A Motion Learning-based Framework for Enhancing Keyframe Character
Animation

Chao Jin

A Thesis
in
The Department
of
Computer Science and Software Engineering

Presented in Partial Fullfilment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montreal, Quebec, Canada

July, 2012

(© Chao Jin, 2012

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared
By: Chao Jin
Entitled: A Motion Learning-based Framework for Enhancing Keyframe

Character Animation

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

complies with the regulations of the University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

Dr. D. Dysart-Gale Chair
Dr. W.S. Lee ExternalExaminer

Dr. P. Bhattacharya External to Program

Dr. A. Krzyzak Examiner

Dr. J. Rilling Examiner

Dr. S. Mudur Thesis Co-Supervisor

Dr. T. Fevens Thesis Co-Supervisor
Approved By Dr. V. Haarslev, Graduate Program Director

Dr. Robin Drew, Dean
Engineering and Computer Science

Date July 17th, 2012

111

ABSTRACT

A Motion Learning-based Framework for Enhancing Keyframe
Character Animation

Chao Jin

In the field of computer animation, character animation using keyframes remains
a popular technique. In this, the animation sequence is represented compactly by
just the more important character poses, termed as keyframes and the rest of the
frames, known as in-betweens are generated when needed, say during playing the
animation, using the keyframes. The animator specifies (creates) the keyframes
while the in-between frames are computed using a suitable interpolation scheme.
Interpolation parameters are usually under the control of the animator. Most
animation software today will include support for keyframe animation. However,
specifying the parameters so that the generated animation sequence fulfils the animator
expectations and other motion requirements, say like preserving area or volume, or
satisfying a physical constraint, can be quite difficult. The number of degrees of
freedom is very high for skeleton-based animation and much higher for mesh-based
animation. Physically-based animation techniques have been proposed for character
poses to satisfy physics constraints. But animators find it difficult and non-intuitive
to specify physics parameters, like body mass, forces. etc. and seem to very much
dislike the fact that they lose control over the final animation. Trial and error
using the keyframe technique is presently the most popularly adopted solution by

animators.

v

Our main thesis is that for a character action, given just the keyframe representation
or the entire animation sequence, we can recover a characterizing motion representation
in lower dimension space using manifold learning. This characterizing motion recovers
distinguishing information hidden in the huge amount of correlated and coherent
character animation data in high dimensional space. Then we can use it to enhance
keyframe animation techniques, which can considerably reduce animator effort required
for specifying the keyframes for desired quality of animation. Further, these new
techniques are equally applicable to 3D skeleton and mesh animation.

In our first major contribution, we present a formulation to adopt the technique
of locally linear embedding (LLE) to project the given character animation data
into a much lower dimension embedding space. We show that animations depicting
distinguishable activities, say walking, running, jumping, etc. take distinct characteristic
shapes in lower dimensional embedding space. Based on this embedding, we present
a new framework consisting of a reconstruction matrix combined with motion represented
in the low dimension embedding space. This framework enables us to generate
complete animation sequences in the original high dimensional space while maintaining
desirable physical properties in a deformable shape. The latter is done by introducing
the concept of a property map in the embedding space of values for the different
physical properties of the mesh, for example area, volume, etc. A probability
distribution function in embedding space then helps us rapidly choose the required
number of in-between poses with desired physical properties. The reconstruction of
the animation sequence is achieved by using the whole set of keyframes during
interpolation for generating each in-between. This framework has many other
applications and we demonstrate this by introducing two other new techniques which

further enhance key frame animation.

In another contribution of this research, we present a non-physically based
method for incorporating perceivable variations in repetitive motion of an autonomous
virtual character while retaining its principal characteristics. Usually, this is rather
difficult to achieve using standard keyframe animation techniques, since even small
changes in keyframes can result in less predictable changes in the final interpolated
animation. The basis for our method is provided by asymmetric bilinear factorization
of a given animation derived using the above framework. Keeping the action unchanged
(that is the characterizing motion extracted as the embedding in the low dimensional
space), we define a method to incorporate controlled perturbations into the reconstruction
matrix so as to yield variations of the same motion. Further, to join the varied
motion segments into a longer animation sequence, we present an embedding space
method, which again makes use of the property map to maintain the desired physical
properties.

We also present an effective method for optimized keyframe selection from
complete animations or motion capture sequences. Given the fact that most animators
are very comfortable with the keyframe animation technique, this will enable animators
to work easily with previously created animations or motion capture data. Our
solution uses animation saliency and combines it with the embedding. For this,
we use the representation of the animation in the form of matrix multiplication
of reconstruction matrix with combination weights and then cast the keyframe
selection problem into a constrained matrix factorization problem. The error metric
that is minimized however uses animation saliency computed in the original high
dimensional space. This way, the time consuming optimal search required by the
matrix factorization problem in high dimensional space is simplified to a much more

efficient method in low dimensional space.

These enhancements to the character keyframe animation technique are possible
because of capability of the manifold learning technique like LLE to effectively
capture in low dimensional space the characterizing motion information that is
present in a given character animation. Together these form the most significant

contributions of this thesis.

vi

ACKNOWLEDGEMENTS

I am sincerely thankful to my supervisors, Dr. Thomas Fevens and Dr. Sudhir
Mudur, for their guidance, helpfulness, patience, and kindness throughout my doctoral
research. Without their help, this thesis would not be possible. I feel very fortunate
to work with two excellent professors. I learned a lot from them. It has been a very
wonderful academic experience. I am also very thankful to all my thesis committee
members Dr. W.S. Lee, Dr. P. Bhattacharya, Dr. A. Krzyzak and Dr. J. Rilling
for their valuable suggestions to improve my research work. I would like to express
my gratitude to my friends Yingying She, Yue Wang, Xin Tong, Xi Deng and Min
Ning for their emotional support. Above all, I am very grateful to my husband Hui
Wang and my parents for their priceless love, support and encouragements during

the whole memorable journey.

vil

To the memorable journey

viil

Table of Contents

List of Tables xiii
List of Figures Xiv
1 Introduction 1
1.1 Computer Animation 1
1.2 Problem Statement and Research Methodology 14
1.3 Major Contributions 16
1.4 Organization of this thesis 18

1X

2 A Review of Related Work 19

2.1 Creation of Character Animation 20
2.2 Character Animation Editing 31
2.3 Manifold Learning 37
3 Motion Learning Scheme with Locally Linear Embedding 44
3.1 The Motion Curve 45
3.2 Motion Learning in Embedding Space 46
3.3 Reconstruction Matrix Formulation 58

4 Generation of In-betweens Using Characteristic Motion Representation 63

4.1 Introduction to the Motion Learning-based Framework 64
4.2 Motion Learning-based Framework Components 67
4.3 Experimental Resultso 74
4.4 Applying the Framework on Skeleton data 79
4.5 Conclusions 81

5 Generation of Variations in Repetitive Motion by Using Bilinear

Factorization 83

5.1 Introduction to Motion Variation 84

5.2 Proposed method o 87

5.3 Experimental Results 97
54 Conclusion 98
6 Content Based Key Information Extraction 101
6.1 Introduction to Keyframe Extraction 102
6.2 Methodology 107
6.3 Experimental Results 113
6.4 Concluding Remarks 121
7 Conclusions 123
7.1 Summary of Contributions 124
7.2 Future Work 125
Bibliography 127
References 127
A List of publications 147

x1

B Supporting Videos 148

xil

List of Tables

2.1

3.1

5.1

6.1
6.2
6.3

Comparison among two groups of recently successful manifold learning

methods, global vs. local. 38
Test data sets. 52

Association between VCFs and joint associated with a DOF. i is the

index of VCFs. 91
Test for number of keyframes removed versus reconstruction error. . 113
Test for number of keyframes added versus reconstruction error. . . 113
Skeletal animation sequences. 114

xiil

List of Figures

1.1 Number of accepted papers and the number of papers that have
been accepted related to character animation, for Siggraph and
Eurographics conferences from 2006 to 2010. 4

1.2 A poster of the film Avatar, 2009 (images from Fox [1]) 5

1.3 Motion capture systems. a) is an example of optical mocap system.

The pictures come from forums.worldofwarcraft.com; b) is an example
of magnetic system from Measurand Inc.; ¢) A human pose constructed
from the mocap marker placements from [2]. The red dots indicate

the marker positions.o oL 8

2.1 Motion Capture: a performer wearing a motion capture apparatus.
The device shown is a full body magnetic tracking system with a
wireless interface. The Image was take from the Ascension Technology
Corporation [3]. 29
2.2 Summary of the LLE Algorithm, which performs the nonlinear dimension
reduction via local linear reconstruction of weights. The image was

taken from Saul and Roweis” work [4] 40

X1v

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Embedding Result: A) Shows 600 points sampled from the S-curve.
B) to D) demonstrate: Two-dimensional embeddings result, from B)

ISOMAP | C) Laplacian Eigenmap , and D) LLE. The figure was

taken from the work of Ham et al. [5]

[lustration of unsupervised learning: A small set of 12 key poses
(motion of a horse galloping) is mapped into 2D embedding space.
The embedding is cyclic as can be expected for any periodic motion. .
The value of k affect the result of embedding. The z-axis reflects the
value of k (represented in percentage of the number of frames); The
y-axis reflects the number of times we obtain reliable embeddings. . .
3D LLE embeddings of two skeletons (character 1 shown at the
top and character 2 shown at the bottom) performing walking and
running actions. a) character 1 walking; b) character 2 walking; c)
character 1 running; and d) character 2 running.
3D embedding comparison between shuffled order and correct order
for character 1 walking data. a) the embedding with shuffled frame
order; b) the embedding with correct frame order.
2D LLE embedding comparison. a) with original 12 mesh frames from
horse galloping; b) the embedding after one frame (frame number 12)
removed; c¢) the embedding after two frames (frame numbers 11, 12)
removed; d) the embedding after three frames (frame numbers 10, 11,
12) removed.
3D LLE embedding comparison with multiple sequences for walking,
jumping and running for the same character 1.
Comparison between an input animation and a reconstruction of the
animation from the embedding space. ‘x’ is the original one and ‘o’

is the reconstructed one.,

XV

49

20

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

Distribution of physical properties of shapes in embedding space. . . .
Probability Contour.
Motion curve (the physical property used is the body volume). The
points have high probability to lie on the motion curve based the
body volume property.
In-between pose generation. Out of 12 key poses, we randomly remove
one (top: 2, middle: 7, bottom: 12), learn the motion from the
remaining 11, and reconstruct the removed one. The removed pose is
shown in the left column, and the reconstructed one is shown in the
right column. The likeness between the two can be easily seen.

Visual comparison of poses in original animation (top row) and in
motion reconstructed from small set of key poses selected by stratified
sampling (bottom row).
a) Comparing motion paths of select parts. We select one vertex
(marked by the circle) from the tail part, and record its movement
during the entire motion. b) We illustrate the selected tail vertex
movement for the original 56 poses and for the synthesized sequence.
¢) Plot chart showing percentage difference, between the original and
reconstructed sequence of the vertex location in X, Y, and Z direction
individually. The dashed line shows the percentage difference of linear
interpolation results; and the solid line shows our method results.
The first and third rows are meshes from original animation sequence
and the second and fourth rows are reconstructed meshes using just
10 key poses as input. Lo
We show the embedding space for the original 160 walking frames,
and the selected keyframes we used to synthesis the reconstruction

MOTION. o o

XVl

70

5

7

4.9

5.1
5.2

2.3

0.4

2.5

2.6
5.7

6.1
6.2

6.3
6.4

6.5

6.6

The two feet show a simple sine-like curve in the walking motion. We

obtained the feet placement curve from a video clip of a walking motion. 81

Workflow for creating motion variations 86
Locality of VCFs value. The horizontal axis of a) represents the
DOFs; vertical axis of a) represents the average changes in every
DOF percentage-wise. The horizontal axis of b) represents the frame
indices; and vertical axis of b) represents the difference value of DOFs. 92
[lustration for showing additive property of VCFs. The horizontal
axes of a), b), ¢) and d) are frame indices; and the vertical axes are
difference values.o 93

Overlapping motion fragment in 3 — D LLE space (parallel curve

segments inside the circle) oo oL 94
Smooth join in LLE space 95
Mesh-based Variation oo 99

Skeleton-based Variation. s is the VCF factor. s = 1 represent
the original frames, shows in column c); and variations are shown

in columns a), b),d)ande). 100

Example of 2D curve approximation. 104
The motion curve of DOF's varied very much even for closed joint in
skeleton model. oo 104
Flowchart for our keyframe extraction method. 106
Saliency value for a running skeletal animation with 62 DOFs and
161 frames. 109
Saliency map for rabbit walking animation of 85 frames. Light color
represent large saliency value. o000 110

Experimental results on skeletal animations 115

Xvii

6.7

6.8

6.9

6.10

6.11

6.12

3-dimensional embedding results shows using LLE is a good quality
embedding whereas PCA yields a less coherent, noisy one.
Comparison between our method with a uniformly distributed method,
Halit & Capin’s method, and PCA-based method on Salsa Data.
Experimental results for rabbit and walking man animations. For
rabbit animation, the frames in the first row a) come from the original
animation sequence. The frames in the second, third, and four rows
come from reconstruction sequences with 35, 25, and 15 keyframes,
respectively. For walking man animations, the frames in the first
row e) come from the original animation sequence. The frames in
the second, third, and four rows come from reconstruction sequences
with 18, 12, and 8 keyframes, respectively.
Comparison between our method and the PCA method on the rabbit
animation sequence. The zr—axis are the number of keyframes we
used to reconstruct the whole animation sequences; and the y—axis
shows the average reconstruction error.
Comparison between our method and the PCA method on the man
walk animation sequence. The zr—axis are the number of keyframes
we used to reconstruct the whole animation sequences; and the y—axis
shows the average reconstruction error.
The volume properties map we used to reconstruct the sequence. We
take the embedding space and divided it into a 61 x 61 grid, shows
as the zr-axis and y-axis. The scalar values shows the mesh volumes

for corresponding meshes.

Xviil

117

Chapter 1

Introduction

1.1 Computer Animation

In this research, we address several issues in creating computer based character an-
imations using the keyframe animation technique. To give a clear idea of what is
character animation, we first introduce the subject of animation. Animation has a
very long history, which began in the early 1900’s, when the basic foundations in
current animations were laid. Johnston and Thomas [6], and Greenberg [7], explain
that animation is a deliberately interpreted illusion of life. Originally, animation in-
volved the creation of a series of individual drawings replayed as successive frames.
The illusion of movement is actually generated by the human eye/brain which inter-
polates these successive drawings. Gleicher emphasized that animation is a uniquely

(13

expressive art form in [8] as “ it provides the creator with control over both the ap-
pearance and the movement of characters and objects. This gives artists tremendous
freedom, which when used well, can create works with tremendous impact”. Ani-

mation is a very broad concept, and any object can be animated, such as a bumping

ball, animal, human or imaginary creature.

1.1.1 Character Animation

Character animation specifically deals with articulated (limbed) character motion.
Usually, but not always, it refers to a human-like character performing a recognizable
daily life motion. Moreover, computer based character animation mostly focuses
on the use of computers to generate realistic motions for virtual characters. 3D

Character animations usually use two types of representations as below:

Skeleton based animations Skeleton based animations use a simplified bone struc-
ture to represent the character. A frame contains the pre-defined bone struc-
ture and a group of joint angles. The pre-defined bone structure remains the
same during the whole animation. The character movement is recorded as a

sequence of joint angle changes which occur with the progress of time.

Mesh based animations Mesh based animations basically use a group of poly-
gons or triangles to represent the surface (skin) of the character. A frame
contains the position of the vertices and the connectivity among vertices (face
index). The face index remain the same during animation. The character
movement is recorded by the movement of vertex positions which occur with
the progress of time. Mesh based animations may contain additional informa-
tion such as texture coordinates, normal, and material properties, required for

rendering and possibly other operations.

Generating realistic motions for virtual characters has become a significant
part of creating computer animations. The invention of the motion capture system,
which captures 3D movement data from a live performing actor, has been blooming
in many real world applications and is also part of extensive research by various

academic researchers around the world. Character animation itself in general has

gathered a lot of interest in research, especially in the last 20 years. The increasing
interest in this topic is reflected in the increasing number of accepted papers at the
conferences in Siggraph!, Eurogaphics?, and other annual conferences and journals
in the world. As shown in Figure (1.1), realistic motion generation and computer
animation-related papers were submitted in great numbers at the Siggraph and
Eurographics conferences. Since the year 2005, Siggraph has established a festival
named as “the Computer Animation Festival”, which selects and shows the best
computer animations worldwide. These animations represent the best computer
animation not only for the computational techniques used, but also for the artistic
effects included. The festival builds a bridge between the cutting edge techniques
and the daily needs of the animation industry.

These researches for generating realistic motion for virtual characters have
led to many significant achievements. These vast research achievements have also
enabled computer generated realistic character motions to proliferate the field of
visual effects in media other than films, such as interactive video games and robotics.
Along with films, more and more games now rely on animation of game characters to
add realism, perform stunts, and behave believably within their respective contexts.
For example, at the end of 2009, the movie “Avatar”® [9] (see Figure (1.2)) brought
us an extraordinary visual and audio experience. In Awvatar, half of the movie
was generated using computer animations. The stunning 3D virtual planet, named
Pandora, is full of photo-realistic computer generated characters with beautifully

defined character animations. In the market, the movie also had a huge success.

The film earned USD 749 million in America, and USD 2.7 billion worldwide, which

1Siggraph, ACM’s premier international conference and exhibition on computer graphics and
interactive techniques

2Eurographics, from the European association for computer graphics

3by director James Cameron

Siggraph

120
100
80
60
w

20

0 <

2006 2007 2008 2009 2010

Character animation related m All accept papers

Eurograph
0
60
50
w7
30
0 7
10
0o &
2006 2007 2008 2009 2010

Character animation related WAIll accept papers

Figure 1.1: Number of accepted papers and the number of papers that have been
accepted related to character animation, for Siggraph and Eurographics conferences
from 2006 to 2010.

FROM THE DIRECTOR o “TiTgNi

My

AVATAR

Figure 1.2: A poster of the film Avatar, 2009 (images from Foz [1])
made it reach the first place at the box office in all-time sales [10].

1.1.2 Character Animation Tools and Techniques

In this subsection, we give a brief overview of the different techniques used for creat-
ing character animations. In the next chapter a detailed review of these techniques
will be provided.

Since the 1990's, most animators create their character animations using com-
puters along with some kind of animation software such as Maya, 3DS MAX, and
Motion Builder. All these software systems include tools for creating animations
using a well established technique known as keyframe animation. In this technique,
to create an animation, such as a walking character, animators first create the char-
acter with a skeleton and skin, texture and material properties. After designing
and loading the character into the computer, animators need to create a group of

keyframes that are thought of as key poses to describe the walking motion for the

character and they need to choose the interpolation methods for the in-betweens?.

It is here that the very important concept, that of keyframes, appears. Keyframe
techniques are very important not only for animation creation but also when we dis-
play the animations. Usually, complete animation sequences are huge in size and it
is a big burden to render, transfer or store them. Therefore the common method is
to use only keyframes to represent the whole animation, and generate in-betweens
when necessary. With keyframes and interpolation methods, the animation software
can then automatically create the whole sequence just from the keyframes and dis-
play the complete resulting animation in real-time on the computer screen in front
of the animators. The animator can check the visual result and adjust the keyframes
(add, remove or change the key poses) to obtain the desired visual result for the full
animation sequence. Clearly, a lot of animator effort is required to create the right
set of keyframes for a desired motion effect.

The other way to obtain character animation sequences is to directly acquire
them from human actors using a motion capture (mocap) system. Mocap systems
commonly use optical or magnetic sensors which are strategically placed markers,
as shown in Figure (1.3). Magnetic mocap systems calculate the position and ori-
entation by the relative magnetic flux of three orthogonal coils on both the trans-
mitter and every receiver [11]. The relative intensity of the voltage or the current
of the three coils allows these systems to calculate both the range and orientation
by meticulously mapping the tracking volume. An optical mocap system utilizes
triangulation from multiple cameras to estimate the 3D positions of the markers.
Typically, it requires a minimal set of 40 — 50 markers to capture a full skeleton of a

human in motion. The newly introduced Kinect(IR) sensor from Microsoft uses 3D

4in-betweens are those animation frames, which are not specified by the animator but are usually
interpolated from keyframes

scans and video images to track and capture motion information, without the need
for any markers. However, if one wishes to capture the subtler human movements,
the marker based equipment will still be required and it may be necessary to have
as many as over 300 markers. The 3D trajectories of the set of markers constitute
a motion sequence for each frame, i.e., the pose is represented by a vector of the
marker positions. As the number of markers and/or the number of frames increases,
the mocap data easily grows to very large sizes. A typical animation mesh has at
least thousands of vertices with a fixed connectivity among the vertices. A mocap
system can record complex movements and realistic physical interactions such as
secondary animations, and the exchange of forces more easily, and these movements
can be recreated in a physically accurate manner. However, it also has its share of

weaknesses:
1. It is very noisy due to the deficiency of the sensors.

2. It is still expensive. Nowadays, the price of a full body magnetic mocap system
is around USD ten thousand; and a good optical system is around USD a
quarter of million. Moreover, they often require a large dedicated space for

capturing the motions.

3. The motion capture process is labour intensive and time-consuming for actors

and technicians [7,12].

4. The recording data needs to be suitably transformed for transfer from the

performer to the rendered (virtual) character [13-15].

In order to make the mocap technique more widely applicable, the acquired

data needs to be made reusable [8,16-18]. This would enable us to create needed

1) 9
7:.; \ b}

Jed
!

w

I %
‘LJ, 7 :rJ

!

/

Front Back

a) b) c)

L

! w" L!“ﬁ‘ﬁ_ ?J

Figure 1.3: Motion capture systems. a) is an example of optical mocap system.
The pictures come from forums.worldofwarcraft.com; b) is an example of magnetic
system from Measurand Inc.; ¢) A human pose constructed from the mocap marker
placements from [2]. The red dots indicate the marker positions.

motions by reusing pre-recorded mocap data. Furthermore, with the increased avail-
ability of mocap data and motion editing techniques, a current trend is to create
new high quality animations by joining multiple samples of motions from a mocap
database [19-21]. This alternative approach potentially provides animators with a
relatively cheap and time-saving approach to quickly obtain high quality motion
data for animating their creatures/characters. It does not require the animator to
create, edit or adjust keyframes, but does require appropriate setting of parameters
to control the joining of motion clips for obtaining the desired animation. Without
proper values for these parameters, the resulting animation may not be realistic.
In spite of the advent of mocap systems and techniques, even to this day,
keyframe animation continues to be the most popular animation technique used by
animators [22]. This is because of the fact that it gives complete interactive control
over the animation to the animator. This interactive procedure, however, can be

very time consuming, and the animation result is highly dependent on the animators’

abilities. No two animators will choose/set exactly the same set of keyframes even
for the same desired animations. Also, the quality of the result is very hard to

measure/compare with objective metrics.

1.1.3 Character Animation Representation

Character animation data can be interpreted as a recorded sequence of poses (frames)
of a character. Every frame records a particular pose of the character at a certain
time. The recorded pose representation could be meshes, skeletons or frame-based

videos. A sequence of character animation data has the following properties:
e The data contains a set of NV frames, f;,1 <i < N.

e Each frame has the same number and definition of free variables, known as
the Degrees of Freedom (DOFs). Different types of recordings have different
definition of DOFs. A mesh uses the vertex positions as its DOFs. Depending
on the complexity of the virtual character’s appearance, the number could
reach tens of thousands of DOFs. A skeleton is a simplified representation of
a character using joint angles between bones, so it has relatively less number
of DOFs, typically, one hundred or so for a virtual human. Videos use the
colour value of pixels as the DOFs. This again, depending on the resolution

and color range, may number in hundreds of thousands.

e The data can be represented by a matrix M. M is an N X n matrix, where N
is the number of frames and n is the number of DOF's for every frame f;. The
columns represent different frames. Each row represents a DOF value along the
different times. By this definition, video clips, mesh animation and skeleton
animation can all be represented as M. If we put the row as the axis in the

R"™ space, where n is the number of rows in M, then every column is a vertex

10

in the R" space. Because frame f; is a function of time ¢, the whole matrix
is a function of time ¢t in the R™ space. In other words, the matrix defines a
curve C in the R"™ space. With the continuous variable ¢, the time-space data

becomes a trajectory curve in the high dimensional space R".

1.1.4 Major Issues in Character Animation

Most research concerned with generation, analysis and manipulation of character
animation data such as video, mesh and skeleton sequences can be categorized into

the four following topics:

Motion structure extraction and simplification: Motion structure extraction
and simplification techniques are used to find the simplified representation for
the original motion sequence with a much smaller number of frames. Video
summarization techniques, as in [23-25], can be applied to create a subset of
keyframes which contains as much information as possible from the original
video. Summaries are important because they can rapidly provide users with
some information about the content of a large video or create a short version

of the original one.

Similar to video summarization, mesh-based keyframe extraction is the process
of selecting meaningful frames, reducing and omitting the redundant, and
perceptually meaningless frames [26-28]. One purpose of extracting keyframes
is to greatly reduce the animation data sizes. The extraction or simplification is
necessary for mocap data because data acquisition technologies such as motion
capture can produce a very large volume of animation data. If this data is to
be used in a computer game or virtual world, researchers would like to pack

as much of it as possible into a limited amount of memory. As in [20, 29,

11

the extraction or simplification may also be important in a film production

environment for easy access to animation databases.

Motion blending: Motion blending is a group of algorithms which can produce
new motions (blends) by combining multiple animation clips according to a
set of time-varying weights. Motion blending has several applications. For
example, blending can be used to create seamless transitions between motions,
by allowing one to build lengthy, complicated motions out of simpler actions.
Another application is interpolation, or creating motions “in-between” for the
initial set to produce a parameterized space of motions. The great advantage
of motion blending is to avoid the expensive and time-consuming effort of

generating original animations from scratch [30-34]

Motion manipulation and synthesis: Motion manipulation and synthesis tech-
niques focus on modifying an existing motion by adding new “elements”, such
as new personal styles or a new actor, to create new motion sequences. Synthe-
sis of realistic character animation is an active area of research and has many
applications in the entertainment and bio-mechanical industry. 2D based mo-
tion manipulation starts from image warping and deformation. Image warping
and deformation techniques have had a long history [35]. Recent efforts of im-
age warping and deformation have focused on deformation controlled by a user
who pulls on various handles [36,37] while minimizing the distortion of local
shapes, as measured by the local deviation from conformal or rigid transforma-
tions. These methods, which build on earlier work in as-rigid-as-possible shape
interpolation [38], are able to minimize perceivable distortion much more ef-

fectively than traditional space-warp methods [39] or standard scattered data

12

interpolation [40]. For 3D animation, in 1998, Gleicher [41] presented a tech-
nique for adapting an animated motion from one articulated figure to another
figure with an identical structure but with different segment lengths. After
that, many researchers have worked on motion manipulation areas for skele-
ton models that have much less DOFs than meshes [42-44]. More recently,
direct manipulation has proven to be an invaluable tool for mesh editing since
it provides an intuitive way for the user to interact with a mesh during the
modeling process. Sophisticated deformation algorithms propagate the users’
changes throughout the mesh so that the features are deformed in a natural

way [36,45-51].

Motion recognition and tracking: Three-dimensional, human shape estimation
and motion tracking are important and challenging research problems. They
also have numerous applications such as: 1) posture and gait analysis used for
training athletes and physically-challenged persons, 2) human body, hands,
and face animation, and 3) automatic annotation of human activities in video
databases. Motion information can include the position and the velocity, which
are incorporated with intensity values. This motion information is employed to
establish matching between consecutive frames. After feature correspondence
between successive frames is constructed, the next step is to understand the
behaviour of these features. To recognize human activities from an image
sequence, researchers typically use one of two types of approaches: approaches
based on a state space model or ones which use a template matching technique.
In the first case, the features used for recognition include points, lines, and 2D
blobs. Methods used for template matching usually are applied to meshes of

a subject on the image to identify a particular movement.

13

Gavrila [52] formulated pose-recovery as a search problem. Moreover, he de-
veloped a hierarchical decomposition approach to overcome the difficulties
brought by the high dimensionality of the search space. Bregler [53] developed
a region-based estimation framework (using twists and exponential maps),
with the cost function based on the optic flow. In Yamamoto’s work [54], track-
ing was performed by estimating the pose increment of the body parts from
multiple images and by assuming small increments in pose changes. In [55],
Yamamoto extended his previous work with Yagishita, and employed scene
constraints to reduce the model’s DOFs. Cham [56] developed a probabilistic
multiple-hypothesis framework for tracking articulated objects, where the key
insight was in the representation and tracking of the modes in the posterior
state density function. Delamarre and Faugeras [57] presented a force-based
method for tracking humans, which was based on an elaboration of the ideas of
force-based tracking presented in [58]. Drummond and Cipolla [59] proposed
a real-time visual tracking system, based on an internal Computer-aided de-
sign (CAD) model of the object to be tracked. The object is rendered using
a binary space partition tree to perform the hidden line removal. Billon et
al. [60] provided a real-time recognition method for motion capture data with
the idea of reducing the mocap system to a single artificial signature. Bulbul

et al. [61] provided a color based face tracking with mobile devices.

All of these problems are complex and hard to handle due to the huge di-
mensionality of the data. For example, it is very difficult to generate high quality
in-betweens by interpolation for mesh data with thousands of DOFs. It would be
difficult to constrain the interpolation to preserve desired object properties, say vol-

ume preservation. The flaws are spread over thousands of DOF's, and are difficult

14

to locate and correct. Motion editing techniques, such as constrained optimization
methods [62], also face the difficulty caused by high dimensionality. Optimization
has proven difficult for complex articulated character animations and those that
require longer animations. It has been shown that we have more difficulties in
setting the physical constraints in the torque-based optimization functions used for
skeleton-based models. The data from mocap systems, which is represented as skele-
tons, always have many redundant frames that need to be simplified and compressed
for reducing the size of the data. Only compressed mocap data can be accepted by

a large motion database for further transmission and reuse.

1.2 Problem Statement and Research Methodol-
ogy

We can now state the problem addressed in this thesis as follows:

Given that the high dimensionality of character animation in skeleton or mesh
format leads to a number of difficulties in many of the existing techniques for manip-
ulating and creating a desired character animation, there is a need for the develop-
ment of new computer-based techniques which can enhance currently used character
animation techniques and reduce animator effort required.

A very interesting observation is that people are capable of easily recognizing
and distinguishing among different motions [63,64]. This recognition ability is very
powerful. No matter whether the information comes from, the real world or the
virtual world, our brain can tell us what the motion is, easily and instantly. No
matter how different the performer’s personal style is, our brain can still distil the
motion. This observation reveals a very fundamental and important fact, namely

that, every motion has its distinguishable characteristics. These characteristics allow

15

us to tell them apart from other motions [65,66], so that no one will confuse a running
motion with a walking motion or a jumping motion. Our research methodology is
primarily based on this observation.

If we analyze the motion data, we can find that the data has two other impor-

tant properties:

1. DOFs are correlated with each other: This is because the motion is
coordinated; for example, the legs and arms work together to generate the
required velocity in real world. So controlling the feet landing on the ground
can therefore be represented as simple functions of just a few driving signals.
Pullen and Bregler [67] used this observation for motion synthesis and tex-
turing. Jenkins and Mataric [68] also used this observation for identifying

behaviour primitives.

2. DOF's have temporal coherence: Motion with large intentional movements
of physical contacts exhibits the greatest degree of feature coordination. How-
ever, the passive resting motion such as ambient change in a static stance
has less-prevalent features. This property makes motion synthesis an interest-
ing research problem, especially because there are physical limits to exploring
the degree of differences between two subsequent frames in an animation se-
quence [19,69]. Chai and Hodgins [70] utilized temporal coherence of the
control signals to accelerate the nearest neighbor search for similar poses and

dynamically constructed a local linear model for the poses to be estimated.

Based on the above discussion, we can conclude that most action animation
sequences implicitly include the characteristic information of a particular action
which is easily recognized by humans viewing the animation. In spite of this, the

characterizing motion information is embedded and mixed with much redundant

16

information in such a way that makes it not so straightforward to extract this.
The methodology we pursued is to use machine learning techniques to extract and
represent this characterizing motion in such a manner that it can be further used in

the development of new enhanced techniques.

1.3 Major Contributions

Our first major contribution is the formulation to extract characterizing motion
information from a given animation character sequence motion involving 3D mod-
els. We use a manifold learning technique, local linear embedding (LLE) for this
and obtain a representation of this characterizing motion in the form of a curve
in low dimension embedding space. Next we have formulated a framework which
includes this embedding curve and a reconstruction matrix that maps any point in
the embedding space to a pose in the original high dimension space of the character.
The mapped pose is computed using the entire set of frames used for computing the
LLE embedding, thus eliminating any bias that may be caused by local information.
This opens up the opportunity to create new techniques which operate in the low
and/or high dimension space as appropriate. Moreover, unlike most previous work
in the field of character animation, this framework is equally applicable to mesh or
skeleton-based character animations.

Our other major contributions are based on the above framework and consist of
new techniques which enhance character animation using the keyframe techniques.

These are the following:

In-between generation with physical properties preservation: With just the
keyframes, we use the framework to generate in-betweens which can satisfy

physical properties. It uses a physical property map in the low dimension

17

embedding space for this. This technique releases animators from the difficult
task of creating the key poses so that the physical properties are not violated
by simple geometric interpolation techniques. Our framework has the ability
to collect information from the entire animation represented in the form of a

set of keyframes.

Variation generation in repetitive motions: With a given character animation,
either the keyframes or the sequence, we use the framework of the characteriz-
ing motion in the LLE embedding space along with the reconstruction matrix
to obtain a bilinear factor model for the character animation. Then we per-
mit controlled perturbations in the reconstruction matrix to generate motion
variations while preserving its principal characteristics. These variations in
the motions of animated digital characters will make the different instances
of the performed action appear slightly different for increased realism in the
movements of autonomous characters like the non-playing characters (NPCs)

in games.

Content based key information extraction: Given a complete character ani-
mation sequence, we extract an optimal set of keyframes using the framework
for reconstructing the given animation through the keyframe animation tech-
nique. This set of keyframes forms a compact representation for the given
animation and also permits manipulation of the animation using other tech-
niques. For extracting keyframes, we use an animation saliency map computed
in the high dimension space of the character’s geometric model, and the low
dimension embedding of the animation sequence obtained using LLE. While
the animation reconstruction error is minimized in the original high dimen-

sion space, the search for the optimal keyframe set is made more efficient by

18

carrying it out in the low dimension embedding space.

1.4 Organization of this thesis

The rest of this thesis is organized as follows. In Chapter 2 we provide a compre-
hensive review of character animation techniques and the required background on
manifold learning and its application in character animation. Chapter 3 presents the
motion learning scheme using locally linear embedding and shows how it decomposes
the animation into a core motion component and a variable motion component. The
core motion component is in the form of a curve in low dimension embedding space
and is referred to in the rest of this thesis as characterizing motion information. In
the rest of this chapter, we describe the development of the framework which maps a
point in the low dimension embedding space into a character pose in the original high
dimension space of the character. In Chapter 4, we present our first new technique
based on this framework to enhance keyframe animation. This chapter addresses
the problem of generating in-betweens which satisfy physical properties such as vol-
ume, area etc. The concept of property maps in embedding space is introduced
for this purpose. The next chapter addresses the problem that in the real world,
two instances of the same action in different shots or scenes performed by the same
actor will not be exactly identical. We present a technique to introduce noticeable
variations in the motion of a character while preserving its principle characteristics.
The bilinear factorization of the animation afforded by the decomposition discussed
earlier is used for this. Chapter 6 presents a technique for optimized extraction
of a set of keyframes, given an entire animation sequence previously generated or
captured using mocap systems. In chapter 7, we give the concluding remarks on our

research so far, and we list some possible directions for future work.

Chapter 2
A Review of Related Work

In this chapter, we give a detailed review of related work in character animation and

manifold learning techniques.

In Section (2.1), we classify the literature on creation of character animation into

three groups:

1. traditional character animations which require heavy involvement from

animators, such as key framing, inverse kinematics and morphs;
2. character animations from motion capture systems;

3. character animations created by motion editing techniques applied to
existing animation segments, such as motion synthesis, motion manipu-

lation and motion blending.

In Section (2.3), we discuss relevant techniques for manifold learning, which we
use in our work to cast the higher dimensional problem into a lower dimen-
sional space. This discussion begins with traditional linear manifold learning
techniques such as Principal Component Analysis (PCA), Factor Analysis and

Multidimensional Scaling, and moves on to introduce the non-linear manifold

19

20

learning technique, which is relatively recent in the field of machine learn-
ing. For non-linear manifold learning, we give some details and comparisons
about the three most popular techniques: locally linear embeddings, Laplacian

Eigenmaps, and ISOMAP.

2.1 Creation of Character Animation

An ongoing goal in computer animation is to create realistic character animations.
There are many ways to create character animations, but we can categorize them
into two groups: the virtual world versus the real world. The former group is mainly
based on animators’ works. Usually animators in this group create 3D models and
then have two choices: 1) to define the privileged information needed for animating
the 3D model of a geometric and/or kinematic nature; 2) to provide physical data,
such as forces, direction, mass and so on, to describe the motion and use a physics
engine to do the simulation for determine the motion. In the second group, anima-
tion depends mainly on geometry capture systems, e.g., a motion capture system.
Data is captured from a live performer carrying out the required motions. Both
approaches are very costly in term of time and effort. A comparatively cheaper way
is to create new animations from editing and/or manipulating existing ones. These
methods are also referred as the data driven approach.

By categorizing character animation as coming from the virtual world, we
mean that the animations are generated by animators using their imagination, vi-
sualization and creative abilities. The characters and their poses in the animation
frames are created as per the animator’s requirements. The motion control method
could provide either local or global control. For locally controlled animated charac-

ters, the controlling methods are normally driven by geometric data. The motion

21

may be defined in terms of coordinates, angles and other shape characteristics or
it may be specified using velocities and accelerations; but no forces are involved.
Among the locally controlled animation group, key framing, morphing, kinematics
(forward or inverse) are three of the more widely used techniques. Among these
three methods, key framing is the basic one and morphing and kinematics methods
are usually applied combined with the keyframe technique. For globally controlled
animated characters, the motion of the character is determined by solving a group
of dynamic equations, which are defined by physical parameters such as charac-
ter mass, forces and constraints. These usually go by the name, physically based
animation techniques.

Next, we give an overview of previous work on keyframe, morphing, kinematics

and physically based animation techniques.
Key framing

Computer based key framing is an old technique consisting of the automatic genera-
tion of intermediate frames, called in-betweens, which are based on a set of keyframes
(also called key poses for characters) supplied by the animator. These in-betweens
are obtained by interpolating the keyframes. Linear interpolation is the most basic
and common keyframe interpolation method used in the industry due to its most
significant advantage, which is speed. Given two parameters py and p;, at time ¢,

and 1, an intermediate value is given by:

1 —t t— 1o

t) = 2.1
p(t) P (2.1)

It can also be written as:

pt)=pox (1—t)+p xt te]0,1] (2.2)

22

The advantage of this technique, besides speed, is that the rate of change
within a segment is constant. Therefore, it can be easily controlled. But, it also has
disadvantages. The linear interpolation method produces undesirable effects, such
as a lack of smoothness in motion, discontinuities in the speed of motion, distortions
in rotations, non-preservation of physical properties like length, area, volume etc.

Spline interpolation methods can be used to reduce some of these drawbacks.
Splines can be described mathematically as piecewise approximations of cubic poly-
nomial functions. Two kinds of spline interpolations are very popular: interpolating
splines with C' continuity at knots, and approximating splines with C? continuity
at knots. For animation, the most interesting splines are the interpolating splines:
cardinal splines, Catmull-Rom splines, and Kochanek-Bartels [71] splines.

Another way of producing a better result is to interpolate parameters of a
model representing the object. This technique is called parametric keyframe an-
imation and it is commonly used in most commercial animation systems. In a
parametric model, the animator creates keyframes by specifying an appropriate set
of parameter values. Parameters are then interpolated and poses for each frame of
the animation are finally individually constructed from the interpolated parameters.
Spline interpolation is generally used for the interpolation.

A new trend in the keyframe technique is to develop a nice user interaction
scheme to make it easier for the animator to specify requirements and generate
character animations. Terra [72] presented a novel method for capturing the user’s
desired timing, correlating it to the character’s motion path, and adjusting the
timing of the animation to reflect the user’s desires. Igarashi et al. [36] also proposed
to let novice users create animations for arbitrary 3D characters quickly and easily,

with a standard input device such as a mouse.

23

Morphing

Morphing is a technique which has attracted much attention in the past two decades
because of its astonishing effects [35, 73-78]. It is derived from shape transforma-
tions and deals with the metamorphosis of an object into another object over time.
Researchers first applied the morphing technique on the image space. Image mor-
phing manipulates two-dimensional images instead of three-dimensional objects and
generates a sequence of in-between images from two images. These techniques have
been widely used for creating special effects in television commercials, music videos,
and movies. In generating an in-between image, the most difficult part is to compute
warps for distorting the given images.

The problem of image morphing lies basically in knowing how an in-between
image can be effectively generated from two given images. A simple way for deriving
an in-between image is to interpolate the colours of each pixel between two images.
However, this method tends to wash away the features on the images and it does
not give a realistic metamorphosis. Hence, any successful image morphing technique
must interpolate the features between two images to obtain a natural in-between
image. Feature interpolation is performed by combining warps with the colour in-
terpolation. A warp is a two-dimensional geometric transformation and the warping
generates a distorted image when it is applied to an image. For two given images,
the features on the images and their pixel based correspondences are specified by an
animator with a set of points or line segments. Then, warps are computed to distort
the images so that the features have intermediate positions and shapes. The colour
interpolation between the distorted images finally gives an in-between image. More
detailed processes for obtaining an in-between image are described by Wolberg [79].

A number of researchers studied morphing directly in a three-dimensional

24

space. The techniques fall into two major categories: the volume-based approach
and the surface-based approach. The volume-based approach uses a 3D representa-
tion of the object, such as a set of voxels. Lerios et al. [80] proposed a 3D morphing
method using fields of influence of 3D primitives such as points and lines to warp
volumes. Cohen-Or et al. [74] proposed a distance field metamorphosis scheme with
a guided interpolation by using a warping function. The surface-based morphing
approach usually contains two main steps. The first one is to find the one-to-one
correspondence between two polygon meshes; the second step involves defining the
interpolation paths for each pair of corresponding vertices on the meshes. These
paths are used to calculate the in-between shapes [73,75]. Lee and Huang [81] pre-
sented an interactive system, which provides animators with easy morph control and

fast morph creation.
Kinematic animation

Kinematic animation is a well established technique in the field of robotics and is
used for controlling robot manipulators. Researchers in computer graphics have
been using this technique to generate animations of multi-segment characters, such
as animals and human figures. Its applications include: editing keyframe postures,
generating interactive animations, and generating animations for actions such as
reaching, walking etc.

Kinematic animation is comprised of two classes of techniques: forward kine-
matics and inverse kinematics. Forward kinematics consists of specifying the state
vector of an articulated figure over time. This state vector is usually specified for
a small set of keyframes, while interpolation techniques are used to generate the

in-between frames. The main problems lie in the design of convenient keyframes,

25

and in the choice of adequate interpolation techniques. Designing keyframe skele-
ton poses usually lies in the animator’s hands, and the quality of resulting motions
greatly depends on the animator’s skills, and, in many cases, the available physical
and biomechanical knowledge of the motions. The exclusive use of forward kine-
matics makes it difficult to add constraints to the motion, such as those specifying
that the feet should not penetrate into the ground during the support phases. These
constraints may be solved by using inverse kinematic technique, discussed next.

Inverse Kinematics (IK) permits direct specification of the end point position.
It has been widely used for synthesizing motions of linked bodies in robotics and in
character animation [82]. The basic IK problem is to find the character pose that
satisfies the specified constraints. Among the number of IK methods, the method
based on Lagrange multipliers is known to be the best, as its computational cost
increases only linearly with the number of degree of freedoms (DOF's), and the mo-
tions generated are natural. However, the IK technique has a big drawback, as it
is often an under-constrained problem. Many action poses may satisfy the speci-
fied constraints. This leaves an animator with the task of specifying significantly
more constraints than necessary. Inequality constraints are necessary when solving
problems for multi-body structures that have joints with limitations in the ranges of
motion, or collisions between different segments. The other problem is that compu-
tation time for IK calculation grows in the order of time cubed proportional to the
number of constraints. Hence, when controlling multiple characters under multiple
constraints, the performance of IK drops significantly. Grochow et al. [83] proposed
an [K system that utilizes captured motion data to address this problem.

This forms part of the more recent direction in IK, combine IK with motion

capture to develop IK solvers, and to let animators or users edit or control the human

26

characters interactively. The interaction is based on captured motion data [84].
More recently, researchers have applied IK technique directly on mesh data, which
has a much higher number of DOFs [47,49]. But these methods always need to

pre-group the vertices into bigger patches to reduce the complexity of the problem.
Physically-based Animation

Unlike the local motion control methods, physically based character animations
handle the motion globally. In methods such as described in [43,85,86], animators
provide physical data for the character and the environment, and the motion is
obtained by solving the dynamic equations. We may distinguish between methods
based on parameter adjustment versus constraint based methods. For the latter,
the animator states, in terms of constraints, the properties that the character model
and the environment is supposed to have, without needing to adjust the parameters.
For example, space-time constraints may be used to create character animation, by
solving constrained optimization. For realistic simulation of deformations, an elastic
model based on the Lagrange equation may be used. A finite-element can model
the deformations of human flesh due to the flexion of body parts and the contact
among body parts. In physically-based animation, collision detection and response
are obviously important.

Physically-based character animation is based on the computation of a char-
acter’s motion within a physically simulated environment, and the joint torques !
are generated to cause a character movement. Animating certain aspects of real
movement, such as how quickly a character tumbles in the air or how a character
reacts as it falls on the ground, are directly governed by the physics of the situation

and can be well captured. However, the robust controls for character animation,

Ljoint torques is the torque produced by the muscle force about the joint center [87]

27

such as human or animal actions, are very hard to define. The controls for charac-
ter animation can even be undefinable. It is because of the fact that the interface
between our intentions and muscle actions is unobservable and complex [86].

In the methods mentioned above, the goal is to help animators to convert
their observations of real world motion into virtual world animations. Next, we
will discuss motion capture systems which can acquire character animation data by

sensing and recording movements in the real world.

2.1.1 Motion Capture

As discussed briefly in the previous chapter, motion capture (mocap) is a technique
for sensing and digitally recording the movements of live performers directly. It
started as an analysis tool in biomechanical research. Since it’s invention, mocap
has grown to be increasingly important as a source of motion data for character
animation with applications in medicine, sports, education, training and recently
for both cinema and video games. It employs special sensors, called trackers, to
record the motion of a human performer (See Fig. (2.1)) 2. By using magnetic or
optical technologies, it is possible to store the positions and orientations of points
located on the human body. The typical procedure for a mocap system is listed as

follows:

1. Studio set-up
2. Calibration of capture area
3. Capture of movement

4. Clean-up of data

2The image is from Ascension Technology Corporation.

28

5. Post-processing of data

A further computation provides the link between the synthetic skeleton and
the real skeleton, in order to adapt data to new character morphologies. Several
techniques [18,88] have been introduced to adapt captured trajectories to a different
synthetic skeleton. The method consists in recovering angular trajectories, which
are applied to a synthetic articulated body. Given sensor positions and orientations,
a modified inverse kinematic optimization algorithm is used to produce the desired
joint trajectories. The synthetic skeleton thus exhibits exactly the same motion as
the real actor. For most applications however, the captured motion needs to be
modified in order to create a variety of specific animations, that take the synthetic
environment into account. For instance, when an interaction between two synthetic
actors is required, their movements have to be modified to model this interaction
(e.g., by dealing with problems of contacts, trajectory tracking, etc.). Overall, since
motion data is obtained from real world performers, the resulting animations are
very realistic.

However, the mocap technique also has its weaknesses. The acquisition of data
for mocap systems is still a challenging problem - setup time is large, performing
naturally with markers in a synthesized environment needs practice and training
and the data obtained is very noisy. Secondly, motion capture data contains large
quantities of unstructured data. This huge amount of unstructured data is cumber-
some to manipulate. Both of the above weaknesses make the mocap data difficult
to alter, especially since the key "essence” of the performer’s actions are not easily
distinguished from the large amount of potentially irrelevant details.

As is clear from the above discussion, the creation of new animations either

by using keyframe animation or by using a mocap system is very costly in efforts

29

Figure 2.1: Motion Capture: a performer wearing a motion capture apparatus. The
device shown is a full body magnetic tracking system with a wireless interface. The
Image was take from the Ascension Technology Corporation [3].

30

and time. A cheaper way as mentioned earlier is to create new animations from
editing and/or manipulating existing ones. These methods are also referred as the

data driven approach. We will discuss this group of methods next.

2.1.2 Data-driven motion generation

These techniques are based on reuse of existing character animation segments from
the motion database. Such techniques are called as data driven approaches. One
popular data-driven approach to obtain animations are motion graphs, which rep-
resent the allowable transitions between poses in two actions [19,21,89-91]. Motion
graphs are used to create an animation by taking pieces from a motion database and
then reassembling them to form a new motion. However, graph-based representa-
tions cannot be used to generate motion data for new styles and/or actors because
they are not used to modify the captured motion data. One major stumbling block
is the lack of understanding of the effects of the motion graph’s data structure. For
example, it is not known with any confidence about what a character can or cannot
do when animated by a particular motion graph in a particular environment. Due to
this lack of knowledge of a motion graph’s capabilities, these graphs are not reliable
enough for many applications, especially interactive applications where the char-
acter must always be in a flexible and controllable state, regardless of the control
decisions of the user. Even if a particular motion graph does happen to fulfill all
of the requirements, the reliability will be unknown. For a risk-averse application,
the result is un-useable without a method to evaluate and certify the capability of
the motion graph. Reitsma and Pollard [92] proposed the definition of a motion
graph’s capability, described a method to quantitatively evaluate that capability,
and presented an analysis of some representative motion graphs for this problem

with some limitations.

31

Another way to create character animation are weighted interpolations of reg-
istered motion examples [31,93-96] using the idea that human motion itself can be
represented as a weighted interpolation. The new character animation can be gen-
erated by interpolating motion examples with different styles but it fails to model
motion variations. In computer vision area, Troje [97] explored a similar representa-
tion for walking motions, in which the temporal variations in poses were expressed
as a linear combination of sinusoidal basis functions. The temporal variations in
poses were used to recognize genders from optical mocap data.

In the past decade, statistical motion models have been used for: interpola-
tion of keyframes [98]; interactive posing of 3D human characters [83]; performance
animation from low-dimensional control signals [70]; generalization of motion to
match various forms of spatial-temporal constraints specified by the user [99]; and
interactive motion synthesis with direct manipulation interfaces and sketching in-
terfaces [100]. However, none of these approaches interprets motion variations using

style or identity factors.

2.2 Character Animation Editing

In this section we shall discuss various techniques devised for editing of character

animations.

2.2.1 Keypose Editing

Because of the increasing requirements for realism in computer graphics and the
wide availability of 3D scanners, animations of character meshes with high geomet-
ric complexity are becoming commonplace. Keyframe techniques, the fundamental
category of techniques employed in practice, use shape interpolation among local

neighbors [71,101]. Most often, the high complexity is reduced by interpolating the

32

skeletons (bone-structure). This is then followed by a “skinning” operation that
deforms in-between mesh vertices according to a weighted average of bone transfor-
mations. However, using a simple skinning model makes it very difficult to capture
articulated shape deformation without significant visual artifacts [94].

Some researchers have extended the skeleton animation ideas to mesh based
animation. They create realistic animations from examples. One approach is to
warp an existing animation [13,102] or to interpolate between sequences [93]. Mesh
surface deformation has been studied as a geometric problem [103,104], or using
inverse-kinematics [105], or in the form of a physics-based problem [106], where the
emphasis is on computing realistic shape changes based on physical properties and
applicable forces. Usually, the deformations are small and while such techniques find
application in facial animation, they cannot be easily extended to limbed character
animation [47].

Over the last two decades, a number of techniques for easing the problem of
keypose specification have evolved, mainly through interactive keypose editing. Au-
thors have described systems for producing new keyposes from examples, either by
direct copying and blending of poses [89] [69] [19], by learning a likelihood function
over sequences [98], or through inverse kinematics on reduced models [49]. The im-
portance of preservation of shape properties such as volume are addressed in [107].
Although the keyframe interpolation based paradigm is presently most popular in
animation practice, there still exist the inherent problems due to the use of merely lo-
cal neighborhood information to generate the new poses. Hence considerable human
intervention and care are needed for obtaining the desired motion. In applications
like cinema and gaming, where most motions are predefined, the quality of the final

result is often used to justify the cost of manual labor [108,109].

33

2.2.2 Creating Motion Variations

The problem of creating varying motion sequences in a controlled fashion has re-
ceived considerable attention in past research. There are two main categories — those
which work on modifying the frames in a given single motion and others that work

on generating varying motion sequences by composing motion fragments.
Variations in a given motion

These are techniques analogous to adding texture to images/surfaces. Variations are
often generated through the addition of noise functions, such as Perlin-noise [110] or
hand crafted noise functions based on biomechanical considerations [111]. Frequency
analysis of motion and subsequent addition of noise (texture) has also been another
approach. Unuma et al. [112] use Fourier analysis to manipulate motion data by
performing interpolation, extrapolation, and transitional tasks, as well as to alter
the style. Bruderlin and Williams [113] apply a number of different signal processing
techniques to motion data to allow editing. Pullen and Bregler [114] create cyclic
motions by sampling motion signals in a ‘signal pyramid’. Lee and Shin [115] develop
a multi-resolution analysis method that guarantees coordinate invariance for use in
motion editing operations such as smoothing, blending, and stitching. Similarly,
statistical analysis based techniques which are usually based on principal component
analysis have also been proposed [116-118].

Yet other research in creating motion variations is in the area of editing a
given motion to adapt to different constraints while preserving the style of the
original motion. Witkin and Popovi¢ [102] warped motion data between keyframe-
like constraints set by the animator. Motion clips are combined by the overlapping
and blending of the parameter curves. They showed that whole families of realistic

motions can be derived from a single captured motion sequence using only a few

34

keyframes to specify the motion warp. The physically based space-time constraints
method of Witkin and Kass [62] was applied to adapt a set of motion data to
characters of different size. Popovi¢ and Witkin [119] describe a physics based
method in which editing is performed in a reduced dimensionality space. In [120],
Sun and Metaxas provide different solutions for automatic gait generation based on
the use of sagittal elevation angles, uneven terrain handling and high level control
over path specification. Their work is targeted towards easy-to-use, real-time, and

fully automated animation system, specifically for walking motion.
Variations through Motion Fragment Composition

Analogous to the video texture concept [121], Sattler et al. [122] propose an al-
gorithm to create new user controlled animation sequences based only on a few
keyframes by the analysis of velocity and position coherence. The simplicity of the
method is achieved by carrying out the calculations on the main principal com-
ponents of the reference animation, thus reducing the dimensionality of the input
data. Brand and Hertzmann [123] have used hidden Markov models along with
an entropy minimization procedure to learn and synthesize motions with particular
styles. In [98], motion data is divided into motion textons. A statistical model is
learned from the captured data which enables the realistic synthesis of new move-
ments by sampling the original captured sequences. Motions are synthesized by
considering the likelihood of switching from one texton to the next.

Another approach is to search an existing database of motion fragments to
produce new motions driven by parameters such as speed or style of motion [124].
In the work of Pullen and Bregler [67], the animator sets high level constraints and
a random search algorithm is used to find appropriate pieces of motion data for

the 7joins”; the frames in the pieces that blend one motion fragment to another.

35

Similarly, missing degrees of freedom in a motion are fetched from a motion capture
database. In the work of Lee et al. [90], animations are created by searching through
a motion data base using a clustering algorithm. Kovar et al. [19] introduced the con-
cept of a motion graph which contains original motion and automatically generated
translations. Hus et al. [125] present an example based human motion generator by
interpreting input control specification to create a designed target motion. More re-
cently, Shin and Oh [126] have presented the idea of ”"fat graphs” for user controlled

character motions.

2.2.3 Keyframe extraction

Due to the increasing popularity of motion capture technology, various methods
have been proposed for keyframe extraction. The focus is on extracting keyframes
from skeletal animation sequences. In [127-129], keyframe extraction is addressed as
the high dimensional motion curve simplification problem. The extracted keyframes
are the junctions between curve segments. Lim and Thalmann [127] divided the
motion curve into segments recursively until the maximum distance of any point on
the segment piece is less than a certain prescribed value. Li et al. [128] provided
another algorithm to simplify the motion curve by decimating the less important
frames iteratively. Halit and Capin [129] also select high saliency frames as keyframes
on the motion curve but in a lower dimensional embedding space computed using the
PCA technique. Curve simplification methods usually are very efficient. However,
considering that the above approaches focus on local motion curve segment, the
results are not optimized globally.

Other keyframe extraction works convert the keyframe extraction to a clus-
tering problem. This group of methods, first applied on videos [130, 131], cluster

frames with defined distance measures. A representative frame will be selected as

36

the keyframe from each individual group. Liu et al. [132] use a weighted function of
distance between joints as the distance measure to cluster frames. After the clus-
ters are formed, the first frame in each cluster is selected as the keyframe. Park
and Shin [133] used quaternions as their representation for motion data. Then they
utilized PCA and k-means clustering to linearize the quaternions and cluster them.
The scattered data interpolation was used to extract keyframes from the clustered
motion data. How to incorporate the frame order (time-wise) to generate less re-
construction error is still a challenging problem for this type of approach.

Yet another group of keyframe extraction methods represent the animations
as matrices and converts the keyframe extraction problem to a matrix factorization
problem. Huang et al. [26] convert a sequence of frames to a matrix formed by
placing all of the vertices of a frame in a row. This matrix is then approximately
factorized into a weight matrix and a keyframe matrix. The optimal solution to the
matrix factorization equation generates the keyframes and the combination weight
for in-betweens. Similar to [26], Lee et al. [28] introduced the deformation-driven
genetic algorithm to simplify the optimization of good representative animation
keyframes. The disadvantages of this type of method is that they are very time
consuming due to the high dimensionality of DOFs.

From the above detailed review of character animation techniques, it is clear
that the subject has been researched extensively. A lot of effort is required for cre-
ating animations as per animator expectations. In spite of the numerous techniques
which have evolved, there is still the need for new techniques which can reduce the
amount of animator effort involved and address many of the difficulties arising due
to the high dimensionality of character animation data. The idea which we have

pursued in this research is to use manifold learning techniques to automatically

37

identify the distinguishing characteristics of any given character motion and then to
use this for developing new techniques. We shall therefore give next an overview of

applicable manifold learning techniques.

2.3 Manifold Learning

In this section, we give an overview of relevant techniques in manifold learning.
The components of the data points tend to be correlated with each other in many
real-world applications with high-dimensional observation data, such as images,
videos and animations [67]. Also in many cases, the data points lie close to a
low-dimensional nonlinear manifold. Manifold learning addresses the problem of
finding a low-dimensional structure within collections of high-dimensional data to
overcome the difficulties caused by high-dimensionality for human understandings.

In the last several decades, manifold learning has been studied and used in
many practical applications, such as data classification and data mining. These
studies have lead to many impressive results about how to discover the intrinsi-
cal features of a manifold. Manifold learning is based on an assumption that data
sources with a large amount of data, such as images, animations, speech and char-
acters with varying intrinsic principal features, can be thought of as constituting
highly nonlinear manifolds in the high-dimensional observation space.

Traditional dimension reduction techniques such as Principal Component Anal-
ysis (PCA), Factor Analysis (FA) and Multidimensional Scaling (MDS), usually
work well when the underlying manifold is a linear (affine) subspace in the input
space [134]. Hence, we cannot, in general, discover nonlinear structures embedded
in the set of data points with PCA, FA and MDS.

Recently, several entirely new approaches have been devised to address this

38

Table 2.1: Comparison among two groups of recently successful manifold learning
methods, global vs. local.

Manifold Learning | Advantages Disadvantages
Approach
Local approach 1) Computational efficiency Results depend
(LLE and Laplacian | due to sparse eigenvalue problem on neighbourhood
Eigenmaps) 2) Representational capacity parameter
Global approach 1) Gives more faithful representation | Not stable for
(ISOMAP) of global structure topological structure
2) Its metric-preserving properties
are better understood theoretically

nonlinear mapping problem. These methods combine the advantages of PCA and
MDS, such as computational efficiency, few free parameters, and non-iterative global
optimization of a natural cost function, with the ability to recover the intrinsic
geometric structure of a broad class of nonlinear data manifolds.

We can classify these algorithms into two groups: local approaches and global
approaches. Locally Linear Embedding (LLE) [135] and Laplacian Eigenmaps [136]
are local approaches which attempt to preserve the local geometry of the data;
essentially, they seek to preserve the neighborhood on the embedding space. On
the other hand, the global approach, as in ISOMAP [137], attempts to preserve the
geometry at all scales, by mapping nearby points on the manifold to nearby points,
and far away points to far away points in the embedding space.

Table (2.1) lists the advantages and disadvantages of local and global ap-
proaches used in manifold learning. Following that we discuss these approaches in
some detail to understand their relative advantages and disadvantages specifically
for our research goals.

To give a mathematical description, manifold learning can be defined as fol-
lows: Given a set of n observation data points x :< z;, s, ..., T, > in space R!, we

can hypothesize that there is a set of points y :< 41, vs, ..., ¥, > in space R™, where

39

m << [, which is a mapping representation of x. In other words, we assume that
there is a smooth mapping of p : R® — R™. Dimension reduction techniques are
ways to find the smooth mapping p. In the next subsections, we give some details

about three nonlinear dimension reduction techniques: LLE, Laplacian Eigenmaps,

and ISOMAP.

2.3.1 Local Approach: LLE

Locally Linear Embedding (LLE) [135] is one of the many promising frameworks
for nonlinear dimensionality reduction. LLE frameworks were shown to be able to
embed nonlinear manifolds from high dimensional data into low-dimensional Eu-
clidean spaces. Such approaches are able to embed mesh ensembles nonlinearly into
low dimensional spaces, where various orthogonal perceptual aspects can be shown
to correspond to certain directions or clusters in the embedding spaces. In this sense,
such nonlinear dimensionality reduction frameworks present an alternative solution
to analyze the object’s motion.

For a given data set x, to compute the embedding, the LLE method uses three
steps (See Fig (2.2)):

1. For each z; € x, find the £ nearest neighbors z; of z; by defining the distance

function (such as Euclidean distance), k is a parameter.

2
2. Compute weights w;; such that the reconstruction cost ‘:cz -3 i fwij:ch is

minimized; subject to the constraint . w;; = 1.

3. Compute the low dimensional vector Y (the embeddings) reconstructed with

2
, subject to the con-

w;; to the minimize the cost function: ‘ Yi — D Wijy,

straint (y;yf) = 1.

40

.....
mm

Reconstruct with
linear weights

Figure 2.2: Summary of the LLE Algorithm, which performs the nonlinear dimension
reduction via local linear reconstruction of weights. The image was taken from Saul

and Roweis” work [4]

41

2.3.2 Local Approach: Laplacian Eigenmaps

In 2003, Belkin and Niyogi [136] explored an approach that builds a graph which
incorporates the neighborhood information of the data set. Using the notion of the
Laplacian of the graph, we then compute a low-dimensional representation of the
data set. This representation optimally preserves local neighborhood information in
a certain sense. The representation map generated by the algorithm may be viewed
as a discrete approximation to a continuous map. The map naturally arises from
the geometry of the manifold.

For a given data set x, there are three steps of the Laplacian Eigenmaps

computation listed as follows:

1. For each z; in x, find I'(¢), the n nearest neighbors z; in x of x; by the defined
distance function, such as Euclidean distance, subject to it being symmetric

(1 € T'(y) if and only if j € T'(z)).

2. Construct weighted adjacency matrix W in equation (2.3) below, which is

symmetric, where W;; # 0 if and only if 7 € I'(j).

1
Wi = exp {_W ||z — $j||2} (2.3)
where, 0 sets the scale of the isotropic Gaussian kernel.

3. Compute embedding from normalized Laplacian with embedding Y subject to

minimization of the following function:

n

- 1 -
Duap(Y) =YD Wi llys — w1 = 5traae(yT(I —W)Y) (2.4)
i=1 j#i

42

2.3.3 Global Approach: ISOMAP

ISOMAP [137] generalizes low dimensional embedding based on replacing the Eu-
clidean distance by an approximation of the geodesic distance on the manifold. The
calculation of embedding for ISOMAP also contains three stages for given dataset

X

1. For each z; in x, determine a neighborhood graph G of the observed data x

in a way, such that G' contain edge z;z; iff ||z; — z;|| < e.

2. Compute the shortest paths in the graph for all pairs of data points. Each

edge x;z; in the graph is weighted by its length, such as ||z; — x|

3. Apply multi-dimensional scaling method [138] on the resulting shortest path
to distance matrix D, to determine the new embedding in low dimensional

space.

Fig. (2.3) illustrates the non-linear dimension reduction result from 600 di-
mensions into 2 dimensions for the benchmark data set S-curve. All three methods
can successfully achieve the reduction goal.

In our research on learning the characterizing motion information in a given
character animation, we have chosen to adopt LLE. In the next chapter (3), we
discuss in detail why we choose LLE over the other methods and how we use it in
characterizing the motion in a set of keyframes. We also demonstrate its applicability

with the help of a number of experimental results from our implementation.

43

Figure 2.3: Embedding Result: A) Shows 600 points sampled from the S-curve.
B) to D) demonstrate: Two-dimensional embeddings result, from B) ISOMAP , C)

Laplacian Eigenmap , and D) LLE. The figure was taken from the work of Ham et
al. [5]

Chapter 3

Motion Learning Scheme with
Locally Linear Embedding

In this chapter, we present our main formulation which uses the locally linear embed-
ding method to project the high dimensional motion data into a lower dimensional
space. This method will allow us to extract the characterizing motion information

for further usage, such as:

e Generating in-between frames satisfying physical properties. By using the
given keyframes of a motion, we find the motion curve embedded in low di-
mensional space. Then we build up a physical property map in the embedding
space, which can help us generate the in-between frames with desired physical

property values. See details in Chapter 4.

e Manipulating motions. Given a complete animation sequence, we use LLE to
find the motion curve in the embedding space for this animation. Then, we
analyze the mapping matrix between the embedding space and the original
space, with a Generalized Radial Basis Function. We apply singular value
decomposition to the mapping matrix and use the decomposition result to
manipulate the postures to create variations in this animation. See details in

Chapter 5.

44

45

e Extracting a keyframe representation. Again, given a complete animation
sequence, we use the LLE embedding in low dimensional space to define a
subset as keyframes, which forms a compressed representation of the input

motion. See details in Chapter 6.

The organization of this chapter is as follows: After a brief introduction about
how we can apply motion learning to analyse character animation in Section (3.1),
we give the detailed description about our motion learning scheme in the embedding
space with LLE method in Section (3.2). In Section (3.2), we focus on the following:
1) How do we cast the LLE in our motion learning scheme; 2) How do we select
the required user input parameters to obtain reliable results; and 3) We present a
number of positive experimental results. In Section (3.3), we introduce the reverse
mapping (from the embedding space to the original animation space) using the

Generalized Radial Basis Function (GRBF).

3.1 The Motion Curve

As mentioned in Chapter 1, an animation sequence contains the characterizing mo-
tion information which distinguishes the motion present in this animation from other
motions independent of the data type used for recording the animation. Our pri-
mary goal is to extract this characterizing motion information and to interpret it
to enhance keyframe techniques for character animation. We consider all the given
input poses as providing the global motion information that should contribute to
every other pose’s configuration. For this, we would first like to learn/discover the
motion recorded in a character animation as a characterizing motion curve, by using
all the significant information present in the given set of poses. This characterizing

motion curve would be identical and/or contain identical information for different

46

animations containing the same type of action. If we consider that the character an-
imation records a character performing a certain activity or gesture, then the shape
of character’s body changes over time. The changes can be observed by the changing
of the DOFs. These deformations are constrained in two ways: by the physical body
constraints and by the temporal constraints, posed by the action being performed.
Due to the size of the DOFs, the motion curve is in a high dimensional space and
the curve is beyond the perception of users.

Finding an accurate definition of the characterizing motion curve in a high
dimensional space from the discrete sample poses is not only very hard, but also
unnecessary. In many real-world applications with high-dimensional data, the com-
ponents of the data points tend to be correlated, and in many cases the data points
lie close to a low-dimensional nonlinear manifold. Earlier in Section (2.3), we have
reviewed three nonlinear dimension reduction techniques, LLE, Laplacian Eigen-
maps, and ISOMAP. In this chapter, we present how we incorporate LLE in our
research to provide a motion learning scheme, in which we analyze the given ani-
mation data for recovering the characterizing motion information in low dimension
embedding space. We provide detailed information about using LLE in our research

in the following sections.

3.2 Motion Learning in Embedding Space

Given the assumption that each data point and its neighbors lie on a locally linear
patch of the manifold, each point can be reconstructed as a weighted combination of
its neighbors. The objective is to find the reconstruction of weights that minimizes
the global reconstruction error. An optimal solution for such an optimization prob-

lem can be found by solving a least squares problem. Since the recovered weights

47

reflect the intrinsic geometric structure of the manifold, an embedded manifold in a
low dimensional space can be constructed by using the same weights. The embed-
ding is determined by solving the optimization problem: for a given set of points,
we need to minimize the reconstruction error with fixed weights.

Compared to other methods, LLE has the following advantages:

i) Since the weights w;; are symmetrical, for any particular data point, they are
invariant to rotation, re-scaling and translation of the data points and their
neighbors. By enforcing), w;; = 1 (See Equation (3.2)), the solution also

achieves translation invariance.

ii) More importantly, by assuming the local linear transformation, LLE discovers

the intrinsic characteristic present in high dimensional data.

iii) LLE leverages overlapping local information to uncover the global structure.
This advantage is achieved by successively computing different dimensions in
the embedding space and by computing the bottom eigenvectors from Equation

(3.3), one at a time.

Therefore, we have adopted this LLE framework to embed the deformation of
mesh data nonlinearly into a lower dimensional space. We consider that our input

dataset consists of N frames F' = {fy, fi,...fy } in the desired animation.

1. For each f; € F', we form the subset F} = {f; € F|f; # f;, and {; is one of the

k nearest neighbors of f;}, where k is a parameter specified by user.

2. For each f; € F, we build the reconstruction weights, w;;, with its & neighbors,

forming the n x k£ matrix W, with the minimal reconstruction error,

& = A(f,£) (3.1)

48

where n is the degree of freedom, and A(+) is a function to measure the differ-
ence between two meshes. Then ﬁ is a reconstruction of f; using its k nearest

neighbors:
k
ﬁ' = Z ’LUZ‘jfj7 Zwij =1. (32)
j:ijEFZ{

3. Compute the embedding based on the reconstruction weights w;;. LLE con-
verts the minimization problem to an eigenvalue problem. The optimal em-

bedding is the eigenvectors of the symmetric, sparse matrix M:

M= (I-W)(I-W) (3.3)

Where I is the identity matrix.

Figure (3.1) shows the results of applying the LLE method to the data of
a keyframe motion sequence that depicts a horse galloping. The horse galloping
data has 12 key poses, each defined as a mesh with 8431 vertices, i.e., a total of
25293 DOFs. The mapping in two-dimensional space clearly shows the inherent
relationship amongst the meshes in the galloping motion.

In the LLE embedding calculation, there is a user-controlled parameter k. In
our experiments, we found that the value of k affects the embedding result. In the

next subsection, we provide a discussion about the selection of parameter k.

3.2.1 LLE Parameter Selection

When we used LLE to obtain the motion content, we noticed that the LLE method
results are highly dependent on the parameter £, which is the neighbor set size used
to approximate every individual frame when we calculate the embedding. A poor
choice of k£ could result in singularities of the matrix M in Equation (3.3). Very

small or very large values of k£ are both bad choices, and both are contrary to the

49

1At

Figure 3.1: Illustration of unsupervised learning: A small set of 12 key poses (motion
of a horse galloping) is mapped into 2D embedding space. The embedding is cyclic
as can be expected for any periodic motion.

20

FO0 T T T T T

a0o .

TR YT

E0% 100%

Figure 3.2: The value of k affect the result of embedding. The x-axis reflects the
value of k (represented in percentage of the number of frames); The y-axis reflects
the number of times we obtain reliable embeddings.

local neighbourhood idea of LLE. A very small value of k, such as less than 5% of the
input size, gives the LLE a calculation bias by having less correlation information.
Secondly a very large value of k, such as over 50% of the input size, is also contrary
to the assumption of LLE, such that when when we look at every sample close
enough, then we can notice the linear structure. With our experiments, we conclude
that [15%, 35%)] is an effective range of k. As shown in Figure (3.2), we perform a
group test to see the safe range of parameter k. First of all, we selected 584 motion
sequences in total. Then, we performed LLE with the k& € [1%, 100%], shown in the
z-axis. We put the number of successful embeddings on the y-axis. The figure shows
the range [15%, 50%)] could give us a reliable embedding result; however, based on
the assumption the number of neighbors should be small to maintain a locally linear

embedding, we set [15%, 35%] as an effective range instead.

ol

3.2.2 Experimental results

In this section, we describe experimental results to show the performance of our mo-
tion learning scheme with LLE. We carried out a number of experiments on different
types of motions with multiple data types (see Table (3.1)). The skeleton animation
data was obtained from Graphic Lab, Carnegie Mellon University !. and the mesh
animation data from the work of Dr. Robert W. Sumner and Dr. Jovan Popovic
2. Our implementation works equally well on both skeleton and mesh animations.
It supports both traditional animation format as .obj file and new popular MD5
format 3. For demonstration purposes, the dimensionality of embedding space was
set to three for skeleton models and two for mesh models. In the real application,
the dimensionality of embedding space can be increased. With the experiments, we

demonstrate that our motion learning scheme with LLE has the following abilities:

1) Our motion learning scheme with LLE extracts distinct shapes of embeddings

for specific actions.

2) Our motion learning scheme with LLE can handle motion analysis for a given

character animation sequence even with a shuffled frame order.

3) Our motion learning scheme with LLE can extract the characterizing motion

information even when a small number of frames are missing.

4) Our motion learning scheme with LLE can be applied when multiple character

animation sequences are put together.

'We gratefully acknowledge the Computer Graphics Group at CMU, for building the mocap
database, which is available on their website: http://mocap.cs.cmu.edu/

2We gratefully acknowledge Robert Sumner and Jovan Popovié from the Computer Graphics
Group at MIT, for the animated mesh data of the galloping horse and collapsing camel available
on their website: http://people.csail.mit.edu/sumner/research/deftransfer /data.html

3MDS5 is a open format specific to Doom 3. MD5 allows models to be animated by the use of
an internal skeleton.

02

Table 3.1: Test data sets.

Name Type of data | # of frames | # of DOF
character 1 running skeleton 170 62
character 1 walking skeleton 160 62
character 1 jumping skeleton 150 62
character 2 walking skeleton 155 62
character 2 running skeleton 165 62
character 3 walking meshes 31 16637

horse-galloping meshes 12 25293
character 4 limp walking | MD5, meshes 45 1368

We will discuss each of these in more detail below.
Extraction of distinct characteristic motions

The first thing to verify with our motion learning scheme by using LLE is that dif-
ferent animation sequences containing different characteristic motions are extracted
as distinct shapes of embeddings. As example, Figure (3.3) shows the embedding
results on two motions, walking and running. As in Table (3.1), we used the run-
ning character 1, running character 2, walking character 1 and walking character
2, as the test data. As can be seen from the results, the embeddings for walking
and running by the same person are distinctly different. On the other hand, the
embedding results are very similar for two different persons with the same number
of DOF's but with different number of frames (see Table (3.1)) in their respective

sequence , when performing the same action individually.
Embedding extraction with a shuffled frame order

Next we designed a test to reflect the ability of our motion learning scheme with
LLE to handle the data with shuffled frame orders. In Figure 3.4, the embedding
result of the shuffled frame order has exactly the same shape and space coordinates

as the original and correct frame order sequence. This property is of particular use

23

i g . _Pit ‘H‘++_H_+

+-+-|— + b o wﬂr

AL

Figure 3.3: 3D LLE embeddings of two skeletons (character 1 shown at the top
and character 2 shown at the bottom) performing walking and running actions. a)
character 1 walking; b) character 2 walking; ¢) character 1 running; and d) character
2 running.

o4

when dealing with animations transmitted over the Internet. Usually, animation
sequences are very huge and it is very time consuming to transfer them over the
Internet. But if we can cut the animation into smaller sequences of frames, then we
can use a distributed method to transfer all the animation pieces in parallel, which
saves transmission time. After transferring all the pieces, there remains the problem
of all the pieces in the correct order. Due to the ability of LLE to treat each frame
individually, and the order has no contribution to the embedding calculation, we

can rebuild the correct frame order by comparison with the embedding.
Embedding extraction with a small number of frames

LLE embedding can also reflect the motion information even with some amount
of incompleteness in the input set of frames for an animation sequence. In Figure
3.5, we compare embedding results of the original sequence with results obtained by
reducing the input information, removing several frames from the original sequence.
We can see that in the case where the number of frames has been reduced by one
frame, the embedding has exactly the same shape as the full data embedding. Loss
of 1 frame in 12 amounts to around 8% reduction in information. The shapes are
very similar because the remaining 11 frames contribute enough to the characteriz-
ing motion information. We also tested the embedding calculation result after we
truncated the sequence by two and three frames, i.e., up to 25% reduced informa-
tion. The results show that if large amount of motion information is missing then

it does affect the reliability of the embedding result.
Embedding extraction with multiple animation sequences

In the last test for our motion learning scheme with LLE, multiple animation se-

quences were put together for one embedding calculation. We put a walking motion,

25

Figure 3.4: 3D embedding comparison between shuffled order and correct order
for character 1 walking data. a) the embedding with shuffled frame order; b) the
embedding with correct frame order.

0.5

0.5

--

__

o6

Figure 3.5: 2D LLE embedding comparison. a) with original 12 mesh frames from
horse galloping; b) the embedding after one frame (frame number 12) removed; c)
the embedding after two frames (frame numbers 11, 12) removed; d) the embedding
after three frames (frame numbers 10, 11, 12) removed.

57

Figure 3.6: 3D LLE embedding comparison with multiple sequences for walking,
jumping and running for the same character 1.

a running motion and a jumping motion of a skeleton model together to create a
new large mixed data sequence. Then we calculated the embedding with the result
shown in Figure 3.6. This figure shows that in the embedding space, all the motion
curves are clearly separated from each other.

With these supporting experimental results, we concluded that our motion
learning scheme with LLE is very useful for analyzing the motion information from
character animations. It works equally well with mesh-based and skeleton-based
animations. It also works with keyframe representations alone or with full animation

sequences, like those obtained through mocap systems.

o8

3.3 Reconstruction Matrix Formulation

Next we provide a reverse mapping method which lets us recover the animation
frames back from the embedding space. In fields such as computer vision and pat-
tern recognition, it usually suffices to do the analysis. But in computer animation,
reconstruction and synthesis of animation sequences is the main goal. Hence such a
reverse mapping method is essential.

We use Generalized Radial Basis Functions (GRBF) [139] to formulate the
variable part of the motion. This method has been widely adopted by many re-
searchers for height interpolation or for deformable models and could be executed
in real time for the sizes of models used in our experiments [140,141]. Of particular

interest are functions of the form:
N
f=ple)+ > a;o(le—el) (3.4)
j=1

where e is any point in the embedding space (e € R?, d is the dimensionality of
the embedding space); e; are the reference points; «; are the real coefficients; p(e)
is a linear polynomial function with real coefficients c of e; | - | is the Euclidean
distance function and ¢(-) is a real-valued basis function. Typical choices of ¢(-)
are biharmonic (¢(u) = u), triharmonic (¢(u) = u®), thin-plate spline (¢(u) =
u?log(u)), multiquadric (¢(u) = vVu2 + a?), Gaussian, etc. To ensure orthogonality

and to keep the result well posed, we impose the following constraint:

N
Za’z‘p<ei> = 07 (35>
i=1

For a given motion segment depicting a repetitive action, we aim to learn a

decomposable generative model that explicitly consists of the following two factors:

Motion characteristic A representation of the intrinsic feature configuration, dis-

tinguishing characteristic in that motion. This factor is very similar in different

29

instances of that motion.

Variable part in the motion Parameters which can vary with each instance, but

do not significantly affect perception of the characteristic in that motion.

The idea of decomposing motions has been explored by a number of other re-
searchers. Most often, these decompositions are in the format of content + style
[43,44,83,142] or in the format of signature + action [143]. In all the above cases, the
aim is to learn similarity /difference in classes of motions. In our case decomposition
is carried out for a given motion segment. We assume that frame f is a function of b
(variable part of the motion), and the) (motion characteristic). The dimensionality
of b and ¢ are n and N, respectively. We learn a frame-based generative mapping

model in the form:
v:(b,¥) — f (3.6)

We assume that (+) is a bilinear function given in its most general form by:
ij

where each w;; is a n-dimensional vector of parameters used to transform the mo-
tion characteristic component and variable component into skeletons. Following the
development in [144], we combine the interaction terms w;; with b, and get the

Equation (3.7) into an asymmetric two factor model form:

f=B- (3.8)

where B denotes the matrix of the variable parts of the motion, and ¢ is a vector
of coefficients specific to the motion characteristic.
Applying LLE yields us the nonlinearly embedded representation of the mo-

tion manifold in a low dimensional Euclidean embedding space, R%. Let us recall

60

that these embeddings describe the distinguishing information of the motion, such as
walking, running and dancing. Then with generalized radial basis functions (GRBF),
we map from embedding space to original space: R? — R" using a nonlinear map-
ping function: R¢ — R" and a linear mapping: R — R". By setting the non-linear
mapping as our 1, and linear mapping as our B, we obtain our bilinear model.
Using the asymmetric bilinear model form of Equation (3.8), with extended
dimensionality so that the frames are mapped from embedding points, the whole

reverse mapping can be written in a matrix form as:
f=DB-y'(e) (3.9)

where B’ is an extended n x (N + d + 1) matrix composed of two submatrices: an
n x N matrix B with jth row [, ...,ay]| and an n x (d+ 1) matrix C' with jth row
[c]], where ¢/ (e) is an extended matrix composed of ¢(e) = [p(le—e1]), ..., p(le—en])]
and the vector [1,e’]7.

For the N frames case, the B and C can be calculated directly by solving the

linear system:

f A P BT
= X (3.10)

Od+1 P O(as1)x(d+1) cr
where A = ¢(]e — €;]) is the kernel matrix. If we use the polynomial part of the
GRBEF in Equation (3.9), which has the form p(e) = [1,e’] - ¢, then P is the matrix
with the ith row (1,e7).
To verify the reconstruction result, we calculated the embedding of recon-
structed character animation, and compared the embedding result with the one from
the original character animation. We compared the embedding results between orig-

inal character 1 working skeleton animations with 160 frames and 62 DOF's and the

61

Figure 3.7: Comparison between an input animation and a reconstruction of the ani-
mation from the embedding space. ‘*’ is the original one and ‘o’ is the reconstructed
one.

GRBEF reconstructed animations. Figure (3.7) shows the comparison result and it
clearly shows that the two embeddings match each other nearly perfectly.

In this chapter, we have provided a detailed discussion about our motion learn-
ing scheme with LLE. It projects the high dimensional motion data into a lower
dimensional space. We describe the results of many experiments to show that our
motion learning scheme with LLE is a very powerful tool to analyze character ani-
mations. This scheme will allow us to extract the characterizing motion information
for many other uses. From next chapter onwards, we will provide three new appli-

cations in enhancing keyframe character animation using the results of our motion

learning scheme.

62

Chapter 4

Generation of In-betweens Using
Characteristic Motion
Representation

In this chapter, we introduce our first enhancement of the keyframe character ani-
mation technique. We use the LLE embedding in low dimensional space computed
for a given keyframe representation of a character animation to generate in-betweens
in a way to make it easier to meet animator requirements.

This chapter is organized as follows:

1) In Section (4.1), we discuss in-between generation for character animation with
preservation of physical properties for mesh-based animation and present our

framework.

2) We explain how we apply this framework in Subsection (4.2). We first provide
our definition of the feature space in Subsection 4.2.1. Then we introduce the
property maps and its usage in Subsection (4.2.2). In Subsection (4.2.3), we

discuss the algorithm for in-between mesh reconstruction.

3) In Section (4.3), we provide experimental results for mesh-based character ani-

mation, showing the effectiveness of our approach.

63

64

4) We introduce details about how we apply our framework to character animation
in skeleton form with experimental results in Section (4.4), demonstrating that

our methods work equally well for mesh and skeleton animations.

4.1 Introduction to the Motion Learning-based
Framework

Skeleton-based character animation data can be obtained by using sensing hardware
equipment such as a mocap system. Even though the technology of surface sens-
ing/scanning has made tremendous advances, mesh-based character animation data
mainly depends on the animator’s "hand-made” works. As we described in Section
(2.1), specifying the key poses of the desired motion is the most popular technique in
practice today for animators to generate character animation sequences. Given the
key poses in the form of unarticulated 3D meshes, the dominant method of producing
the deformation for the in-between meshes is to use a suitable interpolant, such as a
linear or a spline interpolation. Given the high sensitivity of these interpolants to the
supplied sample data, this imposes a significant burden on the animator to ensure
that her/his requirements are satisfied by the automatically generated in-betweens.
In addition to the creative aspects of defining the animation, the animator must
carefully provide the number and spacing of the key poses to suit the interpolant so
that the generated in-between meshes satisfy the required physical properties of the
desired motion, such as mesh surface area or volume, or any other such computable
mesh metric.

The interpolants in use today are generally driven by issues such as computa-

tional efficiency and geometric continuity of individual vertices of the mesh. They

65

do not take into consideration the high correlation amongst mesh vertices or the de-
sirable constraints on physical properties of the meshes. Related to such constraints,
in [47,49] the conventional inverse kinematics method for limbed structures has been
extended to meshes. Similarly, physics-based methods such as forward and inverse
dynamics methods have been proposed, which are also used in bio-mechanics and
rely on physical properties like joint torques for limbed structures [106].

The goal of our proposed framework is to let computers generate in-between
frames while preserving physical properties in the generated poses. Moreover, our
framework aims to release animators from the heavy burden of having to create
the best set of key poses. We provide a framework, which has the ability to col-
lect information from the entire motion, and to synthesize the in-between frames
with desirable physical properties. In order to provide the right perspective for our
framework, let us look at the following example.

Consider the goal of producing an animation sequence that shows a galloping
horse represented with meshes. Let us assume that the horse is defined by using
a mesh with n vertices. Suppose we are given the positions of the vertices of the
mesh at certain discrete key poses, denoted by f;. Since the galloping motion is
defined as a continuous deformation of the mesh, f; can be considered as a function
of parameter t with the animation sequence defined between the start of the gallop
to to the end of the motion ¢;. Thus, at any intermediate pose at sequence position
i corresponding to time t; € [tg,t;], we can view the corresponding deformed mesh
f; = f(t;) as a point in the high dimensional space R” = R™*3. In the same sense,
the entire galloping motion can be treated as a motion curve in the R” space, with
t as the curve parameter. Methods for automatically deriving this motion curve are

extremely difficult because of the fact that the dimensionality of space RP is very

66

high; usually, the character meshes can have tens of thousands of vertices. And
compared to this high dimensionality, we can only expect to have data for a very
limited number of key poses for the animation.

Due to the difficulty involved in constraining the motion to yield a desirable
curve, most traditional keyframe-based techniques adopt the simple method of in-
terpolation among local neighbors. While this considerably simplifies the problem
of defining a curve path in the high dimensional space of meshes, it means that an
automatically generated in-between pose is only related to a small subset of input
key-poses; in other words, the influence is only from a highly restricted part of the
whole motion. Hence, the resulting in-betweens may not be ones with a high prob-
ability of being on the curve that defines the desired motion. For example, when
we do simple linear interpolation among two key poses of the horse, there is no
guarantee that we will obtain a valid mesh for the new in-between pose. Ideally, we
would like to obtain in-between meshes that are not only valid, but also satisfy the
desired physical properties that are consistent with the motion.

In the rest of this chapter, we present our motion learning-based framework to
produce more natural animation sequences from keyframes. This framework consists

of the following three processes:

1) Motion structure learning: We use motion learning scheme with LLE | in-
troduced in Chapter 2, to cast the motion, specified by key poses in a high
dimensional space, into a lower dimensional space, such as two or three di-
mensions. Every point in the embedding space corresponds to a mesh config-

uration, which is reconstructed using Generalized Radial Basis Functions.

2)Property maps initialization: We compute maps of property values in the

LLE space. For illustration, we choose the mesh volume and surface area as

67

the fundamental two properties to build the property maps. These two are
chosen because they are stable during the motion performed in the real world.
Some other properties could also be used to build the property maps, such as

the vertex normal.

3)Frame generation: We derive a probability distribution for the desired prop-
erty in the neighborhood of each pose, and choose points in the embedding
space with the highest probability to synthesize the in-between meshes for the

desired motion.

4.2 Motion Learning-based Framework Compo-
nents

In this section, we will give a more detailed description of the components in our
motion learning-based framework. We will discuss it first for mesh-based animations

and then apply the same to skeleton-based animations.

4.2.1 Feature Space

Clearly, the motion learning result found in Section (3.2) is highly dependent on
the difference measurement, which is the A(-) in Equation (3.1). We must provide
meaningful features for our framework, which can then be used to define the A(-).
Therefore each input pose f; has a corresponding feature vector s;, where 7 is an index
over the input poses. A fundamental feature, which can be used to represent the
difference between two mesh configurations, is the difference in data values. That
means we can view each pose as a 3n-tuple in the space R® = R3*" where S is
the dimension of the feature space, and n is the number of vertices in the character

mesh. Sumner et al. found deformation gradients to be another very important

68

feature to capture the differences between poses [45,47,49]. Although only mesh
vertices positions are used as features in our experiments, our formulation can easily
accommodate deformation gradients and other such features.

Let the distance between two frames A(-) be the following:
A(f,) = [si — 5[(4.1)
Combining this definition with that in Equation (3.1), we obtain:

€ = |Si—zwz‘ij|2
J
= D wi(si—s))I
J

= Zwijwiijk (42)
jk

where G = (s; —s;) - (s; — sg), and Y wy; = 1.

The reconstruction error can be minimized analytically using the Lagrange
multiplier. In the R? space, a vertex position is a 1 x 3 vector. However, the above
method separates each primitive into 3 individual components, which cannot repre-
sent the vertex-based information of the 3D mesh properly. To overcome this issue,
we group the feature values in s; into their corresponding vertex representations to
create a 3 x n matrix S; of feature vectors. To be able to compute the corresponding
dot product in Equation (4.2) with our new formulation, we first compute the L;
norm magnitude of the feature vectors by creating a 1 x n matrix of scalar values,
which is denoted as |S;|;. Therefore, modeling the corresponding ¢; in the same way

as in Equation (4.2), we approximate the matrix G as:

Gk = |Si = Sjl1 - [Si — Sk|r (4.3)

69

The results that were shown in Figure (3.1) use this definition to perform the

LLE.

4.2.2 Property Maps

The ability to preserve the physical properties during the in-betweens generation is
a big advantage of our framework. This is achieved by using property maps. In this
section, we present the creation and usage of property maps. Every point in the
embedding space corresponds to one pose in the original high dimensional space.

However, only a few of points in the embedding space satisfy the constraints that:
1) The points in the embedding space are part of the desired motion sequence;

2) They maintain desired physical property constraints, for example, a stable sur-

face area.

To be able to identify such desirable intermediate poses, in this step, we deter-
mine a path for this motion in the low dimensional space. Assume that the motion
sequence is parameterized from parametric values uy to uy. Then, by using the
embedding obtained from LLE, our goal is to determine the points on the motion
curve fy(u) : u — R? where u € [ug, u;] and R? is the embedding space.

To build up the property maps in the embedding space, we create a regular
grid in the embedding space with step size ¢ in each dimensional direction of the
embedding space. At every vertex on the grid, we generate the corresponding pose
with the inverse mapping of Mp : R — RP. The inverse mapping is calculated by
using GRBF (Equation 3.9). More details are given in Section (4.2.3) that gives a
mesh from which the property value for the grid point is calculated. We can also
calculate the required physical properties for each mesh configuration. In this way,

we are able to bind embedding space points with physical properties. The physical

[=! — o

ajdsﬂMunonofsuﬁamﬁéeainewheddmg
space.

\

by distribution of volums in embedding
space

Figure 4.1: Distribution of physical properties of shapes in embedding space.

70

71

properties that we have experimented with, like surface area, body volume, etc.,
seem to have an orderly distribution in the embedding space, as shown in Figure
(4.1). In the figure, the calculation of physical properties, by using interpolation
between grid points, over the entire domain in the LLE space is for demonstration
purposes only. In actual practice, we need to compute the physical properties only
in the vicinity of the mapped motion curve.

Observing that the physical properties are also functions of the parameter u
during the motion, we build a probability distribution function P, which indicates
the possibility that the correlated point is located on the motion curve in the em-
bedding space. Without loss of generality, we assume P is a normal distribution,
P ~ N(u,Y), with mean vector p and covariance matrix ¥. With the maximum

likelihood parameter estimation (ML) [145], we have:

S (1.4)
5 = %Zm - (4.5)

where N is the given number of key poses. With the estimated probability distribu-
tion function, we calculate the probability of grid vertices in the embedding space,
as shown in Figure (4.2). By adding the most probable mesh configurations, we
are able to rapidly determine points on the desired motion curve in the embedding

space. The motion curve generation result is shown in Figure (4.3).

4.2.3 In-between Mesh Reconstruction

After we have the motion curve in the embedding space, we will transform the
vertices on the motion curve in the embedding space into an animation frame repre-

sented by meshes. Given any value of parameter u; € [ug, u1], an embedding point

Figure 4.2: Probability Contour.

72

1.5

0.5

-1.5

73

o+ R
I T T4
. +
+ +
+
- + +
i +
i f
¥ F
- P
+
+
/
B +
+#
+ H
i +
o .
oy +
]]] -h_+| + L] +]
-1.4 -1 0.5 I 0.5 1

Figure 4.3: Motion curve (the physical property used is the body volume). The
points have high probability to lie on the motion curve based the body volume

property.

74

can be obtained from the motion curve function. Then, we must reconstruct the cor-
responding mesh configuration f; with the nonlinear mapping from the embedding
space to the mesh space, as Mp : R* — RP. As already discussed in Chapter 3, we
use the Generalized Radial Basis Function (GRBF) interpolation framework repre-
sented by Equation (3.9) for this purpose [139]. Unlike the reconstruction method
used by traditional interpolation methods, we use the entire set of keyframes and

not just the nearby keyframes to contribute to in-between frame generation.

4.3 Experimental Results

To demonstrate the capabilities of our proposed framework, we carried out a number
of experiments including the motions of a galloping horse and a collapsing camel,
shown below.

1. The all-but-one experiment: In the first experiment, we randomly
removed one of the given 12 key poses, denoted as target pose (fi,,), and then used
the data in the remaining 11 poses to learn the motion and synthesize the target
pose. By visually comparing the synthesized result with the target mesh, as well as
by comparing geometric differences, we found that the newly synthesized mesh was
very much like the target mesh. Figure (4.4) shows the synthesized results for poses
2, 7, and 12. The physical properties that we maintain are both body volume and
surface area, with equal weights. This clearly demonstrates that our method can
produce a desired in-between pose by considering that the entire set of key poses
provide reconstruction information in a global fashion. And the desired in-between
pose is much less critically dependant on specific neighbouring poses.

2. Robustness experiment: We also did an experiment to demonstrate

that our framework is not very highly sensitive to key poses. Our framework can

5

Reconstructed
poses

Target poses

Figure 4.4: In-between pose generation. Out of 12 key poses, we randomly remove
one (top: 2, middle: 7, bottom: 12), learn the motion from the remaining 11, and
reconstruct the removed one. The removed pose is shown in the left column, and
the reconstructed one is shown in the right column. The likeness between the two
can be easily seen.

76

Figure 4.5: Visual comparison of poses in original animation (top row) and in motion
reconstructed from small set of key poses selected by stratified sampling (bottom
row).

handle motion well, as long as the specified key poses adequately incorporate the
inherently desired motion behavior. We have 56 poses that make up the gallop-
ing motion sequence. We divided these 56 poses into 12 subsequences, and used
the stratified sampling method to randomly pick one pose from each subsequence,
which is a stratum in our experiment. Stratified sampling is used to test whether
the significant characteristics of the motion are retained in our framework. We use
these 12 poses from the 12 subsequences as our input to reconstruct the desired mo-
tion. We compare the reconstructed full sequence of 56 frames, the horse-galloping
animation with the original sequence. The result is shown in Figure (4.5).

For comparison purposes, we focus on the motion of a characteristic part(s)
of the horse, such as the motion of the horse tail, head, front legs, etc. We follow
the motion of a randomly picked vertex from the part under focus, and record
its movement for both the original and the reconstructed sequence. Figure (4.6)
shows this for a vertex on the horse’s tail; from Figure (4.6¢), one can see that our
reconstructed sequence is much better than the linear reconstruction. Since the two
sequences are a collection of discrete samples from a continuous motion, we do not
restrict the reconstructed in-between to be occurring at exactly the same time as in

the original sequence. The two records of movement are not perfectly identical, but

7

A T
Initial data Camentt 2]
ame =T ' >
Reconstructed data —— : : .
B i - & ~
e L
S . ' i N -+
SRR : : H Sonaanet . For
e .) H . i H ~ ' -
-1 ' L b H e " b
: : O L : : s .
§ Wi rm ! 3 : ~ L
e ! _
Y i : : 1 b e ~ Yo
: : : ' - - s 10
g 1 h ' I . ~ 1 R T
Y H i ' A et . ~ i - H -
s X : e : 4) 4 : -
H ' H e : : A% 4 8 5
H .
: " { : : 4 . .
. [" H H - b -~
H sy " ¢ H i) ™ T .
B . . H H - S ™ i
== . . HERR ¥ -~ H
R H 1 H ! s S & ' ¥ TRy :
H 5 : 4 7ok v = ‘ " = H ~ .
u i . - B H 5) [
. v L . . '
x] 3
d b ' - Py
: . 3
o - .
¥ H
A)
' '
! ¥
¥ i
1
]
i
'
1
v
.
-

0.1 T L T

0.08
0.07 |-

Niteeerervaeasavavrarieiiiie

S srvavivsavavaves

AT

ORI

0.05 -

Ahninanang

0.04

(T

0.03

0.02

0.01

T T I e

Figure 4.6: a) Comparing motion paths of select parts. We select one vertex (marked
by the circle) from the tail part, and record its movement during the entire motion.
b) We illustrate the selected tail vertex movement for the original 56 poses and for
the synthesized sequence. c) Plot chart showing percentage difference, between the
original and reconstructed sequence of the vertex location in X, Y, and Z direction
individually. The dashed line shows the percentage difference of linear interpolation
results; and the solid line shows our method results.

78

Figure 4.7: The first and third rows are meshes from original animation sequence
and the second and fourth rows are reconstructed meshes using just 10 key poses as
input.
are very close to each other, as can be expected for similar motions.

Figure (4.7) shows another similar experiment, with a different desirable phys-
ical property. The motion is that of a collapsing camel, given as a sequence with 50
poses. Each pose is a mesh with 21877 vertices. Fixing the start and end poses, we
choose 8 internal poses by stratified sampling. Then, by using these 10 poses (start
and end poses plus eight chosen poses) as the input, the motion is reconstructed
as 50 frames with the desirable physical property, defined as a stable area and a

monotonically decreasing volume.

79

4.4 Applying the Framework on Skeleton data

Compared to a mesh, the skeleton is simpler/smaller representation of character
for keyframe animation purposes. Skeleton models use a hierarchical set of inter-
connected bones instead of geometric skin surface to represent the character. The
character motions are recorded by changing the joint angles. So far, we have dis-
cussed the use of our framework for mesh-based character animations. However,
our framework can also be applied to skeleton data with a proper definition of the
property maps. In this section, we provide the performance of our framework on
skeleton data. Unlike mesh data which uses position information as the DOF's, for
a character, skeleton data has a fixed body model with a set of joint angles, which
we can use as the DOFs. Matching with change in the type of DOFs, we define a
new feature space for skeleton data.

Here, we demonstrate some experimental results. We have a walking mo-
tion with 160 frames. From the 160 frames, we select 10 frames as our keyframes
(see Figure (4.8)). Without doing any time consuming selection operation for the
keyframes, we simply selected the keyframes through stratified sampling because
our framework has the ability to match the requirements of the desired properties
with a global reconstruction approach.

For the skeleton character animations, balance check is a very important step.
For example, in walking motion, at least one of the feet of the skeleton has to be in
contact with the ground at any time. We can use this one to define our property
maps. In Figure (4.9), we show the physical property function used to construct
this property map. We chose the foot pattern of the walking motion, which was

simulated conveniently from a walking video.

80

Figure 4.8: We show the embedding space for the original 160 walking frames, and
the selected keyframes we used to synthesis the reconstruction motion.

81

height

t

Figure 4.9: The two feet show a simple sine-like curve in the walking motion. We
obtained the feet placement curve from a video clip of a walking motion.

4.5 Conclusions

We have introduced a framework for shape animation, which works equally well
for mesh-based and skeleton-based keyframe character animation. Firstly, for any
coordinated motion of a character, the framework uses a small set of key poses
to learn the motion in a global fashion. This motion is learned as a path in a
low dimensional space, using the nonlinear technique of locally linear embedding.
Second, the framework incorporates a new idea of physical property maps of the
deformable shape and enables the synthesis of the complete animation sequence
based on desirable physical properties. We are not aware of any other earlier work
that uses the LLE framework for motion learning and also uses property maps in
low dimensional space in this manner. Such a framework will considerably ease the
task of animators as they can now work with a small set of key poses and specify the
synthesized motion in the form of desirable physical properties of the deformable
shape during the course of the motion. With the help of a number of experiments,
we have demonstrated that this framework works with a small set of sample key
poses, produces in-betweens with the desirable properties, and is also not overly

sensitive to the number and spacing of key poses. In-between reconstruction is

82

linear in computational complexity. However the property map computations take
longer and the complexity depends on the grid size chosen for its representation.

This can be done as a preprocessing step, for real-time animation.

Chapter 5

Generation of Variations in
Repetitive Motion by Using
Bilinear Factorization

In the last chapter, the successful creation of in-betweens confirms our idea that the
characterizing motion content embedded inside the character animation sequences
can be extracted by LLE and then used to guide the generation of new frames. This
is an important enhancement to the keyframe animation technique, as it requires the
animator to provide fewer keyframes and specify physical properties to be satisfied
by the in-betweens.

In this chapter, we describe the second enhancement to keyframe animation
for the generation of variations in repetitive motion by using bilinear factorization
based on the LLE embedding of the characterizing motion in low dimensional space.

The organization of this chapter is as follows:

1) In Section (5.1), we explain why creating variations in repetitive motion is very
important for realistic motion generations and provide an overview of our

approach.

2) In Section (5.2) we first provide a detailed review of motion variation methods

83

84

and then present our proposed method.

3) In Section (5.3) we describe results of experiments from an implementation of

our method.

4) In Section (5.4), we conclude with a brief analysis of our method and its potential

for further extension.

5.1 Introduction to Motion Variation

Two instances of the same action in different shots or scenes performed by the same
actor will not be exactly identical. In spite of this, most 3D games and other appli-
cations with animated 3D characters rely on building up and using a repertoire of
basic motions that are called upon repeatedly and executed identically each time.
Often only short basic motions exist. This is because creating animation sequences
manually is a difficult and time consuming process. Realistic motion behavior would
require that repeated actions carried out by these animated digital characters in-
corporate variations that make different instances of the performed action appear
slightly different. However, it is certainly non-trivial to be able to introduce such
variations in a given motion while ensuring that the principal characteristics of the
given motion are not altered.

As discussed earlier, the three primary approaches to creating basic motions
are keyframe animation, physically based animation and motion capture driven an-
imation [146]. Incorporating variations through keyframe animation would require
the specification of how the keyframes change for different instances of the motion.
It is well known that the specification of keyframes for a single motion is itself a
highly skilled and labor intensive task. Specifying variations in motion curves of

keyframe parameters in a controlled manner such that the principal characteristics

85

of the motion are unaltered is tremendously difficult. The physically based methods
provide much higher level control to the animator by requiring specification of the
physical parameters of the character/environment and constraints, and then solv-
ing for the entire motion as a constrained optimization problem. As well as being
far too computationally intensive and frequently unstable, these methods are not
very intuitive to be used interactively by the animator. Animators, in general, are
not comfortable specifying values for mass, force, friction, etc. It is also unclear,
short of simple trial and error, as to what guidance can be provided to the animator
to manage changes in the physically based parameters for incorporating variations.
The third approach, motion capture, depends entirely on data captured via a live
performer from one or more instances of that action. Given that considerable ef-
fort is involved in getting usable animation data for one instance of the motion, it
is again clearly far too much effort to directly capture, store and retrieve different
motion variations, in addition to the number of captured variations being bound to
be limited.

A simple motion variation method is to introduce suitable noise in the motion.
However, during the process, physical properties are very hard to maintain especially
for mesh based models. Another approach is to string and blend together motion
fragments derived either from a longer motion sequence or searched from a database
of pre-created motion fragments. This method will also meet problems for the
mesh models. In most cases, the assumption is that reuse of motion fragments will
retain the principal characteristic in the motion. A more detailed review of motion
variation methods was given in the Section (2.2.2).

The method presented in this chapter is based on the well-accepted hypoth-

esis in human perception that any repeated motion can be assumed to contain an

86

Joining
constrains

i L: New sequence
i with longer period

Input Sequence]
Mesh/Skeleton Varied Sequence

Validation
checks

Action in the
motion

Variable part in
the motion

Figure 5.1: Workflow for creating motion variations

Bilinear Factorization

invariant component, which we shall call as the characterizing motion information,
and which distinctly characterizes all instances of the same activity. We factor out
this invariant from a given motion sequence and the introduce variations in the
remainder. Our approach differs from previous work in three distinct ways:

1) We present a powerful technique for computing a bilinear model for the
entire motion, which supports generation of motion variations while preserving its
principal characteristics. For this, we use the asymmetric bilinear model [144, 147]
applied to a motion. Given one instance of the animation sequence, either the com-
plete animation sequence or just the keyframe representation, we first use LLE to
obtain the characterizing motion information as a curve in low dimensional space
and the reconstruction matrix discussed in the earlier chapters. It is this reconstruc-
tion matrix that encapsulates the variation in motion. We then apply singular value
decomposition (SVD) to the reconstruction matrix to result in a set of scalar vari-
ables which can be adjusted, say, with controlled randomness, to provide variations

in the given motion. These steps are described in detail in Section (5.2).

87

2) We have devised an effective method of joining together varying instances
of a motion segment for generating a longer repetitive motion sequence. Again, the
segments are composed together in LLE space while at the same time preserving
desired physical properties for the ”join” using property maps in LLE space [147]
as described in Chapter 4.

3) An important and significant by-product of the above two processes is that

our method works equally well for skeleton and mesh-based models.

5.2 Proposed method

The complete workflow for our method is shown in Figure (5.1). The initial input
consists of the geometric data in the frames (or keyframes) for a given motion.
The animator may choose to select all of the geometric elements in each frame
(for skeleton animation it is joint angle data and for mesh animation it is vertex
coordinate data), or may choose a subset of the geometric data, to avoid any parts
that cannot be varied. The first step is bilinear decomposition and the singular
value decomposition of the reconstruction matrix. Next, targeted variations are
created as described later in subsection (5.2.3). Validation checks are carried out for
each frame in the varied motion segment. This consists of different types of checks
— say, for skeleton model, the balance of every frame or foot-ground position, or
for a mesh model, constancy of volume or area of the mesh model. Here inverse
kinematics is also used to make small value adjustments that are required to satisfy
any hard constraints such as maintaining contact with the floor. Once a validated
variation of the given motion segment is generated, the next step is to join it with

the preceding motion segment; this is described in subsection (5.2.4).

88

5.2.1 Asymmetric Bilinear Model Decomposition

As described in Section (3.3), we can decompose the character animations into two
parts: characterizing motion information and variable motion. Applying LLE yields
us the nonlinearly embedded representation of the characterizing motion informa-
tion. Then by setting the GRBF mapping from embedding space to the original

high dimensional space, we obtain the variable part in the motion.

5.2.2 Computation of Characterizing Motion Information

Our first experiment was to verify that adding variations in the variable part do not
alter the characterizing motion. For this we carried out a number of experiments. We
randomly perturbed the values (small perturbations) in the reconstruction matrix,
and created a new animation sequence. Then we obtained the LLE embedding for
this new animation sequence. The results for one such typical variation for the
walking motion of Figure (3.3-a)) above are shown in Figure (3.7). We can observe
that the embedding of the varied animation sequence is almost identical to that
of the original motion. The same results were achieved for other motions as well.
Another option would have been to keep the reconstruction matrix unchanged, but
to vary the characteristic curve in LLE space. However, the result of even small
variations in the embedding curve is far more unpredictable, somewhat similar to
changing keyframes or physical parameter values. Hence, creation of controlled or
targetted variations while maintaining the distinguishing characteristic of a given
motion would be very difficult, and certainly not something that an animator would

find easy to specify.

89

5.2.3 Control Factors for Targeted Variation

While we have seen that perturbations of the motion reconstruction matrix indeed
yield motion variations that leave the distinguishing action in the motion unaltered,
the large matrix form makes it rather unwieldy for use by an animator, except for
simple matrix transformations, or un-targeted random perturbations. Ideally, we
would like to provide the animator with just a few handles to specify motion variation
and further we would like these controls to be related to features of the skeleton. For
this, let us again consider our example of the walking motion (Figure 3.3). It has
a deformable skeleton with 62 DOF's, and consists of 150 frames. This results in a
reconstruction matrix with 62 rows and 150 columns. Singular value decomposition
(SVD) is a common technique for the analysis of multivariate data [148]. Let B
denote an n x N matrix of real-valued data with rank r. The equation for SVD of
B is as follows:

B=USV" (5.1)

where U is an n xn matrix, S is an n x N diagonal sparse matrix, and V7 isan N x N
matrix. Both U and V are orthogonal. And the elements of S are only nonzero on
the diagonal, and are called as singular values. By convention, the ordering of the
vectors is determined by a high-to-low sorting of singular values. Another important
property is that the squares of singular values \; are equivalent to the eigenvalues
of the covariance matrix of B.

Singular values \; of the matrix B can be used to control motion variation,
and we denote them as variation control factors (VCFs). They provide simple to use
control handles, as change in a single VCF by multiplying it by a scaling variable
s in a variation over the entire motion. Moreover, through various experiments we

observed that these scalar variables have some interesting properties which makes

90

their use simple and intuitive. Variations in animations can be procedurally encoded
as suitable changes in VCFs for each instance of the animation. In order to assist
the animator to associate scaling variables in VCF's with the different features of the
character, we can easily pre-generate a table showing the DOFs significantly affected
by each scaling variable, for any given motion. Significant affect is assumed when
the change in the motion curve of any DOF exceeds a given threshold. Table (5.1)
shows an example of one such table for the walking motion (Figure 3.3). A DOF
can be associated with multiple VCFs; and a VCF can affect multiple DOFs. This
table can be used by animators to decide on the VCF's that need to be varied accord-
ing to which features are to be changed (see experimental results in Section(5.3)).
An interactive tool is easily developed with intuitive control for specifying skeleton
feature-based variations.

The following are our observations about VCF's:

Local effect Only a small subset of DOFs is affected by a change in any one of
the \; variables. Further, increase/decrease in the value of \; causes the af-
fected DOF's also to increase/decrease in a corresponding fashion. A map of
A; variables and affected DOF's can be used by the animator to make adjust-
ments according to whether certain DOFs are to be changed or not. This
is illustrated in Figure (5.2). We scaled A; by a scaling variable of 1.1, and
generated the variation in motion. By comparing the average change in every
DOF, shown in Figure (5.2) a) and the motion curve for every DOF shown in
Figure (5.2) b), we observe that A; affects DOF No. 3 significantly, and DOF
No. 54 and DOF No. 30 to a lesser extent. Other DOFs are affected only very

slightly.

Additive ability Changes in individual values are additive, as can be expected for

91

features i features i
root 1,5,48 root 22,34,36
position 49,50 orientation | 37,39,41
lower back 18,47 upper back | 42,43,45
thorax 40, 52 head 44, 46
53, b4

lower neck 18,47 upper neck 30,31
right humerus | 32,35 | left humerus | 20,21,29

right radius 7,28 left radius 23
right wrist 25 left wrist 6,27
right hand 12,19 left hand 2,51
right thumb 55 left thumb 9
right femur 4 left femur 8,16
right tibia 33 left tibia 39
right foot | 10,13,15 | left foot | 11,14,17
right toes 3 left toes 3

Table 5.1: Association between VCFs and joint associated with a DOF. 7 is the
index of VCFs.

SVD. We can either change A; and A; separately, or change the two together.
The final effects of the two operations are the same. Figure (5.3) illustrates
this with an example. We scaled A\; by a factor of 1.1 to create variation A of
the animation sequence, and scaled A\, by a scaling variable of 1.1 separately to
create variation B. The modified motion curves for affected DOF's for A and
B are shown in Figure (5.3) a) and (5.3) b); then we scale both together by
the same factor, and obtain the variation AB; modified motion curves for the
same DOFs are shown in Figure (5.3) ¢). Figure (5.3) d) shows the difference
between the variation of AB alone and the sum of the variation A and the
variation B. For an animator this gives the flexibility of carrying out changes

individually.

Changes in DOFs, though small, do not guarantee satisfaction of hard con-

straints, such as, feet having to be always in contact with the floor, etc., for a walking

92

2 T T T T T T
o
18F a) -
1 - —
O05F T .
a

20 30 40 a0 B0

4r b)

2 ! ! ! ! ! ! L ! ! !
10 20 30 40 a0 B0 70 80 90 100

Figure 5.2: Locality of VCFs value. The horizontal axis of a) represents the DOF's;
vertical axis of a) represents the average changes in every DOF percentage-wise. The
horizontal axis of b) represents the frame indices; and vertical axis of b) represents
the difference value of DOFs.

93

215 1 [| | |
10 20 a0 40 50 50 70 80 80 100

Figure 5.3: Illustration for showing additive property of VCFs. The horizontal axes
of a), b), ¢) and d) are frame indices; and the vertical axes are difference values.

94

/ /
//7\ ;
15
[¥ m—y
1 **"'%K
Ky
%
05 ﬁ%é
: E
¥
«F
~0.5 %*
* K
_1 L
-1
/o
~1.5 7 7 2
-15 -1 -05 0 0.5 1 15 2 25

Figure 5.4: Overlapping motion fragment in 3 — D LLE space (parallel curve seg-
ments inside the circle)

motion. To avoid violation generation, we only change the generating variations a
small amount at each step. If a violation occurs at a certain step, the change in
variations will be discarded and the variation generation go back to its values in the

previous step.

5.2.4 Joining Two Motion Segments

To join two motion segments smoothly is non-trivial. The traditional approach
is to carry out this operation in the frame space. For skeleton models this usually

amounts to ensuring smooth changes in individual DOFs through the use of suitable

95

1.5 /’
hH-H-
- ++
- -
1 '_F'_ ++++ T
|
|.
-
0.5 gﬁﬂf B
0 : A{‘Ir
s
~0.5 % T
£ s+
H -
-1 :f:l:_“ ._.LF.'H:’FH.
e
15
15 1 05 0 -05 -1 -15 2 -25

Figure 5.5: Smooth join in LLE space

96

interpolants. For mesh models, it is obviously much harder. And simple interpola-
tion may result in unnatural solutions. What would be needed is more similar to
morphing with appropriate constraints, a computationally expensive operation.

Here, we propose a method that blends two segments directly in the embedding
space. Because the variation in segments is created from the input sample, we can
ensure that the sampling rates of the varied segment is the same as the original.
The first task in joining the segments together is to determine the temporal relation
of the two segments. There are two cases: 1) the two segments have a overlapping
period where the two motions exist at the same time; or 2) there exists a gap in the
time sequence where neither segment exists.

To determine which case the given input belongs to, we put the two segments
together as a set of data and apply LLE to them. As Figure (5.4) shows, if in
embedding space, the motion curves of the two segments have parallel or overlapping
portions, then it belongs to the first case; else if the motion curves of the two
segments have a gap between them, then it follows that this is the second case.

In the first case, we blend the two motion curves in embedding space, then
convert the new blended sequence back to frame space. This approach is based on
the observation that parallel parts actually represent the same motion with slight
perceivable differences. Therefore, we can search the area in between these parallel
segments in the embedding space for similar motion. The solution should satisfy
two constraints: 1) the blending result should be smooth; 2) the blended frame
should satisfy the desired physical properties, such as, balance for skeleton models
and volume for mesh models.

For the second case, we predict the motion curve in the gap using the fixed

physical properties constraints with the method described in Chapter 4, which works

97

well both for skeleton and meshes and uses pre-computed property maps in LLE

space.

5.3 Experimental Results

To demonstrate the capabilities of our proposed method, we carried out a number
of experiments on both skeleton and mesh based animations.

Skeleton animation: As can be seen in Figure (5.7), the targeted features
for this variation are the left and right tibia. When changes are made to VCF with
indices 33 and 39 these features are affected. At the same time, for other DOFs,
the variations are too small to notice. Given the input walking animation with 150
frames, we modulate the VCF with indices 33 and 39, which are associated with left
and right tibia, with scalar factor s. The first row shows the frame No. 19 and the
second row shows the frame No. 80. When s = 1, the middle column, it represents
the original frames. The first, second, fourth and fifth columns show the variations
created with s = 2,1.5,0.75,0.5. From this result we can observe that when we
increase the value, the left and right thighs move toward each other; and when we
decrease the value, the two move away from each other. This example demonstrates
quite clearly that the locality and additive properties of VCFs make this method
simple to use for targeted variations.

Mesh based animation: In Figure (5.6), we show results of our method on
mesh based horse galloping. The original motion sequence has 12 keyframes, and
each mesh has 8431 vertices. The 12 frames form a cycle. After bilinear factorization
and SVD decomposition, we have in total 13 variables to control the variation added
to the sequence with the 13th frame representing the first frame of next cycle and

placed at the end to close the sequence. Correspondingly we set 13 modulation

98

factors s; as {1.3,1.4,1.3,1.3,1.2,1,1,1,1,1,1,1, 1}, for the corresponding VCFs.
We demonstrate the original and the new animations in separate rows. Each column
shows corresponding frames for original and the newly created animations.

We also show the difference between our generated sequence and original input
visually in detail. For example, in column 3, we show the same frame from the fixed
visual angle. As displayed in the first two rows, although the two meshes both
represent the No. 10 keyframe, the angle between the two back legs are different,
as shown in row 3. In the figure, the first row shows the No. 2 and 10 keyframes,
and the second row shows the variation results we have generated. In third row,
we compare and display the difference of front hooves, tail, back legs, and back
hooves. For example, in third row, we observe that compared to the input keyframe
10, the height of the lifting left front leg is lower; the tail is more straight, and the
angle between two back legs are smaller. All these variations are achieved under the
constraints that the mesh volume is invariant during the motion. This is done using

pre-computed LLE property maps as shown in Chapter 4.

5.4 Conclusion

In this chapter, we have presented a new method to create perceivable variations
in a given animation while ensuring that the principal characteristics of the given
motion are kept invariant. The input animation may be given as a set of keyframes
or as a complete animation created using any of the available animation techniques.
The method works for skeleton models as well as mesh models. We believe that the
idea of factorizing a given single motion into a distinguishing characteristic part and
a set of variation control factors is both interesting and powerful, and needs to be

explored further. While computing the lower dimensional LLE space embedding for

99

Keyframe 10
Original

Variation

Keyframe 2

Original

Variation

Figure 5.6: Mesh-based Variation

large models can be time consuming, reconstruction of frames from the embedding

space is not, and can be done in real time.

100

a)s=2 B)15 o)1 d)0.75)05

Figure 5.7: Skeleton-based Variation. s is the VCF factor. s = 1 represent the
original frames, shows in column c); and variations are shown in columns a), b), d)
and e).

Chapter 6

Content Based Key Information
Extraction

In Chapter 4, we presented our method for extraction of the characterizing motion
information in the form of a curve embedded in low dimension space, given just the
keyframes. This embedding has subsequently been used to enhance keyframe anima-
tion for generating the complete animation sequence and for generating animations
with variations satisfying desired physical properties. A very related question is
regarding the inverse problem. That is, how do we obtain the keyframes given a
complete character animation sequence. If we can use the characterizing motion
content from LLE to extract the keyframes, then we can edit/correct/create new
animation sequences for the character using previously developed techniques for
this purpose. In this chapter, we discuss this third enhancement to the keyframe
animation technique, namely keyframe extraction.

This chapter is organized as follows:

1) In Section (6.1), we introduce the importance of keyframe extraction and discuss
major problems in selecting the optimal keyframe set for any given previously

created or captured animation sequence.

2) Then in Section (6.2) we present our methodology which uses animation saliency

101

102

maps in low dimension embedding space, but with saliency values computed
in the original space of the animation. We also present an iterative keyframe

selection algorithm that minimizes reconstruction error.

3) In Section (6.3), we demonstrate the experimental results from an implemen-
tation of our method for both skeletal and mesh animations and compare it

with other popular methods for keyframe extraction.

4) Concluding remarks are presented in Section (6.4).

6.1 Introduction to Keyframe Extraction

Keyframe extraction is a widely used technique in computer animation, computer
games and in video processing. It uses a sequence of frames as the input, and out-
puts a simplified keyframe representation which is popularly adopted in animation
blending, motion synthesis, compression and retrieval. Many animation techniques
rely on a good keyframe representation. For example, mesh deformation is almost
always performed only on keyframes of a sequence [149,150]. Motion editing is much
easier to apply to keyframes than a whole sequence [47]. To compress animations,
finding keyframes is usually the first step performed [20].

There are two typical questions when we have the input data for a complete
animation sequence, and we wish to locate the keyframes to best represent it: 1)
How many keyframes do we need? 2) Where are these keyframes located? To
the first question, there is no absolute answer. It is always a tradeoff between the
efficiency and quality. The more keyframes, the less lossy the reconstructed result
will be with respect to the original sequence. It is also a question which depends
on user requirements. The minimal reconstruction error is a global optimization

question, which makes the question even harder to answer. The time complexity to

103

do an exhaustive search and select the set of keyframes with minimum reconstruction
error is exponential, making this impractical, except for animation sequences of very
small lengths.

The motion present in a sequence can be considered as a trajectory curve
in high dimensional space. Each frame is a vertex on the curve. In the keyframe
representation of any input animation, this trajectory curve has to be preserved. The
keyframes selection problem is thus converted to a curve approximation problem,
where the objective is to define a subset of vertices on a curve which can be used
to reconstruct the curve with minimal error. As in lower dimensional space, such
as 2D or 3D, to best approximate the original curve, we usually need to locate the
points where the absolute curvature, k, of the curve is a local maximum [127].

To define x we note that for a curve y = f(x) that the absolute curvature at

a point is :

_d
where ¢’ = 2.

For our purposes, we will assume that the points of interest will have ¢y’ < 1
(e.g. for maxima) such that:

=1yl (6.1)

For example, we have a simple 2D curve y = sin(x). In Figure 6.1, in addition
to the start and end points, the point at z = § and z = 37“ should be included in key
point sets rather than the point at x = 7. In other words, when the point < z;,y; >
is a maximum value in Equation (6.1), we need to consider it as a key point to
approximate the curve. On the other hand, when the point is an intermediate value
in Equation (6.1), it means the vertex can be replaced by its neighbors .

However, the high dimensionality of the input animation makes the process

104

0.5

Figure 6.1: Example of 2D curve approximation.

125 T T T T T T T T T

Dof #26
Dof #27

120

115

110

105

0 10 20 30 40 50 60 70 80 90 100

Figure 6.2: The motion curve of DOFs varied very much even for closed joint in
skeleton model.

105

more complex. The 3D data has a large number of degree of freedoms (DOF's), and
every DOF is a time variable function. Rarely is there a uniform changing pattern
of the whole collection of DOFs. Retaining any one DOF’s changing pattern may
cause us to lose the pattern of other DOFs (see Figure (6.2)). Therefore, we need to
take all DOFs into consideration globally. This problem becomes even more acute
when applied on meshes, since the dimensionality increases many-fold. Meshes use
geometry (i.e., vertices) and connectivity (e.g., triangles) information to represent a
shape in 3D. The interpolation among mesh data is more difficult than for skeletal
data, because the latter has only to deal with angle interpolation which has a large
tolerance for error. For mesh data, on the other hand, inaccurate interpolation may
result in in-between frames having invalid data, such as self-intersections, a decrease
in body volume, etc.

It is important to reiterate here that within the huge amount of DOFs, some
DOFs contribute more than others to the motion performance and its perception.
To isolate those DOFs we use animation saliency, a perception-inspired metric to
help in identifying the important frames. Saliency, which characterizes the level of
significance of the subject being observed, has been a focus of cognitive sciences
for more than 20 years. It is closely related to many disciplines, including artificial
intelligence, neuroscience, psychology, and recently, computer graphics [151]. Re-
searchers first used saliency in 2D images to distinguish areas with higher visual
attentions. Lee et al. [152] extended this idea to 3D meshes, and calculated the
mesh saliency based on geometry features at multiple scales. Lee et al. use mesh
saliency to perform the mesh simplification while preserving more visual features.

Let us recall that character animation data is of very high dimensionality and

106

High-dimensional space

Output
: Saliency key frames &
on DOFs reconstructiops

Motion trajectory
Error =
estimation

Input
animation

sampling in high-
dimensional

Motion trajectory : i : :
S — Keyframes extraction —> properties ,

sampling in) : map buildingup |
low-dimensional space i forreconstruction |

Low-dimensional space PR
Figure 6.3: Flowchart for our keyframe extraction method.

has huge amount of information which contains important coherence and correla-
tions [67]. To avoid the difficulties caused by the high dimensionality, our method
for keyframe selection first projects the animation sequence to lower-dimensional
embedding space. Now, every frame corresponds to a point in the embedding space.
Next, we sample the curve in the embedding space and select the keyframe candi-
dates with the largest values in Equation (6.1). Lastly, we use an iterative keyframe
refinement scheme to minimize an error function which incorporates saliency of all
DOFs in the input animation. Figure (6.3) shows the flowchart of our method.

The advantages of our method are following;:

1. The time complexity is highly reduced because we cast the keyframe extraction
in lower dimensional space.
2. With the saliency maps of DOFs in high dimensional space, we can find a set

of keyframes which can construct the whole animation sequence with less loss

107

from the perception angle.

3. The reconstruction is done by having all contributions from the whole keyframe
set. Plus, we use physical property maps to guide the reconstruction. To-

gether, these make the reconstruction more reliable.

4. Our method can be applied to both skeletal animations, including motion

capture, and to mesh animations.

6.2 Methodology

The vast information in character animation sequences has two layers: the static
information and the dynamic information. The static information contains the ap-
pearance model definition, such as the geometric structure of the model, the texture
of the surface of the model, etc. The dynamic information concerns model deforma-
tion and transformation, i.e., information directly related to the motion performed.
In a few cases, we can isolate the dynamic information away from the static infor-
mation, and represent the dynamic information as an equation of time such as the
fast Fourier transform for water or cloth movement [153]. However, for 3D charac-
ter animation, which usually has more complicated movement, such as in walking,
running, dancing etc., it is too hard to isolate the movement with a space time
equation. Hence, a sequence of animation frames is the chosen format to represent
a character animation. And every frame contains both static information and dy-
namic information. As a consequence, all frames of a character animation sequence
have coherence and correlations. Based on the representation types and the defined
model, the size of every frame can be varied. The degrees of freedom (DOFs) will
be larger when the character model becomes more finely detailed. Among the huge

amount of DOF's, some of the DOFs are more meaningful for a viewer’s perception

108

of the animation. As mentioned earlier, to locate these DOFs, we calculate the

saliency of the animation that is due to motion.

6.2.1 Saliency Maps on DOF's

During the animation, from a perception viewpoint, DOFs contribute to motion
unevenly. For example, for a walking character, those DOF's representing the mid-
section contribute much less to the walking motion than those DOF's representing
the knee or foot. Therefore, in our work, we apply DOFs based saliency on the
animation sequence to capture what would be considered as the most visually inter-
esting regions in an animation sequence. The human-perception inspired importance
measure computed by our saliency operator results in more visually pleasing results
for the animation created from the generated keyframes. Also we have noticed that
some DOF's have large ranges of variation but change smoothly along frames. From
an interpolation angle, although those DOF's can be easily interpolated by the same
position of DOFs from neighbor frames, they may bring larger numerical reconstruc-
tion error than some other DOFs which have smaller variation range but sharp and
irregular changes. An advantage of using saliency in our work is that it eliminates
this bias caused by smoothly changing DOF's with large scalar value ranges.

For skeletal animation, we consider the :th DOF, dof;, as defining a motion
curve in 2D space. We use the standard curvature of motion curve as the saliency
feature s. Then, similar to [151], we calculate the Gaussian-weighted center-surround
differences for several center surround scales. Next, we normalize all the saliency
maps at different scales, and sum them altogether to get the saliency value of dof;.
We will represent a DOF of a frame f; (j € [1,n]) in an animation sequence of n
frames as dof! (i € [1, N]). For every dof;, we build a neighbor set N(dof/,d) of

all dof¥ within distance d along the DOF curve dof;. Here, we use the Euclidean

109

[

saliency value
N w » o

[N

30
DOF index

Figure 6.4: Saliency value for a running skeletal animation with 62 DOFs and 161
frames.

distance metric so we calculate the Gaussian-weighted average of saliency feature s

for the vertices that are in N(dof/, 2d):

G(dof!,s,d) = (6.2)
dofik—dofij 2
ZkeN(dofg,gd) s(dof}F) exp(—%)
|| dofk—dof?|”
ZkeN(dofg'gd) exp(—T)

Then, we build the saliency map M for a dof; for the whole frame as the absolute

difference between the Gaussian weighted averages computed at fine and coarse

scales d =1, 2, 3.
M(dOij, S) = ||G(d0fz]7 S, d) - G(dOij, 5, Qd)” (63)

For mesh animations, other than the features we used for skeletal animation,
we also use a saliency calculation similar to Lee et al. [152]. We use the DOF's
of a frame f; to build a graph. Every DOF is a vertex in the graph, and it is
connected by edges. Since the frame f; is a graph, for every do fl-j , we build a
neighbor set N(dofj7 d) that is the set of all dof,g at most d path length from dofij.
For the saliency of a dof; of the mesh we use a weighted combination of the average

value over all N(dof?,d) and the motion curve saliency feature defined for skeletal

110

Figure 6.5: Saliency map for rabbit walking animation of 85 frames. Light color
represent large saliency value.

111

animations. Figure (6.4) shows the saliency calculation result for a running skeletal
animation consisting of 62 DOFs and 161 frames. Figure (6.5) shows the saliency
map calculated for a mesh animation, a walking rabbit sequence consisting of 85

frames.

6.2.2 Motion Learning in Embedding Space

Using our LLE based technique described in Chapter 3, we cast the given anima-
tion sequence trajectory in the RY space into a d-dimensional projection of the N-
dimensional frames (6 < N), so that the point < ey, ..., e5 > in the embedding space
generates a vector of 3D frames in the form of (S(dof}!), S(dof?), ..., S(dof})). Re-
call that under the assumption that each data point and its neighbors lie on a locally
linear patch of the manifold, each of the N-dimensional frames can be reconstructed
as a weighted combination of its neighbors, such that the global reconstruction error

is minimized.
6.2.3 Iterative Keyframe Selection with Saliency Map

An in-between frame f; is defined as a parameterized interpolation of keyframes as

in Equation (3.9). We re-write Eq. (3.9) into matrix form and get the following:
F; = W(Key); (6.4)

As a consequence, given an animation sequence it can be represented as a matrix A

as follows:

A=W x U (Key) (6.5)

This way we convert the keyframe selection problem into a constrained matrix fac-

torization problem.

112

We extended the update rules in [26] for extracting keyframes in each iteration

as given by the following equations:

e = argminE(A, A")
Key"™' — Key' @ Key'
\I]k+l - \If(Keka)

WEH A x gh! (6.6)

where FE is the error function and % is the number of iterations. As compared
to existing methods, F, defined in Equation (6.7) below, incorporates the DOFs’
saliency through suitable weights. In addition, unlike other existing error functions,
E eliminates the bias caused by DOF's having large scalar value ranges but smoothly

changing values.

n N

E(A, AY) wi|dof! —dof"|| (6.7)

§=0 i=0

where N is the number of DOFs; n is the number of frames; and w; is the weight
based on the saliency.

The lower-dimensional embedding of an animation sequence is an important
property; it is an invisible feature of the animation in high-dimensional space. A
good assumption for keyframe selection is to choose the critical vertices e; in the
embedding space so that those e; can best represent the motion trajectory. The
assumption is that the corresponding frames < dof; > in the RY space also best
represent the input motion trajectory in RY space. To select the keyframe candi-
dates, we apply Gaussian filters and locate the e; which have large values in Equation

(6.1) in the embedding space.

113

Table 6.1: Test for number of keyframes removed versus reconstruction error.
removed #) 15 26 37 45
error in total | 7293 | 9408 | 12485 | 10396 | 9286 | 9671
removed # 56 67 76 88 97 106
error in total | 10156 | 9909 | 9217 | 11313 | 11841 | 10580

Table 6.2: Test for number of keyframes added versus reconstruction error.
added # 11 21 31 41 51
error in total | 7293 | 7323 | 6783 | 6301 | 7140 | 7059
added # 61 71 81 83 91 101
error in total | 7168 | 7089 | 6594 | 6591 | 7290 | 6854

6.2.4 Number of keyframes

For any keyframe selection methods, there is always a tradeoff between quality and
quantity. A larger number of keyframes definitely leads to less reconstruction error
locally or/and globally. The maximal keyframe set consisting of all the frames has
zero reconstruction error. However, as we increase the number of keyframes, recon-
struction error decreases slower and slower. Here we give Tables (6.1) to illustrate
the idea of the tradeoff between number of keyframes and the reconstruction error.
For this illustration, we use a skeleton model animation sequence with 111 frames,
depicting a human character running. Tables (6.2) illustration showing that adding
another frame as keyframe does not cause huge reduction in reconstruction error.
For example, adding frame #11 into keyframes set, causes the reconstruction error

to decrease from 7485 to 7410 (about 1% reduction in error).

6.3 Experimental Results

In this section, we demonstrate the experimental results from an implementation of
our method and compare it with other popular methods for keyframe extraction as

follows:

114

Table 6.3: Skeletal animation sequences.

data run 1 | walk 1 | run 2 | walk 2
of frames | 161 188 321 341

data jump | dance 1 | salsa | dance 2
of frames | 550 851 901 941

Uniformly distributed method This method selects the keyframes at even in-

tervals throughout the whole animation sequence.

PCA-based method This method maps the whole animation sequence into a lin-
ear embedding space. Then, the method calculates the absolute curvature
value for every embedding point and sorts the corresponding frames according
to this. The top k frames will be chosen as keyframes. If a group of keyframes
are located within a very small range, the method chooses the center one as

the keyframe and removes the others from the keyframe set.

Halit and Captin method [129] This method first maps the animation into k-
dimensional embedding space with PCA (k € [7,10]). Then, the method
analyzes the 2D curve saliency for each dimension individually and locates the
points with high curve saliency. After summarizing all dimension results, the
method chose the saliency value points larger than average curve saliency value
as the keyframes candidates. Keyframes are finally selected via a clustering

step.

These tests can be separated into two sets: 1) tests on skeletal models; 2) tests

on mesh models. All errors discussed are average DOF reconstruction errors.

6.3.1 Experiments on Skeletal Models

We applied our method to a group of skeletal animation sequences (table 6.3) with

varying number of frames. The skeleton in all the input animations contains 62

115

Experimental results on skeleton data

s
(=]

1012 abelany
-
(0]
L~

e\

12

T\

hY
&
6 by
¥ ~». S —
B —_—
5y . P
-~ e-.w_.a e
4 =%
e .- .. - 8- — T e——y——
B = T— =
X
2 =
~ " —
B, i e o = —
L T T e T i =
0 Sl S W TR T T e e e e R e e e e

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

#of
—s=run1 --m-wakl —--run2 - -walk2 jump —e dancel ——dance2 keyframes

Figure 6.6: Experimental results on skeletal animations

DOFs. The reconstruction error is shown in Figure (6.6).

Compared to methods which use PCA, we see that LLE is a much better way to
generate reliable embedding when the input data represents complex motion with
many correlations and coherence. For example, Figure (6.7) shows a comparison
between our method and the PCA-based method on a skeletal dancing sequence
with 902 frames. The upper two plots a) and b) show the embedding result for
LLE and PCA. PCA results in a very noisy graph curve for the segment (inside the
circle) near the end of the input sequence. Details can be seen in the lower two plots
c) and d). We believe this is due to the fact that PCA is a linear projection and
LLE is a nonlinear projection. For complex motions like dance, it is quite obvious

that an assumption of non-linearity is closer to the content structure. Based on the

116

LLE embedd_ing

015
LRSS

0.05

00654
01
0154,

02
00

-

005~
ncr.:‘-l"
o5

ool

o005

001 2 / /
O oM 002 o omd o5 gog 009

Figure 6.7: 3-dimensional embedding results shows using LLE is a good quality
embedding whereas PCA yields a less coherent, noisy one.

117

20 our methgd with physical property
preservation
E i) =& -our method without physical property
= " preservation
< - -Halit&Capin's method
@ 16 3
a i
5 Sal == PCA method
14 | “-..,% e,
T g oy, " --3=- uniform method
S i T "
12 e g _:-.,_‘ “Wreais,
e | — -k - et L Heeven...,
— Sl "N #oes o dfis _
10 S - TR TN
-~ T .o
B = ~~
8 \ \ w2 s A ‘\"
ey O Oty R
B e o e ¥
6 R iy -
4
2
of keyframes
0
10 12 14 16 18 20 22 24 26 28 30

Figure 6.8: Comparison between our method with a uniformly distributed method,
Halit & Capin’s method, and PCA-based method on Salsa Data.

embedding result of the PCA-based method, the selected keyframes result in larger
reconstruction error.

Another example we used is a salsa dancing sequence with 901 frames. In
this comparison experiment, we chose the following methods for keyframe selection
- uniformly distributed, PCA, the method of Halit & Capin [129], and our method
with and without using property maps during reconstruction. We show the com-
parison result in Figure (6.8). From this figure, we can see that as the number of
keyframes increases, the reconstruction error decreases. When it has same number
of keyframes, LLE with property map reconstruction has the minimum reconstruc-
tion error, and LLE with simple linear interpolation reconstruction has a slightly

worse performance. As we had expected, PCA-based methods have far higher error.

118

A

f) 18 keyframes, average error=0.013

R

g}12’eyfrémes,a age error=0.034

i

d) 15 keyframes, average error = 0.0465 h) 8 keyframes, average error=0.04
22 27 32 a7 13 33 63

Figure 6.9: Experimental results for rabbit and walking man animations. For rabbit
animation, the frames in the first row a) come from the original animation sequence.
The frames in the second, third, and four rows come from reconstruction sequences
with 35, 25, and 15 keyframes, respectively. For walking man animations, the frames
in the first row e) come from the original animation sequence. The frames in the
second, third, and four rows come from reconstruction sequences with 18, 12, and 8
keyframes, respectively.

From a computational time perspective, uniformly distributed method is very fast,

but the reconstruction results it provides are clearly poor.

6.3.2 Experiments on Mesh Models

Compared to skeletal data, mesh data usually cause more difficulties for keyframe
extraction. As we have mentioned one great advantage of our method is that it

works equally well for skeletal and mesh animation data. We tested our method

119

Rabbitanimation
0.35

M PCA method

325

m Our method without properties
map

0.2

@ Our method with properties map
0.15

0.1

0.05

15 16 17

Figure 6.10: Comparison between our method and the PCA method on the rabbit
animation sequence. The x—axis are the number of keyframes we used to reconstruct
the whole animation sequences; and the y—axis shows the average reconstruction
error.

on a mesh animation sequence depicting the motion of a rabbit, created by the
Big Buck Bunny animation group [154]. The original sequence contains 85 frames.
Every frame contains 4138 vertices, and in total 12414 DOFs. Figure (6.9) shows
the reconstruction result with different numbers of selected keyframes in total. Row
a) shows selected frames from the original sequence. Row b) shows the frames
constructed with 35 keyframes and the average error for construction is 0.0128.
Row ¢) shows the frames constructed with 25 keyframes and the average error for
reconstruction is 0.0263. Row d) shows the frames constructed with 15 keyframes
and the average error for reconstruction is 0.0465.

The comparison result between our method with PCA-based method is shown

120

0.1

Man walk animation

0.09 -

0.08 -

B PCA method
0.07 -

B Our method without properties map

0.06 +

0.05 +

= Our method with properties map

0.04 -

0.03 +

0.02 -

0.01 -

A kﬁiﬂhnum

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Figure 6.11: Comparison between our method and the PCA method on the man walk
animation sequence. The x—axis are the number of keyframes we used to reconstruct
the whole animation sequences; and the y—axis shows the average reconstruction
error.

in Figure (6.10). We can see that with the same number of keyframes, our method’s
selection of keyframes generates the original sequence with much less error. Uniform
method causes many topology errors; and Halit and Capin’s method works only on
skeleton animations. Therefore there is no comparison shown for these two methods
here. We can also use the physical properties map preservation method, as presented
in Section (4.2) to help us generate the mesh frames. Figure (6.12) shows the volume
properties map for the rabbit animation. We also tested our method on a man
walking animation (mesh data) with 49911 DOFs and 94 frames. The comparison
between our method with PCA-based method is shown in Figure (6.11). Here again,
we can see that with the same number of keyframes, our method selects keyframes

so as to reconstruct the original sequence with much less error.

121

60

50

40

30

20

10

0
0 10 20 30 40 50 60

Figure 6.12: The volume properties map we used to reconstruct the sequence. We
take the embedding space and divided it into a 61 x 61 grid, shows as the z-axis
and y-axis. The scalar values shows the mesh volumes for corresponding meshes.

6.4 Concluding Remarks

In this chapter, we presented an effective method for optimized keyframe selec-
tion from complete animation or motion capture sequences. Our method works for
skeletal as well as mesh data. Our solution uses animation saliency combined with
dimensionality reduction using the locally linear embedding method. This way it
transforms the problem from high dimensional space to a lower dimensional space to
avoid the difficulties caused by high data dimensionality. In addition, using the map-
ping function from low dimensional space to high dimensional space, we represent

the animation as a matrix multiplication form by keyframe matrix and combination

122

weights. Therefore, the time consuming optimal search for the matrix factorization
problem in high dimensional space is simplified to a much more efficient way in low
dimensional space. Yet, the error metric that is minimized uses animation saliency
computed in the original high dimensional space itself, which helps to increase the
fidelity of our keyframe representation. The reconstruction of the original sequence
is achieved by interpolating every in-between using the whole set of keyframes. The
experimental results show that our method produces better results for both skeletal

and mesh animation sequences.

Chapter 7

Conclusions

In this chapter, we summarize the significant contributions in this thesis and also

discuss future work. The organization of this chapter is as follows.

e First, in section (7.1), we summarize our methodology and contributions con-
sisting of three new techniques for enhancing keyframe character animation

technique using motion learning with locally linear embedding (3) to 6.

e Then, in section (7.2), we present the future works and some more concluding

remarks about our research work.

123

124

7.1 Summary of Contributions

We have introduced a framework for character animation, which has three distin-
guishing components. Firstly, for any coordinated motion of a character, the frame-
work uses a small set of key poses to learn the motion in a global fashion. This
motion is learned as a path in a low dimensional space, using the nonlinear tech-
nique of locally linear embedding. Second, a reconstruction matrix is formulated
which enables us to map any point in the low dimension embedding space to a pose
in the original high dimension space of the character. Thirdly, the framework incor-
porates a new idea of physical property maps of the deformable shape in embedding
space and enables the synthesis of the complete animation sequence based on de-
sirable physical properties. We are not aware of any other earlier work that uses
property maps in this manner. Such a framework will considerably ease the task
of animators as they can now work with a small set of key poses and specify the
synthesized motion in the form of desirable physical properties of the deformable
shape during the course of the motion. We have demonstrated that the framework
works well even with a small set of sample key poses, produces in-betweens with
desirable properties, and is also not overly sensitive to the number and spacing of
key poses. Mesh reconstruction is linear in computational complexity. However the
property map computations take longer, and could be applied as a preprocessing
step, for real-time animation.

After introducing our framework to create in-betweens, we have presented a
new method to create perceivable variations in a given motion while ensuring that
the principal characteristics of the given motion are kept invariant. As in the case
of in-between generation, our method works for skeleton as well as mesh models.

We believe that the idea of factorizing a given single motion into a distinguishing

125

characteristic part and a set of variation control factors is both interesting and pow-
erful, and needs to be explored further. While computing LLE space embedding for
large models can be time consuming, reconstruction of frames from the embedding
space is not, and can be done in real time. From an implementation perspective we
plan to investigate the possibility of computing the LLE embedding in a background
thread, while the animation variations are being displayed.

Finally, we present an effective method for keyframe selection from complete
animation or motion capture sequences. Again, our method works for skeleton as
well as mesh data. Our solution uses animation saliency and combines it with the
other components in the framework. This way it transforms the problem from high
dimensional space to a lower dimensional space to avoid the difficulties caused by
high data dimensionality. In addition, using the mapping function from low di-
mensional space to high dimensional space, we represent the animation as a matrix
multiplication form by keyframe matrix and combination weights. Therefore, the
time consuming optimal search for the matrix factorization problem in high di-
mensional space is simplified to a much more efficient way in low dimensional space.
However, the error metric that is minimized uses animation saliency computed in the
original high dimensional space. Again, the reconstruction of the original sequence

is achieved by interpolating every in-between using the whole set of keyframes.

7.2 Future Work

Beyond the methods we addressed in this thesis, there are many possible research
directions for further exploration. First of all, there are other shape properties we
can take into account that may improve our estimates in future, including changes

in topology for different types of motions. The more physical properties we use, the

126

better frame estimation results we can generate. Also, we notice that while comput-
ing LLE space embedding for large models can be time consuming, reconstruction
of frames from the embedding space is not, and can be done in real time. From
an implementation perspective we could investigate the possibility of computing the
LLE embedding in a background thread, while the animation variations are being
displayed. To achieve this, we should explore the possibility to build up a com-
parison system in embeddings space among different character animation data for
one detailed motion. To build up the comparison system, we need to put different
character animation sequences into one single embedding space. However, different
types of data have very significant DOFs’ representation, and a mapping relation
between different data representation is necessary. The mapping relations could be
built manually, but it would be very time consuming.

With a numerical representation of the animations in the form of embeddings,
we could apply many motion editing and synthesis operations in the low dimension
embedding space. For example, we can look into mapping of the motions between
different character animation data types, such as from video clip to skeleton or
mesh animations. Also, we can investigate techniques for adding some extra style
to create new animations and to perform motion transfer to new models. Or we
can join two different animations together with a step of blending in the motion

embedding space.

Bibliography

1]
2]

Twentieth century fox film corporation.

Guodong Liu and Leonard McMillan. Segment-based human motion compres-
sion. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 127135, Aire-la-Ville, Switzerland,

Switzerland, 2006. Eurographics Association.
Ascension Technology Corporation. http://www.ascension-tech.com.

L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning
of low dimensional manifolds. Journal of Machine Learning Research, 4:119—

155, 2003.

J. H., D. D. Lee, S. Mika, and B. Scholkopf. A kernel view of the dimen-
sionality reduction of manifolds. In ICML °04: Proceedings of the twenty-first
international conference on Machine learning, page 47, New York, NY, USA,

2004.

Ollie Johnston and Frank Thomas. The Illusion of Life: Disney Animation.
Thomas, New York, hyperion edition, 1981.

Gordon Cameron, Andre Bustanoby, Ken Cope, Steph Greenberg, Craig
Hayes, and Olivier Ozoux. Motion capture and cg character animation (panel).
In SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 442—-445, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

127

8]

[10]

[11]

[12]

[13]

128

M. Gleicher. Animation from observation: Motion capture and motion editing.

SIGGRAPH Compututer Graphics, 33(4):51-54, 2000.
James Cameron. http://www.avatarmovie.com/index.html.
http:/ /www.boxoffice.com/.

Steven R. Lantz. Magnetoconvection dynamics in a stratified layer. ii. a low-
order model of the tilting instability (revised 03/94). Technical report, Ithaca,
NY, USA, 1993.

Antonio Carlos Sementille, Luis Escaramuzi Lourenco, José Remo Ferreira
Brega, and Ildeberto Rodello. A motion capture system using passive mark-
ers. In VRCAI °04: Proceedings of the 2004 ACM SIGGRAPH international
conference on Virtual Reality continuum and its applications in industry, pages

440-447, New York, NY, USA, 2004. ACM.

A. Bruderlin and L. Williams. Motion signal processing. In SIGGRAPH
"95: Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques, pages 97-104, New York, NY, USA, 1995.

Bobby Bodenheimer, Seth Rosenthal, John Pellainteractive, and Media Pro-
duction. The process of motion capture: Dealing with the data, 1997.

Victor Brian Zordan and Nicholas C. Van Der Horst. Mapping optical mo-
tion capture data to skeletal motion using a physical model. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 245250, Aire-la-Ville, Switzerland, Switzerland, 2003.

Eurographics Association.

Kwang-Jin Choi, Sang-Hyun Park, and Hyeong-Seok Ko. Processing motion
capture data to achieve positional accuracy. Graphical Models and Image

Processing, 61(5):260-273, 1999.

[17]

[19]

[22]

129

Tom Molet, Ronan Boulic, and Daniel Thalmann. A real time anatomical con-
verter for human motion capture. In Proceedings of the Eurographics workshop
on Computer animation and simulation, pages 79-94, New York, NY, USA,
1996. Springer-Verlag New York, Inc.

V. B. Zordan and N. C. Van D. Horst. Mapping optical motion capture data to
skeletal motion using a physical model. In SCA ’03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
245-250, Aire-la-Ville, Switzerland, Switzerland, 2003.

L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer graphics and interac-

tive techniques, pages 473-482, New York, NY, USA, 2002.

Okan Arikan. Compression of motion capture databases. ACM Transaction

on Graphics, 25(3):890-897, 2006. SIGGRAPH 2006.

Alla Safonova and Jessica K. Hodgins. Construction and optimal search of
interpolated motion graphs. In SIGGRAPH °07: ACM SIGGRAPH 2007
papers, page 106, New York, NY, USA, 2007. ACM.

R. Williams. The Animator’s Survival Kit—Revised Edition: A Manual of
Methods, Principles and Formulas for Classical, Computer, Games, Stop Mo-
tion and Internet Animators. Faber & Faber, 2009.

L.F. Cheong, Y. Wang, and H.LL. Wang. Establishment shot detection using
qualitative motion. In In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages II: 85-90, 2003.

A. Aner Wolf. Extracting semantic information through illumination clas-
sification. In In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages I: 269-274, 2004.

130

[25] H.L. Wang and L.F. Cheong. Film shot classification using directing semantics.

[20]

[27]

[28]

[30]

[31]

[32]

In International Conference on Pattern Recognition, pages 1-4, 2008.

KeSen Huang, ChunFa Chang, Yu Yao Hsu, and Shi Nine Yang. Key probe: a
technique for animation keyframe extraction. The Visual Computer, 21(8):532

— 541, 09 2005.

O. Onder, U. Gudukbay, B. Ozguc, T. Erdem, C. Erdem, and M. Ozkan.
Keyframe reduction techniques for motion capture data. In 3DT'V Conference:
The True Vision - Capture, Transmission and Display of 3D Video, 2008,
pages 293-296, May 2008.

Tong-Yee Lee, Chao-Hung Lin, Yu-Shuen Wang, and Tai-Guang Chen. An-
imation key-frame extraction and simplification using deformation analysis.
Circuits and Systems for Video Technology, IEEE Transactions on, 18(4):478—
486, April 2008.

V. Brian Z., A. Majkowska, B. Chiu, and M. Fast. Dynamic response for
motion capture animation. ACM Transactions on Graphics, 24(3):697-701,
2005. Proceedings of SIGGRAPH 2005.

Alla Safonova and Jessica K. Hodgins. Analyzing the physical correctness
of interpolated human motion. In SCA ‘05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 171
180, New York, NY, USA, 2005. ACM.

T. Mukai and S. Kuriyama. Geostatistical motion interpolation. ACM Trans-

actions on Graphics, 24(3):1062-1070, 2005. Proceedings of SIGGRAPH 2005.

Z. Deng, P. Chiang, P. Fox, and U. Neumann. Animating blendshape faces
by cross-mapping motion capture data. In SI3D’06: Proceedings of the 2006
symposium on Interactive 3D graphics and games, pages 43-48, New York,

NY, USA, 2006.

[33]

[35]

[37]

[39]

131

Hai-Yin Xu, Dan Li, and Jian Wang. Implicit curve oriented in-betweening for
motion animation. In GRAPHITE °06: Proceedings of the 4th international
conference on Computer graphics and interactive techniques in Australasia and

Southeast Asia, pages 87-91, New York, NY, USA, 2006. ACM.

L. Reveret, L. Favreau, C. Depraz, and M. Cani. Morphable model of
quadrupeds skeletons for animating 3D animals. In SCA ’05: Proceedings
of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, pages 135-142, New York, NY, USA, 2005.

Jonas Gomes, Lucia Darsa, Bruno Costa, and Luiz Velho. Warping and mor-

phing of graphical objects. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1998.

T. Igarashi, T. Moscovich, and J. F. Hughes. Spatial keyframing for
performance-driven animation. In SCA ’05: Proceedings of the 2005 ACM

SIGGRAPH/Eurographics symposium on Computer animation, pages 107—
115, New York, NY, USA, 2005.

Scott Schaefer, Travis McPhail, and Joe Warren. Image deformation using
moving least squares. ACM Transaction on Graphics, 25(3):533-540, 2006.
Proceedings of SIGGRAPH 2006.

Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible shape
interpolation. In SIGGRAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pages 157-164, New York,

NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. In
SIGGRAPH ’92: Proceedings of the 19th annual conference on Computer
graphics and interactive techniques, pages 35-42, New York, NY, USA, 1992.
ACM Press.

[40]

[43]

[44]

[45]

[46]

[47]

[48]

132

F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of

deformations. IEEE Trans. Pattern Anal. Mach. Intell., 11(6):567-585, 1989.

Michael Gleicher. Retargeting motion to new characters. In SIGGRAPH
"98: Proceedings of the 25th annual conference on Computer graphics and

interactive techniques, pages 33-42, 1998.

Hyun Joon Shin, Jehee Lee, Sung Yong Shin, and Michael Gleicher. Computer
puppetry: An importance-based approach. ACM Trans. Graph., 20(2):67-94,
2001.

C. K. Liu, A. H., and Z. Popovic. Learning physics-based motion style with
nonlinear inverse optimization. ACM Transactions on Graphics, 24(3):1071—

1081, 2005. Proceedings of SIGGRAPH 2005.

Eugene Hsu, Kari Pulli, and Jovan Popovi¢. Style translation for human
motion. ACM Transactions on Graphics, 24(3):1082-1089, 2005. Proceedings
of SIGGRAPH 2005.

R. W. Sumner and J. Popovi¢. Deformation transfer for triangle meshes. ACM
Transaction on Graphics, 23(3):399-405, 2004. Proceedings of SIGGRAPH
2004.

C. Lin and T. Lee. Metamorphosis of 3D polyhedral models using progres-
sive connectivity transformations. IEEE Transactions on Visualization and

Computer Graphics (TVCG), 11(1):2-12, 2005.

R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popovi¢. Mesh-based in-
verse kinematics. ACM Transactions on Graphics, 24(3):488-495, 2005. SIG-
GRAPH 2005.

Y. Cao, W. C. Tien, P. Faloutsos, and Frédéric Pighin. Expressive speech-
driven facial animation. ACM Transactions on Graphics, 24(4):1283-1302,
2005.

[49]

[50]

[51]

[52]

[53]

133

K. G. Der, R. W. Sumner, and J. Popovi¢. Inverse kinematics for reduced
deformable models. ACM Transactions on Graphics, 25(3):1174-1179, 2006.
Proceedings of SIGGRAPH 2006.

Robert W. Sumner, Johannes Schmid, and Mark Pauly. Embedded deforma-
tion for shape manipulation. In SIGGRAPH '07: ACM SIGGRAPH 2007
papers, page 80, New York, NY, USA, 2007. ACM.

Ilya Baran, Daniel Vlasic, Eitan Grinspun, and Jovan Popovi¢. Semantic
deformation transfer. In SIGGRAPH °09: ACM SIGGRAPH 2009 papers,
pages 1-6, New York, NY, USA, 2009. ACM.

D. M. Gavrila and L. S. Davis. 3-d model-based tracking of humans in action:
a multi-view approach. In CVPR ’96: Proceedings of the 1996 Conference on
Computer Vision and Pattern Recognition (CVPR ’96), page 73, Washington,
DC, USA, 1996. IEEE Computer Society.

C. Bregler and J. Malik. Tracking people with twists and exponential maps. In
CVPR ’98: Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, page 8, Washington, DC, USA, 1998.
IEEE Computer Society.

M. Yamamoto, A. Sato, S. Kawada, T. Kondo, and Y. Osaki. Incremental
tracking of human actions from multiple views. In CVPR ’98: Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, page 2, Washington, DC, USA, 1998. IEEE Computer Society.

Masanobu Yamamoto and Katsutoshi Yagishita. Scene constraints-aided
tracking of human body. Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on, 1:1151, 2000.

Tat-Jen Cham and J.M. Rehg. A multiple hypothesis approach to figure
tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer
Society Conference on., volume 2, page 244, 1999.

[57]

[59]

[60]

[61]

[62]

[63]

[64]

134

Quentin Delamarre and Olivier Faugeras. 3d articulated models and multi-
view tracking with silhouettes. In ICCV "99: Proceedings of the International
Conference on Computer Vision-Volume 2, page 716, Washington, DC, USA,
1999. IEEE Computer Society.

I. A. Kakadiaris and D. Metaxas. Model-based estimation of 3d human motion
with occlusion based on active multi-viewpoint selection. In CVPR °96: Pro-

ceedings of the 1996 Conference on Computer Vision and Pattern Recognition

(CVPR ’96), page 81, Washington, DC, USA, 1996. IEEE Computer Society.

Tom Drummond and Roberto Cipolla. Real-time visual tracking of complex

structures. IEEE Trans. Pattern Anal. Mach. Intell., 24(7):932-946, 2002.

Ronan Billon, Alexis Nédélec, and Jacques Tisseau. Gesture recognition in
flow based on pca analysis using multiagent system. In ACE "08: Proceedings
of the 2008 International Conference on Advances in Computer Entertainment

Technology, pages 139-146, New York, NY, USA, 2008. ACM.

Abdullah Bulbul, Cetin Koca, Tolga Capin, and Ugur Giidiikbay. Saliency for
animated meshes with material properties. In Proceedings of the 7th Sympo-

sium on Applied Perception in Graphics and Visualization, APGV 10, pages
81-88, New York, NY, USA, 2010. ACM.

Andrew Witkin and Michael Kass. Spacetime constraints. In SIGGRAPH
'88: Proceedings of the 15th annual conference on Computer graphics and

interactive techniques, pages 159-168, New York, NY, USA, 1988. ACM.

James C. Thompson, Michele Clarke, Tennille Stewart, and Aina Puce. Con-
figural Processing of Biological Motion in Human Superior Temporal Sulcus.

J. Neurosci., 25(39):9059-9066, 2005.

Pedro Sachez Orellana, Claudio Castellanos Séchez, Edgar del Angel-Guerrero,

and Toma Martiez-Arenas. Bio-inspired architecture for visual recognition

[65]

[71]

135

of humans walking. In Wen Yu and Edgar Sanchez, editors, Advances in
Computational Intelligence, volume 116 of Advances in Soft Computing, pages

443-452. Springer Berlin/Heidelberg, 2009. 10.1007/978-3-642-03156-445.

S.-J. Blakemore, P. Boyer, M. Pachot-Clouard, A. Meltzoff, C. Segebarth, and
J. Decety. The Detection of Contingency and Animacy from Simple Anima-

tions in the Human Brain. Cerebral Corter, 13(8):837-844, 2003.

J. K. Aggarwal and Sangho Park. Human motion: Modeling and recogni-
tion of actions and interactions. In SDPVT °04: Proceedings of the 3D Data
Processing, Visualization, and Transmission, 2nd International Symposium,

pages 640-647, Washington, DC, USA, 2004. IEEE Computer Society.

Katherine Pullen and Christoph Bregler. Motion capture assisted animation:

texturing and synthesis. ACM Transaction on Graphics, 21(3):501-508, 2002.

Odest Chadwicke Jenkins and Maja J. Mataric. Automated derivation of
behavior vocabularies for autonomous humanoid motion. In AAMAS 03:

Proceedings of the second international joint conference on Autonomous agents

and multiagent systems, pages 225-232, New York, NY, USA, 2003. ACM.

O. Arikan, D. A. Forsyth, and J. F. O’Brien. Motion synthesis from annota-
tions. ACM Transaction on Graphics, 22(3):402-408, 2003.

J. Chai and J. K. Hodgins. Performance animation from low-dimensional con-
trol signals. ACM Transactions on Graphics, 24(3):686-696, 2005. Proceedings
of SIGGRAPH 2005.

D. H. U. Kochanek and R. H. Bartels. Interpolating splines with local tension,
continuity, and bias control. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive techniques, pages 33—

41, New York, NY, USA, 1984.

[72]

[74]

[76]

136

S. C. L. Terra and R. A. Metoyer. Performance timing for keyframe anima-
tion. In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 253-258, New York, NY, USA,
2004.

James R. Kent, Wayne E. Carlson, and Richard E. Parent. Shape transfor-
mation for polyhedral objects. In SIGGRAPH ’92: Proceedings of the 19th
annual conference on Computer graphics and interactive techniques, pages 47—

54, New York, NY, USA, 1992. ACM Press.

Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering
and tomographic reconstruction using texture mapping hardware. In VVS
"94: Proceedings of the 1994 symposium on Volume visualization, pages 91—

98, New York, NY, USA, 1994. ACM Press.

Aaron W. F. Lee, David Dobkin, Wim Sweldens, and Peter Schroder. Multires-
olution mesh morphing. In SIGGRAPH ’99: Proceedings of the 26th annual

conference on Computer graphics and interactive techniques, pages 343-350,

New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

Volker Blanz and Thomas Vetter. A morphable model for the synthesis of
3D faces. In SIGGRAPH ’99: Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages 187-194, New York, NY,
USA, 1999. ACM Press/Addison-Wesley Publishing Co.

Martin Kraus and Thomas Ertl. Adaptive texture maps. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
HWWS 02, pages 7-15, Aire-la-Ville, Switzerland, Switzerland, 2002. Euro-

graphics Association.

Alfred R. Fuller, Hari Krishnan, Karim Mahrous, Bernd Hamann, and Ken-
neth I. Joy. Real-time procedural volumetric fire. In Proceedings of the 2007

[79]

[30]

[31]

[82]

[83]

[85]

137

symposium on Interactive 3D graphics and games, 13D 07, pages 175-180,
New York, NY, USA, 2007. ACM.

George Wolberg. Digital Image Warping. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1994.

Apostolos Lerios, Chase D. Garfinkle, and Marc Levoy. Feature-based volume
metamorphosis. In SIGGRAPH °95: Proceedings of the 22nd annual confer-
ence on Computer graphics and interactive techniques, pages 449-456, New

York, NY, USA, 1995. ACM Press.

T.Y. Lee and P. H. Huang. Fast and intuitive metamorphosis of 3D polyhedral
models using smcc mesh merging scheme. IEEE Transactions on Visualization

and Computer Graphics (TVCG), 9(1):85-98, 2003.

M. Girard and A. A. Maciejewski. Computational modeling for the computer
animation of legged figures. In SIGGRAPH °85: Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, pages 263-270,

New York, NY, USA, 1985.

K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovi¢. Style-based inverse
kinematics. ACM Transactions on Graphics, 23(3):522-531, 2004. Proceedings
of SIGGRAPH 2004.

E. S. L. Ho, T. Komura, and R. W. H. Lau. Computing inverse kinematics
with linear programming. In VRST ’05: Proceedings of the ACM symposium
on Virtual reality software and technology, pages 163-166, New York, NY,
USA, 2005.

M. Neff and E. Fiume. Modeling tension and relaxation for computer anima-
tion. In SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 81-88, New York, NY, USA, 2002.

[30]

[89]

[91]

138

Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. Interactive con-
trol for physically-based animation. In SIGGRAPH ’00: Proceedings of the
27th annual conference on Computer graphics and interactive techniques, pages

201-208, New York, NY, USA, 2000.

Vladimir Zatsiorsky. Kinetics of Human Motion. Human Kinetics, 1 edition,

April 2002.

L. Kovar, J. Schreiner, and M. Gleicher. Footskate cleanup for motion capture
editing. In SCA "02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 97-104, New York, NY, USA, 2002.

O. Arikan and D. A. Forsyth. Interactive motion generation from examples.
In SIGGRAPH °02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 483-490, New York, NY, USA, 2002.

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and
Nancy S. Pollard. Interactive control of avatars animated with human mo-
tion data. SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, 21(3):491-500, 2002.

Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. Motion patches: building
blocks for virtual environments annotated with motion data. ACM Transac-

tion on Graphics, 25(3):898-906, 2006. SIGGRAPH 2006.

Paul S. A. Reitsma and Nancy S. Pollard. Evaluating motion graphs for
character animation. ACM Transaction on Graphics, 26(4):18, 2007.

C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimen-
sional motion interpolation. IEEE Computer Graphics Application, 18(5):32—
40, 1998.

[94]

[96]

[100]

[101]

139

L. Kovar and M. Gleicher. Flexible automatic motion blending with
registration curves. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 214-224,
Aire-la-Ville, Switzerland, 2003.

Taesoo Kwon and Sung Yong Shin. Motion modeling for on-line lo-
comotion synthesis. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 29-38, New
York, NY, USA, 2005. ACM.

Rachel Heck and Michael Gleicher. Parametric motion graphs. In 13D 07:
Proceedings of the 2007 symposium on Interactive 3D graphics and games,

pages 129-136, New York, NY, USA, 2007. ACM.

Nikolaus F. Troje. Decomposing biological motion: A framework for analysis

and synthesis of human gait patterns. Journal of Vision, 2, 2002.

Y. Li, T. Wang, and H. Y. Shum. Motion texture: a two-level statistical
model for character motion synthesis. In SIGGRAPH ’02: Proceedings of

the 29th annual conference on Computer graphics and interactive techniques,

pages 465-472, New York, NY, USA, 2002.

Jinxiang Chai and Jessica K. Hodgins. Constraint-based motion optimization
using a statistical dynamic model. In SIGGRAPH °07: ACM SIGGRAPH
2007 papers, page 8, New York, NY, USA, 2007. ACM.

Jianyuan Min, Yen-Lin Chen, and Jinxiang Chai. Interactive generation of hu-
man animation with deformable motion models. ACM Transaction on Graph-

ics, 29(1):1-12, 2009.

N. M. Thalmann. Computer animation: theory and practice. Springer-Verlag

New York, Inc., New York, NY, USA, 1985.

[102]

[103]

[104]

[105]

[106]

107]

108

[109]

[110]

140

A. Witkin and Z. J. Popovi¢. Motion warping. In SIGGRAPH ’95: Pro-
ceedings of the 22nd annual conference on Computer graphics and interactive

techniques, pages 105-108, New York, NY, USA, 1995.

A. Pentland and J. Williams. Perception of non-rigid motion: Inference of
shape, material and force. In Proceedings of the 11th International Joint Con-

ferences on Artificial Intelligence, pages 15651570, Detroit, MI, 1989.

D. L. James and D. K. Pai. DyRT: dynamic response textures for real time de-

formation simulation with graphics hardware. ACM Transaction on Graphics,

21(3):582-585, 2002.

L. Zhang, N. Snavely, B. Curless, and S. M. Seitz. Spacetime faces: high
resolution capture for modeling and animation. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, pages 548-558, New York, NY, USA, 2004.

A. Witkin and D. Baraff. Physically-based modelling. ACM Siggraph 2001,
Course Notes, 2001.

Y. Lipman, D. Cohen-Or, G. Ran, and D. Levin. Volume and shape preserva-
tion via moving frame manipulation. ACM Transaction on Graphics, 26(1):5,

2007.

J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a uni-
fied approach to shape interpolation and skeleton-driven deformation. In SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, pages 165-172, New York, NY, USA, 2000.

P. J. Sloan, C. F. Rose III, and M. F. Cohen. Shape by example. In SI3D 01:
Proceedings of the 2001 symposium on Interactive 3D graphics, pages 135-143,
New York, NY, USA, 2001.

Ken Perlin and Athomas Goldberg. Improv: A system for scripting interactive

actors in virtual worlds. In SIGGRAPH °96: Proceedings of the 23th annual

[111]

[112]

[113]

[114]

[115]

[116]

117]

[118]

141

conference on Computer graphics and interactive techniques, pages 205-216,

1996.

Bobby Bodenheimer, Anna V. Shleyfman, and Jessica K. Hodgins. The ef-
fects of noise on the perception of animated human running. In Computer

Animation and Simulation '99, pages 5363, 1999.

Munetoshi Unuma, Ken ichi Anjyo, and Ryozo Takeuchi. Fourier principles for
emotion-based human figure animation. In SIGGRAPH °95: Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques,

pages 91-96, 1995.

Armin Bruderlin and Lance Williams. Motion signal processing. In SIG-
GRAPH °95: Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques, pages 97-104, 1995.

Katherine Pullen and Christoph Bregler. Animating by multi-level sampling.
In Computer Animation, pages 36—42, 2000.

Jehee Lee and Sung Yong Shin. A coordinate-invariant approach to multires-

olution motion analysis. Graphical Models, 63(2):87-105, 2001.

Radek Grzeszczuk and Demetri Terzopoulos. Automated learning of muscle-
actuated locomotion through control abstraction. In SIGGRAPH ’95: Pro-
ceedings of the 22nd annual conference on Computer graphics and interactive

techniques, pages 63-70, 1995.

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey E. Hinton. Neuroan-
imator: Fast neural network emulation and control of physics-based models.
In SIGGRAPH ’98: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 9-20, 1998.

Maja J. Mataric. Getting humanoids to move and imitate. IEEE Intelligent
Systems, 15(4):18-24, 2000.

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

142

Zoran Popovi¢ and Andrew P. Witkin. Physically based motion transfor-
mation. In SIGGRAPH ’99: Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages 11-20, 1999.

Harold C. Sun and Dimitris N. Metaxas. Automating gait generation. In SIG-
GRAPH °01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 261-270, New York, NY, USA, 2001. ACM

Press.

Arno Schaodl, Richard Szeliski, David Salesin, and Irfan A. Essa. Video tex-
tures. In SIGGRAPH ’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 489-498, 2000.

Mirko Sattler, Ralf Sarlette, and Reinhard Klein. Probabilistic motion se-
quence generation. In CGI ’04: Proceedings of the Computer Graphics Inter-
national (CGI°04), pages 514-517, Washington, DC, USA, 2004. IEEE Com-
puter Society.

Matthew Brand and Aaron Hertzmann. Style machines. In SIGGRAPH 00:
Proceedings of the 27th annual conference on Computer graphics and interac-

tive techniques, pages 183-192, 2000.

Pascal Glardon, Ronan Boulic, and Daniel Thalmann. PCA-based walking
engine using motion capture data. In CGI ’04: Proceedings of the Computer
Graphics International (CGI°04), pages 292-298, Washington, DC, USA, 2004.
IEEE Computer Society.

Eugene Hsu, Sommer Gentry, and Jovan Popovi¢. Example-based con-
trol of human motion. In SCA °04: Proceedings of the 2004 ACM SIG-
GRAPH /Eurographics symposium on Computer animation, pages 69-77, Aire-
la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

Hyun Joon Shin and Hyun Seok Oh. Fat graphs: constructing an interactive

character with continuous controls. In SCA ’06: Proceedings of the 2006 ACM

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

143

SIGGRAPH/Eurographics symposium on Computer animation, pages 291—
298, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

Ik Soo Lim and D. Thalmann. Construction of animation models out of cap-
tured data. In Multimedia and Ezxpo, 2002. ICMFE "02. Proceedings. 2002 IEEE
International Conference on, volume 1, pages 829 — 832 vol.1, 2002.

S. Li, M. Okuda, and S. Takahashi. Improved kinematics based motion com-
pression for human figure animation. In Communications, Circuits and Sys-
tems, 2005. Proceedings. 2005 International Conference on, volume 2, pages

2 vol. (xviii+1411), may 2005.

Cihan Halit and Tolga Capin. Multiscale motion saliency for keyframe ex-

traction from motion capture sequences. Computer Animation and Virtual

Worlds, 22(1):3-14, 2011.

Shingo Uchihashi, Jonathan Foote, Andreas Girgensohn, and John S.
Boreczky. Video manga: generating semantically meaningful video summaries.

In 7th ACM International Conference on Multimedia, pages 383-392, 1999.

Andreas Girgensohn and John Boreczky. Time-constrained keyframe selection

technique. Multimedia Tools Appl., 11:347-358, August 2000.

Feng Liu, Yueting Zhuang, Fei Wu, and Yunhe Pan. 3d motion retrieval with
motion index tree. Comput. Vis. Image Underst., 92:265-284, November 2003.

Min Je Park and Sung Yong Shin. Example-based motion cloning: Research
articles. Comput. Animat. Virtual Worlds, 15:245-257, July 2004.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer, second edition, 2009.

L. K. Saul and S. T. Roweis. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290:2323— 2326, 2000.

[136]

[137]

[138]

[139)]

[140]

[141]

[142]

[143]

[144]

144

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction

and data representation. Neural Computation, 15(6):1373-1396, 2003.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000.

S. S. Schiffman, M. L. Reynolds, and F. W. Young. Introduction to Multidi-

mensional Scaling. Academic Press, New York.

T. Poggio and F. Girosi. Network for approximation and learning. Proceedings

of the IEEE, 78(9):1481-1497, September 1990.

Martin D. Buhmann and M. D. Buhmann. Radial Basis Functions. Cambridge
University Press, New York, NY, USA, 2003.

M. Samozino, M. Alexa, P. Alliez, and M. Yvinec. Reconstruction with voronoi
centered radial basis functions. In Proceedings of the fourth FEurographics
symposium on Geometry processing, pages 51-60, Aire-la-Ville, Switzerland,

Switzerland, 2006. Eurographics Association.

Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popovi¢. Face
transfer with multilinear models. ACM Transactions on Graphics, 24(3):426—
433, 2005. Proceedings of SIGGRAPH 2005.

M. Alex and O. Vasilescu. Human motion signatures: Analysis, synthesis,
recognition. In ICPR ’02: Proceedings of the 16 th International Conference
on Pattern Recognition (ICPR’02) Volume 3, page 30456, Washington, DC,
USA, 2002. IEEE Computer Society.

Joshua B. Tenenbaum and William T. Freeman. Separating style and con-
tent. In Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors,
Advances in Neural Information Processing Systems, volume 9, page 662. The

MIT Press, 1997.

[145]

[146]

[147]

148

[149]

[150]

[151]

[152]

[153]

145

In Jae Myung. Tutorial on maximum likelihood estimation. J. Math. Psychol.,

47(1):90-100, February 2003.

Rick Parent. Computer Animation: Algorithms and Techniques. Morgan Kauf-

mann, second edition, 2007.

Chao Jin, Thomas Fevens, Shuo Li, and Sudhir Mudur. Motion learning-Based
framework for unarticulated shape animation. Visual Computer, 23:735-761,

2007.

Marc Alexa and Wolfgang Miiller. Representing animations by principal com-
ponents. Computer Graphics Forum, 19(3):411-418, August 2000. ISSN 1067-
7055.

Weiwei Xu, Kun Zhou, Yizhou Yu, Qifeng Tan, Qunsheng Peng, and Baining
Guo. Gradient domain editing of deforming mesh sequences. ACM Transaction

of Graphics, 26(3):84, 2007. ACM SIGGRAPH 2007.

Scott Kircher and Michael Garland. Free-form motion processing. ACM
Transsaction on Graphics, 27(2):1-13, 2008.

L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention
for rapid scene analysis. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 20(11):1254 —1259, nov 1998.

Chang Ha Lee, Amitabh Varshney, and David W. Jacobs. Mesh saliency. In
ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 659-666, New York,
NY, USA, 2005. ACM.

Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. Interactive
animation of ocean waves. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, SCA 02, pages
161-166, New York, NY, USA, 2002. ACM.

146

[154] Big Buck Bunny Animation group. Blender foundation,
http://www.blender.org, 2011.

Appendix A

List of publications

e Chao Jin, Thomas Fevens, and Sudhir Mudur, “Optimized Keyframe Extrac-
tion for 3D Character Animations”, accepted by Journal of Computer Ani-

mation and Virtual Worlds, published by Wiley, 2012.

e Chao Jin, Thomas Fevens, and Sudhir Mudur, “Generation of Variations in
Repetitive Motion using Bilinear Factorization”, in Proceeding of 4" Interna-
tional North American Conference on Intelligent Games and Simulation, page

91-99, McGill University, Montreal, Canada, August 13-15, 2008.

e Chao Jin, Thomas Fevens, Shuo Li and Sudhir Mudur, “Motion Learning-
Based Framework for Unarticulated Shape Animation”, in the journal of The

Visual Computer 23(9-11): 753-761, published by Springer, 2007.

e Chao Jin, Thomas Fevens, Shuo Li and Sudhir Mudur, “Feature Preserving
Volumetric Data Simplification for Application in Medical Imaging”, in Pro-
ceeding of the 15th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision 2005, page 235-242, Plzen-Bory,
Czech Republic, January, 2005.

147

Appendix B

Supporting Videos

Generation of In-betweens Using Characteristic Motion Representation

http://dl.dropbox.com/u/8057957 /InbetweenGeneration.wmv

Generation of Variations in Repetitive Motion by Using Bilinear Factorization

http://dl.dropbox.com/u/8057957 /variations.wmv

148

