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Abstract 

 

 

Waking up to weight: The meditational role of sympathovagal imbalance in the 

relation between sleep and obesity in children 

 

 

Denise Christina Jarrin, Ph.D. 

 

Concordia University, 2012 

 

The overarching goal of the present dissertation was to examine whether 

sympathovagal imbalance, as measured by heart rate variability (HRV), was a 

pathophysiological mechanism in the relation between sleep and obesity.  While 

mounting evidence suggests sleep plays a causal role in the development of obesity, the 

underlying pathogenic pathways are complex and unresolved.  Experimental sleep 

deprivation studies demonstrate sympathovagal imbalance subsequent to inadequate 

sleep.  Further, obese children exhibit sympathovagal imbalance, particularly at night, 

compared to non-obese children.  The question remains whether sympathovagal 

imbalance plays a meditational role in the relation between sleep and childhood obesity.  

The present dissertation consists of four manuscripts.    

The first two manuscripts addressed knowledge gaps regarding the methodology 

and psychometrics of HRV in children.  Manuscript 1 investigated the correspondence of 

HRV indices across contemporary computer software programs.  Using triplicate 

electrocardiogram data derived from identical data acquisition hardware, this study 

demonstrated strong to excellent correspondence for HRV indices, contingent on the 

selection of rigorous user-decisions and technical specifications.  Manuscript 2 yielded 

normative HRV values from a large, population-based sample of 10-year-old children.  
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Developmentally-relevant covariates were also identified.  Referent values and covariates 

for each HRV parameter are presented.   

The last two manuscripts tested the associations across sleep, obesity, and 

sympathovagal imbalance.  Manuscript 3 examined whether multiple sleep parameters 

were individually related with obesity, independent of sleep duration.  The novel findings 

suggest that additional sleep dimensions, beyond sleep duration, may more precisely 

capture the influences that drive the negative link between sleep and childhood obesity.  

Manuscript 4 tested whether sympathovagal imbalance was a potential 

pathophysiological mechanism linking sleep and obesity.  In a sample of children at-risk 

for obesity, sympathovagal imbalance helped explain the relation between inadequate 

sleep with central adiposity and body composition.  

Overall, the present dissertation contributed new knowledge to the field regarding 

HRV methodology and psychometrics in children.  Original findings also demonstrated 

that sympathovagal imbalance mediated the relation between sleep and childhood 

obesity.  Two general limitations included the use of cross-sectional designs and 

subjective sleep measures.  Future research should include experimental or longitudinal 

designs with objective sleep measures to test the temporal relation of sleep, 

sympathovagal imbalance, and childhood obesity.   
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GENERAL INTRODUCTION 

 

Childhood Obesity  

Childhood obesity has been identified as a global epidemic (Ebbeling, Pawlak, & 

Ludwig, 2002; Hossain, Kawar, & El Nahas, 2007) with high prevalence rates in both 

developed and developing countries (Wang & Lobstein, 2006).  In Canada, between 1981 

and 1996 overweight rates doubled in girls and tripled among boys (Tremblay, 

Katzmarzyk, & Willms, 2002).  In 2004, 26% of youth were overweight or obese 

compared to 31% in 2005 (Shields, 2006; Statistics Canada, 2009).  Overweight and 

obesity confer risk to many health conditions such as chronic diseases, disability, and 

even premature death (Freedman, Dietz, Srinivasan, & Berenson, 1999; Must & Strauss, 

2000).  Early precursors for cardiovascular diseases, metabolic syndrome, and chronic 

inflammation are evident among overweight and obese youth.   

Further, childhood obesity tracks into adulthood (i.e., a tendency for obese 

children to remain obese adults), suggesting there is a stable risk trajectory (Freedman, 

Khan, Serdula, Dietz, Srinivasan & Berernson, 2005; Whitaker, Wright, Pepe, Seidel, & 

Dietz, 1997).  As such, there is an unprecedented impending economic burden on 

national health care costs.  In the United States, over 30% of pediatric hospitalizations are 

attributable to obesity and obesity-related co-morbidities (Allison, Fontaine, Manson, 

Stevens, & Vanltallie, 1999; Wang & Dietz, 2002).  Consistent with the increase in 

obesity rates over the past three decades, health costs associated with obesity have tripled 

from 1971-81 to 1997-99, representing more than $127 million annually in North 

America (Wang & Dietz, 2002). 
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Sleep and Childhood Obesity  

Mirroring these obesity trends, sleep duration has decreased among youth across 

decades (Iglowstein, Jenni, Molinari, & Largo, 2003).  Short sleep duration is 

consistently associated with larger weight status, in a dose-response pattern, in both 

children and adolescents, regardless of how obesity is defined [e.g., body mass index 

(BMI), waist and hip circumference, percent body fat] or whether sleep is subjectively or 

objectively measured (e.g., actigraphy, polysomnography; c.f., Beebe et al., 2007; 

Chaput, Brunet, & Tremblay, 2006; Chaput & Tremblay, 2007; Snell, Adam, & Duncan, 

2007).  Based on longitudinal studies, shorter sleep duration increases the risk of obesity 

and or weight gain in youth (c.f., Carter, Taylor, Williams, & Taylor, 2012; Snell et al., 

2006; Taveras, Rifas-Shiman, Oken, Gunderson, & Gillman, 2008).  Toddlers as young 

as 2½ years old and school-aged children with short sleep duration show increased risk of 

being overweight or obese 3 to 5 years later (Lumeng et al., 2009; Reilly et al., 2005).  

Similarly, later bed- and rise-times in children have been prospectively linked with 

greater weight status three years later (Snell et al., 2007).  Retrospectively, frequent sleep 

problems during childhood are associated with a twofold increase in risk of being obese 

during young adulthood (Al Mamun et al., 2007).   

Taken together, the extant literature convincingly demonstrates the link between 

inadequate sleep and the development and maintenance of obesity (c.f., Cappuccio et al., 

2008; Marshall, Glozier, & Grunstein, 2008; Nielsen, Danielsen, & Sørensen, 2011).  

Given that obesity is a significant risk factor for multiple physical and psychological 

pathologies as well as an economic burden, better understanding of the pathogenesis of 
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obesity is of great importance.  However, the mechanisms underlying the association 

between inadequate sleep and obesity are not fully understood.   

Potential Pathogenic Pathway Linking Sleep and Childhood Obesity 

Some researchers have postulated that reduced sleep duration may be considered 

a stressor that leads to adverse modifications in several critical systems in the body.  The 

allostatic load theory refers to the wear and tear on the body and has been used to explain 

the pathophysiological mechanisms underlying the relation between short sleep duration 

and weight gain (McEwen, 2002, 2006).  During normal sleep and wake cycles, the 

neuroendocrine, immune, and autonomic nervous system adapt and change to maintain 

homeostasis or allostasis (McEwen, 2002, 2006).  These systems reflect a highly 

interconnected network and even small changes in production (e.g., hormones) can affect 

the entire network.  When sleep is reduced, changes within the network occur and an 

allostatic overload develops (Danese & McEwen, 2012; McEwen, 2006).  If this 

allostatic overload is prolonged due to chronic sleep loss, it can have behavioural, 

neurobiologic, and physiologic repercussions (McEwen, 2006; Speigel, Leproult, & Van 

Cauter, 1999; Spiegel et al., 2004; Van Cauter et al., 2007).   

Although researchers have started to investigate the relation between sleep and 

obesity, there is still a paucity of information aimed at elucidating the underlying 

pathophysiological mechanisms.  Experimental sleep deprivation studies with adults 

provide valuable insight into potential mechanistic pathways linking sleep and obesity, 

including energy expenditure, metabolism, insulin sensitivity, and hormones involved in 

appetite regulation (i.e., leptin, ghrelin; Spiegel et al., 1999, 2004).  Another putative 
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pathophysiological mechanism is autonomic dysfunction, indexed by sympathovagal 

imbalance. 

Sympathovagal Balance 

The autonomic nervous system (ANS) is responsible for homeostasis in the body, 

vital organs (e.g., lungs, kidneys, pancreas), endocrine and exocrine glands, as well as the 

cardiovascular system (Furness, 2006; Goldberger, 1999).  The ANS is comprised of two 

branches: the parasympathetic nervous system and the sympathetic nervous system. The 

parasympathetic and the sympathetic nervous systems work in balance on almost every 

organ of the body with differing yet, complementary effects. The parasympathetic 

nervous system is derived from the cranial nerves and spinal cord and is associated with 

the conservation of energy, allowing the body to “rest and digest” (Berntson et al., 1997; 

Goldberger, 1999; Snitker, Macdonald, Ravussin, & Astrup, 2000).  Activation of the 

parasympathetic nervous system involves a reduction in heart rate, cardiac output, and 

blood pressure and facilitates digestion and restores energy (Goldberger, 1999; Snitker et 

al., 2000).  In the parasympathetic nervous system, acetylcholine is the neurotransmitter 

responsible for many of these effects on the body, especially slowing heart rate (Berntson 

et al., 1997).   

The sympathetic nervous system also derives from the spinal cord and prepares 

the body for the “fight or flight” response (Snitker et al., 2000).  This involves 

vasoconstriction (reducing blood flow), metabolic changes of fat and glucose, higher 

blood pressure, cardiac output, and heart rate (Snitker et al., 2000).  In the sympathetic 

nervous system, sympathetic neurotransmitters, such as the catecholamines epinephrine 
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and norepinephrine, increase cardiovascular functioning when stimulated (i.e., heart rate; 

Berntson et al., 1997).   

Because the ANS controls the frequency at which the sino-atrial (SA) node, the 

pacemaker of the heart, triggers the initiation of each heart beat, heart rate variability 

(HRV) has emerged as a simple, reliable, and noninvasive technique to evaluate 

autonomic function and balance (Berntson et al., 1997, Task Force, 1996).  HRV 

represents the continuous physiological variations between consecutive heartbeats.  It 

expresses the total amount of oscillations of instantaneous heart rate and intervals 

between QRS complexes of normal sinus depolarizations (described below). 

HRV is recognized as a valuable quantitative marker of sympathovagal balance, 

characterized as the overall balance between the sympathetic and parasympathetic 

activity of the autonomic state (Goldberger, 1999).  While a healthy sympathovagal 

balance reflects a steady balance between the branches of the ANS, sympathovagal 

imbalance is characterized by reduced parasympathetic and or elevated sympathetic input 

(Goldberger, 1999).  Sympathovagal imbalance, and consequent cardiovascular 

autonomic dysfunction (Messerli, Nunez, Ventura, & Snyder, 1987), is implicated in the 

pathophysiology of a number of cardiac and non-cardiac diseases, as well as mortality 

(e.g., Berntson et al., 1997; Task Force, 1996; Thayer & Lane, 2007).   

HRV parameters are derived from an ECG, an electric signal waveform that can 

be used to discriminate and quantify normal and abnormal beat-to-beat changes in the 

heart between the two branches of the ANS (Berntson et al., 1997; Task Force, 1996).  

There are five points (P, Q, R, S, T) on the ECG waveform.  These points normally 

follow a specific sequence and correspond to distinct events occurring in the heart.  The 
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P-point represents the contraction of the heart’s atria pumping the blood into the heart’s 

ventricles.  The time it takes for the heart’s ventricles to fill up with blood is represented 

by the P-Q interval.  Then, the electrical signal divides into the right and left branches on 

the heart’s septum.  This is depicted by the Q-point.  The electrical signal leaves the right 

and left bundle branches via the Purkinje fibers and spreads rapidly across the ventricles 

causing them to contract.  The left ventricle contracts an instant before the right ventricle 

and is represented by the R-wave.  The number of R-waves per minute is an estimate of 

the heart rate for that minute (Berntson et al., 1997). The S-point represents the 

contraction of the heart’s right ventricle.  Finally, the relaxation of the heart’s ventricles 

is denoted by the T-point and then the cycle continues.  

Although there are numerous techniques to quantify HRV, the two most 

commonly and widely used approaches are time- and frequency-domain (power spectral) 

analyses (Berntson et al., 1997; Task Force, 1996).  HRV time-domain methods are based 

on statistical calculations derived either from the direct measurement of RR intervals or 

from the differences between successive RR intervals (Task Force, 1996).  Time-domain 

indices provide information on the variability of the heart rate fluctuations, however, they 

are not identical, and each index provides unique information.  For instance, the standard 

deviation of all RR intervals (SDNN) broadly captures total HRV (Task Force, 1996).  

Further, the proportion of heart beats where the change from one beat to the next is > 50 

ms (pNN50) and the average change in inter beat interval between beats (square root 

mean difference of successive RR intervals; rMSSD) are two time-domain variables 

known to reflect parasympathetic activity and are inversely correlated with 

sympathovagal imbalance (Kleiger, Stein, Bosner, & Rottman, 1992).     
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Using spectral techniques, such as the fast Fourier transform (FFT), HRV 

frequency-domain analyses identify and separate the variance in RR intervals into their 

underlying components at frequency-specific oscillations (Berntson et al., 1997; 

Berntson, Quigley, & Lozano, 2007; Task Force, 1996).  Frequencies are categorized into 

power bands that reflect different branches of the cardiac ANS, including low frequency 

(LF) and high frequency (HF).  Based on pharmacological blockade studies, LF is 

influenced by both sympathetic and parasympathetic inputs, while HF is influenced by 

only parasympathetic inputs (Akselrod et al., 1981; Berntson et al., 1997, 2007; Task 

Force, 1996).  While HRV parameters exist that reliably reflect parasympathetic input 

(e.g., HF, rMSSD, pNN50), no HRV variable shows exclusive sympathetic input 

(Berntson et al., 1997, 2007).  As such, the ratio between LF and HF has been proposed 

to provide an index of the relative balance between sympathetic and parasympathetic 

inputs on the cardiovascular system (i.e., sympathovagal balance; Goldberger, 1999; 

Malliani, Pagani, & Lombardi, 1994).    

Sympathovagal Imbalance and Sleep 

Experimental studies depriving participants of sleep have found significant 

increases in sympathetic activation, compared to non-sleep deprived individuals.  Under 

conditions of sleep deprivation, adults show elevations in heart rate, systolic (SBP) and 

diastolic blood pressure (DBP; Lusardi, Mugellini, Preti, Zoppi, Derosa, & Fogari, 1996; 

Tochikubo, Ikeda, Miyajima, & Ishii, 1996), and norepinephrine and epinephrine 

concentrations (Irwin, Thompson, Miller, Gillin, & Ziegler, 1999; Tochikubo et al., 

1996).  Studies that assess HRV also find significant increases in sympathovagal 
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imbalance (e.g., decreased parasympathetic functioning) during the early morning and 

afternoon following chronic partial sleep loss.   

Sympathovagal Imbalance and Childhood Obesity 

Interestingly, sympathovagal imbalance has been prospectively linked with the 

development of obesity in children (Graziano, Calkins, Keane, & O’Brien, 2011).  

Several studies report sympathovagal imbalance (as measured by HRV) among obese 

children and adolescents, compared to their healthy-weight counterparts (c.f., Kaufman et 

al., 2007; Nagai & Moritani, 2004; Martini et al., 2001; Riva et al., 2001).  Interestingly, 

sympathovagal imbalance is observed during the day, but is especially prominent during 

nocturnal hours (Martini et al., 2001; Riva et al., 2001), even after adjusting for duration 

of obesity, snoring, and sleep apnea (Rabbia et al., 2003).  These studies provide credible 

support for the association between sympathovagal imbalance and childhood obesity. 

Sympathovagal Imbalance as a Pathogenic Pathway  

Thus, one potential pathogenic mechanism underlying the association between 

sleep and obesity is sympathovagal imbalance.  First, there is strong evidence linking 

short sleep duration and obesity.  Research findings have demonstrated that reduced sleep 

duration predicts future weight gain and obesity in children and adolescents.  Second, 

based on experimental studies, sleep loss has been proposed as a causal risk factor in the 

development of sympathovagal imbalance, such that reduced sleep alters autonomic 

modulation following nights of inadequate sleep.  Third, studies demonstrate a consistent 

link between sympathovagal imbalance and obesity.  Indeed, a recent prospective study 

found that decreased parasympathetic activation was an independent predictor of 

childhood obesity 5.5 years later (Graziano et al., 2011).  Taken together, evidence 
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suggests sympathovagal imbalance may be a potential pathway that mediates the relation 

between sleep and obesity.   

Study Aim for Manuscript 1.  HRV is a well-established and widely used 

indicator of the flexibility and balance of the ANS (Task Force, 1996).  One reason for its 

popularity is due to technological advancements in ambulatory ECG monitoring over the 

past few decades (Nunan, Sandercock, & Brodie, 2010).  Concurrent advancements in the 

signal processing software programs used to analyze, clean, and interpret the ECG data 

have also contributed to the increased use of HRV in the field (Task Force, 1996).  

However, despite its widespread use, gaps of knowledge continue to exist concerning 

important details on the methodological decisions related to signal preprocessing 

specifications, algorithms, and interpolation methods used with each software program.  

While there is extensive data on the reliability of different ECG acquisition hardware 

(c.f., Dietrich et al., 2010; Pinna et al., 2007; Sandercock, Bromley, & Brodie, 2005), 

there is no available information on the reliability of commercially available signal 

processing software programs currently in use (Jung et al., 1996).  Relatedly, more than a 

decade ago, the Task Force (1996) recommended that comparative studies in the HRV 

field be conducted.  Given the extensive use of HRV within multidisciplinary settings, 

the aim of manuscript 1 was to examine the measurement fidelity of HRV indices derived 

from commercially available signal processing software programs typically used across 

diverse disciplines.   
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Abstract 

Heart rate variability (HRV) is a particularly valuable quantitative marker of the 

flexibility and balance of the autonomic nervous system.  Significant advances in 

software programs to automatically derive HRV have led to its extensive use in 

psychophysiological research.  However, there is a lack of systematic comparisons across 

software programs used to derive HRV indices.  Further, researchers report meager 

details on important signal processing decisions making synthesis across studies 

challenging.  The aim of the present study was to evaluate the measurement fidelity of 

time- and frequency-domain HRV indices derived from three predominant signal 

processing software programs commonly used in clinical and research settings.  

Triplicate ECG recordings were derived from 20 participants using identical data 

acquisition hardware.  Among the time-domain indices, there was strong to excellent 

correspondence (ICCavg=0.93) for SDNN, SDANN, SDNNi, rMSSD, and pNN50.  The 

frequency-domain indices yielded excellent correspondence (ICCavg=0.91) for LF, HF, 

and LF:HF ratio, except for VLF which exhibited poor correspondence (ICCavg=0.19).  

Stringent user-decisions and technical specifications for nuanced HRV processing details 

are essential to ensure measurement fidelity across signal processing software programs.  
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1. Introduction 

Heart rate variability (HRV) is an indicator of the total amount of oscillations of 

heart periods between consecutive QRS complexes of normal sinus depolarizations (RR 

intervals).  Reduced HRV, suggested to reflect hyperactive sympathetic and/or 

hypoactive parasympathetic nervous system, has been implicated in the pathophysiology 

of a number of health outcomes including cardiac conditions such as myocardial 

infarction and coronary heart disease (Task Force of the European Society of Cardiology 

the North American Society of Pacing Electrophysiology, 1996; Liao, Carnethon, Evans, 

Cascio, & Heiss, 2002), hypertension, and non-cardiac conditions such as obesity, 

diabetes (Masi, Hawkley, Rickett, & Cacioppo, 2007), insulin resistance (Lindmark, 

Wiklund, Bjerle, & Eriksson, 2003), metabolic syndrome (Hemingway et al., 2005), 

dyspepsia (Lorena, Figueiredo, Almeida, & Mesquita, 2002), irritable bowel syndrome, 

anorexia nervosa (Mazurak et al., 2011), epilepsy (Ferri  et al., 2002), anxiety (Friedman, 

2007; Friedman & Thayer, 1998), and major depressive disorder (Nugent, Bain, Thayer, 

Sollers, & Drevets, 2011), as well as mortality (Camm et al., 2001; Gerristsen et al., 

2001; Thayer & Lane, 2007).  Significant developments in statistical, spectral, and 

geometric signal processing to automatically derive HRV parameters have led to their 

increased use in multidisciplinary settings.  As such, many signal processing software 

programs have been created to analyze HRV data.  These programs offer rapid, automatic 

analysis of output based on sophisticated signal processing techniques and algorithms 

that identify and measure various electrocardiograph (ECG)-derived variables from each 

cardiac cycle.  While there are previous recommendations from the Task Force (1996) for 

comparative data across studies, there is a lack of systematic comparisons across 
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computer software programs used to derive traditional time- and frequency-domain HRV 

indices.  

1.1 Heart Rate Variability 

Traditionally, the autonomic nervous system (ANS) has been thought to be 

reciprocally balanced (i.e., as one branch of the ANS increases activity the other branch 

decreases activity); however, evidence suggests that parasympathetic and sympathetic 

outflows are distributed multidimensionally (Berntson, Cacioppo, & Quigley, 1991).  As 

such, HRV and each of its components are particularly valuable quantitative markers that 

provide information on the flexibility and balance of the branches of the ANS based on 

heart period series (Berntson et al., 1997; Task Force, 1996).   

Although heart period series can be construed from several physiological signals 

including photoplethysmography (Lu, Yang, Taylor, & Stein, 2009), continuous blood 

pressure recordings (Parati, Saul, Di Rienzo, & Mancia, 1995), doppler ultrasound 

techniques (Jezewski, Kupka, & Horoba, 2008), and microwave reflectometry (Mase, 

Nagae, Ito, & Komada, 2010), it is most typically derived from continuously recorded 

ECG signals.  Many of these alternative physiological signals yield only approximate 

indicators of sympathovagal imbalance (Berntson et al., 1997).  For example, ambiguous 

waveform morphology from distal photoplethysmographic records or continuous blood 

pressure recordings contribute to difficulty identifying accurate reference points 

(Berntson, et al, 1997).  ECG recordings are preferred and considered a simple, 

noninvasive technique with clear waveform morphology, as the instantaneous ventricular 

depolarization yields the highest signal-to-noise ratio rendering a clearly delineated R-

wave (Berntson et al., 1997; Lu et al., 2009; Task Force, 1996).  Further, ECG recordings 



14 

 

provide proximal and reliable information on heart period series to quantify HRV and 

ultimately, evaluate autonomic function and balance. 

 Following data acquisition and audio-to-digital (A/D) conversion of raw ECG 

signals, HRV analysis is comprised of two major phases: signal preprocessing and 

automated analyses to derive HRV parameters (Berntson et al., 1997; Kligfield et al., 

2007).  Signal preprocessing incorporates accurately identifying QRS complexes and 

removing artifacts, while still preserving the integrity of the respiratory sinus rhythm.  

Artifacts may be attributable to movement (i.e., muscle activity), external 

electromagnetic signals (e.g., 50/60 Hz power lines), or technical problems (e.g., poorly 

fastened electrodes; Berntson et al., 1997; Berntson & Stowell, 1998).  Failure to identify 

artifacts can lead to missing or additional QRS complex detections and minor 

contamination can increase error in HRV results by ~30% (Berntson et al., 1997; 

Berntson & Stowell, 1998; Xia, Odemuyiwa, Gill, Malik, & Camm, 1993).  Signal 

preprocessing is influenced by both technical specifications (sampling rate, digital filters; 

Bailey et al., 1990; Mortara, 1977; van Bemmel, Zywietz, & Kors, 1990) and algorithms 

used for ECG pattern recognition and interpolation (e.g., feature extraction, beat 

selection; Bailey, Horton, & Itscoitz, 1974; Bonner & Schwetman, 1968; Pipberger, 

Stallman, & Berson, 1962).  Detector algorithms can be based on heuristic derivative 

equations that identify discrete measurements or adaptive thresholds, for example, the 

increasing edge of the R-peak (Bonner, Crevasse, Ferrer, & Greenfield, 1972; Pryor, 

Russell, Budkin, & Price, 1969).  Alternatively, they can be based on complex statistical 

algorithms that use linear or nonlinear filters, different transformations, or discriminant 

function analysis (Köhler, Hennig, & Orglmeister, 2003; Pan & Tompkins, 1985; 
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Romhilt & Estes, 1968).  Interpolation algorithms, to replace missing or abnormal heart 

period series, include proximal, piecewise cubic Hermite, non-linear predictive 

interpolation, linear, and cubic spline interpolations (Kim, Kim, Lim, & Park, 2009; 

Lippman, Stein, & Lerman, 1994; Malik & Camm, 1995).   

Automated analyses predominantly use linear analyses such as time- and 

frequency-domain methods to quantify HRV indices (Task Force, 1996).  Other nonlinear 

analyses including fractal (e.g., detrended fluctuation analysis, power-law correlation; 

Pincus 1995; Richman & Moorman, 2000), symbolic dynamics (Porta et al., 2001; Voss 

et al., 2009), and complexity/entropy measures (e.g., approximate entropy, sample 

entropy, Shannon entropy, corrected conditional entropy, multiscale entropy), also exist 

(Moltana, Tobaldini, & Porta, 2012; Porta et al., 2001; Voss et al., 2009).  Although 

nonlinear analyses provide quantitative information on the regularity and complexity of 

autonomic cardiovascular control, linear analyses are most commonly reported in the 

literature.  Time-domain approaches are based on statistical calculations derived from the 

direct measurement of RR intervals (e.g., SDNN, SDANN, SDNNi) or from the 

differences between successive RR intervals (e.g., rMSSD, pNN50; Task Force, 1996).  

Methodological study designs partly guide how data are partitioned for cleaning and 

aggregating.  Partitioning data into meaningful conditions (e.g., baseline vs. task), 

categories (e.g., day vs. night), or smaller segments due to signal quality (e.g., 2 hr 

segment vs. ten 20 min segments) interrupts the contiguous nature of the ECG signal.  

Further, data reduction decisions on the duration of analytical epochs (e.g., 1 vs. 5 min) to 

compute aggregated HRV indices across the epochs may yield different values.  These 
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decisions have important implications and must be carefully considered, especially for 

time-domain variables.   

Frequency-domain variables are based on spectral analysis of RR intervals 

(Lahiri, Prince, Kannankeril, & Goldberger, 2008).  Power spectral density decomposes 

RR intervals into their fundamental frequency components and provides information on 

the distribution of power as a function of frequency.  Spectral analyses can include 

parametric (autoregressive; Yule-Walker, Burg) or nonparametric methods (Fast Fourier 

Transform, FFT; Kim et al., 2009).  FFT is most commonly used to calculate the 

maximum variability in heart period series, based on ranges of frequency-specific 

oscillations of the RR intervals that reflect different branches of the cardiac system 

(Lahiri et al., 2008; Spiers, Silke, McDermott, Shanks, & Harron, 1993). 

Low frequency (LF) ranges from 0.04–0.15 Hz and reflects the aggregate 

influences of both sympathetic and parasympathetic branches of the ANS (Akselrod et 

al., 1981; Berntson et al., 1997); although, some researchers have suggested LF to be 

mainly of sympathetic origin (Malliani, Pagani, Lombardi, & Cerutti, 1991).  High 

frequency (HF) ranges from 0.15–0.40 Hz and represents parasympathetic activity 

(Berntson et al., 1997; Pomeranz et al., 1985).  Less studied frequencies include very low 

frequency (0.0033–0.04 Hz) and ultra low frequency (<0.003Hz) ranges; these are 

thought to be influenced by the renin-angiotensin system as well as thermoregulatory 

processes and circadian rhythms (Kitney, 1980; Taylor, Carr, Myers, & Eckberg, 1998).  

Importantly, default frequency bandwidths may differ across software programs leading 

to misinterpretation of the calculated HRV indices.  For example, if HF was set 
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incorrectly to 0.12-0.40 Hz, results would actually include LF as well, and therefore, not 

solely represent the parasympathetic nervous system. 

Another important decision for spectral analyses includes windowing.  Spectral 

windowing involves the application of a window function, of a specified width, to shape 

the time portion of ECG data by overlapping waveform endpoints in a smooth, 

continuous way without sharp transitions to minimize edge effects that result in spectral 

leakage for better overall spectral resolution.  Hamming or Hanning windows are 

commonly used due to their high quality frequency resolution and reduced spectral 

leakage (Bloomfield, 1976; Harris, 1978).   

 In the extant literature, research studies that use HRV report meager details on the 

methodological decisions related to signal preprocessing specifications, algorithms, and 

interpolation methods used.  Time- and frequency-domain HRV indices are vulnerable to 

artifacts, missing data, temporal factors, and trends in RR intervals (Kim et al., 2009; 

Kim, Lim, Kim, & Park, 2007; Spiers, et al., 1993; Task Force, 1996), and are thus 

highly influenced by decisions for data reduction, artifact detection and removal, and 

technical specifications (e.g., digital filtering, sampling frequency, detector or 

interpolation algorithms, and windowing; Kim et al., 2009; Task Force, 1996; Welch, 

1967). 

 Despite its extensive use, the comparability between standard computer HRV 

software programs has not been systematically evaluated.  There is scant evidence of 

comprehensive comparisons to assess the fidelity of signal processing across multiple 

software programs.  Of the only study to compare HRV signal processing programs, Jung 

and colleagues (1996) found time- and frequency-domain variables were not comparable 
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across four programs in widespread use at the time almost two decades ago.  Jung 

attributed the large variability across programs to different technical specifications, 

including beat selection methods (e.g., best complex, time-coherent averaging, 

extraction), sampling frequency, interpolation, and algorithms.   

1.3 Present Study 

 A significant challenge exists for researchers who want to compare or synthesize 

HRV results across studies.  In a systematic review on short-term HRV measures, Nunan 

and colleagues (2010) found considerably large variations across studies, especially for 

frequency-domain variables.  These discrepancies were attributed to differences in study 

design and methodology, as well as failure from authors to provide pertinent information 

on signal processing and data cleaning procedures.  The importance of standardization 

across studies was reinforced by the Task Force (1996) guidelines in hopes to facilitate 

the exchange of knowledge, allow for comparative results across studies, and avoid 

conflicting data due to different technical and methodological approaches.  Following 

these recommendations for standardization and interpretation of HRV measures, the 

purpose of the present study was to evaluate the measurement fidelity of HRV indices 

derived from three predominant signal processing software programs most commonly 

used in clinical and research settings among cardiologists, psychophysiologists, and other 

researchers across diverse disciplines (MARS, MindWare, Kubios).  Using triplicate 

ECG data derived from identical data acquisition hardware, the comparability of HRV 

indices for time-domain (i.e., SDNN, SDANN, SDNNi, rMSSD, pNN50) and frequency-

domain variables (LF, HF, LF:HF ratio) was tested. 
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2. Material and Method 

2.1 Measures 

2.1.1 ECG Data Acquisition  

 Twenty Holter tapes with raw ECG data were randomly chosen from an ongoing 

study of healthy youth participants between the ages of 8 and 11 (Mage = 9.93 years, SD = 

1.02; 55% male).  The complete research protocol is described elsewhere (Lambert et al., 

2011).  All ECG recordings were reviewed by a board-certified cardiologist; no 

cardiovascular pathology was identified (i.e., bradycardia, fibrillation, premature 

contraction).  During the standardized protocol conducted in a hospital setting, 

continuous raw ECG data were acquired using the 8500 Marquette MARS Holter monitor 

(GE Marquette Medical Systems, Milwaukee, Wisconsin, USA), digitized (128 Hz), and 

recorded on a frequency modulated cassette recorder. The Holter monitor incorporated a 

quartz-derived, binary time channel that was automatically zeroed at the start of the 

recording.  ECG acquisition began in the morning between 8 and 9 am and lasted 

approximately 2.5 hours. 

 ECG data was derived from a modified Lead II configuration using disposable, 

pre-gelled snap silver chloride electrodes.  Electrode resistance was minimized (<10 kO) 

by precleaning the skin with rubbing alcohol swab.  The active electrode (and its 

derivative/dZ) was placed on the right clavicle next to the sternum over the first rib 

between the two collarbones.  The second electrode was placed on the left mid-clavicular 

line at the apex of the heart over the ninth rib.  The ground electrode was placed near the 

lowest possible right rib cage on the abdomen.  Additional dZ electrodes were placed 

over the right fourth intercostal space at the sternal edge, the fifth intercostal space at the 
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left axillary line, and on the sixth rib in the mid-clavicular line.  To reduce possible 

violations of stationarity, the ECG acquisition procedure was standardized and kept 

consistent for all recordings (Berntson et al., 1997).  The study was reviewed and 

approved by the St. Justine Hospital Institutional Review Board (#2040).      

2.2 Procedure 

2.2.1 Data Processing Procedure 

 ECG Holter tapes underwent identical processing procedures for each software 

program.  Triplicate ECG data signals were derived from each of the 20 recordings.  Each 

triplicate ECG recording was cleaned by a qualified investigator and independently auto 

scored with all three signal processing software programs strictly adhering to both Task 

Force (1996) guidelines and manufacturer specifications (described in detail below; see 

Table 1). 

2.2.2 A/D Data Conversion 

 MARS.  From the Holter tapes, ECG data files were downloaded and formatted 

into the MARS
® 

Holter Analysis Workstation v.7.0 (Milwaukee, Wisconsin, USA).   

 MindWare and Kubios.  ECG Holter tapes were converted and digitized into 

Waveform Audio (WAV) version using a high-grade contemporary dual capstan deck 

unit.  WAV files were imported into shareware software for recording and editing audio 

files (Audacity® v.1.2; http:// audacity.sourceforge.net).  The speed of the audio signal 

was resampled and the length, pitch, and frequency were optimized to yield clear high-

quality ECG signals.  Then, using a 4-channel high-level interface module in the BioNex 

2SLT Chassis Assembly (MindWare Technologies Ltd., Columbus, Ohio, USA) and the 

Biolab 3.0 data acquisition software (16-bit A/D conversion) the resampled digital data 
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files were imported (sampled at 250ks/s rate), converted, and formatted into MindWare 

(MW) files, while preserving the integrity of the signal.  One set of raw MW formatted 

data files were imported into MindWare
® 

HRV Scoring Module v.3.0.17 (MindWare 

Technologies Ltd., Columbus, Ohio, USA).  A duplicate set was converted into ASCII 

text files and imported into the Kubios
®
 HRV v.2.0 (University of Eastern Finland, 

Kuopio, Finland; Niskanen, Tarvainen, Rantaaho, & Karjalainen, 2004).  It is important 

to note that all software programs were used without applying any ad hoc custom-made 

routine changes (i.e., all default settings and specifications were maintained).  The only 

exception was the adjustment of the default frequency bandwidths for LF and HF in 

MindWare; these were adjusted in accordance with the Task Force (1996) guidelines.  

Signal processing and default specifications are outlined below for each software 

program.  

2.2.3 Data Cleaning 

 Beat-by-beat intervals with near millisecond measurement of continuous ECG 

data were required for data cleaning.  Missed or unidentified R-peaks by each respective 

program’s detector algorithm were manually relabeled (refer to Table 1; data cleaning 

section).  In conjunction with each software program’s automated cleaning procedure, 

pre-defined cleaning guidelines adhering to the recommendations in the expert committee 

report were used by a trained investigator to accurately discriminate QRS complexes 

(Berntson et al., 1997).  If an R-peak was automatically detected, but upon visual 

inspection was not found to be accurate, >2 short inter-beat-intervals were added to retain 

the integrity of the heart period series.  If an R-peak was not automatically detected, the 

following guidelines (in rank order) were applied: (1) RR interval distance from cleaned 
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ECG recording sample was measured, (2) R-peak was estimated from remaining data 

points, and (3) long R-peak were split into >2 equal RR intervals (Berntson et al., 1997). 

2.2.4 ECG Signal Processing 

 MARS.  Signal processing specifications for detector algorithms and interpolation 

methods were based on default settings (refer to Table 1).  Detector algorithms require at 

least 5 min of data to calculate HRV indices (adjustable).  Beat-by-beat visual inspection 

of the shape, trend, and length of each QRS complex were measured and identified based 

on template matching and standard Marquette algorithms for QRS labeling.  ECG data 

was sampled at various rates resulting in QRS timing at different resolutions (1024 

samples/300 s) and RR filtering was automatic (manual filter available).  The removal of 

artifacts was based on a 20% change from the previous signal as a criterion (Kleiger, 

Miller, Bigger, & Moss, 1987).  In cases where artifacts and excluded RR intervals were 

automatically filtered and identified as unreadable signals, the remaining acceptable beats 

were used to replace the data points via cubic spline interpolation method.  At least four 

acceptable R-peaks were needed in order for spline interpolation to identify the 

continuous function between two middle R-peaks.  If there was no data in the first 

segment (e.g., noise), then RR interval series were interpolated from the default heart rate 

of 70 bpm (adjustable). 

 For spectral analyses, trending, interpolation rate, interpolation method, and 

windowing options (e.g., window width and overlapping) were based on default settings.  

Heart period series were linearly detrended, tapered using a Hanning window, and 

processed by FFT periodogram spectrum method.  Time-and frequency-domain 
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parameters were automatically calculated for each 5 min epoch across the entire data file.  

HRV parameters were then automatically averaged across the entire recording period.  

 MindWare.  Signal processing specifications for detector algorithms could be 

manually overwritten, and included inter-beat-interval check and automated Minimum 

Artifact Deviation and Maximum Expected Deviation (MAD/MED) algorithm (Berntson, 

Quigley, Jang, & Boysen, 1990).  For the present study, 5 min analytical epochs and both 

detector algorithms were applied.  R-peak detection was based on default digital low- and 

high-pass filters set within appropriate frequency ranges (0.05 and 35 Hz, respectively; 

adjustable).  Frequency bandwidths were user-defined for LF (0.04-0.15 Hz) and HF 

(0.15-0.40 Hz).  Beat-by-beat visual inspection of the shape, trend, and length of each 

QRS complex data was displayed on a full graphical interface.  ECG signals were 

sampled at 1000 Hz and RR filtering was automatic (manual filter available).  RR 

intervals that were excluded due to unreadable signals or recognition error were replaced 

by cubic spline interpolation and resampled at a frequency of 33.33 Hz.   

 Spectral analyses were performed on a series of RR intervals and were first 

linearly detrended using a Hanning window and processed by FFT standard power 

spectrum method. All time- and frequency-domain variables were automatically 

calculated for each 5 min epoch and averaged across the entire recording period, except 

for SDANN and SDNNi, which were manually calculated using standard formulae (Task 

Force, 1996).  

 Kubios.  Signal processing specifications for detector algorithms and 

interpolation methods were based on default settings (adjustable; refer to Table 1).  

Visual inspection of the beat-by-beat RR intervals were measured and identified based on 
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template matching and proprietary algorithms.  The sampling frequency was based on 

beat-by-beat RR intervals and automatically filtered, where RR intervals were divided 

into 5 min non-overlapping segments.  As recommended by Kubios, based on visual 

inspection using the graphical interface, an artifact correction level (range from none to 

very strong) was selected for each date file.  Each correction level applies thresholds 

(very low: 0.45 s, low: 0.35 s, medium: 0.25 s, strong: 0.15 s, very strong: 0.05 s) that are 

scaled with a heart rate of 60 beats/min.  Scaling is used to adjust for heart rate changes 

within the recording (i.e., higher heart rate applies greater thresholds).  High-pass filters 

on RR interval series remove all baseline changes from the data file, and from this 

detrended data, any beats that exceed the respective thresholds are identified as artifacts 

and removed (M.P. Tarvainen, personal communication, March 21, 2012).  Because data 

cleaning is limited to this gross categorization to detect artifacts, Kubios recommends 

that artifact correction level should not be selected blindly, but should include manual 

visual inspection and verification of the correction level selected within the graphical 

interface.  Continuous heart period series were corrected by piecewise cubic spline 

interpolation method at the default rate of 4 Hz (adjustable).  Using a window width of 

256 s (window overlap of 50%; adjustable), samples were smoothed prior to detrending, 

tapered using a Hanning window, and processed by the Welch’s periodogram method.  

2.3 Analysis Plan 

 All data were entered and double-checked by the senior data coordinator and 

analyzed with IBM SPSS Statistics 20 software (SPSS, Inc., Chicago, IL).  Data were 

kept continuous and checked for normality and linearity using boxplots and histograms.  
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Assumptions of additivity, homoscedasticity, uncorrelated error, and random selection of 

participants were tested (Shrout & Fleiss, 1979). 

To assess measurement fidelity across the three software programs, Intraclass 

Correlation Coefficients (ICC), Pearson correlation coefficients, and Bland-Altman 

statistical methods were computed.  An ICC is a measure of agreement between two or 

more evaluation methods on the same data that allows for fixed and random effects.  Data 

are assumed to be parametric (continuous and normally distributed).  ICCs typically 

range from 0 to 1, but can exceed -1 or 1, which may be attributable to patterns of 

negative and positive correlations among the methods, limited variance in the data 

matrix, or no correlations among methods (Lahey, Downey, & Saal, 1983).  ICCs are 

categorized as very poor (0-0.2), fair (0.3-0.4), moderate (0.5-0.6), strong (0.7-0.8), or 

excellent (0.9-1.0; Shrout & Fleiss, 1979).  ICCs are deemed advantageous over bivariate 

correlation coefficients as they represent the correspondence between two or more 

methods, and importantly, adjust for the effects of the scale of measurement.  In other 

words, ICCs account for differences in rank order and mean differences between methods 

(data centered and scaled using pooled mean across methods and standard deviation), 

while correlations only account for rank order differences (data centered and scaled using 

each method’s own mean and standard deviation).  Nevertheless, Pearson correlation 

coefficients were computed for comparison purposes.  Analysis of variance (ANOVA) 

was also used to test omnibus mean differences of the HRV parameters, followed by 

contrasts using paired samples t-tests.   

The Bland-Altman method is used to graphically display the degree of agreement 

between two techniques on a continuous variable and to assess possible constant and 
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proportional biases (Bland & Altman, 1986, 2003).  The differences in the measurements 

are plotted against the mean values of these measurements.  If 95% of the differences fall 

within the limits of agreement (1 SD) there is no systematic variation across programs 

(Bland & Altman, 1986, 2003).  To detect constant bias (i.e., the average discrepancy 

between methods of measurements), the mean bias and limits of agreement are used and 

should be close to zero.  To detect proportional bias, visual inspection of the plotted 

graphs is commonly used; however, standardized β values can be used to test whether the 

slope is significantly different than zero (i.e., when mean values are regressed onto mean 

differences).   

3. Results 

 The average length of the 20 ECG recordings was 131 min (SD = 46).  All ECG 

recordings were inspected manually to review peak detection and to identify and remove 

artifacts.  Manual editing took approximately 25 min per ECG recording.  Recordings 

were found to be of excellent quality; over 90% of data were analyzable, artifact time did 

not exceed 1,500 s (5.2%), and no recordings were found to exceed 20% noise or ectopic 

beats.  

ICCs were computed to compare the fidelity of HRV scoring across the software 

programs (see Table 2).  Among the time-domain indices, there was strong to excellent 

correspondence across all software programs for SDNN (ICCavg = 0.96; ravg = 0.97), 

SDANN (ICCavg = 0.93; ravg = 0.88), SDNNi (ICCavg = 0.96; ravg = 0.97), rMSSD (ICCavg 

= 0.80; ravg = 0.93), and pNN50 (ICCavg = 0.98; ravg = 0.99).  Among the frequency-

domain indices, there was excellent correspondence across all software programs for LF 

(ICCavg = 0.90; ravg = 0.94), HF (ICCavg = 0.91; ravg = 0.96), and LF:HF ratio (ICCavg = 
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0.95; ravg = 0.93).  However, VLF exhibited poor correspondence (ICCavg = 0.19); these 

findings may be largely attributable to the significant mean level differences observed 

across software programs (see Table 3).  Pearson coefficients revealed moderate 

correlations for VLF when mean level differences are not considered (ravg = 0.83). 

Bland-Altman plots and analyses were conducted to assess measurement fidelity 

for each HRV parameter paired by software programs (30 plots not depicted for 

parsimony).  For each HRV parameter, the differences between each of the paired 

software programs were plotted against the average values of these measurements.  

Consistent with the recommendations outlined by Bland and Altman (1986, 2003), data 

were log-transformed prior to the calculation of limits of agreement when 

heteroscedasticity was present.  There was no evidence of constant or proportional biases 

for any of the time-domain variables: SDNN (Biasavg = 0.02, [Limits of Agreementavg = -

0.03, 0.08]; βavg = -0.07), SDANN (Biasavg = 0.04, [-0.05, 0.14]; βavg = 0.05), SDNNi 

(Biasavg = 0.03 [-0.06, 0.13]; βavg = -0.16), rMSSD (Biasavg = 0.09 [-0.00, 0.19]; βavg = 

0.07), and pNN50 (Biasavg = 0.07 [-0.09, 0.25]; βavg = -0.06).  Similarly, no constant or 

proportional biases were observed for the frequency-domain variables: VLF (Biasavg = 

0.70 [0.43, 0.96]; βavg = -0.00), LF (Biasavg = 0.10 [-0.02, 0.22]; βavg = -0.19), HF (Biasavg 

= 0.13 [-0.01, 0.29]; βavg = 0.22), and LF:HF ratio (Biasavg = 0.10 [-0.02, 0.22]; βavg = -

0.11).  Altogether, the results from the ICCs and Bland-Altman analyses were congruent.   

4. Discussion 

 Recent advances in the automated analyses of HRV offers an accessible and 

unique approach for quantifying the effects of sympathetic and parasympathetic branches 

of the ANS.  Despite evidence of the reliability of HRV parameters across different 
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recording devices, measurement protocols, and maneuvers (Dietrich et al., 2010; 

Faulkner, Hathaway, & Tolley, 2003; Pinna et al., 2007; Sandercock, Bromley, & Brodie, 

2004, 2005; Sandercock, Shelton, & Brodie, 2003), there is no available information on 

the fidelity of commercially available signal processing software programs currently in 

use (Jung et al., 1996).  The aim of the present study was to evaluate the measurement 

fidelity of HRV indices derived from three commonly used signal processing software 

programs.   

Following stringent standardization (i.e., data collection, processing, and 

cleaning), excellent measurement fidelity for time-domain variables (e.g., SDNN, 

SDANN, SDNNi, rMSSD, pNN50) was observed across programs.  Excellent 

correspondence was also observed for LF, HF, and LF:HF ratio.  Poor correspondence 

was found for VLF; however, examination of the Pearson correlation indicates a 

moderate association across software programs.  The excellent comparability for HRV 

variables is likely attributable to similar signal processing techniques and pivotal user-

defined specifications across software programs (i.e., R-peak detection algorithm, 

identical analytical epoch length).  For instance, the use of algorithms parallel to the Pan-

Tompkins for the recognition of QRS complexes was apparent across all software 

programs (Pan Tompkins, 1985).  As such, the ECG signal is passed through an 

automated low- and high-pass filter to remove noise.  After filtering, the signal passes 

through derivative (to obtain QRS slope), squaring (to emphasize higher frequencies), 

and window integration phases (to identify waveform patterns), where lastly, a threshold 

method is applied and R-peaks are detected.  As for the frequency-domain variables, 

windowing options (i.e., width and overlap) and frequency bandwidths must also be 
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taken into consideration (Task Force, 1996).  In the present study, all software programs 

applied linear detrending method, cubic spline interpolation, with similar windowing 

(Hamming and Hanning) and spectrum methods (Periodogram and Welch’s 

periodogram).    

User-defined data reduction decisions can have significant implications on the 

automatic analysis of HRV parameters.  Short analytical epochs (e.g., 1 min) and 

recording durations (< 18 hrs) may fail to capture the full spectrum of components or 

underlying circadian rhythms (Massin, Maeyns, Withofs, Ravet, & Gérard, 2000; Task 

Force, 1996).  For example, the lowest frequency that can be assessed with 1 min is 0.016 

Hz (G. Berntson, personal communication, December 15, 2011), indicating that it does 

not quantify the full spectrum of VLF components.  Thus, to capture data at the lowest 

frequency, larger analytical epoch durations must be chosen (e.g., 3 to 5 min; Task Force, 

1996).  Further, the established physiological components and frequency bandwidth 

ranges are less well-defined for VLF, as compared to HF and LF (Berntson, Cacioppo, & 

Quigley, 1994; Cacioppo et al., 1994).  Analytical epoch length, recording durations, and 

frequency bands should be consistent when making comparisons of HRV.  

Given that technical specifications for data cleaning vary across programs, it is 

essential to know whether programs allow for manual inspection (i.e., some permit 

simultaneous automatic and manual cleaning and editing decisions).  For example, 

MindWare offers users much flexibility to visually inspect and adjust RR fiducial points 

and identify important event markers (e.g., during tasks).  In contrast, Kubios suggests 

visually inspecting data and applying an automated artifact correction based on gross 

categorization levels (e.g., low).  Given the sensitivity of certain HRV parameters (e.g., 
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rMSSD; Salo, Huikuri, & Seppanen, 2001), the level of gross artifact correction may be 

appropriate for some variables, while less appropriate for others.  Taken together, these 

specific user-defined decisions likely account for the exceptional correspondence across 

software programs. 

  The present study yields original findings indicating the robust comparability for 

HRV across commonly used signal processing programs.  While proprietary detector and 

interpolation algorithms are typically set, the excellent correspondence across software 

programs is largely attributable to seemingly nuanced, yet significant decisions.  These 

include decisions related to the modification of particular user-defined and default 

settings (e.g., analytical epoch duration, frequency-bandwidths), use of cleaning tools 

(e.g., selection of appropriate artifact correction level), and inherent procedures in each 

software program (e.g., removing partial inter-beat intervals prior to data analysis).  

Prior to selecting signal processing software, the conceptualization and 

understanding of HRV physiological indices is imperative.  There is growing interest and 

advancements using neuroimaging techniques (e.g., functional magnetic resonance 

imaging) to better understand neurobiological (brain-body) interactions (c.f., Gianaros & 

Sheu, 2009; Gianaros, Van Der Veen, & Jennings, 2004).  For example, HF has been 

associated with activity within the ventral anterior cingulate (Matthews, Paulus, 

Simmons, Nelesen, & Dimsdale, 2004), posterior cingulate cortex (O’Connor et al., 

2007), amygdala, periaqueductal gray, and the hypothalamus in response to 

somatosensory stimuli (Gray et al., 2009) and isometric exercise (Napadow et al., 2008).  

Given the evidence of an association between the brain and the ANS (i.e., 

parasympathetic and sympathetic activity), these promising research directions 
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underscore the importance of purposeful and informed selection of HRV parameters.  

Consider, if the research question centers around assessing parasympathetic activity, it is 

necessary to select HRV parameters that validly reflect this activity in the ANS (e.g., HF, 

pNN50, rMSSD; Task Force, 1996).  This in turn will directly impact decisions related to 

methodological design and measurement issues, including the recommended recording 

length to capture parasympathetic activity (e.g., 1 min), and an effort to minimize non-

stationarity across conditions and participants, particularly for frequency-domain 

variables (Task Force, 1996).  Other decisions may include whether recordings will be 

partitioned by task or interval (e.g., baseline vs. task, sleep vs. wake state).  Similar issues 

were eloquently raised in a thorough review by Nunan and colleagues (2010) 

investigating normative HRV values from short-term recordings in healthy adults.  

Taking these pivotal methodological decisions into consideration will facilitate 

comprehensive systematic comparisons across studies and further advance the field. 

4.1 Post-hoc Observations 

Kubios.  Several researchers report using an alternate strategy to clean data prior 

to using Kubios by deleting aberrant inter-beat intervals less than 300 and greater than 

1200 ms (c.f., Capa, Cleeremans, Bustin, & Hansenne, 2011; Li et al., 2009; Rodríguez-

Colón, Bixler, Li, Vgontzas, & Liao, 2011; Timonen et al., 2006).  Data were re-analyzed 

with Kubios after applying this commonly reported data cleaning strategy.  Post-hoc 

analyses revealed no significant differences across software programs for both time- and 

frequency-domain variables when this data cleaning strategy was applied (data not shown 

for parsimony).    
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4.2 Strengths and Limitations 

The first limitation of the present study was the use of short- rather than long-term 

recordings (i.e., 3 vs. 24-hours).  However, many studies typically record for similarly 

short durations.  In keeping with the recommendations by the Task Force (1996), the 

present study adhered to a strict protocol for the acquisition, recording, collection, 

cleaning, and analyses of the data under standardized settings to minimize measurement 

error.   

The second limitation was the use of only three software programs for 

comparison.  These programs were purposely selected due to their ubiquitous use within 

clinical and research settings among psychophysiologists, cardiologists, and general 

researchers.  Nevertheless, it is important to recognize there are additional commercially 

available as well as investigator-created software programs; however, their inclusion was 

beyond the scope of the present study.  Future comparisons should be conducted using 

other software programs.    

The third limitation was the assessment of only time- and frequency-domain 

variables.  Geometric (e.g., triangular shapes of Lorenz plots) and nonlinear methods 

(e.g., detrended fluctuation analysis, approximate entropy) can also be used to analyze 

HRV (Pincus, 1995; Porta et al., 2001, 2007; Richman & Moorman, 2000; Task Force, 

1996; Voss et al., 2009).  However, these methods largely depend on the precision of 

equipment (i.e., obtain appropriate number of RR intervals), recording length (i.e., 

preferably 24 hours for geometric methods), and capability of these advanced analyses in 

software programs.  Time- and frequency-domain variables are traditional HRV 

parameters reported in the majority of studies; thus, the comparability of these specific 
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parameters were deemed particularly important to inform future comparisons and 

syntheses across published studies (Task Force, 1996).   

Lastly, all ECG recordings were derived from a Holter monitor manufactured by 

GE Marquette, the same manufacturer of MARS software program.  However, it is 

unlikely that having a common manufacturer created any bias for the MARS software 

analyses.  In fact, a major strength of the present study was the use of identical ECG 

recordings in triplicate for the three software programs.  In other words, each software 

program analyzed the exact same ECG data.  Thus, these findings are generalizable to the 

scenario quite common in research and clinical settings when hardware and software 

manufacturers differ.    

4.3 Recommended Strategies  

 Although there are an increasing number of studies investigating HRV, the 

methodological, measurement, and technical specifications are not consistently applied in 

the field.  These discrepancies add confusion to the interpretation of HRV and hinder 

advancement in the field because findings cannot be synthesized.  Hence, to maximize 

measurement fidelity researchers must be cognizant of these subtle, yet pivotal fine 

details when using software programs.  Two recommended strategies are provided.     

Equipment and Software Specifications: Differences across user-defined 

choices and specifications of software programs may contribute to HRV discrepancies 

across studies.  Researchers should report specific information about the recording 

equipment, signal (pre)processing software, software applications, and features selected 

(e.g., sampling rate of 250-500 Hz or higher, RR interval filter characteristics, R-peak 

detection and interpolation algorithms).  Further, if frequency-domain variables are 
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analyzed, additional information on the spectral decomposition method, spectral 

windowing, window overlap, and the defined range of frequency bandwidths should be 

specified. 

Data Reduction and Cleaning:  Data reduction and cleaning decisions prior to 

HRV analysis (either by default or adjustable settings) should be explained and justified.  

For example, because the removal of erroneous beats or the unintentional removal of 

normal beats may affect the analysis and the comparability of HRV parameters (Berntson 

et al., 1997; Berntson & Stowell, 1998; Xia et al., 1993), the rationale for any exclusion 

criteria should be clearly stated.  Furthermore, to facilitate systematic comparisons and 

synthesis of data, it is important to provide complete information on data reduction 

decisions.  These include justification for how the data were segmented or partitioned for 

aggregating (e.g., conditions, tasks, control vs. clinical groups), cleaning (e.g., duration of 

analytical epochs), and analyzing (e.g., night vs. day).  Complex study designs (e.g., 

multiple discreet intervals) may warrant use of software that permits greater flexibility for 

user-specifications and manual cleaning (i.e., Mindware).  Regardless of what equipment 

or software is used, movement artifacts, technical failure, or poor data quality can 

seriously contaminate the integrity of the data.  Despite the crucial task of manually 

cleaning data, specific procedures and decision rules are rarely reported.  Basic 

information on the RR interval error identification, removal, criteria (e.g., thresholds), 

and correction procedures should be provided.    

4.4 Future Research 

Future studies should assess the measurement fidelity of time- and frequency-

domain HRV variables with longer recordings (e.g., 24 hours), under differing conditions 
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(e.g., day vs. night), and in response to standardized challenges (e.g., stress testing; cold 

pressor reactivity).  Additional geometric methods (i.e., HRV triangular index) should 

also be considered.  Further, comparisons could be made for HRV parameters derived 

from different recording hardware and then analyzed with different software programs, as 

this would be a more ecologically valid reflection of the diverse practices across the 

research field.  The contribution of the present study highlights the importance of 

providing sufficient detail about the signal acquisition hardware, the signal processing 

software, and the overall procedures used to derive HRV variables.  Lastly, given that 

guidelines to specify standard definitions of HRV terms and measurement methodology 

were published almost two decades ago (e.g., Task Force, 1996; Berntson et al., 1997), 

there is merit in the proposal of updating the critical considerations in HRV analyses 

(e.g., Nunan et al., 2010).   

4.5 Conclusion 

 The present study demonstrated that stringent decisions and specifications for 

subtle details are instrumental in the acquisition of excellent measurement fidelity across 

three commonly used HRV signal processing software programs.  Specifically, signal 

processing, data cleaning, analysis, and interpretation specifications must be meticulously 

selected to enhance the precision of HRV data and should not be underestimated.  Given 

the significance and value of comparing and synthesizing results across studies, it is 

crucial for researchers to understand and accurately report the technical specifications 

applied for HRV analyses.     
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Table 1 

System-dependent Specifications across Signal Processing Software Programs 

 MARS (GE MARQUETTE) MINDWARE KUBIOS HRV TASK FORCE 

VERSION ● MARS Holter Analysis 

Workstation v7 

● HRV v3.0.17 ● Kubios HRV v2.0  

ACQUISITION & CONVERSION 

 

IMPORT OPTIONS ● Raw ECG signals ● Raw ECG signals, BIOPAC 

(.acq) & conversion to 

Mindware format (.MW) 

 

● Only RR Intervals  

INPUT FILES ● MARS software  ● Mindware format (.MW) ● ASCII   

A/D RESOLUTION ● Not reported ● 16 bit ● Not reported  

 

SIGNAL PREPROCESING 

 

PREPROCESSING  ● Allows for manual visual 

inspection 

● Allows for manual visual 

inspection 

● Recommends manual visual 

inspection prior to using 

program 

 

 

SAMPLING  

FREQUENCY 

● Sampled at various rates 

resulting in QRS timing at 

different resolutions; 1024 

samples/300 s  

 

● 1000 Hz  ● Beat-to-beat RR intervals ● Optimal range is 

250-500 Hz or higher 
(Task Force, 1996) 

R-PEAK DETECTION ● Based on template 

matching; use a special cross-

correlation for upcoming 

signal with all templates 

already formed 

 

● Provides low-pass or high-

pass filter raw ECG data at a 

manually adjustable cut-off 

frequency 

● In-house algorithm similar to 

Pan-Tompkins algorithm 

● Necessary to use 

well-tested algorithm 

(template, correlation 

method, derivative 

plus threshold) 

RR INTERVAL 

FILTERING & 

INTERPOLATION 

● Automated and manual 

filtering available 

● Automated and manual 

filtering available  

● Automated filtering only 

● Smoothness prior to 

detrending 

 

● LF cutoff = 0.05 Hz  

● HF cutoff = 150 Hz  
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 MARS (GE MARQUETTE) MINDWARE KUBIOS HRV TASK FORCE 

DETREDNING 

ALGORITHM  OR 

AUTOREGRESSIVE 

SPECTRUM MODEL 

● A linear trend is fit to FFT 

input samples of a 600 s 

window 

● Middle 5 min detrended 

● Linearly detrended ● AR model order: 16 

   ● None, 1
st
- 3

rd
order 

   ● Smooth priors 

 

 

 

RESAMPLING OR 

INTERPOLATION 

RATE 

 

● Spline model to interpolate 

to 1024 samples evenly 

spaced data for spectral 

analysis 

● Resampled at frequency 

based on 200 bpm/60 x 10 or 

33.33 Hz 

● 4 Hz (default; adjustable) ● Spectral analysis 

should use at least 

512 but preferably 

1024 samples for 5 

min recordings 

 

INTERPOLATION  

METHOD 

● Cubic spline interpolation; 

used for discrete event series 

(DES) 

 

● Cubic spline interpolation 

 

● Cubic spline interpolation 

 

● Regularly sampled 

interpolation of DES 

with (non) parametric 

methods 

WINDOW WIDTH ● 300 s ● Not reported ● 256 s (default; adjustable)
 

 

 

WINDOW OVERLAP ● Spectral generated every 

minute; 4 min or 80% 

 

● Not reported ● 50% re-sampled data
 

(adjustable) 

 

WINDOWING ● Hanning  

● Spectral coefficients are 

scaled to properly account for 

the attenuation of signal 

energy due to window 

 

● Hamming ● Hanning 

● Points in frequency-domain: 

256 points/Hz (adjustable) 

● Hanning & 

Hamming 

SPECTRUM 

METHOD 

● Periodogram ● Standard power spectrum ● Welch’s periodogram 

method 

 

 

DATA CLEANING 

 

ARTIFACT  

DETECTION & 

HANDLING 

● Manual handling artifacts 

● Uses full suite of GE 

Marquette
®
 algorithms 

● Manual handling artifacts 

● Dual ECG artifact detection 

algorithms, MAD/MED and 

IBI check
 (Berntson et al., 1990)

 

●Artifact Correction Options: 

   (None, very low, low,         

   medium, strong, very  

   strong) 

● Proper interpolation on 

preceding or successive 

beats on HRV signal or on 

autocorrelation function  
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 MARS (GE MARQUETTE) MINDWARE KUBIOS HRV TASK FORCE 

AUTOMATIC ANALYSIS HRV INDICES 

 

TIME-DOMAIN 

VARIABLES 

● Mean RR (ms) 

● SDNN (ms) 

● SDANN (ms) 

● SDNN index(ms)  

● rMSSD (ms) 

● NN50 (counts) 

● pNN50 (%) 

 

 

*Calculated for each epoch & 

averaged across entire 

recording period 

● Mean RR (ms) 

● SDNN (ms)  

● Mean HR  

● rMSSD (ms) 

● NN50 (counts) 

● pNN50 (%) 

 

 

 

*Calculated for each epoch & 

averaged across entire 

recording period 

 

● Mean RR (ms) 

● SDNN (ms) 

● SDANN (ms) 

● Mean HR
*
 (1/ms) 

● SD HR (1/ms) 

● rMSSD (ms) 

● NN50 (counts) 

● pNN50 (%) 

 

*Calculated for entire 

recording period 

● SDNN (ms) 

● SDANN (ms) 

● SDNN index(ms)  

● rMSSD (ms) 

● NN50 (counts) 

● pNN50 (%) 

 

FREQUENCY  

BANDS 

 

UNITS 

● VLF (0.0033-0.04 Hz) 

● LF (0.0400-0.15 Hz) 

● HF (0.1500-0.4 Hz)  

● Hz, ms
2
 

● VLF (0.0030-0.0400 Hz) 

● LF (0.0400-0.1500 Hz) 

● HF (0.1500-0.4000 Hz) 

● Hz, ms
2
 

● VLF (0.00-0.04 Hz) 

● LF (0.04-0.15 Hz) 

● HF (0.15-0.4 Hz) 

● Hz, ms
2
, %, n.u. 

 

● VLF (0.00-0.04 Hz) 

● LF (0.04-0.15 Hz) 

● HF (0.15-0.4 Hz) 

● Hz, ms
2
, %, n.u. 

 

EXTRA OUTPUT  

DATA 

● # of Rs found (complex 

QRS) 

● Ventricular beats (<1%) 

● Supraventricular beats 

(<1%) 

 

 

● # of Rs found 

● RSA 

● First ECG R time 

 

● Geometric parameters: RR 

triangular index, TINN 

● Poincare Plot: SD1 & 2 

● Recurrence plot analysis, 

Correlation dimension etc. 

 

 

EXPORT OPTIONS ● Adobe Acrobat PDF  ● ASCII  ● Adobe Acrobat PDF, Matlab 

MAT-file, ASCII 

 

 



Table 2 

 

Measurement Fidelity for Heart Rate Variability Parameters across Software Programs 

 MARS vs. MindWare MARS vs. Kubios MindWare vs. Kubios 

 
ICC  

(95%CI) 
r 

ICC  

(95%CI) 
r 

ICC  

(95%CI) 
r 

Mean RR (ms)         
0.98 

(0.93, 0.99) 
0.96

**
 

0.98 

(0.94, 0.99) 
0.96

**
 

1.00 

(0.99, 1.00) 
1.00

**
 

Time-domain   

SDNN (ms) 

 

0.93 

(0.80, 0.98) 
0.94

**
 

0.97 

(0.93, 0.99) 
0.97

**
 

0.99 

(0.96, 1.00) 
0.99

**
 

SDANN(ms) 
0.90 

(0.73, 0.97) 
0.86

**
 

0.90 

(0.71, 0.96) 
0.82

**
 

0.98 

(0.95, 0.99) 
0.97

**
 

SDNNi (ms) 
0.93 

(0.80, 0.98) 
0.94

**
 

0.98 

(0.95, 0.99) 
0.97

**
 

0.98 

(0.94, 0.99) 
0.99

**
 

rMSSD (ms) 
0.62 

(-0.07, 0.86) 
0.87

**
 

0.83 

(0.52, 0.94) 
0.94

**
 

0.96 

(0.88, 0.99) 
0.97

**
 

pNN50 (%) 
0.96 

(0.89, 0.99) 
0.98

**
 

0.97 

(0.91, 0.99) 
0.98

**
 

1.00 

(0.99, 1.00) 
1.00

**
 

Frequency-domain   

 VLF (ms
2
) 

0.77 

(0.34, 0.92) 
0.95

**
 

-0.49 

(-3.15, 0.48) 
0.76

**
 

0.29 

(-0.99, 0.75) 
0.79

**
 

 LF (ms
2
) 

0.82 

(0.50, 0.94) 
0.90

**
 

0.91  

(0.74, 0.97) 
0.96

**
 

0.98 

(0.93, 0.99) 
0.97

**
 

 HF (ms
2
) 

0.87 

(0.64, 0.95) 
0.96

**
 

0.95  

(0.87, 0.98) 
0.97

**
 

0.92 

(0.79, 0.97) 
0.95

**
 

 LF:HF ratio 
0.93 

(0.79, 0.97) 
0.90

**
 

0.96  

(0.90, 0.99) 
0.95

**
 

0.89 

(0.71, 0.96) 
0.94

**
 

Note.  ICC= Intraclass Correlation Coefficient; r = Pearson Correlation Coefficient; CI = 

Confidence Interval; Mean RR = Mean beat-to-beat intervals; SDNN = Standard deviation of all RR 

intervals; SDANN  = Standard deviation of the averages of RR intervals in all 5 min segments of the entire 

recording; SDNNi = Mean of the standard deviations of all RR intervals for all 5 min segments of the entire 

recording; rMSSD = Square root of the mean of the squares of differences between adjacent RR intervals; 

pNN50 = Proportion derived by dividing the number of interval differences of successive RR intervals 

greater than 50 ms by the total number of RR intervals; VLF = Very Low Frequency; LF = Low 

Frequency; HF = High Frequency.  
*
p < .05, 

**
p < .01 
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Table 3 

 

Means and Standard Deviations of Heart Rate Variability Parameters across Software 

Programs 

 

MARS MindWare Kubios 

 
  M (SD) M (SD) M (SD) F  

Mean RR (ms) 700.56 (51.88) 705.32 (48.57) 700.03 (48.87) 0.06 

Time-domain 

    
SDNN (ms) 84.38 (21.81) 93.45 (23.59) 89.13 (22.01) 0.65 

SDANN (ms) 40.50 (12.36) 43.69 (15.52) 41.94 (15.05) 0.20 

SDNNi (ms) 73.00 (20.87) 81.51 (22.18) 76.41 (20.19) 0.66 

rMSSD (ms) 50.56 (14.65) 70.08 (25.86) 62.18 (22.96) 3.28 

pNN50 (%) 27.89 (12.79) 32.29 (14.20) 31.72 (13.91) 0.49 

Frequency-domain  

VLF (ms
2
) 1220.98 (586.32) 1822.60 (936.91) 3715.50 (1880.56) 17.10

**abc
 

LF (ms
2
) 1280.83 (873.85) 1934.72 (1069.67) 1764.50 (927.43) 2.00 

HF (ms
2
) 996.22 (773.37) 1524.21 (1082.78) 1267.75 (737.91) 1.45 

LF:HF ratio 1.49 (0.66) 1.70 (0.68) 1.35 (0.60) 1.15 

Note.  M = Mean; SD = Standard Deviation; F = F test-statistic from omnibus ANOVA; 

Superscript denotes follow-up pairwise comparison: 
a
MARS vs. MindWare. 

b
MARS vs. Kubios. 

c
MindWare vs. Kubios; Mean RR = Mean beat-to-beat intervals; SDNN = Standard deviation of all RR 

intervals; SDANN = Standard deviation of the averages of RR intervals in all 5 min segments of the entire 

recording; SDNNi = Mean of the standard deviations of all RR intervals for all 5 min segments of the entire 

recording; rMSSD = Square root of the mean of the squares of differences between adjacent RR intervals; 

pNN50 = Proportion derived by dividing the number of interval differences of successive RR intervals 

greater than 50 ms by the total number of RR intervals; VLF = Very Low Frequency; LF = Low 

Frequency; HF = High Frequency.  **p < .01   
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TRANSITION TO MANUSCRIPT 2 

The purpose of manuscript 1 was to investigate the correspondence across three 

common signal processing software programs used to derive HRV indices.  Using 

triplicate ECG data derived from identical data acquisition hardware, the comparability of 

HRV indices for time- and frequency-domain variables was tested.  Additionally, this 

manuscript highlighted the importance of reporting the various signal processing 

techniques and specifications. 

Manuscript 1 was an innovative investigation demonstrating that rigorous user-

defined technical specifications for nuanced HRV processing details yields strong to 

excellent correspondence for most HRV indices, across signal-processing software 

programs.  These findings have important implications for the field and suggest with 

comparable methodological, cleaning, and technical specifications, HRV derived from 

different software programs can be compared.   

Although HRV is used in the pediatric literature, no referent or normative HRV 

values exist.  This limits the ability to make comparisons across child studies, even if 

different software programs can yield comparable HRV indices.  To achieve my 

overarching goal of testing whether sympathovagal balance mediates the association 

between sleep and obesity, it would be prudent to first establish HRV reference values 

with this population.  Referent HRV values would facilitate comparison with previously 

reported values and the capacity to synthesize the existing literature.  Further, standard 

covariates, particularly those that are developmentally relevant, have not been 

systematically evaluated in children.  Taken together, these gaps posed challenges in the 

interpretation of HRV in children, which evolved into my second methodological 
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endeavour presented in manuscript 2.  The two objectives of manuscript 2 were: (1) to 

establish normative HRV reference values from a large population-based sample of 

children, and (2) to test potential developmentally relevant variables as possible standard 

covariates for HRV in children.   
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MANUSCRIPT 2: 

 

 

 

 

Short-Term Heart Rate Variability in a Population-Based Sample of 10-Year-Old 

Children 
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Abstract 

Heart rate variability (HRV) is a valuable quantitative marker that provides information 

on the flexibility and balance of cardiac sympathetic and parasympathetic activation.  

Despite its widespread use within pediatric populations, normative values to serve as a 

reference to synthesize existing findings and for comparison purposes are lacking in the 

field.  In addition, the unique variance of developmentally relevant covariates (e.g., 

puberty) on HRV has not been systematically evaluated in children.  The objectives of 

the present study were twofold.  The first objective was to provide time- and frequency- 

domain HRV values for a large, population-based sample of 10-year-old children.  The 

second objective was to evaluate developmentally relevant variables as possible 

covariates of HRV.  Participants included 1052 healthy children aged 9 to 11 years who 

participated in the Québec Longitudinal Study of Child Development cohorts.  To 

promote comparative studies and facilitate synthesis of findings across studies within 

pediatric populations, normative reference values of HRV variables are presented in the 

current study.  Results revealed several developmentally relevant covariates (e.g., heart 

rate, pubertal status, blood pressure, sex, sleep measures, physical activity) that are 

pertinent when analyzing HRV in children.  Researchers should be prudent in considering 

these covariates, which differ depending on the HRV parameter of interest, given the 

research question.  Altogether, these data have potential implications to advance the field, 

as these referent values may facilitate comparison and synthesis of previously reported 

HRV data among pediatric studies.   
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Introduction 

 

The naturally occurring oscillation in heart rate is referred to as heart rate 

variability (HRV).  HRV is a physiological measure directly reflecting the modulating 

influences and balance of the cardiac autonomic nervous system.  HRV is one of the most 

widely used methods for measuring cardiac autonomic function as it is a sensitive, 

reproducible, and non-invasive measure that is easily derived from continuous ECG 

recordings (Berntson, Cacioppo, & Quigley, 1991; Berntson, Cacioppo, & Quigley, 1993; 

Bonnet, 2012; Cacioppo, 1994; Task Force, 1996).  Reduced HRV reflects the inability 

or attenuation of the autonomic regulatory capacity to support flexible adjustments in 

response to the environment, while heightened HRV reflects the optimal ability of the 

autonomic nervous system to respond adaptively (McMillan, 2002; Thayer & Sternberg, 

2006).  Autonomic imbalance is associated with assorted cardiac (e.g., Liao, Carnethon, 

Evans, Cascio, & Heiss, 2002) and non-cardiac pathologies (e.g., obesity, anxiety: 

Kaufman, Kaiser, Steinberger, & Dengel, 2007; Martini et al., 2001; Sharma, Balhara, 

Sagar, Deepak, & Mehta, 2011).  In children, researchers have examined HRV to identify 

early manifestations of varying health conditions (e.g., sub-clinical seizures; Brotherstone 

& McLellan, 2012), to quantify the influence of disease progression (e.g., obesity; 

Kaufman et al., 2007), to understand mechanisms of developmental psychopathology 

(e.g., anxiety; Mezzacappa et al, 1997), and to assess the efficacy of therapeutic 

interventions (e.g., physical training; Nagai, Matsumoto, Kita, & Moritani, 2003; Nagai 

& Moritani, 2004;).   

Despite the increased use of HRV in the pediatric literature, the lack of 

established HRV normative values make it difficult to synthesize results and draw 
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meaningful comparisons across studies in the field.  Few studies report descriptive HRV 

values within child populations that could be used for comparative or reference purposes 

(c.f., Finley, Nugent, & Hellenbrand, 1987; Goto et al., 1997; Massin & von Bernuth, 

1997; Umetani, Singer, McCraty, & Atkinson, 1998).  Multiple methodological and 

measurement differences exist across the extant literature.  Sample sizes are often 

extremely small (e.g., n = < 10) or combine youth across broad age spans (e.g., 2 to 16 

years; Kwok et al., 2011).  “Normal” HRV values are typically reported based on 

children recruited as “healthy controls” (c.f., Chen, 2012; Rydberg, Rask, Hörnsten, & 

Teien, 2004; Yang et al., 2001) or from highly specific samples (e.g., swimmers; Vinet, 

Beck, Nottin, & Obert, 2005) or even clinical samples (e.g., Białłkowski et al., 2003).  

Measurement differences include the use of varying duration of electrocardiogram (ECG) 

recordings (e.g., 2 min to 24 hrs), use of laboratory tasks or conditions (e.g., tasks vs. 

normal routine), as well as inconsistent and injudicious reporting of HRV values (e.g., 

beats/min
2
; Finley et al., 1987).  Further, developmentally relevant covariates in 

childhood (e.g., puberty) are often not considered.  Altogether, the state of knowledge 

regarding “normal” HRV values in children is rather haphazard.  In the absence of 

established normative values and standard covariates, as well as a lack of a 

comprehensive methodological framework in which to investigate normative values 

among children, progress in the field is limited.   

To further illustrate the disarray of the current state of HRV within pediatric 

populations, the existing literature to date was reviewed to systematically organize and 

better estimate plausible reference values for short- and long-term HRV values in healthy 

children.  An overview of cross-sectional studies reporting HRV values, with a minimal 
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sample size of 10 and a mean age of 10 years (range 6 to 18 years), is outlined in Table 1 

(short-term recording of 3 to 60 min) and Table 2 (long-term recording greater than 20 

hours).  Normal values were typically reported for participants recruited as age- and sex-

matched controls and deemed healthy based on parental-report, medical history, or 

exclusion criteria (e.g., no cardiac pathology).   

HRV values reported in the extant literature were computed based on traditional 

time-and frequency domain analyses.  Time-domain variables include standard deviation 

of all beat-to-beat (RR) intervals (SDNN), standard deviation of the averages of RR 

intervals in all 5 min segments of the entire recording (SDANN), mean of the standard 

deviations of all RR intervals for all 5 min segments of the entire recording (SDNNi), 

square root of the mean of the squares of differences between adjacent RR intervals 

(rMSSD), and the proportion derived by dividing the number of interval differences of 

successive RR intervals greater than 50 ms by the total number of RR intervals (pNN50).   

Frequency-domain variables include very low frequency (VLF), low frequency (LF), 

high frequency (HF), and LF:HF ratio.   

While some studies were very thorough in assessing health status (e.g., clinical 

examination by a physician, urine analysis, blood tests, cardiac ultrasound, performing a 

resting ECG prior to testing; c.f., Henje Blom et al., 2009; Kaufamn et al., 2007; Martini 

et al., 2001; Silveti, Drago, & Ragonese, 2001), others used less rigorous, albeit common, 

methods of assessing health status (i.e., parent-report; Nagai & Moritani, 2004; Nagai et 

al., 2003).  More concerning was that some studies provided no information regarding 

health status (e.g., Dundaroz et al., 2001; Fujuiwara et al., 2001) or included participants 

with minor cardiac conditions (i.e., innocent murmurs; Karacan, Ceviz, & Olgun, 2011).   
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Relatedly, while some publications had stringent exclusion criteria (e.g., free of 

major cardiovascular or metabolic diseases, thyroid dysfunction, unexplained syncopal 

episodes, neurological deficit, obstructive sleep apnea; Henje Blom et al., 2009; Kaufamn 

et al., 2007), others provided insufficient details (c.f., Fujiwara et al., 2001; Dundaroz et 

al., 2001).  The majority of studies excluded use of medications known to interfere with 

cardiovascular function and restricted consumption of caffeinated beverages as well as 

moderate to strenuous physical activity for 24 hours prior to the ECG recording.   

For the derivation of HRV indices, some publications failed to adhere to the Task 

Force (1996) recommendations for spectral analyses.  Frequency bandwidths for LF and 

HF parameters were inaccurate in a few studies (c.f., Finley & Nugent, 1995; Fujiwara et 

al., 2001; Nagai & Moritani, 2004; Nagai et al., 2003), and in other studies, no 

information on frequency bandwidths was provided (c.f., Chen, Lee, Chiu, & Jeng, 2008; 

Karacan et al., 2011; Winsley, Armstrong, Bywater, & Fawkner, 2003).  In one case, 

VLF was derived from a 4 min recording (McCarty, Atkinson, & Tomasino, 1999), 

which is not recommended because the physiological meaning of VLF is dubious under 

such short recording lengths (Task Force, 1996).   

To further add to the confusion in assessing normative HRV values, some studies 

only present HRV values graphically (c.f., Finely et al., 1987; Tonhajzerova et al., 2010; 

Massin, Maeyns, Withofs, Ravet, & Gérard, 2000), while other studies report HRV 

values in transformed (e.g., log-transformed), absolute (e.g., ms
2
), and/or normalized 

(e.g., %) units.  Additionally, other studies report HRV values in units that differ from 

standard units (e.g., beats/min
2, 

Hz; Finley & Nugent, 1995; Heragu & Scott, 1999; 

Yeragani, Rao, Pohl, Jampala, & Balon, 2001).  This is a particularly salient issue for 
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frequency-domain parameters, which evidenced extreme ranges in Tables 1 and 2.  For 

example, LF ranged from 74.1 to 2859 in absolute (ms
2
), 3.57 to 7.40 in log-transformed 

(ln), and 19.8 to 54.9 in normalized units (n.u., %).  Time-domain variables were largely 

consistent, with the exception of a few studies that reported transformed values or used 

seconds rather than the standard millisecond unit (c.f., Henje-Blom et al., 2009; Kaufamn 

et al., 2007; Kwok et al., 2011; Winsley et al., 2003).  As such, the current state of the 

literature has several methodological weaknesses and inconsistencies that hinder the 

comparison of HRV values across pediatric studies.  

The selection and use of covariates was also disparate across studies.  Few studies 

reported nor statistically controlled for pubertal status (Chen, Chiu, Lee, Sheen, & Jeng, 

2012; Faulkner, Hathaway, & Tolley, 2003; Gamelin et al., 2009), sleeping habits, 

habitual physical activity, blood pressure, or resting heart rate (e.g., Henje Blom et al., 

2009; Kwok et al., 2011; Wang, Thayer, Treiber, & Snieder, 2005).  These 

developmentally relevant covariates are particularly important when considering a 

comprehensive methodological framework to investigate normative HRV values during 

childhood; their absence in the existing literature is poignant.   

Childhood is a critical developmental period during the lifecourse when there are 

profound hormonal changes related to puberty (Rogol, Clark, & Roemmich, 2000), 

significant changes in sleep habits (i.e., later bed time, shorter sleep duration, weekend 

oversleeping) due to contextual restraints (e.g., early school start times, extracurricular 

activities) and physiological influence of the suprachiasmatic nucleus (i.e., delay of 

circadian phase; Carskadon, Acebo, Richardson, Tate, & Seifer et al., 1997; Laberge et 

al., 2001), and variations in physical activity (Sallis, Buono, Roby, Micale, & Nelson, 
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1993).  There are significant age-related changes in blood pressure and heart rate, such 

that systolic blood pressure (SBP) and diastolic blood pressure (DBP) increases with age 

(Soergel et al., 1999), while heart rate decreases with age (Fleming et al., 2011; Salameh 

et al., 2008; Wallis, Healy, Undy, & Maconochie, 2005).  Collectively, these covariates 

have potential developmental implications on HRV parameters; yet, they are 

inconsistently considered in pediatric studies.   

Based on limited findings, younger age (Lenard, Studinger, Mersich, Kocsis, & 

Kollai, 2004; Silvetti, Drago, & Ragonese, 2001), greater physical activity (Chen et al., 

2012; Nagai & Moritani, 2004; Nagai et al., 2003;), and consolidated sleep (Kwok et al., 

2011; Liao et al., 2010) are associated with a predominance of parasympathetic activity 

and reduced sympathetic modulation.  Of the few studies examining puberty, there are 

inconsistent results on the association between pubertal maturation and HRV (Chen et al., 

2012; Faulkner et al., 2003), which may be attributable to differences in the age range of 

each sample.  Thus, an existing gap in the literature concerns referent HRV values during 

childhood and identification of developmentally relevant covariates.    

In sharp contrast to the pediatric literature, numerous adult population-based 

studies have reported normative HRV values, and have not only considered important 

covariates, but have also looked at the role of multiple covariates (c.f., Jensen-Urstad, et 

al., 1997; Nunan, Sandercock, & Brodie, 2010; Stein, Kleiger, & Rottman, 1997; 

Sinnreich, Kark, Friedlander, Saporznikov, & Luria, 1998; Task Force, 1996; Tsuji et al., 

1996).  Sex, age, and heart rate are consistently the most robust covariates (Stein, 

Kleiger, & Rottman, 1997; Tsuji et al., 1996).  Other covariates known to influence adult 

HRV include adiposity (Poliakova et al., 2012), total processing time (i.e., ECG data 
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analyzed), blood pressure, medication use, and physical activity (c.f., Berntson et al., 

1997; Malpas & Purdie, 1990; Shannon, Carley, & Benson, 1987; Task Force, 1996).  

Despite the robust literature among adults regarding reference HRV values and standard 

covariates, unique developmental changes and milestones limit these values from being 

extrapolated to children.     

Normative HRV values during childhood remain to be established.  Further, 

although many studies control for age, sex, and medication use, to the best of our 

knowledge, no studies have been performed with the aim of explicitly assessing 

developmentally relevant covariates, both singularly and collectively, on HRV values in 

children.  Current discrepancies in the existing pediatric literature exacerbate the 

confusion and difficulty in the interpretation of HRV across studies, and ultimately, 

hinder the synthesis of findings and advancement in the field.  The objectives of the 

present study were twofold.  The first objective was to provide time- and frequency- 

domain HRV values for a large, population-based sample of 10-year-old children.  The 

second objective was to evaluate developmentally relevant variables as possible 

covariates of HRV.    

Method 

Participants and Procedure  

 

Participants included 1052 children who participated in the population-based 

Québec Longitudinal Study of Child Development (QLSCD).  The QLSCD is an ongoing 

study conducted by the Québec Institute of Statistics (Jetté, 2002; Jetté, Desrosiers, & 

Tremblay, 1997; Jetté & Desgroseillers, 2000).  The original cohort was selected from the 

Ministere de la Santé et des Services Sociaux’s master birth registry using a multistage 

cluster (by region and municipality) random sampling strategy that was representative of 
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singleton births  born from 1996 to 1998.  At the time of original sampling, exclusion 

criteria included serious medical pathology, infants born before 24 or after 42 weeks 

gestation (0.1%) and those with unknown gestational age (1.3%), families living in 

Aboriginal territories or remote regions of Québec, Canada, and parents who did not 

understand French or English.  The original QLSCD sample represented 97.8% of the 

target population and was approved by the ethics review boards of the Institut de la 

statistique du Québec, the Centre Hospitalier Universitaire (CHU) Sainte-Justine, the 

Louis-Hippolyte Lafontaine Hospital, and the Faculty of Medicine of Université de 

Montréal.  (Further information on survey methodology and data sources can be retrieved 

online http://www.iamillbe.stat.gouv.qc.ca/default_an.htm.)   

The present analyses are based on the cross-sectional detailed cardiovascular 

health screening that was conducted between 2006 and 2008 as part of the QLSCD yearly 

follow-up assessment at age 10 years.  Parents and children were invited to participate 

and provided informed consent and assent, respectively, for the cardiovascular health 

assessment.  During the scheduled visit, parents and children completed questionnaires.  

Children had their anthropometric measures taken by a registered nurse and had their 

ECG signal continuously recorded throughout the standardized visit.  Children also 

completed a questionnaire on other developmental aspects of this population survey that 

were not related to this study. 

Measures 

 

Heart Rate Variability.  While participants were seated quietly, continuous raw 

ECG data were acquired, digitized (128 Hz), and recorded using the 8500 Marquette 

MARS Holter monitor (GE Marquette Medical Systems, Milwaukee, Wisconsin, USA).   
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To reduce violations of stationarity, the procedure was kept consistent for all participants 

(Berntson et al., 1997).  The Holter monitor incorporated a quartz-derived, binary time 

channel that was automatically zeroed at the start of the recording.  A modified Lead II 

electrode configuration with three disposable, pregelled snap silver chloride electrodes 

were used to acquire an ECG signal.  Electrode resistance was kept low (<10 kO) by 

cleaning the skin with a rubbing alcohol swab.  The active electrode [and its derivative 

(dZ)] was placed on the right clavicle next to the sternum over the first rib between the 

two collarbones.  The second electrode was placed on the left mid-clavicular line at the 

apex of the heart over the ninth rib.  The ground electrode was placed at the lowest 

possible right rib cage on the abdomen.  Additional dZ electrodes were placed over the 

right fourth intercostal space at the sternal edge, the fifth intercoastal space at the left 

axillary line, and on the sixth rib in the mid-clavicular line.   

ECG Signal Processing.  ECG data were uploaded on the MARS® Holter 

Analysis Workstation (GE Marquette Medical Systems, Milwaukee, Wisconsin, USA), 

where data was formatted for viewing, editing, and ECG interpretation and analysis.  

Beat-by-beat visual inspection of the shape, trend, and length of each QRS complex were 

identified based on standard Marquette algorithms for QRS labeling and further verified 

by visual inspection from a qualified trained professional.  ECG data were sampled at 

1024 samples/300 s and RR intervals were automatically filtered.  The removal of 

artifacts was based on a 20% change from the previous signal as a criterion (Kleiger, 

Miller, Bigger, & Moss, 1987).  In cases where artifacts and excluded RR intervals were 

automatically filtered and identified as unreadable signals, the remaining acceptable beats 

were used to replace the data points via cubic spline interpolation method.  At least four 
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acceptable R-peaks were needed in order for spline interpolation to identify the 

continuous function between two middle R-peaks.   

Next, input samples of 10 min were linearly detrended, mean-centered, and 

tapered using a Hanning window, and processed by Fast Fourier Transform (FFT) 

periodogram spectrum method.  Frequency-domain variables included VLF (0.0033-0.04 

Hz), LF (0.04-0.15 Hz), HF (0.15-0.4 Hz), as well as LF:HF ratio and were calculated 

and expressed in absolute units.  Time-domain variables included SDNN, SDANN, 

SDNNi, rMSSD, and pNN50.   

Blood Pressure.  An appropriate-sized occlusion cuff was attached to the medial 

surface of the right arm over the brachial artery using an oscillometric instrument 

(BpTRU, model BPM-100, VSM MedTech Ltd, Vancouver, Canada) according to 

standardized procedures (Webber et al., 1995).  Prior to data collection, the blood 

pressure units were calibrated with a mercury sphygmomanometer to ensure precision.  

Five blood pressure and heart rate readings were taken at 1 min intervals while the 

participant was seated.  The mean of all readings were calculated for SBP, DBP, and 

heart rate.   

Anthropometrics.  Using a standard measuring tape, waist circumference was 

measured at the narrowest part of the abdomen, midway between the lowest rib and the 

iliac crest; hip circumference was measured at the widest part of the body over the 

buttocks.  Height was measured using a standard measuring tape to the nearest 0.1 cm 

with shoes off.  Weight was measured with a calibrated spring scale to the nearest 0.1 kg 

while the participant was dressed in light clothing.  Height and weight were measured in 

duplicate; if the difference between the first two measurements exceeded 0.5 cm for 
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height and 0.2 kg for weight, a third measurement was taken and the average of the two 

closest measurement was used in the analysis.  Height and weight measurements were 

used to calculate body mass index (BMI).  BMI [weight in kg/(height in meters
2
)] was 

converted to age-and sex-specific BMI percentiles Z-scores determined using the growth 

charts published by the U.S. Centers for Disease Control and Prevention (Ogden, Flegal, 

& Carroll, 2002).   

Puberty.  Using a validated self-report measure of puberty (Growing and 

Changing Questionnaire; Golding et al., 2001), two stages of pubertal development were 

assessed: gonardarche (breast and genital development) and adrenarche (pubic hair).  

Youth indicated their pubertal stage based on sex-specific illustrations corresponding to 

Tanner stages I-V of prepubertal to complete sexual maturity.  Females were also asked if 

they had started menstruating (response options: yes or no).  Although physician 

assessment of pubertal development is considered the gold standard, self-report has 

demonstrated good reliability and validity among youth (r = 0.77 to 0.91; Morris & Udry, 

1980; Netherton, Goodyer, Tamplin, & Herbert, 2004).   

  Sleep.  Parents reported on their child’s typical bed- and wake-time on school 

and weekend nights.  Average, school, and weekend night sleep durations were 

calculated as the difference between bed- and wake-times.  Parents reported the sleep 

onset latency (amount of time it takes for their child to fall asleep in min) and whether 

their child woke up after sleep onset (response: yes or no).  

Physical Activity, Medication, and Caffeine Intake.  Children reported on their 

habitual physical activity in the past week (range: almost every day to almost never).  

Parents reported on their child’s medication use in the past two weeks.  Medications were 
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categorized by a cardiologist into general and prescription medications with and without 

known cardiovascular effects.  Parents also reported whether their child exercised 

vigorously, consumed any caffeine products (e.g., chocolate, energy drinks) and or 

medication (response options: yes or no) on the day of the ECG recording.   

Statistical Analyses  

All data were entered and double-checked by the senior data coordinator and 

analyzed with IBM SPSS Statistics 20 software (SPSS, Inc., Chicago, IL).  The 

distributions of frequency-domain variables (VLF, LF, HF) were highly skewed and thus, 

natural log-transformed.  To yield normative values, mean and standard deviations were 

estimated for each HRV parameter stratified by heart rate reference ranges based on age 

(Wallis et al., 2005) at the 5
th

, 25
th

, 50
th

, 85
th

, and 95
th

 percentiles.  Using multiple linear 

regression, HRV values were estimated while controlling for age, sex, and heart rate.  

Second, simple linear regression models were used to test the unique variance explained 

by each covariate for every HRV parameter (SDNN, SDANN, SDNNi, rMSSD, pNN50, 

VLF, LF, HF, LF:HF ratio).  Finally, for each HRV parameter, post-hoc stepwise 

regression models were used to identify the most salient covariates when all were entered 

simultaneously.   

Results 

Of the original 1052 participants completing the cardiovascular assessment at the 

scheduled QLSCD follow-up visit, 12 were excluded due to missing ECG recordings and 

four were excluded due to insufficient recording duration (less than 30 min), yielding a 

final sample of 1036.  Participant demographics are presented in Table 3.  All children 

were free of cardiovascular pathology (e.g., bradycardia, fibrillation, premature 
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contraction) based on review of the ECG recordings reviewed by a board-certified 

cardiologist.  The average length of the ECG recordings was 69 min (SD = 21).  All ECG 

recordings were inspected manually by a cardiovascular technician to review peak 

detection and to identify and remove artifacts; manual inspection and editing took 

approximately 12 min per recording.  Recordings were found to be of excellent quality; 

over 97% of data were analyzable, artifact time did not exceed 8 min (0.09%), and no 

recordings were found to exceed 20% noise or ectopic beats.  ECG recordings typically 

began in the mid-morning (10:41, SD = 3:13) and the majority of children refrained from 

strenuous physical activity (96.4%), caffeine (87.6%), and medication use (82%) for the 

prior 24 hours.   

Children’s health status was “very good” to “excellent” (95.3%) based on 

parental-report.  More than half were female (53.6%), Caucasian (87%), of normal 

weight status (73% BMI 5-85
th

 percentile), and physically active 5 to 6 days/week (37%).  

On average, children were 10.21 years (SD = 0.29) and identified being in the early 

stages of gonardarche (M = 1.85, SD = 0.64) and adrenarche (M = 1.73, SD = 0.69); only 

1.8% of females (n = 3) reported having started their menses.  Parents reported their child 

slept for an average of 612 min (SD = 32) and 616 min (SD = 48) on school and weekend 

nights, respectively, and took 18 min (SD = 16) to fall asleep.  On average, the child’s 

bed-time was at 20:31 on school nights and 21:36 on weekend nights.   

Children’s blood pressure and heart rate fell within normal limits (SBP = 97 

mmHg, SD = 10.06; DBP = 62 mmHg, SD = 8.82; HR = 80.17 beats/min, SD = 10.17).  

Approximately 60% of participants reported not taking any medication in the prior two 

weeks.  Of those reporting medication use (n = 419), 0.7% were taking general 
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medication without cardiovascular effects (e.g., Lactaid), 28% were taking general 

medication with cardiovascular effects (e.g., Claritin), 2% reported taking prescription 

medication without cardiovascular effects (e.g., antibiotics), and 9% reported taking 

prescription medication with cardiovascular effects (e.g., Ritalin).   

Mean values and standard deviations for heart rate, RR intervals, as well as time- 

and frequency-domain HRV variables (absolute and log-transformed units) are presented 

in Table 3.  Overall, boys showed significantly greater HRV values for all time-and 

frequency-domain variables, except LF:HF ratio.  Normative HRV values for the 5
th

, 25
th

, 

50
th

, 85
th 

and 95
th

 percentiles stratified by age, sex, and heart rate are presented in Table 

4.  Due to the consistent age-related changes of heart rate (Fleming et al., 2011; Wallis et 

al., 2005), HRV values accounting for age, sex, and heart rate were estimated using linear 

regression equations.  

Regression analyses revealed several significant covariates for HRV parameters.  

Across time-domain variables, greater SDNN, SDANN, and SDNNi values were 

associated with male sex, reduced SBP, DBP, and HR, earlier start times, earlier bed-

times, and longer sleep duration (Table 5).  Greater SDNN and SDANN values were also 

associated with longer processing time.  Higher rMSSD and pNN50 values were 

associated with older age, male sex, reduced SBP, DBP, and heart rate, as well as earlier 

pubertal stage.   

For frequency-domain variables, higher VLF, LF, and HF values were associated 

with male sex, lower SBP, DBP, and heart rate, earlier start times, earlier bed-times on 

weekends, and longer sleep duration (Table 5).  Greater VLF and LF were associated 

with longer processing time and earlier bed-times on school nights.  Greater VLF also 
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was associated with reduced waist circumference.  Greater HF was associated with earlier 

pubertal stages and fewer nocturnal awakenings.   

Greater LF:HF ratio was associated with younger age, female sex, increased heart 

rate, earlier start times, longer processing time, advanced pubertal stage, more nocturnal 

awakenings, and less physical activity.  Altogether, heart rate accounted for the greatest 

amount of variance in HRV values (R
2

avg = 39%), followed by blood pressure (R
2

avg = 

5.33%), start time of ECG recordings (R
2

avg = 3.48%), processing time (R
2

avg = 1.61%), 

and pubertal status (gonardarche = 0.97%; adrenarche = 0.80%).   

Post-hoc analyses revealed patterns of covariates unique to each HRV when 

entered simultaneously.  Among the time-domain variables, for SDNN and SDNNi, heart 

rate (βavg = -0.65), ECG recording start time (βavg = -0.19), and DBP (βavg = -0.11) were 

significant covariates.  For SDANN, heart rate (β = -0.43) and processing time (β = 0.26) 

were significant covariates.  For rMSSD, heart rate (β = -0.72), male sex (β = 0.10), DBP 

(β = -0.10), gonardarche pubertal status (β = -0.09), and ECG recording start times (β =   

-0.09) were significant covariates.  For pNN50, heart rate (β = -0.73), and gonardarche 

pubertal status (β = -0.10) were significant covariates.   

Among the frequency-domain variables, for VLF, heart rate (β = -0.64), ECG 

recording start time (β = -0.27), and DBP (β = -0.10) were significant covariates.  For LF, 

heart rate (β = -0.63) and ECG recording start time (β = -0.14) were significant 

covariates.  Only heart rate remained a significant covariate for HF (β = -0.65).  Finally, 

for LF:HF ratio, heart rate (β=0.31) and gonardarche pubertal status (β = -0.14) were 

significant covariates.  Overall, the most consistent covariate that accounted for the most 
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variance in all HRV parameters was heart rate (range from 8.4% to 56.1% of the 

variance).   

Discussion 

 HRV is a valuable quantitative marker that provides information on the flexibility 

and balance of cardiac sympathetic and parasympathetic activation.  Despite its 

widespread use within pediatric populations, normative values to serve as a reference to 

facilitate comparisons across studies and synthesize existing findings are lacking in the 

field.  In addition, standard covariates, particularly those that are developmentally 

relevant, have not been systematically evaluated in children.  Taken together, these 

limitations pose challenges in the interpretation of HRV in children.  The first objective 

was to provide time- and frequency-domain HRV values for a large, population-based 

sample of 10-year-old children.  The second objective was to comprehensively assess the 

influence of several covariates on commonly used HRV parameters.  To the best of our 

knowledge, this is the first study to provide normative HRV values for children and to 

evaluate multiple developmentally-relevant covariates.   

Normative Heart Rate Variability Values 

In comparison to the reviewed studies that have previously reported HRV values 

for children similarly aged (see Table 1 & 2), some differences were noted.  Compared to 

studies using comparable length short-term recordings (i.e., 2 to 60 min), larger SDNN, 

LF, and LF:HF ratio values and smaller rMSSD and pNN50 values were observed in the 

population-based sample.  Previous studies have not reported values for SDANN or 

SDNNi.  The findings were largely consistent for SDNN, rMSSD, and HF.  In addition, 

many values reported in previous research were within the 5
th

 and 95
th

 percentiles values 
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presented in Table 4.  These discrepancies may be attributable to methodological factors 

such as, small sample sizes (Winsley et al., 2003), differing male to female ratios 

(Faulkner et al., 2003), posture (e.g., seated vs. supine; Chen et al., 2012; Sharma et al., 

2012), differing data reduction techniques (Karacan et al., 2011), as well as 

inconsistencies in units and frequency bandwidths used across studies (Finley & Nugent, 

1995; Finley et al., 1987).    

Covariates 

Heart Rate and Blood Pressure.  Overall, consistent covariates of HRV in 

children were heart rate, SBP, and DBP.  Consistent with the adult literature, reduced 

heart rate and blood pressure were significantly associated with greater time-and 

frequency-domain HRV variables (Castiglioni, Di Rienzo, Veicsteinas, Parati, & Merati, 

2006; Palatini & Julius, 2009; Schroeder et al., 2003; Tsuji et al., 1996).  In a study 

among adolescents, no significant association between SBP and HRV was reported; 

however, it is important to note that only SBP was assessed (Henje Blom et al., 2009).  

The present study assessed both SBP and DBP and found DBP was more influential than 

SBP at predicting VLF, SDNN, SDNNi, and rMSSD.  Ultimately, heart rate remained the 

most significant covariate for all HRV parameters and thus, should be considered in 

future research. To the best of our knowledge, no studies have previously evaluated SBP 

and DBP as covariates of HRV among healthy school-aged children.   

Age, Sex, and Puberty.  Prior research demonstrates that heart rate decreases 

across childhood and this decline is thought to begin between the ages of 5 to 10 years 

(Finley et al., 1987, 1995), increases slightly between ages 15 to 18 years (Lenard et al., 

2004), and then significantly declines into young adulthood (Umetani et al., 1998).  
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Given that many pediatric studies do not control for heart rate, age-related changes in 

HRV may very well be attributable to age-related changes in heart rate (Fleming et al., 

2011; Walsh et al., 2005).  In fact, when age was simultaneously entered with other 

covariates (post-hoc analyses), heart rate remained significant and age became non-

significant.  In the present study, age was a significant covariate for parasympathetic-

driven variables (e.g., rMSSD, pNN50).  These results are comparable to past findings, 

which reported greater rMSSD and pNN50 values among 7 to 10 year old children 

compared to 11 to 14 year old youth (Lenard et al., 2004).  

Consistent with previous studies (Faulkner et al., 2003; Henje Blom et al., 2009; 

Reed, Warburton, Whitney, & McKay, 2006; Silvetti et al., 2001; Wang et al., 2005), sex 

differences emerged.  Boys manifested lower heart rate and greater HRV, particular those 

reflecting parasympathetic activity.  Girls evidenced higher heart rate and greater 

sympathovagal imbalance.  This may be partly attributable to pubertal onset, given that 

girls typically enter puberty 2 years earlier than boys (Rogol et al., 2000).   

Relatedly, more advanced pubertal development, in both gonardarche and 

adrenarche stages, was associated with increased sympathovagal imbalance and reduced 

parasympathetic activity across time- and frequency-domain HRV variables.  These 

results are similar to previous research and support the notion that the timing of pubertal 

development coincides with the emergence and maturation of neural autonomic 

mechanisms that reach their peak level during adolescence (Chen et al., 2012; Dorn, 

Dahl, Woodward, & Biro, 2006; Faulkner et al., 2003; Lenard et al., 2004; Ordaz & 

Luna, 2012).  It has been posited that gonadal hormones (e.g., estrogen and testosterone) 

may interact with serotonin transporter genotype to yield sex-specific increases in blood 
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pressure (in males) and heart rate (in females) through sympathetic activation with 

similar results documented in animals (McCabe, Porges, & Carter, 1981; McEwen & 

Gianaros, 2010; Spear, 2000).   

Sleep.  Notably, bed-times on school and weekend nights, average sleep duration, 

and wake after sleep onset were significant covariates in HRV.  Consistent with the 

limited pediatric data, later bed-times and shorter sleep duration were associated with 

reduced HRV and wake after sleep onset was associated with increased sympathovagal 

imbalance (Massin et al., 2000; Rodriguez-Colon et al., 2011).  These results are 

inconsistent with a previous study that found no association between HRV and later 

sleeping patterns (Henje-Blom et al., 2009).  These discrepancies are most attributable to 

the sample they used (i.e., adolescents), and the method used to assess sleep patterns (i.e., 

a single question on the frequency of “sleeping past midnight”), which may not have 

fully captured the complexity and multidimensionality of sleep construct (Jarrin, 

McGrath, & Drake, submitted).   

Prominent developmental changes in sleep patterns have been documented among 

children aged 10 to 13 years, as they go to bed later, have shorter sleep duration, and have 

increased sleep problems (e.g., difficulty initiating and maintaining sleep; Carskadon et 

al., 1997; Carskadon, Vieira, & Acebo, 1993; Laberge et al., 2001).  These age-related 

changes in timing of sleep may be influenced by contextual (i.e., school start times) and 

physiological factors (i.e., changes in circadian system) that are particularly pertinent 

during this developmental period (Dahl & Carskadon, 1995; Myers & Badia 1995).  

Interestingly, advanced pubertal development is associated with major changes in sleep 

patterns, particularly among females (e.g., later bed-times, sleep problems; Carskadon et 
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al., 1993; Laberge et al., 2001), which also overlap with the present findings.  Taken 

together, female sex, advanced pubertal development, and later bed-times and shorter 

sleep duration were associated with reduced HRV.   

Anthropometrics.  While past pediatric studies report a significant association 

between reduced HRV and greater obesity measures (c.f., Kaufman et al., 2007; Martini 

et al., 2001; Rodriguez-Colon, Bixler, Li, Vgontzas, & Liao, 2011), the present study did 

not observe similar trends.  Contrary to expectations, larger waist circumference was 

associated with reduced VLF.  The physiological mechanism underlying VLF is disputed; 

however, it is proposed to reflect the renin-angiotensin-aldosterone system (Taylor, Carr, 

Myers, & Eckberg, 1998), which when activated, has been implicated in the promotion of 

increased fat mass (Haynes, Morgan, Walsh, Mark, & Sivitz, 1997).  Although, several 

pathophysiological mechanisms are implicated in the renin-angiotensin-aldosterone 

system (i.e., pro-sclerotic and pro-fibrotic cytokines, transforming growth factor-b, 

promotion of endothelial dysfunction; Brewster, Setaro, & Perazella, 2003; Steckelings, 

Rompe, Kaschina, & Unger, 2009), and thus, the putative underlying mechanisms 

between VLF and obesity are not well understood.  Alternatively, the disparate findings 

may be attributed to the duration of obesity, which has been previously suggested to 

influence autonomic cardiovascular control (Rabbia et al., 2003).  Further, many studies 

that investigate HRV and obesity among youth, do not commonly report on VLF (c.f., 

Kaufman et al., 2007; Martini et al., 2001; Riva et al., 2001; Rodriguez-Colon et al., 

2011).   

Physical Activity.  Similar to past studies, there was a significant association 

between physical activity and diminished sympathovagal imbalance in children (c.f., 
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Chen et al., 2012; Henje Blom et al., 2009; Nagai & Moritani, 2004) .  Exercise is 

thought to promote electrical stability, stimulating coordinated contractions in the 

ventricles of the heart (Berntson et al., 1997; Stein & Kleiger, 1999).   Conversely, 

sedentary behavior is associated with increased sympathovagal imbalance, which confers 

risk for ventricular fibrillation, a condition that causes disruptions in the contractions of 

the ventricles of the heart and prevents blood circulation (Billman & Hoskins, 1988; Hull 

et al., 1990; Molgaard, Sorensen, & Bjerregaard, 1991).  As such, it may be advantageous 

to consider physical activity as a potential covariate in future studies investigating HRV.    

Additional Covariates.  Lastly, earlier recording time and longer processing time 

were associated with greater HRV parameters and sympathovagal imbalance, except 

rMSSD and pNN50.  These findings may reflect a circadian pattern in HRV, which 

inherently also reflects circadian variations in the autonomic nervous system (Yamasaki, 

Kodama, & Matsuhisa, 1996).  It is posited that HRV parameters decrease significantly 

throughout the day and increase during the night, while sympathovagal imbalance shows 

the reverse pattern (Guo & Stein, 2002).  Massin and colleagues (2000) also observed 

circadian variations within a pediatric sample.  

Further, longer processing time was found to be associated with greater HRV 

parameters.  Longer processing times may be related to the editing procedures that 

remove artifacts that can influence HRV values dramatically (Berntson et al., 1997).  Not 

surprisingly, recording and signal processing issues have been identified as important 

factors associated with the discrepancies found in a systematic review of short-term HRV 

values in adults (Nunan et al., 2010).  As such, these results further highlight the 

significance of standardized recording and editing protocols when analyzing HRV 
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parameters (Bernsten et al., 1997; Jarrin et al., 2012; Nunan et al., 2010; Task Force, 

1996).      

In summary, a substantive proportion of the variance in HRV can be accounted 

for by sex, heart rate, and blood pressure, a finding consistent with the adult literature.  

Importantly, other developmentally relevant covariates during childhood that influence 

HRV parameters include pubertal status, bed-time, sleep duration, sleep-related 

problems, sampling time, and total duration of recording.  Likewise, when multiple 

covariates were assessed collectively, heart rate, gonardarche pubertal status, DBP, start 

times, and total processing times were most influential.  Given that each HRV parameter 

had different covariates emerge as relevant, it is strongly recommended to carefully 

consider which covariates are most appropriate when investigating a particular HRV 

parameter in children. 

Strengths, Limitations, and Future Recommendations   

We acknowledge limitations in the present study.  First, the sample was limited to 

9 to 11 year old children, limiting the generalizability of the results.  However, unlike 

previous cross-sectional studies, with small sizes, wide age categories, or restrictive 

clinical sample, this was the first study to present normative HRV values in a large, 

population-based sample of healthy children.  Notably, HRV values were largely similar 

to past studies assessing school-aged children (Table 1).  Longitudinal designs with 

repeated measures of HRV and covariates are necessary to more comprehensively 

understand the complex nature of the ANS across the childhood and adolescence 

developmental spans of the lifecourse.     
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Second, only time-and frequency-domain HRV variables were evaluated.  Other 

methods to analyze HRV exist (e.g., geometric, nonlinear), which provide supplementary 

information on the dynamics and complexity of the regulation of the ANS (Task Force, 

1996;  Voss, Schulz, Schroeder, Baumert, & Caminal, 2009).  However, time- and 

frequency-domain variables are the most commonly used HRV parameters in pediatric 

studies and were analyzed in adherence to the Task Force (1996) methodological and 

technical recommendations.   Thus, to further facilitate comparison and the synthesis of 

findings across studies, the present analyses were limited to time- and frequency-domain 

variables.   

Third, only short-term recordings were evaluated.  Compared to long-term 

recordings, short-term recordings are considered a less sensitive technique in capturing 

frequency-domain variables, such as VLF and ultra low-frequency (ULF; Task Force, 

1996).  Long-term recording, however, are capable of monitoring and capturing 

continuous fluctuations in HRV under normal day-to-day routines, which provide more 

ecological validity compared to short-term recordings.  However, because short-term 

recordings are based on brief acquisition time of ECG data (e.g., 1 min) and can capture 

most time- and frequency-domain variables, they do provide practical advantages over 

long-term recordings (Task Force, 1996).  Short-term recordings are acquired under 

standard physiological states (e.g., comfortably sitting in a relaxed position, limiting body 

movements), during standardized protocols, and may yield less biased recordings, that are 

free of missing data and artifacts (Task Force, 1996).  The majority of pediatric studies 

only report short-term recordings (refer to Table 1).  Nonetheless, future studies should 

accrue population-based normative values for short- and long-term recordings (i.e., 24-
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hours; e.g., Poincare plots, etc.) for the commonly used time- and frequency-domain 

variables.   

Fourth, many of the covariates were based on subjective parental- or self-report 

(e.g., pubertal status, sleep duration).  Other possible covariates were not objectively 

assessed (e.g., physical activity, sleep fragmentation, body fat composition; Liao et al., 

2010; Wang et al., 2005).  Yet, these subjective measures have demonstrated reliability 

and validity with objective measures in past studies (e.g., Netherton et al., 2004; Wolfson 

et al., 2003).  Further, most physiological covariates (e.g., heart rate, blood pressure) 

were objectively assessed using advanced equipment, by trained staff, following 

standardized protocols.  Nevertheless, future studies should consider testing objectively 

assessed measures as well as other covariates that may be particularly relevant for 

children (e.g., sleep-wake patterns, screen time).    

Conclusion 

Normative time- and frequency-domain HRV values for a large, population-based 

sample of 10-year-old children were provided in the present paper. Of the 

developmentally relevant covariates tested, sex, heart rate, blood pressure, pubertal 

status, sleep, physical activity, as well as time and length of ECG recording significantly 

accounted for variance in the HRV parameters and should be measured and controlled for 

(methodologically or statistically) when analyzing HRV in children.  Researchers should 

be prudent in identifying appropriate covariates, depending on the HRV parameter of 

interest, given their research question.  Altogether, these data have potential implications 

to advance the field, as these referent values may facilitate comparison and synthesis of 

previously reported HRV data among pediatric studies.   
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Table 1 

 

Means and Standard Deviations of Short-term Heart Rate Variability Values across Studies Using Healthy Children 
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3 to 5 minute recordings 
McCarty 1999  4 30 

♂=36.6% 

12-13 

12.2 

86.80  

(10.24) 

705.87 

(86.32) 

58.57 

(21.38) 

--- --- 1215.75(799.09)ms
2 

6.91(64)ln 

1029.78(915.21)ms
2 

6.66(74)ln 

---
 997.24 (1013.71)ms

2
 

6.46(1.00)ln 

Yang 2001 4 30 
♂=70% 

4-10 

6 (1.3) 

---   --- --- --- --- 43.94 

(16.39)nu 

30.5 

(10.93)nu 

1.87 

(1.67) 

               --- 

Henje Blom 2009 4 71 
♂=33% 

16.5 74.5 (9.63)   --- 4.11 

(0.35) ln 

         ---         --- 5.88 (0.93) ln 6.03 (0.90) ln 
         ---    --- 

┼Nagai 2003 4.5 42 
♂=42.8% 

6-12 

9 (0.3) 

84.3 

(1.0) 

--- --- --- --- 6.42 

(0.05)lnms
2 

6.34 

(0.07)lnms
2 

---
 

                --- 

¥Winsley 2003  5 12 
♂=41.6% 

11-12 

12.8 (0.30) 

--- --- 64 

(27) 

56 

(28) 

28 

(19) 

758(632)ms
2 

37(12)nu 

920(802)ms
2 

53(14)nu 

0.81 

(0.50) 

                --- 

┼Nagai 2004 5 24 
♂=33% 

9.4 (1.8) --- --- --- --- --- --- 6.50(0.40)lnms
2 ---

 
--- 

Wang 2005  5 234 
♂=47.8% 

16 

(2) 

--- ♂=933 (150) 
♀=853(115) 

♂=72(34) 
♀=61(25) 

♂=72(43) 
♀=64(37) 

--- ♂=296(289)lnHz 
♀=244(227)lnHz 

♂=421(541)lnHz 
♀=374(374)lnHz 

♂=1(0.8) 
♀=1(0.9) 

--- 

Reed, 2006 5 62 
♂=48.3% 

9-11 
♂=10.2(0.6) 
♀=10.5(0.6) 

 

♂=77.9 (12.1) 
♀=80 (10.1) 

--- ♂=60.17 

(30.01) 
♀=60.81 

(35.91) 

♂=65.18 

(38.21) 
♀=64.12 

(53.17) 

--- ♂=3.57(0.41)ln 
♀=3.79(0.39)ln 

♂=38.71(14.81)ms
2 

♀=47.62(17.41) ms
2 

♂=4.07(0.28)ln 
♀=3.89(0.36)ln 

♂=61.25(14.81)ms
2 

♀=52.33(17.39)ms
2 

 

♂=4.11 (0.68) 
♀=4.51 (0.74) 

--- 

¥Chen 2008 5 107 
♂=46.7% 

8-12 

10.4 (1.6) 

--- --- --- --- --- 6.3 

(0.6)lnms
2 

5.2 

(0.9)lnms
2 

1.2  

(0.7)ln 

--- 

┼Longin 2009  5 100 
♂=49% 

6-15 

10.32 (2.58) 

--- --- 66.7 

(36.3) 

--- --- 74.1 

(27.3)ms
2 

 

217.6 

(117.4)ms
2 

--- --- 

Gamelin 2009  5 16 
♂=43.7% 

9.3 

(1.2) 

80.8  

(6.8) 

756.3  

(68.1) 

70.2 

(33.9) 

67.4 

(32.8) 

35.3 

(19.2) 

5.7(1.1)ln 

42(12.4)nu 

6.1(0.8)ln 

58(12.4)nu 

-0.4 

(0.6)ln 

--- 
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Note. ¥ =No information on frequency bandwidths. 
┼
 = Frequency bandwidths differ from Task Force (1996) recommendations. 
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Dietrieta 2010  5 57 
♂=52.6% 

10-13        

11.2 (0.7) 

73.06   (10.07) --- 4.22 

(0.52) 

--- --- 6.87             

(0.99)ln 

7.58                

(1.31)ln 

--- --- 

Latchman 2011 5 19 7-12 9.2 (1.4) 78 (13.1) --- --- --- --- 7.2(0.5)RRln 8.2(1.1)RRln 0.54 (0.3)            --- 

Chen 2011 5 87 
♂=50.6% 

9-13        

10.6 (1.5) 

--- --- --- --- --- 5.9(0.9)lnms
2 5.6(1.3)lnms

2 ---
 

--- 

 
Sharma 2012 5 30 

♂=50% 

8-18 

11.66 (2.5) 

--- --- 63.67 

(29.91) 

67.17 

(42.22) 

1634.84  

(1066.03) 

1453(1856.79)ms
2 

37.41(18.13)nu 

2389.44(2919.42)ms
2 

47.67(19.46)nu 

1.12 

(1.1) 

--- 

¥Vykunta Raju 2012     5 40 
♂=45% 

2-15 

9.1 (3.3) 

--- --- --- --- 13 

0.17-76 

602ms
2 

91-2880 

1303ms
2 

91-10707 

0.56 

0.13-9.65 

--- 

Moodithaya 2012 5 60        
♂=50% 

6-11 9.4 

(0.32) 

--- --- --- --- --- 960 (92)ms
2 1603 (163)ms

2   

9 to 60 minute recordings 
┼Wawryk 

1997 

9 108  
♂=58.3% 

8-17       

12.8 (3.2) 

79.2       

(11.8) 

--- --- --- --- 2.99         

(0.38)log
10 

3.18           

(0.51)log
10 

-0.19  

(0.28)log
10 

--- 

Yeragani 2001      10 15 10.5 

(2.3) 

--- --- --- --- --- 2.3(0.97)pwr 

1.08(1.08)abs
power 

2.4(0.85)power 

1.58(1.08)abs
power 

0.69 

(0.39) 

2.5(1.1)pwr 

1.97(0.95)abs
pwr 

┼Lenard 2004  10 34 
♂=44.1% 

7-10 

8.2 (0.2) 

--- --- 64 

(4) 

64 

(6) 

28 

(3) 

42.8(2.9)nu% 

1011(122)ms
2 

56.1(3.4)nu% 

1559(332)ms
2 

--- --- 

┼Lenard 2004  10 36 
♂=55.5% 

11-14 

12.1 (0.2) 

--- --- 61 

(4) 

55 

(5) 

26 

(4) 

44.1(3.2)nu% 

928(118)ms
2 

53.5(3.3)nu% 

1410(254)ms
2 

--- --- 

Kaufman 2007  15 36 
♂=52.7% 

10-13 

11.5 (0.10) 

--- 0.847 

(0.02)s 

0.092 

(0.01)s 

110.8 

(3.9) 

--- 51.1(2.1)nu% 

3.9(0.05)lnnu% 

48.9(2.1)nu% 

3.85(0.05)lnnu% 

1.21 

(0.12) 

--- 

Vanderlai 2010  20 61 
♂=50.8% 

8-12 

10.49 (1.39) 

--- --- --- --- --- 384.40(211.7)ms
2 

60.80(11.18)nu 

251.60(155.0)ms
2 

39.20(11.18)nu 

1.74 

(0.74) 

--- 

Acharya 2004 20 25 5-15 

 

--- --- 92.96 

(48.60) 

88.48 

(65.65) 

12.91 

(8.46) 

--- --- 1.42 

(1.05) 

--- 

Kwok 2011  60 51 2-16 

9.59 (2.96) 

--- --- 1013.5 

(192.5) 

98.2 

(38.1)ln 

51.1 

(29.2) 

2859(1998)ms
2 

0.25(0.05)nu 

2326(1766)ms
2 

0.20(0.08)nu 

1.49 

(0.82) 

4698(2838)ms
2 

0.42(0.08)nu 
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Table 2 

Means and Standard Deviations of Long-term Heart Rate Variability Values (24 hrs) across Studies Using Healthy Children 

     Time-Domain Variables Frequency-Domain Variables 
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┼Finley 1995 10 10-12 84 (13) 18 (1.5) --- --- --- --- --- 11.1 (2.8)bts/min
2 11.6 (3.4)bts/min

2 1.22(0.25) --- 

Yeragani 1997 10 
♂=50% 

11.1 

(12.1) 

92.9 

(11.2) 

  --- --- --- --- --- --- 7.2(2.8)%tp 

2(0.4)lnbpm
2 

3.3(1.2)%tp 

1.3(0.5)lnbpm
2 

2.3 

(0.8) 

--- 

Umentani 1998   30 
♂=53.3% 

10-19 80 (10) ---   176 (38) 159 (35) 81 (20) 53 (17) 25 (13) --- --- --- --- 

Pikkujämsä 1999  27 1-14 

8 (5) 

--- 678 (105) 140 (46) --- --- --- --- 6.85 (0.97)ln 6.83 (1.12) --- 9.39 (0.81)ln 

Heragu 1999  11 6-11 --- 657(42) 117 (16) 98 (17) 59 (8) --- --- 14                

(15) beats/min 

17     

(12)beats/min 

0.8 

(0.6) 

--- 

Batten 2000 36       
♂=100%

 

10-16              

12 

--- --- 185 (0.14) 160 (0.83) 90 (0.69) 64 (0.02) 31 (0.03) 1926 (55)ms
2 1644 (33)ms

2  3568 (23)ms
2 

Kazuma 2000 Spring: 28 

Summer: 16 
Autumn: 31 

Winter: 20 

5-15 

9.5 
(3.5) 

--- --- --- --- --- --- --- 1380(796)ms
2 

1349(478) ms
2 

1428(894) ms
2 

988(543)ms
2 

1386(945)ms
2 

1493(705)ms
2 

1336(830)ms
2 

995(577)ms
2 

1.51 (0.52) 

1.65 (0.63) 
1.66 (0.63) 

1.71 (0.81) 

 

Han 2000  39 6-18       95.3 

(15.3) 

637.1 

(95.3) 

148.3 

(38.9) 

129              

(35.5) 

78.7 

(21.5) 

54.1 

(13.3) 

26.5   

(9.2) 

7.04    

(0.57)lnms
2 

6.54   

(0.57)lnms
2 

1.08 

(0.04) 

--- 

Han 2000  11 

 

9-11 
9.1 (1.2) 

96.3 

(8.8) 

627.6  

(58.9) 

139.9  

(21.5) 

118.3  

(20.3) 

79.7  

(17.5)       

53.1 

(9.9) 

26.5 

(6.8) 

7.07 

(0.44)lnms
2 

6.63 

(0.48)lnms
2 

1.07 

(0.06) 

--- 

Dundaroz 2001  22 
♂=63.6% 

7-14 

9.1 (1.2) 

--- --- 142 

(29) 

122  

(22) 

--- 89 

(45) 

34 

(13) 

--- --- --- --- 

Riva 2001 14 12.9 

(1.6) 

--- --- 153.9 (47.3) 127.7 (49.1)     --- 56.7 (14.1) 28.7 (8) 23.7 (3.4) 16.3 (4.5) 1.5 (0.4)     --- 

┼Fujiwara 2001  26 
♂=53.8% 

10 

(3) 

--- --- --- --- --- --- --- 19.8  

(3.8)% 

15.2  

(5.8)% 

1.46 

(0.60) 

--- 

Martini 2001  13 
♂=53.8% 

13.1 

(1.7) 
74.4 

(6) 

786.7  

(63.5) 

149 

(51) 

123  

(53) 

--- 56.5 

(15.8) 

28 

(9) 

25.3 

(2.5)nu 

17.7 

(5.3)nu 

1.5 

(0.4) 

--- 

Silvetti 2001  28 
♂=64.2% 

6-10 
♂=7.0 (1.4) 
♀=7.4 (1.1) 

--- ---  

♂=154(33) 
♀=133(32) 

 

♂=119(30) 
♀=109(19) 

 

♂=93(33) 
♀=75(33) 

 

♂=97(65) 
♀=75(50) 

 

♂=31(17) 
♀=24(11) 

--- ---
 

--- --- 
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Note. ¥ =No information on frequency bandwidths. ┼ = Frequency bandwidths differ from Task Force (1996) recommendations. 
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Silvetti 2001  
 

37 
♂=64.2% 

 
11-15 

♂=13.1 (1.6) 
♀=13.6 (1.4) 

 

--- 

 

--- 

 

♂=183 (40) 
♀=155 (45) 

 

♂=155(39) 
♀=123(41) 

 

♂=91(19) 
♀=88(25) 

 

♂=71(19) 
♀=77(30) 

 

♂=28(10) 
♀=28(12) 

 

--- 

 

---
 

 

--- 

 

--- 

Kazuma 2002 18 6-7   

6.3(0.5) 

--- 661 

(90) 

--- --- --- --- --- 820 (438)ms
2 863 

(880)ms
2 

1.37 

(0.64) 

--- 

Kazuma 2002 38 10-12 

10.9 (0.9) 

--- 756 

(79) 

--- --- --- --- --- 1360 (624)ms
2 737 

(465)ms
2 

2.34 

(1.10) 

--- 

Kazuma 2002 14 8-9    

8.7(0.5) 

--- 707 

(73) 

--- --- --- --- --- 1062 (397)ms
2 777 

(514)ms
2 

1.71 

(0.86) 

--- 

Kazuma 2002 53 6-12     
9.2 (2.1) 

--- 734 

(91) 

--- --- --- --- --- 1196(584)ms
2 808(547)ms

2 1.84 

(0.90) 

--- 

Faulkner 2003  70 
♂=37.1% 

13-18 

15(1.6) 

 

--- --- ♂=177.2 

(36.5) 
♀=149.3 

(35.9) 

♂=144.6 

(34.4) 
♀=121.8 

(33.8) 

--- ♂=61.8 

(16.7) 
♀=49.2 

(15.7) 

♂=29.3 

(10.1) 
♀=22 

(10.4) 

♂=7.39(0.37)ln 
♀=7.01(0.60)ln 

♂=6.65 

(0.61)ln 
♀=6.29 

(0.70)ln 

---
 

---
 

Faulkner 2003  43 
♂=43.1% 

13-14 

13.83 
(0.57) 

--- --- ♂=178.16 

(39.59) 
♀=145.79 

(34.83) 

♂=149.52 

(38.59) 
♀=120.33 

(34.90) 

♂=92.68 

(18.76) 
♀=76.29 

(21.11) 

♂=60.68 

(15.35) 
♀=50.08 

(18.29) 

♂=28.83 

(9.79) 
♀=22.44 

(12.37) 

♂=7.40(0.39)ln 
 

♀=7.05(0.64)ln 

♂=6.67 

(0.59)ln 
 

♀=6.34(0.77

)ln 

--- --- 

Unalacak 2004  20 
♂=60% 

6-13 

8 (1.9) 

--- --- 120 (28) 106 (37) --- 33 (9) --- 266 

(110)ms
2 

160 

(109)ms
2 

1.44 

(0.36) 

627 

(387)ms
2 

Babaoglu 2011  54 
♂=31.4% 

6-18 
11.2 (3.4) 

81.9 

(14.2) 

689 

(80) 

137 (33) 122 (32) 62 (20) 44 (10) 24(9) 6.3 (0.5)ln 6.7 (0.6)ln 1.06 

(0.06) 

--- 

¥Karacan 2011  37 
♂=59% 

5-14 

10.7 
86.3 

(9.1) 

693.2 

(72.2) 

143.8 

(38.5) 

121 

(35.1) 

75.7 

(19.6) 

54.5 

(19.5) 

24.1 

(10.6) 

1137.4 (557)ms
2 

54.9 (12.5)nums
2 

823.8(438.5)ms
2 

38.2(6.7)nums
2 

1.61 

(0.5

1) 

3504.3 

(1951.2)ms
2

 

Buchhorn 2012  19 
♂=52.6% 

10.8 
(3.5) 

84.7 

(1.8) 

--- --- --- --- 44.5 

(10.1) 

21.5 

(9.0) 

--- --- --- --- 
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Table 3 

Mean and Standard Deviation on Heart Rate Variability Time-and Frequency-Domain Variables in Children 

 Boys Girls Total 

 Mean SD Mean SD Mean SD 

   Age (years) 10.22 0.29 10.20 0.29 10.21 0.29 

   Mean RR (ms) 691.01 71.71
**

 669.50 63.32 679.49 68.16 

   Mean HR (beats/min)        79.08 10.50
**

 81.12 9.79 80.17 10.17 

Time-Domain       

     SDNN (ms) 89.38 26.12
**

 84.35 23.08 86.69 24.66 

     SDANN (ms) 42.27 17.14
**

 39.33 15.19 40.70 16.18 

     SDNNi (ms) 77.38 22.92
**

 72.96 20.98 75.01 22.00 

     rMSSD (ms) 45.05 13.66
***

 41.05 12.88 42.91 13.39 

     pNN50 (%) 21.31 11.37
***

 18.26 10.79 19.68 11.16 

Frequency-Domain      

     VLF (ms
2

) 1621.86 1139.46
**

 1448.30 840.83 1528.88 994.02 

     ln VLF 7.21 0.59
*
 7.13 0.53 7.17 0.56 

     LF (ms
2

) 1587.68 1040.06
**

 1411.16 934.35 1493.11 988.29 

     ln LF 7.18 0.61
**

 7.07 0.59 7.12 0.60 

     HF (ms
2

) 896.29 684.40
**

 770.65 622.22 828.99 654.52 

     ln HF 6.53 0.75
***

 6.37 0.76 6.44 0.76 

     LF:HF ratio 2.05 0.81
**

 2.18 0.92 2.12 0.87 

Note. SDNN = standard deviation of all normal sinus RR intervals; SDANN = standard deviation of the averaged normal sinus RR intervals for all 5-min 

segments; SDNNi = mean of the standard deviations of all normal sinus RR intervals for all 5-min segments; rMSSD = root-mean-square of the successive normal sinus 

RR interval difference; pNN50 = percentage of successive normal sinus RR intervals 50 ms; VLF = Very low frequency (0.0033-0.04 Hz); ln=log-transformed value; LF 

= Low frequency (0.04-0.15 Hz); HF = High frequency (0.1500-0.4 Hz); ms = milliseconds. Sex difference at  
*
 p < .05; 

**
p < .01; 

***
 p < .001  



Table 4   

Normative Heart Rate Variability Percentile Values While Controlling for Age and Heart Rate for Boys and Girls  

 Boys Girls 

 5
th

 25
th

 50
th

 85
th

 95
th

 5
th

 25
th

 50
th

 85
th

 95
th

 

Time-Domain          

SDNN (ms) 71.14 83.92 95.46 111.66 124.87 76.36 89.87 100.27 116.99 128.46 

SDANN (ms) 15.06 20.01 24.53 31.07 36.32 17.80 23.27 27.22 33.91 38.80 

SDNNi (ms) 83.99 95.77 106.68 121.63 134.36 89.00 101.30 110.77 126.27 136.48 

rMSSD (ms) 41.22 49.00 55.99 65.88 73.86 45.42 53.63 59.94 70.11 77.08 

pNN50 (%) 31.73 38.01 43.74 51.76 58.32 34.85 41.58 46.69 55.00 60.72 

Frequency-Domain          

VLF (ms
2
) 2936.76 3363.01 3756.21 4292.96 4749.61 3131.39 3573.67 3914.11 4474.70 4843.68 

ln 2.63 2.92 3.18 3.54 3.87 2.72 3.03 3.26 3.62 3.85 

LF (ms
2
) 3882.05 4316.63 4713.27 5270.73 5765.80 4079.88 4541.83 4892.35 5448.84 5801.63 

ln 3.35 3.65 3.93 4.32 4.66 3.47 3.80 4.03 4.43 4.65 

HF (ms
2
) 1668.35 1946.63 2202.25 2559.92 2857.18 1797.22 2094.63 2322.35 2695.92 2945.90 

ln 2.93 3.31 3.66 4.15 4.56 3.11 3.51 3.82 4.31 4.64 

LF:HF ratio 0.01 0.07 0.16 0.35 0.50 0.02 0.09 0.19 0.42 0.60 

Note. SDNN = standard deviation of all normal sinus RR intervals; SDANN = standard deviation of the averaged normal sinus RR intervals for all 5-min 

segments; SDNNi = mean of the standard deviations of all normal sinus RR intervals for all 5-min segments; rMSSD = root-mean-square of the successive normal sinus 

RR interval difference; pNN50 = percentage of successive normal sinus RR intervals 50 ms; VLF = Very low frequency (0.0033-0.04 Hz); ln = log-transformed value; 

LF = Low frequency (0.04-0.15 Hz); HF = High frequency (0.1500-0.4 Hz); ms = milliseconds. 
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Table 5 

Covariates on Heart Rate Variability Frequency- and Time- Domain Variables in Children 

Descriptives  Standardized Beta Coefficients 

Covariates Time-Domain Variables Frequency-Domain Variables 

 Mean; SD (n;%) SDNN  SDANN  SDNNi  rMSSD  pNN50  VLF (ln) LF (ln) HF (ln) Ratio 

 Age (years) 10.21; 0.29 0.05 0.05 0.03 0.06
*
 0.06

*
 0.00 -0.02 0.01 -0.06

*
 

 Sex (Male) (481; 46.4%) 0.10
**

 0.09
**

 0.10
**

 0.14
***

 0.13
***

 0.06
*
 0.08

**
 0.10

***
 -0.08

**
 

 SBP (mmHg) 97.00; 10.06 -0.17
***

 -0.15
***

 -0.17
***

 -0.15
***

 -0.13
***

 -0.18
***

 -0.18
***

 -0.14
***

 0.04 

 DBP (mmHg) 61.65; 8.82 -0.18
***

 -0.14
***

 -0.18
***

 -0.16
***

 -0.15
***

 -0.15
***

 -0.16
***

 -0.13
***

 0.02 

 Heart Rate (beats/min) 80.17; 10.17 -0.66
***

 -0.40
***

 -0.69
***

 -0.74
***

 -0.72
***

 -0.65
***

 -0.64
***

 -0.64
***

 0.28
***

 

 Start Time (hr:min) 10:41; 3:13 -0.19
***

 -0.20
***

 -0.17
***

 -0.04 -0.01 -0.27
***

 -0.18
***

 -0.06
*
 -0.14

***
 

 Processing time (min) 69.24; 21.67 0.07
*
 0.19

***
 0.02 -0.05 -0.07

*
 0.14

*** 
0.06

*
 -0.02 0.12

***
 

Pubertal Development           

 Gonardarche 1.85; 0.64 -0.03 0.00 -0.04 -0.10
**

 -0.10
**

 -0.02 -0.02 -0.07
*
 0.12

**
 

 Adrenarche 1.73; 0.69 -0.01 0.02 -0.02 -0.08
**

 -0.08
**

 -0.01 -0.01 -0.06
*
 0.11

**
 

Anthropometric Measures           

 BMI Z-score (percentile) 59.93; 27.79 0.00 -0.04 0.02 0.05 0.05 0.00 0.03 0.03 -0.00 

 Waist Circumference(cm) 64.34; 9.40 -0.04 -0.05
+
 -0.02 0.00 0.00 -0.07

*
 -0.04 -0.01 -0.02 

Sleep Measures           

 School Bed-time  20:31; 0:31 -0.07
*
 -0.08

*
 -0.06

+
 -0.02 -0.01 -0.09

**
 -0.08

*
 -0.05 -0.02 

 Weekend Bed-time 21:36; 0:41 -0.08
*
 -0.09

*
 -0.07

*
 -0.02 -0.02 -0.09

**
 -0.07

*
 -0.06

+
 0.01 

 Average Sleep Duration 9:52; 0:40 0.07
*
 0.06

+
 0.06

+
 0.05 0.05 0.08

*
 0.06

+
 0.06

+
 -0.02 

 WASO (Yes)                        (91; 11%) -0.00 0.03 -0.02 -0.04 -0.04 -0.01 -0.02 -0.06
+
 0.10

**
 

 Physical Activity (Yes)  (32; 3.6%) -0.01 -0.06
+
 -0.05 0.02 0.03 -0.06 -0.02 0.03 -0.08

**
 

Note. SBP = systolic blood pressure; DBP = diastolic blood pressure; SDNN = standard deviation of all normal sinus RR intervals; SDANN = standard deviation of the 

averaged normal sinus RR intervals for all 5-min segments; SDNNi = mean of the standard deviations of all normal sinus RR intervals for all 5-min segments; rMSSD = root-

mean-square of the successive normal sinus RR interval difference; pNN50 = percentage of successive normal sinus RR intervals 50 ms.; VLF = Very low frequency (0.0033-0.04 

Hz); Ln = log-transformed value; LF = Low frequency (0.04-0.15 Hz); HF = High frequency (0.1500-0.4 Hz); ms = milliseconds; WASO = wake after sleep onset.  
*
 p < .05; 

**
p < 

.01; 
***

 p < .001; + p < .08



TRANSITION TO MANUSCRIPT 3 

The objectives of manuscript 2 were to establish normative HRV values of 

traditional time-and frequency-domain variables in children and to assess potential 

developmentally-relevant covariates.  Manuscript 2 is an original contribution to the field 

that provides normative HRV values for a large, population-based cohort of 10-year-old 

children.  It is anticipated that these referent values will foster comparisons of HRV 

values across pediatric studies. 

In addition, several covariates were identified for child HRV parameters.  

Manuscript 2 evaluated multiple developmentally-relevant covariates of HRV, both 

singularly and collectively.  Results revealed that heart rate, gonardarche pubertal status, 

and DBP are pertinent when analyzing HRV in children.  It is suggested that these be 

included as standard covariates when using HRV in children.  Taken together, the results 

of manuscript 1 and 2 established a methodological foundation for comparing and 

evaluating HRV in children, a prerequisite to my overarching aim of examining 

sympathovagal balance in the relation between sleep and child obesity.     

In adults, there is convincing evidence that sleep duration is significantly related 

to HRV, as demonstrated by experimental studies (Speigel et al., 1999, 2004; Van Cauter, 

2007).  One particularly intriguing finding is that HRV seems to be associated with other 

sleep dimensions beyond sleep duration, such as sleep patterns and disturbances.  While 

these sleep dimensions partly overlap, they are associated with unique physiological 

mechanisms.  Thus, it was necessary to determine their independent relation with obesity 

as this may have informed a more comprehensive understanding of putative 

pathophysiological mechanisms linking sleep and obesity.  Interestingly, most pediatric 
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studies examining the link between sleep and obesity almost exclusively focus on sleep 

duration as the sole indicator of sleep.  This insular approach may be misguided given 

that sleep is a dynamic multidimensional construct that extends beyond sleep duration. 

Manuscript 3 investigated whether other sleep dimensions, beyond sleep duration, 

were associated with childhood obesity.  Specifically, the aim of manuscript 3 was to test 

the associations between sleep patterns (e.g., bed- and rise-times) and sleep disturbances 

(e.g., parasomnias) with multiple indicators of obesity, while controlling for sleep 

duration and obesity-related covariates in a sample of healthy youth.   
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MANUSCRIPT 3: 

 

 

 

 

 

Beyond Sleep Duration: Distinct Sleep Dimensions are Associated with Obesity in  

 

Children and Adolescents 

 

 

 

 

Jarrin, D. C., McGrath, J. J., & Drake, C. L. (Under review) 
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 Abstract 

 

Objective: Short sleep duration is recognized as a significant risk factor in childhood 

obesity; however, the question as to how sleep contributes to the development of obesity 

remains largely unknown.  A majority of pediatric studies have relied on sleep duration 

as the exclusive measure of sleep; this insular approach may be misleading given that 

sleep is a dynamic multidimensional construct that extends beyond sleep duration, 

including sleep disturbances and patterns.  While these sleep dimensions partly overlap, 

it is necessary to determine their independent relation with obesity, which in turn, may 

inform a more comprehensive understanding of putative pathophysiological mechanisms 

linking sleep and obesity. The aim of the present study was to investigate whether sleep 

dimensions including sleep duration, disturbances, and patterns were individually 

associated with obesity, independent of multiple covariates.  The second objective was to 

examine whether sleep disturbances and patterns were independent predictors of obesity, 

after adjusting for sleep duration.  Method: Participants included 242 healthy children 

and adolescents (Mage = 12.66, SD = 2.03; 46.1% females).  Anthropometric measures 

included measured waist and hip circumference, body mass index Z-score and percent 

body fat.  Subjective sleep measures included sleep duration, sleep disturbances, sleep 

quality, and sleep patterns from youth- and parental-report.  Results:  Youth with larger 

adiposity and body composition measures reported poorer sleep quality (βavg = -0.14, 

p<.01), more sleep disturbances (βavg = 0.12, p<.05), and showed a delayed sleep phase 

pattern (βavg = 0.13, p<.05), independent of age, sex, pubertal status, physical activity, 

screen time, and sleep duration.  Shorter sleep duration was significantly associated with 

obesity; however, this link was attenuated after adjustment of covariates.  Conclusions: 
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Results suggest sleep measures beyond duration may more precisely capture influences 

that drive the negative association between sleep and obesity, and thus, yield more robust 

associations.  As such, future studies are needed to better understand how distinct sleep 

dimensions confer risk for childhood obesity.    
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Introduction 

Over the past decade, sleep curtailment has been identified as a significant risk 

factor in the etiology and maintenance of childhood obesity.  A solid and consistent 

association between short sleep duration and obesity, cross-sectionally as well as 

prospectively, has been reported even after controlling for a number of relevant 

covariates such as age, sex, and other obesity-related behaviors (e.g., physical activity 

and snacking; Chen, Beydoun, & Wang, 2008; Nielsen, Danielsen, & Sørensen, 2011).  

Within pediatric populations, meta-analyses demonstrate a clear pattern suggesting short 

sleep duration is implicated in the etiology and maintenance of obesity (Chen et al., 2008; 

Nielson et al., 2011).  Despite these generally robust findings, some research suggests the 

relation between sleep duration and obesity in youth is attenuated after adjustment for 

covariates (e.g., Calamaro et al., 2010; Knutson, 2005; Storfer-Isser, Patel, Babineau, & 

Redline, 2012).  Alas, the majority of pediatric studies have relied on “sleep duration” as 

the exclusive measure of sleep.  This insular approach may be misleading given that sleep 

is a dynamic multidimensional construct that extends beyond sleep duration, including 

sleep disturbances and patterns.   

Sleep duration is derived based on the number of hours slept per night.  Measures 

are used to capture average sleep duration ranging from one night to one month with 

actual or categorical estimates (e.g., >10hrs, 8-9hrs, 6-7hrs, <6 hrs).  Sleep duration 

reflects factors such as biological and developmental sleep needs as well as contextual or 

lifestyle demands (e.g., school start times, extracurricular activities).  However, length of 

time spent sleeping is directly influenced by other sleep dimensions.  Indeed, sleep 

dimensions distinct from sleep duration are commonly used as diagnostic criteria for 
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sleep and arousal disorders (American Sleep Disorders Association, 1990).  Sleep 

disturbances refer to myriad dimensions including sleep fragmentation (e.g., arousals or 

awakenings), sleep disorders (e.g., sleep apnea, parasomnias), and poor sleep quality.  

Sleep patterns refer to circadian rhythm preference and sleep-wake schedules (e.g., sleep 

timing).  These sleep dimensions may contribute to obesity through their impact on 

specific pathophysiological mechanisms.     

 Sleep physiology is composed of two major states (rapid eye movement, REM; 

non-rapid eye movement, NREM) and a cyclical alternating pattern or architecture.  REM 

is characterized by an increase in heart rate, blood pressure, and respiration level 

compared to NREM sleep (Pannain & Van Cauter, 2007; van Eekelen, Varkevisser, & 

Kerkhof, 2003).
 
 NREM sleep is subdivided into four stages: stages 1 and 2 (light sleep) 

and stages 3 and 4 (deep or slow-wave-sleep).  Slow wave sleep is characterized by 

increased parasympathetic and decreased sympathetic activation (i.e., reduced brain 

activity, heart rate, cardiac output, breathing, and blood pressure compared to wake and 

REM sleep) and coincides with the most prominent changes in the endocrine system (i.e., 

stimulating and inhibiting hormone secretion; Hanlon & Van Cauter, 2011; Pannain & 

Van Cauter, 2007; van Eekelen et al., 2003).  Greater time spent in slow wave sleep is 

considered to be more restorative than other sleep stages given its predominant 

parasympathetic drive (Edinger et al., 2000; Hanlon & Van Cauter, 2011; Pannain & Van 

Cauter, 2007; van Eekelen et al., 2003).  These sleep dimensions have been linked to 

adverse physiological processes (Hanlon & Van Cauter, 2011).  

 Sleep disturbances are largely characterized by recurrent nocturnal awakenings 

defined by specific EEG events (i.e., micro-arousals) or behavioral markers (e.g., 



85 

 

reported awakenings; Janackova & Sforza, 2008).  Nocturnal awakenings cause abrupt 

physiological changes markedly increasing sympathetic and hypothalamic pituitary 

adrenal activity (e.g., increased respiration, heart rate, blood pressure, cortisol; Ekstedt, 

Åkerstedt, & Söderström, 2004; Janackova & Sforza, 2008; Stamatakis & Punjabi, 2010).  

In sleep apnea, respiration is repeatedly disrupted, resulting in frequent awakenings and 

micro-arousals that in turn affect sleep quality. Interestingly, these systems are postulated 

to contribute to an increased deposit of fat, particularly in the abdominal regions in both 

adults and youth (Björntorp, 2001; Drapeau, Therrien, Richard, & Tremblay, 2003; 

Daniels, Morrison, Sprencher, Khoury, & Kimball, 1999).  

 Sleep patterns related to circadian rhythm preference are biologically governed by 

the suprachiasmatic nucleus and have a bi-directional relationship with metabolism (Pan 

& Hussain, 2009; Turek et al., 2005; Laposky, Bass, Kohsaka, & Turek, 2008).  

Circadian clock mutant mice absorb more carbohydrates and lipids than peptides (Pan & 

Hussain, 2009), show increased levels of cholesterol, triglycerides, glucose, leptin, and 

have decreased insulin resistance (Turek et al., 2005; Laposky, Bass, Kohsaka, & Turek, 

2008).  In turn, metabolic factors feedback onto the regulation of circadian timing, 

disturbing sleep architecture (time spent in sleep stages), wake schedules, as well as 

locomotor and feeding behaviors (Turek et al., 2005; Laposky et al., 2008).  Taken 

together, it is speculated that unique sleep dimensions may play critical, yet distinct roles 

beyond sleep duration (e.g., via pathophysiological mechanisms) in the development and 

maintenance of obesity.   

  Among adults, frequent sleep complaints related to initiating and maintaining 

continuous sleep are significantly associated with greater body mass index (BMI; Strine 
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& Chapman, 2005; Wheaton et al., 2011) and future weight gain, independent of sleep 

duration (Lyytikainen, Lallukka, Lahelma, & Rahkonen, 2011).  Objectively measured 

sleep fragmentation (i.e., actigraphy) has been significantly associated with greater BMI 

(Lauderdale et al., 2009), even in models adjusted for sleep apnea (van den Berg et al., 

2008).  Further, adults with erratic sleep patterns (e.g., shift work schedules) typically 

show greater indices of overweight, obesity, and metabolic syndrome compared to those 

with routine sleep patterns (Di Lorenzo et al., 2003).  Among pediatric populations, 

overweight youth evidence greater sleep disturbances (e.g., sleep-disordered breathing), 

more arousals (e.g., sleep fragmentation), sleep disorders (e.g., parasomnias), and longer 

time spent falling asleep (i.e., sleep latency), compared to healthy weight youth (Beebe et 

al., 2006).  Additionally, obese youth report more erratic sleep patterns and later 

bedtimes, independent of age, sex, and sleep duration (Moore et al., 2011; Olds, Maher, 

& Matricciani, 2011).  

 The question as to how sleep contributes to the development of obesity remains 

largely unknown.  The use of sleep duration as the predominant measure of sleep is 

problematic because it does not reflect the nuanced dimensions underlying sleep which 

themselves reflect unique physiological processes.  In other words, it is unclear whether 

short sleep duration is directly linked to obesity or whether sleep disturbances (e.g., 

fragmentation, apnea, quality) and sleep patterns better explain the association.  While 

these sleep dimensions partly overlap, it is necessary to determine their independent 

relation with obesity, which in turn, may inform a more comprehensive understanding of 

putative pathophysiological mechanisms linking sleep and obesity.  
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 The aim of the present study was to investigate whether sleep dimensions 

including sleep duration, sleep disturbances, and sleep patterns were individually 

associated with obesity in a sample of healthy youth.  The second objective was to 

examine whether sleep disturbances and sleep patterns were independent predictors of 

obesity, after adjusting for sleep duration.  First, it was hypothesized that sleep duration 

(i.e., school night, weekend night), sleep disturbances (e.g., poor sleep quality), and sleep 

patterns (e.g., weekend oversleep, weekend delay) would each be significantly associated 

with greater adiposity (i.e., waist and hip circumference) and body composition indices 

(i.e., BMI Z-score, percent body fat).  Second, it was hypothesized that the associations 

between sleep disturbances and sleep patterns with obesity would remain significant, 

even after controlling for sleep duration.   

Method 

Participants  

 Youth (N = 242) aged 8 to 18 years and their parents took part in the larger 

Healthy Heart Project, a longitudinal study that investigates childhood risk factors of 

cardiovascular disease.  Youth were recruited using flyers posted around the community 

and bookmarks distributed by teachers in classrooms.  Exclusionary criteria included 

serious psychopathology, medical conditions, or use of medications with known 

cardiovascular effects.  The study was approved by the Concordia University Research 

Ethics Board (# UH2005-077-4).  Informed consent and assent were obtained before the 

start of the study.  Participants were financially compensated for their participation time.   
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Obesity Measures  

Anthropometric measures were taken by trained research assistants while youth 

were dressed in light clothing.  Height was measured using a standard stadiometer at 

maximal breath with shoes off.  With a standard measuring tape, waist circumference was 

measured at the narrowest part of the body, midway between the lowest rib cage and the 

iliac crest; hip circumference was measured at the widest part of the body over the 

buttocks.  Weight and percent body fat were measured with a bioelectrical impedance 

scale (Tanita Body Composition Analyzer BF-350).  Bioelectrical impedance methods 

have demonstrated moderate agreement with the gold standard for measuring body fat 

(dual energy x-ray absorbtiometryl method: r = 0.40 to 0.69; Pateyjohns, Brinkworth, 

Buckley, Noakes, & Clifton, 2006).  Age-and sex-specific BMI Z-scores were 

determined using the growth charts published by the U.S. Centers for Disease Control 

and Prevention (Ogden et al., 2002).   

Sleep Measures 

Sleep Duration.  Sleep duration was obtained by youth self-report in response to:  

“During the past month, what time do you usually go to bed/wake up on school 

nights/weekends?”  Sleep duration for school nights and weekends was calculated as the 

difference between bed- and wake-time.  Youth self-report estimates of sleep duration 

have been previously shown to be correlated with objective measures of sleep duration 

(actigraphy: r = 0.53; Wolfson et al., 2003). 

 Sleep Disturbances.  The Children’s Sleep Habits Questionnaire is a 43-item 

scale that screens for common sleep problems (e.g., parasomnias, sleep-disordered 

breathing) over a one week interval (Owens, Spirito, & McGuinn, 2000).  On a 3-pt scale 



89 

 

(rarely, sometimes, usually), parents reported the frequency of their child’s sleep habits 

(e.g., “my child awakes more than once”).  Items are summed to obtain a total score, with 

higher scores indicating considerable sleep disturbances.  The scale has demonstrated 

test-retest reliability, validity, and internal consistency (Owens et al., 2000).  Youth also 

rated their overall sleep quality (i.e., the subjective perception of how sleep is 

experienced) on a scale of 1 to 10 (1 = very bad to 10 = very good).  This question is 

commonly used in studies assessing explicit perceptions about feeling rested and satisfied 

with sleep upon awakening (Dewald, Meijer, Oort, Kerkhof, & Bo, 2010).   

Sleep Patterns.  Sleep patterns were measured with self-reported bed- and wake-

time during school and weekends.  These times were used to derive weekend oversleep 

(difference total sleep duration on weekends and school nights), weekend delay 

(difference between bedtime on weekend and school nights), and weekend awakening 

delay (difference between waketime on weekend and school days; Smith, Reilly, & 

Midkiff, 1989).  Greater differences indicate more sleep, later bedtimes, and later wake 

times on weekends, respectively.  Self-reported bed- and wake-times are significantly 

correlated with objective measures of sleep (actigraphy: r = 0.70) and wake-onset times 

(actigraphy: r = 0.77; Wolfson et al., 2003).   

Covariates 

Puberty.  Using a validated self-report measure of puberty (Growing and 

Changing Questionnaire; Golding, Pembrey, & Jones, 2001), two stages of pubertal 

development were assessed: gonadarche (breast and genital development) and adrenarche 

(pubic hair).  Youth indicated their pubertal stage based on sex-specific illustrations 

corresponding to Tanner stages I-V of prepubertal to complete sexual maturity.  Although 
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physician assessment of pubertal development is considered the gold standard, self-report 

has demonstrated good reliability and validity among youth (r= 0.77 to 0.91; Morris & 

Urdy, 1980). 

Locomotor Activity.  Youth answered questions about moderate physical activity 

(e.g., “During the past week, how many days did you do physical activity for 20 min 

straight, that made you sweat or breathe fast?”) and screen time (e.g., “During the past 

week, how many hours did you watch TV each day?”).  Self-report estimates of weekly 

physical activity bouts in youth yield adequate reliability with accelerometer (r = 0.31) 

and activity logs (r = 0.46; Welk et al., 2007).  Self-report estimates of screen time also 

show high test-retest reliability among youth (ICC = 0.98; He, Harris, Piche, & Beynon, 

2009).  

Statistical Analysis 

All data were analyzed with SPSS 20 software (SPSS, Inc., Chicago, IL), kept 

continuous to maximize statistical power, and were checked for normality and linearity.  

To examine the extent of overlap among the sleep dimensions, partial correlational 

analyses controlling for age were conducted.  Next, to test the hypotheses, sequential 

regression analyses were modeled individually for each obesity measure (i.e., waist 

circumference, hip circumference, BMI Z-score, percent body fat).  First, each sleep 

dimension (i.e., sleep duration, sleep disturbances, sleep quality, bed- and wake-time, 

weekend oversleep, weekend delay, weekend awakening delay) was entered singularly to 

examine its unique effect on each obesity measure.  Second, covariates were entered into 

these models (age, sex, pubertal status, physical activity, screen time).  Third, sleep 
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duration was added as an additional covariate to test the association between each sleep 

dimension with obesity, beyond sleep duration.   

Results 

Participant demographics are presented in Table 1.  The majority of youth were 

male (54%), Caucasian (59%), and of normal weight status (70% BMI <85
th

 percentile).  

On average, youth were 12.66 years (SD = 2.03), reported being in the intermediate 

stages of pubertal adrenarche (M = 2.98, SD = 1.49), were moderately physically active 

for ~4 days/week (SD = 1.97), and watched TV ~2.5 hours/day (SD = 1.94).  Youth 

typically reported their sleep quality as average (range 1-10, M = 6.76, SD = 2.07), slept 

~9 hours on school nights, ~10 hours on weekend nights, and had a later bed- (M = 80 

min, SD = 66) and wake-time (M =134 min, SD = 100) on weekends (see Table 2).   

After controlling for age, partial correlational analyses revealed small to moderate 

inter-correlations among the sleep dimensions (Table 3).  Sleep duration on school and 

weekend nights was weakly correlated with sleep disturbances and weekend delay.  

Moderate to large correlations were observed for weekend oversleep and weekend 

awakening delay for weekend sleep duration only.  However, these higher correlations 

are largely attributable to use of bed- and wake times to derive both of these measures.  

Sleep disturbances and sleep patterns also yielded low correlations.  Collectively, these 

data suggest the sleep dimensions were largely unique.  

In the first step of the sequential regression models, each sleep dimension was 

entered singularly (see Table 4).  School night sleep duration significantly predicted waist 

and hip circumference.  Sleep disturbances significantly predicted waist circumference 

and BMI, while sleep quality predicted all obesity measures.  Sleep patterns were 
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associated with waist and hip circumference and BMI, but not percent body fat.  These 

findings are largely consistent with previously reported findings.   

Second, when covariates (age, sex, pubertal status, physical activity, screen time) 

were entered into the models (see Table 5), sleep duration was no longer associated with 

any obesity measures.  Sleep disturbances significantly predicted all obesity measures.  

Sleep patterns reflected by overall bedtimes were most predictive of obesity measures, 

while indicators of weekend sleep debt (e.g., oversleep, delay) were not related. 

Third, when sleep duration was added as another covariate, analyses revealed 

nearly largely identical results (data not shown for parsimony).  Namely, sleep 

disturbances remained significantly associated with adiposity and body composition 

indices.  Similarly, sleep patterns of later school night bed- and wake-times and later 

weekend bedtimes were still significantly associated with adiposity and body 

composition measures.   

Discussion 

The relation between sleep and obesity has been predominantly limited to the use 

of sleep duration.  However, sleep duration is a broad measure that does not capture the 

unique aspects of other sleep dimensions.  Importantly, different sleep dimensions may 

provide more precise information to better elucidate the relation between sleep and 

obesity due to their distinct underlying physiological mechanisms.  The aim of the 

present study was to assess whether obesity measures are better predicted by sleep 

disturbances and sleep patterns, beyond sleep duration.   

Consistent with past research, school night sleep duration was significantly 

associated with central adiposity measures of obesity in youth (Chen et al., 2008; Nielson 
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et al., 2011), such that short sleep duration predicted greater waist and hip circumference.  

However, this association was attenuated after the adjustment of multiple covariates; 

similar results have also been previously reported (Calamaro et al., 2010; Knutson, 2005; 

Storfer-Isser et al., 2012).  Sleep disturbances, on the other hand remained significantly 

associated with obesity in both unadjusted and adjusted models.  Youth exhibiting 

frequent sleep disturbances had larger waist and hip circumferences as well as greater 

percent body fat.  Beebe et al (2006) found greater parent-reports of parasomnias, 

daytime sleepiness, and bedtime resistance among clinically obese youth compared to 

healthy weight controls.  In the present sample, pre-sleep anxiety and bedtime resistance 

were significant predictors of obesity indicators (data not shown).   Similarly, frequent 

childhood sleep disturbances were associated with an almost two-fold increased risk of 

being overweight or obese at age 21 (Al Mamum et al., 2002).  Childhood sleep problems 

(e.g., pre-sleep anxiety), if untreated, may evolve into eventual sleep disorders (e.g., 

insomnia; Moore, Allison, & Rosen, 2006).  Notably, there is physiological evidence 

showing markedly reduced parasympathetic and increased sympathetic activation during 

the day and night among children diagnosed with sleep disorders, such as sleep-

disordered breathing (Liao et al., 2010) and periodic leg movements (Walter et al., 2009).   

Consistent with past studies, sleep quality was significantly associated with 

obesity (Bawazeer et al., 2009).  Youth reporting poor sleep quality had larger hip 

circumference, BMI Z-score, and percent body fat, after controlling for covariates.  Poor 

sleep quality has been linked with an increased likelihood of having high blood pressure 

among adolescents (Javaheri, Storfer-Isser, Rosen, & Redline, 2008) and greater waist 

circumference, BMI, percent body fat, insulin and glucose concentrations, and insulin 
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resistance among adults (Jennings, Muldoon, Hall, Buysse, & Manuck, 2007).  It has 

been postulated that estimates of sleep quality may be an indirect marker of restorative 

slow wave sleep (Edinger et al., 2000).  Compared to other sleep stages, slow wave sleep 

is particularly relevant for metabolic, hormonal, and neurophysiologic homeostasis 

(Hanlon & Van Cauter, 2011; van Eekelen et al., 2003).  During slow wave sleep, there is 

an overall dominance of parasympathetic activity and concomitant reductions in 

sympathetic activity, glucose use, and corticotropic release (i.e., cortisol and ACTH; 

Hanlon & Van Cauter, 2011; van Eekelen et al., 2003), and is thus, posited to be an 

especially important sleep stage to obtain.   

Experimental evidence indicates that selective deprivation of slow wave sleep 

may contribute to poor metabolism via the dysregulation of insulin, increase in cortisol 

secretion, and reduced secretion of growth hormone (Tasali, Leproult, Ehrmann, & Van 

Cauter, 2008).  Less time in slow wave sleep was associated with greater BMI, waist and 

hip circumference, percent body fat, and waist-to-hip ratio after controlling for physical 

activity, sleep efficiency, snoring, and sleep duration among older men (Rao et al., 2009) 

and middle-aged women (Theorell-Haglöw, Berne, Janson, Sahlin, & Lindberg, 2010).   

Sleep patterns also emerged as a significant predictor of obesity.   Youth reporting 

later weekend bedtimes and exhibiting a delayed sleep phase on school days (i.e., later 

sleep and wake times) had greater adiposity and body composition measures of obesity, 

regardless of sleep duration.  This is consistent with evidence that metabolism may be 

more influenced by the timing of sleep (i.e., obtaining sleep at one’s natural/ideal point in 

their circadian rhythm), rather than the actual quantity of sleep obtained (Scheer, Hilton, 

Mantzoros, & Shea, 2009).  Although the present study found no significant association 
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between irregular weekend sleep schedules and obesity in youth after adjusting for 

covariates, the observed direction is similar to those previously reported (Olds, 

Tomkinson, Maher, & Ferrar, 2008).  Collectively, youth who exhibit more sleep 

disturbances, perceive their sleep quality as poor, and have a delayed sleep phase show 

significantly greater adiposity and body composition indices of obesity, irrespective of 

sleep duration. 

Potential Underlying Mechanisms  

   The parasympathetic nervous system is dominant during sleep.  Nocturnal 

awakenings or the transition to wakefulness are associated with concomitant increases in 

sympathetic (i.e., norepinephrine, sympathetic muscle nerve activity, blood pressure, 

heart rate) and hypothalamic pituitary adrenal activity (i.e., cortisol; Hanlon & Van 

Cauter, 2011; van Eekelen et al., 2003).  Recurrent nocturnal awakenings considerably 

reduce sleep quality, increase daytime sleepiness, and alter sleep architecture, reducing 

restorative slow wave sleep and REM sleep (Ekstedt et al., 2004; Stamatakis & Punjabi, 

2010).  This reduction in slow wave sleep leads to decreases in growth hormone 

secretion, insulin sensitivity, and glucose effectiveness, as well as increases in morning 

cortisol and cholesterol levels; all irrespective of sleep duration (Ekstedt et al., 2004; 

Stamatakis & Punjabi, 2010).  Additionally, sleep disruptions (sleep fragmentation) may 

modify the ability of appetite-regulating hormones (e.g., glucose, leptin, ghrelin) to 

accurately signal appropriate energy intake and expenditure, leading to increased food 

consumption, particularly for unhealthy foods (i.e., high-carbohydrate foods) and weight 

gain (Pannain & Van Cauter, 2008).  It is postulated that the integrated activation of these 

systems contributes to increased metabolism of specific lipid-accumulating key enzymes, 
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targeting lipolytically sensitive adipose tissue regions (Björntorp , 2001; Drapeau et al., 

1999).  Thus, the pathophysiological responses related to shallow fragmented sleep may 

promote a nocturnal stress response within the nervous and endocrine system, expediting 

the progression of obesity; examples of this include data from those diagnosed with sleep 

apnea (Trakada, Chrousos, Pejovic, & Vgontzas, 2007).  

Another plausible mechanism underlying the relation between sleep and obesity is 

the neurotransmitter hypocretin (Hcrt), also referred to as orexin.  Hcrt is related to stress 

induced wakefulness, which leads to a hyperarousal state commonly characterized by 

increased fatigue, anxiety, and insomnia (Baumann & Bassetti, 2005).  It is also 

implicated in autonomic functions (i.e., increased arterial blood pressure, heart rate, and 

overall sympathetic activation) and has direct effects on the regulation of sleep-wake 

behaviors (Baumann & Bassetti, 2005).  Interestingly, Hcrt activation may also promote 

increased food intake, particularly palatable food, via activation of appetite regulating 

neurons (e.g., neuropeptide Y and agouti-related peptide) and inhibition of appetite 

suppressing neurons (e.g., proopiomelanocortin and cocaine-and amphetamine-related 

transcripts; Sakurai, 2007; vandenTop, Lee, Whyment, Blanks, & Spanswick, 2004; 

Zheng, Patterson, & Berthoud, 2005).  Taken together, the integrated activation of the 

sympathetic and hypothalamic pituitary adrenal systems in combination with the Hcrt 

system are putative physiological mechanisms underlying the association between sleep 

disturbance and obesity (Hanlon & Van Cauter, 2011).   

Strengths and Limitations  

One limitation of the current study was the cross-sectional design; the present 

findings cannot determine the temporal direction of the relation between sleep and 
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obesity.  A second limitation involved the subjective measures of sleep indices, which 

precluded diagnosis of sleep disorders, such as sleep apnea or restless leg syndrome.  

Although, the subjective measures used in the present study are likely to be more related 

to habitual sleep duration than a single laboratory measure; and they have demonstrated 

reliability and validity in the literature when compared with objective sleep measures 

(Lockley, Skene, Butler, & Arendt, 1999).  Further, unlike previous studies, multiple 

indicators of obesity and sleep were measured.  Sleep parameters were assessed by 

multiple informants, which provide a more comprehensive representation of sleep 

complaints, sleep patterns on both school and weekends, as well as explicit ratings of 

sleep quality by youth.  This was corroborated when sleep demographics (e.g., average 

sleep duration) within our sample were similar with those reported in past pediatric 

research (Moore et al., 2011).  Similarly, the sample was representative of the general 

population, with prevalence rates of healthy-weight, overweight, and obese youth similar 

to population-based studies (Tremblay, Katzmarzyk, & Willms, 2002).  This multi-

method approach likely provides more robust measures of obesity and sleep in youth.     

Future Studies and Conclusions 

 Given that obesity is a risk factor for multiple chronic diseases (e.g., 

cardiovascular disease), disability, and premature mortality (Must & Anderson, 2000), a 

better understanding of the role of sleep in the pathogenesis of obesity is of great 

importance.  Longitudinal designs with repeated obesity and sleep measures are 

necessary to elucidate how weight gain is influenced by distinct sleep dimensions (i.e., 

sleep disturbances and patterns).  Specifically, investigation of the role of 

chronobiological (e.g., evening/morning preference), physiological (e.g., autonomic and 
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metabolic activity profiles across specific sleep stages), contextual (e.g., school start-

times, parental monitoring), and psychological (e.g., stress) factors across the life course 

is recommended to better delineate the nature and direction of the obesity-sleep relation 

(Hale & Berger, 2011).  It may be advantageous to consider using ambulatory 

polysomnography, actigraphy, and daily sleep logs completed in the participant’s usual 

environment, which would provide both objective and subjective information on sleep 

schedules (e.g., during school vs. summer vacations) and habits (e.g., watching TV in 

bed), as well as potentially identify additional risk and protective factors (e.g., sleep 

duration thresholds) previously omitted in studies (Hale & Berger, 2011).  Given the 

dynamic nature of sleep and obesity during childhood, future research has the potential to 

identify important obesity prevention strategies such as lifestyle habits (e.g., sleep 

hygiene) that develop during the particularly vulnerable childhood life stage. 

 Overall, consistent with the literature, short sleep duration was associated with 

childhood obesity.  The results suggest sleep measures beyond duration may more 

precisely capture influences that drive the negative association between sleep and obesity, 

and thus, yield more robust associations.  Sleep disturbances and sleep delayed phase 

sleep pattern were independently associated with greater adiposity and body composition 

indices of obesity in youth, irrespective of obesity-related covariates and sleep duration.   
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 Table 1 

Demographic Information of Youth 

Variable Mean (n) SD (%) 

Sex   

     Girls (110) (46.1) 

Age (years) 12.66 2.03 

Race   

     Caucasian (145) (59.7) 

     Asian (26) (10.7) 

     Black (20) (8.2) 

     Latino (10) (4.1) 

     Other/Mixed (42) (17.3) 

Anthropometric Measures   

    Waist circumference (cm) 72.12 9.17 

    Hip circumference (cm) 90.7 10.48 

    Body Mass Index (%
percentile

) 63.27 26.66 

    Percent body fat (%) 21.95 9.23 

Body weight status
1
   

     Normal (5
th

 - <85
th

 
percentile

) (172) (70.8) 

     Overweight (85
th

 - 95
th percentile

) (43) (17.8) 

     Obesity (>95
th

 
percentile

) (25) (10.3) 

     Underweight (<5
th

 
percentile

) (3) (1.2) 

Pubertal Stage (adrenarche) 2.98 1.49 

Physical Activity (days/week) 3.72 1.97 

Screen time (hrs/day) 1.86 1.94 

       Note. N = 242.  
       1

Distribution of age-and sex-specific body weight based on Centers for Disease Control values 
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Table 2 

 

Demographic Measures of Sleep Dimensions in Youth 

Sleep Dimensions Mean  SD 

Sleep Duration   

     School night (min) 545.11 62.96 

     Weekend night (min) 598.69 82.78 

Sleep Disturbances
1
   

     Sleep Behavior Problems
1 

(0-132) 41.27 5.21 

     Bedtime Resistance (range 5-15) 6.95 1.45 

     Sleep Onset Latency (range 1-3) 1.31 0.57 

     Sleep Duration (range 3-9) 4.31 1.54 

     Sleep Anxiety (range 3-9) 4.45 0.88 

     Night Awakenings (range 3-6) 3.29 0.65 

     Parasomnias (range 6-17) 7.65 1.14 

     Sleep-Disordered Breathing (range 3-5) 3.14        0.42 

     Sleep Quality (1-10) 6.76        2.07 

Sleep Patterns   

     School Night   

           Wake time (hr:min) 6:51 00:35 

           Bedtime (hr:min) 21:47 00:53 

     Weekend Night  

           Wake time (hr:min) 9:06 1:34 

           Bedtime (hr:min) 23:07 1:22 

     Weekend Oversleep (min) 53 95 

     Weekend Delay (min) 80 66 

     Weekend Awakening (min) 134 100 

 Note. N = 242. (hr : min = hour : minutes).  
1
Children’s Sleep Habits Questionnaire. 
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Table 3  

 

Partial Correlations among Sleep Dimensions, Controlling for Age 

*
p < .05; 

**
p < .01; 

***
p < .001 

 

 

 

 

 

 Sleep Duration Sleep Disturbances Sleep Patterns 

 School     

Night 

Weekend 

Night 

Sleep 

Disturbances 

Sleep     

Quality 

Weekend 

Oversleep 

Weekend 

Delay 

Weekend 

Awakening 

Delay 

School Night - 0.23
***

 -0.15
**

    0.18
**

 -0.35
***

 -0.01 -0.10 

Weekend Night - -0.17
**

 -0.01              0.82
***

   -0.18
**

        0.27
***

 

Sleep Disturbances  -    -0.20
**

       -0.07  0.05 -0.06 

Sleep Quality   -       -0.12 -0.00 -0.08 

Weekend Oversleep    -    -0.16
**

       0.32
***

 

Weekend Delay     -       0.38
***

 

Weekend Awakening Delay      - 
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Table 4 

 

Βeta Regression Coefficients of Sleep Dimensions Entered Singularly  
 

 Waist Circumference Hip Circumference Body Mass Index1 Percent Body Fat 

 β t p β t p β t p β t p 

Sleep Duration             

   School Night -0.22 -3.47 0.00 -0.40 -6.78 0.00 0.02 0.31 0.75 -0.05 -0.78 0.43 

   Weekend Night -0.04 -0.73 0.46 -0.01 -0.15 0.87 -0.08 -1.28 0.19 -0.01 -0.20 0.84 

Sleep Disturbances             

   Sleep Disturbances
2
 0.15 2.41 0.01 0.11 1.81 0.07 0.13 2.00 0.04 0.10 1.67 0.09 

   Sleep Quality -0.16 -2.60 0.01 -0.27 -4.43 0.00 -0.14 -2.23 0.02 -0.16 -2.51 0.01 

Sleep Patterns             

   School Bedtime  0.23 3.81 0.00 0.31 5.19 0.00 0.10 1.62 0.10 0.07 1.23 0.22 

   School Wake time 0.05 0.86 0.38 -0.05 -0.90 0.36 0.15 2.44 0.01 0.10 1.62 0.10 

   Weekend Bedtime 0.24 3.90 0.00 0.28 4.61 0.00 0.18 2.91 0.00 0.07 1.22 0.22 

   Weekend Wake time  0.14 2.20 0.02 0.21 3.34 0.00 0.03 0.54 0.58 0.02 0.41 0.68 

   Weekend Oversleep 0.10 1.60 0.10 0.25 4.09 0.00 -0.08 -1.32 0.18 0.02 0.34 0.73 

   Weekend Delay 0.11 1.75 0.08 0.10 1.57 0.11 0.14 2.28 0.02 0.03 0.54 0.58 

   Weekend Awakening Delay  0.11 1.75 0.08 0.21 3.46 0.00 -0.02 -0.34 0.73 -0.01 -0.19 0.84 

Note.  N = 242.  
1
Body mass index in Z-score. 2Children’s Sleep Habits Questionnaire. β = standardized regression coefficient.  

This model includes each sleep dimension entered singularly without covariates.  Bolded values indicate statistical significance. 
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Table 5 

 

Βeta Regression Coefficients of Sleep Dimensions Entered Simultaneously with Covariates  
 

 Waist Circumference Hip Circumference Body Mass Index1 Percent Body Fat 

 β t p β t p β t p β t p 

Sleep Duration             

    School Night -0.03 -0.38 0.70 -0.09 -1.42 0.15 -0.01 -0.13 0.89 0.02 0.29 0.76 

    Weekend Night -0.05 -0.81 0.41 -0.04 -0.68 0.49 -0.07 -1.31 0.19 -0.08 -1.31 0.18 

Sleep Disturbances             

   Sleep Disturbances2 0.15 2.56 0.01 0.10 1.93 0.05 0.12 1.76 0.07 0.11 1.98 0.04 

   Sleep Quality -0.11 -1.71 0.08 -0.15 -2.85 0.00 -0.16 -2.42 0.01 -0.12 -1.98 0.04 

Sleep Patterns             

   School Bedtime  0.09 1.31 0.19 0.09 1.57 0.11 0.14 1.98 0.04 0.12 1.96 0.05 

   School Wake time 0.13 2.07 0.03 0.05 0.90 0.36 0.17 2.63 0.00 0.15 2.68 0.00 

   Weekend Bedtime 0.13 2.02 0.04 0.13 2.28 0.02 0.19 2.79 0.00 0.11 1.85 0.06 

   Weekend Wake time  0.05 0.83 0.40 0.08 1.46 0.14 0.04 0.53 0.59 -0.00 -0.02 0.98 

   Weekend Oversleep -0.04 -0.55 0.57 0.01 0.18 0.85 -0.09 -1.19 0.23 -0.09 -1.45 0.14 

   Weekend Delay 0.09 1.44 0.15 0.08 1.55 0.12 0.12 1.84 0.06 0.04 0.76 0.44 

   Weekend Awakening  

   Delay   

0.00 0.05 0.95 0.06 1.07 0.28 -0.03 -0.42 0.67 -0.07 -1.17 0.24 

Note.  N = 242.  
1
Body mass index in Z-score. 2Children’s Sleep Habits Questionnaire. β = standardized regression coefficient.  

Multivariate models include each sleep variable entered simultaneously with covariates (age, sex, pubertal status, physical activity, and 

screen time).  Results remained consistent while adjusting for sleep duration (data not shown). Bolded values indicate statistical 

significance.  
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TRANSITION TO MANUSCRIPT 4 

 Given that sleep is dynamic and comprised of numerous dimensions, including 

duration, patterns, and disturbances, the aim of manuscript 3 was to investigate whether 

sleep parameters beyond sleep duration were associated with obesity indices among 

healthy children and adolescents.  The novel findings suggest that other sleep dimensions 

may more precisely capture the influences that drive the negative association between 

sleep and childhood obesity.  Youth with larger central adiposity and body composition 

measures reported poorer sleep quality, more sleep disturbances, and evidenced a delayed 

sleep phase pattern, independent of sleep duration.  Surprisingly, sleep duration was 

associated with childhood obesity in unadjusted, but not adjusted models.   

These findings about the independent relation of multiple sleep dimensions with 

child obesity informed my conceptual framework for understanding the underlying 

physiological mechanisms mediating the link between sleep and obesity.  My 

conceptualization broadened to consider whether sympathovagal imbalance could 

potentially underlie the relation between obesity with, not only short sleep duration, but 

with other sleep dimensions that may have their own distinct pathophysiological 

influences on the etiology and maintenance of obesity.  Interestingly, sympathovagal 

imbalance has been proposed to be involved with distinct sleep dimensions, both directly 

and indirectly (Knutson, 2012; Spiegel et al., 1999, 2004). 

 The objective of manuscript 4 was to assess whether sympathovagal imbalance 

mediated the relation between sleep and obesity in youth.  This fourth manuscript was 

directly informed by the culmination of my earlier work.  Manuscript 1 informed the 

selection of variables for testing the posited sympathovagal balance mechanism.  
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Namely, sympathovagal imbalance was assessed using frequency-domain variables: 

high-frequency (HF), low-frequency (LF) and LF:HF ratio.  These HRV parameters were 

found to have excellent measurement fidelity across commonly used software programs.  

Based on my results as well as previous findings in the literature, VLF was not used due 

to its ambiguous interpretation and moderate measurement fidelity with other software 

programs.  It was decided to focus exclusively on these frequency-domain variables as 

they are considered more sensitive indicators of parasympathetic and sympathetic activity 

(Task Force, 1996) and because they are commonly assessed and reported within the 

sleep literature (Speigel et al., 1999, 2004; Van Cauter, 2008; Zhong et al., 2005).  

 Manuscript 2 informed the selection of developmentally-relevant covariates that 

were controlled for methodologically (e.g., consistent ECG start time) and statistically 

(e.g., heart rate, puberty, blood pressue).  The normative HRV values were used to 

compare the results obtained with a sample at-risk for obesity.  Manuscript 3 informed 

the selection of sleep dimensions to be tested, including sleep duration, sleep patterns, 

and sleep disturbances.  Collectively, my previous findings directly informed and enabled 

examination of my overarching research question.  The aim of manuscript 4 was to assess 

whether sympathovagal imbalance mediated the link between multiple sleep parameters 

and childhood obesity.     
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Abstract 

While mounting evidence suggests sleep plays a causal role in the development of 

obesity, the underlying pathogenic pathways are complex and unresolved.  Experimental 

sleep deprivation studies demonstrate sympathovagal imbalance (i.e., hyperactive 

sympathetic and or hypoactive parasympathetic activity) is consequent to inadequate 

sleep.  Further, obese children exhibit sympathovagal imbalance, particularly during the 

night, compared to non-obese children.  The question remains whether sympathovagal 

imbalance is one potential pathophysiological pathway underlying the association 

between sleep and obesity.  The aim of the present study was to examine whether 

sympathovagal imbalance mediated the relation between sleep and childhood obesity.  

Participants included 564 children aged 9 to 12 years (43.6% girls) from QUALITY, a 

longitudinal cohort study of youth at-risk for the development of obesity.  Sleep duration, 

patterns, and disturbances were based on child- and parent-report.  Anthropometrics were 

measured for central adiposity and body composition indices of obesity (e.g., waist and 

hip circumference, percent body fat, fat mass index).  Sympathovagal imbalance was 

derived from heart rate variability spectral analyses of an electrocardiograph recording.  

Sympathovagal imbalance partially mediated the relation between inadequate sleep with 

central adiposity (R
2

avg = 0.25, ΔR
2

avg = 0.02) and body composition (R
2

avg = 0.14, ΔR
2

avg 

= 0.01).  Future research should consider longitudinal designs with additional 

physiological measures of sympathovagal imbalance (e.g., coherence analysis, 

cardiopulmonary coupling) acquired during sleep.  These findings highlight the 

importance of better understanding sympathovagal imbalance and its role in the etiology 

and maintenance of obesity. 
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Introduction 

Childhood obesity is a global epidemic with increasing prevalence rates over the 

past two decades (Shields, 2006; Tremblay, Katzmarzyk, & Willms, 2002).  Although 

recent data suggest the prevalence may have plateaued, rates of childhood obesity are 

high and contribute to significant physical, psychological, and economic burden (Ogdon, 

Carroll, Curtin, Lamb, & Flegal, 2010; Ogdon, Carroll, Kit, & Flegal, 2012).  Notably, 

childhood obesity tracks into adulthood (Freedman, Khan, Serdula, Dietz, Srinivasan & 

Berernson, 2005) and confers risk for insulin resistance, impaired glucose tolerance, 

hypertension, and early precursors to cardiovascular disease (Freedman, Dietz, 

Srinivasan, & Berenson, 1999; Must & Strauss, 1999; Wang & Dietz, 2002).   

Mirroring these trends, shorter sleep duration has increased among youth, largely 

due to later bedtimes and unchanged rise times across these past decades (Iglowstein, 

Jenni, Molinari, & Largo, 2003).  Only 20% of youth report sleeping the recommended 9 

hours each night and more than half of adolescents report sleeping 1 to 2 hours less than 

recommended (Nathional Sleep Foundation [NSF] Survey, 2004, 2008).
 
 Further, 

worldwide studies estimate 20% to 30% of children and 6% to 37% of adolescents (Liu et 

al., 2000; NSF Survey, 2004, 2008) report problems related to prolonged sleep latency, 

difficulty initiating and maintaining sleep, frequent nocturnal
 
awakenings,

 
and

 
poor 

quality
 
sleep

 
accompanied

 
with

 
significant

 
daytime impairments (Archold, Pituch, Panabi, 

& Chevrin, 2002; Owens, Spirito, & McGuinn, 2000; Roberts, Roberts, & Chan, 2006). 

Numerous cross-sectional studies report an inverse association between shorter 

sleep duration, poor sleep quality, sleep disturbances (e.g., parasomnias, nocturnal 

awakenings), and a delayed sleep phase pattern with larger body composition (e.g., body 
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mass index [BMI], percent body fat), greater central adiposity (e.g., waist, hip 

circumference), and increased obesity rates among both adults and youth (c.f., Beebe et 

al., 2006; Chaput, Brunet, & Tremblay, 2006; Chaput & Tremblay, 2007; Nielsen, 

Danielsen, & Sørensen, 2011; Jarrin, McGrath, & Drake, 2011; Knutson & Van Cauter, 

2008; Liu et al., 2011; Marshall, Glozier, & Grunstein, 2008).  Longitudinal studies also 

support the causal role inadequate sleep (i.e., short sleep duration and sleep disturbances) 

has on the development of obesity (c.f., Carter, Taylor, Williams, & Taylor, 2011; Snell, 

Adam, & Duncan, 2006; Taveras, Rifas-Shiman, Oken, Gunderson, & Gillman, 2008); 

however, the mechanisms underlying this association are still not fully understood.   

Experimental sleep deprivation studies with adults provide valuable insight into 

potential mechanistic pathways linking sleep and obesity.  One plausible 

pathophysiological mechanism is the modulation of cardiac autonomic dysfunction, 

reflected by sympathovagal imbalance (i.e., hyperactive sympathetic nervous system and 

or a hypoactive parasympathetic nervous system; Hanlon & Van Cauter, 2011; Knutson, 

Spiegel, Penev, & Van Cauter, 2007; Van Cauter et al., 2007).  Heart rate variability 

(HRV) is commonly derived from spectral analysis (e.g., Fast Fourier transform [FFT]), 

as a measure of sympathovagal imbalance.  HRV reflects beat-to-beat (RR) variation in 

heart rate, which is influenced by the combined effects of both sympathetic and 

parasympathetic activity on the sino-atrial node.  Spectral analysis transforms heart rate 

from RR intervals to power bands that reflect indices of sympathetic and parasympathetic 

modulation in the cardiac system (Lahiri, Prince, Kannankeril, & Goldberger, 2008; 

Spiers, Silke, McDermott, Shanks, & Harron, 1993; Task Force, 1996).  Low frequency 

power band (LF = 0.04–0.15 Hz) reflects the aggregate influences of parasympathetic and 
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sympathetic branches of the autonomic nervous system (Akselrod et al., 1981; Berntson 

et al., 1997; Task Force, 1996).  High frequency power band (HF = 0.15–0.40 Hz) 

represents parasympathetic activity (Berntson et al., 1997; Pomeranz et al., 1985; Task 

Force, 1996).  Sympathovagal imbalance is denoted by higher LF:HF ratio (Malliani, 

Pagani, & Lombardi, 1994; Montano, Tobaldini, & Porta, 2012) and based on 

microneurography and ganglionlic blockade studies, is recognized as an appropriate 

measure of sympathetic modulation (Diedrich et al., 2003; Pagani et al., 1997).  Further, 

sympathovagal imbalance has been consistently used as a marker of autonomic 

dysfuction (c.f., Hall et al., 2004; Malliani et al., 1994; Spiegel, Leproult, & Van Cauter, 

1999; Spiegel et al., 2004).  

Several studies have documented sympathovagal imbalance following sleep 

deprivation.  Sgoifo and colleagues (2006) deprived rats of sleep for 48 hours by placing 

them on a slowly rotating wheel.  Compared to controls, the sleep deprived rats showed 

significantly decreased parasympathetic activity (i.e., low HRV) during dark and light 

phases, which endured even after two days under sleep recovery conditions.  Among 

healthy adults, sympathovagal imbalance significantly increased 20% after partial sleep 

deprivation (LF:HF ratio 1.81 to 2.17; Zhong et al., 2005) and 15% after total sleep 

deprivation (LF:HF ratio 2.66 to 3.06; Tochikubo, Ikeda, Miyajima, & Ishii, 1996).   

Likewise, parasympathetic modulation (HF) significantly decreased 19% after 

partial sleep deprivation (Tochikubo et al., 1996) and 22% after total sleep deprivation 

(Zhong et al., 2005).  Under partial sleep deprivation over 6 nights (e.g., 4 hour sleep), 

healthy males evidenced significant increases in sympathovagal imbalance as compared 

to conditions of sleep recovery (Spiegel et al., 1999, 2004).  The increases in 
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sympathovagal imbalance were particularly evident the following morning (9 a.m.-1 

p.m.) and afternoon (1-5 p.m.) with 16% to 19% increases, respectively.  Preliminary 

work in children has yielded parallel results.  Sleep deprived infants (i.e., no napping) had 

LF:HF ratio twice as high compared to those in the napping condition (LF:HF ratio 3.12 

vs. 1.57; Franco et al., 2003).  Children aged 9 years who objectively slept one hour less 

evidenced lower parasympathetic and significantly higher sympathovagal imbalance, 

compared to those with an additional hour of sleep (Rodriguez-Colon et al., 2011).  

Taken together, findings across adults and children suggest that sympathovagal 

imbalance occurs as a function of sleep loss.   

The relation between sympathovagal imbalance and sleep is further supported by 

research examining sleep disturbances.  Among adults, sympathovagal imbalance is 

significantly associated with sleep disorders (e.g., insomnia, sleep apnea; Bonnet & 

Arand, 2010; Somers, Dyken, Clary, & Abboud, 1995), sleep fragmentation (Stamatakis 

& Punjabi, 2010), and subjective (Burton, Rahman, Kadota, Lloyd, & Vollmer-Conna, 

2010; Wei, Chung, Wu, Chung, & Wu, 2011) and objective reports of poor sleep quality 

(Tasali, Leproult, Ehrmann, & Van Cauter, 2008).  For example, sympathovagal 

imbalance, indexed by LF:HF ratio, significantly increased by 37% and parasympathetic 

activation, indexed by HF, significantly decreased by 14% after three consecutive nights 

of poor sleep quality (i.e., slow wave sleep suppression) among adults, even after 

controlling for breathing frequency, total sleep time, and total wake time (Tasali et al., 

2008).   

Among children, those with obstructive sleep apnea evidence a 9% increase in 

sympathovagal imbalance, a 22% reduction in overall HRV (i.e., LF), and a 25% 
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reduction in parasympathetic activity the morning following an overnight 

polysomnography, compared to healthy controls (Kwok et al., 2011).  Similarly, children 

with sleep fragmentation, such as periodic leg movements (Walter et al., 2009) and sleep-

disordered breathing symptoms, exhibit enhanced sympathetic and weaker 

parasympathetic modulation (Liao et al., 2010).  Specifically, children with moderate 

sleep-disordered breathing symptoms had significantly lower HF and significantly greater 

LF:HF ratio values, compared to children with none or mild symptoms (Liao et al., 

2010).  Children with insomnia symptoms (e.g., difficulty initiating and maintaining 

sleep) during the past two months had reduced parasympathetic modulation and increased 

sympathovagal imbalance, even after adjusting for multiple covariates (Rodriguez-Colon 

et al., 2011).  Taken together, evidence indicates inadequate sleep is associated with 

sympathovagal imbalance (i.e., sympathetic hyperactivity and reduced parasympathetic 

activation).    

Sympathovagal imbalance is considered an important risk factor in the 

development of cardiovascular diseases (e.g., coronary heart disease), diabetes, insulin 

resistance, hypertension, and obesity (Knutson, 2012; Palatini & Julius, 1997; Reaven, 

Lithell, & Landsberg, 1996).  Indeed, compared to healthy-weight youth, obese children 

and adolescents have significantly increased LF:HF ratio and decreased HRV parameters 

indicative of diminished parasympathetic activation (e.g., HF, standard deviation of RR 

intervals) across ECG recordings of both short- (e.g., 15 min; Chen, Chin, Lee, Sheen, & 

Jeng, 2012; Nagai & Moritani, 2004; Nagai, Matsumoto, Kita, & Moritani, 2003; 

Kaufman et al., 2007) and long-duration (24-hours; Riva et al., 2001; Martini et al., 

2001).  Interestingly, although sympathovagal imbalance among obese youth is observed 
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during waking hours, it appears to be most robust during the night (Riva et al., 2001; 

Martini et al., 2001), even after controlling for snoring and sleep apnea (Rabbia et al., 

2003).  Further, a recent prospective study found that sympathovagal imbalance at age 

5.5 years was predictive of obesity five years later, suggesting a causal relation 

(Graziano, Calkins, Keane, & O’Brien, 2011).   

Taken together, research evidence convincingly demonstrates that inadequate 

sleep is associated with childhood obesity (c.f., Beebe et al., 2006; Chaput et al., 2006; 

Chaput & Tremblay, 2007; Nielsen, Danielsen, & Sørensen, 2011; Jarrin et al., 2011) and 

adversely impacts a variety of physiological processes (i.e., autonomic function; Spiegel 

et al., 1999, 2004).  Inadequate sleep, via multiple pathophysiological alterations, thus 

offers a plausible pathogenic role in the development of obesity.  Given that 

sympathovagal imbalance is related with obesity  (c.f., Kaufman et al., 2007; Rabbia et 

al., 2003; Rodriguez-Colon, Bixler, Vgontzas, & Liao, 2011), it has been proposed as one 

potential mediator elucidating the association between sleep and the etiology of obesity 

(c.f., Knutson et al., 2012; Knutson, Spiegel, & Van Cauter, 2008; Spiegel et al., 1999; 

2004; Pannain & Van Cauter, 2008).   

The aim of the current study was to evaluate whether sympathovagal imbalance 

was a potential mechanism underlying the association between inadequate sleep and 

childhood obesity.  Inadequate sleep was characterized as short sleep duration, later bed- 

and rise-times, and sleep disturbances (e.g., sleep-disordered breathing, parasomnia, night 

wakings).  It was posited that sympathovagal imbalance would mediate this relation, even 

after controlling for important developmentally-relevant covariates.   
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Method 

Study Population 

The study population included participants from the QUebec Adipose and 

Lifestyle InvesTigation in Youth (QUALITY) Cohort.  The survey design and methods 

have been previously reported in detail (Lambert et al., 2011).  The aim of the QUALITY 

study was to investigate the natural history of excess weight and its related cardio-

metabolic consequences (e.g., sympathetic hyperactivity) among a large cohort of youth 

at risk for the development of obesity.  Inclusion criteria required at least one biological 

parent to be overweight (BMI >30kg/m
2
 or waist circumference >102 cm in men and > 

88 cm in women).  Exclusion criteria included children with serious psychopathology or 

medical conditions (i.e., diabetes type 1 or 2, hypertension, hospitalized in the last month 

for a serious illness, renal failure, inflammatory bowel disease, cystic fibrosis), a highly 

restricted diet (<600 Kcal/day), or medication use of β-blockers or thiazides.  All 

participants were Caucasian of Western European ancestry to reduce genetic admixture.   

The baseline data collection (first visit) occurred when youth (N = 630) were aged 

8 to 10 years.  Participants were invited for the second visit when youth were aged 9 to 

12 years.  Of the original sample, 89% (n = 564) completed the second visit.  Attrition 

was due to several reasons including refusal of the child (18.2%), family missed several 

appointments (9%), family had no time, moved away, or could not be located (13.5%), or 

other reasons not specified (59%).  The data used for the present analyses are based on 

the second visit of data collection when the ECG recordings were collected.  The 

QUALITY study was approved by the ethics review board of Direction Santé Québec, 
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Institut de la statistique du Québec, and CHU Sainte-Justine Hospital.  Informed consent 

and assent were obtained by parents and youth, respectively.   

Measures 

 Anthropometrics.  All anthropometric measures were taken by a registered nurse 

while participants were dressed in light clothing with shoes off.  Using a standard 

measuring tape, waist circumference was measured at the narrowest part of the body, 

midway between the lowest rib cage and the iliac crest, and hip circumference was 

measured at the widest part of the body, over the buttocks.  Height was measured during 

maximal inspiration.  Waist and hip circumferences and height were measured in 

duplicate, to the nearest 0.1 cm; if they differed by more than 0.5 cm, a third measure was 

taken.  The mean of the two closest measures was used in data analyses.  Weight was 

measured to the nearest 0.2 kg with a spring scale tested daily for accuracy and calibrated 

against a set of standard weights.  BMI was calculated as weight in kg divided by height 

in m
2
.  Based on age and sex, Z-scores for BMI percentiles were determined using the 

growth charts published by the U.S. Centers for Disease Control and Prevention (2000).   

Overweight was defined as BMI in the >85
th

 to <95
th

 age- and sex-specific percentile; 

obesity was defined as BMI in the >95
th

 percentile.   

Dual-energy X-ray absorptiometry (DEXA) scans, considered the gold standard in 

assessing obesity, were performed using DEXA, Prodigy Bone Densitometer System 

DFþ14664 (GE Lunar Corporation, Madison, WI, USA).  Scan mode was based on 

weight guidelines provided by the manufacturer and each scan was analyzed using 

DEXA pediatric software version (Lunar Corporation).   Each DEXA scan determined 

total fat mass (kg/m
2
) and percentage of body fat mass [i.e., fat mass/fat mass + lean mass 
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+ bone mineral content) * 100].  Due to reported differences in the health risks 

attributable to the distribution of excess adipose tissue (i.e., overall body composition vs. 

centrally located; Janssen, Katzmarzyk, & Ross, 2004; Janssen, Shields, Craig, & 

Tremblay, 2011), and in an effort to streamline the results, data reduction techniques 

were employed to derive composite factors for obesity indices of central adiposity and 

body composition (see Statistical Analyses). 

Sleep.  Children reported their typical bed- and rise-time on school and weekend 

days.  Sleep duration for school and weekend days was calculated as the difference 

between bed- and rise-time.  Parents also reported on their child’s average bed- and rise-

time over the week and average sleep duration was calculated as the difference between 

bed- and rise-time.   

Children’s sleep habits were assessed using the Children’s Sleep Habits 

Questionnaire (CSHQ; Owens et al., 2000).  Parents answered 33 questions on their 

child’s sleep habits and disturbances over a one week interval.  Each question was rated 

on a 3-point scale that described the frequency (rarely, sometimes, usually) of sleep 

habits categorized into eight sleep disturbance subscales: sleep duration (e.g., my child 

sleeps too little), daytime sleepiness (e.g., my child seems tired), sleep-disordered 

breathing (e.g., my child snorts and gasps), sleep anxiety (e.g., my child is afraid of 

sleeping alone), sleep onset delay (e.g., my child falls asleep in 20 minutes), night 

awakenings (e.g., my child awakens more than once), bedtime resistance (e.g., my child 

struggles at bedtime), and parasomnias (e.g., my child sleepwalks).  Items are summed to 

produce a score for each subscale and a total sleep disturbance score, with higher scores 
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(>41) reflecting greater sleep disturbances.  The CSHQ has demonstrated validity and 

internal consistency in both community and clinical samples (Owens et al., 2000).    

Puberty.  Sexual maturation was scored by a pediatric registered nurse according 

to Tanner descriptions for pre-pubertal, puberty, and post-pubertal stages (Lambert et al., 

2011; Marshall & Tanner, 1969, 1970).  Criteria used for pre-pubertal stages included no 

body hair growth, no menstruation or breast growth for girls, and no facial hair growth or 

deepening of the voice for boys.  Criteria for pubertal stage included any indication of 

body hair and breast growth and or menstruation for girls, and any indication of facial 

hair growth and or voice changes for boys.  Criteria for post-pubertal stages included 

complete body hair and breast growth, as well as menstruation for girls, and complete 

facial hair growth and voice changes for boys.   

Heart Rate Variability  

ECG Data.  ECG data were derived from a modified Lead II configuration using 

disposable, pre-gelled snap silver chloride electrodes.  Electrode resistance was 

minimized (<10 kO) by precleaning the skin with rubbing alcohol swab.  The active 

electrode (and its derivative/dZ) was placed on the right clavicle next to the sternum over 

the first rib between the two collarbones.  The second electrode was placed on the left 

mid-clavicular line at the apex of the heart over the ninth rib.  The ground electrode was 

placed near the lowest possible right rib cage on the abdomen.  Additional dZ electrodes 

were placed over the right fourth intercostal space at the sternal edge, the fifth intercostal 

space at the left axillary line, and on the sixth rib in the mid-clavicular line.   

ECG Signal Processing.  ECG data were uploaded on the MARS® Holter 

Analysis Workstation (GE Marquette Medical Systems, Milwaukee, Wisconsin, USA), 
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where data were formatted for viewing, editing, and analysis.  Beat-by-beat visual 

inspection of the shape, trend, and length of each QRS complex was identified based on 

standard Marquette algorithms for QRS labeling and further verified by visual inspection 

from a qualified trained professional.  The removal of artifacts was based on a 20% 

change from the previous signal as a criterion (Kleiger, Miller, Bigger, & Moss, 1987).  

In cases where artifacts and excluded RR intervals were automatically filtered and 

identified as unreadable signals, the remaining acceptable beats were used to replace the 

data points via cubic spline interpolation method.  At least four acceptable R-peaks were 

needed in order for spline interpolation to identify the continuous function between two 

middle R-peaks.  Next, input samples were linearly detrended, mean-centered, and 

tapered using a Hanning window, and processed by FFT periodogram spectrum method.  

Frequency-domain variables included LF (0.04-0.15 Hz), HF (0.15-0.4 Hz), and LF:HF 

ratio and were calculated and expressed in absolute units.   

Procedure 

During the scheduled visit, parents completed questionnaires (e.g., socio-

demographics) and reported on child medication use in the last two weeks (e.g., 

antibiotics, pain/fever, colds/allergies) prior to data collection.  Children completed 

questionnaires on their lifestyle habits (e.g., physical activity, screen time) while seated 

quietly.  Anthropometric measures were collected by a pediatric registered nurse.  Next, 

the nurse prepped for electrode site placement.  Raw ECG data were acquired and 

recorded using the 8500 Marquette MARS Holter monitor (128 Hz; GE Marquette 

Medical Systems, Milwaukee, Wisconsin, USA).  ECG data acquisition began in the 

morning between 07:00 and 09:00 and lasted ~3 hours.  Then, the nurse removed the 
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electrodes and Holter monitor and after a 5 minute rest, blood pressure was measured.  

An appropriate-sized occlusion cuff was attached to the medial surface of the right arm 

over the brachial artery using an oscillometric instrument (model CR9340; Dinamap XL, 

USA) with demonstrated validity (Park & Menard, 1998) and according to procedures 

developed by the Child and Adolescent Trial for Cardiovascular Health Program 

(Webber et al., 1995).  While the child was seated, three consecutive measures were 

obtained at 1 min intervals.  The average of the last two measures was used in the present 

analyses.  To reduce violations of stationarity, the procedure was kept consistent for all 

participants (Berntson et al., 1997).  Finally, DEXA scans were conducted to obtain body 

composition measures.   

Statistical Analysis 

All data were entered and double-checked by the senior data coordinator and 

analyzed with IBM SPSS Statistics 20 software (SPSS, Inc., Chicago, IL).  Data were 

retained as continuous to maximize statistical power and were checked for normality and 

linearity.  The LF and HF distributions were skewed and thus, natural log-transformed 

(ln).  For data reduction, factor analysis of the obesity measures (principal component 

with varimax rotation) yielded two factors: central adiposity (R
2 

= 92.8%; Factor 

loadings: waist circumference = 0.96, hip circumference = 0.96) and body composition 

(R
2 

= 91.9%; Factor loadings: BMI percentile Z-score = 0.94, percent body fat = 0.97, fat 

mass index = 0.97).  For parsimony, only the results with the central adiposity and body 

composition factors scores are reported in the present study.  (All analyses were also 

tested with each individual obesity measure and results were identical.)    
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A planned sequence of regression analyses were conducted to test the hypothesis 

that sympathovagal imbalance would mediate the association between inadequate sleep 

and childhood obesity (Baron & Kenny, 1986; MacKinnon & Dwyer, 1993; MacKinnon, 

Warsi, & Dwyer, 1995).  First, to test the association between sleep and obesity, the 

general linear model was used to univariately test each sleep measure predicting each 

obesity factor (central adiposity, body composition), with and without covariates (age, 

sex, puberty, screen time, physical activity, household income, parental education).   

Second, each sleep measure was univariately tested to predict each HRV 

parameter (LF, HF, LF:HF ratio), with and without covariates (age, sex, puberty, screen 

time, physical activity, household income, parental education, heart rate, SBP, DBP).  

Third, each HRV parameter was univariately tested to predict each obesity factor, with 

and without covariates.  Finally, to initially test for potential mediation, each sleep 

measure was tested to predict each obesity factor, while controlling for each HRV 

parameter.  Sobel tests were used to calculate the critical ratio as a test of whether the 

indirect effect of the sleep measure on the obesity index via sympathovagal imbalance 

was significantly different from zero (MacKinnon, Warsi, & Dwyer, 1995; Sobel, 1982)   

Results 

 Of the 564 participants who completed the second visit of the QUALITY study, 5 

were excluded for insufficient data on sleep measures, 67 were excluded because they did 

not have an ECG recording completed, and 3 were excluded due to ECG recording 

durations that were less than 30 min, yielding a final sample size of 489.  All ECG 

recordings were reviewed by a board-certified cardiologist; no cardiovascular pathology 

was identified (i.e., bradycardia, fibrillation, premature contraction).  All children were 
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Caucasian, half were male (56.4%), aged 11.67 years (SD = 0.95), of normal weight 

status (57.7% BMI 5-85
th

 percentile), and most were categorized into pre-pubertal status 

(64.8%).  The majority of children did not take medication two weeks prior to the study 

for pain, allergies, cold, digestive, cholesterol, or skin problems (91.9%); none were 

taking medication for diabetes or hypertension.  Children’s anthropometric and 

physiological measures are presented in Table 1.  Based on self-report, children’s bed-

time was 20:54 (SD = 0:38) on school nights and 22:02 (SD = 0:57) on weekend nights; 

they slept ~9 hours on school nights and 10 hours on weekend nights.  Based on parent-

report, children retired to bed at 20:51 (SD = 1:05), slept an average of 10 hours each 

night weekly, and exhibited sleep disturbances (e.g., sleep anxiety, bedtime resistance; 

see Table 2). 

Hypothesis Testing: Sleep and Obesity   

Regression analyses revealed that shorter sleep duration on school nights (βavg = -

0.12, p<.01, Ravg
2 

= 0.12), later school and weekend bed-times (βavg = 0.15, p<.001, R
2

avg 

= 0.13), greater sleep-disordered breathing (βavg = 0.25, p<.001, R
2

avg = 0.18) and more 

parasomnia symptoms (βavg = 0.12, p<.001, R
2 

= 0.13) were associated with greater 

central adiposity and body composition, in adjusted models (Table 3).  No other sleep 

parameters were associated with obesity indices.  (Data for other sleep disturbance 

subscales are not shown for parsimony.)   

Hypothesis Testing: Sleep and Sympathovagal Imbalance 

 Regression analyses revealed that greater LF:HF ratio was significantly associated 

with shorter sleep duration (β = -0.12, p =.021, R
2 

= 0.09), later bed-times (β = 0.13, 

p<.01, R
2 

= 0.09), and more sleep disturbances (βavg = 0.13, p<.01, R
2

avg = 0.10), even 
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after adjusting for covariates (see Table 4).  LF and HF were not significantly associated 

with sleep duration (βavg = 0.05, pavg = 0.314, Ravg
2 

= 0.35), bed-time (βavg = 0.06, pavg = 

0.649, Ravg
2 
= 0.34), or sleep disturbances (βavg = -0.02, pavg = 0.345, R

2
avg = 0.35), in 

adjusted models.  

Hypothesis Testing: Sympathovagal Imbalance and Obesity 

Greater central adiposity was significantly associated with higher LF:HF ratio (β 

= 0.18, p<.001, R
2 

= 0.25) and LF (β = 0.12, p<.05, R
2 

= 0.22), but not with HF (β = -

0.03, p = 0.603, R
2 

= 0.22), in adjusted models (see Table 5).  Similarly, greater body 

composition was significantly associated with higher LF:HF ratio (β = 0.14, p<.01, R
2 

= 

0.14) and LF (β = 0.12, p<.05, R
2 

= 0.12), but not with HF (β = -0.01, p = 0.849, R
2 

= 

0.12), in adjusted models.  

Hypothesis Testing: Mediation  

Sympathovagal imbalance was tested as a possible mediator underlying the 

relation between inadequate sleep and obesity.  Regression analyses revealed that 

sympathovagal imbalance significantly mediated the effect of sleep duration (R
2 

= 0.23, 

ΔR
2 

= 0.03, p<.001; Sobel z = -2.00, p = .045), bed-time on school nights (R
2 

= 0.25, ΔR
2 

= 0.02, p<.001; Sobel z = 2.05, p = .040), and sleep-disordered breathing symptoms (R
2 

= 

0.28, ΔR
2 

= 0.02, p<.001; Sobel z = 2.34, p = .019) on the central adiposity factor.  

Sympathovagal imbalance also significantly mediated the effect of sleep-disordered 

breathing on the body composition factor (R
2 

= 0.16, ΔR
2 

= 0.01, p<.05; Sobel z = 2.04, p 

= .041); and, there was a trend for sleep duration (R
2 

= 0.14, ΔR
2 
= 0.01, p<.01; Sobel z = 

-1.82, p = .069) and bed-time on school nights (R
2 

= 0.12, ΔR
2 

= 0.01, p<.01; Sobel z = 
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1.85, p = .063).  (Identical results were obtained when analyses were conducted on the 

five obesity measure separately; factors are reported for parsimony.)   

Discussion 

 Obesity is a risk factor for multiple chronic diseases, disability, and premature 

death.  Researchers continue to seek a better understanding of the pathogenesis of 

obesity.  While mounting evidences suggests an association between sleep and obesity, 

the mechanisms underlying their relation are complex and less clear.  The aim of the 

present study was to investigate whether sympathovagal imbalance was one potential 

pathophysiological mechanism.  The present study found support for the meditational 

role of sympathovagal imbalance in the relation between inadequate sleep and childhood 

obesity.   

 The sample was comprised of a large cohort of children at-risk for developing 

obesity, based on confirmed parental overweight status.  This at-risk sample provided a 

unique opportunity to explore the research question.  Compared to national BMI values 

reported for similarly-aged children participating in the representative National Health 

and Nutrition Examination Survey 2009-2010 (Ogdon et al., 2012), average BMI values 

in the present sample were higher for both girls (21.29 vs. 18.5) and boys (21.01 vs. 

18.3).  Children in the current study slept an average of 26 min less, went to bed almost 

10 min later, woke up 18 min earlier, and exhibited similar types of sleep disturbances 

compared to values obtained from a representative sample of 11 administrative regions of 

Québec (Laberge et al., 2001).  Finally, compared to previous studies assessing HRV 

among obese children of similar age ranges, the present sample exhibited higher LF (e.g., 

6.70 vs. 7.08) and LF:HF ratio (e.g., 1.20 vs. 1.85) and similar HF values (e.g., 6.56 vs. 



125 

 

6.55; Latchman, Mathur, Bartel, Axtell, & De Meersman,2011; Rodriguez-Colon et al., 

2011).  Compared to previous studies assessing HRV among non-obese children (Jarrin, 

McGrath, Poirier, Séguin, Séguin, Tremblay, & Paradis, submitted; Latchman et al., 

2011; Rodriguez-Colon et al., 2011), the present sample had higher LF showed 

inconsistent results for HF and LF:HF ratio.  

Sleep and Obesity 

Among this at-risk sample, children with larger central adiposity body and 

composition had inadequate sleep compared to their lean counterparts.  These observed 

findings are consistent with previous studies (c.f., Knutson & Van Cauter, 2008; Liu et 

al., 2011; Marshall et al., 2008).  Specifically, heavier youth reported shorter sleep 

duration, later bed- and rise-time, and exhibited more sleep disturbances, (i.e., sleep-

disordered breathing, parasomnia), as compared to lean youth, after adjusting for obesity-

related covariates. In contrast to previous findings, sleep disturbances, including sleep-

onset delay, sleep anxiousness, daytime sleepiness, and bedtime resistance were less 

consistently associated with obesity (Beebe et al., 2006).    

Sympathovagal Imbalance with Sleep and Obesity 

Inadequate sleep was associated with sympathovagal imbalance.  Curiously, this 

relation was evident with LF:HF ratio, the most ubiquitous measure of sympathovagal 

imbalance, but it was not significant for LF or HF measures separately.  This may be 

attributable to the use of ECG recordings obtained during the day; past studies report 

considerable differences in sympathovagal imbalance during the night (Rabbia et al., 

2003; Riva et al., 2001).  Consistent with previous studies (c.f., Rodriguez-Colon et al., 

2011; Stamatakis & Punjabi, 2010; Walters et al., 2009), children in the present study 
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with shorter sleep duration, later bed-time on school nights, and more sleep disturbances, 

showed greater LF:HF ratio, indicative of greater sympathovagal imbalance.  This 

relation remained significant even after controlling for important developmentally-

relevant covariates (e.g., heart rate, SBP, DBP; cf., Jarrin et al., submitted).  Although LF 

and HF were not significant, it is not the absolute levels of LF and HF that matter, but 

rather, their relative contribution to the imbalance that is critical (Berntsen et al., 1997, 

2007).  Finally, similar to previous findings (c.f., Kaufman et al., 2007; Latchman et al., 

2011; Rodriguez-Colon et al., 2011), the present study found that children with larger 

central adiposity and body composition evidenced sympathovagal imbalance, irrespective 

of numerous covariates.  

Sympathovagal Imbalance Mediates Sleep and Obesity   

The present results were largely consistent with the hypothesis that greater 

sympathovagal activity was a pathophysiological mechanism underlying the association 

between inadequate sleep and obesity in children.  Sympathovagal imbalance partially 

mediated the relation between central adiposity with short sleep duration, later bed-time, 

and sleep disturbances.  Sympathovagal imbalance was identified as a possible mediator 

underlying the relation between body composition and sleep disturbances.  Similarly, a 

trend was observed for sympathovagal imbalance partially mediating the relation between 

body composition with short sleep duration and later bed-time on school nights.  This 

potential mediator was selected on apriori theoretical grounds as a representative variable 

shown to be related to sleep (Speigal et al., 2004) and obesity indices (Rabbia et al., 

2003).  It was used as initial test of mediation, however, to more convincingly 



127 

 

demonstrate mediation, temporal data (e.g., longitudinal or experimental) is needed to 

verify causality among variables (Kraemer, Stice, Kazdin, Offord, & Kupfer, 2001).       

The current study corroborates past research linking sleep disturbances (i.e., 

sleep-disordered breathing) with obesity and sympathovagal imbalance (Hakim, Gozal, & 

Kheirandish-Gozal, 2012).  Sleep disturbances are associated with nocturnal arousals, 

and even brief arousals during sleep produce an increase in heart rate and blood pressure 

(Ekstedt et al., 2004; Sforza, Chapotot, Pigeau, Naitoh, & Buguet, 2004).  In fact, both 

heart rate and blood pressure can remain elevated for up to 40 sec after a micro-arousal 

(Blasi et al., 2003; Sgoifo et al., 2006).  Compared to normal sleepers, individuals with 

sleep disorders (e.g., sleep apnea, insomnia) evidence elevated heart rate and a 

progressive increase in sympathetic activity over time during sleep and wakefulness 

(Narkiewicz & Somers, 2003), as well as reduced parasympathetic activity (Bonnet & 

Arand, 2010).     

Given that HRV is influenced by circadian rhythm, circadian misalignment (i.e., 

phase shift or sleeping at inappropriate times) may disrupt the balance of the autonomic 

nervous system (Massin et al., 2000).  In particular, the timing of sleep may disrupt the 

circadian function of the autonomic nervous system (Haqq et al., 2012; Jarrin, McGrath, 

& Drake, submitted).  Later bed-times are associated with reduced HRV (Jarrin et al., 

submitted) and greater BMI in children and adolescents (Olds, Maher, & Matricciani, 

2011).  Adolescents with later bedtimes are more susceptible to overeating and consume 

more fast-food and caffeinated drinks, compared to those with earlier bedtimes (Fleig & 

Randler, 2009; Olds, Blunden, Dollman, & Maher, 2010; Snell et al., 2007).  Also, adults 

with later bed-times show an increased reactivity to stress, heart rate, blood pressure, and 
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sympathovagal imbalance under normal and stressful conditions, compared to individuals 

with earlier wake-times (Roeser, et al., 2012).  Given the salient role of sympathovagal 

imbalance on multiple dimensions of sleep and obesity, it is quite plausibly a pathogenic 

mechanism.     

Psychophysiology of Sympathovagal Imbalance  

Given that most endocrine organs are sensitive to changes in sympathovagal 

imbalance (Knutson & Van Cauter, 2008), this may lead to pathophysiological 

consequences that promote obesity, including changes in appetitive hormones (decreased 

leptin, increased ghrelin), insulin sensitivity, and cortisol (c.f., Bodosi, Gardi, Hajdu et 

al., 2004; Knutson 2012; Mullinton, Chan, Van Dongen et al., 2003; Taheri, Lin, Austin, 

Young, & Mignot, 2004; Van Cauter, 2008).  In fact, an interaction between sympathetic 

activation and hormone production exists.  For instance, pharmacologic sympathetic 

blockade increases leptin levels, and after acute treatment with catecholamines, decreases 

circulating leptin (Rayner & Trayhurn, 2001).  Further lines of research indicate that in 

addition to hormones, white adipose tissue is directly controlled by the parasympathetic 

and sympathetic branches (Bartness & Bamshad, 1998; Fliers et al., 2003; Youngstrom & 

Bartness, 1998).   

While high parasympathetic input increases adipose mass, sympathetic input 

decreases fat mass via reduced differentiation and cell proliferation (Fliers et al., 2003; 

Kreir et al., 2002).  Although this seems counterintuitive, white adipose tissue releases 

significant cytokines and hormones (e.g., leptin, adiponectin, resistin, tumour necrosis 

factor-alpha) that regulate energy expenditure, appetite, and satiety (Farooqui & 

O’Rahilly, 2009; Fliers et al., 2003).  In other words, hormones that curb the 
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development of obesity are not produced, as an indirect result of sympathetic 

overactivation.  Research also suggests that the regulation of adipose tissue distribution 

(i.e., visceral vs. subcutaneous) is controlled by selective branches within the autonomic 

nervous system (Fliers et al., 2003).  Among human males, abdominal visceral fat is 

associated with sympathetic activation, while subcutaneous fat is not (Alvarez, Beske, 

Ballard & Davy, 2002; Alvarez, Ballard, Beske, & Davy, 2004).   

The present findings provide new knowledge about the role of a potential 

pathogenic pathway (i.e., sympathovagal imbalance) in which inadequate sleep leads to 

obesity in children.  It is postulated that inadequate sleep is a major stressor that activates 

the stress response system, and if chronic, may cause progressive wear and tear, or 

allostatic overload (McEwen, 2002, 2006).   Chronic stress activation (e.g., frequent sleep 

disturbances) can lead to negative alterations in the nervous (e.g., sympathovagal 

imbalance), endocrine (e.g., cortisol; Rueegenberg, Wrosch, & Miller, 2012; Wrosch, 

Lupien, Miller, & Pruessner, 2008), and immune systems (Gouin, Glaser, Malarkey, 

Beversdorf, & Kiecolt-Glaser, 2012).  Further, physiological dysregulations have been 

cross-sectionally and longitudinally observed in youth (Low, Salomon, & Matthews, 

2009; Matthews, Salomon, Kenyon, & Allen, 2002) and suggested to exert enduring 

effects on ageing and health (Danese & McEwen, 2012).   

While individuals often do not report feeling stressed under conditions of sleep 

loss, physiological evidence suggests otherwise (Speigel et al., 1999, 2004; Knutson & 

Van Cauter, 2008).  Indeed, following nights of inadequate sleep (i.e., short sleep 

duration, sleep disturbances), enhanced sympathetic activity has been documented, 

leading to increases in urinary catecholamine levels, heart rate, blood pressure, and 
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sympathovagal imbalance among adults and youth (c.f., Lusardi et al., 1996; Rodriguez-

Colon et al., 2011; Speigel et al., 1999, 2004; Tochikubo et al., 1996; Walter et al., 2009).  

Thus, if chronic, allostatic overload may accelerate and exaggerate pathophysiology 

(McEwen, 2002).   

Limitations, Strengths, and Future Recommendations 

One limitation was the use of subjective measures to obtain sleep duration, bed- 

and rise-time, and sleep disturbances.  Objective measures of sleep are advantageous, as 

they can precisely capture sleep dimensions that cannot be assessed with subjective 

reports, such as sleep efficiency (i.e., time spent in bed actually sleeping), micro-arousals, 

sleep architecture (i.e., time spent in each sleep stage), and diagnosed sleep disorders 

(e.g., periodic leg movements, sleep apnea).  However, self- and parent-report sleep 

measures have established reliability and validity within pediatric samples (Owens et al., 

2000; Wolfson & Carskadon, 1998; Wolfson et al., 2003).  Further, subjective measures 

of sleep may yield unique information that cannot be objectively measured (e.g., 

perception of sleep restoration; Van Egeren, Haynes, Franzen, & Hamilton, 1983; 

Weaver, Kapur, & Yueh, 2004).   

A second limitation was that ECG recordings were obtained during the day.  

Previous studies observed a more prominent nocturnal decrease in parasympathetic 

activity and sympathetic hyperactivity in obese children (Rabbia et al., 2003; Riva et al., 

2001).  Interestingly, the relative shift in autonomic modulation (LF:HF ratio), rather than 

absolute values of LF and HF, may be a more sensitive measure of cardiac autonomic 

dysfunction.  The present findings are largely consistent with experimental studies that 

demonstrated total and partial sleep deprivation led to substantial increases in 
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sympathovagal imbalance the following day and persisted up to two days later (Sgoifo et 

al., 2006; Spiegel et al., 1999, 2004; Tochibuko et al., 1996; Zhong et al., 2005).  In fact, 

adequate amounts of sleep duration have been found to buffer long-term elevations of 

increased cortisol secretion among older adults over four years (Rueggeberg et al., 2012).  

Sleep provides respite and recovery time for the heart and body.  It is posited that 

insufficient recovery time via chronic exposure to inadequate sleep may exacerbate 

autonomic dysfunction.  Future studies should investigate the meditational role of HRV 

in the relation between sleep and obesity, using ECG recorded during the night.    

One strength of the study was the large sample comprised of children at-risk for 

obesity, which provided an exceptional opportunity to investigate the meditational role of 

sympathovagal imbalance in a targeted, vulnerable sample.  In fact, the present sample 

had higher rates of obesity, poorer sleep, and diminished HRV compared to normative 

data of similar-aged youth.  Second, data collection and the methodological procedure 

was standardized across participants.  Third, the present study included objective 

measures of obesity and HRV, with equipment recognized as the gold-standard in 

medical fields (DEXA scan; 8500 Marquette MARS Holter monitor).  Finally, the present 

findings were robust, even when controlling for multiple covariates including puberty, 

heart rate, blood pressure, and socioeconomic status.    

Future studies should incorporate both subjective and objective measures for sleep 

(e.g., polysomnography) while measuring HRV over longer periods of time (e.g., 48 

hours), to more convincingly demonstrate a temporal relation between sleep, 

sympathovagal imbalance, and child obesity.  Sympathovagal imbalance during sleep 

should also be further examined.  For example, spectral coherence analysis between HRV 
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and cortical electrophysiological signals (e.g., beta, gamma, delta) may more 

comprehensively elucidate the relation between parasympathetic modulation and cortical 

activity across distinct sleep stages.  In fact, coherence analysis has already been used to 

examine how HRV and sleep are affected by different sleep disorders (e.g., insomnia, 

obstructive sleep apnea; Jurysta et al., 2006, 2009).  Cardiopulmonary coupling could 

also be used in conjunction with HRV analyses to disentangle non-stationarity (i.e., 

noise) and pure signal recorded during sleep (Thomas et al., 2007).  

Conclusion 

The present findings suggest sympathovagal imbalance may play an important 

mediational role underlying the association between short sleep duration, later bed-times, 

and sleep disturbances with childhood obesity.  These findings highlight the importance 

of better understanding sympathovagal imbalance and its plausible role in the etiology 

and maintenance of obesity.  Future research should include longitudinal designs to test 

the temporal order of this association and comprehensive assessment of sympathovagal 

imbalance during sleep. 
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Table 1 

Anthropometric and Physiological Measures 

 Total  Girls (n=213) Boys (n=276) 

Variable Mean (n) SD (%) Mean (n) SD (%) Mean (n) SD (%) 

    Age (years) 11.66 0.95 11.61 0.97 11.70 0.93 

Anthropometrics 
      

    Waist circumference (cm) 71.85 11.95 71.52 11.84 72.0 12.06 

    Hip circumference (cm) 85.71 10.98 86.81 10.87 84.87 11.01 

    Body mass index (%
percentile

) 68.69 28.76 68.96 28.22 68.48 29.23 

    Body mass index (kg/m
2
) 21.14 4.85 21.29 4.83 21.01 4.87 

    Percent body fat (%) 28.54 10.93 31.37 10.04 26.35 11.10 

    Fat mass index (kg) 6.26 3.58 6.85 3.53 5.80 3.56 

Body weight status
1
       

   Normal (5
th

 - <85
th

 
percentile

) (282) (57.7%) (121) (56.8%) (161) (58.3%) 

   Overweight (85
th

 - 95
th percentile

) (74) (15.1%) (36) (16.9%) (38) (13.8%) 

   Obesity (>95
th

 
percentile

) (123) (25.2%) (50) (23.5%) (73) (26.4%) 

   Underweight (<5
th

 
percentile

) (10) (2%) (6) (2.8%) (4) (1.4%) 

Physiological Data       

   Systolic blood pressure (mmHg) 99.91 7.88 98.64 7.56 100.89 7.99 

   Diastolic blood pressure (mmHg) 49.81 4.73 49.93 4.74 49.71 4.74 

   Heart rate (beats/min) 77.86 10.17 79.07 9.80 76.93 10.37 

   LF (ms
2
) 1464.51 1081.64 1346.79 1028.35 1555.37 1114.38 

   ln LF  7.08 0.63 7.01 0.59 7.13 0.66 

   HF (ms
2
) 922.72 681.37 881.36 629.41 954.65 718.40 

   ln HF 6.55 0.78 6.52 0.76 6.57 0.80 

   LF:HF ratio 1.85 0.95 1.75 0.73 1.92 1.09 

 Note. LF = Low frequency (0.04-0.15 Hz); ln = log-transformed value; HF = High frequency (0.1500-0.4 Hz); ms = milliseconds. 
 1Distribution of age-and sex-specific body weight based on Centers for Disease Control values 
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Table 2 

 

Demographic Measures of Sleep Dimensions in Youth 

 Total  Girls (n=213) Boys (n=276) 

Variables  Mean  SD Mean  SD Mean  SD 

Sleep Duration (min)       

     School nights  588.53 40.28 587.61 41.30 589.23 39.52 

     Weekend nights  612.21 66.53 624.68 66.10 602.51 65.34 

     Average  594.51 40.90 595.44 42.60 593.79 39.62 

Sleep Patterns (hr:min)       

     School bed-time 20:54 0:38 20:56 0:39 20:52 0:38 

     School rise-time       06:41 0:31 06:43 0:31 06:40 0:31 

     Weekend bed-time 22:02 0:57 22:09 0:58 21:57 0:56 

     Weekend rise-time 08:13 1:16 08:32 1:09 07:59 1:19 

     Average bed-time 20:51 1:05 20:50 1:32 20:52 0:33 

     Average rise-time 06:48 0:38 06:52 0:43 06:46 0:34 

Sleep Disturbances
c
       

     Sleep behavior problems
 
(range 17-58) 37.81 5.53 38.02 5.10 37.65 5.83 

     Daytime sleepiness (range 0-20) 9.69 2.96 9.95 3.00 9.50 2.92 

     Bedtime resistance (range 1-16) 6.48 1.24 6.55 1.29 6.43 1.20 

     Sleep onset delay (range 1-3) 1.41 0.69 1.39 0.68 1.41 0.69 

     Sleep duration (range 1-9) 3.51 1.09 3.48 1.06 3.54 1.12 

     Sleep anxiety (range 1-12) 4.50 1.06 4.52 1.03 4.49 1.08 

     Night awakenings (range 1-7) 3.27 0.69 3.23 0.62 3.29 0.73 

     Parasomnia (range 1-15) 7.93 1.54 7.85 1.45 8.00 1.61 

     Sleep disturbed breathing (range 1-8) 3.25 0.71 3.23 0.63 3.27 0.77 
 Note. hr : min = hour : minutes. aChild-report. bParent-report.cChildren’s Sleep Habits Questionnaire. 
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Table 3 

 

Beta Regression Coefficients for Sleep predicting Obesity in Adjusted Models 

                                             Adjusted Models 

 Central Adiposity Body Composition 

 β t p R
2
 β t p R

2
 

Sleep Duration (min)         

  School nights
a
 -0.12 -2.49 0.01 0.18 -0.13 -2.46 0.01 0.07 

  Weekend nights
a
 -0.07 -1.50 0.13 0.16 -0.07 -1.54 0.12 0.06 

  Average
b
 -0.08 -1.85 0.06 0.17 -0.08 -1.71 0.08 0.07 

Sleep Patterns (hr:min)         

  School bed-time
a
 0.15 2.86 0.00 0.17 0.16 3.01 0.00 0.08 

  School rise-time
a
 0.00 0.06 0.95 0.16 0.01 0.30 0.76 0.05 

  Weekend bed-time
a
 0.13 2.69 0.00 0.17 0.15 3.11 0.00 0.08 

  Weekend rise-time
a
 0.01 0.38 0.69 0.16 0.03 0.66 0.50 0.07 

  Average bed-time
b
 0.08 1.96 0.05 0.17 0.07 1.51 0.13 0.07 

  Average rise-time
b
 -0.02 -0.54 0.58 0.16 -0.00 -0.12 0.90 0.07 

Sleep Disturbancesc          

  Sleep-disordered breathing
b
     0.25 5.83 0.00 0.27 0.24 2.87 0.00 0.12 

  Parsomnia
b
 0.13 2.93 0.01 0.18 0.11 2.43 0.01 0.08 

Note.  β = standardized coefficient. t = computed value of t-test. hr : min = hour : minutes.  Adjusted models include all covariates (age, sex, puberty, screen 

time, physical activity, household income, parental education).  
aChild-report. bParent-report. cChildren’s Sleep Habits Questionnaire.  
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Table 4 

Beta Regression Coefficients for Sleep predicting Sympathovagal Imbalance in Adjusted Models 

                                              Adjusted Models 

 LF HF LF:HF ratio 

 β t p R
2
 β t p R

2
 β t p R

2
 

Sleep Duration (min)             

  School nights
a
 0.03 0.61 0.54 0.36 0.07 1.72 0.08 0.34 -0.12 -2.13 0.02 0.10 

  Weekend nights
a
 0.09 2.18 0.02 0.36 0.05 1.37 0.16 0.34 0.03 0.65 0.51 0.08 

  Average
b
 -0.02 -0.48 0.63 0.36 0.00 0.04 0.96 0.34 -0.05 -0.97 0.33 0.09 

Sleep Patterns (hr:min)             

  School bed-time
a
 0.06 1.38 0.16 0.36 -0.01 -0.23 0.81 0.33 0.13 2.36 0.02 0.10 

  School rise-time
a
 0.08 2.16 0.03 0.36 0.07 1.83 0.07 0.34 -0.01 -0.36 0.71 0.09 

  Weekend bed-time
a
 -0.01 -0.26 0.68 0.36 -0.03 -0.65 0.92 0.33 0.02 0.47 0.63 0.09 

  Weekend rise-time
a
 0.09 2.35 0.01 0.36 0.05 1.38 0.16 0.34 0.04 0.93 0.35 0.09 

  Average bed-time
b
 0.02 0.67 0.49 0.36 0.01 0.41 0.68 0.33 0.01 0.22 0.82 0.08 

  Average rise-time
b
 -0.02 -0.75 0.45 0.36 -0.03 -0.90 0.36 0.34 0.01 0.39 0.69 0.09 

Sleep Disturbances
c
              

  Sleep-disordered breathing
b
 0.04 1.10 0.22 0.36 -0.03 -0.81 0.53 0.33 0.13 2.87 0.00 0.10 

  Parsomnia
b
 -0.02 -0.44 0.94 0.36 0.04 1.02 0.62 0.34 0.04 1.03 0.28 0.09 

Note.  β = standardized coefficient. t = computed value of t-test. hr : min = hour : minutes; LF = Low frequency (0.04-0.15 Hz); ln = log-transformed value; 

HF = High frequency (0.1500-0.4 Hz); ms = milliseconds.  Adjusted models include all covariates (age, sex, puberty, screen time, physical activity, household income, 

parental education).  
aChild-report. bParent-report. cChildren’s Sleep Habits Questionnaire.  
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Table 5 

 

Beta Regression Coefficients for Sympathovagal Balance predicting Obesity in Adjusted Models 
 

                                                      Adjusted Models 

 Central Adiposity Body Composition 

 β t p R
2
 β t p R

2
 

Sympathovagal Balance         

  ln LF 0.12 2.32 0.02 0.22 0.12 2.29 0.02 0.12 

  ln HF -0.03 -0.50 0.60 0.22 -0.01 0.19 0.84 0.12 

  LF:HF ratio 0.18 4.12 0.00 0.25 0.14 2.92 0.04 0.14 

Note.  β = standardized coefficient. t  = computed value of  t-test. hr : min = hour : minutes; LF = Low frequency (0.04-0.15 Hz); ln = log-transformed value; 

HF = High frequency (0.1500-0.4 Hz); ms = milliseconds.  Adjusted models include all covariates (age, sex, puberty, screen time, physical activity, household income, 

parental education, heart rate, systolic and diastolic blood pressure).  
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TRANSITION TO GENERAL DISCUSSION 

 The aim of manuscript 4 was to investigate whether sympathovagal imbalance 

was one potential pathophysiological mechanism underlying the link between sleep and 

obesity.  The present study found plausible support for the meditational role of 

sympathovagal imbalance in the association between inadequate sleep and obesity in 

children.  It is recognized that to more conclusively test for mediation, temporal or 

longitudinal data are required to examine whether changes in sleep cause changes in 

sympathovagal balance (Kraemer et al., 2001). 

In comparison to the normative HRV values derived in obese pediatric 

populations, children who were at-risk for obesity had higher LF and LF:HF ratio and 

similar HF (Latchman, Mathur, Bartel, Axtell, & De Meersman, 2011; Rodriguez-Colon 

et al., 2011).  Compared to non-obese children, LF was higher and HF and LF:HF ratio 

showed inconsistent results compared to other studies (Jarrin, McGrath, Poirier, Séguin, 

Séguin, Tremblay, & Paradis, submitted; Latchman et al., 2011; Rodriguez-Colon et al., 

2011).  As hypothesized, sympathovagal imbalance, as represented by LF:HF ratio was 

significant in the mediation models.  Based on previous literature (Kwok et al., 2011; 

Rodriguez-Colon et al., 2011) and findings from manuscript 2, LF and HF were posited 

to be associated with inadequate sleep, however, this hypothesis was not supported.  This 

discrepant finding may be attributable to the time of ECG recordings (i.e., day vs. night; 

Rabbia et al., 2003; Riva et al., 2001) or the at-risk sample used in the present study.  

Robust differences in parasympathetic modulation are reported in sleep studies assessing 

nocturnal HRV (Chung et al., 2009; Neilson et al., 2010).   It is plausible that daytime 

HRV may not be as salient an indicator of sympathovagal imbalance as night HRV, 
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especially as it relates to sleep.  Future research should consider testing this association 

with HRV acquired while sleeping.  Altogether, manuscript 4 was an original 

contribution suggesting that sympathovagal imbalance may be a potential 

pathophysiological mechanism underlying the association between sleep and childhood 

obesity. 
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GENERAL DISCUSSION 

HRV is a valuable quantitative marker of the flexibility and balance of the 

autonomic nervous system and is used extensively in the literature.  The inverse relation 

between sleep and obesity is robust.  Cardiac autonomic dysfunction, as measured by 

HRV, is a putative mechanism underlying this relation. Upon careful review of the HRV 

literature, considerable knowledge gaps were identified, particularly within pediatric 

populations.  These gaps included a lack of systematic comparisons across software 

programs used to derive HRV indices, a lack of normative HRV reference values in 

children, and a lack of standard covariates when assessing HRV in children.  Further, 

autonomic dysfunction, assessed by HRV, remains to be tested as a possible mechanism 

linking sleep and childhood obesity.  

 The overarching goal of my research program was to investigate one potential 

pathogenic pathway in which inadequate sleep contributes to the etiology of obesity in 

children.  The pathogenesis of obesity is complex and multiple putative pathways have 

been proposed (Knutson, 2012; Van Cauter, 2007).  I was particularly interested in 

autonomic dysfunction, as indexed by sympathovagal imbalance, given preliminary 

research findings with adults (Hanlon, & Van Cauter, 2011; Knutson & Van Cauter, 

2008; Van Cauter et al., 2007).  My dissertation was comprised of four manuscripts.   

 Manuscript 1 was a timely comparison of the measurement fidelity across 

contemporary computer software programs used to derive common HRV parameters.  

The study demonstrated strong to excellent measurement fidelity for all time-domain 

HRV parameters and for all frequency-domain HRV parameters, except VLF.  This study 

contributes to the field by demonstrating rigorous user-decisions and technical 
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specifications for nuanced HRV processing details are pivotal in ensuring measurement 

fidelity across signal processing software programs.  This study has important 

implications for the comparison and synthesis of HRV data across studies.   

 Manuscript 2 addressed a current knowledge gap in the field and aimed to 

stimulate harmonization of methodology and reporting of HRV parameters within 

pediatric populations.  It is the first study to provide normative HRV referent values of 

time- and frequency-domain variables in a large, population-based sample of 10-year-old 

children.  Additionally, it is the first study to systematically assess important covariates 

of HRV within a pediatric population and to consider their role collectively.  The study 

results yielded unique covariates, specific to each HRV parameter that are crucial during 

childhood.  Of the developmentally relevant covariates tested, sex, heart rate, blood 

pressure, pubertal status, sleep, and physical activity accounted for significant variance in 

the HRV parameters.  

 Manuscript 3 extends past research that exclusively focused on the relation 

between sleep duration and childhood obesity, to also consider sleep disturbances and 

sleep patterns.  Heavier youth were found to report poor sleep quality, more sleep 

disturbances, and exhibit a delayed sleep phase pattern, even after controlling for sleep 

duration.  Given that different sleep parameters are associated with unique underlying 

physiological mechanisms, these results suggest that sleep measures beyond duration 

may more precisely capture the influences that drive the negative association between 

sleep and obesity, and thus yield more robust associations.   

  Manuscript 4 is an original study seeking to investigate whether sympathovagal 

imbalance was a potential mechanism explaining the relation between multiple sleep 
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parameters and obesity in children.  This study found supporting evidence for 

sympathovagal imbalance as a possible mediator between short sleep duration, sleep 

patterns, and sleep disturbances with childhood obesity.   

 Overall, the findings from each of my dissertation manuscripts represent an 

original contribution to the fields of psychophysiology, sleep, and obesity.  From a 

psychometric perspective, the measurement fidelity findings highlighted the importance 

of increasing measurement precision and proper interpretation of HRV.  It is critical for 

researchers to have a strong theoretical understanding of HRV when selecting appropriate 

technical specifications for signal processing and data cleaning.  This manuscript 

underscores critical issues associated with signal processing that have a profound 

influence on the accuracy of HRV measurement.    

 Relatedly, the establishment of normative HRV reference values was an important 

contribution both experimentally and clinically.  It will be important for future 

researchers to extend this work to broader ages of childhood and adolescence.  In 

addition, this study yielded valuable information regarding developmentally relevant and 

technical covariates for HRV in children.  There is often a misconception that the 

covariates established within the adult literature can be applied to the pediatric literature, 

yet critical developmental changes, particularly pubertal status, challenge this 

assumption.  These findings have potential implications to advance the psychophysiology 

field, as referent values and standard covariates may facilitate comparison and synthesis 

of previously reported HRV data among pediatric studies.   

 The association between short sleep duration and obesity is robust, as it has been 

demonstrated using cross-sectional, longitudinal (prospective and retrospective), and 
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experimental studies (c.f., Cappuccio et al., 2008; Knutson, 2012; Marshall et al., 2008; 

Nielsen, 2011).  Interestingly, in a review of separate background literatures, 

sympathovagal imbalance was the common factor implicated in both the obesity 

literature and the sleep literature.  Within the obesity research literature, HRV has been 

used experimentally to characterize the cardiovascular physiological effects of excess 

adipose (c.f., Kaufman et al., 2007; Rabbia et al., 2003; Riva et al., 2001).  Compared to 

healthy-weight children, overweight and obese youth consistently show greater 

sympathovagal imbalance (c.f., Kaufman et al., 2007; Rabbia et al., 2003; Riva et al., 

2001).  Within the sleep literature, experimental studies demonstrate the direct 

consequences of sleep loss on significant reductions in HF HRV values and increased 

LF:HF ratio values (Tochibubo et al., 1996; Zhong et al., 2005).  The convergence of 

these findings led me to the next questions regarding the potential role of sympathovagal 

imbalance in the relation between sleep and obesity.   

 Experimental findings with adults have led other researchers to propose 

sympathovagal balance as a potential pathogenic mechanism (Knutson, 2012; Speigel et 

al., 1999, 2004; Van Cauter, 2008); however, no studies had tested this association to 

date.  Consistent with the hypothesis, sympathovagal imbalance mediated the link 

between inadequate sleep and obesity.  These findings provide new insight into the 

relation between inadequate sleep and obesity.  

In addition to autonomic dysfunction, there are other potential pathogenic 

pathways that may explain the association of sleep and obesity.  Sleep is associated with 

multiple physiological changes, (i.e., metabolic, endocrine, and cerebral activity) and 

psychosocial factors (i.e., stress, socio-economic status); however, there is a paucity of 
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information available on how these physiological changes may play a pathogenic role in 

the link between sleep and childhood obesity.  Experimental studies show that sleep 

restriction leads to significantly reduced leptin, insulin resistance, and elevated glucose 

and cortisol concentrations, even after controlling for multiple covariates (Capaldi, 

Hanwerger, Richardson, & Stroud, 2005; Spiegel, Knutson, Leproult, Tasali, & Van 

Cauter, 2005).  Interestingly, increased basal cortisol secretion is also associated with 

longer sleep latency, poor perceived sleep quality, more fragmented sleep, and poor sleep 

patterns in adults (Vgontzas et al., 2003; Wrosch, Miller, Lupien, & Pruessner, 2008) and 

children (Hatzinger et al., 2007).  It will be important for future studies to examine other 

metabolic and hormonal profiles (e.g., leptin, ghrelin, cortisol) with distinct subjective 

and objective sleep dimensions (e.g., sleep fragmentation, sleep architecture, sleep 

efficiency).  Much of the work to date has been conducted in lean healthy young men and 

results cannot be generalized to children and adolescents.  Investigating the 

cardiovascular, metabolic, and endocrine changes across sleep stages in children may 

further elucidate other physiologic responses that confer risk for the development and 

maintenance of obesity.   

Limitations, Strengths, and Future Research 

 The present dissertation has two general limitations that merit discussion.  The 

first limitation was the cross-sectional nature of the studies, which precluded the 

investigation of a causal relation to be assessed between sleep, childhood obesity, and 

sympathovagal balance.  Importantly, future studies with experimental or longitudinal 

designs are necessary to test the temporal nature of this relation.  While experimental 

sleep restriction studies have been conducted, few exist with children.  Interestingly, 
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summer camps have been previously used in an innovative and ecologically valid design 

to assess multiple sleep dimensions in a large group of children (Carskadon et al., 2003).  

Studies experimentally testing how sleep curtailment affects sympathovagal imbalance in 

children combined with longitudinal, prospective studies are necessary to better elucidate 

the association between sleep, HRV, and development of obesity.     

The second limitation was that the sleep measures were subjective in all studies.  

Objective sleep measures (e.g., actigraphy, polysomnography) provide detailed 

information about sleep architecture, sleep fragmentation, and sleep efficiency that 

cannot be derived from self-report.  Amounts of time spent in different sleep stages has 

been differentially associated to body composition and central adiposity (Rao et al., 2009; 

Theorell-Haglow et al., 2010).  This is especially important given the evidence of sleep-

stage dependence of autonomic functioning (i.e., greater parasympathetic dominance 

during deep sleep and less parasympathetic dominance during rapid eye movement sleep; 

Trinder et al., 2001).  However, objective sleep measures fail to capture one’s perception 

of how restorative sleep is for them.  In fact, some evidence suggests subjective measures 

are better proxies of sleep complaints than objective sleep measures (Van Egeren, 

Haynes, Franzen, & Hamilton, 1983; Weaver, Kapur, & Yueh, 2004).  In my dissertation, 

the subjectively reported sleep values were within the ranges reported in previous studies 

with children of the same age range, ethnicity, and sociodemographic backgrounds (e.g., 

Laberge et al., 2011).  Future studies should include both objective and subjective 

measures of sleep.   

Further, given that sympathovagal imbalance partially mediated the association 

between sleep and obesity, it will be important to consider other indicators of 
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sympathovagal imbalance.  For example, blood pressure typically drops by 10% to 20% 

during sleep, which is referred to as “dipping” (Pickering, 1990).  Interestingly, 

individuals who do not show dipping (non-dippers) have poor sleep quality and sleep 

efficiency (Loredo, Nelesen, Ancoli-Israel, & Dimsdale, 2004) and are at greater risk for 

hypertension, left-ventricular hypertrophy, and mortality, independent of 24-hour blood 

pressure and obstructive sleep apnea (Ohkubo et al., 2002; Verdecchia et al., 1990).  This 

suggests another potential autonomic dysfunction pathway that should be further 

investigated.  Although there are studies suggesting a reduced sympathetic response 

during sleep, there is little information on whether HRV values also “dip” during sleep 

among a pediatric sample.  Cardiopulmonary coupling could also be used in conjunction 

with HRV analyses to disentangle non-stationarity (i.e., noise) and pure signal recorded 

during sleep (Thomas et al., 2007).  This is an interesting avenue for future study.     

Conclusion 

Overall, the findings from my dissertation provide new knowledge about distinct 

sleep dimensions that may inform the underlying pathophysiological mechanisms linking 

sleep and obesity.  Sympathovagal imbalance was identified as one specific mechanism 

posited to mediate sleep and childhood obesity.  This proposed mechanism is congruent 

with the allostatic load theory postulating that the chronic stress associated with 

inadequate sleep heightens the physiological consequences that eventually lead to 

harmful health conditions (Danese & McEwen, 2012; McEwen, 2002).  Thus, when sleep 

is disturbed or reduced, modifications within the cardiovascular system may occur and an 

allostatic overload develops (e.g., reduction in parasympathetic activity), and if chronic, 
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may lead to harmful pathological consequences (i.e., obesity; Danese & McEwen, 2012; 

McEwen, 2002).   
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