










Figure 4.3: AFS state variables using proposed controller

Figure 4.3 shows simulation results for x(0) =
[
0.15 0.1 0.5 −0.2

]T
as the initial con-

ditions. It can be clearly seen in the figure that flutter was effectively suppressed as desired.

Remark 4.3.1. The active flutter suppression problem illustrates, while there is a solution

to LMIs (4.1) and (4.2) -for this specific example- there is also a solution to LMIs (3.16)

and (3.17). Moreover, the designed controllers based on this solution yield to even better

simulation results.

4.3.2 Unicycle Path Following

In this part, we consider the path following example from [30]. The objective of this

example is to design a controller that makes a cart on the xy plane follow the straight line

y = 0 with a constant velocity u0 = 1m/s. It is assumed that a controller has already been

designed to maintain a constant forward velocity. The carts path is then controlled by the

torque T about the z-axis according to the following dynamics:
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Figure 4.4: Unicycle Path Following Example


ψ̇

ẏ

ṙ

=


0 0 1

0 0 0

0 0 −k
I




ψ

y

r

+


0

u0 sin(ψ)

0

+


0

0

1
I

T, (4.47)

where ψ is the heading angle with time derivative r, I = 1kgm2 is the moment of inertia

of the cart with respect to the center of mass, k = 0.01Nms is the damping coefficient, and

T is the control torque. Assume the trajectories can start from any possible initial angle in

the range ψ0 ∈ [−3π/5,3π/5] and any initial distance from the line. The function sin(ψ)

is approximated by a PWA function (see [22]) yielding a PWA slab system as follows

ẋ =


0 0 1

0.2891 0 0

0 0 −0.01

x+


0

−0.4061

0

+


0

0

1

T if x ∈R1

ẋ =


0 0 1

0.9069 0 0

0 0 −0.01

x+


0

−0.0180

0

+


0

0

1

T if x ∈R2

(4.48)
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ẋ =


0 0 1

0.9927 0 0

0 0 −0.01

x+


0

0

1

T if x ∈R3

ẋ =


0 0 1

0.9069 0 0

0 0 −0.01

x+


0

0.0180

0

+


0

0

1

T if x ∈R4

ẋ =


0 0 1

0.2891 0 0

0 0 −0.01

x+


0

0.4061

0

+


0

0

1

T if x ∈R5

(4.49)

with five regions defined in the following

R1 =
{

x ∈ R3 | −3π

5 < x1 <−π

5

}
R2 =

{
x ∈ R3 | −π

5 < x1 <− π

15

}
R3 =

{
x ∈ R3 | − π

15 < x1 <
π

15

}
R4 =

{
x ∈ R3 | π

15 < x1 <
π

5

}
R5 =

{
x ∈ R3 | π

5 < x1 <
3π

5

}
.

First we attempted to derive control laws using the relaxation method [4]. Unfortu-

nately, using different values for α in the range of

0.0001 < α < 10,

we were not able to find any solution to the LMIs (4.1) and (4.2).

On the other hand, we can easily find a solution to LMIs (3.16) and (3.17). The

controller design process, using the proposed method, for this example is as follows:

First we define

γ = 0.6 α = 0.5, (4.50)

and then we assign

S2 = 0.1B−1
2i

= 0.1. (4.51)
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Using (4.50), (4.51) and solving LMIs (3.16) and (3.17), S1 is obtained as

S1 =
[
0.8655 0.8222.

]
(4.52)

Therefore, the sliding surface defined in (3.19) for this problem is

σ(x) =
[
0.8655 0.8222 0.1

]
x. (4.53)

After computing σ(x) and using (3.15), we are able to derive control laws for all five

regions. These PWA controllers are as in the following

T1 =−
[
2.377 0 8.645

]
x−6

[
0.8655 0.8222 0.1

]
x∥∥∥[0.8655 0.8222 0.1
]

x
∥∥∥ +3.339 (4.54)

T2 =−
[
7.456 0 8.645

]
x−6

[
0.8655 0.8222 0.1

]
x∥∥∥[0.8655 0.8222 0.1
]

x
∥∥∥ +0.148 (4.55)

T3 =−
[
8.162 0 8.645

]
x−6

[
0.8655 0.8222 0.1

]
x∥∥∥[0.8655 0.8222 0.1
]

x
∥∥∥ (4.56)

T4 =−
[
7.456 0 8.645

]
x−6

[
0.8655 0.8222 0.1

]
x∥∥∥[0.8655 0.8222 0.1
]

x
∥∥∥ −0.148 (4.57)

T5 =−
[
2.377 0 8.645

]
x−6

[
0.8655 0.8222 0.1

]
x∥∥∥[0.8655 0.8222 0.1
]

x
∥∥∥ −3.339 (4.58)

where T1 for example, is the designed affine controller for region R1. Figure 4.5 shows the

simulation results for this example with x(0) =
[
π/2 0.5 0

]T
as the initial conditions.

Figure 4.6 also demonstrates how the unicycle converges to the line y = 0. The trajectories

of the PWA closed-loop system are shown in Figure 4.7. As one can see, the trajectories

of the system first converge to the sliding surface and then slide to the origin.

Remark 4.3.2. The unicycle path following example, is in fact consistent with Theo-

rem 4.2.2 for wide range of α ∈ (0.001,10). In other words, while there was no solution to

the LMIs (4.1) and (4.2), LMIs (3.16) and (3.17) yielded to a solution for arbitrary value

of α within the same range.

59



Figure 4.5: Time responses for unicycle path following problem

Figure 4.6: Distance of the unicycle from the y=0 line
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Figure 4.7: Trajectories of the unicycle and the designed sliding surface
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Figure 4.8: Trajectories of the unicycle and the designed sliding surface

Figure 4.9: Trajectories of the unicycle and the designed sliding surface
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4.4 Summary

This chapter shows that for every solution to the LMIs resulting from the previous LMI

approaches, there exists a solution for the LMIs obtained from the proposed method. Fur-

thermore, it is shown that while previous convex controller synthesis methods have no

solutions to their LMIs for some examples of PWA systems, the approach proposed in

this thesis yields a solution for these examples. Finally, the comparisons between the

proposed method and the relaxation method is also demonstrated through some real-life

applications. Application to active control of flutter suppression, which is considered a

hard problem in aerospace control, showed while the relaxation approach led to a high

frequency simulation results, the proposed approach was able to actively suppress flutter

in a wing section. Finally, it was shown that the designed controllers using the proposed

approach, made the cart trajectory converge to the desired straight line in the unicycle path

following problem, whereas the relaxation approach led to no solutions to its LMIs. How-

ever, the PWA class that we are considering in this work is still conservative. The special

structure of the matrix Bi, the invertibility of the matrix B2i and the partitioning of the slab

regions based on only x1 are some of the restrictions that we need to take into account for

the defined class.
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Chapter 5

Controller Synthesis of Piecewise-Affine

Systems with Time-Delay

5.1 Introduction

While time-delay control of linear systems is a well-studied subject, unfortunately, its

extension to piecewise-affine (PWA) systems has not received many research contribu-

tions. The only available conducted research in this area, investigate the analysis problem

rather than the controller synthesis problem, see [65, 41, 2], and therefore, none of these

mentioned references address the controller synthesis problem for such systems. Conse-

quently, there is no convex formulation for controller synthesis of PWA time-delay systems

in the existing literature. In this chapter of the thesis we will extend the proposed method

in Chapter 3 to the case where a constant time-delay is involved in the dynamics of the

PWA system and will formulate this problem as a convex program based on LMIs. The

simulation results for a numerical example will also demonstrate the effectiveness of the

approach.
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5.2 Preliminaries

Consider a piecewise-affine system with time-delay described as

ẋ(t) = Aix(t)+Ad
j x(t− τ)+ai +Biu(t), x(t) ∈Ri (5.1)

where x(t)∈Rn is the state at time t, u(t)∈Rp the control input and assume that a forward

invariant set X ⊂ Rn is partitioned into M polytopic cells Ri, i ∈ I = {1, . . . ,M} such

that∪M
i=1Ri =X , Ri∩R j = /0 where Ri denotes the closure of Ri (see [22] for generating

such partition). The constant τ is a positive known delay.

Following Chapter 3, a slab region is defined as

Ri = {x | βi < λ
T x < βi+1} (5.2)

where λ ∈ Rn, λ 6= 0 and βi, βi+1 ∈ R, i = 1, . . . ,M. The slab region Ri can also be cast

as a degenerate ellipsoid

Ri = {x | ‖Lix+ li‖< 1} (5.3)

where

Li = 2λ
T/(βi+1−βi), (5.4)

li =−(βi+1 +βi)/(βi+1−βi). (5.5)

A PWA system whose regions are slabs is called a PWA slab system [30].

5.3 Controller Synthesis

Consider the following class of PWA slab systems with time-delay

ẋ(t) = Aix(t)+Ad
j x(t− τ)+ai +

 0

B2i

u(t), x(t) ∈Ri (5.6)

where u ∈ Rp, B2i ∈ Rm×p and m ∈M = {1, · · · ,n−1}, m≥ p.
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We can rewrite equations (5.6) for x(t) ∈Ri in the following formẋ1(t)

ẋ2(t)

=

A11i A12i

A21i A22i

x1(t)

x2(t)

+
Ad

11 j
Ad

12 j

Ad
21 j

Ad
22 j

x1(t− τ)

x2(t− τ)

+
a1i

a2i

+
 0

B2i

u(t),

(5.7)

where x1 ∈ Rn−m, x2 ∈ Rm. Assume further that in this class of PWA systems, the slab

regions are only functions of x1. Therefore, the definition of slab regions (3.3) can be

rewritten as

Ri =
{

x | ‖Lix+ li‖ =
∥∥∥[L1i 0

]
x+ li

∥∥∥ = ‖L1ix1 + li‖ < 1
}

(5.8)

where LT
1i ∈ Rn−m. This chapter proposes a new method to formulate PWA time-delay

controller synthesis for system (5.7) as a convex feasibility problem.

Theorem 5.3.1. Assuming that either B2i is invertible or B2i = B2 is full rank, the PWA

controller

u =− (S2B2i)
−1[S1(A11ix1(t)+A12ix2(t)+Ad

11 j
x1(t− τ)+Ad

12 j
x2(t− τ)+a1i)

+S2(A21ix1(t)+A22ix2(t)+Ad
21 j

x1(t− τ)+Ad
22 j

x2(t− τ)+a2i)

+ γ
S1x1(t)+S2x2(t)
‖S1x1(t)+S2x2(t)‖

],

(5.9)

for x(t) ∈Ri, i = 1, . . . ,M, exponentially stabilizes system (5.7) defined in a forward in-

variant set X if given γ > 0, τ > 0, ε > 0 and S2, there exist Q = QT > 0, µi > 0, and

Y = S1Q, satisfying the following LMIs

• If 0 ∈Ri


Ωi0 τ

M

0


τ

[
MT 0

]
−τQ

< 0 (5.10)

• If 0 /∈Ri
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

 A11iQ−A12iS
†
2Y +QAT

11i

−Y T S†T
2 AT

12i
+ εQ−µia1iaT

1i

 (−µia1ilT
i +QLT

1i) Ad
11 j

Q−Ad
12 j

S†
2Y

(−µia1ilT
i +QLT

1i)
T µi(1− lT

i li) 0

QAd
11 j

T −Y T S†
2

T
Ad

12 j

T 0 −εQ


< 0 (5.11)



−
[
N −N 0

]
−


NT

−NT

0


 τω2i τN

τωT
2i

−τQ 0

τNT 0 −τQ


≤ 0 (5.12)

where

Ωi0 =



A11iQ−A12iS
†
2Y +QAT

11i

−Y T S†T
2 AT

12i
+ εQ

 Ad
11 j

Q−Ad
12 j

S†
2Y τQAT

11i
−Y T S†T

2 AT
12i

(Ad
11 j

Q−Ad
12 j

S†
2Y )T −εQ τ(Ad

11 j
Q−Ad

12 j
S†

2Y )T

τA11iQ−A12iS
†
2Y τAd

11 j
Q−Ad

12 j
S†

2Y −τQ



+


−
[
M −M

]
−

 MT

−MT

 0

0 0


(5.13)

ω2i =


QAT

11i
−Y T S†

2
T

AT
12i

QAd
11 j

T −Y T S†
2

T
Ad

12 j

T

aT
1i


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with

S†
2 = ST

2 (S2ST
2 )
−1

N = QNQ

M = Q0MQ

Q =


Q 0 0

0 Q 0

0 0 1


Q0 =

Q 0

0 Q


and N ∈ R(2(n−m)+1)×(n−m) and M ∈ R2(n−m)×(n−m).

Proof. The initial procedure of the proof is almost similar to the proof of Theorem 3.3.1.

Consider a surface of the form

σ(x(t)) = Sx(t) = 0 (5.14)

where

S =
[
S1 S2

]
(5.15)

with S1 ∈ Rp×(n−m) and S2 ∈ Rp×m, where p is the number of the inputs to (5.7). In order

to make σ(x(t)) = 0 an attractive invariant set, we define a candidate Lyapunov function

of the form

V (σ(x(t))) =
1
2

σ
T (x(t))σ(x(t)). (5.16)

Note that, although V (σ(x(t))) is implicitly based on x(t), it is not a Lyapunov function for

x(t), but it is rather a Lyapunov function for σ(x(t)). As a function of σ(x(t)), V (σ(x(t)))

is obviously positive definite because it is a norm. In order to have finite-time convergence

to σ(x(t)) = 0, according to [70] and [71] one needs to ensure

V̇ (σ(x(t)))≤−µ ‖σ(x(t))‖ (5.17)
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where µ > 0. Note that, the Lie derivative of the Lyapunov function in (5.16) is

V̇ (σ(x(t))) =
∂V (σ(x(t)))

∂σ(x(t))
σ̇(x(t)) = σ

T (x(t))σ̇(x(t)). (5.18)

We design σ(x(t)) such that

σ̇(x(t)) =−γ

(
σ(x(t))
‖σ(x(t))‖

)
(5.19)

with γ ≥ µ > 0, and the time rate of change of the Lyapunov function in (5.16) will be

V̇ (σ(x(t))) =−γσ
T (x(t))

(
σ(x(t))
‖σ(x(t))‖

)
=−γ ‖σ(x(t))‖ ≤ −µ ‖σ(x(t))‖ ,

(5.20)

which verifies (5.17). Using (5.7), (5.14) and (5.15) one can write

σ̇(x(t)) = Sẋ(t) = S1(A11ix1(t)+A12ix2(t)+Ad
11 j

x1(t− τ)+Ad
12 j

x2(t− τ)+a1i)

+S2(A21ix1(t)+A22ix2 +Ad
21 j

x1(t− τ)+Ad
22 j

x2(t− τ)+a2i)+(S2B2i)u(t)

(5.21)

Since B2i is either invertible or constant for all i∈I and full rank, S2B2i is invertible

(for example with the choice S2 = BT
2 when B2i = B2), and replacing the control law (5.9)

into (5.21) ensures that (5.20) is verified. Therefore, the target surface σ(x(t)) = 0 is made

an attractive invariant set. We now show that the trajectories converge to this target surface

in finite time. Observe that (5.20) is equivalent to

V̇ (σ(x(t))) =−γ
√

2V
1
2 (σ(x(t))) (5.22)

for the Lyapunov function defined in (5.16). This is a differential equation. Assuming

V (σ(x(t0))) as the initial condition, the solution to (5.22) can be found as

V
1
2 (σ(x(t))) =V

1
2 (σ(x(t0)))−

√
2γ

2
(t− t0). (5.23)

One now can see that

∃tc ∈ R, such that V (σ(x(tc))) = 0 (5.24)
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where tc≥ t0 is the finite time of convergence to the surface. In fact, replacing V (σ(x(tc)))=

0 in (5.23) yields

tc =
√

2γ
−1V

1
2 (σ(x(t0)))+ t0. (5.25)

Furthermore (5.22) and (5.24) imply that

V̇ (σ(x(tc))) =−γ
√

2V
1
2 (σ(x(tc))) = 0, (5.26)

which yields

V
1
2 (σ(x(t))) = 0, ∀t > tc (5.27)

and therefore

V (σ(x(t))) = 0, ∀t ≥ tc. (5.28)

Since the trajectories converge in finite time to the surface σ(x(t)) = 0 and remain

on that surface for all future times, using (5.14) and (5.15), for t ≥ tc we can write

S1x1(t)+S2x2(t) = 0 ∀t ≥ tc. (5.29)

Moreover,

S1x1(t− τ)+S2x2(t− τ) = 0 ∀t ≥ tc + τ. (5.30)

Now assuming

x2(t) = ST
2 Z(t) (5.31)

x2(t− τ) = ST
2 Z(t− τ) (5.32)

where Z(t) ∈ Rp, we can rewrite (5.29) and (5.30) as

Z(t) =−(S2ST
2 )
−1S1x1(t) (5.33)

Z(t− τ) =−(S2ST
2 )
−1S1x1(t− τ) (5.34)
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for all t ≥ tc + τ . Hence

x2(t) =−S†
2S1x1(t) (5.35)

x2(t− τ) =−S†
2S1x1(t− τ) (5.36)

where

S†
2 = ST

2 (S2ST
2 )
−1 (5.37)

is the pseudo-inverse of the matrix S2. Therefore, using (5.7) and (5.35) we can rewrite

the dynamics of the PWA system (5.7) for t ≥ tc + τ as

x2(t) =−S†
2S1x1(t) (5.38)

ẋ1(t) = (A11i−A12iS
†
2S1)x1(t)+(Ad

11 j
−Ad

12 j
S†

2S1)x1(t− τ)+a1i, x(t) ∈Ri. (5.39)

Due to (5.38), if x1(t) exponentially converges to the origin, then x2(t) will also exponen-

tially converge to the origin. Therefore, exponential stability of the reduced order system

(5.39) ensures that the PWA slab system (5.7) is exponentially stable under the control law

(5.9). Therefore, in the rest part of the proof, we show that one can ensure the exponential

stability of x1(t) using a set of linear matrix inequalities.

Consider the following candidate Lyapunov-Krasovskii functional

VT =V1 +V2 +V3, (5.40)

with

V1 = xT
1 (t)Px1(t),

V2 =
∫ t

t−τ

xT
1 (s)Xx1(s)ds

V3 =
∫ 0

−τ

∫ t

t+s
ẋT

1 (θ)Rẋ1(θ)dθds

where P, X , and R are symmetric positive definite matrices in Rn−m×n−m.

Note that, V1, V2, and V3 are all positive definite functions. Hence, VT in (5.40) is also

positive definite. To prove exponential stability of the trajectories of x1(t) to the origin, it
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is sufficient to show that the decreasing rate of the Lyapunov-Krasovskii functional (5.40)

is negative in each region Ri.

The time derivative of VT is as follows

V̇T = V̇1 +V̇2 +V̇3. (5.41)

Therefore, the decreasing rate of the Lyapunov-Krasovskii functional (5.40) consists of

three different components.

The time derivative of V1 is

V̇1 = ẋT
1 Px1 + xT

1 Pẋ1. (5.42)

Applying the Leibniz integral rule, the time derivative of V2 will be

V̇2 = xT
1 Xx1− xT

1 (t− τ)Xx1(t− τ) (5.43)

In order to obtain the time derivative of V3, we first apply the Leibniz integral rule

V̇3 =
∫ 0

−τ

(
ẋT

1 (t)Rẋ1(t)− ẋT
1 (t + s)Rẋ1(t + s)

)
ds (5.44)

Therefore,

V̇3 = τ ẋT
1 (t)Rẋ1(t)−

∫ 0

−τ

ẋT
1 (t + s)Rẋ1(t + s)ds. (5.45)

Now by a change of variable, equation (5.45) will have the following form

V̇3 = τ ẋT
1 (t)Rẋ1(t)−

∫ t

t−τ

ẋT
1 (θ)Rẋ1(θ)dθ . (5.46)

Note that, since R > 0, for any arbitrary time varying vector h(t,τ) ∈ Rn−m, we can write

[
ẋT

1 (θ) hT (t,τ)
] R −I

−I R−1

 ẋ1(θ)

h(t,τ)

≥ 0 (5.47)

where I is the identity matrix of order (n−m). Inequality (5.47) yields

− ẋT
1 (θ)Rẋ1(θ)≤−hT (t,τ)ẋ1(θ)− ẋT

1 (θ)h(t,τ)+hT (t,τ)R−1h(t,τ). (5.48)
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Integrating both sides of (5.48) with respect to θ we will have

−
∫ t

t−τ

ẋT
1 (θ)Rẋ1(θ)dθ ≤−

∫ t

t−τ

hT (t,τ)ẋ1(θ)dθ −
∫ t

t−τ

ẋT
1 (θ)h(t,τ)dθ

+
∫ t

t−τ

hT (t,τ)R−1h(t,τ)dθ .

(5.49)

Therefore,

−
∫ t

t−τ

ẋT
1 (θ)Rẋ1(θ)dθ ≤−hT (t,τ)(x1(t)− x1(t− τ))− (xT

1 (t)− xT
1 (t− τ))h(t,τ)

+ τhT (t,τ)R−1h(t,τ).

(5.50)

Finally by replacing−
∫ t

t−τ
ẋT

1 (θ)Rẋ1(θ)dθ from (5.50) in equation (5.46), the time deriva-

tive of V3 will satisfy the following inequality

V̇3 ≤ τ ẋT
1 (t)Rẋ1(t)−hT (t,τ)(x1(t)− x1(t− τ))− (xT

1 (t)− xT
1 (t− τ))h(t,τ)

+ τhT (t,τ)R−1h(t,τ).
(5.51)

Substituting (5.42), (5.43) and (5.51) in equation (5.41), the decreasing rate of the

candidate Lyapunov-Krasovskii functional will satisfy the following inequality

V̇T ≤ẋT
1 Px1 + xT

1 Pẋ1 + xT
1 Xx1− xT

1 (t− τ)Xx1(t− τ)+ τ ẋT
1 (t)Rẋ1(t)

−hT (t,τ)(x1(t)− x1(t− τ))− (xT
1 (t)− xT

1 (t− τ))h(t,τ)

+ τhT (t,τ)R−1h(t,τ).

(5.52)

For the case where 0 /∈Ri, we define a new augmented vector ξ

ξ =


x1(t)

x1(t− τ)

1

 . (5.53)
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Recalling the dynamics of x1(t) from (5.39), inequality (5.52) will change to

V̇T ≤ξ
T




AT
1i

AdT
1 j

aT
1i

P
[
I 0 0

]
+


I

0

0

P
[
A1i Ad1 j a1i

]

+


I

0

0

X
[
I 0 0

]
−


0

I

0

X
[
0 I 0

]

+ τ


AT

1i

AdT
1 j

aT
1i

R
[
A1i Ad1 j a1i

]

− N
[
I −I 0

]
−


I

−I

0

NT + τNR−1NT

ξ

(5.54)

for x(t) ∈Ri and x(t− τ) ∈R j, where

A1i = (A11i−A12iS
†
2S1) (5.55)

Ad1 j = (Ad
11 j
−Ad

12 j
S†

2S1) (5.56)

and h(t,τ) was replaced by

h(t,τ) = NT
ξ

with arbitrary matrix N of appropriate dimension. Therefore,

V̇T ≤ξ
T (Ψ1i + τΨ2i +Ψ3i + τΨ4i)ξ (5.57)
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for x(t) ∈Ri and x(t− τ) ∈R j, where

Ψ1i =


AT

1iP+PA1i +X PAd1 j Pa1i

AdT
1 jP −X 0

aT
1i

P 0 0



Ψ2i =


AT

1i

AdT
1 j

aT
1i

R
[
A1i Ad1 j a1i

]

Ψ3i =−N
[
I −I 0

]
−


I

−I

0

NT

Ψ4i = NR−1NT .

Note also that, from (5.8), slab regions are described as follows

Ri = {x | ‖L1ix+ li‖< 1}. (5.58)

Therefore,

(L1ix1(t)+ li)T (L1ix1(t)+ li)< 1

or equivalently

ξ
T


LT

1iL1i 0 LT
1ili

0 0 0

lT
i L1i 0 lT

i li−1

ξ < 0 (5.59)

with ξ defined in (5.53).
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Therefore, using (5.57), (5.59) and S-procedure, the sufficient conditions for expo-

nential stability of the system (5.39) can be described as in the following matrix inequali-

ties

P = PT > 0 (5.60)

Ψ1i + τΨ2i +Ψ3i + τΨ4i < λi


LT

1iL1i 0 LT
1ili

0 0 0

lT
i L1i 0 lT

i li−1

 (5.61)

with previously defined Ψ1i , Ψ2i , Ψ3i , Ψ4i and with λi > 0. Rearranging inequality (5.61)

yields

Ψ1i + τΨ2i +Ψ3i + τΨ4i < 0 (5.62)

where

Ψ1i =


AT

1iP+PA1i−λiLT
1iL1i +X PAd1 j Pa1i−λiLT

1ili

AdT
1 jP −X 0

aT
1i

P−λilT
i L1i 0 λi(1− lT

i li)

 . (5.63)

Using new variables Q = P−1, µi = λ
−1
i and left multiplying inequality (5.62) by Q and

right multiplying it by QT
= Q with

Q =


Q 0 0

0 Q 0

0 0 1

 , (5.64)

and making X = εQ−1 and R = Q−1 yields the equivalent conditions

Q = QT > 0 (5.65)

Ξ1i +Ξ2i + τΞ3iQ
−1

Ξ
T
3i
+ τNQ−1NT

< 0 (5.66)
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where

Ξ1i =


QAT

1i +A1iQ+ εQ−µ
−1
i QLT

1iL1iQT Ad1 jQ a1i−µ
−1
i QLT

1ili

QAdT
1 j −εQ 0

aT
1i
−µ

−1
i lT

i L1iQT 0 µ
−1
i (1− lT

i li)

 (5.67)

Ξ2i =−
[
N −N 0

]
−


NT

−NT

0

 (5.68)

Ξ3i =


QAT

1i

QAdT
1 j

aT
1i

 (5.69)

N = QNQ (5.70)

and ε is a positive scalar.

Note that, the following matrix inequalities are sufficient conditions for (5.65) and

(5.66):

Q = QT > 0 (5.71)

Ξ1i < 0 (5.72)

Ξ2i + τΞ3iQ
−1

Ξ
T
3i
+ τNQ−1NT ≤ 0 (5.73)

In other words, (5.71), (5.72) and (5.73) imply (5.65) and (5.66). Using Schur complement

(see Lemma 2.2.1 and Lemma 2.2.2), matrix inequalities (5.71), (5.72) and (5.73) can be

recast as

Ξ1i < 0 (5.74)
 Ξ2i τΞ3i

τΞT
3i
−τQ

 τN

0


[
τNT 0

]
−τQ

≤ 0 (5.75)
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with τ > 0. Now what is left to do is to show that matrix inequalities (5.74) and (5.75) are

equivalent to (5.11) and (5.12) and prove the inequalities for the case 0 ∈Ri. Substituting

(5.67) in (5.74) we will have
QAT

1i +A1iQ+ εQ−µ
−1
i QLT

1iL1iQT Ad1 jQ a1i−µ
−1
i QLT

1ili

QAdT
1 j −εQ 0

aT
1i
−µ

−1
i lT

i L1iQT 0 µ
−1
i (1− lT

i li)

< 0 (5.76)

Using the Schur complement, (5.76) is equivalent to

(1− lT
i li)< 0 (5.77)QAT

1i +A1iQ+ εQ−µ
−1
i QLT

1iL1iQT Ad1 jQ

QAdT
1 j −εQ


−

a1i−µ
−1
i QLT

1ili

0

µi(1− lT
i li)−1

[
aT

1i
−µ

−1
i lT

i L1iQ 0
]
< 0

(5.78)

Expressions (5.77) and (5.78) can be rearranged to the form

(1− lT
i li)< 0 (5.79)

 QAT
1i +A1iQ+ εQ−µ−1QLT

1iL1iQ

−(a1i−µ
−1
i QLT

1ili)µi(1− lT
i li)−1(a1i−µ

−1
i QLT

1ili)
T

 Ad1 jQ

QAdT
1 j −εQ

< 0 (5.80)

Again using Schur complement, conditions (5.79) and (5.80) are equivalent to

(1− lT
i li)< 0 (5.81)

−εQ < 0 (5.82)

QAT
1i +A1iQ+ εQ−µ

−1
i QLT

1iL1iQ

− (a1i−µ
−1
i QLT

1ili)µi(1− lT
i li)−1(a1i−µ

−1
i QLT

1ili)
T

+ ε
−1Ad1 jQAdT

1 j < 0

(5.83)
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Using Matrix Inversion Lemma (see Lemma 2.2.3), it was shown in reference [30]

that

QAT
i +AiQ+αQ−µ

−1
i QLT

i LiQ

− (ai−µ
−1
i QLT

i li)µi(1− lT
i li)−1(ai−µ

−1
i QLT

i li)T < 0
(5.84)

is equivalent to

QAT
i +AiQ+αQ−µiaiaT

i

− (−µiailT
i +QLT

i )µ
−1
i (I− lilT

i )
−1(−µiailT

i +QLT
i )

T < 0.
(5.85)

The difference between conditions (5.83) and (5.84) is the fact that in (5.83) Ai = A1i,

ai = a1i, Li = L1i, α = ε and there is one extra term, namely, ε−1Ad1 jQAdT
1 j. However,

following a similar procedure as the one used in reference [30] we can conclude that

condition (5.83) is equivalent to

QAT
1i +A1iQ+ εQ+ ε

−1Ad1 jQAdT
1 j−µia1iaT

1i

− (−µia1ilT
i +QLT

1i)µ
−1
i (I− lilT

i )
−1(−µia1ilT

i +QLT
1i)

T < 0
(5.86)

Using the fact that 1− lT
i li and I− lilT

i are equivalent when li is a scalar, which is the case

for piecewise-affine slab systems, inequality (5.86) can be further change to

QAT
1i +A1iQ+ εQ+ ε

−1Ad1 jQAdT
1 j−µia1iaT

1i

− (−µia1ilT
i +QLT

1i)µ
−1
i (1− lT

i li)−1(−µia1ilT
i +QLT

1i)
T < 0.

(5.87)

Therefore, conditions (5.81), (5.82) and (5.83) are equivalent to

(1− lT
i li)< 0 (5.88)

−εQ < 0 (5.89)

QAT
1i +A1iQ+ εQ+ ε

−1Ad1 jQAdT
1 j−µia1iaT

1i

− (−µia1ilT
i +QLT

1i)µ
−1
i (1− lT

i li)−1(−µia1ilT
i +QLT

1i)
T < 0

(5.90)

Note that, conditions (5.88) and (5.90) are also equivalent toA1iQ+QAT
1i + εQ−µia1iaT

1i + ε−1Ad1 jQAdT
1 j (−µia1ilT

i +QLT
1i)

(−µia1ilT
i +QLT

1i)
T µi(1− lT

i li)

< 0 (5.91)
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One can verify this by simply using the Schur complement. Inequality (5.91) can then be

rearranged in the formA1iQ+QAT
1i + εQ−µia1iaT

1i (−µia1ilT
i +QLT

1i)

(−µia1ilT
i +QLT

1i)
T µi(1− lT

i li)

+
Ad1 jQ

0

ε
−1Q−1

[
QAdT

1 j 0
]
< 0.

(5.92)

Finally, conditions (5.92) and (5.89) will be equivalent to the following matrix inequality

Ω1i =


A1iQ+QAT

1i + εQ−µia1iaT
1i (−µia1ilT

i +QLT
1i) Ad1 jQ

(−µia1ilT
i +QLT

1i)
T µi(1− lT

i li) 0

QAdT
1 j 0 −εQ

< 0. (5.93)

Hence (5.76) is equivalent to (5.93) and therefore exponential stability sufficient conditions

(5.74) and (5.75) for system (5.39) will be equivalent to

Ω1i < 0 (5.94)
 Ξ2i τΞ3i

τΞT
3i
−τQ

 τN

0


[
τNT 0

]
−τQ

≤ 0. (5.95)

Finally, we replace

A1i = (A11i−A12iS
†
2S1) (5.96)

Ad1 j = (Ad
11 j
−Ad

12 j
S†

2S1) (5.97)

S1Q = Y (5.98)

in (5.94) and (5.95). Therefore, exponential stability of the reduced order system (5.39) is

guaranteed if the LMIs (5.11) and (5.12) hold.

Note that, for the case 0 ∈Ri, affine term a1i is zero. Therefore, using (5.52) and a

new augmented vector ξ0 as

ξ0 =

 x1(t)

x1(t− τ)

 (5.99)
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we will have

V̇T ≤ξ
T
0

 AT
1i

AdT
1 j

P
[
I 0

]
+

I

0

P
[
A1i Ad1 j

]

+

I

0

X
[
I 0

]
−

0

I

X
[
0 I

]

+ τ

 AT
1i

AdT
1 j

R
[
A1i Ad1 j

]

−M
[
I −I

]
−

 I

−I

MT + τMR−1MT

ξ0

(5.100)

where

A1i = (A11i−A12iS
†
2S1)

Ad1 j = (Ad
11 j
−Ad

12 j
S†

2S1)

and h(t,τ) was replaced by

h(t,τ) = MT
ξ0

with arbitrary matrix M of appropriate dimension. Rearranging the above inequality, suf-

ficient conditions for exponential stability of the reduced order system (5.39) will beAT
1iP+PA1i +X PAd1 j

AdT
1 jP −X

+ τ

 AT
1i

AdT
1 j

R
[
A1i Ad1 j

]

−
[
M −M

]
−

 MT

−MT

+ τMR−1MT < 0.

(5.101)

Using new variables Q = P−1, µi = λ
−1
i and left multiplying inequality (5.62) by

Q0 and right multiplying it by QT
0 = Q0 with

Q0 =

Q 0

0 Q

 , (5.102)
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matrix inequality (5.101) can be rewritten in the following formAT
1iQ+QA1i +QXQT Ad1 jQ

QAdT
1 j −QXQT

+ τ

 QAT
1i

QAdT
1 j

R
[
A1iQ Ad1 jQ

]

−
[
M −M

]
−

 MT

−MT

+ τMQ−1R−1Q−1MT
< 0

(5.103)

where

M = Q0MQ. (5.104)

Now using Schur complement, sufficient conditions from inequality (5.103) will be
Ωi0 τ

MQ−1

0


τ

[
Q−1MT 0

]
−τR

< 0 (5.105)

where

Ωi0 =





AT
1iQ+QA1i +QXQT Ad1 jQ

QAdT
1 j −QXQT

+
−
[
M −M

]
−

 MT

−MT




τ


QAT

1i

QAdT
1 j


τ

[
A1iQ Ad1 jQ

]
−τR−1


. (5.106)

Substituting (5.96), (5.97) and (5.98) in (5.105) , LMI condition (5.10) will be obtained

with

X = εQ−1

R = Q−1.

This finishes the proof.

Remark 5.3.1. Note that, since the structure of the controller (5.9) depends on x1(t− τ)

and x2(t− τ), the delay considered in this work must be known. Moreover, the delay must

be constant and must also be associated with the states of the system.
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Remark 5.3.2. Note also that, although assuming an upper-bound on the delay will not

affect the derivation of the LMIs, it will destroy the structure of the control signal (5.9)

which depends on τ .

Remark 5.3.3. Although assuming unknown and/or time-varying delays would enlarge

the class considered in this work, there are still some applications that the proposed

method can be applied to, such as a water channel or liquid-level systems. In these appli-

cations the delays are caused by the connecting (long) pipes and therefore, are measurable

and constant.

5.4 Numerical Example

In order to illustrate how the proposed method work, a simple second order PWA time-

delay system is considered in this section. Consider the following piecewise-affine time-

delay system when

ẋ(t) =

0 1

1 −1

x(t)+

0.1 0.1

0.1 0

x(t− τ)+

0

1

+
0

1

u if 0 ∈R1

ẋ(t) =

 0 1

−1 −1

x(t)+

0.1 0.1

0.1 0

x(t− τ)+

0

1

+
0

1

u if 0 ∈R2

ẋ(t) =

0 1

1 −1

x(t)+

0.1 0.1

0.1 0

x(t− τ)+

0

1

+
0

1

u if 0 ∈R3

(5.107)

where x =
[
x1 x2

]T
, τ is a constant known delay and

R1 =
{

x ∈ R2 | −2 < x1 <−1
}

R2 =
{

x ∈ R2 | −1 < x1 < 1
}

R3 =
{

x ∈ R2 | 1 < x1 < 2
}
.

We first, consider the case when there is no time-delay involved in the dynamics of

the PWA system. In other words we first study the case where τ = 0 in state dynamics
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(5.107). Assuming that the time-delay is zero, dynamics (5.107) will be equivalent to the

following system

ẋ(t) =

0.1 1.1

1.1 −1

x(t)+

0

1

+
0

1

u if 0 ∈R1

ẋ(t) =

 0.1 1.1

−0.9 −1

x(t)+

0

1

+
0

1

u if 0 ∈R2

ẋ(t) =

0.1 1.1

1.1 −1

x(t)+

0

1

+
0

1

u if 0 ∈R3

(5.108)

where regions were previously defined. Note that, in order to design control laws for

system (5.108), one may consider two different approaches:

1. Applying the results of Theorem 3.3.1 to PWA system (5.108)

2. Applying the results of Theorem 5.3.1 to PWA time-delay system (5.107) with τ = 0

Here, we consider both approaches. Applying the conditions of Theorem 3.3.1 to PWA

system (5.108), the PWA controllers are designed. Figure 5.1 shows the simulation results

for the closed-loop system with x(0) =
[
−1.5 0.2

]T
as the initial conditions.

Applying the results of Theorem 5.3.1 with τ = 0 for PWA time-delay system

(5.107) also yields to PWA controllers, which after being applied to the system the sim-

ulation results for the closed-loop system are obtained and shown in Figure 5.2 with

x(0) =
[
1.2 −.5

]T
as the initial conditions.

In the next step, in order to show how the results of Theorem 5.3.1 work for the case

where time-delay is involved, we consider PWA time-delay system (5.107) with τ = 5 sec-

onds. After applying the designed controllers to the system, the simulation results are ob-

tained. Figure 5.3 and Figure 5.5 shows the simulation results with x(0) =
[
−1.5 0.2

]T

and x(0) =
[
1.2 −.5

]T
, respectively. As you can see, these simulation results demon-

strate that the trajectories of the system still converge to the origin in finite time in the

presence of a constant time-delay.
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Figure 5.1: State variables, applying Theorem 3.3.1 to PWA system (5.108)

Figure 5.2: States variables, applying Theorem 5.3.1 to PWA system (5.107) with τ = 0
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Figure 5.3: States for the case when time-delay is 5 seconds

Figure 5.4: Trajectories for the case when time-delay is 5 seconds
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Figure 5.5: States for the case when time-delay is 5 seconds

Figure 5.6: Trajectories for the case when time-delay is 5 seconds
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5.5 Summary

The contribution of this chapter is to formulate the PWA time-delay synthesis problem

as a set of LMIs. In order to do so, we first defined a sliding surface, then control laws

were designed to make the trajectories approach the specified surface and ensure that the

trajectories would remain on that surface. Then, using Lyapunov-Krasovskii functionals,

sufficient conditions for exponential stability of the resulting reduced order system were

proposed. Moreover, the designed control laws were still in PWA state feedback form. A

numerical example demonstrated the effectiveness of the approach. However, considering

the delay known and constant is one of the limitations of this approach. Moreover, the

delay that we considered in this work is only due to the states of the system and if the

delay appears in the input(s) and/or in the derivative of the states, the proposed method

cannot be applied.
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Chapter 6

Conclusion

The contributions of this thesis are summarized and potential extensions of the proposed

methods are discussed in this chapter. The contributions of the first part of this thesis

answered the following popular questions:

• Is it possible to directly formulate the piecewise-affine synthesis problem as a convex

program?

• How much conservative is the proposed approach compared to the other methods?

The answer to the first question is “YES”. Chapter 3 of this thesis for the first time

proposed a novel approach that uses invariant set ideas to directly formulate the PWA syn-

thesis problem as a set of Linear Matrix Inequalities (LMIs), which are convex problems.

It was also shown that the dimension of the LMIs obtained in this work is lower than in

the other convex methods in the literature.

Furthermore, in Chapter 4, it was shown that for every solution to the LMIs resulting

from previous approaches, there exists a solution for the LMIs obtained from the proposed

method. It was also shown that while previous convex controller synthesis methods have

no solutions to their LMIs for some examples of PWA systems, the approach proposed

in this thesis yields a solution for these examples. Therefore, the answer to the second

question will be: “The proposed approach is less conservative than the other methods”.

89



Although in Chapter 3 and Chapter 4 we addressed the first two questions, the fol-

lowing questions were remained:

• What will happen if the nonlinearities are associated with x2 rather than x1?

• Is it possible to come up with a larger class of PWA system that their controller

syntheses can be similarly cast as a convex optimization problem?

• How can one extend the work to the tracking problem?

As it was shown in chapter 3, the proposed method only works for a special class of PWA

system and furthermore one of the assumptions was the regions were partition based on

x1 (a subvector of the states) and therefore, no method proposed when regions partitioning

was associated with x2. Note also that, having information on trajectories of reference

signals and defining a new sliding surface based on the error signals, it seems that the

extension of the work to the tracking problem might also be possible.

The contributions of the last part of this thesis answered the following questions:

• Is it possible to directly formulate the PWA time-delay synthesis problem as a con-

vex problem too?

The answer to this question is also “YES”. Chapter 5 of this thesis proposed an ap-

proach that used sliding mode control ideas to directly formulate the PWA synthesis prob-

lem as a set of LMIs. In order to do so, we first defined a sliding surface, then control laws

were designed to make the trajectories approach the specified sliding surface and ensured

that they would remain on that surface. Then, using Lyapunov-Krasovskii functionals,

sufficient conditions for exponential stability of the resulting reduced order system were

proposed. Moreover, the designed control laws were still in PWA state feedback form.

However, the following questions were remained:

• What will happen if the delay τ is unknown or time-varying?
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• How can we come up with less conservative conditions?

• What will happen if the delay is associated with inputs or the derivative of the states?

As it was shown in chapter 5, the proposed time-delay method only works for the case of

a known constant delay. In fact, since the designed control law included a term contain-

ing τ (the delay), having information about the value of the delay was crucial. Further-

more, since the derived conditions were sufficient conditions, conservatism was already

introduced to the system and therefore, using more sufficient conditions during the proof,

increased the conservatism of the proposed approach. Note also that, considering the case

where the delay is associated with the derivative of the states and/or the inputs of the

system, will further relax the conservativeness of the proposed approach.
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Appendix

Parameters Values

Kp diag(0.5,0.5)

Kd diag(0.05,0.05)

a −0.45

U 30m/s

M

12.387 0.418

0.418 0.065


m 12.387

Iα 0.065kgm2

Ko

2844.4 0

0 0

 N/m

kh 2844.4

Kµ

0 935.1

0 −6.3

 kg/s2

Co diag(27.43,0.036)
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Ch 27.43

Cα 0.036kgm2/s

Cµ

31.17 3.99

0.21 −0.027


Kα(α) qα

q
[
q1 q2 q3 q4 q5

]T

q1 2.82

q2 −62.322

q3 3709.71

q4 −24195.6

q5 48756.954

µ 176.609

CLβ1 3.358

CLβ2 3.458

Cmβ1 −0.635

Cmβ2 −0.735

ρ 1.225kg/m3

Cmα (0.5+a)CLα

CLα 6.28

93



94



Bibliography

[1] L. Rodrigues, Dynamic output feedback controller synthesis for piecewise-affine sys-

tems. Stanford University, 2002.

[2] B. Samadi and L. Rodrigues, “Stability of sampled-data piecewise affine systems: A

time-delay approach,” Automatica, vol. 45, no. 9, pp. 1995–2001, 2009.

[3] S. Afkhami and H. Alighanbari, “Nonlinear control design of an airfoil with active

flutter suppression in the presence of disturbance,” Control Theory & Applications,

IET, vol. 1, no. 6, pp. 1638–1649, 2007.

[4] B. Samadi and L. Rodrigues, “Controller synthesis for piecewise affine slab differ-

ential inclusions: A duality-based convex optimization approach,” in in Proc. 46th

IEEE Conference on Decision and Control. IEEE, 2007, pp. 4999–5004.

[5] J. Lygeros, “Lecture notes on hybrid systems,” in Notes for an ENSIETA workshop,

2004.

[6] D. Liberzon, Switching in systems and control. Springer, 2003.

[7] H. Witsenhausen, “A class of hybrid continuous-time dynamic system,[j],” IEEE

Transaction on Control, vol. 11, no. 6, pp. 665–683, 1966.

[8] F. Tossisi and A. Bemporad, “Hysdel-a tool for generating computational hybrid

models for analysis and design problems,” IEEE Trans. Control Syst. Technol,

vol. 12, pp. 235–249, 2004.

95



[9] T. Schlegl, M. Buss, and G. Schmidt, “A hybrid systems approach toward model-

ing and dynamical simulation of dextrous manipulation,” Mechatronics, IEEE/ASME

Transactions on, vol. 8, no. 3, pp. 352–361, 2003.

[10] G. Fourlas, K. Kyriakopoulos, and C. Vournas, “Hybrid systems modeling for power

systems,” Circuits and Systems Magazine, IEEE, vol. 4, no. 3, pp. 16–23, 2004.

[11] A. Bemporad, “Efficient conversion of mixed logical dynamical systems into an

equivalent piecewise affine form,” Automatic Control, IEEE Transactions on, vol. 49,

no. 5, pp. 832–838, 2004.

[12] V. Blondel and J. Tsitsiklis, “Complexity of stability and controllability of elemen-

tary hybrid systems,” AUTOMATICA-OXFORD-, vol. 35, pp. 479–490, 1999.

[13] M. Branicky, “Multiple lyapunov functions and other analysis tools for switched and

hybrid systems,” Automatic Control, IEEE Transactions on, vol. 43, no. 4, pp. 475–

482, 1998.

[14] R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and re-

sults on the stability and stabilizability of hybrid systems,” Proceedings of the IEEE,

vol. 88, no. 7, pp. 1069–1082, 2000.

[15] J. Hespanha, “Uniform stability of switched linear systems: extensions of lasalle’s

invariance principle,” Automatic Control, IEEE Transactions on, vol. 49, no. 4, pp.

470–482, 2004.

[16] A. Michel and B. Hu, “Towards a stability theory of general hybrid dynamical sys-

tems,” AUTOMATICA-OXFORD-, vol. 35, pp. 371–384, 1999.

[17] S. Pettersson, “Analysis and design of hybrid systems,” Ph.D. dissertation, Chalmers

University of Technology, 1999.

96



[18] S. Prajna and A. Papachristodoulou, “Analysis of switched and hybrid systems-

beyond piecewise quadratic methods,” in American Control Conference, 2003. Pro-

ceedings of the 2003, vol. 4. IEEE, 2003, pp. 2779–2784.

[19] H. Ye, A. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,” Au-

tomatic Control, IEEE Transactions on, vol. 43, no. 4, pp. 461–474, 1998.

[20] A. Rantzer and M. Johansson, “Piecewise linear quadratic optimal control,” Auto-

matic Control, IEEE Transactions on, vol. 45, no. 4, pp. 629–637, 2000.

[21] P. Julian, A. Desages, and O. Agamennoni, “High-level canonical piecewise linear

representation using a simplicial partition,” Circuits and Systems I: Fundamental

Theory and Applications, IEEE Transactions on, vol. 46, no. 4, pp. 463–480, 1999.

[22] L. Rodrigues and J. How, “Automated control design for a piecewise-affine approx-

imation of a class of nonlinear systems,” in in Proc. American Control Conference.,

vol. 4. IEEE, 2001, pp. 3189–3194.

[23] A. Hassibi and S. Boyd, “Quadratic stabilization and control of piecewise-linear sys-

tems,” in in Proc. American Control Conference, vol. 6. IEEE, 1998, pp. 3659–3664.

[24] V. Carmona, E. Freire, E. Ponce, and F. Torres, “On simplifying and classifying

piecewise-linear systems,” IEEE Transactions on Circuits and Systems I: Funda-

mental Theory and Applications, vol. 49, no. 5, pp. 609–620, 2002.

[25] W. Heemels, M. Camlibel, and J. Schumacher, “On the dynamic analysis of

piecewise-linear networks,” IEEE Transactions on Circuits and Systems I: Funda-

mental Theory and Applications, vol. 49, no. 3, pp. 315–327, 2002.

[26] P. Mosterman and G. Biswas, “Towards procedures for systematically deriving hy-

brid models of complex systems,” Hybrid Systems: Computation and Control, pp.

324–337, 2000.

97



[27] J. Voros, “Modeling and parameter identification of systems with multisegment

piecewise-linear characteristics,” IEEE Transactions on Automatic Control, vol. 47,

no. 1, pp. 184–188, 2002.

[28] M. Johansson, Piecewise linear control systems: a computational approach.

Springer Verlag, 2003, vol. 284.

[29] L. Rodrigues, “Stability analysis of piecewise-affine systems using controlled invari-

ant sets,” Systems & control letters, vol. 53, no. 2, pp. 157–169, 2004.

[30] L. Rodrigues and S. Boyd, “Piecewise-affine state feedback for piecewise-affine slab

systems using convex optimization,” Systems & Control Letters, vol. 54, no. 9, pp.

835–853, 2005.

[31] G. F. Jianbin Qiu, Tiejun Zhang and H. Liu, “Piecewise affine model based h-infinity

static output feedback control of constrained nonlinear processes,” IET Control The-

ory and Applications, vol. 4, no. 11, pp. 2315–2330, Nov. 2010.

[32] A. Bemporad, G. Ferrari-Trecate, and M. Morari, “Observability and controllability

of piecewise affine and hybrid systems,” IEEE Transactions on Automatic Control,

vol. 45, no. 10, pp. 1864–1876, 2000.

[33] N. Van de Wouw and A. Pavlov, “Tracking and synchronisation for a class of pwa

systems,” Automatica, vol. 44, no. 11, pp. 2909–2915, 2008.

[34] S. Bibian and H. Jin, “Time delay compensation of digital control for dc switchmode

power supplies using prediction techniques,” Power Electronics, IEEE Transactions

on, vol. 15, no. 5, pp. 835–842, 2000.

[35] W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control systems,”

Control Systems Magazine, IEEE, vol. 21, no. 1, pp. 84–99, 2001.

98



[36] E. Verriest, M. Fan, and J. Kullstam, “Frequency domain robust stability criteria for

linear delay systems,” in in Proceedings of the 32nd IEEE Conference on Decision

and Control. IEEE, 1993, pp. 3473–3478.

[37] S. WANG, B. CHEN, and T. LIN, “Robust stability of uncertain time-delay systems,”

1987.

[38] J. Su, “Further results on the robust stability of linear systems with a single time

delay,” Systems & Control Letters, vol. 23, no. 5, pp. 375–379, 1994.

[39] Q. Han and K. Gu, “On robust stability of time-delay systems with norm-bounded

uncertainty,” Automatic Control, IEEE Transactions on, vol. 46, no. 9, pp. 1426–

1431, 2001.

[40] E. Fridman and U. Shaked, “Parameter dependent stability and stabilization of uncer-

tain time-delay systems,” Automatic Control, IEEE Transactions on, vol. 48, no. 5,

pp. 861–866, 2003.

[41] K. Moezzi, L. Rodrigues, and A. Aghdam, “Stability of uncertain piecewise affine

systems with time delay: delay-dependent lyapunov approach,” International Jour-

nal of Control, vol. 82, no. 8, pp. 1423–1434, 2009.

[42] ——, “Stability of uncertain piecewise affine systems with time-delay,” in American

Control Conference, 2009. ACC’09. IEEE, 2009, pp. 2373–2378.

[43] A. A. Andronov and S. E. Chaikin, Theory of Oscillations. Princeton University

Press: Princeton, New Jersey, 1949.

[44] L. Chua, “Analysis and synthesis of multivalued memoryless nonlinear networks,”

IEEE Transactions on Circuit Theory, vol. 14, no. 2, pp. 192–209, 1967.

[45] ——, “Efficient computer algorithms for piecewise-linear analysis of resistive non-

linear networks,” IEEE Transactions on Circuit Theory, vol. 18, no. 1, pp. 73–85,

1971.

99



[46] E. Sontag, “Nonlinear regulation: The piecewise linear approach,” IEEE Transac-

tions on Automatic Control, vol. 26, no. 2, pp. 346–358, 1981.

[47] N. Pettit and P. Wellstead, “Analyzing piecewise linear dynamical systems,” IEEE

Control Systems Magazine, vol. 15, no. 5, pp. 43–50, 1995.

[48] P. Peleties and R. DeCarlo, “Asymptotic stability of m-switched systems using lya-

punov functions,” in Proceedings of the 31st IEEE Conference on Decision and Con-

trol. IEEE, 1992, pp. 3438–3439.

[49] S. Boyd, L. El-Ghaoui, E. Feron, V. Balakrishnan, and E. Yaz, “Linear matrix in-

equalities in system and control theory,” Proceedings of the IEEE, vol. 85, no. 4, pp.

698–699, 1997.

[50] M. Branicky, “General hybrid dynamical systems: Modeling, analysis, and control,”

Hybrid Systems III, pp. 186–200, 1996.

[51] R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson, “Perspectives and re-

sults on the stability and stabilizability of hybrid systems,” Proceedings of the IEEE,

vol. 88, no. 7, pp. 1069–1082, 2000.
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[61] J. Löfberg, “YALMIP: A Toolbox for Modeling and Optimization in MATLAB,”

in Proc. CACSD Conference, Taipei, Taiwan, 2004. [Online]. Available:

http://users.isy.liu.se/johanl/yalmip/

[62] Y. Sun, L. Wang, and G. Xie, “Stability of switched systems with time-varying de-

lays: delay-dependent common lyapunov functional approach,” in American Control

Conference, 2006. IEEE, 2006, pp. 6–pp.

[63] G. Zhai, Y. Sun, X. Chen, and A. Michel, “Stability and &lscr; 2 gain analysis

for switched symmetric systems with time delay,” in American Control Conference,

2003. Proceedings of the 2003, vol. 3. IEEE, 2003, pp. 2682–2687.

101

http://sedumi.ie.lehigh.edu/
http://users.isy.liu.se/johanl/yalmip/


[64] X. Sun, J. Zhao, and D. Hill, “Stability and l2-gain analysis for switched delay sys-

tems: A delay-dependent method,” Automatica, vol. 42, no. 10, pp. 1769–1774,

2006.

[65] V. Kulkarni, M. Jun, and J. Hespanha, “Piecewise quadratic lyapunov functions for

piecewise affine time-delay systems,” in American Control Conference, 2004. Pro-

ceedings of the 2004, vol. 5. IEEE, 2004, pp. 3885–3889.

[66] M. Johansson, Piecewise linear control systems. Springer Verlag, 2003, vol. 284.

[67] M. Moarref and L. Rodrigues, “Asymptotic stability of sampled-data piecewise affine

slab systems,” Automatica, 2012.

[68] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ Pr, 2004.

[69] T. Kailath, Linear systems. Prentice-Hall Englewood Cliffs, NJ, 1980, vol. 1.

[70] H. Khalil and J. Grizzle, Nonlinear systems. Prentice hall, 1992, vol. 3.

[71] V. Utkin, “Sliding mode control: Mathematical tools, design and applications,” Non-

linear and Optimal Control Theory, pp. 289–347, 2008.

102


