31] Y. B. Chang, T. Y. Yang, W. Soedel, “Dynamic analysis of a radial tire by finite 

elements and modal expansion,” Journal of Sound and Vibration, Vol. 96, 1984, pp. 1–

11. 

[32] L. E. Kung, W. Soedel, T. Y. Yang, L. T. Charek, “Natural frequencies and mode 

shapes of an automotive tire with interpretation and classification using 3-D computer 

graphics,” Journal of Sound and Vibration, Vol. 102, 1985, pp 329–346. 

[33] S. C. Huang, W. Soedel, “Effects of Coriolis acceleration on the free and forced 

in-plane vibrations of rotating rings on elastic foundation,” Journal of Sound and 

Vibration, Vol. 115, 1987, pp. 253–274. 

[34] S. C. Huang, W. Soedel, “Response of rotating rings to harmonic and periodic 

loading and comparison with the inverted problem,” Journal of Sound and Vibration, 

Vol. 118, 1987, pp. 253–270. 

[35] S. C. Huang, C. K. Su, “In-plane dynamics of tires on the road based on an 

experimentally verified rolling ring model,” Vehicle System Dynamics, Vol. 21, 1992, pp. 

247–267. 

[36] D. S. Stutts, W. Soedel, “A simplified dynamic model of the effect of internal 

damping on the rolling resistance in pneumatic tires,” Journal of Sound and Vibration, 

Vol. 155, 1992, pp. 153–164. 



145 

 
[37] J. Padovan, “Traveling waves vibrations and buckling of rotating anisotropic 

shells of revolution by finite elements,” International Journal of Solids and Structures, 

Vol. 11, 1975, pp. 1367–1380. 

[38] J. Padovan, Natural frequencies of rotating prestressed cylinders, Journal of 

Sound and Vibration, Vol. 31, 1973, pp. 469–482. 

[39] J. Padovan, I. Zeid, “On the development of traveling load finite elements,” 

Computers & Structures, Vol. 12, 1980, pp. 77–83. 

[40] J. Padovan, O. Paramodilok, “Generalized solution of time dependent traveling 

load problem via moving finite element scheme,” Journal of Sound and Vibration, Vol. 

91, 1983, pp. 195–209. 

[41] J. Padovan, “Finite element analysis of steady and transiently moving/rolling 

nonlinear viscoelastic structure-I. Theory,” Computers & Structures, Vol. 27, 1987, pp. 

249–257. 

[42] R. Kennedy, J. Padovan, “Finite element analysis of steady and transiently 

moving/rolling nonlinear viscoelastic structure-II. Shell and three-dimensional 

simulations,” Computers & Structures, Vol. 27, 1987, pp. 259–273. 

[43] Y. Nakajima, J. Padovan, “Finite element analysis of steady and transiently 

moving/rolling nonlinear viscoelastic structure-III. Impact/contact simulations,” 

Computers & Structures, Vol. 27, 1987, pp. 275–286. 

[44] R. A. Brockman, J. H. Champion, J. P. Medzorian, “Finite element analysis of tire 

critical speeds,” Computers & Structures, Vol. 43, 1992, pp. 581–593. 

[45] P. W. A. Zegelaar, H. B. Pacejka, “In-plane dynamics of tyres on uneven roads,” 

Vehicle System Dynamics, Vol. 25, 1996, pp. 714–730. 



146 

 
[46] K. Iwao, I. Yamazaki, “A study on the mechanism of tire/road noise,” JSAE 

review, Vol. 17, 1996, pp. 139–144. 

[47] G. J. Kim, K. R. Holland, N. Lalor, “Identification of the airborne component of 

tyre-induced vehicle interior noise,” Applied Acoustics, Vol. 51, 1997, pp. 141–56. 

[48] R. J. Pinnington, A. R. Briscoe, “A wave model for a pneumatic tyre belt,” 

Journal of Sound and Vibration, Vol. 253, 2002, pp. 941–959. 

[49] G. Dihua, S. Jin, L. H. Yam, “Establishment of model for Tire steady state 

cornering properties using experimental modal parameters,” Vehicle System Dynamics, 

Vol. 34, 2000, pp. 43–56. 

[50] G. Dihua, F. Chengjian, “Tire modeling for vertical properties including 

enveloping properties using experimental modal parameters,” Vehicle System Dynamics, 

Vol. 40, 2003, pp. 419–433. 

[51] L. H. Yam, D. H. Guan, A. Q. Zhang, “Three-dimensional mode shapes of a 

tire using experimental modal analysis,” Experimental Mechanics, Vol. 40, 2000, pp. 

369–375. 

[52] F. Chengjian, G. Dihua, “The quantitative analysis and experimental verification 

of the tire static enveloping model using experimental modal parameters,” Vehicle System 

Dynamics, Vol. 44, 2006, pp. 675–688. 

[53] J. M. Muggleton, B. R. Mace, M. J. Brennan, “Vibrational response prediction of 

a pneumatic tyre using an orthotropic two-plate wave model,” Journal of Sound and 

Vibration, Vol. 264, 2003, pp. 929–950. 

[54] S. Bashmal, R. Bhat, S. Rakheja, “In-plane free vibration analysis of an annular 

disk with point elastic support,” Shock and Vibration, Vol. 18, 2011, pp. 627–640. 



147 

 
[55] S. Bashmal, R. Bhat, S. Rakheja, “Analysis of in-plane modal characteristics of an 

annular disk with multiple point supports,” ASME International Mechanical Engineering 

Congress and Exposition, Proceedings, IMECE2009, Vol. 15, pp. 321–329. 

[56] S. Bashmal, R. Bhat, S. Rakheja, “In-plane free vibration of circular annular 

disks,” Journal of Sound and Vibration, Vol. 322, 2009, pp. 216–226. 

[57] S. Bashmal, R. Bhat, S. Rakheja, “Experimental studies on the in-plane vibrations 

and sound radiation in an annular thick disk,” Canadian Acoustics, Vol. 37, 2009, pp. 

202–203. 

[58] S. Bashmal, R. Bhat, S. Rakheja, “Frequency equations for the in-Plane vibration 

of circular annular disks,” Advances in Acoustics and Vibration, Vol. 2010, Article ID 

501902, 8 pages.  

[59]  J. S. Bolton, H. J. Song, Y. K. Kim, Y. J. Kang, “The wave number 

decomposition approach to the analysis of tire vibration,” Proceedings of NOISE-CON 

98, 1998, pp. 97–102. 

[60] Y. J. Kim, J. S. Bolton, “Effects of rotation on the dynamics of a circular 

cylindrical shell with application to tire vibration,” Journal of Sound and Vibration, Vol. 

275, 2004, pp. 605–621. 

[61] L. Jia, Y. Xu, J. Zhang, “Free vibration analysis of radial pneumatic tires using 

Beźier functions,” Journal of Sound and Vibration, Vol. 285, 2005, pp. 887–903. 

[62] O. Civalek, “A parametric study of the free vibration analysis of rotating 

laminated cylindrical shells using the method of discrete singular convolution,” Thin-

Walled Structures, Vol. 45, 2007, pp. 692–698. 



148 

 
[63] O. Civalek, M. Gürses, “Free vibration analysis of rotating cylindrical shells using 

discrete singular convolution technique,” International Journal of Pressure Vessels and 

Piping, Vol. 86, 2009, pp. 677–683. 

[64] E. Rustighi, S. J. Elliott, “Stochastic road excitation and control feasibility in a 2D 

linear tyre model,” Journal of Sound and Vibration, Vol. 300, 2007, pp. 490–501. 

[65] E. Rustighi, S. J. Elliott, S. Finnveden, K. Gulyás, T. Mócsai, M. Danti, “Linear 

stochastic evaluation of tyre vibration due to tyre road excitation” Journal of Sound and 

Vibration, Vol. 310, 2008, pp. 1112–1127. 

[66] B. S. Kim, G. J. Kim, T. K. Lee, “The identification of sound generating 

mechanisms of tyres,” Applied Acoustics, Vol. 68, 2007, pp. 114–133. 

[67] J. C. Delamotte, R. F. Nascimento, J. R. F. Arruda, “Simple models 

for the dynamic modeling of rotating tires,” Shock and Vibration, Vol. 15, 2008, pp. 383–

393. 

[68] P. Kindt, P. Sas, W. Desmet, “Development and validation of a three-dimensional 

ring-based structural tyre model,” Journal of Sound and Vibration, Vol. 326, 2009, pp. 

852–869. 

[69] F. Wullens, W. Kropp, “A three-dimensional contact model for tyre/road 

interaction in rolling conditions,” Acta Acoustica United with Acoustica, Vol. 90, 2004, 

pp. 702–711. 

[70] F. Wullens, W. Kropp, “Wave content of the vibration field of a rolling tyre,” 

Acta Acoustica United with Acoustica, Vol. 93, 2007, pp. 48–56. 



149 

 
[71] J. Périsse, “A study of radial vibrations of a rolling tyre for tyre-road noise 

characterisation,” Mechanical Systems and Signal Processing, Vol. 16, 2002, pp. 1043–

1058. 

[72] M. Brinkmeier, U. Nackenhorst, S. Petersen, O. V. Estorff, “A finite element 

approach for the simulation of tire rolling noise,” Journal of Sound and Vibration, Vol. 

309, 2008, pp. 20–39. 

[73] U. Nackenhorst “The ALE-formulation of bodies in rolling contact: Theoretical 

foundations and finite element approach,” Computer Methods in Applied Mechanics and 

Engineering, Vol. 193, 2004, pp. 4299–4322. 

[74] I. Lopez, R. E. A. Blom, N. B. Roozen, H. Nijmeijer, “Modelling vibrations on 

deformed rolling tyres - a modal approach,” Journal of Sound and Vibration, Vol. 307, 

2007, pp. 481–494. 

[75] I. Lopez, R. R. J. J. van Doorn, R. van der Steen, N. B. Roozen, H. Nijmeijer, 

“Frequency loci veering due to deformation in rotating tyres,” Journal of Sound and 

Vibration, Vol. 324, 2009, pp. 622–639. 

[76] Z. Geng, A. A. Popov, D. J. Cole, “Modelling of vibration damping in pneumatic 

tyres: Appropriate interpretation of complex modes,” Proceedings of the 2002 

International Conference on Noise and Vibration Engineering (ISMA), 2002, pp. 485–

494. 

[77] Z. Geng, A. A. Popov, D. J. Cole, “Measurement, identification and modelling of 

damping in pneumatic tyres,” International Journal of Mechanical Sciences, Vol. 49, 

2007, pp. 1077–1094. 



150 

 
[78] P. Kindt, F. De Coninck, P. Sas, W. Desmet, “Analysis of tire/road noise caused 

by road impact excitations,” Proceedings of the International Styrian Noise, Vibration & 

Harshness Congress, Graz, Austria, 2008, pp. 113–134. 

[79] P. Kindt, P. Sas, W. Desmet, “Test setup for tire/road noise caused by road impact 

excitations,” Proceedings of the Tire Technology Expo 2007 Conference, Köln, Germany, 

2007, pp. 13–15. 

[80] P. Kindt, P. Sas, W. Desmet, “Measurement and analysis of rolling tire 

vibrations,” Optics and Lasers in Engineering, Vol. 47, 2009, pp. 443–453. 

[81] P. Kindt, D. Berckmans, F. De Coninck, P. Sas, W. Desmet, “Experimental 

analysis of the structure-borne tyre/road noise due to road discontinuities,” Mechanical 

Systems and Signal Processing, Vol. 23, 2009, pp. 2557–2574. 

[82] P. Sabiniarz, W. Kropp, “A waveguide finite element aided analysis of the wave 

field on a stationary tyre, not in contact with the ground,” Journal of Sound and 

Vibration, Vol. 329, 2010, pp. 3041–3064. 

[83] D. Zimmer, M. Otter, “Real-time models for wheels and tyres in an object-

oriented modelling framework,” Vehicle System Dynamics, Vol. 48, 2010, pp. 189–216. 

[84] D. Allaei, W. Soedel, T. Y. Yang, “Natural frequencies and modes of rings that 

deviate from perfect axisymmetry,” Journal of Sound and Vibration, Vol. 111, 1986, pp 

9–27. 

[85] D. Allaei, W. Soedel, T. Y. Yang, “Eigenvalues of rings with radial spring 

attachments,” Journal of Sound and Vibration, Vol. 121, 1988, pp. 547–561. 

[86] D. Allaei, W. Soedel, T. Yang, “Vibration analysis of non-axisymmetric tires,” 

Journal of Sound and Vibration, Vol. 122, 1988, pp. 11–29. 



151 

 
[87] D. S. Stutts, C. M. Krousgrill, W. Soedel, “Parametric excitation of tire-wheel 

assemblies by a stiffness non-uniformity,” Journal of Sound and Vibration, Vol. 179, 

1995, pp. 499–512. 

[88] C. H. J. Fox, “A simple theory for the analysis and correction of frequency 

splitting in slightly imperfect rings,” Journal of Sound and Vibration, Vol. 142, 1990, pp. 

227–243. 

[89] A. K. Rourke, S. Mcwilliam, C. H. J. Fox, “Multi-mode trimming of imperfect 

rings,” Journal of Sound and Vibration, Vol. 248, 2001, pp. 695–724. 

[90] A. K. Rourke, S. Mcwilliam, C. H. J. Fox, “Multi-mode trimming of imperfect 

thin rings using masses at pre-selected locations,” Journal of Sound and Vibration, Vol. 

256, 2002, pp. 319–345. 

[91] R. Eley, C. H. J. Fox, S. Mcwilliam, “Coriolis coupling effects on the vibration of 

rotating rings,” Journal of Sound and Vibration, Vol. 238, 2000, pp. 459–480. 

[92] S. McWilliam, J. Ong, C. H. J. Fox, “On the statistics of natural frequency 

splitting for rings with random mass imperfections,” Journal of Sound and Vibration, 

Vol. 279, 2005, pp. 453–470. 

[93 P. Bisegna, G. Caruso, “Frequency split and vibration localization in imperfect 

rings,” Journal of Sound and Vibration, Vol. 306, 2007, pp. 691–711. 

[94] B. L. Dillinger, N. Jalili, I. Ul-Haque, “Analytical modelling and experimental 

verification of tyre non-uniformity,” International Journal of Vehicle Design, 2008, Vol. 

46, pp. 1–22. 



152 

 
[95] L. E. Kung, W. Soedel, T. Y. Yang, “Free vibration of a pneumatic tire-wheel unit 

using a ring on an elastic foundation and a finite element model,” Journal of Sound and 

Vibration, Vol. 107, 1986, pp. 181–194. 

[96] L. E. Kung, W. Soedel, T. Y. Yang, “On the dynamic response at the wheel axle 

of a pneumatic tire,” Journal of Sound and Vibration, Vol. 107, 1986, pp. 195–213. 

[97] L. E. Kung, W. Soedel, T. Y. Yang, “On the vibration transmission of a rolling 

tire on a suspension system due to periodic tread excitation,” Journal of Sound and 

Vibration, Vol. 115, 1987, pp. 37–63. 

[98] S. C. Huang, B. S. Hsu “An approach to the dynamic analysis of rotating tire-

wheel-suspension units,” Journal of Sound and Vibration, Vol. 156, 1992, pp. 505–519. 

[99] J. Padovan, A. Kazempour, “Multibody instantly centered moving lagrangian 

observer schemes-Part I. Formulation,” Computers & Structures, Vol. 32, 1989, pp. 93–

100. 

[100] A. Kazempour, J. Padovan, “Multibody instantly centered moving lagrangian 

observer schemes-Part II. Application to vehicular simulations,” Computers & Structures, 

Vol. 32, 1989, pp. 101–111. 

[101] J. Padovan, A. Kazempour, F. Tabaddor, B. Brockman, “Alternative formulations 

of rolling contact problems,” Finite Elements in Analysis and Design, Vol. 11, 1992, pp. 

275–284. 

[102] C. R. Dohrmann “Dynamics of a tire wheel suspension assembly,” Journal of 

Sound and Vibration, Vol. 210, 1998, pp. 627–642. 

[103] T. K. Lee, B. S. Kim, “Vibration analysis of automobile tire due to bump impact,” 

Applied Acoustics, Vol. 69, 2008, pp. 473–478. 



153 

 
[104] M. J. MohdNor, M. H. Fouladi, H. Nahvi, A. K. Ariffin, “Index for vehicle 

acoustical comfort inside a passenger car,” Applied Acoustics, Vol. 69, 2008, pp. 343–

353. 

[105] H. Nahvi, M. H. Fouladi, M. J. MohdNor, “Evaluation of whole-body vibration 

and ride comfort in a passenger car,” International Journal of Acoustics and Vibrations, 

Vol. 14, 2009, pp. 143–149. 

[106] M. H. Fouladi, M. J. Mohd Nor, O. Inayatullah, A. Kamal, “Evaluation of seat 

vibration sources in driving condition using spectral analysis,” Journal of Engineering 

Science and Technology, Vol. 6, 2011, pp. 342–358. 

[107] V. N. Nguyen, S. Inaba, “Effects of tire inflation pressure and tractor velocity on 

dynamic wheel load and rear axle vibrations,” Journal of Terramechanics, Vol. 48, 2011, 

pp. 3–16.  

[108] W. Soedel, “Vibration of Shells and Plates”, Third Edition, Marcel Dekker Inc., 

New York, 2004. 

[109] W. T. Thomson, M. D. Dahleh, “Theory of Vibration with Applications,” Fifth 

Edition, Prentice Hall, New Jersey, 1998. 

[110]  K. S. Hong, D. S. Jeon, W. S. Yoo, H. Sunwoo, S. Y. Shin, C. M. Kim, B. S. 

Park, ‘‘A new model and an optimal pole-placement control of the Macpherson 

suspension system,’’ SAE International Congress and Exposition, Detroit, MI, SAE paper 

No. 1999–01–1331, pp. 267–276. 

[111] W. L. Cleghorn, B. Tabarrok, T. W. Lee, “Vibration of rings with unsymmetrical 

cross sections: a finite element approach,” Journal of Sound and Vibration, Vol. 168, 

1993, pp. 93–113. 


