
Cryptanalysis and Secure Implementation of Modern

Cryptographic Algorithms

Abdel Alim K. Farag

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

July 2012

c⃝Abdel Alim K. Farag, 2012

����������	��
����
��

�

��������������	�
���
	����

��

� � � � � �

�

������������� � � � � � �

Abstract

Cryptanalysis and Secure Implementation of Modern

Cryptographic Algorithms

Abdel Alim K. Farag, PhD

Concordia University, 2012

Cryptanalytic attacks can be divided into two classes: pure mathematical attacks and Side Chan-

nel Attacks (SCAs). Pure mathematical attacks are traditional cryptanalytic techniques that rely

on known or chosen input-output pairs of the cryptographic function and exploit the inner struc-

ture of the cipher to reveal the secret key information. On the other hand, in SCAs, it is assumed

that attackers have some access to the cryptographic device and can gain some information from

its physical implementation.

Cold-boot attack is a SCA which exploits the data remanence property of Random Ac-

cess Memory (RAM) to retrieve its content which remains readable shortly after its power has

been removed. Fault analysis is another example of SCAs in which the attacker is assumed to

be able to induce faults in the cryptographic device and observe the faulty output. Then, by

careful inspection of faulty outputs, the attacker recovers the secret information, such as secret

inner state or secret key. Scan-based Design-For-Test (DFT) is a widely deployed technique

for testing hardware chips. Scan-based SCAs exploit the information obtained by analyzing the

scanned data in order to retrieve secret information from cryptographic hardware devices that

are designed with this testability feature.

iii

In the first part of this work, we investigate the use of an off-the-shelf SAT solver, Cryp-

toMinSat, to improve the key recovery of the Advance Encryption Standard (AES-128) key

schedules from its corresponding decayed memory images which can be obtained using cold-

boot attacks.

We also present a fault analysis on both NTRUEncrypt and NTRUSign cryptosystems.

For this specific original instantiation of the NTRU encryption system with parameters (N, p, q),

our attack succeeds with probability ≈ 1− 1
p

and when the number of faulted coefficients is up-

per bounded by t, it requires O((pN)t) polynomial inversions in Z/pZ[x]/(xN − 1). We also

investigate several techniques to strengthen hardware implementations of NTRUEncrypt against

this class of attacks. For NTRUSign with parameters (N , q = pl, B, standard, N), when the

attacker is able to skip the norm-bound signature checking step, our attack needs one fault to

succeed with probability ≈ 1 − 1
p

and requires O((qN)t) steps when the number of faulted

polynomial coefficients is upper bounded by t. The attack is also applicable to NTRUSign uti-

lizing the transpose NTRU lattice but it requires double the number of fault injections. Different

countermeasures against the proposed attack are also investigated.

Furthermore, we present a scan-based SCA on NTRUEncrypt hardware implementations

that employ scan-based DFT techniques. Our attack determines the scan chain structure of the

polynomial multiplication circuits used in the decryption algorithm which allows the cryptana-

lyst to efficiently retrieve the secret key.

Several key agreement schemes based on matrices were recently proposed. For example,

Álvarez et al. proposed a scheme in which the secret key is obtained by multiplying powers of

block upper triangular matrices whose elements are defined over Zp. Climent et al. identified

the elements of the endomorphisms ring End(Zp ×Zp2) with elements in a set, Ep, of matrices

of size 2 × 2, whose elements in the first row belong to Zp and the elements in the second row

belong to Zp2 . Keith Salvin presented a key exchange protocol using matrices in the general

linear group, GL(r,Zn), where n is the product of two distinct large primes. The system is fully

specified in the US patent number 7346162 issued in 2008. In the second part of this work, we

present mathematical cryptanalytic attacks against these three schemes and show that they can

be easily broken for all practical choices of their security parameters.

iv

Acknowledgments

I would like to thank my supervisor, Dr. Amr Youssef, for his patient guidance, and encourage-

ment. I have been extremely lucky to have a supervisor who cared so much about me and my

work, and who responded to my questions and queries so promptly.

I also would like to express my deepest gratitude for the constant support, understanding and

love that I received from my mother, my father, my wife, and my family during the past years.

Completing this work would have been all the more difficult were it not for the support and

friendship provided by my colleagues in the Crypto Lab at CIISE. I am indebted to them for

their help. I also would like to thank Tadeusz Obuchowicz for his help and support in the area

of hardware implementations using VHDL.

Finally, I am very grateful for the financial support of the Mission Sector in the Egyptian Min-

istry of Higher Education.

ABDEL ALIM K. FARAG

v

To my family for their love and support

Table of Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Thesis contributions . 3

1.3 Outline of the thesis . 5

Chapter 2 Background and Literature Review 7

2.1 Introduction . 7

2.2 Classifications of side channel attacks . 8

2.2.1 Controls over the computation process 8

2.2.2 Ways of accessing the module . 9

2.2.3 Methods used in the analysis process 10

2.3 Examples of side channel attacks . 10

2.3.1 Timing attack . 10

2.3.2 Fault attacks . 12

2.3.3 Power analysis attacks . 13

2.3.4 Electromagnetic attacks . 13

2.3.5 Cold-boot attacks . 14

2.3.6 Scan-based attacks . 15

vii

2.3.7 Acoustic attacks . 15

2.4 Countermeasures against side channel attacks 15

2.4.1 Preventing timing attacks . 16

2.4.2 Preventing power analysis attacks . 17

2.4.3 Preventing fault attacks . 17

2.4.4 Preventing cold-boot attacks . 18

2.5 The SAT problem . 18

Chapter 3 Applications of SAT Solvers to AES Key Recovery from Decayed Key

Schedule Images 20

3.1 Introduction . 20

3.2 The SAT problem and its applications to cryptanalysis 22

3.3 Structure of the AES-128 key schedule . 23

3.4 Formulating the AES key schedule as a SAT problem 25

3.5 Experimental results . 27

3.6 Conclusion . 30

Chapter 4 Fault Attacks Against the NTRU Cryptosystems and their Countermea-

sures 31

4.1 Introduction . 31

4.2 Fault analysis of NTRUEncrypt cryptosystem 34

4.2.1 Description of the NTRUEncrypt encryption algorithm 34

4.2.2 Proposed attack . 37

4.2.3 Complexity and success probability of the proposed attack 38

4.2.4 Proposed countermeasures . 39

4.2.5 FPGA implementation results . 48

4.3 Fault analysis of NTRUSign digital signature scheme 52

4.3.1 Description of NTRUSign . 52

4.3.2 Proposed attack . 53

4.3.3 Proposed countermeasures . 60

4.4 Conclusion . 64

viii

Chapter 5 Application of Scan-based SCAs on NTRUEncrypt Cryptosystems 66

5.1 Introduction . 66

5.2 Hardware implementation options for NTRUEncrypt 68

5.3 The proposed scan-based attack . 72

5.3.1 Summary of the attack . 73

5.3.2 Recovering the secret key . 74

5.4 Experimental Results . 83

5.5 Conclusion . 85

Chapter 6 Cryptanalysis of Key Exchange Schemes Based on Matrix Algebra 87

6.1 Introduction . 87

6.2 Cryptanalysis of Álvarez et al. key exchange scheme 88

6.2.1 Description of the Álvarez et al. key exchange scheme 89

6.2.2 The proposed attack . 91

6.3 Cryptanalysis of a key exchange protocol based on the endomorphisms ring

End(Zp × Zp2) . 96

6.3.1 Description of Climent et al. key exchange scheme 97

6.3.2 The proposed attack . 98

6.4 Cryptanalysis of a GL(r,Zn)-based Public Key System 103

6.4.1 Description of Salvin’s key exchange scheme 103

6.4.2 The proposed attack . 105

6.5 Conclusion . 110

Chapter 7 Conclusions and Future Research Directions 112

7.1 Summary and Conclusions . 112

7.2 Future works . 113

Appendix A An FPGA Implementation of the NTRUEncrypt Cryptosystem 115

A.1 Hardware implementation of the NTRUEncrypt cryptosystem 115

Appendix B Enhanced Implementation of the NTRUEncrypt Algorithm Using Graph-

ics Cards 123

ix

B.1 Introduction . 123

B.2 The CUDA framework . 125

B.2.1 Thread organization and memory model 125

B.3 Implementation options for the NTRUEncrypt 128

Bibliography 135

x

List of Figures

2.1 The cryptographic model including examples for side-channels 8

3.1 The key schedule of the AES-128 . 24

3.2 Algebraic normal form of the first coordinate function of the AES s-box 25

4.1 The decryption process after inducing faults: a) before the centerlift operation

or b) after the centerlift operation . 37

4.2 Detecting errors using the duplication method (decryption followed by decryp-

tion). When temporal redundancy is used, à(x) is calculated at the same time

with m(x) using the same hardware used to calculate a(x). 40

4.3 Detecting errors by using the duplication method (decryption of a ciphertext

and its rotated version) . 42

4.4 Detecting errors by using the duplication method (decryption followed by en-

cryption) . 43

4.5 Detecting errors by using checksum EDC from Lemma 4.2 45

4.6 Detecting errors using checksum EDC and spatial redundancy 48

4.7 Time-line (not to scale) of operations performed by the proposed architectures.

Operations performed using resource sharing are shown in dotted lines 50

4.8 Fault injection in the NTRUSign algorithm . 55

4.9 Fault detection by recomputing with cyclically shifted messages 62

5.1 An illustration for a scan flip-flop (SFF) . 67

5.2 An illustration for a scan chain . 67

xi

5.3 A typical low area implementation of the convolution multiplication (f(x) ⋆

e(x)) in N2 clock cycles. For each 0 ≤ i < N , j varies from 0 to N − 1. 70

5.4 The convolution multiplication between the polynomials f(x) and e(x) in 2 ×

df − 1 clock cycles . 71

5.5 The computation steps in Algorithm 4 for Example 5.1 80

5.6 The computation steps in Algorithm 5 for Example 5.1 81

5.7 The computation steps in Algorithm 5 for Example 5.1: Continued from Figure

5.6 . 82

5.8 The computation steps in Algorithm 5 for Example 5.1: Continued from Figure

5.7 . 83

5.9 Histogram distribution for the size of the list of suggested keys 86

A.1 Example of (N, s)-shifter . 117

A.2 Average value of Tconv(s) . 118

A.3 The number of slices for (251, s)-shifter . 119

A.4 Histogram of Tconv(s=4) . 120

A.5 Histogram of Tconv(s=8) . 121

B.1 The CUDA programming model . 126

B.2 The CUDA memory model . 127

B.3 The convolution operation using NP, NC, and GM 130

B.4 The convolution operation using NP, BP, and GM 131

B.5 The convolution operation using NP, NC, and SH 132

B.6 The convolution operation using NP, BP, and SH 133

B.7 Total time required to encrypt n messages in parallel 134

B.8 The number of parallel encrypted messages per second. 134

xii

List of Tables

3.1 CryptoMinSAT input corresponding to Example 3.1 27

3.2 Run-time statistics for decay factors 30%, 40%, 50%, 60%, and 70%. 29

3.3 Run-time statistics for decay factors 72%, 74%, 76%, 78%, and 80%. 29

4.1 The parameter sets for NTRU in [85] . 36

4.2 FPGA implementation results for the raw NTRUEncrypt decryption with pa-

rameters (N ,p,q,df ,dg,dr) = (167,3,128,61,20,18) 51

4.3 Experimental results for NTRUSign with (N , q, df , dg, B, “type”, N) =(251,

128, 73, 71, 0, standard, 310) . 57

4.4 Experimental results for NTRUSign with (N , q, df , dg, B, “type”, N) =(251,

128, 73, 71, 1, standard, 310) . 57

4.5 Experimental results for NTRUSign with (N , q, df , dg, B, “type”, N) =(251,

128, 73, 71, 0, transpose, 310) . 58

4.6 Experimental results for NTRUSign with (N , q, df , dg, B, “type”, N) =(251,

128, 73, 71, 1, transpose, 310) . 58

4.7 Experimental results for NTRUSign with the set of parameters in [82, 83] . . . 59

5.1 The Hamming weight of TL and TR as obtained from JTAG scan chain output

in example 5.1 . 79

5.2 The Hamming weight of TL and TR as obtained from JTAG scan chain output

in example 5.2 . 84

5.3 Average and median size of the list of suggested keys 85

A.1 Implementation results using the naı̈ve polynomial multiplication algorithm . . 121

xiii

A.2 Implementation results using the proposed approach for s = 4 and s = 8 122

xiv

List of Acronyms

AES Advanced Encryption Standard

ANF Algebraic Normal Form

BDD Binary Decision Diagrams

BP Bit Packing

CBA Constant Based Attack

CNF Conjunctive Normal Form

CSP Conjugacy Search Problem

CPU Central Processing Unit

CRT Chinese Remainder Theorem

CUDA Compute Unified Device Architecture

DEMA Differential Electromagnetic Analysis

DES Data Encryption Standard

DFT Design-For-Test

DLP Discrete Logarithm Problem

DPA Differential Power Analysis

DRAM Dynamic Random Access Memory

DSA Digital Signature Algorithm

DSCA Differential Side Channel Attacks

EDC Error Detecting Code

EESS Efficient Embedded Security Standards

xv

EMA Electromagnetic Analysis

FHDA Fixed Hamming Distance based Attack

FPGA Field Programmable Gate Array

FSMD Finite State Machine Data path

GCHQ Government Communications Headquarters

GF Galois Field

GGH Goldreich-Goldwasser-Halevi cryptosystem

GL General Linear Group

GM Global Memory

GPU Graphics Processing Unit

ISE Integrated Software Environment

JTAG Joint Test Action Group

LFSR Linear Feedback Shift Register

LUT Look Up Table

MI5 Military Intelligence, Section 5

MUX Multiplexer

NC Normal Coefficients Representation

NIST National Institute of Standards & Technology

NP Normal Polynomial Form

NSA National Security Agency

NTRUEncrypt NTRU Encryption Algorithm

NTRUSign NTRU Digital Signature Scheme

PF Product Form

RAM Random Access Memory

RBT Redundancy Based Technique

RFID Radio Frequency Identification

ROM Read Only Memory

xvi

RSA Rivest-Shamir-Adleman cryptosystem

SAT Satisfiability Problem

SCAs Side Channel Attacks

SEMA Simple Electromagnetic Analysis

SH Shared Memory

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

SP Streaming Processor

SPA Simple Power Analysis

SRAM Static Random Access Memory

SSCA Simple Side Channel Attacks

TCK Test Clock

TDI Test Data In

TDO Test Data Out

TMS Test Mode Select

TRST Test Reset

VHSIC Very High Speed Integrated Circuits

VHDL VHSIC Hardware Description Language

xvii

Chapter 1

Introduction

1.1 Motivation

In the academic cryptanalysis literatures, a “break” of a cryptosystem is defined quite

conservatively: if the effort required by the attacker is less than the effort required by naı̈ve

exhaustive search, then the cryptosystem is said to be broken. This conservative definition,

while can be arguably justified, led to many published mathematical attacks that require im-

practical amounts of time, memory, or known/chosen plaintext-ciphertext pairs. On the other

hand, in many practical scenarios, the attackers may have access to the cryptographic device. In

such scenarios, SCAs allow the attackers to break these cryptosystems using a relatively small

amount of computational resources and a small number of known/chosen plaintext-ciphertext

pairs.

The basic idea behind SCAs is not new. For example, Wright [190] reported an early

application of acoustic cryptanalysis. During his employment with GCHQ in 1965, the British

intelligence agency (MI5) tried to break a cipher used by the Egyptian embassy in London.

In order to reduce the computational resources required to break the cipher, Wright suggested

placing a spy microphone near the rotor-cipher machine used by the Egyptians to detect the

click-sound produced by the machine. By listening to the clicks of the rotors as cipher clerks

1

reset them each morning, MI5 successfully deduced the core position of some of the machines

rotors which reduced the computation effort needed to break the cipher, and MI5 was able to spy

on the embassys communication for years. Another example is given in a recently declassified

National Security Agency (NSA) document [172] which reveals that in 1943, an engineer with

Bell Telephone observed decipherable spikes on an oscilloscope associated with the decrypted

output of a certain encrypting teletype.

Currently, the wide spread of unprotected software or hardware cryptographic imple-

mentations offers various possibilities for side channel attacks. Such attacks are practical; they

do not even require expensive equipments. For example, Skorobogatov and Anderson [10] car-

ried out fault analysis attacks using a flashgun bought second-hand from a camera store for $30

and with an $8 laser pointer. They also developed relatively simple techniques to set or reset any

individual bit of SRAM in a microcontroller. Thus, unless suitable effective countermeasures

are taken, vulnerability to this class of attacks poses a big problem for the industry, especially

with the wide spread of smart cards, RFIDs, and embedded devices.

In the first part of this thesis, we investigate the application of several SCAs against both

AES [59] and NTRU [84]. In particular, we study the use of an off-the-shelf SAT solver, Cryp-

toMinSat, to improve the key recovery of the AES-128 key schedules from its corresponding

decayed memory images resulting from applying the cold-boot attack. We present a fault analy-

sis on NTRUEncrypt and NTRUSign and propose several hardware countermeasures. Proof of

concept FPGA implementations for NTRUEncrypt are also presented. Furthermore, we present

a scan-based SCA on NTRUEncrypt hardware implementations that employ scan-based DFT

techniques.

Public-key cryptography [124] provides key exchange mechanisms in which secret keys

can be exchanged between users over insecure communication channels. These key exchange

mechanisms are usually based on number theory problems such as the discrete logarithm prob-

lem (DLP) [57], integer factorization [158] and elliptic curve DLP [26]. However, such systems

require a large number of arithmetic operations, which makes them hard to implement in most

2

resource constrained applications. To overcome this problem, key exchange protocols based on

efficient matrix algebra have been proposed. For example, Álvarez et al. [5] proposed a scheme

in which the secret key is obtained by multiplying powers of block upper triangular matrices

whose elements are defined over Zp. Climent et al. [40] identified the elements of the endomor-

phisms ring End(Zp×Zp2) with elements in a set, Ep, of matrices of size 2×2, whose elements

in the first row belong to Zp and elements in the second row belong to Zp2 . Keith Salvin [175]

presented a key exchange protocol using matrices in the general linear group, GL(r,Zn), where

n is the product of two distinct large primes. The system is fully specified in the US patent

number 7346162 issued in 2008. In the second part of this work, we present mathematical

cryptanalytic attacks against these three schemes and show that they can be efficiently broken

for all practical choices of their security parameters.

1.2 Thesis contributions

In this thesis, we investigate the application of several side channel attacks on different

ciphers. We also propose some countermeasures against these types of attacks. Some imple-

mentations of theses countermeasures are presented. We also present cryptanalysis of some

recently proposed key exchange schemes. The contribution of this thesis can be summarized as

follows:

1. We investigate the use of an off-the-shelf SAT solver, CryptoMinSat, to improve the key

recovery of the AES-128 key schedules from its corresponding decayed memory images.

By exploiting the asymmetric decay of the memory images and the redundancy of key

material inherent in the AES key schedule, rectifying the faults in the corrupted memory

images of the AES-128 key schedule is formulated as a Boolean satisfiability problem

which can be solved efficiently for relatively large decay factors. Our experimental results

show that this approach improves upon the previously known results.

2. We present a fault analysis attack on NTRUEncrypt. The fault model in which we analyze

3

the cipher is the one in which the attacker is assumed to be able to fault a small number of

coefficients of the polynomial input to (or output from) the second step of the decryption

process but cannot control the exact location of injected faults. For this specific orig-

inal instantiation of the NTRU encryption system with parameters (N, p, q), our attack

succeeds with probability ≈ 1 − 1
p

and when the number of faulted coefficients is upper

bounded by t, it requires O((pN)t) polynomial inversions in Z/pZ[x]/(xN − 1). We also

investigate several techniques to strengthen hardware implementations of NTRUEncrypt

against this class of attacks. In particular, by utilizing the algebraic structure of the ci-

pher, we propose several countermeasures based on error detection checksum codes, and

spatial/temporal redundancies. The error detection capabilities of these countermeasures,

as well as their impact on the decryption throughput and area, are also presented.

3. We present a fault analysis attack on NTRUSign. The utilized fault model is the one

in which the attacker is assumed to be able to fault a small number of coefficients in a

specific polynomial during the signing process but cannot control the exact location of

the injected transient faults. For NTRUsign with parameters (N , q = pl, B, standard,N),

when the attacker is able to skip the norm-bound signature checking step, our attack needs

one fault, succeeds with probability ≈ 1 − 1
p

and requires O((qN)t) computation steps

when the number of faulted polynomial coefficients is upper bounded by t. The attack is

also applicable to NTRUSign utilizing the transpose NTRU lattice but it requires double

the number of fault injections. Different countermeasures against the proposed attack are

investigated.

4. We present a scan-based SCA on NTRUEncrypt hardware implementations that employ

scan-based Design-For-Test (DFT) techniques. Our attack determines the scan chain

structure of the polynomial multiplication circuits used in the decryption algorithm which

allows the cryptanalyst to efficiently retrieve the secret key.

5. We show that breaking the key exchange scheme proposed by Álvarez et al. [8] with

4

security parameters (r, s, p) is equivalent to solving a set of 3(r + s)2 linear equations

with 2(r + s)2 unknowns in Zp, which renders this system insecure for all the suggested

practical choices of the security parameters.

6. Climent et al. [40] identified the elements of the endomorphisms ring End(Zp × Zp2)

with elements in a set, Ep, of matrices of size 2 × 2, whose elements in the first row

belong to Zp and the elements in the second row belong to Zp2 . By taking advantage

of matrix arithmetic, they proposed a key exchange protocol using polynomial functions

over Ep defined by polynomials in Z[X]. We show that this key exchange protocol is

insecure; it can be broken by solving a set of 10 consistent homogeneous linear equations

in 8 unknowns over Zp2 .

7. Keith Salvin [175] presented a key exchange protocol using matrices in the general linear

group, GL(r,Zn), where n is the product of two distinct large primes. The system is fully

specified in the US patent number 7346162 issued in 2008. In the patent claims, it is

argued that the best way to break this system is to factor n. Furthermore, for efficiency

reasons, it is suggested to use r = 2. We show that this cryptosystem can be easily broken

by solving a set of consistent homogeneous r2 linear equations in 2r unknowns over Zn.

The contributions made throughout this work have been published in [99–109].

1.3 Outline of the thesis

The rest of the thesis is organized as follows. In chapter 2, we provide a brief overview

of side channel attacks. A classification of these attacks, examples, and proposed countermea-

sures are also presented. We also briefly review the Boolean satisfiability (SAT) problem. In

chapter 3, we show how to use an off-the-shelf SAT solver, CryptoMinSat, to improve the key

recovery of the AES-128 key schedules from its corresponding decayed memory images. Chap-

ter 4 presents our fault analysis attacks against NTRUEncrypt and NTRUSign cryptosystems.

5

Different countermeasures are also presented. In chapter 5, we describe our proposed scan-

based side channel attack on the NTRUEncrypt cryptosystem. The simulation results and their

analysis are also provided. Chapter 6 provides cryptanalysis of the three key exchange schemes

proposed by Álvarez et al. [8], Climent et al. [40], and Keith Salvin [175]. Our conclusions

and some suggestions for future research directions are given in chapter 7. An architecture that

offers different area-speed trade-off for NTRUEncrypt is presented in Appendix A together with

a proof of concept FPGA implementation results. Results on implementing NTRUEncrypt on

the NVIDIA GTX275 GPU, using the CUDA framework are presented in Appendix B.

6

Chapter 2

Background and Literature Review

2.1 Introduction

The classical focus of cryptography has been communication security. Consequently,

traditional cryptanalytic techniques focused on information flowing over the communication

channel rather than the endpoint cryptographic devices. This view has changed dramatically

with the introduction of SCAs in the open literatures. Cryptography is now widely deployed in

many devices ranging from pay TV units, cell phones, prepaid cards and smart cards. Because

these cryptographic devices are easily obtainable, attackers can study the internal structure of

the hardware to learn specific details about their implementations. Knowledge of the imple-

mentation may then be used to carry out attacks on the system without directly attacking the

mathematics of the algorithms. In other words, even when totally secure algorithms and proto-

cols are employed, attackers might still be able to learn valuable secret information due to the

specific software or hardware implementation of the system. Figure 2.1 shows a modern view

of the cryptographic model including different side channel information that can be obtained

from the endpoint devices.

In this chapter we provide a brief overview of side channel attacks. A classification of

SCAs is given in the next section. Examples of these attacks and proposed countermeasures

7

are presented in section 2.3 and 2.4, respectively. Finally, in section 2.5 we briefly review the

Boolean satisfiability (SAT) problem.

Eve

E

Ka

Alice

Sound
Electromagnetic radiation

Cold boot

D

Kb

Bob

Power consumption

Execution timeFaulty outputs

Scan chain output

Figure 2.1: The cryptographic model including examples for side-channels

2.2 Classifications of side channel attacks

SCAs can be classified according to (i) the attackers capabilities to control the compu-

tation process, (ii) the way of accessing the cryptographic module and (iii) the method used in

the analysis process [196].

2.2.1 Controls over the computation process

SCAs can be divided based on the control over the computation process by attackers into

two main categories: passive attacks and active attacks. Passive attacks refer to those that do not

interfere with the operation of the target system, i.e., the attacker is assumed to be able to collect

some information about the operation of the target system without disturbing its behavior. In

contrast, in active attacks, the adversary can affect the behavior of the target system, while the

attacked system may or may not be able to detect such influence.

8

2.2.2 Ways of accessing the module

Anderson et al. [10] classified side channel attacks into three classes: invasive attacks,

semi-invasive attacks and non-invasive attacks.

A. Invasive attacks

Invasive attacks require a direct physical access to the internal components of the crypto-

graphic modules. A classic example of this class of attacks is when attackers may get access

to the inner layer of the cryptographic module and place a probing needle on the data bus

to record and later analyze the data transferred. Several defensive measures are usually

implemented in hardware to counter such invasive attacks effectively. For example, some

cryptographic modules with higher security level reset all their memories when tampering

is detected [60].

B. Semi-invasive attacks

The notion of semi-invasive attack was first introduced by Skorobogatov and Anderson

[174]. This type of attacks involves access to the device, but without physical access or

damage to the layer that contains the cryptographic module. For example, in fault-induced

attacks, the attacker may use a laser beam to ionize the device in order to change some of its

memory contents and consequently change the output of the device.

C. Non-invasive attacks

Non-invasive attacks require close examination or manipulation of the device’s behavior.

This class of attacks exploits information that is unintentionally leaked. A classical example

of such attacks is timing analysis which measures the time consumed by a device to perform

an operation and analyze it to deduce the secret keys. One of the main characteristics of

a non-invasive attack is that it is completely undetectable. For example, a tamper resistant

smart card cannot figure out that its running time is currently being measured. Furthermore,

contrary to invasive attacks that require individual processing of each attacked device, non-

9

invasive attacks are often low-cost to deploy on a large scale. Therefore, non-invasive attacks

present more threat for embedded devices and smart cards.

2.2.3 Methods used in the analysis process

Based on the methods used in the analysis process of the sampled data, SCA attacks

are divided into Simple Side Channel Attack (SSCA) and Differential Side Channel Attack

(DSCA). SSCA exploits the side channel output primarily depending on the performed opera-

tions. Typically, a single trace is used in an SSCA analysis, and therefore the secret key can

be directly read from the side channel trace. If the SSCA is not successful due to noise in the

measurements, DSCA can be used. DSCA exploits the correlation between the processed data

and the side channel output. Since this correlation is often very small, statistical methods are

used to exploit it efficiently.

2.3 Examples of side channel attacks

Side channel attacks exploit the information leaked by the physical characteristics of

the cryptographic modules during execution of the algorithm. This extra information can be

extracted from timing, power consumption or electromagnetic radiation characteristics. Other

forms of side channel information can also be available as a result of hardware or software

failures, changes in frequency or temperature, and computational errors.

2.3.1 Timing attack

The majority of optimized implementations of cryptographic algorithms execute the

computations in a non-constant time. If these operations involve secret parameters, these timing

variations can leak some information that can provide enough knowledge of the implementa-

tion. A careful statistical analysis sometimes could even lead to the total recovery of the secret

parameters. Timing attacks were first introduced in 1996 by Kocher [115] who demonstrated

10

the feasibility of these attacks against the RSA system. Later, Schindler [160] presented timing

attacks on implementations of RSA exponentiation that employ the Chinese Remainder Theo-

rem (CRT). Afterwards, several experimental results on various cryptographic algorithms have

been reported (e.g., [52, 78]).

In order to illustrate the idea of the timing attack, consider an RSA cryptosystem where

the encryption operation involves the computation of R = yx mod n where n is the public

modulus, and y is the message being encrypted. The goal of the attacker is to find the secret key

x.

Algorithm 1 shows the modular exponentiation algorithm which is typically used to com-

putes R = yx mod n, where x is w bits long. Kocher [115] shows that an attacker who can record

the message received and the time taken to respond to each y, will be able to predict the op-

erations of the algorithm. In particular, the timing attack described by Kocher allows someone

who knows the exponent bits 0 · · · (b− 1) to find bit b. This is because when the first b bits are

known, the attacker can compute the first b iterations of the for loop to find the value of sb. In

the next iteration, the first unknown bit will be tested. If it is set, Rb = (sb · y) mod n will be

computed, else this operation will be skipped. If the total modular exponentiation time for the

iteration is ever fast when Rb = (sb · y) mod n is slow then bit b must be zero. Conversely,

if the modular exponentiation time is slow, then the bit must be set. The same set of timing

measurement can be used to determine the rest of the exponentiation bits.

Algorithm 1 Modular Exponentiation Algorithm [115]

1: Let s0 = 1.

2: for k = 0 to w − 1 do

3: if (bit k of x is 1) then

4: Let Rk = (sk · y) mod n

5: else

6: Let Rk = sk
7: end if

8: Let sk+1 = R2
k mod n

9: end for

10: Return (Rw−1)

A special class of timing attacks is cache based attacks which involve monitoring the

11

movement of data into and out of the cache. Cache profiles can be used to recover the secret

key information of a cryptographic algorithm. Such attacks usually consist of a collection phase

that provides the attacker with profiles of execution, and an analysis phase which recovers the

secret information. Cache based attacks can be categorized as trace driven attacks [152] or time

driven attacks [185, 186]. Trace driven attacks rely on the ability of the attacker to capture a

profile of cache activity that results from running the algorithm. That is, in order to perform a

successful attack, the adversary needs a cache trace which shows cache hits or misses for every

memory access. Time driven attacks rely on the fact that the execution time is mainly affected

by memory accesses since cache hits result in a lower execution time and cache misses result in

a comparably higher execution time.

2.3.2 Fault attacks

If the attacker is able to induce a fault or error during the operation of the cryptographic

module, then the faulty behavior may provide the attacker with valuable side channel infor-

mation that can greatly increase the cipher’s vulnerability to cryptanalysis. Fault cryptanalysis

presents practical and effective attacks against cryptographic hardware devices such as smart

cards. The threat posed by these attacks was first demonstrated in the open literatures by Boneh

et al. [29, 30] who showed that it is easy to extract the private RSA decryption/signing keys by

inducing errors in the CRT implementation and observing the faulty output. Since then, many

cryptographic algorithms have been broken by using such types of attacks. In [25], Biham and

Shamir presented fault analysis attacks on the DES symmetric-key encryption scheme. Shamir

et al. [79] developed general fault analysis techniques which can be used to attack the standard

constructions of stream ciphers based on LFSRs.

A special type of fault analysis can be performed when the adversary is able to manipu-

late the program counter to skip instructions of an algorithm. In these fault models, we assume

that the fault injection allows the attacker to skip the targeted instruction with a specific proba-

bility, i.e., we assume that the fault injection may also cause other instructions to be skipped or

12

other variables to be changed randomly. Thus, an adversary must be able to check, whether the

fault injection was successful or not. In practice, these fault attacks can be launched by intro-

ducing power glitch or spikes or by clocking the module with a clock rate outside the allowed

range. Various experimental results confirming the above ideas were verified (e.g., [161]).

2.3.3 Power analysis attacks

In addition to the computation time and the faulty behavior, the power consumption of

a cryptographic device can also leak useful information about the running operations and their

involved secret parameters. Unlike the timing and the fault analysis, power analysis attacks

are applicable only to hardware implementations. These attacks proved to be very effective in

attacking smart cards and other embedded systems. Generally, power analysis attacks can be

categorized into Simple and Differential Power Analysis (referred to as SPA and DPA, respec-

tively). In SPA attacks, the goal is utilize the measured power traces in order to guess which

particular instruction is being carried out at a specific time as well as the input and output values

of this instruction. For that, the adversary needs to know the exact structure of the implemen-

tation in order to apply such an attack. In contrast, DPA attacks do not require knowledge of

the implementation details and instead exploit statistical methods in the analysis process. In

general, DPA is one of the most powerful SCAs which can be applied using relatively little

resources [116, 150]. Experimental results with power analysis attacks on smart cards were

reported in [3, 62, 126].

2.3.4 Electromagnetic attacks

Similar to any electrical device, the components of cryptographic devices usually gen-

erate electromagnetic radiations as part of their execution processes. By analyzing these em-

anations, the attacker can deduce the relationship between it and the underlying computation

and data. This may allow the attacker to extract some useful information about the secret pa-

rameters of the cryptographic algorithm. Electromagnetic Analysis (EMA) can also be divided

13

into two main classes: simple Electromagnetic Analysis (SEMA) and Differential Electromag-

netic Analysis (DEMA). Experimental results on electromagnetic analysis attacks on crypto-

graphic devices such as smart cards and comparisons to power analysis attacks were presented

in [61, 156].

2.3.5 Cold-boot attacks

A cold-boot attack [72] is a SCA that exploits the fact that data loss of a non-powered

random access memory can be retarded by cooling it down. In 2002, Skorobogatov [173] per-

formed experiments to study the temperature dependency of data retention time in static RAM

devices. The reported experimental results indicate that many chips may preserve data for rela-

tively long periods of time at temperatures above −20◦C which contradicted the common wis-

dom that was widely believed at that time. The temperature at which 80% of the data remained

for one minute varied widely between devices. While some devices required cooling to at least

−50◦C, others, surprisingly, retained data for this period at room temperature. Memory re-

tention time also varied between devices of the same type from the same manufacturer, most

likely, because controlling data retention time is not a part of the chip manufacturing quality

process [173].

Thus, one way to launch a cold-boot attack is to remove the memory module, after

cooling it, from the target system and immediately plugging it in another system under the

adversary’s control. This system is then booted to access the memory. Another possible ap-

proach to execute the attack is to cold-boot the target machine by cycling its power OFF and

then ON without letting it shut down properly. Then a lightweight operating system is instantly

booted where the content of targeted memory is dumped to a file. Further analysis can then

be performed against the information that is retrieved from memory in order to find sensitive

information such as cryptographic keys or passwords.

14

2.3.6 Scan-based attacks

Scan-based Design-for-Test [34] is a widely deployed technique for testing hardware

chips. Using this approach, all flip-flops in the design under test are connected to a scan chain

where their states can be scanned out during the testing phase. Scan-based SCAs exploit the

information obtained by analyzing the scanned data in order to retrieve secret information from

cryptographic hardware devices that are designed with this testability feature.

While scan-based DFT improves the quality of testing, it also opens a powerful side

channel against hardware implementations of cryptographic devices that utilize this technique.

Despite the fact that the internal structure of the scan chain is usually not known to attackers,

exploiting the information obtained from analyzing the scanned data allows cryptanalysts to

ascertain this structure and retrieve the secret key information from cryptographic hardware

devices implementing various cryptographic algorithms

2.3.7 Acoustic attacks

Most research on side channel attack focused on timing, power consumption, and fault

features. However, one of the oldest eavesdropping methods, namely acoustic emanations, has

received little attention. Recently, Shamir et al. [166] have presented introductory proof-of-

concept that confirm the correlation between the sound of a PC and its computation. Although

we may consider the technique used by P. Wright in 1965 as one of the primitive acoustic

attacks [190], this is a relatively new field of research, and much research is needed to confirm

its effectiveness against modern cryptographic algorithms and devices.

2.4 Countermeasures against side channel attacks

SCAs primarily focus on the implementation of the cryptographic algorithm. Several

software and hardware countermeasures were proposed to combat side channel attacks. Some

of these countermeasures make algorithmic changes to the cryptographic primitives so that at-

15

tacks are provably inefficient on the obtained implementation. Other countermeasures decor-

relate the output traces on individual runs. In what follows, we briefly explain how specific

countermeasure can be applied in order to thwart different forms of SCAs.

2.4.1 Preventing timing attacks

The most obvious way to prevent timing attacks is to force all operations to consume

the same amount of time. When this is not possible, another approach is to make timing mea-

surements extremely inaccurate, e.g., by introducing random timing shifts and wait states, or

by inserting dummy instructions. Random delays added to the processing time do increase the

number of ciphertexts required by the cryptanalyst, but attackers can compensate for this by col-

lecting more measurements. The number of samples required increases roughly as the square of

the timing noise [115]. In [115], Kocher describes a methodology for preventing timing attack

based on the techniques used for blinding signature. His approach is to choose a random pair

(vi, vf) such that v−1
f = vxi mod n. Before the modular exponentiation operation, the input

message should be multiplied with vf mod n, and afterwards the result is corrected by again

multiplying it with vf mod n. The (vi, vf) pair should not be reused since they themselves

might be compromised by timing attacks. An efficient solution to this problem is to update vi

and vf before each modular exponentiation step. If (vi, vf) is secret, then the attacker has no

useful knowledge about the input to the modular exponentiation.

Wang et al. [188] propose two approaches to overcome cache based SCAs. The first

approach is to use a partition based approach to eliminate cache interference. The second is

based on randomizing cache interference in such a way to guarantee zero information leakage.

The authors have also presented a new security aware cache design which consists of Partition

Locked cache (PLcache) and Random Permutation cache (RPcache).

16

2.4.2 Preventing power analysis attacks

Mitigation power analysis attacks can be achieved by modifying the design of the hard-

ware device in such away that its power consumption becomes random or to make the device

consume an equal amount of power for all operations and for all processed data values. The data

masking technique, which can be introduced at the software or hardware level, is another widely

used countermeasure against power analysis attacks [38, 70]. The basic idea of most masking

approaches is to randomize the intermediate values that are processed in the computation of the

algorithm operation. In case of AES, the SubByte operation is the only nonlinear operation in

the AES algorithm. This operation consists of two sub-operations: the inverse operation and

the affine operation. Hence, one should focus on the masking of the inverse operation [148].

The idea of masking the inverse operation is to input the value A⊕M to the algorithm in such

a way that we obtain the output value A−1 ⊕M , where A is the intermediate data, and M is

the mask. There are two types of masking: multiplicative masking and additive masking (e.g.,

see [4, 69, 150, 182, 195]). Techniques to mitigate higher order power analysis are investigated

in e.g., [63, 71, 94, 112, 155, 157, 162].

2.4.3 Preventing fault attacks

Given the relative ease of injecting faults into cryptographic devices, proper counter-

measures must be taken in order to keep theses devices secure. Typically, such countermeasures

aim to detect any transient or permanent faults that occur in the cryptosystem and immediately

suppress the resulting faulted outputs or reset all the output bits to zeros (or any other arbitrary

value) in order to prevent the attacker from observing the output of faulty devices and hence mit-

igate the susceptibility of the system to these attacks. Numerous approaches to fault detection

techniques for ciphers have been proposed. These approaches can be divided into two classes:

Error Detecting Codes (EDCs) and Redundancy-Based Techniques (RBT) [20, 117].

17

2.4.4 Preventing cold-boot attacks

As mentioned above, cold-boot attacks exploit DRAM remanence to acquire memory

images from which keys and other sensitive data can be extracted. In order to mitigate the threat

of this attack, one should apply some transformations to the key as it is stored in memory in order

to make it more difficult to reconstruct in the case of errors [35]. One should also prevent keys

from being paged to disks by clearing memory at boot time. Other suggested countermeasures

include: (i) physically protecting the memory. For example, DRAM modules could be locked

in place inside the machine, (ii) suspending the system safely by powering off the machine

completely when it is not in use, (iii) encrypting in the disk controller. This approach differs

from typical disk encryption systems in that encryption and decryption are done by the disk

controller rather than by software in the main CPU, and that the main encryption keys are

stored in the disk controller rather than in DRAM. One example for AES implementations that

is secure against this class of attacks is Tresor [136] which is a kernel patch for Linux based

operating systems which loads and manipulates key related data directly in the microprocessor

and its registers.

2.5 The SAT problem

The Boolean Satisfiability (SAT) problem [44] is defined as follows: given a Boolean

formula, check whether an assignment of Boolean values to the propositional variables in the

formula exists such that the formula evaluates to true. If such an assignment exists, the formula

is said to be satisfiable; otherwise, it is unsatisfiable. For a formula with m variables, there

are 2m possible assignments. The Conjunctive Normal Form (CNF) is the most frequently

used form for representing Boolean formulas. In CNF, the variables of the formula appear in

literals (e.g., x) or their negation (e.g., x). Literals are grouped into clauses, which represent a

disjunction (logical OR) of the literals they contain. A single literal can appear in any number

of clauses. The conjunction (logical AND) of all clauses represents a formula. For example,

18

the CNF formula (x1) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) contains three clauses: x1, x2 ∨ x3 and x1 ∨ x3.

Two literals in these clauses are positive (x1, x3) and two are negative (x2, x3). For a variable

assignment to satisfy a CNF formula, it must satisfy each of its clauses. For example, if x1 is

true and x2 is false, then all three clauses are satisfied, regardless of the value of x3.

Given a set of equations of a system which we want solve, the higher degree are handled

by noting that, for example, the logical expression

(x1 ∨ T)(x2 ∨ T)(x3 ∨ T)(x4 ∨ T)(T ∨ x1 ∨ x2 ∨ x3 ∨ x4) (2.1)

is tautologically equivalent to T ⇔ (x1 ∧ x2 ∧ x3 ∧ x4), or the GF (2) equation T =

x1x2x3x4. Similar expressions exist for higher order terms. Thus, the system of equations

obtained in this step can be linearlized by introducing new variables.

19

Chapter 3

Applications of SAT Solvers to AES Key

Recovery from Decayed Key Schedule

Images

3.1 Introduction

A cold-boot attack [72] is a SCA that exploits the fact that data loss of a non-powered

RAM can be deployed by cooling it down. In 2002, Skorobogatov [173] performed experiments

to study the temperature dependency of data retention time in static RAM devices. The reported

results indicated that many chips may preserve data for relatively long periods of time at temper-

atures above −20◦C which contradicted the common wisdom that was widely believed at that

time. The temperature at which 80% of the data remained for one minute varied widely between

devices. While some devices required cooling to at least −50◦C, others, surprisingly, retained

data for this period at room temperature. Memory retention time also varied between devices of

the same type from the same manufacturer, most likely, because controlling data retention time

is not a part of the chip manufacturing quality process.

Thus, one way to launch a cold-boot attack is to remove the memory module, after cool-

20

ing it, from the target system and immediately plug it in another system under the adversary’s

control. This system is then booted to access the memory. Another possible approach to execute

the attack is to cold-boot the target machine by cycling its power OFF and then ON without let-

ting it shut down properly. Then a lightweight operating system is, instantly, booted where the

content of targeted memory is dumped to a file. Further analysis can then be performed against

the information that is retrieved from memory in order to find sensitive information such as

cryptographic keys or passwords.

Because of the nature of cold-boot attacks, it is realistic to assume that only a corrupted

image of the contents of memory will be available to the attacker, i.e., a fraction of the memory

bits will be flipped. Halderman et al. [72] observed that, within a specific memory region, the

decay is overwhelmingly asymmetric, i.e., either 0→ 1 or 1→ 0. When trying to retrieve cryp-

tographic keys, the decay direction for a region can be determined by comparing the number of

0s and 1s since, in an uncorrupted key, the expected number of 0s and 1s should approximately

be equal.

Given this asymmetric decay, rectifying these faults can be achieved by further exploiting

the redundancy of key material inherent in many widely used cryptographic algorithms. For

example, in [75], Heninger et al. showed that an RSA private key with small public exponent

can be efficiently recovered given a 0.27 fraction of its bits at random. In [72], Halderman et

al. have developed a recovery algorithm for the 128-bit version of the Advanced Encryption

Standard (AES-128) that recovers keys from 30% decayed AES-128 Key Schedule images in

less than 20 minutes about half the time. Tsow [184] further improved upon this proof of

concept and presented a heuristic algorithm that solved all cases at 50% decay or less in under

half a second. At 60% decay, Tsow recovered the worst case in 35.500 seconds while solving

the average case in 0.174 seconds. At the extended decay rate of 70%, recovery time averages

grew to over 6 minutes with the median time at about five seconds. Nearly half of the 17.4 day

run was consumed by solving the worst case of the test suite; the second slowest case was over

six times faster.

21

It should be noted, however, that the algorithm developed by Tsow is complex and is cer-

tainly uneasy to develop and fine tune. On the other hand, the relations that have to be satisfied

between the different subround key bits in the AES key schedule can be easily formulated as a

Boolean SAT problem which lends itself naturally to SAT solvers. In this chapter, we explore

the use of CryptoMiniSAT SAT solver [176] on the above problem, i.e., to recover AES-128

keys from its decayed key schedule images.

3.2 The SAT problem and its applications to cryptanalysis

While the SAT problem is NP-complete [44], efficient heuristics exist that can solve

many real-life SAT formulations. Furthermore, the wide range of target applications of SAT

have motivated advances in SAT solving techniques that have been incorporated into freely-

available SAT software tools (e.g., [18, 55, 67, 77, 132]. Also see the international SAT compe-

titions web page [19].)

Given the versatility and effectiveness of SAT solving techniques, the use of SAT solvers

in cryptanalysis has recently attracted the attention of many cryptanalysts. In the area of crypt-

analysis of block ciphers, Courtois et al. [46] presented an attack on the KeeLoq block cipher.

They showed that when about 232 known plaintexts are available, KeeLoq becomes very week

and for 30% of all keys, the full key can be recovered with complexity of 228 KeeLoq encryp-

tions. Erickson et al. [58] used the Gröbner basis attacks [32] on SMS4 equation system over

GF(2) and GF(28) and used the SAT solver over the GF(2) model. They implement their design

in Gröbner basis using a Magma tool and in SAT solver using the MiniSAT tool. In [45], 6

rounds of DES are attacked with only a single plaintext-ciphertext pair.

SAT solvers have also been applied to the cryptanalysis of stream ciphers. Eibach et

al. [56] presented experimental results over a slightly modified version of Trivium (Bivium)

using a SAT solver, an exhaustive search, a BDD based attack, a graph theoretic approach, and

Gröbner basis. The results indicate that the initial state of the cipher is recovered and the use of

22

SAT solver is faster than the other attacks. The full key of Hitage2 stream cipher is recovered

in a few hours when using MiniSat 2.0 [47]. In [48], the full 48-bit key of the MiFare Crypto-1

algorithm was recovered in 200 seconds on a PC, given one known Initialization Vector (IV)

(from one single encryption).

Mironov and Zhang [129] described some initial results on using SAT solvers to auto-

mate certain components in cryptanalysis of hash functions of the MD and SHA families. They

generated full collisions for MD4 and MD5. De et al. [51] presented heuristics for solving inver-

sion problems for functions that satisfy certain statistical properties similar to those of random

functions. They demonstrate that this technique can be used to solve the hard case of inverting a

popular secure hash function and inverted MD4 up to 2 rounds and 7 steps in less than 8 hours.

In this work, we use the CryptoMiniSat [176], which is an extension of MinSat (a state-

of-the-art DPLL-based [50] SAT solver), refined to understand the XOR operation, which is

common in cryptography, besides functions in CNF that is native to many SAT solvers.

3.3 Structure of the AES-128 key schedule

In this section, we briefly review the relevant details of the AES-128 key schedule [49,

59]. Bytes of initial key are denoted by K0
i,j , where 0 ≤ i, j ≤ 3 stand for the row index and

column index, respectively in the standard AES state matrix representation. Figure 3.1 shows

the AES-128 key schedule.

These 16 initial key bytes are bijectively mapped to 10 additional round-keys denoted by

Kr+1
i,j , where 0 ≤ r ≤ 9 stands for the number of the subkeys (rounds). The rth key schedule

round consists of the following transformations

Kr+1
0,0 ← S(Kr

1,3)⊕Kr
0,0 ⊕ Rcon(r + 1)

Kr+1
i,0 ← S(Kr

(i+1) mod 4,3
)⊕Kr

i,0, 1 ≤ i ≤ 3

Kr+1
i,j ← Kr+1

i,j−1 ⊕Kr
i,j, 0 ≤ i ≤ 3, 1 ≤ j ≤ 3,

(3.1)

23

SubWord

Rcon(1

RotWord

SubWord

Rcon(2

RotWord

SubWord

Rcon(10)

RotWord

Rcon(1)

Rcon(2)

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
��

��,�
��

��,�
��

��,�
��

��,�
��

��,�
��

��,�
��

��,�
��

��,�
��

��,�
��

��,�
��

��,�
��

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
��

��,�
��

��,�
��

��,�
��

Figure 3.1: The key schedule of the AES-128

where Rcon(·) is a round-dependent constant and S(·) denotes the s-box (SubBytes)

operation which is performed, on each byte of the state, by first taking the multiplicative inverse

in GF (28) using the irreducible polynomial x8 + x4 + x3 + x + 1 and then applying an affine

transformation over GF (2) .

Similar to any Boolean function, each one of the eight coordinate of the s-box, Sl, l =

1, · · · , 8, has a unique representation as a polynomial over GF (2), called the Algebraic Normal

Form (ANF) which is obtained by summing up distinct products terms of x1, x2, . . . , xn, and

can be written as

Sl(x1, . . . , xn) = a0

n⊕

i=1

aixi

⊕

1≤i<j≤n

aijxixj

⊕
. . .

⊕
a123...nx1x2 . . . xn,

where a0, ai, . . . , a123...n ∈ GF (2).

24

3.4 Formulating the AES key schedule as a SAT problem

The AES key-schedule, described in the previous section, is the primary source of redun-

dancy utilized to rectify faults in the corrupted memory images of the AES-128 key schedule.

The conversion from the key schedule to the Boolean SAT problem proceeds as follows.

First, the system of equations of the AES-128 key schedule are generated according to

the pseudocode in Equation (3.1). In each round, the s-box equations in lines 1, 2 of Equation

(3.1) are represented in their ANF (e.g., Figure 3.2 shows the ANF of the first coordinate func-

tion of the s-box). Then, the terms of quadratic and higher degrees are handled by using the

formula in (2.1).

S1 = x1 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x1x3 ⊕ x1x7 ⊕ x1x8 ⊕ x2x4 ⊕ x2x6 ⊕ x2x8 ⊕ x3x5 ⊕ x4x6 ⊕ x6x7
⊕x6x8 ⊕ x1x2x4 ⊕ x1x2x6 ⊕ x1x2x8 ⊕ x1x3x4 ⊕ x1x3x5 ⊕ x1x4x7 ⊕ x1x5x8 ⊕ x1x6x8⊕
x2x3x4 ⊕ x2x3x6 ⊕ x2x3x8 ⊕ x2x4x6 ⊕ x2x5x7 ⊕ x2x5x8 ⊕ x2x6x7 ⊕ x2x7x8 ⊕ x3x4x5⊕
x3x4x8 ⊕ x3x5x6 ⊕ x3x5x7 ⊕ x3x5x8 ⊕ x3x6x8 ⊕ x3x7x8 ⊕ x4x7x8 ⊕ x5x6x7 ⊕ x5x6x8⊕
x1x2x3x4 ⊕ x1x2x3x6 ⊕ x1x2x3x7 ⊕ x1x2x4x6 ⊕ x1x2x4x7 ⊕ x1x2x4x8 ⊕ x1x2x5x7⊕
x1x2x5x8 ⊕ x1x3x4x7 ⊕ x1x3x5x8 ⊕ x1x4x5x6 ⊕ x1x4x5x7 ⊕ x1x4x5x8 ⊕ x1x4x6x8⊕
x1x4x7x8 ⊕ x1x5x6x7 ⊕ x1x5x6x8 ⊕ x1x6x7x8 ⊕ x2x3x4x5 ⊕ x2x3x5x8 ⊕ x2x4x5x8⊕
x2x4x6x7 ⊕ x2x4x6x8 ⊕ x2x5x6x8 ⊕ x2x5x7x8 ⊕ x3x4x6x7 ⊕ x3x5x6x7 ⊕ x3x5x6x8⊕
x3x6x7x8 ⊕ x4x5x6x7 ⊕ x4x5x7x8 ⊕ x4x6x7x8 ⊕ x5x6x7x8 ⊕ x1x2x3x4x5 ⊕ x1x2x3x4x7⊕
x1x2x3x5x7 ⊕ x1x2x3x5x8 ⊕ x1x2x3x6x7 ⊕ x1x2x3x7x8 ⊕ x1x2x4x5x8 ⊕ x1x2x4x6x7⊕
x1x2x6x7x8 ⊕ x1x3x4x7x8 ⊕ x1x3x6x7x8 ⊕ x1x4x5x6x8 ⊕ x1x4x5x7x8 ⊕ x2x3x4x5x6⊕
x2x3x4x5x8 ⊕ x2x3x4x6x7 ⊕ x2x3x4x7x8 ⊕ x2x3x5x6x7 ⊕ x2x4x5x6x8 ⊕ x2x4x6x7x8⊕
x2x5x6x7x8 ⊕ x3x4x5x6x8 ⊕ x3x4x5x7x8 ⊕ x4x5x6x7x8 ⊕ x1x2x3x4x5x7 ⊕ x1x2x3x4x6x8
⊕x1x2x3x5x6x8 ⊕ x1x2x3x5x7x8 ⊕ x1x2x4x5x6x8 ⊕ x1x2x4x5x7x8 ⊕ x1x2x5x6x7x8⊕
x1x3x4x5x6x8 ⊕ x1x3x4x5x7x8 ⊕ x1x3x4x6x7x8 ⊕ x2x3x4x5x6x8 ⊕ x1x2x3x4x5x6x8⊕
x1x2x3x4x5x7x8

Figure 3.2: Algebraic normal form of the first coordinate function of the AES s-box

Thus, the system of equations obtained in this step can be linearlized by introducing new

variables as illustrated by the following toy example.

Example 3.1 Suppose we would like to find the Boolean variable assignment that satisfies the

following formula

x0 ⊕ x1x2 ⊕ x0x1x2 = 0

25

Using the approach illustrated in (2.1), we introduce two linearization variables, T0 =

x1x2 and T1 = x0x1x2. Thus we have

x0 ⊕ T0 ⊕ T1 = 0,

(T 0 ∨ x1) ∧ (T 0 ∨ x2) ∧ (T0 ∨ x1 ∨ x2) = 1,

(T 1 ∨ x0) ∧ (T 1 ∨ x1) ∧ (T 1 ∨ x2)∧

(T1 ∨ x0 ∨ x1 ∨ x2) = 1.

(3.2)

Since the CryptoMinSAT expects only positive clauses and the CNF form does not have

any constants, we need to overcome the problem that the first line in Equation (3.2) corresponds

to a negative, i.e., false, clause. Adding the clause consisting of a dummy variable, d, or equiv-

alently (d ∧ d · · · ∧ d) would require the variable d to be true in any satisfying solution, since

all clauses must be true in any satisfying solution. In other words, the variable d will serve the

place of the constant 1. Therefore, the above formula can be reexpressed as

d = 1,

x0 ⊕ T0 ⊕ T1 ⊕ d = 1,

(T 0 ∨ x1) ∧ (T 0 ∨ x2) ∧ (T0 ∨ x1 ∨ x2) = 1,

(T 1 ∨ x0) ∧ (T 1 ∨ x1) ∧ (T 1 ∨ x2)∧

(T1 ∨ x0 ∨ x1 ∨ x2) = 1.

Table 3.1 shows the CryptoMiniSat input corresponding to Example 3.1.

In our AES-128 key schedule system, each s-box can be represented by 8 XOR equa-

tions corresponding to its 8 Boolean coordinates; and 246 CNF equations corresponding to 246

linearization variables. The total number of clauses corresponding to these CNF equations is

equal to 1254. Since, each round in the AES-128 key schedule involves four s-box look-up op-

erations and 96 linear XOR equations (line 3 in Equation (3.1)), then the total number of clauses

(including XOR clauses) in each round is equal to 4 × (1254 + 8) + 96 = 5144. Thus, for the

complete 10 rounds key schedule, we have 10×5144 clauses +1 dummy variable to present the

26

Table 3.1: CryptoMinSAT input corresponding to Example 3.1

c Lines starting with ‘c’ are comments

c The first line in the SAT file is in the form:

c ‘p cnf # variables # clauses’

c Each line should end with ‘0’

c Lines starting with ‘x’ denote XOR equations

c True variables are denoted by numbers

c False variables are denoted by negating these numbers

c In this example, d→ 1, x0 → 2 (consequently x0 → −2)

c x1 → 3, x2 → 4, T0 → 5, T1 → 6
p cnf 6 9

1 0

x 2 5 6 1 0

-5 3 0

-5 4 0

5 -3 -4 0

-6 2 0

-6 3 0

-6 4 0

6 -2 -3 -4 0

constant 1.

3.5 Experimental results

Similar to the previous work in [72,184], throughout our experimental results, we assume

an asymmetric decay model where bits overwhelmingly decay to their ground state rather than

their charged state. Using this model, only the bits that remain in their charged state will be

useful to the cryptanalyst since one cannot be sure about the original values of the 0 bits, i.e.,

whether they were originally 0s or decayed 1s. Let β denote the fraction of decayed bits. If the

percentage of 0s and 1s in the original key schedule bits is pz and 1− pz, respectively, then the

fraction, f , of key bits that can be assumed to be known by examining the decayed memory of

the AES key schedule is given by

27

f = 1− (pz + β × (1− pz)) = (1− pz)× (1− β).

Since in an uncorrupted AES key schedule, we expect the number of 0s and 1s to be

approximately equal, i.e., pz ≈ 1/2, then we have f ≈ (1− β)/2.

Table 3.2 shows a comparison between our work and the results reported in [184] which

recover the AES-128 key schedule from its decayed memory images for a decay factor up to

70%. In this table, for our work, all statistics were generated using 10,000 runs for each decay

factor.

It should be noted that the performance in [184] was evaluated on Dell Precision Work-

station 7400 running a 3.4 GHz quad-core Xeon processor with 4 GB of RAM. The performance

of our approach was evaluated on a slightly less powerful machine: Dell Precision 370 Work-

station running a 3.0 GHz Intel Pentium 4 CPU with 1 GB of RAM.

While the algorithm in [184] runs slightly faster for small values of β ≤ 50%, it is

clear that our proposed SAT approach outperforms the algorithm in [184] for large values of

β. In [184] with decay factor 70%, the recovery time for the worst case was more than 8.5

days. The average time was 5 minutes and median time was about 5 seconds. In our work,

the worst case for the recovery time was obtained in less than 3.5 minutes and 7968 cases were

recovered in less than one second. The average and median recovery times are 1.2, 0.36 seconds

respectively. It should also be noted that for small values of β, the difference in the run time

statistics between the two approaches is practically not very significant because the run time is

usually very short.

Table 3.3 shows the time statistics corresponding to decay factors between 72%− 80%.

For such a large value of the decay factors, the median is a better indication of the performance

of the algorithm than the average since some cases may take a relatively long time while the

majority of the cases take a short time. At 72% and 74% the results are promising. The 10,000

cases were solved in an average of 22.3 and 62.4 seconds, respectively. At 72% decay factor,

92% of the cases were recovered in less than 10 seconds, while a similar percentage were

28

Table 3.2: Run-time statistics for decay factors 30%, 40%, 50%, 60%, and 70%.

β 30% 40% 50% 60% 70%

T
h
is

w
o
rk

Min 0.046 0.046 0.062 0.062 0.078

Max 0.593 0.140 0.187 0.593 207.171

Avg. 0.064 0.066 0.074 0.102 1.233

St.Dev 0.009 0.007 0.008 0.028 4.899

Med. 0.062 0.062 0.078 0.093 0.359

[1
8
4
]

Min 0.000a 0.000 0.000 0.000 0.000

Max 0.015 0.015 0.078 2.094 737,266.687

Avg. 0.009 0.009 0.014 0.174 300.897

St.Dev 0.007 0.008 0.015 0.772 10,677.913

Med. 0.015 0.015 0.015 0.031 4.938

a. The value 0.000 means that it less than 1/64

recovered in less than one minute with 74% decay factor. Due to the extended time for key

recovery with decay factors 76%, 78%, and 80%, less cases were examined. For β = 80%,

the CryptoMiniSat search did not terminate for 10 days in the 8th case. Furthermore, in one of

the successfully terminated 7 cases, the key returned by the SAT solver was different from the

original key. The original key could have been easily found by re-running the SAT solver again

after adding a clause to exclude the found key.

Table 3.3: Run-time statistics for decay factors 72%, 74%, 76%, 78%, and 80%.

β 72% 74% 76% 78% 80%

Min 0.078 0.109 0.156 0.625 38.65b

Max 109794 126772 84819 19987 5523.8b

Avg. 22.271 62.404 799.327 6958.473 1901.95b

St.Dev 1155.83 1373.14 5423.73 25880.70 2119.58b

Med. 0.812 2.656 14.578 173.508 685.046b

Tests 10000 10000 1000 100 7

b. These statistics excludes the 8th case where the search did not terminate for 10 days

29

3.6 Conclusion

In this chapter, we modeled the problem of key recovery of the AES-128 key schedules

from its corresponding decayed memory images as a Boolean SAT problem and solved it using

the CryptoMiniSat solver. Our experimental results confirm the versatility of our proposed

approach which allows us to efficiently recover the AES-128 key schedules for large decay

factors. The method presented in this work can be extended in a straightforward way to AES-

192, AES-256 and other ciphers with key schedules that can be presented as a set of Boolean

equations and, hence, lend themselves naturally to SAT solvers.

30

Chapter 4

Fault Attacks Against the NTRU

Cryptosystems and their Countermeasures

4.1 Introduction

The NTRU encryption algorithm, also known as NTRUEncrypt, is a parameterized fam-

ily of lattice-based public key cryptosystems [84, 87]. Both the encryption and decryption

operations in NTRU are based on simple polynomial multiplication which makes it very fast

compared to other alternatives such as RSA, and elliptic-curve-based systems [97]. Recently,

the NTRU system has been accepted to the IEEE P1363 standards under the specifications for

lattice-based public-key cryptography. In the past few years, the security of NTRUEncrypt

was analyzed by many researchers (e.g., [95, 119, 142, 171]). One challenging aspect in crypt-

analyzing the NTRU encryption algorithm is its large number of variants and many possible

instantiations.

NTRUSign [42, 80, 81, 87] is a parameterized family of lattice-based public key digital

signature schemes that is currently under consideration for standardization by the IEEE P1363

working group. It was proposed after the original NTRU Signature Scheme (NSS) [86] was

broken [64, 65]. Similar to the GGH cryptosystem [68], the security of NTRUSign is related

31

to the hardness of approximating the Closest Vector Problem (CVP) in a lattice. However,

NTRUSign uses a compact lattice, referred to as the NTRU lattices, instead of the GGH lattices

[87]. This NTRU lattice has the property that a private 2n-dimensional basis for the lattice

can be described with 2 vectors, each with n coefficients, and a public basis can be described

with a single n-dimensional vector. This enables public keys to be represented in O(n log n)

space, rather than O(n2) as is the case with GGH signature schemes. Furthermore, operations

take O(n2) time, as opposed to O(n3) for elliptic curve based cryptosystems and RSA private

key operations. In April, 2011, Security Innovation, the company that developed the NTRU

cryptosystems, announced that its NTRU cryptosystem is approved by the Accredited Standards

Committee X9 as a new encryption standard to protect data for financial transactions.

During the past few years, several attempts to analyze the security of NTRUSign were

presented. Min et al. [128] showed that the original version of NTRUSign signature scheme [81]

which was proposed at CT-RSA’03 is not secure in terms of being strongly existential forgeable,

i.e., it is malleable. The proposed attack allows an adversary to forge new signatures for a

message of her choice, given a signature for this message. This forgery requires a specific

polynomial with a small coefficient satisfying its norm value equal to zero. Even if this forgery

does not admit an adversary to change the message, this attack limits the applications of this

version of NTRUSign, which does not use perturbation, in several applications.

Szydlo [181] introduced a new lattice reduction technique applicable to the class of hy-

percubic lattices which arise during transcript analysis of certain NTRUSign signature schemes.

After a few thousand signatures, key recovery amounts to discovering a hidden unitary matrix

from its Gram matrix [181]. This case of the Gram matrix factorization problem is equivalent

to finding the shortest vectors in the hypercubic lattice defined by a quadratic form. This work

on reduction of hypercubic lattices shows that the transcript attacks are relevant to the security

of the NTRUSign schemes. The practical security threat to the schemes, however, was not clear

given the required large number of oracle calls. Furthermore, the attack does not seem to be

applicable to NTRUSign with perturbation.

32

Nguyen and Regev [143] presented the first successful key-recovery attack on NTRUSign-

251 without perturbation [80, 81]. Experimentally, this attack requires about 400 signatures to

recover the secret key of this non-perturbed version of NTRUSign. The main idea of the attack

is based on the following learning problem: given many random points uniformly distributed

over an unknown n-dimensional parallelepiped, recover the parallelepiped or an approximation

thereof. Nguyen and Regev transformed this problem into a multivariate optimization problem

which they solved by a gradient descent. Again, this attack does not seem to be directly appli-

cable to NTRUSign with perturbation where, in this case, the attacker has to solve an extension

of the hidden parallelepiped problem in which the parallelepiped is replaced by the Minkowski

sum of two hidden parallelepipeds where the lattice spanned by one of the parallelepipeds is

public but the other one is not.

Fault analysis is an example of SCAs in which the attacker is assumed to be able to

induce faults in the cryptographic device and observe the faulty output. Then, by careful in-

spection of the faulty output, the attacker recovers the secret information, such as secret inner

state or secret key. In fault analysis attacks, some kind of physical influence such as variations

in the supply voltage, external clock, or temperature beyond the nominal operating range of the

device, results in a corruption of the internal memory or the computation process. Other tech-

niques for fault injections include subjecting the device to white light, laser beams, X-rays, or

ion beams [16]. The examination of the output under such faults often reveals some information

about the cipher key or the secret inner state. The first fault analysis attack targeted the RSA

cryptosystem [29] and subsequently, fault analysis attacks were expanded to various cryptosys-

tems (e.g., [23,79,154]) and were extended to other digital signature schemes (e.g., [23,24,66]).

Furthermore, fault analysis attacks became a more realistic serious threat after cheap and low-

tech methods of applying faults were presented [11].

Other variants of fault analysis attacks against the RSA cryptosystem were also inves-

tigated. The perturbation of public elements was considered as a real threat when Seifert pre-

sented an attack on the RSA signature checking mechanism [133, 163]. Then, Brier et al. [31]

33

extended this work to full recovery of the private signing exponent for various RSA implemen-

tations. Berzati et al. [21, 22] address the issue of modifying the modulus during the exponen-

tiation. Fault analysis attacks were also extended to symmetric systems such as DES [25] and

later to AES [54]. Fault attacks against stream ciphers were introduced by Hoch et al. [79].

Different assumptions are usually made regarding both timing and location of the in-

jected faults [27]. The number of required faults in fault attacks varies depending on the as-

sumed model. In particular, some strong fault models assume that the adversary has precise full

control on both timing and location of injected faults which implies that the attacker has full

control on the location of faulted bits as well as the attacked operation.

In this work, we present a fault analysis attack on the original NTRUEncrypt algorithm

proposed in [84] and on the NTRUSign signature scheme. The fault model that we utilize in

this work is slightly more relaxed. In particular, we assume that the attacker is able to fault a

small number of coefficients in a specific polynomial during the decryption/ signing process but

cannot control the exact location of the injected transient faults.

4.2 Fault analysis of NTRUEncrypt cryptosystem

4.2.1 Description of the NTRUEncrypt encryption algorithm

The NTRU encryption algorithm is a lattice-based public key cryptosystems that is pa-

rameterized by three integers: (N, p, q), where N is prime, gcd(p, q) = 1 and p << q. Let R,

Rp, and Rq be the polynomial rings

R =
Z[x]

xN − 1
, Rp =

(Z/pZ)[x]

xN − 1
, Rq =

(Z/qZ)[x]

xN − 1
.

The product of two polynomials a(x), b(x) ∈ R is given by

34

c(x) = a(x) ⋆ b(x),

where,

ck =
∑k

i=0 aibk−i +
∑N−1

i=k+1 aibN+k−i =
∑

j=k−i (mod N)
aibj.

(4.1)

For any positive integers d1 and d2, let τ(d1, d2) denote the set of ternary polynomials

given by 


a(x) ∈ R :

a(x) has d1 coefficients equal to 1,

a(x) has d2 coefficients equal to -1,

all other coefficients equal to 0





In what follows, we briefly describe the key generation, encryption and decryption oper-

ations in the NTRU cryptosystem [87].

Key Generation

• Choose a private f(x) ∈ τ(df , df − 1) that is invertible in Rq and Rp.

• Choose a private g(x) ∈ τ(dg, dg).

• Compute Fq(x) = f−1(x) in Rq and Fp(x) = f−1(x) in Rp.

• Compute h(x) = Fq(x) ⋆ g(x) in Rq.

The polynomial h(x) is the user’s public key. The corresponding private key is the pair

(f(x), Fp(x)). The following steps denote the encryption process for plaintext m(x) ∈ Rp.

Encryption

• Choose a random ephemeral key r(x) ∈ τ(dr, dr).

• Compute the ciphertext e(x) = pr(x) ⋆ h(x) +m(x) mod q.

35

Decryption

• Compute a(x) = f(x) ⋆ e(x) mod q.

• Compute b(x) = Centerlift (a(x)) such that its coefficients lie in the interval (−q/2, q/2].

• Compute m = Fp(x) ⋆ b(x) mod p.

Table 4.1: The parameter sets for NTRU in [85]

N p q df dg dr
Moderate Security 167 3 128 61 20 18

High Security 263 3 128 50 24 16

Highest Security 503 3 256 216 72 55

Table 4.1 shows some suggested choices for (N, p, q) for different security levels of the

original NTRUEncryption algorithm [85].

By choosing f(x) = 1 + pf1(x), where f1(x) ∈ R in the key generation step, the poly-

nomial multiplication in the last decryption step is eliminated since we will have Fp(x) = 1

mod p. In this case, Hoffstein and Silverman [88, 89] described a method for speeding up

the encryption and decryption processes through the use of products of low Hamming weight

polynomials. They use three low Hamming weight polynomials r1(x), r2(x), and r3(x) such

that r(x) = r1(x) ⋆ r2(x) + r3(x) in encryption and f1(x), f2(x), and f3(x) such that f(x) =

f1(x) ⋆ f2(x) + f3(x) in decryption. For example, at (N, p, q) = (1171, 3, 2048) the num-

ber of non-zero coefficients for each ri(x) and fi(x) is 5. The convolution multiplication for

encryption t(x) = r(x) ⋆ h(x) mod q can be calculated as follows:

t1(x) = r2(x) ⋆ h(x),

t2(x) = r3(x) ⋆ h(x),

t3(x) = r1(x) ⋆ t1(x),

t(x) = t2(x) + t3(x) mod q.

(4.2)

36

4.2.2 Proposed attack

Similar to the case of attacking any public key cryptosystem, our proposed fault analysis

attack targets the decryption process which, as explained in the previous section, contains three

main operations. We assume that the attacker is able to fault a small number of coefficients of

the polynomial input to (or output from) the second step of the decryption process but cannot

control the exact location of the injected fault. In particular, as depicted in Figure 4.1, we

assume that the attacker is able to fault small number of coefficients of the polynomial input to

(or output from) the centerlift operation. Thus, the output of the faulty decryption process can

be expressed as:

a)

���� = ���� ⋆ ���� �mod
�

����� = Centerlift �������

�� ��� = �� ��� ⋆ ����� �mod ��

���� = ���� ⋆ ���� �mod
�

���� = Centerlift ������

�� ��� = �� ��� ⋆ ����� �mod ��

b)

Figure 4.1: The decryption process after inducing faults: a) before the centerlift operation or b)

after the centerlift operation

m̂(x) = Fp ⋆ (b(x) + ϵ(x)) mod p

where ϵ(x) =
t∑

j=1

ϵijx
ij ∈ Rq, 0 ≤ ij < N , denotes the resulting error polynomial with

t non zero coefficients in the locations corresponding to the injected faults. Thus, the attacker

can calculate

∆m(x) = m̂(x)−m(x) = ϵp(x) ⋆ Fp(x) mod p, (4.3)

where ϵp(x) = ϵ(x) mod p.

37

Then, the attacker can obtain candidates for the secret key as

f(x) = (∆m(x))−1 ⋆ ϵp(x) mod p (4.4)

by exhaustively trying all possible values for ϵp(x) with the pre-specified small number of non

zero coefficients. The right secret key can be determined by performing the encryption process

on the ciphetext and comparing the result with the original plaintext.

4.2.3 Complexity and success probability of the proposed attack

For typical values of p and q, a non zero coefficient in ϵ(x) ∈ Rq will be mapped to

different values in Zp with almost equal probabilities (≈ 1
p
) after reduction modulo p (e.g.,

for p = 3, a non zero coefficient ∈ Z
∗
q will be mapped to (0, 1, 2) with probabilities 1

3
, 1
3
, 1
3
,

respectively, for q = 64, q = 256 and 42
127

, 43
127

, 42
127

for q = 128). To simplify our analysis, in

what follows we assume that a non zero coefficient in ϵ(x) ∈ Rq will be mapped to different

values in Zp with probability 1
p
.

The above attack succeeds if, and only if, ∆m(x) ∈ Rp is invertible. From Equation

(4.3), this requires that ϵp(x) = ϵ(x) mod p to be invertible (note that Fp is guaranteed to be

invertible by the key generation process.) Let n ≥ 1 be the smallest integer such that pn ≡ 1

mod N . Then, from [169], the probability that ϵp(x) ∈ RP is invertible is given by

(
1−

1

p

)(
1−

1

pn

)(N−1)/n

which is approximately equal to (1 − 1
p
) for the typical choice of the parameters (e.g.,

for p = 3, we have n = 83, 131, 251 for N = 167, 263, 503, respectively.)

If the fault injection procedure ensures that the number of injected faults is less than

or equal to t, then our attack requires (pt − 1)
(
N
t

)
= O((pN)t) calculations of multiplicative

inverse in Rp which can be done efficiently using the extended Euclidean algorithm.

38

4.2.4 Proposed countermeasures

To secure cryptographic devices against fault attacks, proper countermeasures have to

be applied in order to detect any transient or permanent faults and prevent the attacker from

accessing the faulty output by immediately disabling the device output or resting all the output

bits to 0s. Several techniques of fault detection have been investigated [117]. These techniques

include error detection codes and redundancy-based techniques. In what follows, we investigate

different approaches to deploy the above fault detection techniques in hardware implementations

of NTRUEncrypt and study the trade-off between the fault coverage and the hardware area and

the throughput overheads.

Spatial and temporal duplication

Applying spatial duplication to the decryption process is quite straightforward. Spatial

duplication requires redundant hardware to allow independent calculations so that faults injected

into one hardware unit do not affect (in the same way) the other unit(s).

A different approach for applying duplication relies on having a separate hardware mod-

ule for executing the encryption process. After completing the decryption, the encryption unit

is applied to the resulting plaintext, and only if the result of the encryption is equal to the orig-

inal ciphertext, then the system considered fault-free. In this section we explore the trade-off

between different spatial and temporal duplication options applicable to NTRUEncrypt.

• Decryption-Decryption

Figure 4.2 shows the case where error detection is achieved by duplicating the decryption

operation. Note that throughout our work, we exclude the possibility of higher order

faults where the attacker is able to fault the error detection circuity, e.g., by forcing the

multiplexer in Figure 4.2 to always output m irrespective of the value of its error control

signal.

While full spatial duplication has practically no impact on the throughput and it can de-

39

tect both permanent and transient faults, the associated area overhead is considerable.

Instead, a large saving in the area can be achieved by utilizing temporal redundancy. A

naı̈ve implementation of this approach would practically double the decryption time. In

our implementation, however, the convolution operation f ⋆ e required by the second de-

cryption operation is performed at the same time with the operation Fp ⋆ b. Thus the

decryption time grows from ≈ 2N to ≈ 3N (instead of ≈ 4N).

• Decryption-Rotation-Decryption

Applying temporal redundancy only will not detect permanent faults. The following

Lemma shows how this limitation can be alleviated by applying the redundant decryp-

tion operation on a related ciphertext.

 ���� ���� �� ���

	̀��� = ���� ⋆ ���� �mod ��

�� ��� = Centerlift �	̀����

�̀��� = �� ��� ⋆ �� ����mod ��

Zeros

error

=?

Mux

0 1

	��� = ���� ⋆ ���� �mod ��

���� = Centerlift �	����

���� = �� ��� ⋆ �����mod ��

Figure 4.2: Detecting errors using the duplication method (decryption followed by decryption).

When temporal redundancy is used, à(x) is calculated at the same time with m(x) using the

same hardware used to calculate a(x).

Lemma 4.1 Let e(s)(x) ∈ R denote an s-cyclically shifted version of e(x) =
∑N−1

i=0 eix
i,

0 < s ≤ N − 1, i.e., e(s)(x) = (e(x) >>> s) (In other words, the coefficients of e(s)(x)

40

are obtained by rotating the coefficients of e(x) by s positions.) Then the plaintext m̀

corresponding to the decryption of e(s)(x) is equal to (m(x) >>> s) where m(x) is the

plaintext corresponding to the decryption of e(x).

Proof: Since, the coefficients of e(s)(x) are obtained by rotating the coefficients of

e(x) by s positions, we have e(s)(x) =
∑N−1

i=0 eix
i+s (mod N) = xs ⋆ e(x).

Let à and b̀ denote the intermediate computation results during the decryption of e(s)(x).

Then we have

à = e(s)(x) ⋆ f(x) mod q

= (xs ⋆ e(x)) ⋆ f(x) mod q

= xs ⋆ (e(x) ⋆ f(x)) mod q

= xs ⋆ a(x)⇒

b̀ = Centerlift (à)

= xs ⋆ Centerlift (a(x))

= xs ⋆ b(x)⇒

m̀ = b̀ ⋆ Fp(x) mod p

= (xs ⋆ b(x)) ⋆ Fp(x) mod p

= xs ⋆ (b(x) ⋆ Fp(x)) mod p

= xs ⋆ m(x).

Thus, in order to detect permanent faults when temporal redundancy is utilized, the redun-

dant computation can be performed using a rotated version of the ciphertext and the two

plaintexts are compared as shown in Figure 4.3. Again, resource sharing and pipelining

are used between the two decryption processes in the same way as when no rotation was

employed.

• Decryption-Encryption

A naı̈ve implementation for this approach would be to perform all the encryption steps

41

Zeros

���� = ���� ⋆ ���� �mod
�

���� = Centerlift ������

���� = �� ��� ⋆ �����mod ��

����

error

����

>>> s

�̀��� = �̀��� ⋆ ���� �mod
�

�� ��� = Centerlift ��̀����

�̀��� = �� ��� ⋆ �� ����mod ��

�̀���

�̀���

=?

���� �� ���

Mux
0 1

<<< s

Figure 4.3: Detecting errors by using the duplication method (decryption of a ciphertext and its

rotated version)

after the decryption is finished which dramatically reduces the systems throughput.

As depicted in Figure 4.4, in order to speed up this approach, all the encryption opera-

tions including the convolution step required by the encryption process can be performed

before the plaintext is produced because only the last addition operation in the encryption

process requires the availability of the plaintext. In our implementation, both convolution

operations for the encryption r ⋆ h and decryption Fp ⋆ b are performed simultaneously in

N clock cycles. Similar to the above two approaches, this scheme recovers 100% of the

induced transient and permanent errors.

42

���� = ���� ⋆ ���� �mod
�

���� = Centerlift ������

���� = �� ��� ⋆ �����mod ��

����

�̀��� = ����� ⋆ ℎ��� + ���� �mod
�

error

����

=?

Zeros

���� �� ��� ℎ��� ����

Mux

1

0

Figure 4.4: Detecting errors by using the duplication method (decryption followed by encryp-

tion)

Error-detecting codes

The basic idea of code-based fault detection schemes is that a checksum code for the

output of a given module can be predicted from the input to this module and consequently it

can be compared to the actual checksum calculated from the output. The disadvantage of this

technique is that corrupted bits may affect the code in such a way that errors may not be detected.

Unlike the case of symmetric key ciphers, where traditional parity based error detection

codes (over GF (2)) are somewhat straightforward to derive for the intermediate computation

steps of the cipher, this does not seem to be the case for many public key systems including

NTRUEncrypt. On the other hand, the algebraic properties of the polynomials convolutional

product allow us develop simple check sum fault detection techniques which detect both tran-

sient and permanent faults. The following Lemmas will be utilized in the development of our

EDC based techniques.

Lemma 4.2 Let e(x) =
∑N−1

i=0 eix
i, m(x) =

∑N−1
i=0 mix

i, and a(x) =
∑N−1

i=0 aix
i, b(x) =

∑N−1
i=0 bix

i denote the ciphertext, plaintext and intermediate computation results as defined in

43

section 4.2.1. Then we have

(
N−1∑

i=0

ei) mod q = (
N−1∑

i=0

ai) mod q = (
N−1∑

i=0

bi) mod q

Proof: In matrix form, the convolution operation a(x) = e(x) ⋆ f(x) mod q can be

expressed as




a0

a1

·

·

·

aN−1




=




e0 eN−1 . . . e1

e1 e0 . . . eN−2

· · · ·

· · · ·

· · · ·

eN−1 eN−2 . . . e0







f0

f1

·

·

·

fN−1




=




(f0 × e0 + f1 × eN−1 + · · ·+ fN−1 × e1) mod q

(f0 × e1 + f1 × e0 + · · ·+ fN−1 × eN−2) mod q

·

·

·

(f0 × eN−1 + f1 × eN−2 + · · ·+ fN−1 × e0) mod q




.

Thus we have

(
N−1∑

k=0

ak) mod q = (
N−1∑

k=0

ek ×
N−1∑

j=0

fj) mod q.

From the key generation process, we have f(x) ∈ τ(df , df − 1). Thus
∑N−1

j=0 fj = 1.

Consequently, we have

(
N−1∑

k=0

ak) mod q = (
N−1∑

k=0

ek) mod q.

The second part of the Lemma follows by noting that from the definition of the Centerlift

operation, we have ai = bi mod q, i = 0, · · · , N − 1.

44

Figure 4.5 shows how the checksum equation of Lemma 4.2 can be applied to imple-

ment error detection for errors inserted before or after the calculation of the Centerlift operation

(corresponding to Figure 4.1-a and Figure 4.1-b, respectively).

���� = ���� ⋆ ���� �mod
�

���� = Centerlift ������

���� = �� ��� ⋆ ���� �mod ��

����

�� ��
�−1

�=0
! mod

�� ��
�−1

�=0
! mod

error

=?

Mux

Zeros

���� ���� �� ���

0 1

Figure 4.5: Detecting errors by using checksum EDC from Lemma 4.2

Let b̂(x) = b(x) + ϵ(x) denote the faulty polynomial corresponding to b(x), where

ϵ(x) =
t∑

ij=1

ϵijx
ij ∈ Rq, 0 ≤ ij < N , denotes the resulting error polynomial with t non

zero coefficients in the locations corresponding to the injected faults. From Lemma 4.2, it is

clear that this checksum error detection method cannot detect errors if
t∑

ij=1

ϵij = 0. Assuming

that the coefficients of the injected errors are uniformity distributed over Zq and by noting that,

in this case, the function
t∑

ij=1

ϵij is a balanced function, i.e., it assumes all possible values in

{0, 1, · · · q− 1} with equal probability = 1
q
. Then, by ignoring the possibility of simultaneously

faulting the error detection circuit itself, the error detection probability for this scheme is given

by q−1
q

= 1− 1
q
.

In what follows, we show that a mod p checksum formula that holds between the input

and output of the third decryption step. Using the same notation as in Lemma 4.2, in what

45

follows and using Lemma 4.3, 4.4, we derive a checksum formula (mod p) that holds between

the input and output of the last step in the decryption process.

Lemma 4.3 Let Fp =
∑N−1

i=0 F i
px

i, where F i
p is the coefficient of xi in the polynomial Fp. Then

we have

(
N−1∑

i=0

F i
p) mod p = 1.

Proof: By definition, f(x) ⋆ Fp mod p = 1. Thus we have




1

0

·

·

·

0




=




f0 fN−1 . . . f1

f1 f0 . . . fN−2

· · · ·

· · · ·

· · · ·

fN−1 fN−2 . . . f0







F 0
p

F 1
p

·

·

·

FN−1
p




=




(F 0
p f0 + F 1

p fN−1 + · · ·+ FN−1
p f1) mod p

(F 0
p f1 + F 1

p f0 + · · ·+ FN−1
p fN−2) mod p

·

·

·

(F 0
p fN−1 + F 1

p fN−2 + · · ·+ FN−1
p f0) mod p




.

Again, by noting that
∑N−1

k=0 fk = 1, we have

(
N−1∑

k=0

F k
p ×

N−1∑

j=0

fj) mod p = 1⇒ (
N−1∑

k=0

F k
p) mod p = 1.

46

Lemma 4.4

(
N−1∑

i=0

bi) mod p = (
N−1∑

i=0

mi) mod p.

Proof: Similar to the proof of Lemma 4.2, we express the convolution operation m(x) =

b(x) ⋆ Fp(x) mod p in matrix form. Then, the proof follows by utilizing the result of Lemma

4.3 to simplify the resulting summation.

In our implementation, we did not utilize the above mod p checksum since it does not

improve the overall error detection capability of our implementation. In particular, for the im-

plementation shown in Figure 4.5, in order to be able to detect errors that might be injected

in b(x) during the calculations of m in the third step of the decryption process, this step is

performed on the same set of registers that hold the result of the Centerlift operation mod q.

Consequently, any injected errors in the coefficients of b(x) during the calculation of m(x) can

be detected, with probability 1− 1
q
, by the checksum in the figure. In the next section we show

how we can improve the area requirement of this approach without impacting the error detection

capability.

Combining spatial redundancy and error detection codes

While visualizing the decryption process as composed of three separate steps (see section

4.2.1) allows us to better understand the mathematics behind it, for hardware implementations,

we do not have to separate these three steps. In particular, since the coefficients of b are even-

tually reduced mod p during the calculation of m in the third step of the decryption, one can

directly evaluate the Centerlift operation and reduce the coefficient of b(x) mod p in one step.

In our FPGA prototype, modular reduction mod p is implemented using the algorithm for mod-

ular reduction mod Mersenne primes (see Algorithm 3.1 in [189]). As depicted in Figure 4.6,

spatial duplication is applied to detect errors in the mod p operations by duplicating the calcula-

tion of Centerlift(a(x)) mod p and storing the results in two different registers, b and b̀. In this

case, by comparing the two registers, any error occurring during the calculation of any of them

can be detected with 100% probability. On the other hand, if the attacker induces a fault in the

47

polynomial a(x), this duplication cannot detect this error because the registers b and b̀ will be

identical. However, in this case, the applied checksum mod q detects this error with probability

1− 1
q
.

�� ��
�−1

�=0

 mod �

���� = ���� ⋆ ���� �mod ��

���� = �Centerlift����� � mod ��

 ��� = !� ��� ⋆ ���� �mod ��
 ���

�� ��
�−1

�=0

 mod �

error

=?

=?
error

���� !� ��� ����

Zeros

Mux

0 1

�" ��� = �Centerlift����� � mod ��

Figure 4.6: Detecting errors using checksum EDC and spatial redundancy

4.2.5 FPGA implementation results

We used the Xilinx ISE 9.1i framework to prototype our protected NTRUEncrypt hard-

ware with parameters (N, p, q, df, dg, dr) = (167, 3, 128, 61, 20, 18). The synthesis was per-

formed with XST application and the simulation was performed using Modelsim. The target

FPGA is xcv1000e from Xilinx Virtex-E family.

At the beginning of the decryption operation, the private key f(x) ∈ Rp is loaded into

the chip through N parallel I/O PINS in Tld(f) = ⌈log2(p)⌉ clock cycles. Similarly, the private

key Fp(x) is loaded in Tld(Fp) = ⌈log2(p)⌉ clock cycles. The ciphertext e(x) is then loaded in

log2(q) clock cycles. When the encryption process in required by the redundancy scheme, h

and r are loaded in Tld(h) = log2(q) and Tld(r) = ⌈log2(p)⌉ clock cycles, respectively. The most

48

time consuming steps are the convolution operations which require Tconv(·,·) = N clock cycles,

each.

The Centerlift operation, Tcl(.), consumes one clock cycle. Furthermore, Tout(m) =

⌈log2(p)⌉ clock cycles are be required to output the plaintext m(x) using N parallel I/O PINS.

Let Tsum(a) and Tsum(b) denotes the number of clock cycles for accumulating the coefficients of

the register a mod q and b mod q, respectively. Figure 4.7 shows a simplified time-line for the

operations required by the above approaches. The figure also illustrates the operations that are

performed in parallel and those that utilize resource sharing. In the figure, the time between the

vertical dashed lines represents the number of clock cycles required to perform one decryption

operation for the input block assuming that the private key, and when applicable the public key,

are already loaded into the chip.

The IEEE standard 1363.1-2008 specifies a message encoding scheme (from binary to

ternary) for NTRUEncrypt. In particular, each three bits of the binary presentation of the mes-

sage is converted to two ternary coefficients as follows

{0, 0, 0} → {0, 0}, {0, 0, 1} → {0, 1},

{0, 1, 0} → {0,−1}, {0, 1, 1} → {1, 0},

{1, 0, 0} → {1, 1}, {1, 0, 1} → {1,−1},

{1, 1, 0} → {−1, 0}, {1, 1, 1} → {−1, 1}.

Given this encoding scheme, each block with N coefficients can be used to encode a

message of length 3
2
×N bits. Thus

Throughput ≈
Clock frequency× 1.5N

Clock cycles required to decrypt one block
.

For all designs, the clock frequencies calculated by the synthesis tool were & 55.4 MHz.

Table 4.2 shows the FPGA resources, throughput and error detection capability of all the above

proposed architectures when running at 55 MHz. It should be noted that the above performance

figures refer to the raw NTRU encryption process. In practice, to encrypt a message securely,

49

����2��

T�	 (�)

����2��

T�	(
�)

���2�

T�	 (�)

�

T���� (�,�)

1

T�� (�)

�

T���� (
� ,�)

����2��

T��� (�)

T��� (�) T��� (�)

EDC-Duplication

T�� (�)

Implemented Redundancy

Time

Dec only

����2��

T�	 (�)

����2��

T�	 (
�)

���2�

T�	 (�)

�

T���� (�,�)

1

T�� (�)

�

T���� (
� ,�)

����2��

T��� (�)

����2��

T�	 (�)

����2��

T�	(
�)

���2�

T�	 (�)

�

T���� (�,�)

1

T�� (�)

�

T���� (
� ,�)

����2��

T��� (�)

T��� (�) T��� (�)

EDC

Dec-Enc

����2��

T�	 (�)

����2��

T�	 (
�)

���2�

T�	 (�)

�

T���� (�,�)

1

T�� (�)

�

T���� (
� ,�)

1

���2�

T�	 (ℎ)

����2��

T�	 (�)

T���� (�,ℎ)

����2��

T��� (�) T�		 (�)

Dec-rot-Dec

����2��

T�	 (�)

����2��

T�	(
�)

���2�

T�	 (�)

�

T���� (�,�)

1

T�� (�)

� 1

T�� (�)

�

T���� (
� ,��)

����2��

T��� (�)

T���� (�,� ⋙ �)

T���� (
� ,�)

Dec-Dec

����2��

T�	 (�)

����2��

T�	(
�)

���2�

T�	 (�)

�

T���� (�,�)

1

T�� (�)

�

T���� (
� ,�)

T���� (�,�)

1

T�� (�)

�

T���� (
� ,��)

����2��

T��� (�)

Figure 4.7: Time-line (not to scale) of operations performed by the proposed architectures.

Operations performed using resource sharing are shown in dotted lines

one cannot simply convert the message to trinary and apply the raw NTRU encryption process.

The message needs to be pre-processed before encryption and post-processed after encryption to

protect against active attackers. The necessary processing is specified in IEEE Std 1363.1-2008,

and discussed in [90].

50

Table 4.2: FPGA implementation results for the raw NTRUEncrypt decryption with parameters (N ,p,q,df ,dg,dr) = (167,3,128,61,20,18)

Dec-only Dec-Dec Dec-rot-Dec Dec-Enc EDC-only EDC-duplication

Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6

of Slices 3423 3636 4890 7853 4647 4260

of Slice FFs 3919 4218 4234 5390 3579 4236

of 4-input LUTs 5938 6094 8457 14399 8527 7651

of IOBs 337 337 337 337 337 337

#Slices overhead (%) - 6.22% 42.86% 129.42% 35.76% 24.45%

#Clk cycles per block 2N + 10 3N + 11 3N + 11 2N + 13 2N + 10 2N + 10
Throughput (K Blocks/sec) 160 107 107 159 160 160

Throughput (Mbps) 40.05 26.91 26.91 39.70 40.05 40.05

Throughput degradation (%) - 32.81% 32.81% 0.86% - -

Type of detected faults - transient transient, transient, transient, transient,

permanent permanent permanent permanent

Error detection probability - 100% 100% 100% 99.22% 99.22%

5
1

4.3 Fault analysis of NTRUSign digital signature scheme

One main advantage of the NTRU family of cryptosystems (i.e., both NTRUEncrypt and

NTRUSign) is that NTRU is smaller and faster than other public key cryptosystems. According

to the performance benchmarks published on the NTRU company website (http://www.ntru.com/

security-lab/), NTRU is about 5 to 200 times faster than RSA and ECC with similar security

parameters. A recent comparison between hardware implementations of different digital sig-

nature schemes [53] shows that the power consumption of NTRUSign is significantly less than

any other digital signature scheme published so far. These small footprints make NTRUsign

ideal for handheld mobile devices, sensors, RFIDs, smartcards, and other resource constrained

devices with limited computing resources. On the other hand, the typical deployment environ-

ment for these resource constrained devices makes it particularly susceptible to various forms of

SCAs including fault analysis which has become a serious threat after cheap and low-tech meth-

ods of applying faults were presented [174]. It should also be noted that the limited resources

and the extreme lightweight requirements make the implementation of various countermeasures

against these attacks a more challenging task compared to other environments.

4.3.1 Description of NTRUSign

In this section, we briefly review some of the basic definitions and notations as defined

in section 4.2.1. The key underlying structure of NTRUSign is the polynomial ring R, where

N is a prime integer. The signatures and the messages use a polynomial ring Rq where the

coefficients are taken mod q.

For a real number r, let ⌊r⌉ denote the closest integer to r. From the NTRUSign spec-

ifications [42], ⌊r⌉ is evaluated as ⌊r⌉ = ⌊r + 0.5⌋ where ⌊·⌋ denotes the floor function of the

enclosed argument. Similarly, if a is a polynomial with real coefficients, ⌊a⌉ denotes that this

operation is applied to each coefficient in the polynomial a.

Let a(x) =
∑N−1

i=0 aix
i be a polynomial in R. The centered norm of a(x) is defined as

52

the non-negative real number satisfying

∥a(x)∥2 =
∑N−1

i=0 (ai − µa)
2 =

∑N−1
i=0 a2i −

1
N
(
∑N−1

i=0 ai)
2,

where µa = (1/N)
∑N−1

i=0 ai is the average of the coefficients of a(x). The centered

norm in a direct sum module Rn is defined as the non-negative real number satisfying

∥(a0, a1)∥
2 = ∥a0∥

2 + ∥a1∥
2.

The original variant of the NTRUSign algorithm was proposed in [80]. A perturbation

technique was later introduced in order to enhance the security of this scheme, particularly,

against transcript attacks. Algorithm 2 shows this enhanced version of NTRUSign [42, 81, 87].

The original scheme can be seen as a special case of Algorithm 2 with B = 0.

4.3.2 Proposed attack

To simplify our discussion, we first consider the NTRUSign with the “standard” NTRU

lattice [81]. Steps 1-4 of the signing procedure in Algorithm 2 serve only to add perturbation

δ to the original message m. Step 5 performs the actual signature operation, using the original

NTRUSign scheme, on m′ = m + δ. Since δ is designed to be small enough, a valid signature

on m′ will be a valid signature on m. Our attack utilizes the fact that an attacker only needs

to recover f0, and consequently calculate g0, in order to forge a signature that would pass the

verification step in Algorithm 2. In other words, signatures generated by the setting B = 0 in

the signing algorithm, i.e., with no perturbation, will pass the verification algorithm even if the

verifier assumes that it was generated with B > 0. In fact, it will pass the verification step even

if different sets of F and G are utilized as long as they satisfy the condition identified in step

2.ii in the key generation procedure of Algorithm 2.

The fault model in which we analyze NTRUSign is the one in which the attacker is

assumed to be able to inject a transient fault in a small number of coefficients of the polynomial

A or B in the signing algorithm (see step 6 in Figure 4.8) but cannot control the exact location

of injected faults, i.e., cannot specify which polynomial coefficients are to be corrupted by the

induced faults.

53

Algorithm 2 NTRUSign with perturbation [80–83]

Key Generation

1: INPUT: Integers(N), q, N , B ≥ 0, (df , dg for binary polynomials), (d for trinary polynomials), and

the NTRU lattice type = “standard” or “transpose”. In the above set of parameters, N denotes the

dimension of the polynomial ring used, i.e., polynomials are up to degree N − 1. N denotes the

norm-bound.

2: Generate B private lattice bases and one public lattice basis: Set i=B. While i ≥ 0 do:

i. Randomly choose binary polynomials f , g ∈ R with (df , dg) ones. For the parameter sets

defined in [82, 83], choose trinary polynomials f , g with (d + 1) +1s and d -1s. f needs to be

invertible in Rq in case of using NTRU lattice type = “standard” and g needs to be invertible in

Rq in case of using NTRU lattice type = “transpose”.

ii. Find small polynomials F , G ∈ R such that f ⋆ G− F ⋆ g = q.

iii. Set fi = f . If NTRU lattice type = “standard”, set f ′
i = Fi and hi = f−1

i ⋆ gi mod q. If NTRU

lattice type = “transpose”, set f ′
i = gi and hi = f−1

i ⋆ Fi mod q. Set i=i-1.

3: PUBLIC OUTPUT: The input parameters and the public key h = h0.

4: PRIVATE OUTPUT: The set of polynomial {fi, f ′
i , hi} for i=0..B.

Signing

1: INPUT: A digital document D ∈ D (a digital document space) and the private key set {fi, f ′
i , hi}

for i = 0 · · · B.

2: Set r=0.

3: Set s=0, i=0. Encode r as a bit string. Set m0=H(D ∥ r), where “∥” denotes the concatenation. Set

m=m0.

4: Perturb the point using the private lattices: While i ≥ 1:

i. Calculate A = ⌊
−f ′

i⋆m
q ⌉, B = ⌊fi⋆mq ⌉, si = A ⋆ fi +B ⋆ f ′

i mod q.

ii. Set m = si ⋆ hi − hi−1 mod q.

iii. Set s = s+ si. Set i = i− 1.

5: Sign the perturbed point using the lattice public key:

Set A = ⌊
−f ′

0⋆m
q ⌉, B = ⌊f0⋆mq ⌉, s0 = A ⋆ f0 +B ⋆ f ′

0 mod q, s = s+ s0.

6: Check the signature:

i. Set b = ∥s, s ⋆ h−m0 mod q∥.

ii. If b ≥ N . Set r = r + 1 and go to step 3.

7: OUTPUT: The triplet (D, r, s).

Verifying

1: INPUT: A signed document(D, r, s) and the public key h

2: Encode r as a bit string. Set m=H(D ∥ r).

3: Set b = ∥s, s ⋆ h−m0 mod q∥.
4: OUTPUT: “valid” if b < N , “invalid” otherwise.

54

� = �−�′� ⋆ 	
� �	

� = � ⋆ �� + � ⋆ �′�	mod	�

� = ��� ⋆ 	
� �	

 = 0,
 =
�	

 =
 +
�

 =
� ⋆ (ℎ� − ℎ�)	mod	�

�� = �� ⋆ �� + � ⋆ �′�	mod	�

̂ =
 +
��

� = �−�′� ⋆ 	
� �	 � = ��� ⋆ 	
� �	

ℬ = 1	

ℬ = 0	

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 4.8: Fault injection in the NTRUSign algorithm

If the fault injection process guarantees that number of faulted polynomial coefficients

is upper bounded by t, then the resulting faulty signature is given by

ŝ = s1 + ŝ0,

where

ŝ0 = Â ⋆ f0 +B ⋆ f ′
0 mod q,

Â = A+ ϵ mod q, and ϵ =
t∑

j=1

ϵijx
ij ∈ Rq, 0 ≤ ij < N , denotes the resulting error polynomial

with t non zero coefficients in the locations corresponding to the injected faults. Thus, the

attacker can calculate the difference between the faulty signature and the correct one as follows:

55

∆s = ŝ− s = (s1 + ŝ0)− (s1 + s0)

= ŝ0 − s0 = ϵ ⋆ f0 mod q.

The attacker can obtain the secret key f0 as

f0 = ϵ−1 ⋆∆s mod q

by exhaustively trying all possible (qt−1)
(
N
t

)
= O((qN)t) values for ϵ(x) with the pre-specified

small number of non zero coefficients. Calculating the multiplicative inverse of ϵ in Rq can be

done efficiently using the Newton iteration method [170]. Then, the attacker calculates

g0 = f0 ⋆ h mod q,

The attacker can verify the correctness of the obtained solution by running the verification al-

gorithm on signatures produced by these recovered keys.

The success of the above attack requires that ϵ is invertible in Rq. For q = pl is a power

of a prime p and N is a prime number, let n ≥ 1 be the smallest integer such that pn ≡ 1 mod

N . The probability that ϵq(x) ∈ Rq is invertible is given by [169]

(
1−

1

p

)(
1−

1

pn

)(N−1)/n

which is approximately equal to (1−1
p
) for the typical choice of the parameters of the NTRUSign

algorithm. For example, for N = 251 and q = 128 [81], we have p=2 and n=50. Consequently,

the probability that an element in Rq is invertible ≈ 1
2
.

Our analysis above ignores the fact that the signature procedure might be implemented

in such a way that the attacker may not have access to the faulty signature if it does not pass the

norm-bound checking (step 6 in the signing procedure in Algorithm 2). While the NTRUsign

designers have previously suggested that, depending on the application, this step might be

56

skipped for NTRUSign with no perturbation in order to improve the efficiency of the signing

process (see section 6.4 in [80]), this is not the case for NTRUSign with B > 0.

Table 4.3 and Table 4.4 show the percentage of cases in which the faulted signatures pass

this check for 10 random messages and 1000 fault injections for each message for the parameter

set (N , q, df , dg, B, “type”, N) =(251, 128, 73, 71, B, standard, 310) [81] for B = 0 and

B = 1, respectively. In the above set of parameters, N denotes the dimension of the polynomial

ring used, i.e., polynomials are up to degree N − 1, N denotes the norm-bound, df , dg denote

the Hamming weight of the binary polynomials f and g used in the key generation step of the

algorithm, B = 0 corresponds to the system with no perturbation and B = 1 corresponds to the

system with perturbation (see Algorithm 2 for further clarification of these parameters.) The

experimental results were obtained by simulating the process of fault injection in our MAPLE

software implementation of NTRUSign.

Table 4.3: Experimental results for NTRUSign with (N , q, df , dg, B, “type”, N) =(251, 128,

73, 71, 0, standard, 310)

t ϵ is non-invertible
ϵ is invertible

probability of successful fault injection
fail pass

1 4901 3153 1946 0.1946

2 4917 4563 520 0.0520

3 5093 4789 118 0.0118

Table 4.4: Experimental results for NTRUSign with (N , q, df , dg, B, “type”, N) =(251, 128,

73, 71, 1, standard, 310)

t ϵ is non-invertible
ϵ is invertible

probability of successful fault injection
fail pass

1 4948 4051 1001 0.1001

2 4990 4857 153 0.0153

3 5016 4962 22 0.0022

From Table 4.3, if the number of faulted coefficients in A is 1, then about 1/0.195 ≈ 5

fault injections are required before the attacker is able to access the faculty signature which

57

Table 4.5: Experimental results for NTRUSign with (N , q, df , dg, B, “type”, N) =(251, 128,

73, 71, 0, transpose, 310)

t ϵ is non-invertible
ϵ is invertible

probability of successful fault injection
fail pass

1 4944 4437 619 0.0619

2 5064 4893 43 0.0043

3 4089 5008 3 0.0003

Table 4.6: Experimental results for NTRUSign with (N , q, df , dg, B, “type”, N) =(251, 128,

73, 71, 1, transpose, 310)

t ϵ is non-invertible
ϵ is invertible

probability of successful fault injection
fail pass

1 4948 4775 277 0.0277

2 5026 4965 9 0.0009

3 5049 5051 0 0.0000

corresponds to an invertible error polynomial ϵ ∈ Rq. It is also clear that the required number

of fault injections increases with t. If, for practical reasons, inducing such a large number of

transient fault injections is not possible, then a second order fault attack [111] can be utilized

in order to reduce the number of required fault injections. In this case, the attacker induces a

second fault in step 6 in the signing procedure of Algorithm 2 to skip this norm-bound check.

Similar analysis follows for type=“transpose”, i.e., when the signing process is per-

formed using the NTRU transpose lattice. However, in this case, g0 cannot be recovered from

the knowledge of the public key and f0. Thus the attacker has to repeat the attack by injecting

another fault in the computation of the polynomial B (step 6 in Figure 4.8). Tables 4.5 and Table

4.6 show the corresponding experimental results for NTRUSign with the transpose lattice.

The above set of experiments corresponds to the security parameters defined in the Effi-

cient Embedded Security Standards (EESS) standard [42] with a claimed security level equiv-

alent to RSA-1024 which is roughly equivalent in strength to 80-bit symmetric keys [42]. In

order to test the effect of changing the algorithm claimed theoretical security level on the per-

58

Table 4.7: Experimental results for NTRUSign with the set of parameters in [82, 83]

parameters
probability of successful

fault injection

k N d q β N t = 1 t = 2 t = 3

80 157 29 256 0.38407 150.02 0.0303 0.0012 0.0000

112 197 28 256 0.51492 206.91 0.0241 0.0011 0.0001

128 223 32 256 0.65515 277.52 0.0266 0.0012 0.0000

160 263 45 512 0.31583 276.53 0.0188 0.0007 0.0000

192 313 50 512 0.40600 384.41 0.0221 0.0008 0.0000

256 349 75 512 0.18543 368.62 0.0350 0.0031 0.0000

formance of our attack when the attacker cannot bypass the signature verification step, we per-

formed another set of experiments on NTRUSign with the new set of security parameters defined

in [82,83]. For this version of NTRUSign, the centered norm computation in step 3 of the verifi-

cation procedure in Algorithm 2 is defined as ∥s, s⋆h−m0∥
2 = ∥s∥2+β2||s⋆h−m0∥

2 where,

as shown in Table 4.7, different values of β are defined for each set of the security parameters

(see also section 2.3 in [82]). It should be noted that these parameters are only applicable to

the NTRUsign with the transpose NTRU lattice. Furthermore, in this version of NTRUSign, the

polynomials f and g have trinary coefficients ∈ {+1,−1, 0} with (d+1) +1s and (d) -1s while

in the EESS version of NTRUSign, f and g are binary polynomials with Hamming weight df

and dg, respectively.

The first column in Table 4.7 refers to the claimed security level, k, in bits. One inter-

esting observation, that follows from the experimental results in Table 4.7, is that increasing the

security parameter, which basically reflects the resistance against the best known lattice based

attacks, does not necessarily improve the resistance against our attack. It should also be noted

that if the attacker is able to skip the norm-bound checking step, then the probability of success-

ful fault insertion ≈ 1− 1
p
, does not vary with the choice of the security parameters since p = 2

for all of them. On the other hand, as depicted in the table, in the case where the attacker cannot

skip the norm-bound checking step, the precision of the fault injection process, i.e., the ability

of the attacker to bound the number of faulted polynomial coefficients, t, has a large influence

59

on the success probability of the attack and also keeps the computation steps required for the

attack, O((qN)t), in the practical range.

4.3.3 Proposed countermeasures

To secure cryptographic devices against fault analysis, proper countermeasures have to

be applied. Generally, these countermeasures detect temporal or permanent faults which hap-

pen in the cryptosystem, and immediately, disable the device output or rest all the output bits to

0s. As a result, the attacker is prevented from observing the output of the faulty cryptographic

computations and hence the vulnerability of the cryptosystem to these attacks can be allevi-

ated. Several approaches of fault detection techniques have been investigated. These techniques

include error detecting codes and redundancy-based techniques [117].

Many ideas have been proposed to efficiently secure CRT based RSA signature compu-

tations against fault attacks. In [165], Shamir used a redundant way to compute the arguments

used in the CRT computation of the RSA signature and checked their correctness before RSA

combination. Shamir’s countermeasure has two drawbacks. It requires the secret exponent

which is not needed for the CRT computation of the signature and its error detection technique

is based on decisional tests that should be avoided since they can be bypassed by higher order

fault attacks which were introduced by Kim and Quisquater in [111] where they were able to

practically break the first-order countermeasures for the RSA cryptosystem. The main idea is

based on inducing the first fault during one of the exponentiation and then inducing a second

fault to skip the error checking routine in the RSA-CRT scheme. Yen et al. [194] noted that fault

injection on status register flags can bypass conditional checks in countermeasures. Hence, they

introduced the concept of infective computation which aims at infecting the resulting signature,

i.e., rendering it unusable for the attacker in the case where a fault is injected in one of the

two exponentiations. Several subsequent countermeasures employed this infective computation

approach [27, 28, 66, 96].

Unlike the case of symmetric key ciphers where parity based error detection codes are

60

somewhat straightforward to derive for the intermediate computation steps of the cipher, this

does not seem to be the case for NTRUsign because of the nonlinearity of the operations in-

volved, especially the rounding operation, ⌊·⌉, in step 2 and step 6 of Figure 4.8. On the other

hand, the algebraic properties of the polynomials convolutional product defined by Equation

(4.1), allow us develop a redundancy-based fault detection technique which detects both tran-

sient and permanent faults. We have also developed another, independent, technique to defend

against second order fault analysis where the attacker is able to introduce another fault to skip

the fault detection check.

Recomputing with cyclically shifted messages

Let a(r)(x) ∈ R denote an r-cyclically shifted version of a(x) =
∑

i aix
i, 0 < r ≤ N−1.

The coefficients of a(r)(x) are obtained by rotating the coefficients of a(x) by r positions. Thus

we have a(r)(x) =
∑N−1

i=0 a
i+r (mod N)

xi. Let c(x) = a(x)⋆b(x). Then we have a(r)(x)⋆b(x) =

c(r)(x) where c
(r)
i = c

i+r (mod N)
.

Consequently, the coefficients of ⌊a
(r)(x)⋆b(x)

q
⌉ correspond to r-cyclically shifted version

of the coefficients of ⌊a(x)⋆b(x)
q
⌉. This fact can be utilized to introduce either spatial redundancy

or temporal redundancy where the redundant computation is performed using a rotated version

of m and the two signatures are compared as shown in Figure 4.9. If the result of the two

operations do not match, up to the chosen rotation r, then the output of the device is disabled

in order to prevent the attacker from accessing any information from the faulty signature. Note

that this technique has an advantage over straightforward application of temporal redundancy,

i.e., evaluating the signature on the same message for two times and comparing the result, since

the latter approach does not protect against permanent faults. To speed up computation in the

case of utilizing the temporal redundancy option, the added redundancy can be utilized at the

level of smaller building blocks, i.e., during the computation of A and B in step 6 of Figure 4.8.

However, applying this approach at the algorithm level has the advantage of being able to detect

all faults, not necessarily the ones resulting from injecting errors at this particular step.

61

NTRUSign

Algorithm

m

NTRUSign

Algorithm

≠

<<< r

>>> r

error

Figure 4.9: Fault detection by recomputing with cyclically shifted messages

Defending against second order fault analysis attacks

In this section, we introduce another countermeasure which avoids decision test (i.e.,

the error checking that is performed by comparing the signature with the one resulting from

the redundant module such as the one shown in Figure 4.9) and consequently protects against

sophisticated attackers who are able to induce higher order faults that skip fault detection oper-

ations. Our approach is inspired by the fault infective computation technique proposed by Yen

et al. [194] to defend against fault attacks on the RSA digital signature scheme. The following

two Lemmas will be used to prove the correctness of our approach

Lemma 4.5 Let w = z
q
− ⌊ z

q
⌉, where z and q are two integers. If an error occurs during the

computation of ⌊ z
q
⌉, then we have ⌊w⌉ ̸= 0.

Proof: Let w and w′ denote the results of correct and incorrect computations, respectively.

From to the definition of the round function ⌊·⌉, w ∈ [−1
2
, 1
2
). Since erroneous ⌊ z

q
⌉ differs from

correct ⌊ z
q
⌉ by an integer, the difference between w and w′ is given by |w − w′| ≥ 1. Thus,

w′ /∈ [−1
2
, 1
2
) and consequently ⌊w′⌉ ̸= 0, which proves the Lemma.

62

Lemma 4.6 If z1, z2 are two non-negative integers, then

⌈
z1 + z2

(z1 + z2 + 1)
⌉ =





0 if z1 = z2 = 0

1 otherwise.

Proof: Let z = z1 + z2. It is clear that z
z+1

= 0 for z = 0 and 1
2
≤ z

z+1
< 1 for z ≥ 1. It

follows that ⌈ z
z+1
⌉ = 0 if z = 0 and ⌈ z

z+1
⌉ = 1 otherwise. The Lemma follows by noting that

z = 0 if and only if z1 = z2 = 0.

To defend against higher order fault analysis of NTRUSign, step 5 in the signing proce-

dure of Algorithm 2 is replaced by the following steps

1. Calculate A = ⌊
−f ′

0⋆m

q
⌉, B = ⌊f0⋆m

q
⌉,

2. Calculate AA = ⌊
−f ′

0⋆m

q
− A⌉, BB = ⌊f0⋆m

q
− B⌉,

3. Set s0 = A ⋆ f0 +B ⋆ f ′
0 mod q,

4. Set z1 =
∑N−1

i=0 |AAi|, z2 =
∑N−1

i=0 |BBi|, where | · | denotes the absolute value of the

enclosed coefficient.

5. Set s = q
⌈

z1+z2
z1+z2+1

⌉
(s+ s0) mod q, where ⌈·⌉ denotes the ceiling operation.

From Lemma 4.5, the coefficients of the polynomials AA and BB will all be equal to

zeros if and only if no errors occur during the computation of this step. Consequently, and by

utilizing Lemma 4.6, in case of no errors, step 5 above evaluates

s = q
⌈

z1+z2
z1+z2+1

⌉
(s+ s0) mod q = q0 × (s+ s0) mod q = (s+ s0) mod q

which corresponds to the correct output of Algorithm 2. On the other hand, if an error occurs,

step (5) above results in

s = q
⌈

z1+z2
z1+z2+1

⌉
(s+ s0) mod q = q × (s+ s0) mod q = 0,

63

which prevents the attacker from recovering any useful information about the secret key. Note

that we raise q to the power of ⌈ z1+z2
z1+z2+1

⌉ ∈ {0, 1} instead of raising it to the power of z1 + z2

in order to avoid the unnecessarily computational complexity of performing the exponentiation

operation with a large exponent.

4.4 Conclusion

One difficulty with analyzing the NTRU encryption algorithm is its large number of

variants. Different choices of parameters can dramatically change the security of NTRU and

attacks against a specific instantiation may not succeed against other instantiations.

In this chapter, we presented a fault analysis attack against the original variant of the

NTRU encryption algorithm. Our attack does not work against more recent variants where f =

1 + pF for ternary or binary polynomial F since the bijection between Fp and f does not exist

in these variants. Extending our attack to constructions with padding is a challenging research

problem. Another interesting research direction is to consider how to exploit the wraps in the

centering algorithm by this kind of fault attacks. We also presented different techniques for

strengthening the resistance of NTRUEncrypt hardware implementations against fault attacks.

We provided a comparison between these different techniques in terms of their error detection

capabilities as well as area and throughput overheads. We also provided FPGA implementation

results for these approaches.

As shown in Table 4.2, EDC based approaches can provide error detection up to 1− 1
q
=

99.22% for the implemented system parameters. While this error detection capability might

be suitable for protecting implementations against non malicious faults, in security sensitive

applications where transient faults can be maliciously injected, we believe that this level of

protection is not enough. Fault attacks are getting better and the number of required faults

are getting smaller. Thus, from Table 4.2, in these situation the system designer can choose

between the decryption-rotate-decryption approach (with throughput reduction by a factor of

64

≈ 3N
2N

= 1.5 and a relatively small area overhead) and the decryption-encryption option with

a relatively large area overhead but practically very little impact on throughput. Developing

the corresponding countermeasures for other variants of NTRUEncrypt with f = 1 + pFp, or

constructions with padding, is an interesting research directions.

One interesting observation that follows from our attack on NTRUSign is that the pertur-

bation process, which was introduced to improve the security of NTRUSign towards previous

attacks, does not improve the resistance of NTRUSign against this kind of fault attacks if the

norm-bound checking step can be skipped by the attacker. Another observation is that using

NTRUSign with a larger-security parameter, while improving the resistance against lattice based

attacks, does not necessarily improve the resistance against fault analysis attacks especially in

the cases where the attacker is able to precisely corrupt a small number of coefficients and is

able to skip the norm-bound checking step. Thus, when NTRUSign is deployed in environments

that are susceptible to this class of fault analysis attacks, implementing fault analysis counter-

measures, such as the two countermeasures developed in this work, is necessary to protect the

security of the system even if the largest-security parameters are utilized.

65

Chapter 5

Application of Scan-based SCAs on

NTRUEncrypt Cryptosystems

5.1 Introduction

Scan-based Design-For-Test (DFT) [34] is a popular technique for validating the func-

tionality of integrated circuits during fabrication and providing on-chip debugging capabilities

in the field. When using this approach, all flip-flops in the circuit under test are tied to one or

more scan chain that enable scanning out their states using the Joint Test Action Group (JTAG)

boundary scan interface [93]. A JTAG interface is a special serial interface with the following

pins: TDI (Test Data In), TDO (Test Data Out), TCK (Test Clock), TMS (Test Mode Select),

and optional TRST (Test Reset). TMS selects between normal mode and test mode. TRST is

the reset signal for the test controller. During testing, test vectors can be scanned in via the TDI

pin, and flip-flops states can be scanned out via the TDO pin. As shown in Figure 5.1, a scan

flip-flop is a flip-flop with a Multiplexer (MUX) at the input. In normal mode, it works like a

normal flip-flop. In test mode, as shown in Figure 5.2, all scanned flip-flops are disconnected

from the combinational circuit and connected to each other in a scan chain where their contents

can be scanned in and out.

66

TMS

0

1

FF

 TDI

Data-in

TCK

Data-out

TDO

Figure 5.1: An illustration for a scan flip-flop (SFF)

...

Combinational Circuit

TDI TDO

Data-in Data-out

FF

0

1 FF

0

1FF

0

1

. . .
. . .

TCK

TMS

Figure 5.2: An illustration for a scan chain

While scan-based DFT improves the quality of testing, it also introduces a powerful

side channel attacks against hardware implementations of cryptographic devices that utilize this

technique. Despite the fact that the internal structure of the scan chain is usually not known

to attackers, exploiting the information obtained from analyzing the scanned data allows crypt-

analysts to ascertain this structure and retrieve the secret key from the cryptographic hardware

devices that implement various cryptographic algorithms such as DES [192], AES [140, 193],

RSA [139], ECC [141], and stream ciphers [1, 120].

As mentioned in the previous chapters, the NTRUEncrypt algorithm [84, 87] is a pa-

rameterized family of lattice-based public key cryptosystems. In the past few years, the se-

curity of NTRUEncrypt against mathematical attacks had been analyzed by many researchers

(e.g., [95, 142]). Different classes of SCAs against NTRUEncrypt and their countermeasures

were also considered [13, 105, 119, 171].

In this chapter, we present a scan-based SCA against a hardware implementations of

67

NTRUEncrypt. In general, all scan-based SCAs can be viewed as a kind of differential crypt-

analysis where attackers take advantage of the scan chains to observe the bit changes between

pairs of chosen plaintexts/ciphertexts and consequently, identify the secret keys. More pre-

cisely, scan-based attacks can be classified into two classes [167]: Constant Based Attacks

(CBAs) and Fixed-Hamming-Distance-based Attacks (FHDAs). CBAs take advantages of the

fact that in the encryption/decryption process, the contents of some special registers are inde-

pendent of the input. By using several different inputs and scanning out the contents at different

times of the cryptographic operation, the internal registers of the cryptographic device can be

easily identified. Then, by setting these registers to specific states through scan operations, the

complexity of the secret key recovery can be reduced. In FHDAs, several pairs of relevant plain-

texts/ciphertexts are applied and then, for each pair, the number of different bits in the output

are counted to recover the secret key.

Our attack can be seen as a type of FHDAs where we focus on determining the scan

chain structure of the polynomial multiplication circuit in the decryption algorithm and then

utilize the Hamming weight information of some particular registers, which can be obtained via

the JTAG interface, to efficiently retrieve all the coefficients of the secret key polynomial. An-

other contribution of this chapter is showing that existing NTRUEncrypt hardware architectures

that target low area implementations are easier to break using scan-based attacks compared to

architectures that target high speed implementations because of the different methods used to

perform the convolution multiplication in the decryption process in both approaches.

5.2 Hardware implementation options for NTRUEncrypt

Throughout the rest of the chapter, we focus on the NTRUEncrypt algorithm with the

widely used parameters: p = 3 and q in the form of 2n [84]. We assume that the attacker has

access to the high level timing diagram of the target hardware implementation and that the secret

key is stored in secure memory that cannot be accessed through the scan chain. We also assume

68

that the attacker has direct access to the scan chains via the JTAG port or by breaking open the

package and directly probing the buried JTAG ports [34].

From the description of the encryption and decryption operations in section 4.2.1, it is

clear that the most time/area consuming step in both operations is the convolution multiplication

required to compute r(x)⋆h(x) and f(x)⋆e(x) during the encryption and decryption operations,

respectively.

While there are several hardware implementations for NTRUEncrypt (e.g., see [12, 13,

15,110,119,130]), the majority of these implementations focus on optimizing either the time or

the area required by theses convolution operations. In what follows, we focus on the decryption

process because it is the only relevant part for our cryptanalysis since the encryption module

does not contain any secret information.

For low area and low power implementations, which are viable for resource constrained

applications such as RFIDs and sensor nodes, the convolution multiplication, a = f ⋆ e mod q,

is usually performed in approximately N2 clock cycles [12, 110] as shown in Figure 5.3. In

this case, the computation for the coefficients of the polynomial a are done sequentially where

the coefficient ai, of size log2(q), is obtained after (i + 1) × N clock cycles, 0 ≤ i < N .

For example, a0 is calculated by accumulating (mod q) the results of serially multiplying e0 ×

f0, eN−1 × f1, eN−2 × f2, · · · , e1fN−1 into a register initialized to zero where each multiply-

and-add step is performed in one clock cycle.

For this kind of implementations, scan-based SCAs can be used to recover the secret

information in a straightforward way as follows: first, the attacker determines the locations of

the flip flops of the ciphertext register e in the scan chain output. This is done by analyzing the

bit differences between the scan chain outputs corresponding to the all zeroes ciphertext and the

N × log2(q) scan chain outputs corresponding to the ciphertext blocks with a (bit) Hamming

weight equal to one. This step is performed right after the ciphertext loading operation.

In the next step, the attacker loads a ciphertext e in which all coefficients are set to 1.

Since the value of a0 is computed sequentially, the intermediate values of a0 after the tth clock

69

cycle of the convolution multiplication step are given by

a
(t)
0 =

∑t
j=0 fj × e

(N−j) mod N
mod q

=
∑t

j=0 fj mod q, 0 ≤ t < N.

Consequently, the attacker can recover the value of the secret key by scanning out the interme-

diate values of a0. Note that the attacker is able to determine the locations of the log2(q) bits

corresponding to a0. This is because the location of the bits corresponding to e are already de-

termined in the previous step and the only bits of the scan chain output that change in this step

would correspond to the a0 bits. This holds because the bits corresponding to ai, 0 < i < N

remain zeroes throughout the computation of a0.

��

�������	
��	�

Adder
�� = �� + �� ×

�������	
��	�	�mod	�	,

0 ≤ � < �,

0 ≤ � < �

 �� �� �� ... ����

⋆ �� �� �� ... ����

+ �� × �� �� × �� �� × �� ... ���� × ��

+ ���� × �� �� × �� �� × �� ... ���� × ��

+ ���� × �� ���� × �� �� × �� ... ���! × ��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+ �� × ���� �� × ���� �! × ���� ... �� × ����

 �� �� �� ... ����

Figure 5.3: A typical low area implementation of the convolution multiplication (f(x) ⋆ e(x))
in N2 clock cycles. For each 0 ≤ i < N , j varies from 0 to N − 1.

In hardware implementations of NTRUEncrypt that targets higher speed applications

70

(e.g., see [13, 119, 130]), instead of storing all the coefficients of f , the locations of the non-

zero (2 × df − 1) coefficients are stored. This allows the convolution multiplication to be

performed, as shown in Algorithm 3 [15], in 2 × df − 1 steps instead of N2 steps (see Figure

5.4). Since the number of non-zero coefficients, 2 × df − 1, is typically much smaller than N ,

this implementation leads to a faster decryption.

.

.

.

��[�]

���	

Adder
�[�]���	

0 ≤ � < 2 × �� + 1

=
�[�]���	 + ��[�] × ���	 (mod	�)

��[�]

�	

Adder
�[�]�	

=
�[�]�	 + ��[�] × �		(mod	�)

��[�]

��

Adder
�[�]

=
�[�] + ��[�] × ��	(mod	�)

Figure 5.4: The convolution multiplication between the polynomials f(x) and e(x) in 2×df−1
clock cycles

Determining the corresponding locations of the register e in the scan chain output can be

performed using the same approach above, i.e., by loading different ciphertexts with a Hamming

weight equal to one and analyzing the output differences in the scan chain output corresponding

to these ciphertexts and the one corresponding to the all zero ciphertext. On the other hand,

determining the coefficients of the secret key polynomial, f , requires some deeper analysis

which will be developed though the rest of this chapter.

71

Algorithm 3 Fast Convolution Algorithm [15]

1: INPUT: An array k of df+1 locations for +1 and df locations for -1 representing f ; e; N : the size

of f and e

2: OUTPUT: T = f ⋆ e mod q.

3: for 0 ≤ l < 2N do

4: Tl ←− 0
5: end for

6: for 1 ≤ t ≤ df + 1 do

7: for 0 ≤ l < N do

8: Tl+k[t] ←− Tl+k[t] + el
9: end for

10: end for

11: for df + 2 ≤ t ≤ 2df + 1 do

12: for 0 ≤ l < N do

13: Tl+k[t] ←− Tl+k[t] − el
14: end for

15: end for

16: for 0 ≤ l < N do

17: Tl ←− (Tl + Tl+N) mod q

18: end for

5.3 The proposed scan-based attack

As mentioned above, when the convolution multiplication is implemented as shown in

Figure 5.4, a straightforward application of scan-based attacks to recover the full scan chain

structure will not work because of the large number of flip-flops connected in the scan chain.

Instead, in our attack, we focus on determining the relevant flip-flops in the scan chain structure

of the polynomial multiplication circuit. The main idea of our attack is to distinguish the register

T into two parts: TR and TL (the relevance of both parts will be explained below.) Then by single

stepping through the 2df + 1 clock cycles of the convolution multiplication, and by recording

the Hamming weight of TR and TL in each clock, the attacker can construct a system of linear

equations, with the potential positions of the non-zero elements of the secret key as unknowns.

This set of equations can be solved to obtain a set of possible keys. Then, the correct key can

be determined by verifying the correctness of the decryption operation for a known plaintext.

72

5.3.1 Summary of the attack

Conceptually, the steps of the attack can be summarized as follows:

1. Reset the chip and run it in the normal decryption mode to load an all zero ciphertext into

the register e. Resetting the circuit allows the attacker to rest all flip-flops (including those

that belong to the control circuit) into the same initial state before each attack step. This

is necessary in order to allow the attacker to calculate the differences in the Hamming

weight of the target registers before and after each attack step.

2. Switch to test mode and scan out the bit stream pattern.

3. Repeat steps 1 and 2 using all the N × log2(q) ciphertexts with a (bit) Hamming weight

equal to one and compare the output differences in the scan chain output corresponding

to these ciphertexts with the one corresponding to the all zeroes ciphertext. At the end

of this step, the attacker is able to determine the locations corresponding to the ciphertext

register, e, in the scan chain.

4. Load the chip with a ciphertext of all 1s in normal mode and clock the system one time to

evaluate T = f × e as shown in Algorithm 3.

5. Switch to test mode and scan out the bit stream pattern. In this case, the register T can be

distinguished into two parts: TR which contains all 1s and TL which contains 0s. Note that

while the attacker can identify the group of bits that belong to each of these two registers,

the attacker cannot determine the exact location of these bits within the registers.

6. Clock the system in normal mode

7. Switch to test mode and scan out the bit stream to calculate the Hamming weight of the

registers TR and TL.

8. Repeat steps 6-7 for (2 × df) times and record the Hamming weights of the registers TR

and TL.

73

9. Use the Hamming weights obtained above as an input to Algorithms 4 and 5 to form a set

of linear equations which can be solved to obtain the set of possible keys.

10. Determine the correct key by verifying the correctness of the decryption operation (using

any arbitrary known plaintext-ciphertext pair obtained using the public key encryption

process) for each of the keys obtained in step 9 above.

5.3.2 Recovering the secret key

For A = [a0, a1, ..., aN−1] and B = [b0, b1, ..., bN−1], ai, bi ∈ Zq, 0 ≤ i < N , the

following notation will be used throughout the rest of the chapter.

• Ai..j denotes the vector [ai, ai+1, ..., aj] of length j − i+ 1, 0 ≤ i < j.

•
−

Ai..j denotes the vector [(ai + (q − 1)) mod q, (ai+1 + (q − 1)) mod q, ..., (aj + (q −

1)) mod q]=[(ai − 1) mod q, (ai+1 − 1) mod q, ..., (aj − 1) mod q], 0 ≤ i < j.

•
+

Ai..j denotes the vector [(ai − (q − 1)) mod q, (ai+1 − (q − 1)) mod q, ..., (aj − (q −

1)) mod q] = [(ai + 1) mod q, (ai+1 + 1) mod q, ..., (aj + 1) mod q], 0 ≤ i < j.

To illustrate the above notation, consider the following example where A = [5, 0, 4, 2, 7]

and q = 0xF (in hexadecimal). Then
−

A1..3 = [0 + (q − 1)mod q, 4 + (q − 1) mod q, 2 +

(q−1) mod q] = [(0−1) mod q, (4−1) mod q)], (2−1) mod q = [0xE, 3, 1]. Similarly,
+

A0..2 = [5− (q−1) mod q, 0− (q−1) mod q, 4− (q−1) mod q] = [5+1, 0+1, 4+1] =

[6, 1, 5].

• A(t) denotes the value of the register A at time t.

• HW(·) denotes the Hamming weight of the enclosed argument.

• A|B denotes the vector obtained from the concatenation of A and B.

74

Recovering the locations of the +1 elements in the secret key

As mentioned above, after determining the corresponding locations of the flip-flops cor-

responding to e in the scan chain, the attacker divides the flip-flops corresponding to the register

T into two parts: TL and TR which contain, after the first step of convolution multiplication,

all zeroes and all ones, respectively. Algorithm 4 is then used to determine the locations of the

+1 elements in f relative to the location of the first +1 element. More precisely, Algorithm 4

outputs an array whose tth element is equal to (k[t] − k[0]), 1 ≤ t < df + 1. As shown in the

algorithm, A and B, are used to simulate the intermediate values of TL and TR, respectively,

during the computation of T = f ⋆ e mod q. By examining the Hamming weight information

of TL and TR obtained from the scan chain output bit stream observed via the JTAG port, one

can derive information about k[t] − k[0] by going through all valid guesses values for k[t] (see

the variable j in Algorithm 4) and choosing the value for which the Hamming weight of A and

B match the corresponding one for TL and TR, respectively, at the corresponding time.

The steps of Algorithm 4 can be explained as follows. At t = 1, a ciphertext of all

ones is circularly shifted by k[0] elements and loaded into T (note that all ones at the bit level

corresponds to ei = q − 1.) This can be simulated by initializing Ai = 0 and Bi = q − 1,

0 ≤ i < N (lines 3-6). At t = 2, the ciphetext polynomial is circularly shifted by k[1]

elements and added to T . Thus (k[1] − k[0]) elements of A will change from 0 to q − 1 and

(N−(k[1]−k[0])) elements of B will change from q−1 to = ((q−1)+(q−1)) mod q = q−2).

The notation
−

Ai..j and
−

Bi..j (lines 14-15) are used to reflect these updates in A and B. Similarly,

depending on the value of k[2] − k[0], at t = 3, some elements of A change from q − 1 to

q − 2 and from 0 to q − 1 while some elements of B change from q − 2 to q − 3. This process

continues in a similar way until t = df+1. As shown in lines 8-17, we update A0..N and B0..N to

A0..N−j−1|
−

AN−j..N−1, and
−

B0..N−j−1|BN−j..N−1, respectively, 1 ≤ j < N to simulate the above

process. For each j, we calculate HW(A0..N−j−1|
−

AN−j..N−1) − HW(A). This step is repeated

after incrementing j until the difference between these Hamming weights matches the value of

HW(TL
(t))−HW(TL

(t−1)), 2 ≤ t ≤ df +1. Then we set k[t]− k[0] = j, 1 ≤ t ≤ df +1. Note

75

that while observing the changes in the Hamming weight of A is enough to allow Algorithm 4

to calculate the elements of S1, we still update B since it is needed by Algorithm 5 which is

used to determine all possible valid locations of the -1s in f .

Algorithm 4 Recovery of the locations of the +1s in the private key polynomial f

1: INPUT: HW(TL
(t)), 1 ≤ t ≤ df + 1.

2: OUTPUT: An array S1 where S1[t] = k[t]−k[0] and k[t] denotes the location of the tth +1 elements

in f , 1 ≤ t < df + 1.

3: for 0 ≤ i < N do

4: Ai ←− 0
5: Bi ←− q − 1
6: end for

7: j ←− 0
8: for 2 ≤ t ≤ df + 1 do

9: diff←− 0
10: while (diff ̸= HW(TL

(t))− HW(TL
(t−1))) do

11: j ←− j + 1

12: diff←− HW(A0..N−j−1|
−
AN−j..N−1)− HW(A)

13: end while

14: A←− A0..N−j−1|
−
AN−j..N−1

15: B ←−
−
B0..N−j−1|BN−j..N−1

16: S1[t− 1]←− j

17: end for

18: return S1, A,B

Recovering the locations of the -1 elements in the secret key

Algorithm 5 receives A, B, the set of +1 locations, S1, evaluated by Algorithm 4 and the

Hamming weights HW(TL
(t)) and HW(TR

(t)) obtained by analyzing the scan out bit stream,

df + 2 ≤ t ≤ 2 × df + 1. The algorithm operates in a way similar to Algorithm 4 except that,

each element in S2 represents a list of possible valid locations for the -1 elements as opposed to

a single element for the case of S1. Also, the content of register e is subtracted from register T ,

instead of addition in Algorithm 4 (see lines 11-15 in Algorithm 3.)

Lines 7-12 are used to initialize j to the starting values for our guesses for the location of

the t -1 element which correspond to k[t], df + 2 ≤ t ≤ 2df + 1. These steps can be explained

by noting that S2 represents the list of valid locations for the -1 elements and by the fact that

76

k[t] > k[t−1] for df +2 ≤ t ≤ 2df +1 (in other words, the location of the tth -1 element has to

be greater than the location of the (t− 1)th -1 element in f). At t = df +2, j starts from 0 since

at this stage, the attacker cannot yet determine the exact value of k[0] (Also, the j = k[0] step is

skipped since two keys cannot be assigned to the same location.) More precisely, according to

the attacker’s knowledge at this step, 0 ≤ k[0] < N − S1[df]. In lines 13-36, the updates of A

and B can follow two different paths depending on whether k[df +2] is less than or greater than

k[0] (i.e., whether the first non-zero element in f is +1 or -1). Lines 26-31 are used to determine

values of j that represent valid guesses for the location of the -1s to be appended to the list S2.

This is performed by comparing the Hamming weight of the simulated registers A and B with

the Hamming weight of TL and TR which can be calculated by observing the scan out data. In

particular, in lines 29-30, we add j to the list S2[t− df − 1], df +2 ≤ t ≤ 2df +1, as a possible

solution and update the values of A and B and append it to list L[t− df − 1].

Analyzing Algorithm 4 and Algorithm 5 shows their run time complexity to be O(df ×

N) and O(df ×N3), respectively.

Example 5.1 Consider a toy version of the NTRUEncrypt cryptosystem with parameters (N , p,

q, df) = (7,3,16,2) and with a private key

f = [0,−1,−1, 1, 0, 1, 1].

Thus the locations of the non-zero coefficients of f are k = [3, 5, 6, 1, 2] where the first

df + 1 values denote the locations of +1s in the key and the last df values denote the locations

of -1s.

As explained above, the T register is initialized with all 0s before starting the convolution

computation of f ⋆ e mod q. At t = 1, T is loaded with a copy of the ciphertext after being

circularly shifted by k[0] = 3 coefficients according to Algorithm 3. Recall that the attacker

does not know k[0]. By scanning out the bit stream pattern via the JTAG port, the attacker can

distinguish T into TL and TR. Assume that the attacker observed the Hamming weights of of TL

77

Algorithm 5 Recovery of the -1s locations in the private key polynomial f

1: INPUT: A, B and S1[df] (from Algorithm 4), HW(TL
(t)) and HW(TR

(t)), df +2 ≤ t ≤ 2× df +1
2: OUTPUT: An array S2 of lists where S2[t− df] is a list containing all estimated possible values for

k[t], df + 1 ≤ t < 2× df + 1.

3: for 0 ≤ k[0] < (N − S1[df]) do

4: for df + 2 ≤ t ≤ 2× df + 1 do

5: i = 1
6: repeat

7: if (t = df + 2) then

8: j ←− 0
9: else

10: j ←− S2[t− df − 2][i] + 1
11: A|B ←− L[t− df − 2][i]
12: end if

13: while (j < N) do

14: if (j ̸= k[0]) then

15: if (j < k[0]) then

16: TempA ←−
+
A0..k[0]−j−1|Ak[0]−j..N−1

17: TempB ←− B0..k[0]−j−1|
+
Bk[0]−j..N−1

18: diff1 ←− HW(TempA)− HW(A)
19: diff2 ←− HW(TempB)− HW(B)
20: else

21: TempA ←− A0..N−j+k[0]−1|
+
AN−j+k[0]..N−1

22: TempB ←−
+
B0..N−j+k[0]−1|BN−j+k[0]..N−1

23: diff1 ←− HW(TempA)− HW(A)
24: diff2 ←− HW(TempB)− HW(B)
25: end if

26: if (diff1 = HW(TL
(t))−HW(TL

(t−1)) and diff2 = HW(TR
(t))−HW(TR

(t−1))) then

27: A←− TempA
28: B ←− TempB
29: append A|B to L[t− df − 1]
30: append the location j to S2[t− df − 1]
31: end if

32: j ←− j + 1
33: else

34: j ←− j + 1
35: end if

36: end while

37: i = i+ 1
38: until i > number of elements in the list S2[t− df − 1]
39: end for

40: end for

41: return S2

78

and TR as shown in Table 5.1 (Obviously, at t = 1, these Hamming weights are always going to

be 0 and (N × log2(q)), respectively). At t = 2, the register TL is changed by two coefficients

which implies that k[1]− k[0] = 2. While the attacker cannot associate the bits corresponding

to T in the scan chain output with the individual coefficients in TL and TR, the attacker can still

calculate the value of k[1]−k[0] by using Algorithm 4 which simulates the content of T = TL|TR

(using A and B) for different possible values of k([1]− k[0]) (the variable j in lines 7-17) until

the change in the Hamming weight of A, i.e., HW (A0..N−j−1|
−

AN−j..N−1) − HW (A) in the

simulation, matches HW(TL
(2)) − HW(TL

(1)) obtained from the scan out bit stream pattern.

Following the same strategy, the attacker recovers the distances between k[t] and k[0] for 2 ≤

t < df +1. In this example, the attacker recovers the set S1 = {k[1]−k[0] = 2, k[2]−k[0] = 3}

which defines the distances between the locations of the +1s in the key.

Table 5.1: The Hamming weight of TL and TR as obtained from JTAG scan chain output in

example 5.1

t HW (T
(t)
L) HW (T

(t)
R)

1 0 28

2 8 23

3=df+1 10 23

4 12 16

5=2×df+1 12 16

Figure 5.5 shows the input, output and intermediate computational results of Algorithm

4. To recover the locations of -1s in f , the attacker continues scanning out the bit stream pattern

and, using Algorithm 5, calculates HW(TL
(t)) and HW(TR

(t)). Then the attacker calculates

HW(TL
(t))−HW(TL

(t−1)) and HW(TR
(t))−HW(TR

(t−1)) for df + 2 ≤ t ≤ 2× df + 1. In this

case and according to the obtained Hamming weights, different possibilities for these locations,

at each t, can be recovered. The attacker appends all these possible locations of the -1s in a set

of lists, S2. In particular, for this example, the attacker evaluates S2 = {k[3] = [1], k[4] = [2]}.

Then, the values in S1 represent the distances between the locations of +1s in the key in the

form (k[t]− k[0], 1 ≤ t < df + 1). The values of each element of S2 represent a list of possible

79

locations of the -1s in the key. Enumerating all possible value for k[0], 0 ≤ k[0] < N − S1[df]

(in this example, 0 ≤ k[0] < 4), the attacker is able to uniquely determine the correct key

locations {k[0] = 3, k[1] = 5, k[2] = 6, k[3] = 1, k[4] = 2}. Figures 5.6, 5.7 and 5.8 show the

corresponding input, output and intermediate computational results of Algorithm 5.

t

H
W

(T
L
)

j A0..N�j�1| ĀN�j .. N�1 B�0..N�j�1|BN�j..N�1

H
W

(A
0

..
N

�j
�1

| Ā
N

�j
 .

.
N

�1
)

H
W

(A
)

d
if

f

H
W

(T
L

(t
))�

 H
W

(T
L

(t
�1

))

d
if

f≟
 H

W
(T

L
(t

))�
 H

W
(T

L
(t

�1
))

co
m

m
en

ts

S1

1 0 0 0 0 0 0 0 0 0 F F F F F F F 0 0 0 Line 3
6

2 8

 0 0 0 0 0 0 0 F F F F F F F

0

Line 9
17

S
1[

1]
=

K

 [
1]

 K

 [
0]

 =
2

 +F +F +F +F +F +F +F
1 0 0 0 0 0 0 F E E E E E E F 4 4
0=4 8
0=8 X
 0 0 0 0 0 0 0 F F F F F F F
 +F +F +F +F +F +F +F
2 0 0 0 0 0 F F E E E E E F F 8 8
0=8 8
0=8 √

3=df+1 10

 0 0 0 0 0 F F E E E E E F F

8

S
1[

2]
=

K

 [
2]

 K

 [
0]

 =
3

 +F +F +F +F +F +F +F

3 0 0 0 0 F E E D D D D E F F 10 10
8=2 10
8=2 √

Figure 5.5: The computation steps in Algorithm 4 for Example 5.1

Because of the small value of N in the above example, the solution returned by Algo-

rithms 4 and 5 is unique. The following example illustrates the more general case (the calcula-

tions details are omitted because of space limitations).

Example 5.2 Consider a toy version of the NTRUEncrypt cryptosystem with parameters (N , p,

q, df) = (11,3,32,3) and with a private key

f = [0,−1,−1, 1, 0,−1, 1, 0, 0, 1, 1].

Assume that, based on the scan chain output bit stream observed via the JTAG port,

the attacker distinguished the register T into two parts TL and TR and recorded the Hamming

weights of both registers as shown in Table 5.2.

80

+

A0..k�0�−j−1 A k�0�−j..N−1

A 0..N−j+k�0�−1

+

AN−j+k�0�..N−1

B 0..k�0�−j−1

+

Bk�0�−j..N−1

B 0..N−j+k�0�−1

+

BN−j+k�0�..N−1

≟ ≟

1 12 16

0

10

23

K
 [

0
]

≠
0
,

li
n

e
 2

6
�3

1

1 0 0 0 0 F E F E E E E F 0 F 11 11�10=1 12�10=2 20 20�23=�3 16�23=�7 X

2 0 0 0 0 F F F E E E E F F F 12 12�10=2 12�10=2 24 24�23=1 16�23=�7 X

3 0 0 0 0 0 F F E E E E E F F 8 8�10=�2 12�10=2 23 23�23=0 16�23=�7 X

4 0 0 0 1 0 F F E E E D E F F 9 9�10=�1 12�10=2 23 23�23=0 16�23=�7 X

5 0 0 1 1 0 F F E E D D E F F 10 10�10=0 12�10=2 23 23�23=0 16�23=�7 X

6 0 1 1 1 0 F F E D D D E F F 11 11�10=1 12�10=2 23 23�23=0 16�23=�7 X

+

A0..k�0�−j−1 A k�0�−j..N−1

A 0..N−j+k�0�−1

+

AN−j+k�0�..N−1

B 0..k�0�−j−1

+

Bk�0�−j..N−1

B 0..N−j+k�0�−1

+

BN−j+k�0�..N−1

≟ ≟

1 12 16

10

23

K
 [

0
]

≠
1
,

li
n

e
 2

6
�3

1

0 1 0 0 0 F E E D E E E F 0 0 11 11�10=1 12�10=2 16 16�23=�7 16�23=�7 X

1

2 0 0 0 0 F E F E E E E F 0 F 11 11�10=1 12�10=2 20 20�23=�3 16�23=�7 X

3 0 0 0 0 F F F E E E E F F F 12 12�10=2 12�10=2 24 24�23=1 16�23=�7 X

1 0 0 0 0 0 F F E E E E E F F 8 8�10=�2 12�10=2 23 23�23=0 16�23=�7 X

5 0 0 0 1 0 F F E E D D E F F 9 9�10=�1 12�10=2 23 23�23=0 16�23=�7 X

6 0 0 1 1 0 F F E E D D E F F 10 10�10=0 12�10=2 23 23�23=0 16�23=�7 X

Figure 5.6: The computation steps in Algorithm 5 for Example 5.1

81

2

t

H
W

(T
L
)

H
W

(T
R
)

j

If j <k[0] then
 TempA=+

A0..k�0�−j−1
|
A k�0�−j..N−1

elsif j >k[0]
 TempA =

A 0..N−j+k�0�−1
|+
AN−j+k�0�..N−1

If j <k[0] then
Temp =

B 0..k�0�−j−1
|+
Bk�0�−j..N−1

elsif j >k[0]
TempB =

B 0..N−j+k�0�−1
|+
BN−j+k�0�..N−1

 H
W

(T
em

p A
)

H
W

(A
)

di
ff

1

H
W

(T
L

(t
))(

 H
W

(T
L

(t
(1

))

H
W

(T
em

p B
)

H
W

(B
)

di
ff

2

H
W

(T
R

(t
))(

 H
W

(T
R

(t
(1

))

di
ff

1≟
H

W
(T

L
(t

))(
 H

W
(T

L
(t

(1
))

an
d

di
ff

2≟
H

W
(T

R
(t

))(
 H

W
(T

R
(t

(1
))

co
m

m
en

ts

0 0 0 0 F E E D D D D E F F

Line
 15(20

(F (F (F (F (F (F (F

√

0 0 0 0 F E E D D D D E F F

 (F (F (F (F (F (F

Line
34

0 0 0 0 F E E D D D D E F F

Line
 20(32

 (F (F (F (F (F (F (F

0 0 0 0 F E E D D D D E F F

 (F (F (F (F (F (F (F

0 0 0 0 F E E D D D D E F F

 (F (F (F (F (F (F (F

0 0 0 0 F E E D D D D E F F

 (F (F (F (F (F (F (F

1 1 0 0 F E E D D E E F 0 0
Line

15(20
(F (F (F (F (F (F (F

√

Line
34

1 1 0 0 F E E D D E E F 0 0

Line
 20(32

 (F (F (F (F (F (F (F

1 1 0 0 F E E D D E E F 0 0

 (F (F (F (F (F (F (F

1 1 0 0 F E E D D E E F 0 0

 (F (F (F (F (F (F (F

1 1 0 0 F E E D D E E F 0 0

 (F (F (F (F (F (F (F

Figure 5.7: The computation steps in Algorithm 5 for Example 5.1: Continued from Figure 5.6

Running Algorithm 4, the attacker recovers the set S1 = {k[1]− k[0] = 3, k[2]− k[0] =

6, k[3]−k[0] = 7} which defines the distances between the locations of the +1s in the key. Using

Algorithm 5, the attacker evaluates S2 = {k[4] = 1, k[5] = [2, 4], k[6] = [4, 5, 6]}. The values

in S1 represents the distances between the locations of +1s in the key in the form (k[t] − k[0],

1 ≤ t < df + 1) and the values of each element in S2 represents a list of possible locations

of the -1s in the key. Enumerating all possible value for k[0], 0 ≤ k[0] < N − S1[df] (in this

example, 0 ≤ k[0] < 4) leads to 4× 8 = 24 possible keys. The attacker can use the decryption

82

3

t

H
W

(T
L
)

H
W

(T
R
)

j

If j <k[0] then
TempA=+

A0..k�0�−j−1
|
A k�0�−j..N−1

elsif j >k[0]
TempA =

A 0..N−j+k�0�−1
|+
AN−j+k�0�..N−1

If j <k[0] then
TempB =

B 0..k�0�−j−1
|+
B k�0�−j..N−1

elsif j >k[0]
TempB =

B 0..N−j+k�0�−1
|+
BN−j+k�0�..N−1

 H
W

(T
em

p
A
)

H
W

(A
)

d
if

f 1

H
W

(T
L

(t
))(

 H
W

(T
L

(t
(1

))

H
W

(T
em

p B
)

H
W

(B
)

d
if

f 2

H
W

(T
R

(t
))(

 H
W

(T
R

(t
(1

))

d
if

f 1
≟

H
W

(T
L

(t
))(

 H
W

(T
L

(t
(1

))
an

d

di
ff

2
≟

H
W

(T
R

(t
))(

 H
W

(T
R

(t
(1

))

co
m

m
en

ts

0 0 0 0 F E E D D D D E F F

Line
 15(20

(F (F (F (F (F (F (F

0 0 0 0 F E E D D D D E F F

(F (F (F (F (F (F
√

0 0 0 0 F E E D D D D E F F

(F (F (F (F (F (F (F

Line
34

0 0 0 0 F E E D D D D E F F

Line
 20(32

 (F (F (F (F (F (F (F

0 0 0 0 F E E D D D D E F F

 (F (F (F (F (F (F (F

0 0 0 0 F E E D D D D E F F

 (F (F (F (F (F (F (F

1 1 0 0 F E E D D E E F 0 0
Line

 15(20
(F (F (F (F (F (F (F

√
Line
34

1 1 0 0 F E E D D E E F 0 0

Line
 20(32

 (F (F (F (F (F (F (F

1 1 0 0 F E E D D E E F 0 0
 (F (F (F (F (F (F (F

1 1 0 0 F E E D D E E F 0 0
 (F (F (F (F (F (F (F

Figure 5.8: The computation steps in Algorithm 5 for Example 5.1: Continued from Figure 5.7

process to uniquely determine the correct key locations {k[0] = 3, k[1] = 6, k[2] = 9, k[3] =

10, k[4] = 1, k[5] = 2, k[6] = 5}.

5.4 Experimental Results

In order to verify the correctness of the proposed attack, we implemented the NTRU-

Encrypt decryption system with the convolution circuit depicted in Figure 5.4 using Synopsys

design compiler and inserted a scan chain using Synopsys test compiler. Using this implemen-

83

Table 5.2: The Hamming weight of TL and TR as obtained from JTAG scan chain output in

example 5.2

t HW (T
(t)
L) HW (T

(t)
R)

1 0 55

2 15 47

3 27 47

4=df + 1 29 43

5=df + 2 31 33

6 31 23

7=2× df + 1 31 24

tation, we confirmed our ability to determine the scan chain structure and the Hamming weight

of TR and TL. The Hamming weights obtained from the ModelSim simulation were then used

as input to Algorithm 4 and Algorithm 5 which were implemented using Python script. Ta-

ble 5.3 shows our simulation results for Algorithm 4 and Algorithm 5 with 100 randomly se-

lected keys for NTRUEncrypt with parameters (N, p, q, df , dg, dr) = (167, 3, 128, 61, 20, 18),

(263, 3, 128, 50, 24, 16), and (503, 3, 256, 216, 72, 55) which correspond to the moderate, high,

and highest security parameters in [85]. As shown in the table, the average size of the list of

keys, returned by Algorithms 4 and 5, is given by ≈ 218, 224 and 264 for these three set of pa-

rameters while the exhaustive search key security is given by 1
dg !

√
N !

(N−2dg)!
≈ 283, 2111 and

2285, respectively [85]. It should be noted that these relatively large values for the average were

dominated by some few cases where the size of the resulting key list were too large compared

to the other cases (also note the relatively small values of the median in Table 5.3). Figure 5.9

shows the histogram distribution for the results of our simulations obtained from 100 runs with

randomly generated keys for each N . From our data, and as can be deducted from Figure 5.9,

for N = 503, in 28% of the cases, the size of the key list was less than 240. As mentioned above,

the unique correct key can be determined by going through this list and verifying the correctness

of the decryption operation for a known plaintext. This off-line step does not require physical

access to the cryptographic device. It also does not require large memory space since the size

of the sets S1 and S2 (outputs from Algorithm 4 and 5) is limited to O(dfN). Also, since there

84

Table 5.3: Average and median size of the list of suggested keys

N = 167 N = 263 N = 503
Average ≈ 217.98 223.28 263.52

Median ≈ 28.61 28.97 230.98

is no dependency between the different search paths, this exhaustive search step can be easily

parallelized. It should be noted that the overall complexity of the attack is dominated by the

complexity of Algorithm 5 and the complexity of going through the list of keys calculated by

Algorithms 4 and 5 since the number of steps required by the scan-in and scan-out operations is

negligible compared to these two steps.

5.5 Conclusion

In this chapter, we proposed a scan-based SCA to recover the NTRUEncrypt secret key.

By analyzing the Hamming weight of the scan chain output at carefully chosen clock cycles,

the attacker is able to efficiently recover the locations of the +1s and -1s of the secret key poly-

nomial. The presented attack clearly shows the need to utilize secure scan chains for hardware

implementations of NTRUEncrypt with the scan-based DFT feature.

85

0 5 10 15 20 25
0

1

2

3

4

5

6

Log2(size of key list) for N=167

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Log2(size of key list) for N=263

20 30 40 50 60 70 80
0

1

2

3

4

5

Log2(size of key list) for N=503

Figure 5.9: Histogram distribution for the size of the list of suggested keys

86

Chapter 6

Cryptanalysis of Key Exchange Schemes

Based on Matrix Algebra

6.1 Introduction

Public-key cryptography [124] provides key exchange mechanisms in which secret keys

can be exchanged between users over insecure communication channels. These key exchange

mechanisms are usually based on number theory problems such as the discrete logarithm prob-

lem (DLP) [57], integer factorization [158] and elliptic curve DLP [26]. These systems require

a large number of arithmetic operations, which makes them hard to implement in most resource

constrained applications. To overcome this problem, key exchange protocols based on efficient

matrix algebra have been proposed (e.g., see [191]). Odoni et al. [147] introduced the discrete

logarithm problem for matrices over Fq and proposed a Diffie-Hellman key exchange protocol

based on matrices. Menezes and Wu [125] reduced the discrete logarithm problem for matrices

to some discrete logarithm problems over small extensions of Fq. In what follows, we present a

cryptanalysis of three different key exchange schemes based on matrix algebra.

87

6.2 Cryptanalysis of Álvarez et al. key exchange scheme

Recently, Álvarez et al. [5] proposed a key exchange scheme utilizing the non-abelian

group of block upper triangular matrices (see also [5, 7]). Álvarez et al. claimed that one of

the main advantages of this scheme is the absence of big prime numbers, which yields faster

arithmetic operations and avoids the need for primality testing. Moreover, they also claimed

that the proposed scheme is very efficient since it employs fast exponentiation algorithms for

this type of matrices. In particular, by analyzing the order of the non-abelian group generated

by these matrices as a function of the security parameters (r, s, p), as well as the implementation

efficiency of these schemes, Álvarez et al. concluded that their system with security parameters

(r = 2, s = 89, p = 2903) has better performance than the Diffie-Hellman scheme with a

similar level of security (key size of approximately 1024 bits).

In [187], Vasco et al. showed that breaking the Álvarez scheme can be reduced to solving

a small set of discrete logarithm problems in an extension of the base field. Consequently, Vasco

et al. concluded that the Álvarez scheme does not offer any computational advantage over the

original Diffe-Hellman key exchange scheme. While the presented results in [187] challenges

the efficiency claims made by Álvarez et al. [5] by showing that working with the proposed

non-abelian group of block upper triangular matrices does not offer a computational advantage

over working in the base field, these results do not present a practical attack on the Álvarez

scheme for the recommended size of the security parameters (see table 3 in [5]).

In this section, we show that breaking this scheme is equivalent to solving a set of

3(r+ s)2 consistent linear equations with 2(r+ s)2 unknowns in Zp, which renders this system

insecure for the suggested practical choices of security parameters. The rest of this context is

organized as follows. In section 6.2.1, we briefly describe some details of the Álvarez et al. key

exchange scheme. The proposed attack is described in section 6.2.2.

88

6.2.1 Description of the Álvarez et al. key exchange scheme

In this section, we briefly review the relevant definitions and details of the Álvarez et al.

key exchange scheme. For further details, the reader is referred to [5].

Let Matr×s(Zp) denote the set of matrices of size r × s with elements in Zp where p is a

prime number. Let Glr(Zp) denote the general linear group of invertible matrices of sizes r× r,

also with elements in Zp.

Let Θ =








A X

0 B


 : A ∈ Glr(Zp), B ∈ Gls(Zp), X ∈ Matr×s(Zp)





.

If M ∈ Θ and h ≥ 0 then Mh =




Ah X(h)

0 Bh


 where

X(h) =





0 if h = 0
∑h

i=1 A
h−iXBi−1 if h ≥ 1





.

Let M1 =




A1 X1

0 B1


 and M2 =




A2 X2

0 B2


 be two elements of the set Θ with order

m1 and m2, respectively.

For x, y ∈ N, we define

Axy = Ax
1A

y
2

Bxy = Bx
1B

y
2

Cxy = Ax
1X

(y)
2 +X

(x)
1 By

2

The Álvarez et al. key exchange scheme can be summarized as follows [5]

1. Alice and Bob agree on a prime p and two matrices M1, M2 ∈ Θ with large orders m1

and m2, respectively.

89

2. Alice generates two random private keys1 l, m ∈ N such that 1 ≤ l ≤ m1 − 1, 1 ≤ m ≤

m2 − 1, and computes Alm, Blm, Clm constructing

C =




Alm Clm

0 Blm




3. Alice sends C to Bob.

4. Bob generates two random private keys v, w ∈ N such that 1 ≤ v ≤ m1 − 1, 1 ≤ w ≤

m2 − 1, and computes Avw, Bvw, Cvw constructing

D =




Avw Cvw

0 Bvw




5. Bob sends D to Alice.

6. The public keys of Alice and Bob are respectively the matrices C and D.

7. Alice computes Ka = Al
1AvwX

(m)
2 + Al

1CvwB
m
2 + X

(l)
1 BvwB

m
2 . It should be noted that

Ka is the upper right r × s matrix in

Ma = M l
1DMm

2 =




Aa Ka

0 Ba


 . (6.1)

8. Bob computes Kb = Av
1AlmX

(w)
2 + Av

1ClmB
w
2 +X

(v)
1 BlmB

w
2 . Similarly, we have

Mb = M v
1CMw

2 =




Ab Kb

0 Bb


 . (6.2)

1In [5], the symbols r, s were mistakenly used to simultaneously refer to both the security parameters and the

secret exponents chosen by Alice, in step 2 of the key exchange algorithm. In this context, to avoid any possible

confusion, we use r, s to refer to the system parameters and l,m to refer to the secret exponents chosen by Alice.

90

Finally, Alice and Bob share the key K = Ka = Kb.

6.2.2 The proposed attack

The above construction for M1 and M2 is used to guarantee a large order of the non-

abelian group generated by these matrices and to attain a fast exponentiation algorithm for this

type of matrices. On the other hand, our attack does not depend on the particular method by

which the matrices M1 and M2 are constructed. From the analysis provided in [5], we have

C = M l
1M

m
2 ,

D = M v
1M

w
2 .

Thus, despite the apparent complexity of the above key exchange scheme, when analyz-

ing its security, one can simply view it as follows

1. Alice and Bob agree on a prime p and two matrices M1, M2 ∈ Θ.

2. Alice sends C = M l
1M

m
2 to Bob.

3. Bob sends D = M v
1M

w
2 to Alice.

4. Both Alice and Bob calculate M l+v
1 Mw+m

2 and extract the secret key using Equations

(6.1), (6.2).

In what follows, we show that, given the public matrices C and D, the attacker can easily

recover the secret key.

Lemma 6.1 Let W1 and W2 be two invertible matrices of dimension (r+s)×(r+s) that satisfy

W1M1 = M1W1 (6.3)

W2M2 = M2W2 (6.4)

91

D = W1W2 (6.5)

Then we have

M l+v
1 Mw+m

2 = W1CW2.

Proof: Using mathematical induction, it is easy to show that W1M1 = M1W1 and

W2M1 = M2W2 implies that W1M
l
1 = M l

1W1 and W2M
m
2 = Mm

2 W2, respectively. The

rest of the proof follows by noting that

W1CW2 = W1M
l
1M

m
2 W2

= M l
1W1W2M

m
2

= M l
1DMm

2 .

The above Lemma shows that while the attacker may not be able to recover the secrets

chosen by Alice and Bob, i.e., l, v, w,m, or the associated matrices M l
1,M

v
1 ,M

w
2 ,M

m
2 , the

attacker can still recover the overall secret key agreed upon between Alice and Bob if she is

able to find any W1 and W2 that satisfy the above set of equations. This seemingly nonlinear

system of equations can be easily linearized as follows

From Equation (6.3), we have

W1M1 = M1W1 ⇐⇒ W1M1W
−1
1 = M1

⇐⇒ M1W
−1
1 = W−1

1 M1

The attacker can easily solve a linear system of equations for W−1
1 and W2 by replacing

Equation (6.3) by M1W
−1
1 = W−1

1 M1 and Equation (6.5) by W−1
1 D = W2. In other words, the

92

attacker solves the system of equations given by

W−1
1 M1 = M1W

−1
1

W2M2 = M2W2

W−1
1 D = W2,

(6.6)

which corresponds to solving a set of 3(r+s)2 linear equations with 2(r+s)2 unknowns,

corresponding to the elements of W−1
1 and W2 over Zp. The following Lemma shows that the

attacker is always able to find a valid solution for Equation (6.6).

Lemma 6.2 The linear system of equations defined in Equation (6.6) is consistent.

Proof: The proof follows directly by noting that W1 = M v
1 and W2 = Mw

2 is a valid

solution for this system of equations.

Remark 6.1 A closer look at the Álvarez scheme reveals that it resembles the completely wrong

and insecure implementation of the Diffe-Hellman key exchange in which Alice and Bob agree

on g(x+y) = gx × gy instead of gxy = (gx)y = (gy)x, and hence it should be completely

abandoned. It is also interesting to note that the claimed efficiency of this system is also a

direct consequence of this mistake; the system uses matrix multiplication (e.g., see step 4 of the

algorithm description in section 3) instead of matrix exponentiation.

The following toy example illustrates the idea of the attack.

Example 6.1 Let p = 37, r = 2, s = 3, l = 11, m = 32, v = 17, w = 39,

93

M1 =




3 31 24 12 13

9 24 28 20 26

0 0 9 16 14

0 0 25 17 2

0 0 23 12 30




,M2 =




7 14 18 12 4

22 16 15 12 6

0 0 29 36 8

0 0 33 15 35

0 0 5 24 5




Alice calculates C = M l
1M

m
2 =




31 14 31 19 31

35 10 10 32 21

0 0 36 8 30

0 0 9 18 10

0 0 27 5 11




and sends it to Bob.

Bob calculates D = M v
1M

w
2 =




7 25 32 23 21

16 28 18 15 32

0 0 33 12 17

0 0 16 25 20

0 0 33 18 14




and sends it to Alice.

Thus we have

Ma = Mb = M l+v
1 Mm+w

2 =




2 15 33 18 26

14 2 3 27 16

0 0 28 1 5

0 0 17 18 14

0 0 11 13 5




94

and the secret calculated by Alice and Bob is




33 18 26

3 27 16


 .

It is easy to verify that

W2 =




5 14 24 21 19

22 14 32 29 12

0 0 4 20 21

0 0 26 8 0

0 0 11 10 10




and

W−1
1 =




20 17 2 20 31

30 16 34 31 24

0 0 9 4 6

0 0 36 10 16

0 0 34 1 32




=⇒ W1 =




19 33 31 31 13

6 33 18 21 18

0 0 22 16 11

0 0 30 9 13

0 0 15 7 18




is one valid solution to the systems of equations given by (6.6), from which the attacker

calculates

W1CW2 =




2 15 33 18 26

14 2 3 27 16

0 0 28 1 5

0 0 17 18 14

0 0 11 13 5




= Ma = Mb.

It is obvious that the secret key is given by the upper right r × s = 2× 3 matrix of W1CW2.

95

6.3 Cryptanalysis of a key exchange protocol based on the

endomorphisms ring End(Zp × Zp2)

Climent et al. [40] identified the elements of the endomorphisms ring End(Zp×Zp2) [17]

with elements in a new set, denoted by Ep, of matrices of size 2× 2, whose elements in the first

row belong to Zp and the elements in the second row belong to Zp2 . The following results were

established in [40]:

The set

Ep =








a b

pc d


 |a, b, c ∈ Zp and d ∈ Zp2





is a noncommutative unitary ring where addition is defined by




a1 b1

pc1 d1


+




a2 b2

pc2 d2


 =




(a1 + a2) mod p (b1 + b2) mod p

p(c1 + c2) mod p2 (d1 + d2) mod p2


 ,

and multiplication is defined by




a1 b1

pc1 d1


 ·




a2 b2

pc2 d2


 =




(a1a2) mod p (a1b2 + b1d2) mod p

p(c1a2 + d1c2) mod p2 (pc1b2 + d1d2) mod p2


 .

The additive and multiplicative identities of Ep are given by

O =




0 0

0 0


 and I =




1 0

0 1


 , respectively.

Let M =




a b

pc pu+ v


 ∈ Ep with a, b, c, u, v ∈ Zp. Then M is invertible if and only if

96

a ̸= 0 and v ̸= 0, and in this case we have M−1 =




a−1 (−a−1bv−1) mod p

p[(−a−1cv−1) mod p] p[(ca−1b(v−1)2 − u(v−1)2 − ⌊vv
−1

p
⌋v−1) mod p] + v−1


 .

Climent et al. [40] proved that the ring End(Zp × Zp2) is isomorphic to the ring Ep.

Furthermore, they proved that the fraction of invertible elements in Ep is given by

(
p− 1

p

)2

≈ 1 for large p. (6.7)

Thus, for large values of p, almost all elements in Ep are invertible. During the last

decade, several cryptographic primitives using algebraic systems rather than traditional finite

cyclic groups or finite fields have been proposed (e.g., see [138, 183]). In this context, and by

trying to take advantage of matrix arithmetic, Climent et al. proposed a key exchange protocol

using polynomial functions over Ep defined by polynomials in Z[X]. In this section, we show

that this protocol is not secure. In particular, we show that this protocol can be broken by solving

a set of 10 consistent homogeneous linear equations in 8 unknowns over Zp2 . The rest of this

context is organized as follows. In section 6.3.1, we briefly describe some details of the Climent

et al. key exchange scheme. The proposed attack is described in section 6.3.2.

6.3.1 Description of Climent et al. key exchange scheme

For completeness, we briefly review the relevant details of the Climent et al. key ex-

change scheme. For further details, the reader is referred to [40].

Let f(X) = a0 + a1X + a2X
2 + ... + anX

n ∈ Z[X]. For an element M ∈ Ep, the

element

f(M) = a0I + a1M + a2M
2 + ...+ anM

n ∈ Ep

where I is the multiplicative identity of Ep. The key exchange protocol proposed in [40] can be

97

summarized as follows

1. Alice and Bob agree on the public parameters r, s ∈ N and M,N ∈ Ep for a large prime

p.

2. Alice and Bob choose their private keys f(X) and g(X) ∈ Z[X], respectively.

3. Alice computes her public key PA = f(M)rNf(M)s and sends it to Bob.

4. Bob computes his public key PB = g(M)rNg(M)s and sends it to Alice.

5. Alice and Bob compute SA = f(M)rPBf(M)s and SB = g(M)rPAg(M)s respectively.

6. Finally, Alice and Bob share the secret key SA = SB.

6.3.2 The proposed attack

The main idea of the attack is based on the following Lemma.

Lemma 6.3 Let

W1 =




a1 b1

pc1 d1


 and W2 =




a2 b2

pc2 d2




be two matrices in Ep such that

W1M = MW1 (6.8)

W2M = MW2 (6.9)

PBW2 = W1N. (6.10)

Then we have

SA = SB = W1PAW
−1
2 .

Proof:

Note that Wi, i = 1, 2, commutes with M implies that Wi commutes with f(M) and

consequently Wi commutes with f(M)h for any h ∈ N. Also Wi commutes with M implies

98

that W−1
i commutes with M (This follows by noting that WiM = MWi ⇒ WiMW−1

i = M ⇒

MW−1
i = W−1

i M). Thus we have

W1PAW
−1
2 = W1f(M)rNf(M)sW−1

2

= f(M)rW1NW−1
2 f(M)s

= f(M)rPBf(M)s

= SA.

It is easy to verify that W1 = g(M)r and W2 = g(M)−s is a valid solution to the system

of equations in Lemma 6.3. Thus, this linear system of equations is consistent and consequently

the attacker is guaranteed to find at least one solution. In what follows we show how the attacker

can solve this system of equations. Let

M =




m1 m2

pm3 m4


 ∈ Ep.

Because of the structure of the elements in Ep, it is easy to verify that the equation

resulting from equating the top left element on both sides of the resulting matrices products

in Equation (6.8) does not add any constraints to the system of equations and hence it can be

eliminated (in other words, (a1m1 + pb1m3) ≡ (a1m1 + pm2c1) mod p is always satisfied for

all choices of a1 and b1). Consequently, Equation (6.8) leads to the following three equations:

a1m2 + b1m4 − b1m1 − d1m2 ≡ 0 mod p

p(c1m1 + d1m3 − a1m3 − c1m4) ≡ 0 mod p2

p(c1m2 − b1m3) ≡ 0 mod p2

(6.11)

with unknowns a1, b1, c1 ∈ Zp and d1 ∈ Zp2 .

99

Similar argument applies to Equation (6.9) (note, however that Equation (6.10) leads to

4 equations). The solution for the above system of equations can be obtained by solving it over

Zp2 and then reducing the obtained solution for ai, bi and ci modulo p, i = 1, 2 (recall that, for

any multivariate polynomial f , f(x1, · · · , xn) ≡ 0 mod p2 ⇒ f(x1, · · · , xn) ≡ 0 mod p.)

Thus the solution for the system of 3 + 3 + 4 = 10 equations corresponding to Lemma

6.3 can be obtained by solving all equations over Zp2 and then reducing the obtained solution

for ai, bi and ci modulo p, i = 1, 2.

Based on our experimental results, this system of equations is always under-determined

and many solutions exist for W1 and W2. Choosing any solution such that W2 is invertible leads

to the right key. Note that for large p, which is the case of interest for this cryptosystem, our

experimental results confirm this condition and practically holds for almost all valid solutions

(also see Equation (6.7)). In what follows, we illustrate our attack using the same toy example

that was provided in [40] to explain the steps of the protocol.

Example 6.2 Assume that Alice and Bob agree on p = 11, r = 3, s = 5,

M =




5 8

44 102


 and N =




10 3

77 37


 .

Then, Alice chooses her secret key as f(X) = 3 + 3X + 9X2 + 5X3 ∈ Z[X] and Bob chooses

his secret key as g(X) = 9 + 6X + 5X2 ∈ Z[X]. Thus we have

f(M) = 3 + 3M + 9M2 + 5M3 =




10 8

44 19


 ,

g(M) = 9 + 6M + 5M2 =




10 5

88 72


 .

100

Alice computes her public key, PA, as

PA = f(M)3Nf(M)5 =




10 5

110 119




and sends it to Bob. Bob computes his public key, PB, as

PB = g(M)3Ng(M)5 =




10 10

11 16




and sends it to Alice. Alice computes her secret key SA = f(M)3PBf(M)5 and Bob computes

his secret key SB = g(M)3PAg(M)5 to obtain

SA = SB =




10 7

22 113


 .

As explained above, the solution for the system of equations in Lemma 6.3 can be ob-

tained by solving

101




8 9 0 3 0 0 0 0

77 0 22 44 0 0 0 0

0 77 88 0 0 0 0 0

0 0 0 0 3 2 0 8

0 0 0 0 44 0 99 77

0 0 0 0 0 44 33 0

10 0 0 0 1 0 0 0

3 4 0 0 0 1 0 1

0 0 110 77 110 0 66 0

0 0 33 37 0 110 0 105







a1

b1

c1

d1

a2

b2

c2

d2




≡




0

0

0

0

0

0

0

0

0

0




mod 121

and then reducing the obtained solution for ai, bi and ci, i = 1, 2, modulo p. Solving this system

of linear equations, we obtain




a1

b1

c1

d1

a2

b2

c2

d2




≡




41z1 + z2 mod 11

3z1 + 65z2 mod 11

7z1 + 5z2 + 11z3 mod 11

43z1 + 4z2 mod 121

74z1 + 111z2 mod 11

99z1 + 88z2 mod 11

11z4 mod 11

8z1 + 12z2 mod 121




where z1, z2, z3, z4 can assume any arbitrary values in Z121. The attacker chooses any random

values for z1, z2, z3, z4 such that W2 is invertible (which happens with probability ≈ 1 for large

values of p). In this example, suppose that the attacker randomly chooses [z1, z2, z3, z4]
T =

[1, 1, 10, 7]T , then we have [a1, b1, c1, d1, a2, b2, c2, d2]
T = [9, 2, 1, 47, 9, 0, 0, 20]T and conse-

102

quently we have

W1 =




9 2

11 47


 and W2 =




9 0

0 20


⇒ W−1

2 =




5 0

0 115


 .

Finally, the attacker recovers the secret key by calculating

W1PAW
−1
2 =




9 2

11 47







10 5

110 119







5 0

0 115


 =




10 7

22 113


 = SA = SB.

6.4 Cryptanalysis of a GL(r,Zn)-based Public Key System

In [175], Salvin presented a key exchange protocol using matrices in the general linear

group, GL(r,Zn), where n is the product of two distinct large primes. The system is fully

specified in the United States patent number 7346162 issued in 2008. In the patent claims,

Salvin argued that the best way to break this system is to factor n. Furthermore, for efficiency

reasons, it was suggested to choose r = 2. In this section, we show that this cryptosystem can be

trivially broken by solving a consistent set of r2 homogenous linear equations in 2r unknowns

over Zn. The rest of this context is organized as follows. In section 6.4.1, we briefly describe

some details of the Salvin’s key exchange scheme. The proposed attack is described in section

6.4.2.

6.4.1 Description of Salvin’s key exchange scheme

In this section, we briefly review the relevant details of Salvin’s key exchange protocol.

Let GL(r,Zn) denote the General Linear group of invertible square matrices of rank r and

elements in Z mod n. To establish a shared secret key K between a sender and a receiver, the

scheme proceeds as follows [175]

103

1. The receiver chooses two distinct large primes, p and q, and calculates n = p× q.

2. The receiver generates two random matrices, A and C ∈ GL(r,Zn), such that AC ̸= CA,

i.e., A and C do not commute.

3. The receiver calculates a matrix B ∈ GL(r,Zn) such that B = CAC.

4. The receiver generates a matrix G which commutes with C, i.e., GC = CG.

5. The receiver publishes A, B, G, n, r as the public key and keeps p, q and the matrix C as

the secret key (note that only C is used in the decryption process).

6. The sender uses the public matrix G and generates a secret matrix D ∈ GL(r,Zn) such

that GD = DG.

7. The sender generates the secret key K ∈ GL(r,Zn) using the matrices B, D such that

K = DBD.

8. The sender generates the matrix E ∈ GL(r,Zn) using the public matrix A such that

E = DAD and sends it to the receiver.

9. The receiver retrieves the secret key K ∈ GL(r,Zn) by calculating K = CEC. Finally,

the sender and receiver share the key K = DBD = CEC.

In step 4 of the above protocol, the matrix G is generated by one of the following two

methods

G = Ck (6.12)

where k must be even and preferably small integer for faster key generation or

G =
r−1∑

i=0

aiC
i, (6.13)

104

where ai are integers randomly generated in Zn with at least one ai ̸= 0 for i > 0 and C0 = I .

Using the fact that powers of a matrix commute, the matrix D is also constructed by one of the

two methods above to ensure that D commutes with C, i.e.,

D = Gk′ or D =
r−1∑

i=0

biG
i (6.14)

where k′ and bi, i = 0, · · · , r−1, are generated in the same way as k and ai. For justification of

the above choice of parameters (e.g., why k has to be even), the reader is referred to the security

analysis in [175] where it is shown that recovering C for such choice of parameters is equivalent

to factoring n.

6.4.2 The proposed attack

Most of the security argument in [175] is based on the fact that recovering the secret

matrices C and D from the public parameters is hard. In here, we show that the cryptanalyst

can recover the overall secret key, K, agreed upon between the sender and receiver without

recovering any of these two matrices. The main idea of the attack is based on the following

Lemma.

Lemma 6.4 Let E, K and D be three matrices constructed as in the cryptosystem above, i.e.,

D =
∑r−1

i=0 biG
i, bi ∈ Zn, E = DAD, and K = DBD for arbitrary matrices A, B and G in

GL(r,Zn). Let W1, W2 be matrices in GL(r,Zn) that satisfy

W1G = GW1,

W2G = GW2,
(6.15)

and

W1A = BW2. (6.16)

105

Then we have

K = W1EW−1
2 .

Proof: The proof follows by noting that

W1A = BW2 ⇒

DW1AD = DBW2D

From Equation (6.15), and given the construction of D, we have WiD = DWi, i = 1, 2.

Consequently

DW1AD = DBW2D ⇒

W1DAD = DBDW2 ⇒

W1E = KW2 ⇒

W1EW−1
2 = K.

It is straightforward to verify that W1 = C and W2 = C−1 is a valid non-trivial solution

for the homogeneous system of equations defined by Lemma 6.4. Thus despite the fact that

the number of unknowns in this homogenous system of linear equations, 2r2, is less than the

number of equations, 3r2, this system of equations is consistent and the attacker is guaranteed

to find a non-trivial (i.e., non-zero) solution for W1 and W2.

The complexity of the system of equations in Lemma 6.4 (i.e., number of unknown and

number of equations) can be reduced by choosing W1 and W2 in the form

W1 =
r−1∑

i=0

uiG
i and W2 =

r−1∑

i=0

viG
i (6.17)

where ui, vi ∈ Zn. This form guarantees that the condition in Equation (6.15) is always satisfied

and consequently reduces the system of equations in Lemma 6.4 to

r−1∑

i=0

uiG
iA− viBGi = 0 (6.18)

106

with 2r unknowns and r2 equations. In what follows we prove that this reduced system of

equations is also consistent.

Lemma 6.5 For any matrix H ∈ GL(r,Zn), and an integer power m, Hm can be expressed as

Hm =
r−1∑

i=0

hiH
i, hi ∈ Zn.

Proof: The proof follows by recursively applying Cayley Hamilton theorem [14], which

states that every square matrix over any commutative ring satisfies its own characteristic equa-

tion, and by noting that the characteristic of H has degree r.

Since G is constructed according to Equation (6.12) or Equation (6.13), Lemma 6.5

implies that the construction in Equation (6.17) is equivalent to

W1 =
r−1∑

i=0

u′
iC

i,W2 =
r−1∑

i=0

v′iC
i, u′

i, v
′
i ∈ Zn.

By noting that Lemma 6.5 also implies that C−1 can be expressed in the same form as

W2, the system in Equation (6.18) is consistent and has at least one non-trivial solution (W1 = C

and W2 = C−1). In fact, our experimental results show that the rank of this system of equations

is usually less than 2r, i.e., it is under-determined and many solutions exist for W1 and W2.

Choosing any solution such that W2 is invertible leads to the right key. For a large n, which

is the case of interest for this cryptosystem, this condition practically holds for almost all valid

solutions of ui, vi, i = 0, · · · , r−1 excluding the trivial all zeroes solution. Using random p and

q of size 512 bits, we were able to recover the key in all the 1000 experiments that we conducted

for each r = 2, 3 · · · , 10 and we did not encounter any case corresponding to a non-invertible

W2. The following toy example illustrates the idea of our attack.

Example 6.3 Let r = 2, p = 13, q = 17, and n = p × q = 221. The receiver generates two

random matrices A and C ∈ GL(2, Z221)

107

A =




16 173

207 140


 , C =




112 142

177 122




and verifies that AC ̸= CA. Then the receiver calculates

B = CAC =




220 176

132 196




and G using Equation (6.13) with randomly selected a0 = 102 and a1 = 135 to obtain

G =
r−1∑

i=0

aiC
i =




265 108

7 173




which ensures that GC = CG. The receiver publishes n, A, B, and G as the public key and

keeps the other parameters secret. The sender generates a matrix D such that DG = GD using

Equation (6.14) with b0 = 30 and b1 = 2 to obtain

D =
r−1∑

i=0

biG
i =




118 216

14 155


 .

The sender calculates

E = DAD =




66 58

11 38




and sends it to the receiver who recovers the shared secret key

K =




30 14

107 178


 .

Given the public parameters and E, the attack proceeds as follows. First, the attacker

108

generates two matrices W1 and W2 in Zn such that

W1 =
r−1∑

i=0

uiG
i =




u1 + 44 u2 108 u2

7 u2 u1 + 173 u2




W2 =
r−1∑

i=0

viG
i =




v1 + 44 v2 108 v2

7 v2 v1 + 173 v2




Thus the system of linear equations in (6.16) can be expressed as

W1A− BW2 = 0⇒


16 76 1 138

173 190 45 158

207 121 89 113

140 16 25 14







u1

u2

v1

v2




=




0

0

0

0




.

By solving this system of linear equations, the attacker obtains u1 = 34z, u2 = 199z,

v1 = 106z, and v2 = z where z can be set to any arbitrary value in Zn. To avoid the trivial

solution, we avoid choosing z = 0. Then we have

W1 = z




171 55

67 206




W2 = z




150 108

7 58


⇒ W−1

2 =
1

z




32 9

19 98


 ,

where 1
z

denotes the multiplicative inverse of z mod n. Consequently, the attacker calculates the

109

secret key as

K = W1EW−1
2 =




30 14

107 178


 .

6.5 Conclusion

In the first part of this chapter, we showed that Álvarez et al. key exchange scheme is

insecure for all suggested practical choices of the security parameters (r, s, p). Our attack is also

directly applicable to the new system recently proposed by Álvarez et al. in [6]. As mentioned

above, our attack does not depend on the particular method by which the involved matrices are

generated, and hence the idea of linearization used in this chapter can be applied to a wider class

of similar key exchange schemes.

In the second part, we showed that the key exchange protocol proposed by Climent et

al. is not secure. In fact, Climent’s scheme can be seen as a partial generalization of Stickel’s

key agreement scheme [178] which was broken by Shpilrain in [168] (see also [134,135,177]).

In particular, Shpilrain [168] deployed the same linearization approach used in our attack and

suggested to use non-invertible matrices to foil such linear algebra attacks and to repair Stickel’s

scheme but his proposal was also broken [134]. The fact that there are so few non-invertible

elements in Ep is a weakness of the scheme since it makes the attacker’s job easier. It should

also be noted that Stickel’s scheme is only an instance of the group Diffie-Hellman scheme [37]

which generalizes the original Ko-Lee et al. braid group based protocol [114]. Later on, several

braid groups were suggested as platform groups. Linear algebra attacks on these braid-based

schemes using the same techniques were also deployed (e.g., see [39, 92, 98, 118]).

Finally, we showed that key exchange scheme proposed in the US patent number 7346162

is completely insecure. In particular, while the attacker is not able to recover the secret parame-

ters chosen by the sender and receiver, the attacker can easily fully recover the secret key agreed

upon between the sender and receiver by solving r2 linear equations in 2r unknowns over Zn.

For the suggested choice of the parameter r = 2, this corresponds to solving 4 linear equations

110

in 4 unknowns. It is interesting to note that the effort required by the attacker to break this

system, for any r, is less than the effort required by the sender during the key exchange process.

To our knowledge, the majority of published matrix-based cryptosystems fall into the same trap

and base the security argument on the inability of the cryptanalyst to recover some secret pa-

rameters. However, as shown in our work, this argument does not ensure the security of these

schemes because attackers might be able to recover the overall secret key without recovering

the individual components (e.g., let Z = XY . Then being able to find Z does not mean that

we are able to recover X and/or Y . Conversely, proving that one cannot find X or Y does not

imply that one cannot find Z given the availability of other information about Z).

111

Chapter 7

Conclusions and Future Research

Directions

7.1 Summary and Conclusions

This section briefly summarizes the accomplished work and the major contributions of

our thesis. In chapters 1, 2, the essential background, mathematical assumptions and motivation

for this work were presented.

In chapter 3, we modeled the problem of key recovery of the AES-128 key schedules

from its corresponding decayed memory images as a Boolean SAT problem and solved it us-

ing CryptoMiniSat. Our experimental results confirm the versatility of our proposed approach

which allows us to efficiently recover the AES-128 key schedules for large decay factors. The

presented method can be extended in a straightforward way to AES-192, AES-256 and other

ciphers with key schedules that can be presented as a set of Boolean equations and, hence, lend

themselves naturally to SAT solvers.

In chapter 4, we presented a fault analysis attack against the original variant of NTRUEn-

crypt. Our attack does not work against more recent variants of NTRUEncrypt where f = 1+pF

for ternary or binary polynomial F since the bijection between Fp and f does not exist in these

112

variants. We also presented different techniques for strengthening the resistance of NTRUEn-

crypt hardware implementations against fault attacks. We provided a comparison between these

different techniques in terms of their error detection capabilities as well as area and throughput

overheads. We also provided FPGA implementation results for these approaches. One inter-

esting observation that follows from our attack on NTRUSign is that the perturbation process,

which was introduced to improve the security of NTRUSign against previous attacks, does not

improve the resistance of NTRUSign against this kind of fault attacks if the norm-bound check-

ing step can be skipped by the attacker. Another observation is that using NTRUSign with a

larger-security parameter, while improving the resistance against lattice based attacks, does not

necessarily improve the resistance against fault analysis attacks especially in the cases where

the attacker is able to precisely corrupt small number of coefficients and is able to skip the

norm-bound checking step.

In chapter 5, we presented a scan-based SCA on NTRUEncrypt hardware implementa-

tions that employ scan-based DFT techniques. By analyzing the Hamming weight of the scan

chain output at carefully chosen clock cycles, the attacker is able to efficiently recover the lo-

cations of the +1s and -1s of the secret key polynomial. The presented attack clearly shows the

need to utilize secure scan chains [74] for hardware implementations of NTRUEncrypt with the

scan-based DFT feature.

Finally, in chapter 6, we showed that the three key exchange schemes proposed by

Álvarez et al. [8], Climent et al. [40], and Keith Salvin [175] are completely insecure. The

presented results show the difficulty of designing efficient key agreement schemes based on

matrices.

7.2 Future works

In what follows we list some topics of interest for future extension of our research.

• Recent advances in the field of leakage-resilient cryptography (e.g., see [2, 9, 36, 127]) is

113

concerned with the design of cryptographic primitives resistant to arbitrary SCAs. The

main assumption used in all these works is that, while an attacker can repeatedly and

adaptively learn information about the secret key, the overall amount of such information

is bounded by some parameter. Several new cryptographic primitives are being designed

using such theoretical assumption but no concrete engineering methodology to guarantee,

or even measure, this information leakage bound has been considered. The development

of methods and techniques that achieve bounded leakage grantee is certainly a very chal-

lenging and interesting research direction.

• Post-quantum cryptography refers to research on cryptographic primitives, usually public-

key cryptosystems, that are not breakable using quantum computers. One possible (long

term) theoretical research project is to investigate the existence of quantum algorithms

that may help speed up the cryptanalysis of ciphers currently included in the list of post-

quantum algorithms (e.g., lattice based cryptosystems including NTRU, code-based cryp-

tosystems [123, 144] and systems based on multivariate-quadratic-equations [91]). An-

other research direction is exploring the application of different types of SCAs to these

algorithms.

• Examples of current side channels include timing information, power consumption, elec-

tromagnetic leaks, acoustic leaks, and fault analysis. It is not hard to argue that other side

channel might be explored in future research but coming up with a new concrete example

for such channels is the real challenge.

• The security of key exchange schemes that are based on braid groups [113, 114] is still

not very well understood. Exploring different cryptanalytic techniques against this class

of group-based cryptography is an interesting research direction.

114

Appendix A

An FPGA Implementation of the

NTRUEncrypt Cryptosystem

In this appendix, we present an architecture that offers different area-speed trade-off for

NTRUEncrypt cryptosystem and analyze its performance. We utilize the statistical properties

of the distance between the non-zero elements in the polynomials involved in the encryption

and decryption operations. An FPGA prototype for the proposed design is also presented.

A.1 Hardware implementation of the NTRUEncrypt cryp-

tosystem

In what follows, we assume that at the beginning of the encryption operation, the public

key h(x) ∈ Rq is loaded into the chip through N parallel I/O PINS in TLd(h) = log2(q) clock

cycles. Similarly, for each plaintext m(x) ∈ Rp, an ephemeral key r(x) ∈ τ(d, d) will be loaded

in Tld(r) = ⌈log2(3)⌉ clock cycles and m(x) will be loaded in TLd(m) = ⌈log2(p)⌉ clock cycles.

Furthermore, Top(e) = log2(q) clock cycles will be required to output the ciphertext e(x) ∈ Rq

using N parallel I/O PINS.

From the description of the encryption and decryption operations in section 4.2.1, it

115

is clear that the most time consuming part in both operations is the convolution product, Tconv,

required to compute r(x)⋆h(x) and f(x)⋆e(x) during the encryption and decryption operations,

respectively.

In general, the convolution product a(x)⋆b(x) requires N2 multiplications and additions

where each of the ck terms, k = 0 · · ·N − 1, can be evaluated in one clock cycle using a

shift, multiply and add operation. However, because of the ternary nature of both f(x) ∈

τ(d+ 1, d) and r(x) ∈ τ(d, d), these convolution can be evaluated without any multiplications.

Furthermore, the time required to load h can be ignored when encrypting a large number of

blocks. This is because h is loaded only once into the chip and remains unchanged throughout

the encryption process. Hence, and by ignoring the few extra clock cycles required by the

control circuity, a straightforward implementation of the encryption algorithm would require

approximately

TLd(r) + TLd(m) + Tconv + Top(e) =

⌈log2(p)⌉ + ⌈log2(p)⌉ + N + log2(q)

clock cycles to encrypt each plaintext block.

On the other hand, d is usually much smaller than N . For example, for NTRU with

parameters (N, p, q) = (251, 3, 128), we have d = 36, i.e., the number of non-zero coefficients

in r(x) is 72 [145, 153]. Thus if the locations of these non-zero elements are loaded into the

chip, together with one bit indicating the value of each coefficient (i.e., 1 or -1), then Tconv can

be significantly reduced from N to 2d operations. To simplify the control circuity, we assume

that the jth-bits of the locations of the non-zero elements in r, j = 1, · · · ⌈log2(N)⌉ are loaded

in one clock cycle. Thus we have Tld(r) = ⌈log2(N)⌉+ 1 and hence the number of clock cycles

required to implement the encryption operation will be reduced to

TLd(r) + TLd(m) + Tconv + Top(e) =

(⌈log2(N)⌉+ 1) + ⌈log2(p)⌉ + (2d) + log2(q).

This reduction in Tconv, however, requires the availability of a hardware circuity that can

116

be used to perform an arbitrary number of shifts, up to N − 2d, for the h(x) coefficients in one

clock cycle, e.g., a Barrel shifter. However, implementing ⌈log2(q)⌉N -bit Barrel shifters would

require a prohibitively large hardware.

A considerable reduction in this hardware complexity can be achieved if we only require

the shifter to be able to shift the coefficients in h(x) by a relatively small number of locations,

s << N , in each clock cycles.

Figure A.1 shows a typical implementation of such a circuit that can circularly shift its

N bit inputs by up to s bits in one clock cycle.

Let di, 1 ≤ i ≤ 2d, denote the location of the ith non-zero element in r(x). For con-

venience of notation, we set d0 = 0. Then the number of clock cycles required to evaluate the

convolution operation during the encryption operation is given by

Tconv(s) =
2d∑

i=1

⌈
di − di−1

s
⌉

Since these non-zero coefficients are distributed uniformly across the N terms of the

corresponding polynomials, then, on average, we have

di − di−1 ≈
N

2d
<< N.

s to 1

Mux

 xs … x2 x1

s to 1

Mux

 xs+1 … x3 x2

s to 1

Mux

 xs-2 … x0 xN-1

s to 1

Mux

 xs-1 … x1 x0

 y0 y1 yN-2 yN-1

Figure A.1: Example of (N, s)-shifter

Throughout the rest of the appendix we focus on the (251, 3, 128)-version of NTRU.

117

Figure A.2 shows how the average value of Tconv(s) decreases with s, for 1000, 000 randomly

generated polynomials r(x) ∈ τ(36, 36). Figure A.3 shows the number of slices required to

implement this (251,s)-shifter. From both figures, it is clear that choosing s > 8 offers a small

marginal increase in throughput at the expense of a relatively large area overhead.

100

150

200

250

300
A

v
g

.
n

u
m

b
e

r
o

f
C

LK
 c

y
cl

e
s

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

A
v

g
.

n
u

m
b

e
r

o
f

C
LK

 c
y

cl
e

s

Maximum possible shifts (s)

Figure A.2: Average value of Tconv(s)

Figures A.4 and A.5 show the histogram of Tconv(s) for 1000, 000 randomly generated

r(x) ∈ τ(36, 36) for s = 4, 8 respectively. The average, minimum and maximum values for

Tconv(s=4) are 96.4, 85 and 106, respectively. The corresponding values for Tconv(s=8) are 76.85,

72, and 85.

Similar argument applies in optimizing the decryption algorithm except that calculating

mod p in the final decryption step is non trivial. In this work, we investigated two methods to

calculate the mod p operation. The first method is using the Mersenne primes algorithm [189].

In this method, a(x) can be split into sections each of length log2(p + 1) bits which can be

added to produce a(x) mod p (see Algorithm 6). The second method is to use Look-Up Tables

(LUTs). The LUT approach is relatively efficient in case of small p. Note that choosing q in the

form of 2n eliminates the need for such circuits during the encryption operation.

118

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

e
r

o
f

sl
ic

e
s

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

sl
ic

e
s

Maximum possible shifts (s)

Figure A.3: The number of slices for (251, s)-shifter

Algorithm 6 Modular reduction using Mersenne primes algorithm

INPUT: an integer a, a Mersenne prime p
OUTPUT: b = a mod p
b = a
while b > p do

Split b into sections ci | ci−1 | · · · | c1 | c0 each of length log2(p+ 1) bits.

b = ci + ci−1 + · · ·+ c1 + c0.
end while

The targeted hardware platform for our implementation is the xcv1600e-8-fg860 FPGA

using Xilinx ISE 9.1i as the Synthesis, Translation, Mapping, Place and Route File Generation

tool. The control unit for our encryption/decryption engine is implemented using a Finite State

Machine Data-path (FSMD) model. Simulations were conducted using the ISE model and

implemented using VHDL. This ensures the performance was inaccurate representation of the

actual FPGA.

Table A.1 shows the implementation results for the encryption-decryption engine using

the naı̈ve approach for polynomial multiplication. Table A.2 shows the corresponding results

when using (251, s) shifters with s = 4, 8. For s = 4, the average encryption throughput

119

40000

60000

80000

100000

120000

140000

160000

180000

F
re

q
u

e
n

cy

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

F
re

q
u

e
n

cy

Number of Clk cycles

Figure A.4: Histogram of Tconv(s=4)

increased from 51.22 to 134 Mbps, i.e., by about 161.62%, when using the Mersenne primes al-

gorithm and from 51.22 to 129 Mbps, i.e., by 151.85% when using the LUT method. Similarly,

for decryption, the average throughput increased from 51.81 to 143.99 Mbps, i.e., by 177.92%

when using the Mersenne primes algorithm and from 51.81 to 138.6 Mbps, i.e., by 167.52%,

when using the LUT method. On the other hand, the area cost has increased from 8973 to 13028

slices, i.e., by 45.19% when using the Mersenne primes algorithm and from 8648 to 12472, i.e.,

by about 44.22% when using the LUT method.

Similarly, for s = 8, the average encryption throughput increased by about 216.83% and

the average decryption throughput increased by about 241.75%. This occurs at the expense of

about 60%-66% increase in the number of slices.

It should be noted that the implementation presented here is susceptible to timing analy-

sis. It is interesting to explore how to modify it in a way that eliminates this weakness without

scarifying the achieved speedup gain.

120

100000

150000

200000

250000

F
re

q
u

e
n

cy

0

50000

100000

150000

200000

250000

72 73 74 75 76 77 78 79 80 81 82 83 84 85

F
re

q
u

e
n

cy

Number of Clk cycles

Figure A.5: Histogram of Tconv(s=8)

Table A.1: Implementation results using the naı̈ve polynomial multiplication algorithm

Mersenne algorithm LUTs

Device components report

of Slices 8973 8648

of Slice FFs 4922 4922

of 4-input LUTs 16273 15913

of Roms (128x2-bits) - 251

of IOBs 506 506

Timing report

Clk Freq.(MHz) 54.08 54.08

Throughput(Mbps) 51.22 Enc., 51.81 Dec.

121

Table A.2: Implementation results using the proposed approach for s = 4 and s = 8

s = 4 s = 8
Mersenne LUTs Mersenne LUTs

algorithm algorithm

Device components report

of Slices 13028 12472 14406 14352

of Slice FFs 5424 4838 5469 5160

of 4-input LUTs 24360 21654 27216 27292

of Roms (128x2-bits) - 251 - 251

of IOBs 579 579 579 579

Timing report

Clk Freq.(MHz) 61.61 59.31 61.61 62.33

Avg. Throughput Enc. 134.00 129.00 161.34 163.22

(Mbps) Dec. 143.99 138.6 176.03 178.09

122

Appendix B

Enhanced Implementation of the

NTRUEncrypt Algorithm Using Graphics

Cards

B.1 Introduction

A Graphical Processing Unit (GPU) is a dedicated hardware for rendering graphics on

devices such as personal computers, workstations, game consoles and embedded systems. State

of the Art technologies made it possible to combine multiple GPUs in a single machine and

hence achieving an affordable level of parallel processing. One of the main differences be-

tween GPUs and CPUs is that, in general, a CPU is optimized for executing high performance

sequential code and hence the majority of its transistors are dedicated for flow control and

branch prediction. On the other hand, a GPU has a more parallel nature and the majority of

its transistors are dedicated for computation. This is because of the characteristics of its target

applications. During the past few years, the power of GPUs have been increasing at a higher rate

than that of CPUs. Consequently, general purpose computing on GPUs, i.e., the use of GPUs

to accelerate the computations of different algorithms, has become a trend in parallel comput-

123

ing and played an important role in developing faster implementations for many algorithms in

different areas. Because of their inherent computational complexity, encryption techniques are

good candidates to benefit from the affordable high level of parallelism available on current

GPUs. This is because many cryptographic algorithms show good characteristics for data par-

allel processing such as high computation intensity and independent work loads. Furthermore,

security is becoming increasingly important and there is a great demand to secure data in all

phases of its life cycle from communication to active or archived storage. This trend requires

increased processing power which can be met by a combination of standard CPUs and GPUs

acting as cryptographic accelerators. This is possible because GPUs are now ubiquitous and,

unless involved in intensive graphics processing, their computational power are under-utilized

most of the time.

Several researchers have explored the potential to use this available GPU power in a role

similar to existing hardware cryptographic accelerators. In symmetric key cryptography, sev-

eral works (e.g., [43, 73, 122, 151, 159]) have reported different GPU implementations for the

Advanced Encryption Standard (AES). A very fast GPU implementation for the Korean ARIA

block cipher was achieved by Yung et al. [121] where they reached an encryption throughput of

4.8 Gbps. In asymmetric key cryptography, R. Szerwinski et al. [179, 180] exploited the power

of GPUs to speed up the computations of expensive operations such as modular exponentiation

for RSA and DSA and point multiplication for ECC. They obtained 813 modular exponentiation

per second for RSA and DSA-based systems with 1024 bit integers and 1412 point multiplica-

tions per second for ECC over P-224 NIST elliptic curves. A fast GPU implementation for

one of the NIST SHA-3 hash function candidates, Blue Midnight Wish (BMW), was presented

and analyzed in [149]. A GPU implementation for NTRU was also given in [76] where, using

a modern 1.2 GHz GTX280 GPU, a throughput of up to 200,000 encryptions per second was

reached at a security level of 256 bits. This gives a theoretical data throughput of 47.8 MB/s

(see also [15, 102] for other software and hardware implementations of NTRUEncrypt).

In this appendix, we investigate different implementation options for the NTRU encryp-

124

tion on the NVIDIA GTX275 GPU. Using the Compute Unified Device Architecture (CUDA)

framework, our implementation achieves more than 351,000 parallel encryption operations per

second for NTRU with 256 bits security level (parameter set (N, q, p) = (1171, 2048, 3)) which

corresponds to an encryption throughput of about 77.21 MB/s.

B.2 The CUDA framework

Early attempts to use GPUs in cryptography were not very encouraging due to their

previously poor suitability to the problem space, especially, the lack of integer processing sup-

port. Furthermore, GPU programming was challenging for those not familiar with graphics.

Nowadays, high level language libraries that support parallel operations on GPUs have been

developed by the main manufacturers of GPUs and are widely available [33, 41, 137, 164]. In

what follows, we briefly summarize the thread organization and memory model of the Compute

Unified Device Architecture (CUDA) [146] framework developed by NVIDIA.

B.2.1 Thread organization and memory model

The CUDA framework defines normal C like functions called kernels. Typical candidates

for a kernel are functions that are executed many times but on multiple independent data. An

execution configuration is used to specify the number of times the function should be executed

as threads on the GPU and how the threads are organized. To manage the large number of

threads executed, CUDA uses a thread hierarchy to identify and organize the threads. Unique

coordinates are used to distinguish threads that execute the same function. As shown in Figure

B.1, for every launch, the threads are lined up in a grid which is divided into a two level hierarchy

of thread blocks and threads identified by coordinates called blockIdx and threadIdx which are

assigned to them by the CUDA runtime system. These coordinates are accessible in the kernel

to identify the different threads. The threads within a thread block can be organized in a one,

two or three-dimension. In one kernel launch, a dimension in the grid cannot exceed 65535 and

125

__global__ void kernel (R, h, M, C)

{

code dependent on blocks and

threads

}

int main()

{
. . .

memory copy from CPU to GPU;

dim3grid (x, 1);

dim3 block (y, 1);

kernel <<< grid, block>>>(R, h, M, C);

memory copy from GPU to CPU;

. . .
}

Block0

Thread0
Thread1

.

.

.
Thready-1

...

Block1 Blockx-1

Thread0
Thread1

.

.

.
Thready-1

Thread0
Thread1

.

.

.
Thready-1

Grid

Block2

Thread0

Thread1
.
.
.

Thready-1

Block3

Thread0
Thread1

.

.

.
Thready-1

Allocate

Allocate
Allocate Allocate

SM

Instruction fetch/dispatch

Shared memory

SM1

SM2

.

.

.

SM30

GPU memory

GPU

 CPU

Execute

SP

SP

SP

SP

SP

SP

SP

SP

Figure B.1: The CUDA programming model

the size of a thread block is limited to 512. When the grid of thread blocks are launched, each

thread block is assigned to an arbitrary Streaming Multiprocessor (SM). Every thread within the

thread block is computed on the same SM. To schedule the threads, the SMs use a technique

that NVIDIA calls Single-Instruction Multiple-Thread (SIMT). It is similar to Single Instruction

Multiple Data (SIMD) but SIMT specifies the execution and branching behavior of each thread.

The SMs are allocated thread blocks, and the SIMT unit splits the threads into groups of 32

threads called warps. Each warp consists of threads with consecutive increasing thread IDs

with the first warp of a thread block containing thread ID 0-31. For every clock cycle, the SM

chooses a warp that is ready to execute for scheduling, and hands each Streaming Processor

(SP) a thread.

While Kernels run as threads on the GPU, the memory copying and the execution con-

figuration is done by the CPU (the host). This separates the code into code executed on the CPU

and code executed on the GPU. While both the host and the GPU manage their own memory

space, data can be copied between them. Figure B.2 shows the memory model in CUDA [146].

Global Memory (GM) is the most frequently used memory space since it is the only space that

126

Grid 0

Global

Memory

Constant

Memory

Texture

Memory

Host

Block (1, 0)

Shared Memory

Registers

Thread (0, 0)

Local

Memory

Local

Memory

Thread (1, 0)

Registers

Block (0, 0)

Shared Memory

Registers

Thread (0, 0)

Local

Memory

Local

Memory

Thread (1, 0)

Registers

Figure B.2: The CUDA memory model

can be both read and written by both the CPU and the GPU. Constant and texture memory is

read-only on the GPU, and is setup from the host for read-only data. The constant and tex-

ture memory is located in the same physical memory (DRAM) as global memory, but uses the

texture unit in combination with a cache available to each SM to increase speed up reads from

the memory spaces. Each SM has an 8 kB working set of constant and texture memory that

is cached, which makes it useful for algorithms using data patterns that are read-only. Global

memory, texture and constant memory can be accessed from any thread on the grid. Shared

memory (SH) is the only memory space that is available on the actual GPU core and it is local

to each SM, i.e., it can be accessed only within a thread block. Since the shared memory is very

quick, it is optimal for sharing data across a thread block, or for performing computation before

writing back to global memory. Thus to avoid the latency of global memory, a good way to

compute data is to load it from global memory into shared memory, perform the computations

in shared memory, synchronize each thread block and then write the result back to the global

memory so that the host can read it when ready.

127

B.3 Implementation options for the NTRUEncrypt

The target platform for our implementation is the NVIDIA GTX275 GPU installed on

the PCI Express 2.0 bus of a PC running AMD Athlon 64 X2 5000+ dual-core processor at 2.6

GHz and 2 GB of RAM. CUDA enables us to use the GTX275 GPU card, which runs at 1.404

GHz, as a parallel machine which contains 30 SMs, each contains 8 SPs with a total of 240

processing cores. The total memory of the card is 896 MB and each SM has a 16 KB shared

memory.

To utilize the advantages of the GPU, several plaintext messages mi(x), i = 1, · · ·n, are

encrypted in parallel. The GPU receives the plaintext messages as a matrix M where the ith

row in M corresponds to the plaintext message mi(x). Similarly, the corresponding random

ephemeral keys are transferred to the GPU as a matrix R where the ith row represents the

random ephemeral key ri(x) used to encrypt the message mi(x). Finally, The GPU receives

the public key h(x) as a vector and compute the the ciphertext as a matrix C where the ith

row in C corresponds to the ciphertext ci(x). Depending on to the method used to present

the coefficients of ri(x), hi(x), mi(x) and ci(x), and the use of shared memory, we have the

following implementation choices:

• Representation of the polynomial r(x): the polynomial ri(x) can be represented in the

naı̈ve form as a polynomial with N coefficients or in the product form as shown in Equa-

tion (4.2).

• Representation of the polynomial coefficients: Traditionally, each coefficient of the poly-

nomials ri(x) and ci(x) is stored in one integer variable (normal coefficients representa-

tion). In order to reduce the memory copying time between the CPU and the GPU, we

employed a technique referred to as bit-packing [131] where each coefficient in ri(x) is

represented in 2-bits. Therefore, each ⌊32
2
⌋ = 16 coefficients can be represented in one

integer variable. Similarly, since q = 2048 = 211, ⌊32
11
⌋ = 2 coefficient in ci(x) can be

stored in one integer. This helps reduce the time required to copy the data from/to the

128

GPU at the expense of the added computation time required to pack/un-pack the polyno-

mial coefficients before using them in the actual computations.

• Storage options: Data can be stored in global memory or in the shared memory. The

advantage of using shared memory over global memory is the low latency in calculation.

However, the size of the GPU shared memory is limited (16 KB for each SM of the GPU).

We assume that the key setup and the ephemeral keys generation are done off-line by

the host (i.e., the CPU). To encrypt n messages, each of size N elements, the convolution

multiplication between ri(x) and hi(x) is done first and then the plaintext messages mi(x), i =

1 · · ·n are added (mod q) to the convolution output.

Figure B.3 illustrates the convolution operation using the Normal Polynomial form (NP),

the Normal Coefficients representation (NC) and the global memory as a storage. In Figure B.3,

the N ×n matrix R corresponds to the n random ephemeral keys, each of size N elements. The

ith row of the N×N matrix H corresponds to a cyclically shifted version of the public key h(x)

by i elements. It should be noted that the matrix H shown in this Figure is a virtual matrix used

for illustration purpose only, i.e., it is not physically stored on the GPU or the CPU memory. In

other words, only h(x) is physically stored and the different rows of H are created by the way

that different threads use to access h(x) using different values for blockIdx.x and blockIdx.y as

shown in Algorithm 7. Each thread reads one row of the matrix R and one column of the matrix

H and then computes the ciphertext by adding the result of the convolution to the corresponding

element of the plaintext message mi(x). One kernel is used to calculate the encryption operation

with 32 × 16 = 512 threads (to utilize the full capabilities of the SMs) which corresponds to

⌈N/32⌉ × ⌈n/16⌉ thread blocks.

As shown in Figure B.4, when the Bit-Packing approach (BP) is used to present the

coefficients of R and C, the size of the R matrix is reduced from n × N to n × ⌈N/16⌉.

Similarly, the size of the corresponding ciphertext matrix is reduced from n×N to n× ⌈N/2⌉.

Consequently, R can be transferred from the CPU to the GPU in a shorter time. Also copying

C from the GPU to the CPU will require less time.

129

Algorithm 7 Pseudo code for naı̈ve implementation of NTRUEncrypt on GPU

1: INPUT: Plaintext matrix Mn×N , random ephemeral key matrix Rn×N , the public key h1×N .

2: OUTPUT: The ciphertext matrix Cn×N

3: tx←− blockIdx.x ∗ blockDim.x+ threadIdx.x

4: ty ←− blockIdx.y ∗ blockDim.y + threadIdx.y

5: sum = 0

6: for i = 1 to N do

7: if (R[ty ∗N + i] = 1) then

8: sum←− sum+ h[(tx+N − i) mod N]
9: else if (R[ty ∗N + i] = −1) then

10: sum←− sum− h[(tx+N − i) mod N]
11: end if

12: end for

13: C[ty ∗N + tx]←− (sum+M [ty ∗N + tx]) mod q

n

N

N

ri(x)

N

N

n

R C

H

Figure B.3: The convolution operation using NP, NC, and GM

The computation efficiency on the GPU can be further improved when a thread block can

load a block of data into the on-chip shared memory, process it there, and then write the final

results back to external memory. Figure B.5 shows the case where the shared memory is used as

a storage when ri(x) is presented in the naı̈ve polynomial form and the normal representation is

used to encode the polynomial coefficients. Each thread block is responsible for computing one

block of the convolution matrix and each thread within the block is responsible for computing

one element of the block. Two kernels are used to calculate the encryption operation. The first

130

n

� �16�

N

ri(x)

N

n

��2�

R C

H

Figure B.4: The convolution operation using NP, BP, and GM

one calculates the matrix H from the vector h(x) and then loads it into the shared memory.

The second kernel completes the encryption operation via the shared memory. It also performs

the necessary padding to ensure that the length of all blocks in R and H is divisible by 16.

The CUDA syncthreads() function is used to ensure that the data is copied to the shared

memory before performing any calculations on it. In the first kernel, 32 × 16 = 512 threads

and ⌈N/32⌉ × ⌈n/16⌉ blocks are used. The second kernel uses 16 × 16 = 256 threads and

⌈N/16⌉ × ⌈n/16⌉ blocks.

Figure B.6 shows the corresponding scenario where the bit-packing method is used to

represent the polynomial coefficients and the shared memory is used to store the matrices R and

H . Again, one kernel calculates the matrix H from the vector h(x) and then loads it into the

shared memory. The second kernel completes the encryption operation via the shared memory

with 16 × 16 = 256 threads and ⌈⌈N/2⌉/16⌉ × ⌈n/16⌉ blocks. The dimension of the matrix

R is reduced to ⌈N/16⌉ × n and divided into blocks of size 16× 16 KB. Also, the matrix H is

131

n

N

N

N

N

n

ri(x)

Block

size

Block

size

Block

size

Block

size

Block

size

Block

size

..

. . .

Block

size

Block

size

R C

H

Figure B.5: The convolution operation using NP, NC, and SH

divided into blocks of size 16× 16 KB. The blocks in R and the corresponding blocks in H are

loaded into the shared memory. After performing the computation, the results are written into

the global memory.

Similar analysis applies when the Product Form (PF) is used except that the convolution

operation is performed three times per each encryption operation as shown in Equation (4.2).

As mentioned before, the key setup and the ephemeral keys generation are assumed to

be generated off-line by the host. Thus, the total encryption time is equal to the time required

to transfer the data from/to GPU and the time required to perform the necessary computational

operations inside the GPU. The use of shared memory requires a padding of h(x), mi(x), and

ri(x) in order to obtain a polynomial size dividable by the block size in the shared memory.

Since the decryption performs merely the same as encryption, we only illustrate the results for

encryption.

According to the discussion in the previous section, there are 23 = 8 combinations of

implementation options for the NTRUEncrypt on the GPU. Figure B.7 shows how the total

132

ri(x)

n

� �16�

N

N

n

��2�

Block

size

Block

size

...

Block

size

Block

size

Block

size

...

.

.

.

.

.

. . . .

Block

size

Block

size

R C

H

Figure B.6: The convolution operation using NP, BP, and SH

encryption time required to encrypt n messages in parallel varies with n (i.e., as n messages are

loaded in one time from the host to the GPU and then encrypted in parallel on the GPU). Figure

B.8 shows the corresponding encryption throughput. Due to the limited memory of the GPU, the

maximum number of possible parallel operations is limited and varies depending on the memory

requirements associated with the eight different implementation choices. It is clear that the use

of product form, bit packing and shared memory allows us to achieve the best throughput where,

for example at n = 32768, the achieved number of parallel encryption operations per second

is 351,635. Since each message block has 1171 tuples and each tuple can assume the value

of +1,−1, 0, i.e., each tuple has 2 × 3
4

bits of information, then encrypting 351,635 message

blocks per second corresponds to an encryption throughput of 351, 635×1171×1.5× 1
8
≈ 77.21

MB/sec.

133

Figure B.7: Total time required to encrypt n messages in parallel

Figure B.8: The number of parallel encrypted messages per second.

134

Bibliography

[1] M. Agrawal, S. Karmakar, D. Saha, and D. Mukhopadhyay. Scan based side channel

attacks on stream ciphers and their counter-measures. In Proceedings of the International

Conference on Cryptology in India (INDOCRYPT’08), volume 5365 of Lecture Notes in

Computer Science, pages 226–238, Kharagpur, India, 2008. Springer.

[2] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryp-

tography against memory attacks. In Proceedings of Theory of Cryptography Confer-

ence (TCC’09), volume 5444 of Lecture Notes in Computer Science, pages 474–495, San

Francisco, CA, USA, 2009. Springer.

[3] M.-L. Akkar, R. Bevan, P. Dischamp, and D. Moyart. Power analysis, what is now

possible... In Proceedings of the International Conference on the Theory and Application

of Cryptology and Information Security (ASIACRYPT’00), volume 1976 of Lecture Notes

in Computer Science, pages 489–502, Kyoto, Japan, 2000. Springer.

[4] M.-L. Akkar and C. Giraud. An implementation of DES and AES, secure against some

attacks. In Proceedings of the International Workshop on Cryptographic Hardware and

Embedded Systems (CHES’01), volume 2162 of Lecture Notes in Computer Science,

pages 309–318, Paris, France, 2001. Springer.

[5] R. Álvarez, F. Ferrández, J.-F. Vicent, and A. Zamora. Applying quick exponentiation

for block upper triangular matrices. Applied Mathematics and Computation, 183(2):

729–737, 2006.

135

[6] R. Álvarez, F. Martı́nez, J.-F. Vicent, and A. Zamora. Cryptographic applications of

3x3 block upper triangular matrices. In Proceedings of the International Conference

on Hybrid Artificial Intelligent Systems (HAIS’12), volume 7209 of Lecture Notes in

Computer Science, pages 97–104, Salamanca, Spain, 2012. Springer.

[7] R. Álvarez, L. Tortosa, J. Vicent, and A. Zamora. A non-abelian group based on block

upper triangular matrices with cryptographic applications. In Proceedings of the In-

ternational Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting

Codes (AAECC’09), volume 5527 of Lecture Notes in Computer Science, pages 117–126,

Tarragona, Catalonia, Spain, 2009. Springer.

[8] R. Álvarez, L. Tortosa, J.-F. Vicent, and A. Zamora. Analysis and design of a secure key

exchange scheme. Information Sciences, 179(12):2014–2021, 2009.

[9] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the

bounded-retrieval model. In Proceedings of the International Cryptology Conference

(CRYPTO’09), volume 5677 of Lecture Notes in Computer Science, pages 36–54, Santa

Barbara, CA, USA, 2009. Springer.

[10] R. J. Anderson, M. Bond, J. Clulow, and S. P. Skorobogatov. Cryptographic processors–a

survey. Proceedings of the IEEE, 94(2):357–369, 2006.

[11] R. J. Anderson and M. G. Kuhn. Low cost attacks on tamper resistant devices. In Pro-

ceedings of the International Workshop on Security Protocols, volume 1361 of Lecture

Notes in Computer Science, pages 125–136, Paris, France, 1997. Springer.

[12] A. C. Atici, L. Batina, J. Fan, I. Verbauwhede, and S. B. Örs. Low-cost implementa-

tions of NTRU for pervasive security. In Proceedings of the International Conference

on Application-Specific Systems, Architectures and Processors (ASAP’08), pages 79–84,

Leuven, Belgium, 2008. IEEE Computer Society.

136

[13] A. C. Atici, L. Batina, B. Gierlichs, and I. Verbauwhede. Power analysis on NTRU im-

plementation for RFIDs: First results. In Proceedings of the Workshop on RFID Security

(RFIDSec’08), pages 128–139, Budapest, Hungary, 2008.

[14] M. F. Atiyah and I. G. MacDonald. Introduction to commutative algebra. Westview

Press, New York, NY, USA, 1969.

[15] D. V. Bailey, D. Coffin, A. J. Elbirt, J. H. Silverman, and A. D. Woodbury. NTRU in

constrained devices. In Proceedings of the Third International Workshop on Crypto-

graphic Hardware and Embedded Systems (CHES’01), volume 2162 of Lecture Notes in

Computer Science, pages 262–272, Paris, France, 2001. Springer.

[16] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerers appren-

tice guide to fault attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

[17] G. M. Bergman. Some examples in PI ring theory. Israel Journal of Mathematics, 18(3):

257–277, 1974.

[18] D. L. Berre and A. Parrain. The SAT4J library, release 2.2. Satisfiability, Boolean Mod-

eling and Computation, 7:59–64, 2010.

[19] D. L. Berre and O. Roussel. The international SAT competitions.

http://www.satcompetition.org/, 2009.

[20] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error analysis and detection

procedures for a hardware implementation of the advanced encryption standard. IEEE

Transactions on Computers, 52(4):492–505, 2003.

[21] A. Berzati, C. Canovas, J.-G. Dumas, and L. Goubin. Fault attacks on RSA public keys:

Left-to-right implementations are also vulnerable. In Proceedings of the Cryptographers’

Track at the RSA Conference (CT-RSA’09), volume 5473 of Lecture Notes in Computer

Science, pages 414–428, San Francisco, CA, USA, 2009. Springer.

137

[22] A. Berzati, C. Canovas, and L. Goubin. Perturbating RSA public keys: An improved

attack. In Proceedings of the International Workshop on Cryptographic Hardware and

Embedded Systems (CHES’08), volume 5154 of Lecture Notes in Computer Science,

pages 380–395, Washington, DC, USA, 2008. Springer.

[23] I. Biehl, B. Meyer, and V. Müller. Differential fault attacks on elliptic curve cryptosys-

tems. In Proceedings of the International Cryptology Conference (CRYPTO’00), volume

1880 of Lecture Notes in Computer Science, pages 131–146, Santa Barbara, CA, USA,

2000. Springer.

[24] J. Biernat and M. Nikodem. Fault cryptanalysis of ElGamal signature scheme. In Pro-

ceedings of the International Conference on Computer Aided Systems Theory (EURO-

CAST’05), volume 3643 of Lecture Notes in Computer Science, pages 327–336, Las

Palmas de Gran Canaria, Spain, 2005. Springer.

[25] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In

Proceedings of the International Cryptology Conference (CRYPTO’97), volume 1294 of

Lecture Notes in Computer Science, pages 513–525, Santa Barbara, CA, USA, 1997.

Springer.

[26] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography. London

Mathematical Society Lecture Notes in Computer Science. Cambridge University Press,

Cambridge, UK, 1999.

[27] J. Blömer and M. Otto. Wagner’s attack on a secure CRT-RSA algorithm reconsidered.

In Proceedings of the International Workshop on Fault Diagnosis and Tolerance in Cryp-

tography (FDTC’06), volume 4236 of Lecture Notes in Computer Science, pages 13–23,

Yokohama, Japan, 2006. Springer.

[28] J. Blömer, M. Otto, and J.-P. Seifert. A new CRT-RSA algorithm secure against Bellcore

138

attacks. In Proceedings of the Conference on Computer and Communications Security

(CCS’03), pages 311–320, Washington, DC, USA, 2003. ACM.

[29] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic

protocols for faults (extended abstract). In Proceedings of the International Conference

on the Theory and Application of Cryptographic Techniques (EUROCRYPT’97), volume

1233 of Lecture Notes in Computer Science, pages 37–51, Konstanz, Germany, 1997.

Springer.

[30] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of eliminating errors in

cryptographic computations. Cryptology, 14(2):101–119, 2001.

[31] E. Brier, B. Chevallier-Mames, M. Ciet, and C. Clavier. Why one should also secure

RSA public key elements. In Proceedings of the International Workshop on Crypto-

graphic Hardware and Embedded Systems (CHES’06), volume 4249 of Lecture Notes in

Computer Science, pages 324–338, Yokohama, Japan, 2006. Springer.

[32] B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal theory. In

N. K. Bose and J. P. Guiver, editors, Multidimensional systems theory: Progress, direc-

tions and open problems in multidimensional systems, pages 184–232. Reidel Publishing

Company, 1985.

[33] I. Buck, T. Foley, D. R. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanra-

han. Brook for GPUs: Stream computing on graphics hardware. ACM Transactions on

Graphics, 23(3):777–786, 2004.

[34] M. L. Bushnell and V. D. Agrawal. Essentials of electronic testing for digital, memory,

and mixed-signal VLSI circuits. Kluwer Academic, Boston, MA, USA, 2000.

[35] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions

and all-or-nothing transforms. In Proceedings of the International Conference on the

139

Theory and Application of Cryptographic Techniques (EUROCRYPT’00), volume 1807

of Lecture Notes in Computer Science, pages 453–469, Bruges, Belgium, 2000. Springer.

[36] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton, and S. Walfish. Intrusion-resilient

key exchange in the bounded retrieval model. In Proceedings of Theory of Cryptography

Conference (TCC’07), volume 4392 of Lecture Notes in Computer Science, pages 479–

498, Amsterdam, Netherlands, 2007. Springer.

[37] J. C. Cha, K. H. Ko, S. Lee, J. W. Han, and J. H. Cheon. An efficient implementation of

braid groups. In Proceedings of the International Conference on the Theory and Applica-

tion of Cryptology and Information Security (ASIACRYPT’01), volume 2248 of Lecture

Notes in Computer Science, pages 144–156, Gold Coast, Australia, 2001. Springer.

[38] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to coun-

teract power-analysis attacks. In Proceedings of the International Cryptology Confer-

ence (CRYPTO’99), volume 1666 of Lecture Notes in Computer Science, pages 398–412,

Santa Barbara, CA, USA, 1999. Springer.

[39] J. H. Cheon and B. Jun. A polynomial time algorithm for the braid Diffie-Hellman conju-

gacy problem. In Proceedings of the International Cryptology Conference (CRYPTO’03),

volume 2729 of Lecture Notes in Computer Science, pages 212–225, Santa Barbara, CA,

USA, 2003. Springer.

[40] J.-J. Climent, P. R. Navarro, and L. Tortosa. On the arithmetic of the endomorphisms ring

End(Zp×Zp2). Applicable Algebra in Engineering, Communication and Computing, 22

(2):91–108, 2011.

[41] Close to Metal. Technology unleashes the power of stream computing.

http://www.amd.com/us/press-releases/Pages/Press Release 114147.aspx, 2006.

[42] Consortium for Efficient Embedded Security. Efficient embedded security stan-

140

dard (EESS) #1: Implementation aspects of NTRUEncrypt and NTRUSign.

http://grouper.ieee.org/groups/1363/lattPK/submissions/EESS1v2.pdf, 2003.

[43] D. L. Cook, J. Ioannidis, A. D. Keromytis, and J. Luck. CryptoGraphics: Secret key

cryptography using graphics cards. In Proceedings of the Cryptographers’ Track at the

RSA Conference (CT-RSA’05), volume 3376 of Lecture Notes in Computer Science, pages

334–350, San Francisco, CA, USA, 2005. Springer.

[44] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

Symposium on Theory of Computing (STOC’71), pages 151–158, Shaker Heights, Ohio,

USA, 1971. ACM.

[45] N. Courtois and G. V. Bard. Algebraic cryptanalysis of the data encryption standard. In

Proceedings of the International Conference on Cryptography and Coding, volume 4887

of Lecture Notes in Computer Science, pages 152–169, Cirencester, UK, 2007. Springer.

[46] N. Courtois, G. V. Bard, and D. Wagner. Algebraic and slide attacks on KeeLoq. In

Proceedings of the International Workshop on Fast Software Encryption (FSE’08), vol-

ume 5086 of Lecture Notes in Computer Science, pages 97–115, Lausanne, Switzerland,

2008. Springer.

[47] N. Courtois, S. O’Neil, and J.-J. Quisquater. Practical algebraic attacks on the Hitag2

stream cipher. In Proceedings of the International Conference on Information Security

(ISC’09), volume 5735 of Lecture Notes in Computer Science, pages 167–176, Pisa, Italy,

2009. Springer.

[48] N. T. Courtois, K. Nohl, and S. O’Neil. Algebraic attacks on the Crypto-1 stream cipher

in MiFare classic and Oyster cards. International Association for Cryptologic Research

(IACR), 166, 2008.

[49] J. Daemen and V. Rijmen. The design of Rijndael: AES–The advanced encryption stan-

dard. Springer, New York, NY, USA, 2002.

141

[50] M. Davis and H. Putnam. A computing procedure for quantification theory. ACM, 7(3):

201–215, 1960.

[51] D. De, A. Kumarasubramanian, and R. Venkatesan. Inversion attacks on secure hash

functions using SAT solvers. In Proceedings of the International Conference on The-

ory and applications of satisfiability testing (SAT’07), volume 4501 of Lecture Notes in

Computer Science, pages 377–382, Lisbon, Portugal, 2007. Springer.

[52] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L. Willems.

A practical implementation of the timing attack. In Proceedings of the International

Conference on Smart Card Research and Applications (CARDIS’98), volume 1820 of

Lecture Notes in Computer Science, pages 167–182, Louvain-la-Neuve, Belgium, 1998.

Springer.

[53] B. Driessen, A. Poschmann, and C. Paar. Comparison of innovative signature algorithms

for WSNs. In Proceedings of the Conference on Wireless Network Security (WISEC’08),

pages 30–35, Alexandria, VA, USA, 2008. ACM.

[54] P. Dusart, G. Letourneux, and O. Vivolo. Differential fault analysis on AES. In Pro-

ceedings of the International Conference on Applied Cryptography and Network Secu-

rity (ACNS’03), volume 2846 of Lecture Notes in Computer Science, pages 293–306,

Kunming, China, 2003. Springer.

[55] N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of the International

Conference on Theory and Applications of Satisfiability Testing (SAT’03), volume 2919

of Lecture Notes in Computer Science, pages 502–518, Santa Margherita Ligure, Italy,

2003. Springer.

[56] T. Eibach, E. Pilz, and G. Völkel. Attacking Bivium using SAT solvers. In Proceed-

ings of the International Conference on Theory and Applications of Satisfiability Testing

142

(SAT’08), volume 4996 of Lecture Notes in Computer Science, pages 63–76, Guangzhou,

China, 2008. Springer.

[57] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-

rithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[58] J. Erickson, J. Ding, and C. Christensen. Algebraic cryptanalysis of SMS4: Gröbner

basis attack and SAT attack compared. In Proceedings of the International Conference

on Information, Security and Cryptology (ICISC’09), volume 5984 of Lecture Notes in

Computer Science, pages 73–86, Seoul, Korea, 2009. Springer.

[59] Federal Information Processing Standards Publication (FIPS). Announcing the advanced

encryption standard (AES). National Institute of Standards and Technology (NIST), 197,

2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[60] Federal Information Processing Standards Publication (FIPS). Security requirements for

cryptographic modules. National Institute of Standards and Technology (NIST), 140(2),

2001. http://http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

[61] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results. In

Proceedings of the International Workshop on Cryptographic Hardware and Embedded

Systems (CHES’01), volume 2162 of Lecture Notes in Computer Science, pages 251–261,

Paris, France, 2001. Springer.

[62] C. H. Gebotys and R. J. Gebotys. Secure elliptic curve implementations: An analysis

of resistance to power-attacks in a DSP processor. In Proceedings of the International

Workshop on Cryptographic Hardware and Embedded Systems (CHES’02), volume 2523

of Lecture Notes in Computer Science, pages 114–128, Redwood Shores, CA, USA,

2002. Springer.

[63] L. Genelle, E. Prouff, and M. Quisquater. Thwarting higher-order side channel analysis

with additive and multiplicative maskings. In Proceedings of the International Workshop

143

on Cryptographic Hardware and Embedded Systems (CHES’11), volume 6917 of Lecture

Notes in Computer Science, pages 240–255, Nara, Japan, 2011. Springer.

[64] C. Gentry, J. Jonsson, J. Stern, and M. Szydlo. Cryptanalysis of the NTRU signature

scheme (NSS) from Eurocrypt 2001. In Proceedings of the International Conference on

the Theory and Application of Cryptology and Information Security (ASIACRYPT’01),

volume 2248 of Lecture Notes in Computer Science, pages 1–20, Gold Coast, Australia,

2001. Springer.

[65] C. Gentry and M. Szydlo. Cryptanalysis of the revised NTRU signature scheme. In

Proceedings of the International Conference on the Theory and Applications of Cryp-

tographic Techniques (EUROCRYPT’02), volume 2332 of Lecture Notes in Computer

Science, pages 299–320, Amsterdam, Netherlands, 2002. Springer.

[66] C. Giraud, E. W. Knudsen, and M. Tunstall. Improved fault analysis of signature

schemes. In Proceedings of the International Conference on Smart Card Research and

Advanced Application (CARDIS’10), volume 6035 of Lecture Notes in Computer Sci-

ence, pages 164–181, Passau, Germany, 2010. Springer.

[67] E. I. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proceedings

of the Design, Automation and Test in Europe Conference (DATE’02), pages 142–149,

Paris, France, 2002. IEEE Computer Society.

[68] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice reduc-

tion problems. In Proceedings of the International Cryptology Conference (CRYPTO’97),

volume 1294 of Lecture Notes in Computer Science, pages 112–131, Santa Barbara, CA,

USA, 1997. Springer.

[69] J. D. Golic and C. Tymen. Multiplicative masking and power analysis of AES. In Pro-

ceedings of the International Workshop on Cryptographic Hardware and Embedded Sys-

144

tems (CHES’02), volume 2523 of Lecture Notes in Computer Science, pages 198–212,

Redwood Shores, CA, USA, 2002. Springer.

[70] L. Goubin. A sound method for switching between Boolean and arithmetic masking. In

Proceedings of the International Workshop on Cryptographic Hardware and Embedded

Systems (CHES’01), volume 2162 of Lecture Notes in Computer Science, pages 3–15,

Paris, France, 2001. Springer.

[71] L. Goubin and A. Martinelli. Protecting AES with Shamir’s secret sharing scheme. In

Proceedings of the International Workshop on Cryptographic Hardware and Embedded

Systems (CHES’11), volume 6917 of Lecture Notes in Computer Science, pages 79–94,

Nara, Japan, 2011. Springer.

[72] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,

A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks on

encryption keys. In Proceedings of the USENIX Security Symposium, pages 45–60, San

Jose, CA, USA, 2008. USENIX Association.

[73] O. Harrison and J. Waldron. AES encryption implementation and analysis on commodity

graphics processing units. In Proceedings of the Third International Workshop on Cryp-

tographic Hardware and Embedded Systems (CHES’07), volume 4727 of Lecture Notes

in Computer Science, pages 209–226, Vienna, Austria, 2007. Springer.

[74] D. Hély, F. Bancel, M.-L. Flottes, and B. Rouzeyre. Secure scan techniques: A compari-

son. In Proceedings of the International On-Line Testing Symposium (IOLTS’06), pages

119–124, Como, Italy, 2006. IEEE.

[75] N. Heninger and H. Shacham. Reconstructing RSA private keys from random key bits.

In Proceedings of the International Cryptology Conference (CRYPTO’09), volume 5677

of Lecture Notes in Computer Science, pages 1–17, Santa Barbara, CA, USA, 2009.

Springer.

145

[76] J. Hermans, F. Vercauteren, and B. Preneel. Speed records for NTRU. In Proceedings of

the Cryptographers’ Track at the RSA Conference (CT-RSA’10), volume 5985 of Lecture

Notes in Computer Science, pages 73–88, San Francisco, CA, USA, 2010. Springer.

[77] M. Heule and H. van Maaren. March dl: Adding adaptive heuristics and a new branching

strategy. Satisfiability, Boolean Modeling and Computation, 2(1-4):47–59, 2006.

[78] A. Hevia and M. A. Kiwi. Strength of two data encryption standard implementations

under timing attacks. ACM Transactions on Information and System Security, 2(4):416–

437, 1999.

[79] J. J. Hoch and A. Shamir. Fault analysis of stream ciphers. In Proceedings of the In-

ternational Workshop on Cryptographic Hardware and Embedded Systems (CHES’04),

volume 3156 of Lecture Notes in Computer Science, pages 240–253, Cambridge, MA,

USA, 2004. Springer.

[80] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte.

NTRUSign: Digital signatures using the NTRU lattice. Technical report, Security In-

novation Company, April 2002.

[81] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte.

NTRUSign: Digital signatures using the NTRU lattice. In Proceedings of the Cryp-

tographers’ Track at the RSA Conference (CT-RSA’03), volume 2612 of Lecture Notes in

Computer Science, pages 122–140, San Francisco, CA, USA, 2003. Springer.

[82] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte. Per-

formance improvements and a baseline parameter generation algorithm for NTRUSign.

International Association for Cryptologic Research (IACR), 274, 2005.

[83] J. Hoffstein, N. Howgrave-Grahama, J. Pipher, and W. Whyte. Practical lattice-based

cryptography: NTRUEncrypt and NTRUSign. In P. Q. Nguyen and B. Vallée, editors,

The LLL algorithm survey and applications, pages 349–390. Springer, 2010.

146

[84] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosys-

tem. In Proceedings of the Third International Symposium on Algorithmic Number The-

ory (ANTS-III’98), volume 1423 of Lecture Notes in Computer Science, pages 267–288,

Portland, Oregon, USA, 1998. Springer.

[85] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A public key cryptosystem. Avilable

at http://grouper.ieee.org/groups/1363/lattPK/ submissions/ntru.pdf, 1999.

[86] J. Hoffstein, J. Pipher, and J. H. Silverman. NSS: An NTRU lattice-based signature

scheme. In Proceedings of the International Conference on the Theory and Applica-

tion of Cryptographic Techniques (EUROCRYPT’01), volume 2045 of Lecture Notes in

Computer Science, pages 211–228, Innsbruck, Austria, 2001. Springer.

[87] J. Hoffstein, J. Pipher, and J. H. Silverman. An introduction to mathematical cryptogra-

phy. Undergraduate Texts in Mathematics. Springer, New York, NY, USA, 2008.

[88] J. Hoffstein and J. Silverman. Optimizations for NTRU. In Proceedings of the Conference

of Public-Key Cryptography and Computational Number Theory, pages 77–88, Warsaw,

Poland, 2000. De Gruyter.

[89] J. Hoffstein and J. H. Silverman. Random small hamming weight products with applica-

tions to cryptography. Discrete Applied Mathematics, 130(1):37–49, 2003.

[90] N. Howgrave-Graham, J. H. Silverman, A. Singer, and W. Whyte. NAEP: Provable

security in the presence of decryption failures. International Association for Cryptologic

Research (IACR), 172, 2003.

[91] Y.-J. Huang, F.-H. Liu, and B.-Y. Yang. Public-key cryptography from new multivariate

quadratic assumptions. International Association for Cryptologic Research (IACR), 273,

2012.

147

[92] J. Hughes. A linear algebraic attack on the AAFG1 braid group cryptosystem. In Pro-

ceedings of the Australian Conference on Information Security and Privacy (ACISP’02),

volume 2384 of Lecture Notes in Computer Science, pages 176–189, Melbourne, Aus-

tralia, 2002. Springer.

[93] IEEE Std 1149.7-2009. IEEE standard for reduced-pin and enhanced-functionality test

access port and boundary-scan architecture, 2010.

[94] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against prob-

ing attacks. In Proceedings of the International Conference on Advances in Cryptol-

ogy (CRYPTO’03), volume 2729 of Lecture Notes in Computer Science, pages 463–481,

Santa Barbara, CA, USA, 2003. Springer.

[95] É. Jaulmes and A. Joux. A chosen-ciphertext attack against NTRU. In Proceedings of

the International Cryptology Conference (CRYPTO’00), volume 1880 of Lecture Notes

in Computer Science, pages 20–35, Santa Barbara, CA, USA, 2000. Springer.

[96] M. Joye and M. Ciet. Practical fault countermeasures for Chinese remaindering based

RSA. In Proceedings of the International Workshop on Fault Diagnosis and Tolerance

(FDTC’05), Lecture Notes in Computer Science, pages 124–131, Edinburgh, Scotland,

UK, 2005. Springer.

[97] B. Kaliski. Considerations for new public-key algorithms. Network Security, 2000(9):

9–10, 2000.

[98] A. G. Kalka. Representation attacks on the braid Diffie-Hellman public key encryption.

Applicable Algebra in Engineering, Communication and Computing, 17(3–4):257–266,

2006.

[99] A. Kamal and A. M. Youssef. An area optimized implementation of the advanced en-

cryption standard. In Proceedings of the International Conference on Microelectronics

(ICM’08), pages 159–162, Sharjah, UAE, 2008. IEEE.

148

[100] A. Kamal and A. M. Youssef. An area-optimized implementation for AES with hybrid

countermeasures against power analysis. In Proceedings of the International Symposium

on Signals, Circuits and Systems (ISSCS’09), pages 1–4, Iasi, Romania, 2009. IEEE.

[101] A. Kamal and A. M. Youssef. An FPGA implementation of AES with fault analysis

countermeasures. In Proceedings of the International Conference on Microelectronics

(ICM’09), pages 217–220, Marrakech, Morocco, 2009. IEEE.

[102] A. Kamal and A. M. Youssef. An FPGA implementation of the NTRUEncrypt cryp-

tosystem. In Proceedings of the International Conference on Microelectronics (ICM’09),

pages 209–212, Marrakech, Morocco, 2009. IEEE.

[103] A. Kamal and A. M. Youssef. Applications of SAT solvers to AES key recovery from

decayed key schedule images. In Proceedings of the International Conference on Emerg-

ing Security Information, Systems and Technologies (SECURWARE’10), pages 216–220,

Venice/Mestre, Italy, 2010. IEEE Computer Society.

[104] A. Kamal and A. M. Youssef. Enhanced implementation of the NTRUEncrypt algorithm

using graphics cards. In Proceedings of the International Conference on Parallel, Dis-

tributed and Grid Computing (PDGC’10), pages 168–174, Solan, India, 2010. IEEE.

[105] A. Kamal and A. M. Youssef. Fault analysis of the NTRUEncrypt cryptosystem. IEICE

Transactions on Fundamentals of Electronics, Communications and Computer Sciences,

E94-A(4):1156–1158, 2011.

[106] A. Kamal and A. M. Youssef. Cryptanalysis of a GL(r,Zn)-based public key system.

IEICE Transactions on Fundamentals of Electronics, Communications and Computer

Sciences, E95-A(4):829–831, 2012.

[107] A. Kamal and A. M. Youssef. Cryptanalysis of a key exchange protocol based on the en-

domorphisms ring End(Zp × Zp2). Applicable Algebra in Engineering, Communication

and Computing, 2012. Published Online.

149

[108] A. Kamal and A. M. Youssef. Fault analysis of the NTRUSign digital signature scheme.

Cryptography and Communications, Discrete Structures, Boolean Functions and Se-

quences, 4(2):131–144, 2012.

[109] A. Kamal and A. M. Youssef. A scan-based side channel attack on the NTRUEncrypt

cryptosystem. In Proceedings of the International Workshop on Modern Cryptography

and Security Engineering (MoCrySEN’12), Prague, Czech Republic, 2012. IEEE. Ac-

cepted.

[110] J.-P. Kaps. Cryptography for ultra-low power devices. PhD thesis, Worcester Polytechnic

Institute, MA, USA, 2006.

[111] C. H. Kim and J.-J. Quisquater. Fault attacks for CRT based RSA: New attacks, new

results, and new countermeasures. In Proceedings of the International Workshop on

Information Security Theory and Practices (WISTP’07), volume 4462 of Lecture Notes

in Computer Science, pages 215–228, Heraklion, Crete, Greece, 2007. Springer.

[112] H. Kim, S. Hong, and J. Lim. A fast and provably secure higher-order masking of AES

s-box. In Proceedings of the International Workshop on Cryptographic Hardware and

Embedded Systems (CHES’11), volume 6917 of Lecture Notes in Computer Science,

pages 95–107, Nara, Japan, 2011. Springer.

[113] K. H. Ko, J. W. Lee, and T. Thomas. Towards generating secure keys for braid cryptog-

raphy. International Association for Cryptologic Research (IACR), 149, 2007.

[114] K. H. Ko, S.-J. Lee, J. H. Cheon, J. W. Han, J.-S. Kang, and C. Park. New public-

key cryptosystem using braid groups. In Proceedings of the International Cryptology

Conference (CRYPTO’00), volume 1880 of Lecture Notes in Computer Science, pages

166–183, Santa Barbara, CA, USA, 2000. Springer.

[115] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and

other systems.

150

[116] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proceedings of the

International Cryptology Conference (CRYPTO’99), volume 1666 of Lecture Notes in

Computer Science, pages 388–397, Santa Barbara, CA, USA, 1999. Springer.

[117] I. Koren and C. M. Krishna. Fault-tolerant systems. Morgan Kaufmann, San Francisco,

CA, USA, 2007.

[118] E. Lee and J. H. Park. Cryptanalysis of the public-key encryption based on braid groups.

In Proceedings of the International Conference on the Theory and Applications of Cryp-

tographic Techniques (EUROCRYPT’03), volume 2656 of Lecture Notes in Computer

Science, pages 477–490, Warsaw, Poland, 2003. Springer.

[119] M.-K. Lee, J. E. Song, D. Choi, and D.-G. Han. Countermeasures against power analysis

attacks for the NTRU public key cryptosystem. IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, E93-A(1):153–163, 2010.

[120] Y. Liu, K. Wu, and R. Karri. Scan-based attacks on linear feedback shift register based

stream ciphers. ACM Transactions on Design Automation of Electronic Systems, 16(2):

1–15, 2011.

[121] T. Malkin, F.-X. Standaert, and M. Yung. A comparative cost/security analysis of fault

attack countermeasures.

[122] S. A. Manavski. CUDA compatible GPU as an efficient hardware accelerator for AES

cryptography. In Proceedings of the International Conference on Signal Processing and

Communications (ICSPC’07), pages 65–68, Dubai, UAE, 2007. IEEE.

[123] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. Technical

report, Jet Propulsion Laboratory, February 1978.

[124] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied cryptography.

Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, USA, 1996.

151

[125] A. Menezes and Y.-H. Wu. The discrete logarithm problem in GL(n, q). Ars Combina-

toria, 47:23–32, 1997.

[126] T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Examining smart-card security under

the threat of power analysis attacks. IEEE Transactions on Computers, 51(5):541–552,

2002.

[127] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In

Proceedings of Theory of Cryptography Conference (TCC’04), volume 2951 of Lecture

Notes in Computer Science, pages 278–296, Cambridge, MA, USA, 2004. Springer.

[128] S. Min, G. Yamamoto, and K. Kim. Weak property of malleability in NTRUSign.

In Proceedings of the Australasian Conference on Information Security and Privacy

(ACISP’04), volume 3108 of Lecture Notes in Computer Science, pages 379–390, Syd-

ney, Australia, 2004. Springer.

[129] I. Mironov and L. Zhang. Applications of SAT solvers to cryptanalysis of hash functions.

In Proceedings of the International Conference on Theory and Applications of Satisfiabil-

ity Testing (SAT’06), volume 4121 of Lecture Notes in Computer Science, pages 102–115,

Seattle, WA, USA, 2006. Springer.

[130] M. Monteverde. NTRU software implementation for constrained devices. Master’s thesis,

Katholike Universiteit, Leuven, Belgium, 2006.

[131] M. Monteverde. NTRU software implementation for constrained devices. Master’s thesis,

Department of Electrical Engineering–ESAT, Katholieke Universiteit Leuven, Leuven,

Belgium, 2008.

[132] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. In Proceedings of the Design Automation Conference (DAC’01),

pages 530–535, Las Vegas, NV, USA, 2001. ACM.

152

[133] J. A. Muir. Seifert’s RSA fault attack: Simplified analysis and generalizations. In

Proceedings of the International Conference on Information and Communications Se-

curity (ICICS’06), volume 4307 of Lecture Notes in Computer Science, pages 420–434,

Raleigh, NC, USA, 2006. Springer.

[134] C. Mullan. Cryptanalysing variants of Stickel’s key agreement protocol. Mathematical

Cryptology, 4(4):365–373, 2011.

[135] C. Mullan. Some results in group-based cryptography. PhD thesis, Department of Math-

ematics Royal Holloway, University of London, Egham, Surrey, UK, 2011.

[136] T. Müller, F. C. Freiling, and A. Dewald. TRESOR runs encryption securely outside

RAM. In Proceedings of the USENIX Security Symposium, San Francisco, CA, USA,

2011. USENIX Association.

[137] A. Munshi. OpenCL parallel computing on the GPU and CPU.

http://s08.idav.ucdavis.edu/munshi-opencl.pdf, 2008.

[138] A. Myasnikov, V. Shpilrain, and A. Ushakov. Non-commutative cryptography and com-

plexity of group-theoretic problems. Mathematical Surveys and Monographs. American

Mathematical Society, Providence, RI, USA, 2011.

[139] R. Nara, K. Satoh, M. Yanagisawa, T. Ohtsuki, and N. Togawa. Scan-based side-channel

attack against RSA cryptosystems using scan signatures. IEICE Transactions on Funda-

mentals of Electronics, Communications and Computer Sciences, E93-A(12):2481–2489,

2010.

[140] R. Nara, N. Togawa, M. Yanagisawa, and T. Ohtsuki. A scan-based attack based on dis-

criminators for AES cryptosystems. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, E92-A(12):3229–3237, 2009.

153

[141] R. Nara, N. Togawa, M. Yanagisawa, and T. Ohtsuki. Scan-based attack against elliptic

curve cryptosystems. In Proceedings of the Asia and South Pacific Design Automation

Conference (ASP-DAC’10), pages 407–412, Taipei, Taiwan, 2010. IEEE.

[142] P. Q. Nguyen and D. Pointcheval. Analysis and improvements of NTRU encryption

paddings. In Proceedings of the International Cryptology Conference (CRYPTO’02),

volume 2442 of Lecture Notes in Computer Science, pages 210–225, Santa Barbara, CA,

USA, 2002. Springer.

[143] P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU

signatures. In Proceedings of the International Conference on the Theory and Applica-

tions of Cryptographic Techniques (EUROCRYPT’06), volume 4004 of Lecture Notes in

Computer Science, pages 271–288, St. Petersburg, Russia, 2006. Springer.

[144] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of

Control and Information Theory, 15(2):159–166, 1986.

[145] NTRU Cryptosystems. The NTRU public key cryptosystem–a tutorial.

http://www.securityinnovation.com/security-lab/crypto/155.html, 1998.

[146] NVIDIA Developer Zone. Introducing CUDA.

http://developer.nvidia.com/category/zone/cuda-zone, 2010.

[147] R. Odoni, vijay varadharajan, and P. W. Sanders. Public key distribution in matrix rings.

IEE Electronics Letters, 20(9):386–387, 1984.

[148] L. Ordu and S. B. Ors. Power analysis resistant hardware implementations of AES.

In Proceedings of the International Conference on Electronics, Circuits and Systems

(ICECS’07), pages 1408–1411, Marrakech, Morocco, 2007. IEEE.

[149] G. L. Osa. Fast implementation of two hash algorithms on Nvidia CUDA GPU. Mas-

154

ter’s thesis, Department of Telematics, Norwegian University of Science and Technology,

Trondheim, Norway, 2009.

[150] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A side-channel analysis resistant

description of the AES s-box. In Proceedings of the International Workshop on Fast Soft-

ware Encryption (FSE’05), volume 3557 of Lecture Notes in Computer Science, pages

413–423, Paris, France, 2005. Springer.

[151] A. Ottesen. Efficient parallelisation techniques for applications running on GPUs using

the CUDA framework. Master’s thesis, Department of Informatics, University of Oslo,

Oslo, Norway, 2009.

[152] D. Page. Theoretical use of cache memory as a cryptanalytic sidechannel. Technical

report, Computer Science Department, University of Bristol, June 2002.

[153] J. Pipher. Lectures on the NTRU encryption algorithm and digital signature scheme.

http://www.math.brown.edu/ jpipher/grenoble.pdf, 2002.

[154] G. Piret and J.-J. Quisquater. A differential fault attack technique against SPN structures,

with application to the AES and KHAZAD. In Proceedings of the International Work-

shop on Cryptographic Hardware and Embedded Systems (CHES’03), volume 2779 of

Lecture Notes in Computer Science, pages 77–88, Cologne, Germany, 2003. Springer.

[155] E. Prouff and T. Roche. Higher-order glitches free implementation of the AES using

secure multi-party computation protocols. In Proceedings of the International Workshop

on Cryptographic Hardware and Embedded Systems (CHES’11), volume 6917 of Lecture

Notes in Computer Science, pages 63–78, Nara, Japan, 2011. Springer.

[156] J.-J. Quisquater and D. Samyde. ElectroMagnetic analysis (EMA): Measures and

counter-measures for smart cards. In Proceedings of the International Conference on

Research in Smart Cards (E-smart’01), volume 2140 of Lecture Notes in Computer Sci-

ence, pages 200–210, Cannes, France, 2001. Springer.

155

[157] M. Rivain, E. Dottax, and E. Prouff. Block ciphers implementations provably secure

against second order side channel analysis. In Proceedings of the International Work-

shop on Fast Software Encryption (FSE’08), volume 5086 of Lecture Notes in Computer

Science, pages 127–143, Lausanne, Switzerland, 2008. Springer.

[158] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[159] U. Rosenberg. Using graphic processing unit in block cipher calculations. Master’s

thesis, Institute of Computer Science, University of Tartu, Tartu, Estonia, 2007.

[160] W. Schindler. A timing attack against RSA with the Chinese remainder theorem. In

Proceedings of the International Workshop on Cryptographic Hardware and Embedded

Systems (CHES’00), volume 1965 of Lecture Notes in Computer Science, pages 109–124,

Worcester, MA, USA, 2000. Springer.

[161] J.-M. Schmidt and C. Herbst. A practical fault attack on square and multiply. In Proceed-

ings of the International Workshop on Fault Diagnosis and Tolerance in Cryptography

(FDTC’08), pages 53–58, Washington, DC, USA, 2008. IEEE Computer Society.

[162] K. Schramm and C. Paar. Higher order masking of the AES. In Proceedings of the

Cryptographers’ Track at the RSA Conference (CT-RSA’06), volume 3860 of Lecture

Notes in Computer Science, pages 208–225, San Jose, CA, USA, 2006. Springer.

[163] J.-P. Seifert. On authenticated computing and RSA-based authentication. In Proceedings

of the Conference on Computer and Communications Security (CCS’05), Lecture Notes

in Computer Science, pages 122–127, Alexandria, VA, USA, 2005. ACM.

[164] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake,

J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee:

A many-core x86 architecture for visual computing. ACM Transactions on Graphics, 27

(3):18:1–18:15, 2008.

156

[165] A. Shamir. Method and apparatus for protecting public key schemes from timing and

fault attacks. US Patent No. 5991415, 23 November 1999.

[166] A. Shamir and E. Tromer. Acoustic cryptanalysis: On nosy people and noisy machines.

In Proceedings of the EUROCRYPT ramp session, Interlaken, Switzerland, 2004.

[167] Y. Shi, N. Togawa, M. Yanagisawa, and T. Ohtsuki. Robust secure scan design against

scan-based differential cryptanalysis. IEEE Transactions on Very Large Scale Integration

Systems, 20(1):176–181, 2012.

[168] V. Shpilrain. Cryptanalysis of Stickel’s key exchange scheme. In Proceedings of the

International Computer Science Symposium in Russia (CSR08), volume 5010 of Lecture

Notes in Computer Science, pages 283–288, Moscow, Russia, 2008. Springer.

[169] J. H. Silverman. Invertibility in truncated polynomial rings. Technical report, Security

Innovation Company, October 1998.

[170] J. H. Silverman. Almost inverses and fast NTRU key creation. Technical report, Security

Innovation Company, March 1999.

[171] J. H. Silverman and W. Whyte. Timing attacks on NTRUEncrypt via variation in the

number of hash calls. In Proceedings of the Cryptographers’ Track at the RSA Conference

(CT–RSA’07), volume 4377 of Lecture Notes in Computer Science, pages 208–224, San

Francisco, CA, USA, 2007. Springer.

[172] R. Singel. Declassified NSA document reveals the secret history of TEMPES.

http://www.wired.com/threatlevel/2008/04/nsa-releases-se/, 2008.

[173] S. Skorobogatov. Low-temperature data remanence in static RAM. Technical report,

University of Cambridge Computer Laboratory, June 2002.

[174] S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks. In Proceed-

ings of the International Workshop on Cryptographic Hardware and Embedded Systems

157

(CHES’02), volume 2523 of Lecture Notes in Computer Science, pages 2–12, Redwood

Shores, CA, USA, 2002. Springer.

[175] K. Slavin. Public key cryptography using matrices. US Patent No. 7346162, 18 March

2008.

[176] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to cryptographic prob-

lems. In Proceedings of the International Conference on Theory and Applications of Sat-

isfiability Testing (SAT’09), volume 5584 of Lecture Notes in Computer Science, pages

244–257, Swansea, UK, 2009. Springer.

[177] M. Sramka. On the security of Stickel’s key exchange scheme.

[178] E. Stickel. A new method for exchanging secret keys. In Proceedings of the Interna-

tional Conference on Information Technology and Applications (ICITA05), pages 426–

430, Sydney, Australia, 2005. IEEE Computer Society.

[179] R. Szerwinski. Efficient cryptography on graphics hardware. Master’s thesis, Depart-

ment of Electrical Engineering and Information Sciences, Ruhr-University of Bochum,

Bochum, Germany, 2008.

[180] R. Szerwinski and T. Güneysu. Exploiting the power of GPUs for asymmetric cryptog-

raphy. In Proceedings of the Third International Workshop on Cryptographic Hardware

and Embedded Systems (CHES’08), volume 5154 of Lecture Notes in Computer Science,

pages 79–99, Washington, DC, USA, 2008. Springer.

[181] M. Szydlo. Hypercubic lattice reduction and analysis of GGH and NTRU signatures. In

Proceedings of the International Conference on the Theory and Applications of Cryp-

tographic Techniques (EUROCRYPT’03), volume 2656 of Lecture Notes in Computer

Science, pages 433–448, Warsaw, Poland, 2003. Springer.

158

[182] E. Trichina, D. D. Seta, and L. Germani. Simplified adaptive multiplicative masking

for AES. In Proceedings of the International Workshop on Cryptographic Hardware

and Embedded Systems (CHES’02), volume 2523 of Lecture Notes in Computer Science,

pages 187–197, Redwood Shores, CA, USA, 2002. Springer.

[183] B. Tsaban. Combinatorial group theory and cryptography bulletin (CGC bulletin).

http://u.cs.biu.ac.il/ tsaban/CGC/cgc.html.

[184] A. Tsow. An improved recovery algorithm for decayed AES key schedule images. In

Proceedings of the International Workshop on Selected Areas in Cryptography (SAC’09),

volume 5867 of Lecture Notes in Computer Science, pages 215–230, Calgary, Alberta,

Canada, 2009. Springer.

[185] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi. Cryptanalysis of DES imple-

mented on computers with cache.

[186] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi. Cryptanalysis of block ciphers

implemented on computers with cache. In Proceedings of the International Symposium

on Information Theory and Its Applications (ISITA’02), pages 803–806, Xian, China,

2002. IEEE Information Theory Society.

[187] M. I. G. Vasco, A. L. P. del Pozo, and P. T. Duarte. Cryptanalysis of a key exchange

scheme based on block matrices. International Association for Cryptologic Research

(IACR), 553, 2009.

[188] W. Wang and T. Stransky. Stateless key distribution for secure intra and inter-group

multicast in mobile wireless network.

[189] K. Wilhelm. Aspects of hardware methodologies for the NTRU public key cryptosystem.

Master’s thesis, Kate Gleason College of Engineering, Rochester Institute of Technology,

Rochester, NY, USA, 2008.

159

[190] P. Wright and P. Greengrass. Spycatcher: The candid autobiography of a senior intelli-

gence officer. Viking Adult Press, New York, NY, USA, 1987.

[191] C.-K. Wu and E. Dawson. Generalized inverses in public key cryptosystem design. IEE

Computers and Digital Techniques, 145(5):321–326, 1998.

[192] B. Yang, K. Wu, and R. Karri. Scan based side channel attack on dedicated hardware

implementations of data encryption standard. In Proceedings of the International Test

Conference (ITC’04), pages 339–344, Charlotte, NC, USA, 2004. IEEE.

[193] B. Yang, K. Wu, and R. Karri. Secure scan: A design-for-test architecture for crypto

chips. In Proceedings of the Design Automation Conference (DAC’05), pages 135–140,

San Diego, CA, USA, 2005. IEEE.

[194] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon. RSA speedup with Chinese remainder

theorem immune against hardware fault cryptanalysis. IEEE Transaction on Computers,

52(4):461–472, 2003.

[195] B. Zakeri, M. Salmasizadeh, A. Moradi, M. Tabandeh, and M. T. M. Shalmani. Compact

and secure design of masked AES s-box. In Proceedings of the International Conference

on Information and Communications Security (ICICS’07), volume 4861 of Lecture Notes

in Computer Science, pages 216–229, Zhengzhou, China, 2007. Springer.

[196] Y. Zhou and D. Feng. Side-channel attacks: Ten years after its publication and the im-

pacts on cryptographic module security testing. International Association for Cryptologic

Research (IACR), 388, 2005.

160

