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Abstract

Normal form analysis of a mean-field inhibitory neuron model

LOUKIA TSAKANIKAS

In neuroscience one of the open problems is the creation of the alpha rhythm de-

tected by the electroencephalogram (EEG). One hypothesis is that the alpha rhythm

is created by the inhibitory neurons only. The mesoscopic approach to understand

the brain is the most appropriate to mathematically modelize the EEG records of the

human scalp. In this thesis we use a local, mean-field potential model restricted to

the inhibitory neuron population only to reproduce the alpha rhythm. We perform

extensive bifurcation analysis of the system using AUTO. We use Kuznetsov’s method

that combines the center manifold reduction and normal form theory to analytically

compute the normal form coefficients of the model. The bifurcation diagram is largely

organised around a codimension 3 degenerate Bogdanov-Takens point. Alpha rhythm

oscillations are detected as periodic solutions.
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Introduction

The work presented in this thesis has two main components: brain modelling and

normal form analysis. We dedicate Chapter 1 to the presentation of the model and

the brain’s basic functions and Chapters 2 and 3 to dynamical systems and normal

form theory. In Chapter 4 we explain the application of the theory to our model and

make the connection with the brain functions, in particular with the alpha rhythm.

Finally in the conclusion we summarize the method, the theory and the results.

More specifically in Chapter 1 we describe the basic morphology of the brain

and the interaction between its parts, the various approaches used to mathematically

model the brain, in particular the mesoscopic approach and its immediate relation

with the EEG. We present the initial model and its restriction to the inhibitory neuron

population only. This restriction yields a three-variable, autonomous, nonlinear set

of ordinary differential equations that we will analyse by means of dynamical systems

theory.

In Chapter 2 we define dynamical systems and we present stability and bifurcation

theory as well as simplification methods like center manifold reduction and normal

form theory. Specific examples are given for each method.

In Chapter 3 we describe a method to apply center manifold reduction and com-

pute the coefficients of the normal forms of a dynamical system at the same time.

This method was introduced by Kuznetsov [13] and can be applied analytically as

well as numerically to our model.
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In Chapter 4 we describe the application of the method presented in Chapter 3 to

our model. We do the bifurcation analysis of the system and we present the relation

with our initial goal, that is to describe the creation of the alpha rhythm. We show

that the behaviour of our model is largely organized by a degenerate Bogdanov-Takens

bifurcation. We present an explicit example of a bifurcation diagram in which stable

periodic motion generates an alpha peak in the power spectrum.
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Chapter 1

Neuroscientific motivation

1.1 Introduction

Understanding the way the brain functions is an issue that persists since the times

of ancient cultures’ philosophers. The earliest reference to the brain comes from a

papyrus of the 17th century BC, where the symptoms, diagnosis and prognosis of two

patients wounded on the head are described. In the second half of the first millennium

BC Greek philosophers developed theories on the functions of the brain. For example

Aristotle believed that the seat of intelligence is the heart and the brain was a cooling

mechanism of the blood [17]. During the Roman empire the anatomist Galen made

a description of the nervous system and its parts. During the renaissance, Vesalius

and Descartes contributed to the development of neuroscience [17]. Studies of the

brain became more sophisticated after the development of a staining procedure used

to reveal the structures of individual neurons. Santiago Ramón y Cajal used this

technique to formulate the neuron doctrine, that is the hypothesis that the functional

unit of the brain is the neuron [16]. Since then, various experiments, observations

and calculations with the help of technological advances permitted the scientists to

have an acurate description of the neuron and its networks.
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1.2 Brain modeling

As systems seen from outside, brains take inputs in the form of stimuli and give

outputs in the form of logically coherent responses. Neurobiologists usually begin not

with the whole brain but with the smallest functional unit of the brain. For many

purposes this is the neuron [7]. The brain is composed of a great number of neurons,

cells which consist of a collection of structures embedded in a watery substance called

cytoplasm and bounded by a thin layer off a fatty material called the membrane.

Each neuron has a nucleus embedded in the cytoplasm and the expanded region of

the cytoplasm including the nucleus is the cell body or soma. From the soma extend

one or more filaments of two types: the axon and the dendrite. These two types are

distinguished by morphological characteristics and there is only one axon for each

neuron, but a neuron may have several dendrites. The point of connection between

the soma and the axon is called the axon hillock. The dendritic membrane forms

contacts with the axon tips of other neurons, which are the synapses [10].

1.2.1 Microscopic aspect

In the microscopic approach the principal unit that scientists analyze is that of the

neuron and its networks. In general the functional and structural properties of neu-

rons and their local networks are known, so mathematical models have been developed

to describe the activity of a single neuron, its axon and dendrites [7]. In the late 19th

century, Bois-Reymond, Müller and von Helmholtz demonstrated that neurons were

electrically excitable and that their activity affected the state of nearby neurons. The

dendrites receive input from as many as 105 axons tips of other neurons, combine

them and deliver what results to the initial segment of the axon as follows: Electrical

charges produced at the synapses propagate to the soma and create a postsynaptic

potential. If this potential exceeds a threshold value, typically a depolarisation of
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10-15 mV, the neuron generates a brief electrical pulse that is called a spike or action

potential at its axon hillock. The spikes traverse the axon and reach the synapses

that transfer the information to another neuron [6]. It can be shown that at a resting

nerve fibre a small electric potential between its inner and outer side is present. This

potential is called the resting potential. The inner part of the nerve fibre is negatively

charged as compared to the outer liquid. The difference potential is about 70 mV

[10].

There are two major classes of neurons determined by the effect they produce

on other neurons. Synaptic inputs that depolarize the neuron and increase its pulse

rate are called excitatory as are the input neurons and the synapses, and synaptic

inputs that decrease its pulse rate and hyperpolarize the neuron are called inhibitory.

Most neurons receive inputs from both inhibitory and excitatory neurons but their

output is either excitatory or inhibitory but not both [6]. Neurons are able to produce

trains of individual spikes, by which information is exchanged between the neurons.

Scientists believe that correlations between spike trains play an important role in

brain activity [10]. Two kinds of approach are currently being undertaken to develop

models that explain the brain behaviour. One approach rests in data from single

neurons, which are believed to coordinate their firing patterns, so as to constitute

sparsely connected neural nets and nerve cell assemblies. The other approach is

directed toward understanding the formation of neural ensembles with state variables

representing pulse and wave densities that are continuous in time and space [7]. This

approach is called the mesoscopic approach or mean field theory and is the focus of

this thesis.
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1.2.2 Mesoscopic approach and mean field models of the elec-

troencephalogram

The pioneers in understanding how information is conveyed over long distances by

action potentials were Hodgkin and Huxley [21]. In 1952 they presented a mathemat-

ical model for transmission of electrical charges between the axons of a squid, action

potentials, and how they were initiated and propagated. Then Katz’s work revealed

how synapses transfer information from one neuron to another and to effector cells.

Finally in 1972 Wilson and Cowan proposed a model that describes the dynamics

between populations of excitatory and inhibitory neurons. Extensions of this model

are widely used in neuronal modeling and one of this extension proposed by Liley,

Cadush and Dafilis in 1999 is going to be the initial point in this thesis [3].

The mesoscopic approach in modeling the brain functions is closely related to the

electroencephalogram, henceforth EEG. The EEG measures the potential difference

between electrodes placed on the scalp. This difference of electrical activity reflects

the summed activity of thousands or millions of neurons. The detected electrical

activity by the scalp’s EEG varies between 1-40 Hz. This activity has been divided

into bands of frequency that have a characteristic spatial distribution over the scalp

and are associated with different states of brain functions. A famous oscillation

observed is the alpha rhythm whose frequency range is 8-13 Hz and emerges with

the closing of the eyes and relaxation [20]. In figure 1.1 we can see how the EEG

detects this kind of rhythm. Scientists now use some of these particular oscillations,

alpha, beta and gamma rhythms, to make diagnostics on the brain’s state. On the

other hand open questions persist about how the alpha rhythm is created. One of

the hypotheses, that we are going to explore in this thesis, is that the alpha rhythm

is created by the inhibitory neuron population only.

In the mesoscopic approach cortical tissue is treated as a spatial continuum. This

6



Figure 1.1: (Top) Alpha rhythm recorded from a healthy relaxed subject with closed
eyes using an electrode on the neck as reference. Four seconds of data are shown from
four scalp locations. The amplitude is given in microvolts. This EEG was recorded at
the Brain Sciences Institute in Melbourne. (Bottom) The corresponding amplitude
spectra based on the full five minute record reveals dominant activity in the alpha
(8-13 Hz) band. Reproduced from Nunez and Srinivasan (2006) [20].
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approach is more suitable for the description of EEG as it relies on some form of

spatial averaging by implicitly defining a spatial scale while the EEG is a spatial or

population average that depends on the geometry of recording. The mean field models

can be used to explain how local masses of neurons of the brain cortex can organize

their activity when they are destabilized by microscopic sensory inputs. One of the

key findings in support of this approach to neurodynamics is the value of the EEG

as a means of estimating the magnitude of the mesoscopic state variable of neural

populations. The definition of mesoscopic state variables requires consideration of

the fact that the local mean fields that govern these states are created by synaptic

interactions, in which each neuron transmits (in round numbers) to 10000 and receives

from 10000 others. Because the dendritic current manifested in the EEG is formed

by summation in the volume conductor of the local areas of cortex, it is the best

available assay of the local mean field intensities of cortical populations. Moreover,

the surface EEG is by far the better measure of the output of a cortical population,

whereas the activity of its individual neurons is the better measure of the cortical

response to its input [10].

1.3 The model and the simplification

As stated previously we start with the model presented in Liley, Cadush and Dafilis [3]

as an extension of the Wilson and Cowan model. We simplify the model by setting the

spatial derivatives to zero and neglecting the long-range cortical-cortical connections,

as presented in van Veen and Liley [23]. The simplified model can be regarded as

a model of the local mean-field potential, without direct coupling to the rest of the

cortex. The mesoscopic EEG model presented in van Veen and Liley locally describes

the cortical activity by the mean soma membrane potentials of the excitatory and the

inhibitory neuron population, he and hi respectively, along with the mean synaptic
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activities Iee,Iei,Iie and Iii, each modeling the interaction between two populations as

indicated by the subscripts. The first two dynamical equations are

τeḣe = her − he +
heeq − he

|heeq − her|
Iee +

hieq − he

|hieq − her|
Iie

τiḣi = hir − hi +
heeq − hi

|heeq − hir|
Iei +

hieq − hi

|hieq − hir|
Iii (1.1)

where her and hir are the resting potentials, heeq and hieq are the equilibrium po-

tentials and τe and τi are the relaxation time scales. These equations describe the

response of the mean soma membrane of excitatory and inhibitory neuronal popula-

tions as indicated by the subscripts to synaptic current. Now, the synaptic activity

is modeled by the eight following equations considering the local feedforward and

feedback excitatory (Iee, Iei) and inhibitory (Iie, Iii) synaptic activity.

Ïee + 2aİee + a2Iee = Aae[NeeSe(he) + pee]

Ïie + 2bİie + b2Iie = BbeNieSi(hi)

Ïei + 2aİei + a2Iei = Aae[NeiSe(he) + pei]

Ïii + 2bİii + b2Iii = BbeNiiSi(hi) (1.2)

where A and B are the postsynaptic potential peak amplitudes, a and b the synaptic

rate constants and e Euler’s number. Now, excitatory (inhibitory) neurons receive a

total of Nee(Nei) synapses from nearby excitatory neurons and Nie(Nii) synapses from

nearby inhibitory neurons. The functions Sq convert the mean membrane potential

of the neuron populations to an equivalent mean firing rate, and are given by

Sq(hq) = mq

(

1 + exp(−
√

2(hq − θq)/sq)
)−1

9



where q = e, i. In this system of equations the principal parameters are pee and pei, the

excitatory input from distant excitatory cortical and subcortical neurons to excitatory

or inhibitory neurons, according to the subscript. Choosing physiologically admissible

parameters, these equations can reproduce the main features of spontaneous human

EEG. In the study presented by van Veen and Liley [23], when pei is much larger than

pee the only possible limit state is an equilibrium solution of the systems (1.1) and

(1.2), which means that the mean soma potentials attain a certain equilibrium value.

Then, when we increase the value of pee, a periodic solution appears at a certain

frequency, which is the first detection of alpha rhythm. Further increase of pee leads

to irregular behaviour of the mean soma membrane potentials in the alpha band.

Our study was motivated by the hypothesis that the alpha rhythm and the cor-

responding frequencies might be caused by the inhibitory neuron populations of the

brain only. So from the system (1.1) and (1.2) we delete the equations and the terms

which involve excitatory neurons to obtain

τiḣi = hir − hi +
hieq − hi

|hieq − hir|
Iii

Ïii + 2bİii + b2Iii = BbeNiiSi(hi).

We first shift the membrane potential by hir and scale time and potential by τi and

|hieq − hir|, respectively. This leads to

˙̃hi = −h̃i + (sign(hieq − hir) − h̃i)Ĩii

¨̃Iii + 2b̃ ˙̃Iii + b̃2Ĩii =
t̃2i

|hieq − hir|
BbeNiiSi(|hieq − hir|h̃i + hir) =

= B̃b̃eNii
m̃i

1 + exp(−
√

2(h̃i − θ̃i)/s̃i)

10



where

h̃i =
hi − hr

|hieq − hir|
, Ĩii =

Iii

|hieq − hir|
, t̃ =

t

τi

B̃ =
B

|hieq − hir|
, m̃i = τimi, θ̃i =

θi − hir

|hieq − hir|
s̃i =

si

|hieq − hir|
, b̃ = τib

Finally we introduce

x1 = h̃i, x2 = (d/dt̃ + b̃)Ĩii, x3 = Ĩii

which gives the first order system

ẋ1 = −x1 + (σ − x1)x3 + p1

ẋ2 = −b̃x2 +
M̃

1 + exp(−
√

2(x1 − θ̃1)/s̃1)
+ p2

ẋ3 = b̃x3 + x2 (1.3)

where M̃ = B̃b̃eNiim̃i and σ = ±1. The parameter p2 is the inhibitory input to

inhibitory neurons pii and we introduce the parameter p1 to help us throughout our

study of the reduced model. Without loss of generality, we can assume σ to be

positive, because of the symmetry

(x1, x2, x3, σ, p1, p2, b, θ, s) → (−x1, x2, x3,−σ,−p1, p2, b,−θ,−s).
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Chapter 2

Dynamical systems

2.1 Introduction

A dynamical system is one whose state changes with time, usually described by a

differential or a difference equation. These equations characterize the evolution of a

system with respect to time, the parameters and the initial conditions. Examples of

dynamical systems are the mathematical models for the swinging of a clock pendulum

and atmospheric convection. Depending on the type of the differential equation,

ordinary, partial, linear or nonlinear, we can solve analytically or use computational

techniques to approximate the solutions. Solving a differential equation permits us to

know the state of the system at any time in the future or in the past given a starting

point in the state space. In general, however, interesting phenomena are modelled by

differential equations that are impossible to solve. In these cases numerical methods

provide solutions and their dependence on a particular initial point. Bifurcation

analysis permits us to know the evolution of such solutions in a range of parameter

values.

So, one of the considerations of dynamical systems theory is to find solutions of

the system that do not change with respect to time called steady states or fixed

12



points. Other important solutions are periodic solutions, that is solutions that repeat

themselves after a certain amount of time. Then we are interested in finding the

dependence of these solutions on small perturbations and on variation of the param-

eters. This part of the theory is called stability theory and deals with the asymptotic

behaviour of nearby orbits of solutions. In particular, we seek the set of points, called

the attractor, towards which the solutions of a dynamical system tend in positive

time. Furthermore, bifurcation theory studies the change in the number, the type

and the properties of solutions of dynamical systems with respect to changes made

in the parameters.

2.2 Stability theory

We start by introducing basic concepts of stability theory using a fairly simple linear

dynamical system:

ẋ = Ax, x ∈ R
n (2.1)

where A is an n×n matrix with constant coefficients. By a solution of (2.1) we mean

a flow φ(t, x0), depending on time t and the initial condition x0. The origin is stable

if any solution starting close to 0 at a given time stays close to it for all later times.

It is asymptotically stable if nearby solutions converge to it when t → ∞. By the

theory of Ordinary Differential Equations, henceforth ODE, we know that solutions

of (2.1) are given by φ(t, x0) = etAx0 and that the topological properties of the flow

depend on the eigenvalues of the matrix A. In particular, if all the eigenvalues have

negative real part φ(t, x0) → 0 and if at least one eigenvalue has positive real part

|φ(t, x0)| → ∞.

To proceed with more general theory, we consider a nonlinear vector field:

13



ẋ = f(x), x ∈ R
n, x(0) = x0 (2.2)

Definition 2.1. A fixed point of (2.2) is a point x̄ ∈ R
n such that f(x̄) = 0.

Recall also by the theory of ODE that for smooth functions f(x), the solution to

this problem is defined locally in some neighbourhood of the fixed point. So a local

flow φ(t, x0) is defined in analogy to the one defined in the linear case. To discuss

stability of x̄, we need to study nearby solutions, so it seems reasonable to study the

associated linear system near x̄:

ξ̇ = Df(x̄)ξ, ξ ∈ R
n (2.3)

where Df = [
∂fi

∂xj

] is the Jacobian matrix of the first partial derivatives of the vector

valued function f and x = x̄ + ξ, |ξ| ≪ 1. Two very important results of dynamical

systems theory, the Hartman-Grobman theorem and the stable manifold theorem of

a fixed point, give us the relation between the solutions of the nonlinear and the

associated linearised problem in a neighbourhood of a fixed point.

Theorem 2.1. (Hartman-Grobman) [8] If Df(x̄) has no zero or purely imaginary

eigenvalues then there is a homeomorphism h defined on some neighbourhood U of x̄

in R
n locally taking orbits of the nonlinear flow φ(t, x0) of (2.2), to those of the linear

flow etDf(x̄) of (2.3). The homeomorphism preserves the sense of orbits and can also

be chosen to preserve parametrization by time.

In other words, the number of eigenvalues with positive and negative real parts

determine the topological equivalence of the flow near x̄. If there are eigenvalues with

zero real parts, then the flow near x̄ cannot be determined by linearization. When

all the eigenvalues of the matrix Df have nonzero real parts, the corresponding fixed

point is called an hyperbolic fixed point. If all of the eigenvalues of Df(x̄) have negative

14



real parts, the point is asymptotically stable and is called a sink. When all of the

eigenvalues of the matrix have positive real parts x̄ is said to be a source and it

is asymptotically unstable. Finally when some, but not all, of the eigenvalues have

positive real parts, while the rest of them have negative real parts, the associated fixed

point is called a saddle point. For further details on the classification of equilibrium

points see [19]. Closed orbits which lead to the same saddle point in positive and

negative time are called homoclinic orbits. Orbits that lead to different saddle points

in positive and negative time are called heteroclinic orbits as defined in [11].

When at least one of the eigenvalues has a zero real part, the fixed point is

called nonhyperbolic. The study of the cases with nonhyperbolic fixed points is called

bifurcation theory and is going to be presented later on.

With this being said, we can represent R
n as the direct sum of the three subspaces

Es, Eu and Ec defined by Es = span{p1,p2, ...,ps}, Eu = span{ps+1,ps+2, ...,ps+u}

and Ec = span{ps+u+1,ps+u+2, ...,ps+u+c}, where p1,p2, ...,ps are the corresponding

(generalised) eigenvectors corresponding to the eigenvalues of Df having negative

real part, ps+1,ps+2, ...,ps+u are the (generalised) eigenvectors corresponding to the

eigenvalues of Df having positive real part and ps+u+1,ps+u+2, ...,ps+u+c are the

(generalised) eigenvectors corresponding to the eigenvalues of Df having zero real

part.

These subspaces are called the stable, unstable and center subspaces respectively.

The names reflect the fact that in linear systems the orbits starting in Es decay to

zero as t → ∞, orbits starting in Eu become unbounded as t → ∞ and orbits starting

in Ec neither grow nor decay exponentially as t → ∞. The stable manifold theorem

explains the relation between the before mentioned subspaces of the linearised system

and the ones of the initial nonlinear one.

Theorem 2.2. (Stable Manifold Theorem) [8] Suppose that ẋ = f(x) has a hyperbolic

fixed point x̄. Then there exist local stable and unstable manifolds W s
loc(x̄), W u

loc(x̄)
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of the same dimension s and u as those of the eigenspaces Es and Eu of (2.3), and

tangent to Es, Eu at x̄. W s
loc(x̄), W u

loc(x̄) are as smooth as f .

The manifolds are invariant and the solutions starting on these manifolds tend to

the fixed point when t → ∞ and t → −∞ respectively.

Before we continue, we define another important class of solutions of (2.2):

Definition 2.2. A solution of (2.2) is said to be periodic of period T if there exists

T > 0 such that x(t) = x(t + T ) for all t ∈ R. By the period of an orbit we mean the

smallest possible T > 0 such that the definition holds.

2.3 Bifurcation theory

The word ”bifurcation” is used to indicate a qualitative change in the features of a

system, such as the number and type of solutions, under the variation of one or more

parameters on which the considered system depends. Locations in the phase and

parameter space where these changes occur, are called bifurcation points. A bifurca-

tion that requires at least m control parameters to occur is called a codimension-m

bifurcation. We will start by discussing briefly codimension-one bifurcations.

We will consider a one-dimensional vector field which depends on a single param-

eter

ẋ = f(x, µ), x ∈ R, µ ∈ R (2.4)

and suppose that it has a fixed point at (x, µ) = (0, 0). Following the theory of the

previous section, we have to linearise f near (0, 0) to determine the stability of the

fixed point. The linear vector is given by

ξ̇ = Dxf(0, 0)ξ, ξ ∈ R.
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If the fixed point is hyperbolic, we know that its stability is determined by the

values of the real parts of the eigenvalues of Df(x̄) and since they are all with values

far from zero, changing slightly µ will not change the nature of stability of the fixed

point. That is why we are concerned about cases where the fixed point is nonhyper-

bolic, that is when Dfx has eigenvalues with real part equal to zero. So in general, we

consider that f(0, 0) = 0 and
∂f

∂x
(0, 0) = 0, that is one zero eigenvalue and one with

nonzero real part. Further characterization of this type of bifurcation results from

the geometry of the curve of fixed points in the µ-x plane in the neighbourhood of

the fixed point. Further discussion on how these conditions are derived, one can find

in the books by Guckenheimer and Holmes [8] and Wiggins [24]. We say that (2.4)

undergoes a saddle-node bifurcation if
∂f

∂x
(0, 0) = 0 and

∂2f

∂x2
(0, 0) 6= 0. Geometri-

cally that means that as we vary µ a stable and an unstable solution of the system

coincide on the bifurcation point and disappear. Remark that for certain values of

the parameter there are no equilibrium points.

In figure 2.1 we see how we represent this in what we call a bifurcation diagram. In

this (µ, x) plane, the continuous line represents the curve of stable solutions whereas

the dotted line, the curve of unstable solutions. As we change µ the two solutions

come closer till they coincide and disappear.

Other types of bifurcation occur involving systems that have a zero eigenvalue at

the bifurcation point. In one case we have two equilibrium points for all parameter

values, that exchange stability at the bifurcation point called a transcritical bifurca-

tion. The other case involves the exchange of stability of a solution and the creation

of a pair of solutions appearing only on one side of the bifurcation. We do not get into

details on these bifurcations because they occur in symmetrical dynamical systems.

Now, let us consider a little more complicated case, to define the next most simple

way that a fixed point can be nonhyperbolic. Consider
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Figure 2.1: Saddle-node bifurcation in the ẋ = µ + x2 system. Figure reproduced
from Scholarpedia [15].

ẏ = g(y, µ), y ∈ R
2, µ ∈ R, (2.5)

and suppose that it has a fixed point at (y, µ) = (0, 0). We linearise g near (0, 0) to

determine the stability and how it changes when we change µ. So, we consider

ξ̇ = Dyg(0, 0)ξ, ξ ∈ R
n.

A Hopf bifurcation, also called Andronov-Hopf bifurcation, is said to occur at (0, 0)

if Dyg has a pair of purely imaginary eigenvalues ±iω and there is a transversal or

nonzero speed crossing of the imaginary axis, hence called a transversality condition.

The transversality condition can be formulated by dλ
dµ

6= 0 at µ = 0 where λ ± iω

is the pair of imaginary eigenvalues for µ ≃ 0. When the above two conditions are

satisfied, a periodic solution of period 2π
ω

is born at (0, 0).

Definition 2.3. An Andronov-Hopf bifurcation can be supercritical or subcritical

depending on the stability of the periodic solution that is born. When the peri-

odic solution that is created is stable then the bifurcation is called supercritical and

subcritical when the periodic solution is unstable.
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Figure 2.2: Supercritical Andronov-Hopf bifurcation in the plane. Figure reproduced
from Scholarpedia [14].

In the bifurcation diagram (2.2), the solutions now are represented in the plane

since we are working in a two-dimensional system. We consider the variation of the

parameter µ from the negative to the positive values. The bifurcation is supercritical

since the solution that is created is stable.

2.4 Simplification of dynamical systems

2.4.1 Center manifold reduction

The center manifold theorem provides a means for systematically reducing the di-

mension of the state spaces which need to be considered when analysing bifurcations

of a given type. A center manifold is an invariant manifold tangent to the center

eigenspace. The local dynamical behaviour ”transverse” to the center manifold is

relatively simple, since it is controlled by the exponentially contracting or expanding

flows in the local stable or unstable manifolds. We cannot define the center manifold

in terms of the asymptotic behaviour of solutions in it, since solutions in the center

manifold can be expanding or contracting. In order to define them we have to analyze

higher order terms of the system. The center manifold reduction is used to reduce

the order of the dynamical system first, and then the method of the normal forms is
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used to simplify the (nonlinear) structure of the reduced system.

A center manifold need not be unique and is generally less smooth than the vector

field.

Theorem 2.3. (Center Manifold Theorem) [8] Let f be a Cr vector field on R
r

vanishing at the origin (f(0) = 0) and let A = Df(0). Divide the spectrum of A into

three parts, σs, σc and σu with

Re(λ)































< 0 if λ ∈ σs,

= 0 if λ ∈ σc,

> 0 if λ ∈ σu.

Let the (generalized) eigenspaces of σs, σc and σu be Es,Ec, and Eu, respectively.

Then there exist Cr stable and unstable invariant manifolds W u and W s tangent to

Eu and Es at 0 and a Cr−1 center manifold W c tangent to Ec at 0. The manifolds

W u, W s and W c are all invariant under the flow of f . The stable and unstable

manifolds are unique, but W c need not be.

Now consider the system

x′ = Ax + f(x, y), y′ = By + g(x, y), (x, y) ∈ R
n × R

m (2.6)

where all the eigenvalues of the matrix A have zero real parts and all the eigenvalues

of the matrix B have non zero real parts. The functions f and g are sufficiently

smooth, they contain elements of O(|x|r|y|k), O(|x|s) and O(|y|p) where r, k ≥ 1 and

s, p ≥ 2 and they satisfy the following conditions:

f(0, 0) = 0, Df(0, 0) = 0, g(0, 0) = 0, Dg(0, 0) = 0

where Df is the Jacobian matrix of f and Dg the Jacobian matrix of g. The general
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theory states that there exists a center manifold y = h(x) for (2.6) and that the

equation on the center manifold

u′ = Au + f(u, h(u)), u ∈ R
n

near u = 0 determines the dynamics of (2.6) near (x, y) = (0, 0) [1]. If we replace

y = h(x) into the second equation of the system (2.6) and using the chain rule, we

obtain

Dh(x)[Ax + f(x, h(x))] − Bh(x) − g(x, h(x)) = 0.

This is a partial differential equation that probably is more difficult to solve than

our initial problem but the theory states that close to (0, 0) we can approximate

the center manifold as a Taylor series up to its degree of smoothness and up to any

desired degree of accuracy depending on the bifurcation that we are studying and the

smoothness of the vectorfield.

2.4.2 Normal forms

Assume that the center manifold theorem has been applied and we consider a flow

restricted on the center manifold. The next step is to simplify the flow, eliminating

the nonlinear parts, in order to proceed with the bifurcation analysis. The resulting

simplified vector fields are called normal forms. The idea is to introduce successive

coordinate changes in order to simplify a general vector field.

So, consider again the nonlinear vector field (2.2) where f is Cr, with r to be

specified as we go along. Suppose (2.2) has a fixed point at x̄ = 0. We first divide

the system to its linear and nonlinear part and write (2.2) as follows

ẋ = Df(0)x + f̄(x), (2.7)
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where f̄(x) ≡ f(x)−Df(0)x. Then under the transformation x = Ty, where T is the

matrix that transforms the matrix Df(0) into Jordan canonical form, (2.7) becomes

ẏ = T−1Df(0)Ty + T−1f̄(Ty). (2.8)

Denoting the Jordan canonical form of Df(0) by J , we have J ≡ T−1Df(0)T , and

we define F (y) ≡ T−1f̄(Ty) so that (2.8) is alternately written as

ẏ = Jy + F (y), y ∈ R
n. (2.9)

Now, we proceed with the task of simplifying the nonlinear part, F (y). We Taylor

expand F (y), so that (2.9) becomes

ẏ = Jy + F2(y) + F3(y) + · · · + Fr−1(y) + O(|y|r), (2.10)

where Fi represent the ith terms in the Taylor expansion of F (y). We next introduce

the coordinate transformation y = z + h2(z), where h2(z) is second order in z and

(2.10) becomes

ẏ = (I + Dh2(z))ż = Jz + Jh2(z)+

+ F2(z + h2(z)) + F3(z + h2(z)) + · · · + Fr−1(z + h2(z)) + O(|z|r), (2.11)

where I is the n×n identity matrix. Note that each term Fk(z +h2(z)), 2 ≤ k ≤ r−1

can be written as Fk(z) + O(|z|k+1) + · · · + O(|z|2k), so that (2.11) becomes

(I + Dh2(z))ż =

= Jz + Jh2(z) + F2(z) + F̃3(z) + · · · + F̃r−1(z) + O(|z|r), (2.12)
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where the terms F̃k(z) represent the O(|z|k) terms, modified by the transformation.

Now, for z sufficiently small, (I + Dh2(z))−1 exists and can be represented in a

series expansion as follows

(I + Dh2(z))−1 = I − Dh2(z) + O(|z|2) (2.13)

Substituting (2.13) in (2.12) gives

ż = Jz + Jh2(z) − Dh2(z)Jz + F2(z) + F̃3(z)+

· · · + F̃r−1(z) + O(|z|r) (2.14)

Recall that the goal of this exercise was to simplify the nonlinear part of the vector

field (2.9). So, we can choose h2(z) in order to eliminate F2(z), which would mean

choose h2(z) such that

Dh2(z)Jz − Jh2(z) = F2(z). (2.15)

First, it should be clear that h2(z) and F2(z) can be viewed as elements of H2, where

Hk is the linear vector space formed by the set of all vector-valued monomials of

degree k. Consequently the map h2(z) 7−→ Dh2(z)Jz − Jh2(z) is a linear map of H2

into H2. So, solving (2.15) is like solving Ax = b from linear algebra. Thus, (2.14)

can be simplified to

ż = Jz + F r
2 (z) + F̃3(z) + · · · + F̃r−1(z) + O(|z|r)

where F r
2 are the O(|z|2) terms that are in the space complementary to LJ(h2(z)),

where LJ(h2(z)) ≡ −(Dh2(z)Jz − Jh2(z)). So, if LJ(H2) = H2, then all second-

order terms can be eliminated. We repeat the same method to eliminate the O(|z|3)
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terms and the procedure can be iterated up until the desired order. We generalize

the procedure to obtain the following normal form theorem.

Theorem 2.4. (Normal Form Theorem) [24] By a sequence of analytic coordinate

changes (2.9) can be transformed into

ż = Jz + F r
2 (z) + · · · + F r

r−1(z) + O(|z|r), (2.16)

where F r
k (z) ∈ Gk, 2 ≤ k ≤ r − 1 and Gk is a space complementary to LJ(Hk).

Equation (2.16) is said to be in normal form.

Some normal forms resulting from the reduction on the center manifold cannot

exhibit all possible bifurcations of the equilibria of the initial system. In order to

explore all possible behaviours close to the original system, we add a finite number of

small parameters to the normal form. If the original parameters satisfy all transver-

sality conditions and the new ones do as well, then there exists an one-to-one map

between the two. This procedure is called unfolding, an idea that is used in general

to examine characteristics of a system that initially are neglected [18]. The number

of the unfolding parameters is always equal to the codimension of the bifurcation.

Now suppose that the vector field (2.2) depends on a parameter µ and that the

equilibrium undergoes a saddle-node bifurcation at µ = 0, then the restriction of

(2.2) in a neighbourhood of µ = 0 to the one-dimensional center manifold is locally

topologically equivalent to the normal form

ẇ = β1 + aw2

with a 6= 0. Observe that the normal form predicts the collision of two equilibria

when the parameter β1 passes zero and that the sign of the coefficient a determines

on which side of the w-axis the equilibria exist.
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If the equilibrium undergoes a Hopf bifurcation at µ = 0, the normal form of the

restriction of (2.5) to the two-dimensional center manifold has the form

ẇ1 = βw1 − w2 ± (w1 + w2)
2w1

ẇ2 = w1 + βw2 ± (w1 + w2)
2w2

The system undergoes a Hopf bifurcation at β = 0. Depending on the sign in front

of the cubic terms of the normal form we have two kinds of Hopf bifurcations. The

system has always an equilibrium point at the origin which is stable for β < 0 and

unstable for β > 0. Now, when the sign in front of the cubic terms is positive there

is an unstable periodic solution which disappears when β crosses zero from negative

to positive values and the equilibrium solution at the origin is unstable at the critical

parameter value. This bifurcation is called subcritical Hopf bifurcation. When the

sign is negative, a stable periodic solution appears when β crosses zero from negative

to positive values and the equilibrium solution is stable at the critical parameter

value. This bifurcation is called supercritical.

Note that for systems that depend on a parameter vector µ, the procedure is the

same for an extended system. For the center manifold reduction we have a function

y = h(x, µ) and for the normal form calculations we seek coefficients that depend

on the vector of parameters µ. However this can lead to computations involving

thousands of coefficients of the multivariate Taylor expansions.

Example 2.1. Consider

ẋ = x2 + y

ẏ = x − y + α
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At ᾱ = 1
4

we have a fixed point at (x̄, ȳ) = (−1
2
,−1

4
). First we translate this fixed

point to the origin by puting x = −1
2

+ x̃, y = −1
4

+ ỹ and α = 1
4

+ ã to obtain:

˙̃x = (
1

2
+ x̃)2 − 1

4
+ ỹ = x̃2 + ỹ − x̃

˙̃y = −1

2
+ x̃ +

1

4
− ỹ +

1

4
+ α̃ = x̃ − ỹ + α̃

We can drop the tildes, to work with the following system of equations

ẋ = x2 + y − x

ẏ = x − y + α (2.17)

which has a fixed point at (0, 0) with α = 0. The conditions for a general system

to undergo a saddle-node bifurcation are that there is a unique curve of solutions

that passes through (0, 0) at α = 0 and that the curve of solutions lies locally on one

side of α = 0 on the α-(x, y) space. It is trivial to see that the curve of solutions is

uniquely defined by (x, y)T = (±
√
−α,±

√
−α − α)T only for negative values of α.

Now, we linearise this system about the critical fixed point and we calculate the

eigenvalues and the eigenvectors of the Jacobian matrix. We obtain λ1 = 0 and λ2 =

−2 with corresponding eigenvectors (1, 1) and (−1, 1). We introduce the following

transformation x = Tz where T is the matrix whose columns are the eigenvectors,

we can write the system as follows:

ż =






!

ż1

ż2






=







0 0

0 −2













z1

z2






+







1
2
(z1 − z2)

2

−1
2
(z1 + z2)

2







By the center manifold theorem, there exists a center manifold for (2.17) which can
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locally be represented as z2 = h(z1) about the fixed point. We are going to compute

this manifold in Example 3.1.

2.5 Codimension-2 bifurcations

In the previous sections we studied equilibrium points and the changes on their topo-

logical properties as we vary one parameter of the system. As previously mentioned

the codimension of a bifurcation is the number of parameters that have to be varied

for the bifurcation to occur, so the bifurcations that we have seen up until now are all

codimension-one bifurcations. We can learn many things by studying codimension-

two bifurcations. In many cases interesting dynamics depend on more that one pa-

rameter. So, if we allow two parameters to vary, we take in account codimension-two

bifurcation points which are points in the two-parameter plane where several curves of

codimension-one bifurcations intersect transversally or tangentially. A codimension-

two bifurcation can be detected along a curve of codimension-one bifurcation point

as the change in the eigenvalues structure of the Jacobian matrix of the system or as

the vanishing of a coefficient of the corresponding normal form of the system reduced

on the center manifold. In general consider

ẋ = f(x, µ) x ∈ R
n, µ ∈ R

m, (2.18)

where f is smooth.

2.5.1 The double zero eigenvalue

The first case that we will study is detected when the number of eigenvalues of the

Jacobian matrix that are zero becomes two. This case, the double zero eigenvalue, was

studied simultaneously and independently by Bogdanov and Takens [11] and is the

case for which the theory is the most complete. The Bogdanov-Takens, henceforth,
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BT bifurcation occurs in systems whose Jacobian matrix can be transformed to







0 1

0 0






.

Assume that at µ = 0 the system (2.18) has a critical point (x1, x2) = (0, 0) and

that the Jacobian matrix evaluated at the critical values has a zero eigenvalue of

multiplicity two, λ1,2 = 0. As discussed in [8], the normal form of this problem can

be written as follows

ẋ1 = x2

ẋ2 = a2x
2
1 + b2x1x2 (2.19)

Assuming that a2b2 6= 0 we proceed to the unfolding of this degenerate vector field to

obtain

ẏ1 = y2

ẏ2 = β1 + β2y1 + y2
1 ± y1y2. (2.20)

For parameters near the critical point, we have two equilibrium points, a saddle and a

non-saddle one which collide in a saddle-node bifurcation. Then the non-saddle point

undergoes a Hopf bifurcation and a period orbit is created. The orbit homoclinic

to the saddle point exists in some parameter range and then vanishes via a saddle

homoclinic bifurcation as illustrated in the diagram 2.3.

28



Figure 2.3: Bogdanov-Takens bifurcation in planar system: ẏ1 = y2, ẏ2 = β1 +β2y1 +
y2

1 − y1y2. Figure reproduced from Scholarpedia [9].

2.5.2 Fold-Hopf bifurcation

The second case is detected again by a change of the eigenspace of the Jacobian

matrix. This time we have one zero eigenvalue and a pair of purely imaginary eigen-

values. So, in this case, the fold-Hopf, henceforth FH, bifurcation occurs when the

linear part of the Jacobian matrix can be transformed to













0 −ω 0

ω 0 0

0 0 0













.

Later on we will prove that this case is not possible in the model that we analyse in

this thesis.

2.6 Codimension-3 bifurcation

Codimension-3 bifurcations occur when three degeneracy conditions hold simultane-

ously. These conditions can be three zero eigenvalues of the Jacobian matrix or two
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eigenvalues equal to zero and one of the coefficients of the normal form also. This is

called the degenerate BT case.

2.6.1 Degenerate Bogdanov-Takens

In this thesis we are going to explore the case where the a2 coefficient of the normal

form (2.19) is equal to zero. If a2 = 0, a generic three-parameter unfolding of (2.19)

is locally topologically equivalent to

ξ̇0 = ξ1,

ξ̇1 = β1 + β2ξ0 + β3ξ1 + a3ξ
3
0 + b2ξ0ξ1 + b′3ξ

2
0ξ1. (2.21)

This bifurcation is called a degenerate BT bifurcation with a double equilibrium

or cusp point. Actually in this case the BT point coincides with the cusp point,

that is the point where two saddle-node curves meet tangentially. For an example

of the bifurcation analysis of this case one can see also Baer, Kooi, Kuznetsov and

Thieme [22]. Furthermore, assuming that b2 ≥ 0, we can distinguish three cases

topologically different according to the sign of a3, b′3 and of the expression b2
2 + 8a3.

This last condition determines the stability of the equilibrium and gives respectively

the saddle, focus and elliptic case as explained in [4].
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Chapter 3

Practical computation of normal

forms on center manifolds

3.1 Introduction

As we discussed previously Taylor expansions are used to explicitly compute equations

of a system restricted to the center manifold up to a desired degree. These equations

can then be normalized to eliminate as many nonlinear parts as possible. Recall

also that this algorithm requires a linear transformation that puts the linear part of

the system into Jordan form. Many authors have published computations of normal

forms of two-dimensional systems up to fifth order. In addition there exist algorithms

that allow these coefficients to be computed up to an arbitrary order using symbolic

manipulation software.

The method that will be present below was initially developed by Coulet and

Spiegel in [2] and then applied to all codimension-two bifurcations of equilibria of

ODE’s in a paper by Kuznetsov [12]. The method was used again in a paper by

Kuznetsov that gave explicit computational formulas for normal forms on center man-

ifolds at degenerate BT bifurcations up to fourth order in n-dimensional systems [13].
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In this algorithm there is no preliminary linear transformation performed and the

approximation of the center manifold and the normalization are combined using only

critical (generalised) eigenvectors of the Jacobian matrix and its transpose.

3.2 The method

Consider (2.18) and suppose it has an equilibrium at the origin where µ = 0. Write

ẋ = F (x) = f(x, 0), x ∈ R
n (3.1)

with

F (x) = Ax+
1

2
B(x, x)+

1

6
C(x, x, x)+

1

24
D(x, x, x, x)+

1

120
E(x, x, x, x, x)+O(‖x‖6),

where A = fx(0, 0) has nc eigenvalues with zero real part and

Bi(x, y) =
n

∑

j,k=1

∂2Fi(ξ)

∂ξj∂ξk

∣

∣

∣

∣

∣

ξ=0

xjyk

Ci(x, y, z) =
n

∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl

∣

∣

∣

∣

∣

ξ=0

xjykzl

Di(x, y, z, v) =
n

∑

j,k,l,m=1

∂4Fi(ξ)

∂ξj∂ξk∂ξl∂ξm

∣

∣

∣

∣

∣

ξ=0

xjykzlvm

Ei(x, y, z, v, w) =
n

∑

j,k,l,m,s=1

∂5Fi(ξ)

∂ξj∂ξk∂ξl∂ξm∂ξs

∣

∣

∣

∣

∣

ξ=0

xjykzlvmws

for i = 1, 2, . . . , n. Note that the multilinear terms now called Bi, Ci, Di and Ei were

denoted Fi in the section describing the computation of normal forms. Now restrict

the system to its nc dimensional center manifold parametrized by w ∈ R
nc
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x = H(w), H : R
nc → R

n. (3.2)

The restricted equation can be written as

ẇ = G(w), G : R
nc → R

nc . (3.3)

Substitution of (3.2) and (3.3) into (3.1) gives the following homological equation

Hw(w)G(w) = F (H(w)). (3.4)

Now expand the functions G and H in (3.4) into Taylor series

G(w) =
∑

|ν|≥1

1

ν!
gνw

ν , H(w) =
∑

|ν|≥1

1

ν!
hνw

ν ,

where ν is a multivariable component and assume that the equation (3.3) is put into

normal form up to a certain order. Equating the coefficients of equal order terms

of the left and right hand side of (3.4), we find gν and hν , the coefficients of the

normal form and those of the Taylor expansion for H(w) respectively. Collecting the

coefficients of the wn-terms in (3.4) gives a linear system for the coefficient hν ,

Ahν = Rν . (3.5)

Here the matrix A is the Jacobian matrix of F , while Rν depends on the coefficients

of G and H of order less or equal to |ν|, as well on the corresponding terms of the

Taylor expansion for F . For example, for the saddle-node case, define q and p such

that

Aq = 0, ĀT p = 0, 〈p, q〉 = 1 (3.6)
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the null-vectors of A and the adjoint matrix ĀT respectively. Assume that Rν in-

volves only known quantities. System (3.5) has a solution, if and only if Fredholm’s

solvability condition 〈p,Rν〉 = 0 holds.

In particular, when Rν depends on the unknown coefficient gν of the normal form,

A is singular and the above solvability condition gives the expression for gν . On the

other hand, the unique solution hν to (3.5) satisfying 〈p, hν〉 = 0 can be obtained by

solving the following non-singular (n + 1)-dimensional system.







A q

p̄T 0













hν

s






=







Rν

0






. (3.7)

Actually we write hν = A+Rν .

Then we have H(w) = wq + 1
2
h2w

2 + O(|w|3), ẇ = aw2 + O(|w|3), w ∈ R and

F (H(w)) = A(wq+
1

2
h2w

2)+
1

2
B(wq+

1

2
h2w

2, wq+
1

2
h2w

2) =
1

2
Ah2w

2 +
1

2
w2B(q, q).

So the homological equation is

aqw2 =
1

2
(Ah2 + B(q, q))w2

So, Ah2 = −B(q, q) + 2aq and by the solvability condition

〈p,−B(q, q) + 2aq〉 = −〈p,B(q, q)〉 + 2a〈p, q〉 = 0

and we can find

a =
1

2
〈p,B(q, q)〉.

Example 3.1. Recall example 2.1
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In this case we have p = (1, 0)T , q = (1, 0)T the null vectors,

A =







0 0

0 −2






, ż = Az +

1

2







(z1 − z2)
2

−(z1 + z2)
2







z = H(w) = qw + h2w
2 + O(|w|3) and ẇ = aw2 + O(|w|3).

So the homological equation becomes

Hwẇ = F (H(w))

(q + h2w)aw2 = A(qw +
1

2
h2w

2) +
1

2
B(H(w), H(w))

So, considering the w2-coefficients, we get the following equation aq = 1
2
Ah2+

1
2
B(q, q)

and with the solvability condition we obtain 2a〈p, q〉 − 〈p,B(q, q)〉 = 0 and a =

1
2
〈p,B(q, q)〉 = 1

2
〈(1, 0), (−1, 0)〉 = −1

2
.

3.3 Bogdanov-Takens

To apply the method for the BT case, we need to keep in mind that we now have

two parameters and a double zero eigenvalue, so there exist two linearly independent

(generalised) eigenvectors, q0,1 ∈ R
n, such that Aq0 = 0, Aq1 = q0 and two similar

vectors p1,0 ∈ R
n of the transposed matrix AT such that AT p1 = 0 and AT p0 = p1.

We can select these vectors to satisfy 〈q0, p0〉 = 〈q1, p1〉 = 1 and 〈q1, p0〉 = 〈q0, p1〉 = 0.

Now the homological equation has the form

Hw0
ẇ0 + Hw1

ẇ1 = F (H(w0, w1)), (3.8)

where H(w0, w1) = w0q0 + w1q1 + 1
2
h20w

2
0 + h11w0w1 + 1

2
h02w

2
1 + O(‖(w0, w1)‖)3, with

hjk ∈ R
n, and the corresponding normal form
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ẇ0 = w1

ẇ1 = aw2
0 + bw0w1

Substituting these expressions into (3.8) and collecting the w2
0-terms, gives the linear

system for h20

Ah20 = 2aq1 − B(q0, q0) (3.9)

The solvability condition for this system is

〈p1, 2aq1 − B(q0, q0)〉 = 2a〈p1, q1〉 − 〈p1, B(q0, q0)〉 = 0

which gives

a =
1

2
〈p1, B(q0, q0)〉

Now taking the scalar product of both sides of (3.9) with p0 we obtain

〈p1, h20〉 = −〈p0, B(q0, q0). (3.10)

On the other hand, the w0w1-terms in (3.8) give the linear system Ah11 = h20 + bq1 −

B(q0, q1). Its solvability condition gives

〈p1, h20 + bq1 − B(q0, q1)〉 = 〈p1, h20〉 + b〈p1, q1〉 − 〈p1, B(q0, q1)〉 = 0

Taking into consideration (3.9), we get

b = 〈p0, B(q0, q0)〉 + 〈p1, B(q0, q1)〉
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3.3.1 Degenerate Bogdanov-Takens

The same technique was used by Kuznetsov to derive similar expressions for all the

normal form coefficients of degenerate BT bifurcation [13]. He applied the same

technique in the case where the coefficient a = 0. Recall that if a = 0, a generic three

parameter unfolding of the normal form is topologically equivalent to

ξ̇0 = ξ1,

ξ̇1 = β1 + β2ξ0 + β3ξ1 + a3ξ
3
0 + b2ξ0ξ1 + b′3ξ

2
0ξ1.

Assuming also that b2 is positive, Kuznetsov gives the three possible cases depend-

ing on the sign of the normal form coefficient of the cubic term. More precisely if a3

is positive we have a saddle case, if it is negative, the expression b2
2 + 8a3 is negative

and b′3 is different from zero, we have a focus case. Finally a3 is negative and b2
2 +8a3

positive we have an elliptic case. Later on we are going to use these expressions to

compute the normal form coefficients of the system we are studying in this thesis and

perform a similar analysis.
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Chapter 4

Bifurcation analysis of the mean

field model

4.1 Introduction

In this chapter we will apply the simplification techniques and the computation meth-

ods that we introduced in the previous chapter to do the bifurcation analysis of the

model derived in the first chapter. Our goal is to describe the alpha rhythm using

the model presented in van Veen and Liley [23] restricted to the inhibitory neuron

population only.

So, dropping the tildes and the subscripts, and substituting the expression 1
1+exp(−

√
2(x1−θ)/s)

by S we have the following three-dimensional system of ODEs depending on six pa-

rameters. If we want to solve for the equilibrium of these equations, we have in total

nine unknowns and three equations.

ẋ1 = −x1 + (1 − x1)x3 + p1

ẋ2 = −bx2 + MS + p2

ẋ3 = −bx3 + x2 (4.1)
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We are going to describe any possible interactions of saddle-node and Hopf bi-

furcations of the solutions of this system. To do so, we first find expressions for the

fixed points, that means the points where the three components of the vector field

become zero. We then impose further restrictions according to the eigenspace of the

bifurcation that we want to study. Like this, if we want to explore a codimension-3

bifurcation, our unknowns have to satisfy in total six algebraic conditions, so we can

define six unknowns with respect to the other three. In this model, by a series of

simplifications we will write five unknowns as a function of x1 and we establish an

equation which explains the relation between the six of them.

4.2 Linearisation about the fixed points

We first calculate the Jacobian matrix of this system:

J =













−1 − x3 0 1 − x1

MS ′ −b 0

0 1 −b













.

Then we calculate the characteristic polynomial of the Jacobian matrix and extract

the constant and the coefficients of the zeroth, first, second and third order terms

c0 = Det(J) = −b2 − x3b
2 + MS ′ − MS ′x1

c1 = −λ1λ2 − λ1λ3 − λ2λ3 = −2b − 4bx3 − b2

c2 = Tr(J) = −1 − x3 − 2b

c3 = −1 (4.2)
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4.3 Codimension-two bifurcations

4.3.1 Fold-Hopf bifurcation

It is easy to prove that in this system we cannot have a case of FH bifurcation.

Recall that this bifurcation occurs at a point where the Jacobian matrix evaluated at

the bifurcation point has an eigenvalue equal to zero and a pair of purely imaginary

eigenvalues. So, the c0 and c2 coefficients of the characteristic polynomial have to

be zero and since c3 is negative, c1 has to be negative too for the FH bifurcation to

occur. So, if we isolate b from the equation c2 = 0 and we replace it in c1 we obtain

c̃1 =
3

4
(1 + x3)

2

which is a perfect square and is positive for any value of x3.

4.3.2 Bogdanov-Takens bifurcation

By a series of simplifications that we will describe right after, we find simple expres-

sions for the coordinates of the fixed point as well as the parameters p1 and p2 with

respect to M , S, S ′ and b at the point where the BT bifurcation occurs. We find

also an equation that explains the relation between all parameters and the functions

S and S ′. More precisely we find

ˆ̄x2 = −1

2
b(2 + b)

ˆ̄x3 = −1 − 1

2
b

p̂1 =
1

4

4MS ′ − b4

MS ′

p̂2 = −b2 − MS − 1

2
b3
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and

f̂(x1,M, θ, s, b) =
1

4

b(−b3 − 2MS ′ + 2MS ′x1)

MS ′ = 0.

In order to find these expressions, we start by considering the fixed point, that is

the point where the vector field is zero. We start by expressing the fixed points x̄2

and x̄3 with respect to the other parameters equating the corresponding equations in

(4.1) with zero.

x̄2 =
MS + p2

b

x̄3 =
MS + p2

b2
(4.3)

We continue the simplification by replacing the expression for x̄3 in the first equation

of (4.1) and the equations of (4.2). Like this we obtain equations depending only on

x1 and the rest of the parameters as follows

f(x1,M, θ, s, b, p2, p1) = −x1 +
(1 − x1)(MS + p2)

b2
+ p1 = 0 (4.4)

and

c0 = −b2 − MS − p2 + MS ′ − MS ′x1

c1 = −b

(

2 +
2(MS + p2)

b2
+ b

)

(4.5)

Recall from the theory presented that the condition to have a BT bifurcation is

a double zero eigenvalue of the Jacobian matrix. So, the c0 and the c1 coefficients of

the characteristic polynomial should be zero. We use these two equations to express

p1 and p2 with respect to the rest of the parameters for the BT bifurcation to occur.

We isolate p2 from the equation c1 = 0 and we replace it in the expression for c0 to
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obtain

p̂2 = −b2 − MS − 1

2
b3 (4.6)

and

c̃0 =
b3

2
+ MS ′ − 2MS ′x1. (4.7)

Now we isolate x1 from the equation c̃0 = 0 and we replace the expression in (4.4)

to obtain

f̃(M, θ, s, b, p1, p2) = b3 + 2MS ′ + MSb + p2b − 2p1MS ′ = 0 (4.8)

Recall that this equation is the first equation of the vector field (4.1) where we have

replaced the expression for the third coordinate of the fixed point x̄3. Thus we can

isolate p1 from the equation f̃ = 0 and in the resulting expression we replace the

equation (4.6) to obtain

p̂1 =
1

4

4MS ′ − b4

MS ′ . (4.9)

We replace the expression found for p̂2 in the expressions for the fixed points x̄3 and

x̄2 to obtain

ˆ̄x2 = −1

2
b(2 + b)

ˆ̄x3 = −1 − 1

2
b (4.10)

We replace the expressions for the two parameters (4.9) and (4.6) in (4.4) to obtain

the following equation

f̂(x1,M, θ, s, b) =
1

4

b(−b3 − 2MS ′ + 2MS ′x1)

MS ′ = 0. (4.11)

Now we have expressions for the two parameters p1 and p2 and for the second

and third coordinates of the fixed points that depend only on the unknowns b, M , x1
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and the function S ′ which depends on θ, s and x1. The equation (4.11) gives us the

relation between all these unknowns.

Finally, we can isolate S ′ from the equation f̂ = 0 and we replace the expression

in the matrix J as well as the expression for ˆ̄x3 to obtain

A =













1
2
b 0 1 − x1

1
2

b3

−1+x1

−b 0

0 1 −b













.

4.4 Codimension-three bifurcations

4.4.1 Degenerate Bogdanov-Takens bifurcation

In order to analyse better the behavior of our system, we need to go to higher codi-

mension. BT gives us a two parameter organising portrait, the degenerate BT will

organise three parameter unfoldings and thus gives us more information. First, we

need to determine the conditions where the BT point coincides with the cusp point.

According to [4], this happens when the second order coefficient of the normal form

is equal to zero and then we can distinguish three subcases depending on the sign of

the third order coefficient of the normal form. We follow [13] where computations of

the normal form coefficients are presented for degenerate BT bifurcations. In order

to proceed with the analysis we consider the following normal form

ẇ0 = w1 (4.12)

ẇ1 = a2w
2
0 + b2w0w1 + a3w

3
0 + b3w

2
0w1 + a4w

4
0 + b4w

3
0w1 + O(‖(w0, w1)‖5)
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4.4.2 Computation of the normal form coefficients

In this section we use the matrix A as it resulted by the simplfications done in section

4.3.2, that is the Jacobian matrix of the system at the point where the BT bifurcation

occurs, and Kuznetsov’s method described in chapter 3 to find expressions for the

normal form coefficients. We find the following expressions for the coefficients

a2 = −2

3

(

b +
MS ′′(−1 + x1)

2

b2

)

b2 =
4

9

−b3 + 2MS ′′ − 4MS ′′x1 + 2MS ′′x2
1

b3

a3 =
4

81

1

b6
(8M2S ′′2x4

1 − 9MS ′′′b3x3
1 − 32M2S ′′2x3

1 − 14b3MS ′′x2
1 + 27MS ′′′b3x2

1 +

+ 48M2S ′′2x2
1 − 27MS ′′′b3x1 + 28b3MS ′′x1 − 32M2S ′′2x1 + 5b6 − 14b3MS ′′ +

+ 8M2S ′′2 + 9MS ′′′b3)

These relatively simple expressions along with the expressions for the coordinates

of the fixed point and the parameters permit us to find explicit values for the posi-

tion of the degenerate BT point and also conclude that only the saddle case of the

degenerate BT bifurcation is possible in this system.

According to the method described in chapter 3, the only elements we need to

calculate the normal form coefficients of the BT case is two linearly independent

(generalised) eigenvectors q01 ∈ R
3 such that Aq0 = 0, Aq1 = q0 and two similar

vectors p01 of the transposed matrix AT such that AT p0 = 0 and AT p1 = p0.

Doing the necessary calculations we find that A has a double zero and −3
2
b as

eigenvalues, as we expected. The eigenvectors are respectively

v1 = r1

(

−2
1 + x1

b
, b, 1

)T

and v3 =

(

1

2

−1 + x1

b
,−1

2
b, 1

)T

.
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The corresponding eigenvectors of the transposed matrix are

w1 = r2

(

− b

−1 + x1

,
1

b
, 1

)T

and w3 =

(

1

2

b

−1 − x1

,−2

b
, 1

)T

.

Now we solve Av1 = v2 and AT w1 = w2 and we obtain the respective generalised

eigenvectors with t1 and t2 as free parameters

v2 =

(

2
2r1x1 − bt + bt1x1 − 2r1

b2
, bt1 + r1, t1

)T

and

w2 =

(

t2,−
−t2 + t2x1 + 2r2

b2
,−−t2 + t2x1 + r2

b

)T

.

Recall that the vectors have to verify the following conditions 〈q0, p0〉 = 〈q1, p1〉 = 1

and 〈q1, p0〉 = 〈q0, p1〉 = 0. We define the coefficients r1, r2 and the free parameters

t1, t2 in order for the vectors to verify these conditions. Thus, we obtain

r1 = 1, r2 = − b

3
, t1 = − 2

3b
, and t2 = 0

and the following vectors:

q0 =

(

2(−1 + x1)

b
, b, 1

)T

, q1 =
1

3

(

8
x1 − 1

b2
, 1,−2

b

)T

, and

p0 =
1

3

(

0,
2

b
, 1

)T

, p1 =
1

3

(

b2

−1 + x1

,−1,−b

)T

.

Then we calculate the Bi and the Cj terms as described in section 3.2. In our case

only the terms B1(x1, x3) = ∂2F1

∂x1∂x3

= −1 = B1(x3, x1), B2(x1, x1) = ∂2F2

∂x2

1

= MS ′′ and

C2(x1, x1, x1) = ∂3F2

∂x3

1

= MS ′′′ survive, the rest being equal to zero. Now, following

the theory presented in chapter 3 and [13] we calculate:

a2 =
1

2
〈p1, B(q0, q0)〉 = −2

3

(

b +
MS ′′(−1 + x1)

2

b2

)

(4.13)
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and

b2 = 〈p0, B(q0, q0)〉 + 〈p1, B(q0, q1)〉

=
4

9

−b3 + 2MS ′′ − 4MS ′′x1 + 2MS ′′x2
1

b3
(4.14)

Now, in order to compute the third order coefficient a3 we need the vector h20.

Recall that Ah20 = 2a2q1 − B(q0, q0), and we can compute the right hand side of

this expression and solve with respect to h20 and a free parameter, say r3. Ac-

cording to [13] h20 has to satisfy 2〈p0, h20〉 − 2〈p0, B(q0, q1)〉 − 〈p1, B(q1, q1)〉 = 0

and with this we determine the expression for the free parameter and we calculate

a3 = 1
6
〈p1, C(q0, q0, q0)〉 + 1

2
〈p1, B(h20, q0)〉 − a2

2
〈p1, B(q1, q1)〉 which gives

a3 =
4

81

1

b6
(8M2S ′′2x4

1 − 9MS ′′′b3x3
1 − 32M2S ′′2x3

1 − 14b3MS ′′x2
1 + 27MS ′′′b3x2

1+

+ 48M2S ′′2x2
1 − 27MS ′′′b3x1 + 28b3MS ′′x1 − 32M2S ′′2x1 + 5b6 − 14b3MS ′′+

+ 8M2S ′′2 + 9MS ′′′b3) (4.15)

Now, let’s go back to our system and the unknowns. To locate the degenerate BT

point, the last two conditions to impose are the vanishing of the first component of

the vector field and of the second order coefficient of the normal form. We use the

equations (4.11) and (4.13) to determine implicitly ˆ̄x1 and M̂ the expressions of the

fixed point and the parameter M in order to have the degenerate BT bifurcation.

ˆ̄x1 = −2S ′ − S ′′

S ′′

M̂ = −1

4

S ′′b3

S ′2 (4.16)

Replacing these two expressions in the expression (4.15) for the third order coefficient
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of the normal form, we find the following expression

a3 = −4

9

−3S ′′2 + 2S ′′′S ′

S ′′2 (4.17)

If we replace the expression for S ′, S ′′ and S ′′′ we obtain â3 = 4
9

(1+E)2

(E−1)2
which is a

positive definite expression, where E = exp(−
√

2(x1 − θ)/s). Thus we arrive to the

conclusion that only the saddle case of the degenerate BT bifurcation occurs in this

model.

4.4.3 Alpha rhythm

Recall now that our goal was to describe the alpha rhythm. In order to illustrate

the organisation of our model around the degenerate BT point, we give an example

using the following set of parameters: (b, θ, s,M) = (2.5, 1.5, 0.5, 150). We introduce

these values in AUTO and we do parameter continuation to explore the organisation

of the system as we expected it by the bifurcation analysis. In graph 4.1 we give an

example of the unfolding near the degenerate BT point, in order to be able to see

clearly the organisation. We can see a series of various bifurcations: In green the

saddle-node curve and in red the Hopf bifurcation curve uniting the two BT points.

The black line defines the set of parameters where the homoclinic orbit exists. Note

that the degenerate BT point is the point where the two BT points coincide with the

cusp point. We can compare this figure with the figure where the saddle-node case is

illustrated in [4] and we can see that all the elements are present as predicted by the

normal form analysis.

In addition, as we can see in figure 4.1 when p2 ≤ −b2, all orbits seem to be

bounded and there exists at least one stable equilibrium. Note that one stable equi-

librium goes to infinity when p2 = −b2. Furthermore, for p2 > −b2 in one case all

orbits diverge, situation that occurs in regions labeled 1 and 2. In the other case,
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Figure 4.1: Bifurcation diagram at p1 = 0.8751 and p2 = −50.6385

some orbits converge to an equilibrium, situation that occurs in region 4, or to a

periodic orbit, which is the case in the region 3 while others diverge.

In our case, we observe a stable periodic solution in the region labeld 3 in the

graph 4.1. Then we illustrated it in the graph 4.2 of the time series of hi with some

additive noise in p2. We can see a periodical variation of the inhibitory neurons

potential between around −55 and −40 mV.

What is more important is that in this example we actually detect oscillations that

vary in the range of the alpha rhythm. If we fix τi at 40 ms, which is a physiologically

reasonable value, then the period of the solution lies in the interval (80, 120) ms which

is (12.5, 8.3) Hz.

Furthermore, in the graph 4.3 we can see how the signal of the inhibitory neurons
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Figure 4.2: Time series of hi with noise in p2 at p1 = 1.03 and p2 = −75

potential, hi, is distributed in function of the frequency. We can clearly see a peak

around 10 Hz and then around 25 Hz. We then superimposed to this graph the power

spectrum with noise on p2.

In our case all the parameters that we used to analyse the model, if we scale them

to their real dimension, we see that they vary into physiologically logical ranges as

described in [5]. In the following table we present the parameters, the values that

we used in this thesis scaled to their real dimension and the physiologically logical

ranges as described in [5].
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parameters value used MIN MAX Units

hir -65 -80 -60 mV
τi 40 5 150 ms
hieq -75 -90 hir-5 mV
B 0.2 0.1 2 mV
b 62.5 10 500 s−1

Nii 111 100 1000 -
mi 0.1 0.05 0.5 ms−1

θi -50 -55 -40 mV
si 5 2 7 mV

Table 4.1: The parameters, the values used and their physiologically logical range

Figure 4.3: Power spectrum of the time series with noise on p2 at p1 = 1.03 and
p2 = −75
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Conclusion

In this thesis we explored an open question in neuroscience which is the generation of

the alpha rhythm in the brain. This rhythm is an energy peak at around 10 Hz in the

power spectrum of the signal detected between electrodes placed in the scalp. In other

words, it is a common signal that we see in the EEG. For our analysis we used a mean

field model which is better suited to describe the EEG in contrast with single-neuron

models. In fact this model describes how local masses of neurons interact when they

are destabilized by sensory inputs.

More precisely we used a simplification of a model proposed by Liley, Cadush

and Dafilis [3] and then we simplified it more neglecting the long-range cortical-

cortical connections and putting the spatial derivatives to zero as proposed in van

Veen and Liley [23]. We base our analysis on the hypothesis that the alpha rhythm

is generated by interaction between the inhibitory neurons only. Thus we consider

only the equations that describe these connections and we obtain a three dimension

system of nonlinear ordinary differential equations.

We then use center manifold reduction and normal form theory to simplify the

equations. Actually we present Kuznetsov’s method to calculate the normal form

coefficients which combines the center manifold reduction and the calculation of the

normal form coefficients. Applying it to our equations we surprisingly obtain very

simple algebraic expressions for each one of them and the parameters of the system.

We compute them and we use them to find the position of the degenerate BT point.
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With further analysis we prove that in this system only the saddle-node case is possible

according to the analysis presented in [4].

We then introduce the values that we found in AUTO and doing parameter con-

tinuation we explore the organisation of the system around the degenerate BT point.

We find a stable periodic solution whose nondimensional period lies in the interval

(2, 3). If we put τi at 40 ms which a physiologically normal value, we get a period in

the interval (80, 120) ms which is in (8.3, 15) Hz, where we usually detect the alpha

rhythm. Furthermore, we see that the values that we used if converted in the corre-

sponding dimensional values, they are physiologically admissible values as described

in [5].

We conclude by presenting a numerical example where the alpha rhythm is de-

tected as a stable periodic orbit. We also give an example of the organisation of our

system close to the degenerate BT point.
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