Design of RFID-enabled Aircraft Reverse Logistics Network Simulation

Kehinde Oluyemisi Adetiloye

A Thesis

In the Department

of

Concordia Institute of Information Systems Engineering

Presented in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science (Quality Systems Engineering) at Concordia University Montreal, Quebec, Canada

September 2012

©Kehinde Oluyemisi Adetiloye, 2012

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Kehinde Oluyemisi Adetiloye

Entitled: Design of RFID-enabled Aircraft Reverse Logistics Network Simulation

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science (Quality Systems Engineering)

complies with the regulations of the University and meets the acceptable standards with respect to originality and quality.

Signed by the final Examining Committee:

		Chair
	Dr. A. Schiffauerova	
		Internal Examiner
	Dr. C. Wang	
	Dr. S.S. Chauhan	External Examiner
	Dr A Awasthi	Supervisor
	Dr. A. Hammad	—— Supervisor
Approved by		
	Chair of Department or Graduate I	Program Director

_____ 2 012

Dean of Faculty

Abstract

Design of RFID-enabled Aircraft Reverse Logistics Network Simulation

Kehinde Oluyemisi Adetiloye

The reverse logistics (RL) of aircrafts pose a big challenge to its owners due to the complexity of its RL network, and the inherit problems of realizing a reliable system for efficiently monitoring and tracking the numerous parts of end-of-life (EOL) aircrafts in the RL network. Radio frequency identification (RFID) technology, through its automatic and wireless data capture capability, offers great potential for counteracting this problem. Although widespread and cost-effective, traditional barcode system, unlike RFID technology, requires manual scanning and line-of-sight for its use.

In this research, thorough review of literature was conducted to identify the technological and economical impacts of RFID technology in both forward and RL network, and the knowledge acquired was employed to develop a scenario based approach for determining suitable RFID solutions for use in different sections of the EOL aircraft RL network. Process maps for case-level barcode tagging, item-level RFID tagging, case-level RFID tagging and pallet-level RFID tagging in EOL aircraft RL were developed and simulated in Arena simulation software in order to comparatively analyze the Return-On-Investment (ROI) of the different RFID technology levels.

The results of our research, focusing on passive RFID technology, demonstrate that use of RFID technology in EOL aircraft RL network offers great potential compared to barcode system; however, the high initial investment cost of RFID technology deployment may necessitate proper planning, such as business process re-engineering (BPR), tag reuse and phased implementation, to achieve more positive ROI.

Keywords: Reverse logistics, EOL aircrafts, Radio Frequency Identification (RFID), Simulation model, ROI.

Acknowledgements

I am able to successfully complete this work with the help of several people, whose praiseworthy supports and contributions deserves acknowledging.

I thank God for his goodness, love and mercies throughout the period of this research.

I'm profoundly grateful to the Admission Committee and the staff of the School of Graduate Studies for giving me the opportunity to study in this prestigious University, the Concordia University, and creating the enabling environment for my studies.

I'm profoundly grateful to my professors and supervisors, Dr. Anjali Awasthi and Dr. Amin Hammad, for their time, effort, and guidance, which enabled this accomplishment. I like to appreciate all the professors and the administrative staff of the Concordia Institute of Information Systems Engineering (CIISE) for helping students of the Department to have excellent academic experience.

I appreciate my parents, Philip Adetiloye (PhD.) and Catherine Adetiloye, brother, Charles Adetiloye, and other members of my family for their unwavering supports and encouragements.

I thank all my friends and colleagues for their wonderful companies, and for the exciting and inspiring times we shared together.

Thank you.

Dedication

I dedicate this work to all creative minds, working for peace, progress and prosperities.

Table of Contents

List of	List of Figures			
List of	List of Tables xvi			
List of	Acronyms xix			
Chapte	1:			
Introdu	tion1			
1.1	Background 1			
1.2	Problem statement			
1.3	Objectives			
1.4	Thesis organization			
Chapte	2:			
Literati	re Review5			
2.1	Reverse logistics			
2.2	Radio Frequency Identification (RFID) technology			
2.3	RFID-enabled logistics			
2.4	Solution approaches in RFID-enabled logistics			
2.4	1 Analytical approach in RFID-enabled forward logistics			
2.4	2 Analytical approach in RFID-enabled reverse logistics			
2.4	3 General approach in RFID-enabled aviation logistics			

	2.4.4	Case-studies approach	17
	2.4.5	Simulation model	17
	2.4.6	Return-On-Investment (ROI) analyzes of RFID systems	
2.5	Ι	Review of cost	
2.6	I	End note	
Cha	apter 3	·	
Pro	blem I	Definition	
3.1	I	End-of-life aircrafts	
3.2	J	Justification for studies	
3.3	Ι	End note	
Chapter 4:			
Pro	posed	Approach	
4.1	Ι	RFID technology selection model	
	4.1.1	RFID technology capabilities	
	4.1.2	Current system specifications	
	4.1	.2.1 System and environment specifications	
	4.1	.2.2 Item specifications	41
	4.1.3	RFID technology selection model for EOL aircraft RL	44
4.2	I	Requirements for RFID – enabled Information System (IS)	47

	4.2.1	Structure of RFID tag memory	. 47
	4.2.2	Data requirement for the EOL aircraft IS and RFID tag memory	. 49
	4.2.3	Layout of data on the EOL aircraft RL network IS database	. 50
	4.2.4	Layout of data on RFID tags	. 52
4.3	Hyj	pothesized models	. 53
	4.3.1	Process map for as-is EOL aircraft RL network	. 53
	4.3.2	Process maps for to-be EOL aircraft RL network	. 56
	4.3.2.	1 Process map for EOL aircraft RL network with item-level RFID tagging.	. 56
	4.3.2.	2 Process map for EOL aircraft RL network with case-level RFID tagging	. 59
	4.3.2.	3 Process map for EOL aircraft RL network with pallet-level RFID tagging	63
4.4	Rec	uirements for conducting ROI analyzes for to-be RL network	. 66
	4.4.1	Costs and benefits of EOL aircraft RL network	. 67
	4.4.2	Cost classifications	. 67
	4.4.3	Cost calculations	. 71
	4.4.4	Operating and overhead costs for EOL aircraft RL network	. 73
4.5	Enc	l note	. 75
Cha	apter 5:		. 77
Sin	nulation N	Nodel and Numerical Application	. 77
5.1	Cor	nstraints and assumptions	. 77

5.2	Eler	nents of simulation model	. 78
	5.2.1	System	. 78
	5.2.2	Entities	. 79
	5.2.3	Attributes	. 79
	5.2.4	(Global) Variables	. 79
	5.2.5	Resources	. 80
	5.2.6	Events	. 81
	5.2.7	Advanced process module	. 81
	5.2.8	File	. 81
	5.2.9	Expression	. 82
	5.2.10	Readwrite	. 82
	5.2.11	Input data	. 82
5.3	Nur	nerical applications	. 85
5.4	Pres	sentation of results	. 92
5.5	Dise	cussion of results	. 95
	5.5.1	Variable cost	. 96
	5.5.2	Value added cost	. 96
	5.5.3	Waiting cost	. 98
	5.5.4	Overhead cost	. 98

	5.5.5	Return-On-Investment (ROI)	
	5.5.6	Sensitivity analysis	
5.6.	End not	e	
Cha	apter 6:		
Cor	nclusions	and Future Works	
6.1	Co	nclusions	108
6.2	Fu	ture works	
Ref	erences.		
App	pendix A		
A.1	. Proced	ures for creating new simulation model	
A.2	. Proced	ures for creating entities	
A.3	. Proced	ures for creating attributes	117
A.4	. Proced	ures for creating variables	
A.5	. Proced	ures for creating resource	
A.6	. Proced	ures for creating events	
Арј	pendix B		
B.1	. EOLAi	rcraftData.xlsx	
B.3	. Process	Distributions_barcode.xlsx	
B.4	. Batchsi	ze.xlsx	127

B.5. ROI.xlsx	
Appendix C	
C.1. Simulation of case-level barcode tagging	
C.2. Simulation of item-level RFID tagging	
C.3. Simulation of case-level RFID tagging	
C.4. Simulation of pallet-level RFID tagging	

List of Figures

Figure 2.2: Flow of information and products in reverse and forward logistics
Figure 2.3:General simulation methodology (Adapted from Rossetti, 2007; Figure 1.35,
pg 34)
Figure 2.4:Benefits of RFID systems (Adapted from Roh et al., 2009; Table 1, pg 358) 24
Figure 4.1: RFID technology selection process
Figure 4.2: Item specification factors
Figure 4.3: Increasing cost and visibility of RFID tagging levels
Figure 4.4: Tag memory layout (Adapted from Banks et al., 2007, Figure 3.9, pg 82) 48
Figure 4.5: ER diagram for EOL aircraft IS
Figure 4.6: Process map for as-is EOL aircraft RL network with case-level barcode
tagging
Figure 4.7: Process map for to-be EOL aircraft RL network with item-level RFID tagging
Figure 4.7: Process map for to-be EOL aircraft RL network with item-level RFID tagging 57
Figure 4.7: Process map for to-be EOL aircraft RL network with item-level RFID tagging 57 Figure 4.8: Sample data for item-level RFID tagging stored on active RFID tag memory
Figure 4.7: Process map for to-be EOL aircraft RL network with item-level RFID tagging 57 Figure 4.8: Sample data for item-level RFID tagging stored on active RFID tag memory 59
Figure 4.7: Process map for to-be EOL aircraft RL network with item-level RFID tagging
Figure 4.7: Process map for to-be EOL aircraft RL network with item-level RFID tagging 57 Figure 4.8: Sample data for item-level RFID tagging stored on active RFID tag memory 59 Figure 4.9: Process map for to-be EOL RL network with case-level RFID tagging 60 Figure 4.10: Sample data for case-level RFID tagging stored on active RFID tag memory
Figure 4.7: Process map for to-be EOL aircraft RL network with item-level RFID tagging 57 Figure 4.8: Sample data for item-level RFID tagging stored on active RFID tag memory 59 Figure 4.9: Process map for to-be EOL RL network with case-level RFID tagging 60 Figure 4.10: Sample data for case-level RFID tagging stored on active RFID tag memory 61
Figure 4.7: Process map for to-be EOL aircraft RL network with item-level RFID tagging

Figure 4.13: Sample data for pallet-level RFID tagging stored on active RFID tag
memory
Figure 4.14: Sample lookup table with pallet ID as search key
Figure 5.1: Plot of variable costs for case-level barcode (CLB) tagging, item-level RFID
(ILR) tagging, case-level RFID (CLR) tagging and pallet RFID (PLR) tagging96
Figure 5.2: Plot of value added cost for case-level barcode (CLB) tagging, item-level
RFID (ILR), tagging, case-level RFID (CLR) tagging and pallet RFID (PLR) tagging97
Figure 5.3: Plot of waiting costs for case-level barcode (CLB) tagging, item-level RFID
(ILR) tagging, case-level RFID (CLR) tagging and pallet RFID (PLR) tagging
Figure 5.4: Plot of overhead costs for case-level barcode (CLB) tagging, item-level RFID
(ILR) tagging, case-level RFID (CLR) tagging and pallet RFID (PLR) tagging99
Figure A.1: Project parameter
Figure A.2: Replication parameters
Figure A.3: Create an Entity
Figure A.4: Create an Attribute 117
Figure A.5: Create a Variable
Figure A.6: Create a Resource
Figure A.7: Make a Create event 120
Figure A.8: Edit the properties of Create event
Figure A.9: Make a Process event
Figure A.10: Edit the properties of the Process event
Figure A.11: Make a Dispose event

Figure A.13: Edit the properties of the Dispose event	.122
Figure A.14: Create a named range	.123
Figure A.14: Create a File object	.124
Figure A.15: Create a Recordset for the File object	.124

List of Tables

Table 2.1: Comparison of barcode and RFID (Adapted from Wyld, 2006)
Table 3.1: Aircraft parts (Adapted from Airframer Index, 2012, Boeing 787 Dreamliner)
Table 4.1: RFID tags technology capabilities (Adapted from Banks et al., 2007; Table
3.1, pg 69)
Table 4.2: Suitability of RFID tag technologies .37
Table 4.3: Questions on system and environment specifications 38
Table 4.4: System and environment based RFID technology selection matrix 40
Table 4.5: Item-based RFID technology selection matrix 43
Table 4.6: Selection model for EOL aircraft RL network 46
Table 4.7: Functions of passive RFID tag memory banks (Adapted from Banks et al.,
2007)
Table 4.8: Data requirements for EOL aircrafts (Adapted from AFRA, Best Management
Practice, Management of Used Aircrafts and Assemblies, 2009) 50
Table 4.9: Descriptions of entities and fields of EOL aircraft IS 51
Table 4.10: Processes in as-is EOL RL network with case-level barcode tagging
Table 4.11: Processes in to-be EOL RL network with item-level RFID tagging
Table 4.12: Processes in to-be EOL RL network with case-level RFID tagging
Table 4.13: Processes in to-be EOL RL network with pallet-level RFID tagging
Table 4.14: Cost and direct benefits of RFID in EOL aircraft RL (Adapted from Bottani
and Rizzi, Table 3 pg 556)

Table 4.15: RFID and Wi-Fi H/W costs (Adapted from Banks et al., 2007; pg 180, 7	Table
6.6)	70
Table 4.16: Network and application H/W and S/W costs (Adapted from Banks e	t al.,
2007; Pg 181, Table 6.7)	70
Table 4.17: Integration costs (Adapted from Banks et al., 2007; pg 181, Table 6.8)	71
Table 4.18: Personal costs (Adapted from Banks et al, 2007; pg 181, Table 6.9)	71
Table 4.19: Barcode system costs	71
Table 4.20: Overhead costs	73
Table 4.21: Table 4.21: Operating costs (Adapted from Banks et al., 2007)	74
Table 5.1: Resource costs	80
Table 5.2: Simulation model objects	83
Table 5.3: Files and data used in simulation models	86
Table 5.4: Time Distributions for processing case-level barcode tagging	87
Table 5.5: Time distributions for processing item-level RFID tagging	88
Table 5.6: Time distributions for processing case-level RFID tagging	89
Table 5.7: Time distributions for processing pallet-level RFID tagging	90
Table 5.8: Batch size of containers	90
Table 5.9: Initial investment for RFID technology	91
Table 5.10: Initial investment for barcode technology	92
Table 5.11: Distributions of part types and part RL types in EOL aircrafts	93
Table 5.12: Variable costs for case-level barcode tagging	94
Table 5.13: Variable costs for item-level RFID tagging	94
Table 5.14: Variable costs for case-level RFID tagging	94

Table 5.15: Variable costs for pallet-level RFI	D tagging94
Table 5.16: Overhead cost for case-level barco	ode tagging95
Table 5.17: Overhead cost for item-level RFIE	O tagging
Table 5.18: Overhead cost for case-level RFIE) tagging
Table 5.19: Overhead cost for pallet-level RFI	D tagging95
Table 5.20: ROI for case-level barcode tagging	g
Table 5.21: ROI for item-level RFID tagging	
Table 5.22: ROI for case-level RFID tagging	
Table 5.23: ROI for pallet-level RFID tagging.	
Table 5.24: Sensitivity analysis	
Table 5.25: Summary of results	

List of Acronyms

Acronyms	Meanings
AP	Aircraft Part
COO	Cost of Ownership
СРМ	Construction Project Management
EOL	End-of-Life
EOQ	Economic Order Quantity
EPC	Electronic Product Code
FCM	Fuzzy Cognitive Map
FFA	Federal Aviation Administration
FFE	Furniture, Fittings and Equipment
FL	Forward Logistics
FMCG	Fast-Moving Consumer Goods
IMS	Information Management Systems
GA	Genetic Algorithm
IC	Integrated Circuit
IRR	Internal Rate of Return
IT	Information Technology
IS	Information System
MIP	Mixed Integer Programming
MRO	Maintenance, Repair, and Overhaul
RF	Radio Frequency
NPV	Net Present Value
RFID	Radio Frequency Identification
RL	Reverse Logistics
ROI	Return-on-Investment
SCOR	Supply Chain Operational Reference
SMEs	Small and Medium Enterprises
SCM	Supply Chain Management
VMI	Vendor Managed Inventory

Chapter 1:

Introduction

1.1 Background

"Reverse Logistics (RL) is the process of planning, implementing, and controlling the efficient, cost effective flow of raw materials, in-process inventory, finished goods and related information from the point of consumption to the point of origin for the purpose of recapturing value or proper disposal" (Rogers and Tibben-Lembke, 1998). Recapturing of values, in this sense, refers to the reuse, remanufacturing, or recycling of RL goods or materials. RL goods are considered reused if they can be re-employed in the forward supply chain without need for repair or refurbishment, and as remanufactured if they need to be repaired or refurbished before they can be re-employed in the forward supply chain. Recycling involves transforming RL goods to raw materials that can be used in new product manufacturing.

In the past few years, industrial trends and research directions have revealed renewed and invigorated interests in RL. These interests are spurred by the rising global awareness on environmental protection, which has resulted in the enactment of diverse environmental protection laws by Governments as well as influx of investments aimed at mitigating the impact of environmental pollution and greenhouse effect. For instance, the European Union, in year 2000, conferred on member states the mandate "to ensure that economic operators in their respective states develop systems for collection, treatment and recovery

of EOL vehicles" (EU Directive 2000/53/EC). Also, the Federal and Quebec Governments of Canada, recently, created funds for researches aimed at exploring and devising procedures for dismantling, parting out and recycling materials of old aircraft (The Guardian, New aerospace centre to study recycling aircraft parts opens near Montreal, 2011).

When compared to forward logistics (FL), RL presents more complicated network due to the uncertainties inherent in product returns, complex nature of re-processing, and high implementation costs of RL systems. Hence, optimization of RL systems (e.g. collectionpoints maximization and cost minimization), and development of efficient information management systems (IMS) are widely researched in literatures. For instance, a recovery model for Small and Medium Enterprises (SMEs) that minimized fixed setup cost for facilities and recovery costs for processes, and a Mixed Integer Programming (MIP) model that solved the location problem of disassembly, collection and distribution facility, aside providing optimal values of production and transportation quantities of manufactured and remanufactured products, have been proposed by Swarnkar and Harding (2009), and Demirel and Gökçen (2008), respectively. Regarding the development of efficient IMS for RL system, research studies covering Radio Frequency Identification technology as state-of-the-art IT solution approach appeared frequently in literature.

"RFID is an automatic identification and data-capture technology that uses radio waves to provide real-time communication with objects at a distance, without contact or direct line of sight" (Sarac *et al.*, 2008). Mathematical models, case studies and pilot projects, and simulation models have been employed by researchers to demonstrate the potentials of different RFID implementations (e.g. type of tags, tagging-level) in supply chains.

1.2 Problem statement

EOL aircrafts are made of several parts that can be classified in terms of material composition (metal, glass, synthetic), functions (e.g. mechanical, electronic, and furniture and fittings), RL states (e.g. reusable, recyclable, and disposable), grades (e.g. grade A and grade B) and so on. In order to achieve sustainability, there is need for a well-researched technological system for tracking and monitoring parts of EOL aircrafts in RL network, and a generally approved method for justifying investment in such system.

1.3 Objectives

The objectives of the research are to:

- a) Develop a scenario based approach for determining suitable RFID solutions for use in different parts of the EOL aircraft RL network.
- b) Develop simulation models for analyzing the ROI of selected RFID technology implementations in EOL aircraft RL network.
- c) Verify the developed models with computer simulation.

1.4 Thesis organization

The rest of thesis report are organised as follow:

In Chapter 2, literature review of RL, RFID-based logistics, simulation models, ROI and cost is presented.

In Chapter 3, the problem under consideration is analysed in-depth.

- In Chapter 4 the solution approach used to achieve the outlined objectives is discussed
- In Chapter 5, our simulation models and a numerical application are presented.
- In Chapter 6, our conclusions and recommendations for future works are presented.

Chapter 2:

Literature Review

In this Chapter, we review literatures on RL (Section 2.1), RFID technology (Section 2.2), RFID-enabled RL (Section 2.3), solution approaches used in RFID-enabled RL, simulation models, and costs.

2.1 **Reverse logistics**

The push for greener and pollution-free environment by many environmental awareness and social interest groups, and the enactment of several environment protection laws by Governments around the world, due to rising concerns for the negative impacts of environmental pollutions, have sparked a renewed and invigorated interests in RL and reverse Supply Chain Management (SCM) by concerned stakeholders in both public and private sectors. For instance, the European Union parliament and council promulgated the directive 2000/53/EC that demand economic operators in member states to develop systems for collection, treatment and recovery of EOL vehicles (Directive 2000/53/EC of the European Parliament and Council of 18 September 2000 on end-of life vehicles); the Taiwanese Government also brought into law a scrap home and computer recycling regulations that mandates manufacturers and importers to take back their products (Shih, 2001); while recently, the Federal and Quebec Governments of Canada made available funds for researches aimed at exploring and devising procedures for dismantling, parting out and recycling materials of old aircraft (The Guardian, New aerospace centre to study recycling aircraft parts opens near Montreal, 2011). Apparently, the current attitude towards RL and Reverse SCM has changed markedly, when compared to the past, with more fortified efforts made to minimize cost, maximize resources and process utilizations, and recapture highest possible value from returned products.

Aside the holistic tangible benefits that RL provides it also creates intangible benefits which companies are rapidly exploiting. Companies like EBay and Amazon that provide e-commerce services for used products and those with friendly warranty and product return policies have not only achieved remarkable financial profits and competitive advantages but also towering public perceptions.

In establishing the difference between RL and other existing recovery logistics, the existence of backward flow of goods and materials was cited by Rogers and Tibben-Lembke (1998) as the distinct characteristics of RL. Rogers and Tibben-Lembke (1998), therefore, classified activities such as remanufacturing and refurbishing, processing returned merchandise due to damage, seasonal inventory, restock, salvage, recalls, and excess inventory, recycling programs, hazardous material programs, obsolete, equipment disposition, and asset recovery as "reverse logistics", while classifying activities such as redesigning packaging to use less material, or reducing the energy and pollution from transportation as "green logistics".

Moreover, certain RL systems, like the Aviation RL system, have some characteristics or attributes that distinguish them from most RL systems. In most RL systems, the large distributions of consumers, and the uncertainty in goods or material returns, lead to construction of many collection or distribution centres. However, in the Aviation RL system, the small number of aviation operators and the fairly predictable return rates trivialize the need for constructing many collection centres. The complex nature of the Aviation RL system, which requires much advanced planning and financing, also imposes a limit on the number of collection centers.

Several papers have been published on the design, planning and optimization of RL systems and networks, and in most of the papers, mathematical programming models (Analytical approach) were proposed for optimizing the RL system models for end-of-life (EOL) product disposition. According to Shih (2001), the advantages of using a mathematical programming model for the system planning of EOL products disposition include: (1) obtaining an optimal system design to minimize total cost; and (2) incorporating the technological constraints as well as the local environmental regulations constraints. Mixed Integer Programming (MIP) and Genetic Algorithm (GA) are used mostly in formulating these mathematical models. For instance, MIP was used by Shih (2001) to optimize the infrastructure design and the reverse network flow of EOL computers and home appliances disposition; Fuzzy Cognitive Map (FCM) and GA were used by Trappey *et al.* (2010) to model and evaluate the performance of RFID-based RL operations; while GA was proposed by Lee and Chan (2009) to determine locations in order to minimize the coverage of customers.

2.2 Radio Frequency Identification (RFID) technology

"RFID is an automatic identification and data-capture technology that uses radio waves to provide real-time communication with objects at a distance, without contact or direct line of sight" (Sarac *et al.*, 2008). When compared to traditional barcode, RFID has a number of advantages over barcodes, as given by Wyld (2006); these advantages are presented in Table 2.1.

Barcode	RFID
Barcodes require line of sight to be read	RFID tags can be read or updated without line of sight
Barcodes cannot be read if they become dirty or damaged	RFID tags are able to cope with harsh and dirty environments
Barcodes can only be read individually	Multiple RFID tags can be read simultaneously
Barcodes must be visible to be logged	RFID tags can be ultra thin and can be printed on a label, and they can be read even when concealed within an item
Barcodes can only identify the type of item	RFID tags can identify a specific item
Barcode information cannot be updated	Electronic information can be over-written repeatedly on RFID tags
Barcodes must be manually tracked for item identification, making human error an issue	RFID tags can be read automatically, eliminating human error

Table 2.1: Comparison of barcode and RFID (Adapted from Wyld, 2006)

The RFID technology is made up of three main elements: namely, an RFID tag, an RFID reader, and middleware. The RFID tag is composed of a chip and antennae, and can be classified as active or passive tag, depending on how the chip is powered. Active tags contain onboard batteries that power their chips; thus, enabling them to transmit signals through their antennae to the reader. Passive tags, however, employ electromagnetic signals received from the reader through their antennae to power their chips; thus, allowing the tags to modulate the received signal waves and transmit them back to the reader. Aside the difference in the way they power chips, active tags differ from passive tags in terms of the following reasons:

- a) Active tags have a longer read range (up to 100 ft) than passive tags (about few feet)
- b) Active tags have bigger memory than passive tags.
- c) Active tags have shorter lifespan than passive tags because their chips are batterypowered.
- d) Active tags are more expensive than passive tags.
- e) Active tags are bulkier than passive tags. This makes active tags suitable for large size products or containers and passive tags for small size products or containers.

Aside active and passive tags, there are also semi-active and semi-passive tags. Unlike their predecessors that are distinguished by their use or non-use of onboard-battery, both semi-active and semi-passive tags use on-board batteries (Banks *et al.*, 2007), however, in different ways. The semi-active tags do not transmit a beacon at regular interval like the active tags; hence, they have a longer battery life than the purely active tags (Banks *et*

al., 2007). On-board batteries are used in semi-passive tags to boost the power level of the IC chip and extend the read range of the tag.

RFID readers can be classified based on their communication protocol (Serial and network reader) and mobility (Stationary and handheld reader) (Banks *et al.*, 2007). Serial reader uses a RS-232 serial port to communicate and transfer data with host systems, while a network reader uses a wired or wireless connection to a computer, thus appearing as a network device (Banks *et al.*, 2007). Stationary readers are fixed to fixed structures or moving objects, while handheld readers have integrated antennae that enable them to be used as handheld unit (Banks *et al.*, 2007)

The middleware connects the RFID hardware with enterprise applications (e.g. database). The connection between RFID technology elements is illustrated in Figure 2.1.

The wireless automatic identification and data capturing capabilities of RFID make it a very viable technology for managing information in reverse and forward supply chain networks. Traceability and visibility of products throughout the entire supply chain can be improved with RFID (Tajima, 2007). With RFID, significant reduction in inventory inaccuracy, bullwhip effects, and replenishment inaccuracy can also be achieved (Sarac *et al.*, 2010). In essence, RFID can expedite operational processes such a tracking, counting and shipping, and also reduce inventory, handling and distribution costs.

Figure 2.1: Information flow between RFID tag, RFID reader and middleware

2.3 **RFID-enabled logistics**

RFID technology has gained widespread adoption in FL while its use is on the increase in general RL and aviation RL.

Two leading pioneers of the RFID in FL are Wal-Mart and U.S. Department of Defence (DOD). In 2003, Wal-Mart directed all its suppliers to put RFID tags on products shipped to the retailer's distribution centers and stores (Wal-Mart Opts for EPC Class 1, V2, 2003), while in 2004 U.S. DOD published its final policy guidelines for use of both passive and active RFID tags in its supply chain (Roberti, 2004). In pioneering of RFID in RL, the U.S. Navy and the Dutch telecom carrier, KPN, are well-known. In 2005, the U.S. Navy completed a major RFID field trial, which showed that RFID can increase the visibility of parts in transit and reduce the manual labor in its RL network (Roberti, 2005b). In the same year, KPN embarked on a pilot project to establish how much RFID can improve the RL for its returned or unsold phones (Collins, 2005).

Due to interference-related concerns, which resulted in the approval of only passive RFID tags on individual airline parts by the Federal Aviation Administration (FAA) in 2005 (Roberti, 2005a), adoption of RFID tags in the aviation sector has been slow-paced. However, with the successful completion of pilot tests of high-memory RFID tags for aircraft parts tracking by Boeing and Airbus, and the Companies' proposed amendment to the Air Transport Association of America (ATA)'s specification 2000 to FAA, the widespread use of RFID technologies in aviation industries may soon be realized.

2.4 Solution approaches in RFID-enabled logistics

Academic works on RFID-enabled logistics can be categorized based on their problemsolving approach: namely, analytical, case-studies, simulation, and ROI-analyzes (Sarac *et al.*, 2010) and the type of logistics: namely, forward and reverse logistics. We devote Section 2.4.1 to work that employed analytic approach in FL, Section 2.4.2 to work that employ analytic approach in RL (Differentiated as conventional RL and aviation RL in Section 2.2), Section 2.4.3 to work in aviation RL, Section 2.4.4 to works that employed case-studies approach, Section 2.4.5 to works that employed simulation approach, and Section 2.4.6 to work that involved ROI analyzes.

2.4.1 Analytical approach in RFID-enabled forward logistics

Analytical approach involves the use of mathematical expressions to model a system in order to identify conditions for its optimal performance or to simply understand its behaviour under prescribed conditions. Heese (2007) analyzed the impact of inventory inaccuracy on optimal stocking decision and profits, and determined the cost thresholds at which RFID technology can be profitable in a supply chain model. Uckun *et al.* (2008) studied the problem of finding the optimal investment levels on RFID technology integration that maximize profit by decreasing inventory inaccuracy in two echelon supply chain and proposed models for the centralized, decentralized, and extend cases. Szmerekovsky and Zhang (2008) analyzed Vendor Managed Inventory (VMI) system, with one manufacturer and retailer, that employed RFID technology under continuous review policy, and no RFID technology under periodic review policy when shelf is limited, and they determined the optimal inventory policies for the centralized system. They also discussed how sharing of tags in a decentralized system can be exploited and used to coordinate the supply chain. Sounderpandian et al. (2008) suggested models for cost-benefit analyses of RFID implementations in retails stores. Costs such as RFID reader costs and infrastructural costs, and benefits such as reduced inventory level due to efficient shelf replenishment were included in their models. Their studies helped in determining beneficial RFID implementations. Poon et al. (2009) proposed an RFID case-based logistics resource management system for managing order-picking operations in a supply chain. They tested active and passive RFID tags to determine the efficient RF cover ranges for RFID systems, and developed case-based reasoning engine, triangulation localization scheme and material handling algorithm. The result of their research produced a simplified RFID adoptive procedure, improved visibility of warehouse operations, and increased productivity of the warehouse.

2.4.2 Analytical approach in RFID-enabled reverse logistics

RFID technology has ubiquitous presence and influence in FL, both in the industries and academia. However, the same cannot be said of RL which has only few relevant cases about the impact of RFID technology in the industries and academia. One good reason for this wide gap is the fact that the RL industry, and its infrastructures, which include the RFID technology, is still evolving, unlike the FL industry that has reached a good stage in this respect.

RFID technology has the potential of playing significant roles in RL just as it does in FL. RFID technology can help to track the quantities of returned products (Lee and Chan, 2009); record information, such as arrival times, about returned products; increase visibility across the whole RL network; reduce inventory inaccuracy and shrinkage; reduce inventory costs; and reduce labour cost.

Information and products flow in different ways in forward and reverse logistics as shown in Figure 2.2. In FL, products flow from manufacturers to distributor center and to retail shops while information flows in the opposite direction from retailer shops to distribution centers and to manufacturers. In RL, however, information and products flow in the same direction from collection point to distribution center and to process facilities. RFID technology can enhance information flow in both FL and RL by enabling productrelated information to be collected and shared in real-time across the entire supply chain.

Figure 2.2: Flow of information and products in reverse and forward logistics

In regards to RFID-based RL, excluding aviation RL, Lee and Chan (2009) proposed a RFID-based RL framework, which used GA, a meta-heuristic approach, to determine locations of collection points that maximize the coverage of customers. RFID was used to collect data on returned products for the GA. The result of their work helped to identify and maximize the coverage of customers; thus, minimizing the holding time and depreciating value for returned products simultaneously. Trappey *et al.* (2010) presented a forecasting and decision support system, developed with FCM and GA, for RFID-based RL system. They used RFID technology to collect real-time data for the operation of the system.

2.4.3 General approach in RFID-enabled aviation logistics

On RFID-enabled aviation RL, no research papers were found; however, best management practice manual and white-papers that address specific aviation needs, for example those by Airbus, Boeing, and Aircraft Fleet Recycling Association (AFRA) were found.

A number of studies that focused on RFID technology applications in Maintenance, Repair, and Overhaul (MRO) operations in aviation industries have been done. Chang et al. (2006) presented a prototype of an RFID-enabled aircraft maintenance system which could be integrated with inventory control system and aircraft scheduling system to ensure on time performance and safety of passenger and cargo. They discussed the limitations of attaching RFID tags on current aircraft components and proposed modifications that can be made to ensure conformance with operating standards and requirements. Harun et al. (2008) discussed the various problems involved in aircraft parts manufacturing in areas such as quality assurance and control, production planning and control, product traceability, inventory visibility and labour productivity, and explained how the problems could be solved using RFID technology. They also presented a theoretical model of a generic RFID framework which they applied to a case-study to illustrate the impact of different cost factors in RFID-enabled manufacturing. Ramudhin et al. (2008) proposed a generic framework to support the selection of an RFID-based control system, and they applied the framework to MRO activities in aircraft engine manufacturing. They also presented two deployment scenarios, one a classical system with RFID tags on carts and trays and readers positioned at strategic points and the other with an intelligent system consisting of smart cart with wireless communications.

2.4.4 Case-studies approach

Case studies approach involves studying empirical evidences and drawing viable theories from them. This approach can help to show the difficulties and efficiency of RFID integration (Sarac *et al.*, 2010).

Tzeng *et al.* (2008) used five case-studies from Taiwan healthcare industry to show how RFID can have strategic impact and create business value. They established that RFID can improve the effectiveness of communications; improve the utilization of assets; optimize the patient care process; allow active participation of patients, and improve the visibility of data during workflow. By exploring the business processes of selected firms in the retail industry, Wamba *et al.* (2008) identified the impact of RFID technology and EPC network on the mobile B2B e-commerce. The impacts of RFID on Construction Project Management (CPM) have also been researched; with evidence from specific scenarios, Lu *et al.* (2011) established that "RFID shows great potential in improving CPM goals such as time, quality, cost, safety, and environment by applying it in the management of materials, labours and machinery".

2.4.5 Simulation model

Simulation refers to "a broad collection of methods and applications to mimic the behaviour of real systems, usually on a computer with appropriate software" (Kelton *et*
al., 2004). Based on this definition, one can define a simulation model as a representation or mimic of a real system, developed usually on a computer with appropriate software.

Models in general can be physical or logical. A physical model is a physical replica or scaled representation of the actual system (Kelton et al., 2009). A logical model, on the other hand, is a set of approximation and assumptions about the way the actual system behaves (Kelton et al., 2009). A logical model can be a mathematical or a computer simulation model. Simulation models are very good for modeling complex behaviours in systems which would have been impossible to achieve using mathematical models without over-approximations and over-assumptions. Simulation also makes testing of several alternative designs (current or future) of the actual system possible without incurring the huge infrastructural and logistical cost of building the real systems. Simulation models can also be classified as static or dynamic, discrete or continuous, and stochastic or deterministic. Static models are time-independent while dynamic model are time-dependent. Discrete models change states at discrete time interval, for example, in a bank transaction, customers can go through arrival, queuing, payment, and departure states, while continuous models change state continuously, e.g the drop in water level as water flows out of a tank through the tap. A model can be mixed continuous-discrete (Kelton et al., 2009), in which case, some parts of the system are continuous while some parts are discrete. Depending on the nature of the input, simulation model can also be deterministic or random (or stochastic) model. Deterministic models have non-random or fixed inputs while random models have random input. In this research, our simulation model is dynamic, discrete, and stochastic; it is a discrete-event simulation. Discreteevent simulation involves collecting observations at selected points in time, called events, when changes take place in the system (Rossetti, 2010).

As a result of the significant gain in computing power and processing speed of computers, computer simulations are now much more efficient and faster than before. Moreover, the advent of special modeling programs and applications, such as Arena simulation software, have enhanced the usability and performance of simulations. According to Rossetti (2010), the methodology for building simulations models on computers and implementing the model, illustrated in Figure 2.3, includes the six phases of problem formulation, simulation model building, experimental design and analysis, evaluation and iteration, documentation and project plan, and create the conceptual model of the system. Proper planning and designing of the problem formulation phase will ensure that we build the right model, and collect the right input data. At the second phase, the model is programmed in a simulation language or developed using an application software like Arena simulation software which enables models to be built with drag-anddrop functionalities while auto-generating the code. To ensure an efficient and reliable simulation model, the computer program is verified to eliminate bugs and errors, and the model is validated to ensure that it actually models the real system. At third and fourth phases, experiments are designed and run multiple times to evaluate the performance of the simulation

Figure 2.3:General simulation methodology (Adapted from Rossetti, 2007; Figure 1.35, pg 34)

model and collect the needed results. At the fifth phase, the program is documented and results are reported. Finally, at the sixth phase, the model is developed into the actual system.

In literature, simulation models have been used by many researchers to analyze and resolve supply chains management problems e.g. inventory inaccuracy and bullwhip effect.

Lee *et al.* (2004) analyzed the simulated impact of RFID technology on inventory accuracy, shelf replenishment policy, and inventory visibility in a manufacturer-retailer supply chain. The results of their analysis showed the potentials of RFID technology in reducing inventory inaccuracy, improving shelf replenishment policy and increasing visibility across the supply chain. Fleisch and Tellkamp (2005) employed simulation model to study the relationship between inventory and performance in a three echelon supply chain with one product in which end-customer is exchanged between echelons. They investigated a base model with mismatch in physical inventory and information system inventory due to low process quality, theft and unsaleable items, and a modified models, affected by same factors, but with physical inventory and information system inventory matched at the end of the period. The result of their studies showed that "elimination of inventory inaccuracy can reduce supply chain costs as well as the out-of-stock level" (Fleisch and Tellkamp, 2005).

Leung et al. (2007) proposed a simulation based business process model to calculate the indirect benefits of RFID technology. Sarac et al. (2008) performed a ROI analyzes to determine the economic impact of RFID on a simulated model of a three-level supply chain in which thefts, misplacements and stock-out lead to inventory inaccuracies with resultant decrease in supply chain performance. Wang et al. (2008) analyzed the impact of RFID system on the inventory replenishment of the thin film transistor liquid crystal display (TFT-LCD) supply chain using simulated pull-based multi-agents supply chain concept. An automatic inventory replenishment that used (s,S) policy with and without RFID technology integration were used in their studies. The result of their studies showed that RFID-enabled automatic inventory replenishment policy can decrease the total inventory cost by 6.19% and increase the inventory turnover by 7.60%. Tu et al. (2009) used simulations to evaluate the performance of the four different algoritms they proposed for locating the presence of RFID tags object. Karagiannaki et al. (2010) proposed a reference step-by step famework that illustrates the value of simulation modeling as a decision support tool to guide choice of RFID implementation in the supply chains. Su and Roan (2011) analyzed the simulated impact of different degrees of RFID applications, demand patterns, demand information sharing and lead time on the dynamic behaviour of the conventional beer distribution model, a multi-level supply chain. The degree of chaos in the dynamic behaviour of the supply chain was calculated using Lyapunov exponents, and one of their findings was that RFID application can effectively diminish the degree of chaos in the supply chain system.

2.4.6 Return-On-Investment (ROI) analyzes of RFID systems

The need for Companies planning to invest in RFID systems to justify their investments before embarking on its implementation makes ROI analyses very significant. With ROI analyzes, Companies can estimate the profit, in monetary time-value, they can get from investing on RFID technology. Schwalbe (2010) gave the following equation for calculating the ROI:

$$ROI = \frac{Total \, discounted \, benefit - Total \, discounted \, cost}{Total \, discounted \, cost}$$
(2.1)

A high positive value of ROI implies a highly profitable investment while a high negative value of ROI implies a highly unprofitable investment.

To reliably estimate the ROI for RFID systems, a clear knowledge of its benefits and costs is essential.

Benefits can be direct or indirect. Direct benefits often come as reduction in costs and increase in profitability while indirect benefits come as intangible advantages, such as innovative use of technology (Roh *et al.*, 2009), improvement in the corporate image or perception, and increase in customer satisfaction, which have more strategic impact. Roh *et al.* (2009) categorized the benefits that can be realized from RFID systems as cost savings, supply chain visibility and new product or process creation (Figure 2.4). Cost savings can increase through reduction in theft (or shrinkage), reduction in counterfeiting, reduction in labour cost, and reduction in inventory cost. Supply chain visibility can lead to improvement in supply chain performance through reduction in Bullwhip effect,

reduction in uncertainty of product availability, reduction in out-of-stock, delivery and safety stock, and so on. Innovative developments, such as new process creation, communication of component parts to readers, and quality control, can bring about remarkable improvements in the performance of the supply chain.

Banks *et al.* (2007) classified the cost components for RFID implementation as hardware costs, software costs, system integration costs, installation service costs, personnel costs, and business process reengineering costs. The cost of RFID implementation increases from pallet-level to case-level to item-level; hence, the level of RFID tagging is an important cost factor (Sarac *et al.*, 2008) in RFID implementation. We summarize the

Figure 2.4:Benefits of RFID systems (Adapted from Roh et al., 2009; Table 1, pg 358)

discussions of Banks *et al.* (2007) on the cost components required for RFID implementations in Table 2.2

When viewed as supply chain performance measure (Fleisch and Tellkamp, 2007; Beamon, 1998), ROI can be considered as a quantitative monetary measure in which direct benefits and cost components are used. Other quantitative monetary supply chain performance measures are Net Present Value (NPV), Internal Rate of Return (IRR), costs, and sales. Customer response time and lead time are regarded as quantitative and non-monetary measures (Fleisch and Tellkamp, 2007; Beamon, 1998).

In literature, Betanni and Rizzi (2008) conducted a feasibility study to investigate the economic sustainability of RFID and EPC adoption in the Fast Moving Consumer Goods (FMCG) supply chain, comprising manufacturers, distributors and retailers. They considered the individual supply chain players and the entire supply chain in their study. Their study revealed that pallet-level RFID tagging provides positive ROI for all supply chain players while case-level RFID tagging gives positive ROI for only distributors and retailers. Véronneau and Roy (2009) performed a qualitative study of the cost-benefit of case-level and pallet-level RFID implementations in a cruise corporation global supply chain. Their study revealed that pallet-level RFID deployment does not bring enough benefits to the cruise corporation to justify its investment while case-level RFID deployment, provided tag cost is shared across the entire supply chain, brings enough direct benefits to justify its investment. Souza et al. (2011) analysed a case-study of an RFID-enabled supply chain ecosystem of a large multi-national corporation in Singapore, and proposed a ROI calculator, based on Supply Chain Operational Reference (SCOR) model, to assess the operational level benefits of RFID implementation in the supply chain.

Cost Components	Descriptions	Examples
1. Hardware costs	These are costs required to procure tangible, physical assets for RFID solution deployment.	Cost of: • RFID readers • RFID tags • RFID antennas • Network switches
2. Software costs	 These are costs of procuring components required for: Collecting electronic data Translating RFID event into business events for decision making 	Cost of: Middleware systems Database systems Interface systems Maintenance
3. Integration costs	These are costs associate with integrating resultant data from RFID infrastructure into enterprise applications.	Cost of ERP systems
4. Personnel costs	These are costs associated with hiring external and internal personnel.	Cost of • Labour • Training
5. Installation service	These are costs of actual deployment.	Cost of: • Wiring and power outlets • Server installations • Field test
6. Business Process Reengineering (BPR)	These are costs associate with re- engineering.	Cost of: • Removing old processes • Adding new processes

Table 2.2: Cost components for RFID implementation (Adapted from Banks et al., 2007)

Some researchers have proposed analytical evaluation methods different from the traditional ones such as ROI, NPV, and IRR to determine the economic impact of RFID implementations. Kim and Sohn (2009) proposed a Cost of Ownership (COO) model to investigate RFID technology applicable to a ubiquitous city (u-city). Infrastructural costs, logistics costs and yield loss costs were considered in their model. They argued that

the model offer more detailed economic evaluation than existing methods, such NPV and IRR, when building RFID logistics system under u-city. Lee and Lee (2010) also presented a supply chain RFID evaluation model based on the classic Economic Order Quantity (EOQ) model that helped determine the optimal investment level that minimizes the total cost.

2.5 Review of cost

Different types of costs exist. For this study, the following costs are considered necessary for review:

- 1. Fixed cost
- 2. Variable cost
- 3. Value added cost
- 4. Non-value added cost
- 5. Waiting cost
- 6. Holding cost
- 7. Usage cost

Variable cost change proportional to the quantity of items produced during the period of a project, while fixed cost remains unchanged (e.g. monthly salaries). Value added cost is the cost incurred when one or more resources are used in a value adding process. Non-value added cost is the cost, such as adverting cost, that adds to the total cost without adding a tangible or visible value to a product. Waiting cost is the cost incurred when a

product is delayed in a queue. Holding cost is the cost of holding a product in inventory. Usage cost is the cost incurred for each usage of a resource in a system. Value added cost, waiting cost, holding cost, and usage cost are used in Arena simulation software.

2.6 End note

Our review of literatures showed that RFID has a number of advantages over traditional barcode which makes it preferred for tackling supply chains and logistics networks problems. RFID technology can enhance information flow in both FL and RL by enabling product-related information to be collected and shared in real-time in the entire supply chain. RFID can significantly reduce inventory inaccuracy, bullwhip effects, and replenishment inaccuracy (Sarac *et al.*, 2010) in supply chains.

In the study of RFID-enabled logistics, researchers have used analytic, case-studies, and simulation model approaches, and conducted cost-benefit or ROI analyzes. In terms of industrial applications, Wal-mart and U.S. DOD are renowned for applying RFID in forward supply chain while the U.S. Navy and KPN are renowned for applying RFID in reverse logistics. Although there is still restrain on the widespread adoption of RFID in the aviation industry due to interference related concerns, and approval of only passive tags by FAA, aviation companies like Boeing and Airbus have shown through pilot tests that high memory RFID tags can be successfully used for the tracking of aircraft parts.

Chapter 3:

Problem Definition

In this chapter, we discuss in-depth our problem statement and research objectives by elaborating on the components of aircrafts, challenges of processing dissembled EOL aircrafts in the RL network, and justifying the need for our study on simulation the ROI of RFID in the reverse logistics of aircrafts.

3.1 End-of-life aircrafts

Aircrafts consist of several parts, which can be categorized, as given in the Airframer index (2008), as materials, components, airframe systems, avionics, and power systems, with subcategories of adhesives, coatings, plastics, composites, lubricants, metals and non-metals, active and passive electronic components, mechanical and non-mechanical components, fasteners, cabin interiors, batteries and accessories, and engines (Table 3.1).

Aircrafts have an average life span of 25 years, and an estimated 6400 aircrafts will reach their end of service life by 2026 (Airbus, 2008). Moreover, this number is likely to increase with the phase-out and replacement of old and less fuel-efficient aircrafts with more fuel-efficient ones.

Proper tracking and monitoring of parts obtained from disassembled EOL aircraft is important in order to ensure that parts arrive at the right processing facility, and appropriate processing operations are applied. Also the processing of EOL aircrafts can be expedited if data on EOL aircrafts are easily accessible, resulting in faster decision

Categories	Sub-Categories				
Materials	Adhesives, coatings, plastics, composites, lubricants, metals, non-				
Waterials	metals				
	Active electronic components, passive electronic components,				
Components	actuation, electrical and electronic connectors, fasteners, lighting,				
components	mechanical components, non-mechanical components, sensors,				
	transducers, detectors				
	Airframe assemblies, cabin interiors, cargo systems, crew seating,				
Airframe systems	environmental systems, fluid power, landing assemblies, safety and				
	security systems				
Avionics	Avionic components, communications, Indicator and instruments,				
1 Wiomes	warning systems				
	Auxiliary power, batteries and accessories, electrical power				
Power systems	systems, engine components, engines, fuel systems, power				
	transmission				

Table 3.1: Aircraft parts (Adapted from Airframer Index, 2012, Boeing 787 Dreamliner)

making process. Although historically, several EOL aircrafts have been dismantled, reused, remanufactured, recycled, and disposed, and best practice techniques have been proposed by leading commercial aircraft manufacturers and management associations, such as Airbus, Boeing, and AFRA, there is still need for a widely accepted, efficient

and cost-effective system for tracking and monitoring parts of EOL aircraft in the RL network.

3.2 Justification for studies

RFID technology application in EOL aircraft RL network shows great potential for addressing the problems of tracking and monitoring EOL aircrafts in the RL network through its automatic, wireless and data-capture technology. RFID technology integration can bring about significant improvement in the monitoring, tracking and distribution of aircraft parts in the RL network; reduce mismatch between physical and information inventory; eliminate time-consuming processes resulting from identification of parts using manual barcode scanning, and bring about significant gain in the processing rates of parts on process-lines through real-time identification of parts and their processing requirements. Other benefits of RFID are cost-saving benefits, such as shrink reduction, labor cost reduction, and inventory cost reduction. These benefits can, however, be adversely affected by cost-heightening factors resulting from different RFID technology selection and implementations.

Hence, it is in an effort to substantiate the potentials of RFID technology for solving challenges of the EOL aircraft RL, and to justify investment in the technology that we conduct research to develop a selection model for determining the most suitable RFID solutions for use in different areas of the EOL aircraft RL network, and to analyze the ROI of the system.

3.3 End note

We have shown through our problem definition the problems of the EOL aircraft RL network and the need for this research on simulating the ROI of RFID in the RL of aircrafts.

Chapter 4:

Proposed Approach

The solution approach used to meet the research objectives listed in Section 1.3 is presented as follow:

The first objective is addressed through presentation of practicable scenarios of RFID technology implementations, as demonstrated in literature. We also proposed a framework for managing the data stored on RFID tags and enterprise application systems, particularly in relations to EOL aircraft RL network.

The second objective is addressed by first creating a hypothesized as-is process map in which case-level barcode tagging is employed and routing decision is based on aircraft part (AP) types and RL types. The as-is process map serves as the baseline or reference model. Through qualitative analysis of the reference process map, three other process maps that employ item-level, case-level, and pallet-level RFID tagging are developed. The process maps are then simulated in Arena simulation software to investigate the ROI and process improvements that are realizable.

Discussion of our proposed RFID technology selection model, requirements for EOL aircraft RL network information system, and conceptual models are presented in the subsections.

4.1 **RFID technology selection model**

To determine the most appropriate RFID solution for a given system, a number of factors which relates to the characteristics of different RFID technology and the system in which the RFID technology is to be deployed needs to be considered. We discuss these factors under (1) The RFID technology capabilities (2) The current system specifications. After, we analysed these factors in relation to EOL aircraft RL to obtain our proposed selection model. This problem-solving process is depicted in Figure 4.1.

Figure 4.1: RFID technology selection process

4.1.1 RFID technology capabilities

Based on earlier works by Banks *et al.* (2007), and Khan *et al.*, (2009) on the characteristics of different types of RFID tags, we identify parameters for the different types of RFID tags as IC powering, signaling behavior, lifespan, range, memory, and cost, and present values for these parameters in Table 4.1.

From the information provided in Table 4.1, active RFID tags can be said to be suitable for use in situations where large data needs to be captured from an item at a distance up to 100 m, and for time period as long as the life-time of the on-board battery. However, for semi-active RFID tags, because their on-board batteries are only activated when they are within the read range of the reader or interrogator, which helps to prolong their lifespan, they need to be close enough to the reader. The high cost of active RFID tags and semi-active RFID tags makes them in less demand than the passive tags.

For passive RFID tags, their small-size, small memory, and unlimited lifespan makes them suitable for holding small data about items throughout their lifecycle. Also, the short read range of passive RFID tags makes them more appropriate for tracking mobile or fixed items which are close to the reader. The presence of on-board battery in the semi-passive RFID tags helps to increase their range.

Where costs, size, and battery life span are not important, active RFID tags offers more flexibility (Banks *et al.*, 2007), in terms of range and tag memory usage.

	RFID Tag Types	IC Powering	Signaling Behaviour	Life Span	Size	Range	Memory	Costs
1	Active	Use on-board battery to power tag IC	 Sends signals at regular rate Use active transmission 	Limited	Bulky	Long (< 300m)	< 100 Kilobytes	High
2	Semi-active	Use on board battery to power tag IC	 Sends signals only when interrogated by reader at a readable range Use active transmission 	Limited	Bulky	Short (< 3m)	<100 Kilobytes	High
3	Passive tag	Use signal received from reader to power tag IC	 Sends signals only when interrogated by reader at a readable range Use Backscatter 	Unlimited	Small	Short (<3m)	96 bits, 128 bits	Low
4	Semi-passive	Use on-board battery to power tag IC	 Sends signals only when interrogated by reader at a readable range Use Backscatter 	Unlimited	Bulky	Long (<100m)	< 100 Kilobytes	High

Table 4.1: RFID tags technology capabilities (Adapted from Banks *et al.*, 2007; Table 3.1, pg 69)

We summarize our discussion in Table 4.2.

Range	Memory	Life Span	Size	Costs
Long Active Semi-active 	Large Data Active Semi-active Semi-passive	Unlimited Passive Semi-passive	Big Active Semi-active Semi-passive	High Active Semi-active Semi-passive
Short Passive Semi-passive 	Small Data Passive 	Limited Active Semi-active	Small Passive	Low • Passive

Table 4.2: Suitability of RFID tag technologies

4.1.2 Current system specifications

Clear understanding of the specifications of the current system is important in order to know if or not a RFID solution is required, and to identify the best fit solution for the current system. It also serves as a strategic plan that helps to identify the why, when, and where an RFID solution is required (Banks *et al.*, 2007).

We discuss the specification of the current system under the following sub-headings:

- 1. System and environment specifications
- 2. Item specifications

4.1.2.1 System and environment specifications

We consider the environment to be the physical surroundings of the RFID tags and the system to encompass all activities or operations existing in the environment. By answering a number of questions about the specifications of the environment and the system we can identify the best fit RFID solutions. We present these questions in Table 4.3:

	Specifications	Questions
1	Logistic types	Is it a closed-loop or open-loop logistic network?
2	Spacing	Is it a more congested space (e.g. warehouse) or less congested space (e.g. spacious assembly line)?
3	Mobility	Is it a static (e.g. shelved items in stores) or dynamic (e.g. assembly line) system?
4	Transmission	Does the environment have metallic objects or liquids that can reduce the strength of signals transmitted from the reader?

Table 4.3: Questions on system and environment specifications

In a closed logistic network, to track items throughout their lifecycle, at minimum costs and with basic data requirements, passive RFID tags may be more appropriate than the active RFID tags. For an open logistic network, however, any type of RFID tags can be used, depending on other factors.

The type of spacing can also determine the most suitable RFID tags and readers to use. In an open and less congested environment, like spacious assembly-lines, long range RFID readers (active, semi-active, and semi-passive) with fixed readers, attached to predetermined locations, will be more suitable. On the hand, in a crowded environment, where items are closely positioned, passive RFID tags with handheld readers will be more suitable.

In a static system, where there is less likelihood of frictions due to regular movements of objects, passive RFID tags will be more suitable than active RFID tags, due to their small size and low costs. However, in a dynamic system, where items are moved around regularly, bulky or rugged RFID tags (active, semi-active, and semi-passive) may be more suitable than passive RFID tags due to their big size.

Metallic objects can significantly reduce the strength of transmitted signals from readers due to signal interference and cancelations (Banks *et al.*, 2007). Liquids can also reduce the strength of transmitted signals, however, through a process called signal absorption (Banks *et al.*, 2007). These problems can be reduced or eliminated by using multiple readers, protected RFID tags, or non-metallic casings for items (Banks *et al.*, 2007).

These discussions are summarized with the system-based selection matrix presented in Table 4.4.

RFID tags	Logistics		Spacing		Мо	bility	Trans	mission
	Closed-loop	Open-loop	More congested	Less congested	Static	Dynamic	Presence of	Absence of Metal
							Metal or Liquid	or Liquid
Active	-	~	_	~	_	~	NA ¹	NA
Semi-active	-	~	-	~	-	~	NA	NA
Passive	~	~	~	-	~	-	NA	NA
Semi-passive	-	~	-	~	-	~	NA	NA
Protected RFID	NA	NA	NA	NA	NA	NA	~	_
lags								

Table 4.4: System and environment based RFID technology selection matrix

Keys

- Suitable
- Not suitable
- NA Not applicable

¹ Protected RFID tags are special purpose tags that can be any of the normal RFID tags but contained in protective casing. As part of measures to protect RFID tags in aviation MRO use of RFID tags on containers or trays that holds parts, rather than directly on parts, was proposed by Ramuldin *et al.* (2008).

4.1.2.2 Item specifications

In this case, we consider, as shown in Figure 4.2, the physical characteristics of items, the volume of data needed on items and the amount of visibilities required for items as factors determining RFID technology selection.

RFID technology selection in terms of physical characteristics of items can be analyzed by considering the flexibility, size, and composition of items. Flexible RFID tags, which exist only in passive RFID tags, are more suitable for flexible items such as documents, while rigid or bulky RFID tags are more suitable for rigid items (Banks *et al.*, 2007). Likewise, for small sized items, small passive RFID tags are more suitable while for big sized items big RFID tags are more appropriate. If an item is metallic or liquid, special

Figure 4.2: Item specification factors

RFID tags, with protective overlays, or non-metallic casing, in which items are placed, has to be used to prevent degradation of signals received from readers through signal interference in metals, and signal absorption in liquids (Banks *et al.*, 2007). When large amount of data is needed on items, for instance in situations where a field-operator needs to know about the processing steps or work-order for items, large-sized memory tags (active, semi-active, and passive) will be more suitable for storing such data. However, when small amount of data about items is required, for example the part number, passive RFID tags will be more suitable.

In regards to required visibilities, the visibility of items increases from pallet-level to case-level to item-level. Equally, RFID tag cost increases from pallet-level to case-level to item-level. This relationship is depicted in Figure 4.3. Due to their low cost, we consider passive RFID tags, excluding other factors, most suitable for all tagging levels.

These discussions are summarized with the item-based selection matrix presented in Table 4.4.

Figure 4. 3: Increasing cost and visibility of RFID tagging levels

RFID tags	Flex	xibility	Size		Composition		Volume o	of data	V	isibility	
	Flexible	Rigid/Rugged	Small	Big	Presence of	Absence of	Small	Large	Item	Case	Pallet
					M/L	M/L			level	level	level
Active	_	v	_	~	NA	NA	_	~	_	-	_
Semi-active	_	~	_	~	NA	NA	-	~	_	-	_
Passive	~	_	~	_	NA	NA	~	-	²	~	~
Semi-passive	_	~	_	~	NA	NA	-	~	_	-	_
Protected RFID tags	NA	NA	NA	NA	~	~	NA	NA	NA	NA	NA

Table 4.5: Item-based RFI	D technology selection matrix

Keys

V

- Suitable
- Not suitable
- NA Not applicable
- M/L Metal or Liquid

² Passive tags are considered most suitable for all the tagging levels because of their low cost

4.1.3 RFID technology selection model for EOL aircraft RL

The environment of the EOL aircraft is a hypothesised open-loop RL network. The network represents the as-is or current systems in which case-level barcode tagging is used. Four environments can be identified from the process maps, namely:

- Disassembling facility (less congested and dynamic environment with liquid and metals)
- 2. Physical store or inventory (more congested environment)
- 3. Shipping point (less congested and dynamic environment))
- 4. Processing facilities (less congested and dynamic environment with liquid and metals)

The dissembling facility is a secure area where parts are disassembled and are thereafter identified and stored in a secure place for the purpose of processing (AFRA, Best Management Practice, Management of Used Aircrafts and Assemblies, 2009) at a later time. The physical store serves as temporary storage for parts after they are disassembled, and before and after they are processed.

Before shipments, parts are picked from physical stores, scanned to update the information store and loaded on pallets. At this point, it is important that parts are properly identified to ensure their proper handover to shippers and their shipment to the right processing facilities. Also, parts need to be packaged in accordance with acceptable

standards (AFRA, best management practice for management of used aircrafts and assemblies, 2009).

In the as-is system, described above, barcodes are attached to parts after they are removed from the EOL aircrafts, that is after the disassembly process. The use of RFID technology in place of barcode technology has a number of technological advantages, as given in Table 2.1. More specifically, RFID technology can help to enhance logistics operations and processes in the EOL aircraft RL network by enabling:

- 1. Automatic identification of parts in transits and on process floors
- 2. Prompt access to information about the origin and destination of parts
- 3. Easy access to work-order for processing of parts
- In situations where RFID data are shared across the entire RL network, RFID can facilitate prompt access to, and update of, information across the entire RL network

Drawing from earlier discussions on item and system specifications, we present in Table 4.6 four scenarios, and the selection criteria for selecting suitable RFID technology (Scenarios 2, 3, 4) for the EOL aircraft RL network. In the first scenario, a traditional barcode system is used as the support technology for the physical store, the shipping point, the receiving point, and the processing facilities. In the second scenario only passive RFID tags are used, while in third scenario only active tags are used. In the fourth scenario passive tags are used in the physical store, while active tags are used for the shipping point, the receiving point, and the processing facilities. The second scenario is

Table 4.6: Selection model for EOL aircraft RL network

		Environments						
		Physical store Activities: Inventory counting, picking	Shipping points Activities: Checking, recording, routing decision-making, shipping.	Receiving point Activities: Checking, recording, storing	Processing facilities Activities: Reading and update of work order information, progress reporting			
Barcode System	Scenario 1	Barcode attached to parts or cased ³ part(s), barcode scanner	Barcode attached to pallet, barcode scanner manually operated.	Barcode scanner manually operated.	Barcode scanner manually operated.			
lgy	Scenario 2	Passive RFID tag attached directly to parts or cased parts, handheld reader	Passive RFID tag attached to pallets, handheld reader, RFID gate	Passive RFID tag attached directly to parts or cased part(s), handheld reader, RFID gate	Passive RFID tag attached to trays, fixed reader			
RFID technol	Scenario 3	Active RFID tag attached to parts or cased parts, handheld reader	Active RFID tag, handheld reader, RFID gate	Active RFID tag, handheld reader, RFID gate	Active RFID tag attached to trays, fixed reader			
	Scenario 4	Passive RFID tag attached directly to parts or cased part(s), handheld reader	Active RFID tag, handheld reader, RFID gate	Active RFID tag, handheld reader, RFID gate	Active RFID tag attached to trays, fixed reader			

³ Parts for reuse and remanufacture are cased, to protect them from damage, with unit aircraft part in case representing item-level, multiple aircraft parts in case representing case-level and multiple cases on pallet representing pallet-level. A single part can also be cased to ensure safety and to reduce interference and absorption of RFID signals.

most suitable when small amount of data is required on RFID tags, while the third scenario is most suitable when large amount of data is required on RFID tags. The second scenario also has the advantage of long battery life with its use of passive RFID tags. In the fourth scenario, different RFID technologies are employed at different points; this is suitable if different technological advantages of passive and active tags are required. No RFID or barcode technology is required for the disassembly facility.

4.2 Requirements for RFID – enabled Information System (IS)

We obtained the requirements for the EOL aircrafts RFID-enabled IS by exploring literatures on the structure and capacity of RFID tag memory, and the data required for the RFID tags, and proposing a possible layout or schema for the data stored in the IS database.

4.2.1 Structure of RFID tag memory

Meaningful communication between RFID readers and tags is achieved through communication protocol that defines how memory is organized on the tag and the basic sets of commands that the reader employs during its interrogation of RFID tags (Banks *et al.*, 2007). While a standard protocol, or limited number of standard protocols, exist for passive tags, no such standard, or restrictions, exist for active tags, due their use of onboard batteries which gives active tag manufacturers the flexibilities of producing active tags with advanced memory layout structures and access protocols (Banks *et al.*, 2007). The Electronic Product Code (EPC) is the widely adopted protocol for passive tags (Banks *et al.*, 2007). The structure of the passive tag memory, as defined by the EPC

standard, is depicted in Figure 4.4. As shown in Figure 4.4, the passive tag memory consists of four memory banks, namely:

- 1. Reserved memory (Bank 0)
- 2. EPC memory (Bank 1)
- 3. Tag identification (ID) memory (Bank 2)
- 4. User memory (Bank 3)

Figure 4.4: Tag memory layout (Adapted from Banks et al., 2007, Figure 3.9, pg 82)

The functions of each of these memory banks are presented in Table 4.7. On the userdefined memory of passive tags, we can read and write small amount of data such as part number, part name, part origin, and part destination.

	Memory Banks	Functions
1	Reserved	Contains the kill and access password
2	EPC	Contains a 16-bit cyclic redundancy check for validating the integrity of the rest of the data found in the EPC memory block
3	Tag ID	Contains an 8-bit ISO/IEC 15963 class identifier that is associated with the type or manufacturer of tag.
4	User	Contains user-defined data, where read and write can be targeted

Table 4.7: Functions of passive RFID tag memory banks (Adapted from Banks et al., 2007)

4.2.2 Data requirement for the EOL aircraft IS and RFID tag memory

From the AFRA, best management practice, 2009, documentation, we identify five categories of information that are required for the identification of parts after parts are removed from the EOL aircraft. These five categories, and their contents, are given in Table 4.8.

To enable easy access to data on the enterprise application system, data needs to be properly organized in the IS in accordance with relational database rules. On RFID tags, data also need to be organized; but, in this case, it is done to ensure that RFID tag memories are not exceeded, and that only data relevant to any given process are available to the operator of that process. Table 4.8: Data requirements for EOL aircrafts (Adapted from AFRA, Best Management Practice, Management of Used Aircrafts and Assemblies, 2009)

	Categories	Contents
1	Information that uniquely identifies the asset (i.e. EOL aircraft)	Registry number or serial number
2	Information that identifies process	Work order number or customer identification
3	Information that identifies the part	Part number, serial number, location from which part was removed
4	Information that identifies elements that contribute to the condition of the part	Total times/cycles on parts, total times/cycles on EOL aircraft (or asset)
5	Information about the airworthiness of part	Airworthiness identification ("Subject to airworthiness event" or "Not subject to airworthiness event")

4.2.3 Layout of data on the EOL aircraft RL network IS database

From the information provided in Table 4.8, the database of the EOL aircraft RL network IS is designed using the Entity-Relationship (ER) diagrams (Storey,1991; Cambel and Embley,1987) in Figure 4.5. Descriptions of the entities and fields in the ER diagrams are provided in Table 4.9. From the information in Figure 4.5 and Table 4.8, we see that an EOL aircraft is identified by its registration number, its name, and its times in service; a part is identified by its part number, its times in service, the registration number of EOL aircraft from which part was removed, its airworthiness state, and its origin and destination; a process is identified by its process ID, its name, and its description; and a work-order is identified by its work-order ID, the start date and end date of work, the process ID, and the part number.

Table 4.9: Descriptions	of entities and	fields of EOL aircraft IS
-------------------------	-----------------	---------------------------

Entities	Fields	Descriptions	Sample values
Aircrafts	Registration number	Unique identifier for EOL aircraft	45445453412
	Aircraft name	Name of EOL Aircraft	Boeing 707
	Times in service	Times or cycles that EOL aircraft was in	25 years
		service	
Parts	Part number	Unique identifier for part	PT45545
	Part name	Name of part	Gearbox
	Times in service	Times or cycles that part was in service	5 years
	Origin	Source of part	Montreal
	Destination	Destination of part	Ottawa
Airworthiness	Airworthiness status	Identifies if part is airworthy or not	Subject to airworthiness test,
			Not subject to airworthiness
			test
RL Processes	Process ID	Unique identifier for a process	RL4045
	Process name	Name of process	Recycle, Reuse,
			Remanufacture, Dispose
	Description (optional)	Description of process	Recycle at Montreal plant
Work Orders	Work order ID	Unique identifier for a work order	W97
	Start date	Start date of work	13/05/2012
	End date	End date of work	14/10/2013

Note: PK means primary key and FK means foreign key

Figure 4.5: ER diagram for EOL aircraft IS

4.2.4 Layout of data on RFID tags

The work-order table of the EOL aircraft RL IS has four fields of data:

- 1. Data required to identify work-order (i.e. work-order ID)
- 2. Data required to identify parts (i.e. part number)
- Data required to identity origin and destination of parts (i.e. origin and destination fields)
- 4. And, data required to identify processes (i.e. process ID)

In order to store the data on RFID tags, and have them visible across the entire RL network, two solutions are proposed:

- Use of low-memory tags (e.g. passive tags) with only the work-order ID stored on it, but with network connection that enables the retrieve, and update, of other data from IS database by using the work-order ID.
- Use of high-memory tags (e.g. active tags) with most or all of the data stored on it, and with network connection that enables synchronization of the data on the RFID tag memory with the ones on the IS database.

4.3 Hypothesized models

4.3.1 Process map for as-is EOL aircraft RL network

The process map for the current or as-is EOL RL network, developed through information obtained from literature review (AFRA, best management practice manual, 2009; Bottani and Rizzi, 2008) and discussions with aviation experts, is given in Figure 4.6. The process map represents the hypothesized (design) model of the EOL RL network. It also represents the base model in which traditional barcode system is used for identifying parts. In earlier work by Sarac *et al.*, (2008), base model was first simulated to analyze the dynamic and stochastic behaviors of a supply chain in which inventory inaccuracy occurred with barcode system. In this work, however, we first analyze the base model in order to identify the business process re-engineering (BPR) (Banks *et al.*, 2007) which enabled the development of our to-be process maps in which item-level, case-level and pallet-level RFID tagging are used, and after, we simulate the base model and to-be process maps in order to measure the improvements achievable with the integration of RFID technology, and also determine the ROI. The processes in the process map are listed in Table 4.10.

Figure 4.6: Process map for as-is EOL aircraft RL network with case-level barcode tagging

Table 4.10: Processes in as-is EOL RL network with case-level barcode tagging

S/N	Processes
1	Disassembling of aircrafts at disassembly facility
2	Sorting of parts
3	Packing of two or more parts into case
4	Tagging of cases with barcodes
5	Manual scanning of tags and adding of data to information store
6	Storing of cases in physical store
7	Picking of cases from physical store
8	Manual scanning of cases and update of information store
9	Adding of cases to pallets
10	Shipping of pallets to processing facilities
11	Unloading of pallets at processing facilities
12	Manual scanning and update of information store at processing
	facilities
13	Moving of cases to physical store at processing facilities
14	Picking of cases at processing facilities
15	Manual scanning and update of information store at processing
	facilities
16	Unpacking of cases
17	Preparing parts for process lines
18	Processing of parts according to part's information
19	Moving of processed parts to physical store

Five main processes can be identified in Table 4:10:

- 1. Disassembling
- 2. Picking
- 3. Shipping
- 4. Receiving
- 5. Processing (i.e. reuse, remanufacture, recycle, and dispose).

4.3.2 Process maps for to-be EOL aircraft RL network

Three process maps are built for the to-be RL network. They are:

- 1. The to-be EOL aircraft RL network with item-level RFID tagging
- 2. The to-be EOL aircraft RL network with case-level RFID tagging
- 3. The to-be EOL aircraft RL network with pallet-level RFID tagging

Discussions about each of the process maps are presented in the following subsections:

4.3.2.1 Process map for EOL aircraft RL network with item-level RFID tagging

The process map for the EOL RL network with item-level RFID tagging, which is derived from the base model, is presented in Figure 4.7. Processes in the EOL RL network are listed in Table 4.11. With the integration of RFID tagging at the item-level (Comparing Table 4.10 and Table 4.11), the following BPR are realized:

- 1. One part is packed per case
- 2. RFID tags are attached to parts after the process of disassembling, sorting and

Figure 4.7: Process map for to-be EOL aircraft RL network with item-level RFID tagging

S/N	Processes	
1	Disassembling of aircrafts at disassembly facility	
2	Sorting of parts	
3	Packing of one part per case ⁴	
4	Tagging of the part or case containing single part with RFID tags containing data about the part	
5	Automatic reading of RFID tags and storing of data in information store	
6	Storing of cased part in physical store	
7	Picking of cases from physical store	
8	Automatic reading of RFID tags on picked cases and updating of data in	
	information store	
9	Adding of cases to pallets	
10	Shipping of pallets to processing facilities	
11	Unloading of pallets at processing facilities	
12	Automatic reading of RFID tags and storing of data in information store at	
	processing facilities	
13	Moving of cases to physical store at processing facilities	
14	Picking of cases at processing facilities	
15	Automatic reading of RFID tags on picked cases and update of data on	
	information store at processing facilities	
16	Unpacking of cases	
17	Preparing parts for process lines	
18	Processing parts according to part's processing information	
19	Moving of processed parts to physical store	

Table 4.11: Processes in to-be EOL RL network with item-level RFID tagging

⁴ A single part, particularly reuse and remanufacture types, are cased to protect them from damage. A single part can also be cased to ensure safety and to reduce interference and absorption of RFID signals.

casing. In situations where a part needs to be protected from damage by placing the part in a case, an RFID tag containing information about the single part is attached to the case.

- The sample data provided in Figure 4.8, with part number included, is stored per RFID tag memory
- 4. Data on RFID tags are automatically read and stored on information store
- 5. Inventory management is enhanced with RFID technology
- 6. Processing of parts on process lines is enhanced with RFID technology

Figure 4.8: Sample data for item-level RFID tagging stored on active RFID tag memory

4.3.2.2 Process map for EOL aircraft RL network with case-level RFID tagging

The process map for the EOL RL network with case-level RFID tagging is presented in Figure 4.9. Processes in the EOL RL network are listed in Table 4.12. With the integration of RFID tagging at the case-level (Comparing Table 4.10 and Table 4.12), the following BPR can be identified:

1. Two or more similar parts are packed per case

Figure 4.9: Process map for to-be EOL RL network with case-level RFID tagging

- 2. RFID tag are attached to cases containing multiple parts after the process of disassembling, sorting and casing
- 3. The sample data provided in Figure 4.10, with case ID replacing part number, is stored per RFID tag memory
- 4. Data on RFID tags are automatically read and stored on information store
- 5. Inventory management is enhanced with RFID technology
- 6. Transportation logistics is enhanced with RFID technology
- 7. Processing of parts on process lines is enhanced with RFID technology

Work ID
Case ID
Origin
Destination
Process ID

Figure 4.10: Sample data for case-level RFID tagging stored on active RFID tag memory

S/N	Case ID	Part ID
1	012323	N123323
2	012323	N344335
3	343434	N123323

Figure 4.11: Sample lookup table with case ID as search key

Table 4.12: Processes in to-be EOL RL network with case-level RFID tagging

S/N	Processes	
1	Disassembling of aircrafts at disassembly facility	
2	Sorting of parts	
3	Packing of two or more parts per case	
4	Tagging of the case with RFID tags	
5	Automatic reading of RFID tags and storing of data in information store	
6	Storing of cased parts in physical store	
7	Picking of cases from physical store	
8	Automatic reading of RFID tags on picked cases and update of data	
	on information store	
9	Adding of cases to pallets	
10	Shipping of pallets to processing facilities	
11	Unloading of pallets at processing facilities	
12	reading of RFID tags and storing of data in information store at	
	processing facilities	
13	Moving of cases to physical store at processing facilities	
14	Picking of cases at processing facilities	
15	Automatic reading of RFID tags on picked cases and update of data	
	on information store at processing facilities	
16	Unpacking of cases	
17	Preparing parts for process lines	
18	Processing parts according to part's processing information	
19	Moving of processed parts to physical store	

4.3.2.3 Process map for EOL aircraft RL network with pallet-level RFID tagging

The process map in Figure 4.12 is employed for the scenario with pallet RFID tagging. Processes in the EOL RL network are listed in Table 4.13. The following BPR are identified for the scenario with pallet tagging:

- 1. One or more similar parts are packed per case
- RFID tag are attached to pallets with multiple cases after the process of disassembling, storing, sorting, casing and picking
- 3. The sample data provided in Figure 4.13, with pallet ID replacing part number, is stored per RFID tag memory
- 4. Data on RFID tags are automatically read and stored on information store
- 5. Inventory management is enhanced with RFID technology
- 6. Transportation logistics is enhanced with RFID technology
- 7. Processing of parts on process lines is enhanced with RFID technology

The second BPR, which involves the application of RFID technology after the processes of disassembling, storing, sorting, casing and picking, has the effect of increasing value added cost due to the delayed use of the automatic and data capturing advantages of RFID technology for inventory counting and data capturing. On the hand, delayed application of RFID technology, can result in time-savings and cost reduction if routing and associated decision-making are postponed until after RFID technology integration⁵.

⁵ Routing and decision-making can be done manually before integration of RFID technology. This will lead to increase in waiting time and cost.

Figure 4.12: Process maps for EOL aircraft RL with pallet-level RFID tagging

S/N	Processes	
1	Disassembling of aircrafts at disassembly facility	
2	Moving of parts to physical store	
3	Picking of parts from the physical store	
4	Sorting of parts	
5	Packing of one or more parts per case	
6	Adding of cases to pallet	
7	Tagging of pallets with RFID tags	
8	Automatic reading of RFID tags on pallets and update of data on	
	information store	
10	Shipping of pallets to processing facilities	
11	Unloading of pallets at processing facilities	
12	Automatic reading of RFID tags on pallets and storing of data in	
	information store at processing facilities	
13	Move pallets to physical store at processing facilities	
14	Picking pallets at processing facilities	
15	Automatic read RFID tags on picked pallets and update data on	
	information store at processing facilities	
16	Unloading of pallets at processing facilities	
17	Unpacking of cases	
18	Preparing parts for process lines	
19	Processing parts according to part's processing information	
20	Moving of processed parts to physical store	

Table 4.13: Processes in to-be EOL RL network with pallet-level RFID tagging

Figure 4.13: Sample data for pallet-level RFID tagging stored on active RFID tag memory

S/N	Pallet	Case ID	Part ID
1	443434	012323	N123323
2	443434	012323	N344335
3	469723	343434	N123323

Figure 4.14: Sample lookup table with pallet ID as search key

4.4 Requirements for conducting ROI analyzes for to-be RL network

As defined in Section 2.2.5, ROI is a form of performance measure (Fleisch and Tellkamp, 2005) in which the monetary time-value of a project is estimated using the direct benefits and the cost components of the project. Hence, as a first step towards calculating the ROI for the to-be EOL aircraft RL, we identify the direct benefits and cost components for inventory, picking, shipping, receiving and processing for the to-be RL

networks. Next, we analyze the cost components to derive a formula for calculating total cost for the EOL aircraft RL network. From these analyzes, we create tables of operating costs and overhead costs for the EOL aircraft RL network. Finally, we employ the identified direct benefits and cost components in our simulation models to determine the ROI over a 5 year time period at a 5 percent discount rate (Discussed in Chapter 5).

4.4.1 Costs and benefits of EOL aircraft RL network

The cost and direct benefits for the processes and tagging levels of the EOL RL network are presented in Table 4.14.

4.4.2 Cost classifications

According to Bank *et al.* (2007), the cost components of RFID technology can be classified as RFID and Wi-Fi hardware (H/W) costs, network and application H/W and software(S/W) costs, integration costs, and personnel costs (Banks *et al.*, 2007). The costs associated with this classification are presented in Table 4.15, Table 4.16, Table 4.17 and Table 4.18, respectively.

The network and application H/W and S/W costs in Table 4.16 include the cost of a 3-tier client-server architecture⁶ configuration with web server, application server, and a database server. The capacities of the servers need to be properly determined by experts to ensure that the servers can adequately meet the demands of data-processing and service requests from client computers.

⁶ Client tier, middle tier (web server and application server) and database tier

Table 4.14: Cost and direct benefits of RFID in EOL aircraft RL (Adapted from Bottani and Rizzi, Table 3 pg 556)

Processes	Item level tagging	Case-level tagging	Pallet level tagging
Inventory	 Costs: Cost of RFID tags for cased single part Cost of packaging Cost of RFID readers Cost of printers and print labels Savings: Cost of manpower required to perform manual inventory count Cost of manpower required to perform manual update of information system Cost of shrinkage 	 Costs: Cost of RFID tags for cased multiple parts. Cost of packaging Cost of RFID readers Cost of printers and print labels Savings: Cost of manpower required to perform manual inventory count Cost of manpower required to perform manual update of information system Cost of shrinkage 	 Costs: Cost of manpower required to perform manual inventory count Cost of manpower required to do manual update of information system Cost of shrinkage
Picking	 Costs: Cost of RFID readers Savings: Cost of manpower required to perform manual check operations on picked packaged parts Cost of manpower required to manually update information system 	 Costs: Cost of RFID readers Savings: Cost of manpower required to perform manual check operations on picked packaged parts Cost of manpower required to manually update information system 	 Costs : Cost of manpower required to perform manual check operations on picked parts Cost of packaging Cost of manpower required to manually update information system
Shipping	Costs:Cost of RFID gates	Costs: Cost of RFID gates	 Costs: Cost of RFID tags for pallets Cost of RFID gates Cost of printers and print labels

Table 4.14 Continued

Processes	Item level tagging	Case-level tagging	Pallet level tagging
	 Savings: Cost of manpower required to perform operations on shipped parts Cost of manpower required to manually update information system 	 Savings: Cost of manpower required to perform operations on shipped parts Cost of manpower required to manually update information system 	 Savings: Cost of manpower required to perform operations on shipped parts Cost of manpower required to manually update information system
Receiving	Costs: Cost of RFID gates Savings: Cost of manpower required to perform	Costs: Cost of RFID gates Savings: Cost of manpower required to perform	Costs: Cost of RFID gates Savings: Cost of manpower required to
	 check operations on received parts (check-in and error corrections) Cost of manpower required to manually update information store 	 check operations on received parts (check-in and error corrections) Cost of manpower required to manually update information store 	 perform check operations on received parts (check-in and error corrections) Cost of manpower required to manually update information store
Processing	Costs:	Costs:	Costs:
	 Cost of manpower required for uncasing 	 Cost of manpower required for 	 Cost of manpower required for
	 Cost of handheld readers Cost of RFID tags for trolleys 	uncasingCost of handheld readers	uncasingCost of handheld readers
	Covinces	Cost of RFID tags for trolleys	Cost of RFID tags for trolleys
	 Cost of paper-based work-orders 	Savings:	Savings:
	• Cost of manpower required to manually	Cost of paper-based work-orders	Cost of paper-based work-orders
	Update information systemCost of shrinkage	 Cost of manpower required to manually update information system Cost of shrinkage 	 Cost of manpower required to manually update information system Cost of shrinkage

	RFID and Wi-Fi H/W Description
1	Active tag
2	Passive tag
3	Active tag reader
4	Passive tag reader
5	RFID gate reader
6	Antennae
7	Antennae installation HW
8	Handhelds
9	Power and Cabling Infrastructure
10	Wi-Fi Access Point
11	Wi-Fi-Repeater

Table 4.15: RFID and Wi-Fi H/W costs (Adapted from Banks et al., 2007; pg 180, Table 6.6)

Table 4.16: Network and application H/W and S/W costs (Adapted from Banks et al., 2007; Pg 181, Table 6.7)

	Network and Application H/W and S/W Description
1	Web Server
2	Application Server
3	Database Server
4	UPS
5	Network Switch
6	Database System
7	Web Server Software
8	Application Server Software
9	Middleware Application
10	Tracking Application (per year)

	Integration and Interfacing Description	
1	Integration with Inventory Management System (IMS)	
2	Integration with Shipping Logistics System (SLS)	
3	Integration with Processing Facility System (PFS)	
4	Integration with Client Service System (CSS)	

Table 4.17: Integration costs (Adapted from Banks et al., 2007; pg 181, Table 6.8)

Table 4.18: Personal costs (Adapted from Banks et al, 2007; pg 181, Table 6.9)

	Personnel Description
1	Training of Personnel

Table 4.19: Barcode system costs

	Barcode Description	Unit Cost (\$)
1	Barcode	0.5
2	Barcode scanner	700

4.4.3 Cost calculations

For the EOL aircraft, we calculate the total cost as:

Total cost = operating costs + overhead costs

$$= (IC_{i=0} + VC_i) + (VAC_i + WC_i + NVAC_i)$$

$$(4.1)$$

Where,

 $IC_{i=0}$ is the investment for year $i = 0, i \in T_i$, where T_i is a set of yearly periods

 VC_i is the variable cost for period *i*

 VAC_i is the value added cost for period *i*

 WC_i is the waiting cost for period *i*

 $NVAC_i$ is the non-value added cost for period *i*

For the operating cost,

 $VC_i = C_m * Q_m \text{ for } \exists i \text{ in } T_i$ (4.2)

Where C_m is the unit cost of RFID technology component m, and Q_m is the quantity of m. Since C_m is constant and Q_m is variable, VC_i varies with Q_m .

For the overhead cost, VAC_i for a given period i can be calculated as:

$$VAC_{i} = h x VAT_{i} + (\sum_{j \in R_{i}} b_{j}) x VAT_{i} + (\sum_{j \in R_{i}} u_{j}) = (h + \sum_{j \in R_{i}} b_{j}) x VAT_{i} + (\sum_{j \in R_{i}} u_{j})$$
(Rossetti, 2010; pg 452) (4.3)

Where,

```
h is the holding cost rate
```

 VAT_i is the value added time for period *i*

 u_j is the usage cost associated with j^{th} resource used during an activity

 b_j is the busy cost associated with j^{th} resource used during an activity

 R_i is the set of resources used by the entity in an activity period

Waiting cost, WC_i and non-value-added cost, $NVAC_i$ for a given period i are calculated as:

$$WC_i = h x WT_i \tag{4.4}$$

$$NVAC_i = h x NVAT_i \tag{4.5}$$

Where,

 WT_i is the waiting time for period *i*

 $NVAT_i$ is the holding cost for period *i*

Value added cost, waiting cost, holding cost rate, usage cost, and busy cost are used in Arena simulation software. Holding cost rate (h) is the cost per time incurred when an entity (e.g. aircraft parts) is waiting in the system or in any process (Arena Variables Guide, 2005).

4.4.4 Operating and overhead costs for EOL aircraft RL network

Drawing from our discussions on cost, we present for the EOL aircraft RL network the overhead costs and operating costs in Table 4.20 and Table 4.21, respectively. Quantity, c, represents a constant value; quantity, x, represents a variable value that depends on the quantities of parts that requires processing; and VAC_i, WC_i, NVAC_i represents time dependent costs.

Table 4.20: Overhead costs

Cost type	Cost (\$)
Value added cost	VAC _i
Waiting cost	WCi
Non-value added cost	NVAC _i

Categories	Cost components	Unit cost	Quantity	Total
		(\$)		
Investment costs	Web server	5,000	с	5000c
	Application server	10,000	с	10000c
	Database server	15,000	с	15000c
	UPS	1,000	с	1000c
	Network switch	2,500	с	2500c
	Database system	50,000	с	50000c
	Web server software	20,000	c	20000c
	Application server software	20,000	с	20000c
	Middleware application	100,000	с	100000c
	Power and Cabling Infrastructure	50,000	с	50000c
	Tracking Application	150,000	с	150000c
	RFID gate reader	1,500	с	1500c
	Active tag reader	2,500	с	2500c
	Passive tag reader	500	с	500c
	Antennae	1,500	с	1500c
	Antennae installation HW	200	с	200c
	Handhelds	500	с	500c
	Wi-Fi Access Point	1,000	с	1000c
	Wi-Fi-Repeater	200	с	200c
	Integration with IMS	80,000	с	80000c
	Integration with SLS	80,000	с	80000c
	Integration with PFS	75,000	с	75000c
	Integration with CSS	75,000	с	75000c
Variable costs	Active tags	25	x	25x
	Passive tags	10	х	10x

Table 4.21: Operating costs (Adapted from Banks et al., 2007)	

4.5 End note

In this chapter, we presented selection metrics based on system and environment specifications and item specifications for selecting the most suitable RFID technology solutions. We, thereafter, proposed a selection model for the EOL aircraft RL network with scenarios that use (1) only passive RFID tags (2) only active RFID tags (3) and both passive and active RFID tags for four environments (Physical store, shipping point, receiving point, processing facilities) identified in the EOL aircraft RL network.

Following our discussion of the requirements given in the AFRA best management practice manual, we proposed a possible schema or layout (ER-relationship diagram) for the EOL aircraft IS data and for the RFID tag memory. We also presented four process maps: one process map (Case-level barcode tagging) for the as-is EOL aircraft RL network, and three process maps (Item-level RFID tagging, case-level RFID tagging, and pallet-level RFID tagging) for the to-be EOL aircraft. The to-be process maps were developed from the as-is process maps by analyzing the as-is process map and identifying the BPRs that are required to develop the to-be process maps.

Finally, we discussed the requirements for performing ROI analyzes of RFID technology implementation in the EOL aircraft RL network by identifying the benefits and costs for our proposed RFID-enabled systems, enumerating and classifying the cost components of RFID technology and barcode systems, and formulating mathematical equations for calculating the total cost of RFID or barcode technology for the EOL aircraft RL network.

Chapter 5:

Simulation Model and Numerical Application

In this chapter, the constraints and assumptions guiding our simulation models (Section 5.1), the procedures for developing the simulation models to calculate the ROI for the EOL aircraft RL network (Section 5.2, a numerical application of our simulation model (Section 5.3), and results obtained from the numerical application are presented.

5.1 Constraints and assumptions

The constraints and assumptions guiding our simulation models are as follow:

Constraints:

1. Experiment is conducted in a lab environment with simulation models

Assumptions:

- Disassembly, inventory, shipping, receiving and process facilities already exist; hence, their setup costs are not included in the ROI analyzes.
- 2. All parts are contained in special casing that helps to protect the parts and prevent interference and absorption of RFID signals.
- 3. Passive tags are used in the to-be systems.
- 4. Data on RFID tag memory is shared across the EOL aircraft RL network.
- Simulation clock (Rosetti, 2010, Kelton *et al.*, 2009) runs 8 hours per day for 365 days

6. Total cost = operating cost + overhead cost

5.2 Elements of simulation model

A number of terms are used in discrete event simulations to describe the characteristics, behaviours, states, and performance of a system being modeled. Discrete event simulation can be done by hand using mathematical formulas. Use of Arena simulation software, however, helps to save the long hours and overhead costs of performing hand simulation by providing computer-based tools and graphical objects for creating simulation models, verifying the simulation models to identify and eliminate errors, and obtaining results for the simulation after running the simulation.

Terms use in discrete event simulations that are relevant to our work, and their representations in Arena simulation software are presented in the following subsections:

5.2.1 System

In discrete event simulation, a system encompasses all components, such as entities, processes, and resources, including their input data, that function together to generate the performance or output of the system. For the problem under consideration, the system is the EOL aircraft RL network, and its key components are the EOL aircrafts, the EOL aircraft parts, the processes they pass through as they flow though the system, and the resources they consume or utilize as they pass through these processes. Steps for creating a new model of a system in Arena simulation software are provided in Appendix A.1.

5.2.2 Entities

"Entities are the dynamic objects in the simulation that are created, moved around for a while and disposed as they leave [the simulation]" (Kelton *et al.*, 2009). Entities have attributes that uniquely identifies them in a system. The entities in the EOL aircraft RL network are the aircrafts, aircraft parts, cases, and pallets. Although RFID tags are also entities, they are modelled as attributes of the EOL aircraft parts in our simulation model. The holding cost rate for entity *EOL aircraft part* (See Table 5.2) is \$20 per hour. Steps for creating entities in Arena simulation software are provided in Appendix A.2.

5.2.3 Attributes

An attribute is a characteristic of an entity. Entities are distinguished from one another when they have one or more attributes with different values, for example two entities with different colors, sizes, costs, and ID numbers. Attributes can be common to multiple entities or specific to one. In Arena simulation software, common attributes, such as entity picture, holding cost, and so on are created when the entity is created (Figure 5.3b). Steps for creating attributes in Arena simulation software are provided in Appendix A.3.

5.2.4 (Global) Variables

"A variable (or global variable) is a piece of information that reflects some characteristics of a system, regardless of how many or what kind of entities might the around" (Kelton *et al.*, 2009). In Arena simulation software, there are two types of variables: built-in variables, and user-defined variables (Kelton *et al.*, 2009). Examples of (user-defined) variables in the EOL aircrafts RL network are the number of aircraft parts, the number of RFID tags, the number of processed parts, the total costs of RFID tags, and so on. Steps for creating variables in Arena simulation software are described in Appendix A.4.

5.2.5 Resources

Resources are used by entities as they pass through the system. Examples of resources in the EOL aircraft RL network are manpower, RFID readers, movers, and shippers. Steps for creating resources are provided in Appendix A.5. In Arena simulation software, associated with resources are the resource costs such as busy cost, idle cost, and per usage cost. Costs of resources used in our models are provided in Table 5.1. These values with the value added time obtained in Arena simulation software are used to calculate the value added cost given in Equation 4.3.

Resource	Busy cost per hour (b _j)	Per usage cost (u _j)
	(\$/hr)	(\$)
Disassembly machine	100	10
Processing plant	100	10
RFID reader	5	2
Barcode scanner and labour	40	10
Human Labor	40	10
Shippers	50	10
Movers	15	5

Table 5.1: Resource costs

5.2.6 Events

An event is an action that affects the state of an entity in one way or another when it occurs. In Arena simulation software there are several events such *Create, Dispose, Process, Store, Hold, Pick, Batch, Separate, Decide, Assign,* and *Record*; and a system must have at least *Create, Process,* and *Dispose* events. In the EOL aircraft RL network, all its processes can be modeled as events. Steps for creating events in Arena simulation software are provided in Appendix A.6.

5.2.7 Advanced process module

The discrete event simulation objects discussed so far are all in the *Basic* process module of Arena Simulation software. The *File, Expression,* and *Readwrite* objects are part of the *Advanced* process module.

5.2.8 File

The *File* object represents a file on the hard-drive from which data can read from or written to from Arena simulation software. The file can be a sequential file (.txt), Microsoft Excel and Microsoft Excel 2007 (*xls, *xlsx), LOTUS spreadsheet (*wks), ActiveX Data Objects (ADO) and eXtensible Markup Language (*xml). In our work, Microsoft Excel 2007 was used to store the input and output data from our simulation models. Steps for creating *File* object in Arena simulation software are provided in Appendix A.7.

5.2.9 Expression

The *Expression* object is used to represent a mathematical expression that is required in multiple places in the simulation model. The mathematical expression used in the *Expression* object can be typed or read in from an external file.

5.2.10 Readwrite

The *Readwrite* object helps to read values for variables and attributes from an external file, and write values from variables and attributes to an external file.

Descriptions of model objects used in our simulation models are presented in Table 5.2 and screen-shots of running simulations for case-level barcode tagging, item-level RFID tagging, case-level RFID tagging, and pallet RFID tagging are presented in Appendix C.

5.2.11 Input data

After completing the models of the four process maps for the EOL aircraft RL network, using the approach described in Section 5.2, we use numerical data to test the simulation models and obtain results. Although Arena simulation software allows input data to be supplied directly in the model objects, for instance by specifying the arrival distributions of EOL aircrafts in the *Create* event or the time distributions for processes in EOL aircrafts RL network in the *Process* event, we choose to separate the input data from the model by keeping the data in a Microsoft Excel file and accessing them in the simulation model using the *File, Readwrite* and *Expression* model objects. This approach has the advantage of facilitating the testing of simulations models with different input data, without the rigor of modifying data directly in the simulation models each time new data

inputs is used. This approach also enables people who do not have strong knowledge of the simulation models but understand the data requirements to use the simulation models; thus, protecting the simulation models from damage.

Model object	Examples on simulation	Descriptions
names	models	
Entity	EOL aircraft parts	Entity that represents aircraft parts
	Case	Entity that represents cases for parts
	Pallet	Entity that represents pallets
Attribute	Nparts	Number of parts
	Materials	Array attributes that holds data on materials in aircraft
	Component	Array attributes that holds data on components of aircraft
	Aircraft frames	Array attributes that holds data on components in aircraft
	Avionic	Array attributes that holds data on avionics in aircraft
	Power system	Array attributes that holds data on power systems in aircraft
Variable	vMaterial	Variable that counts number of materials
	vComponent	Variable that counts number of components
	vAircraftFrames	Variable that counts number of aircraft frames
	vAvionics	Variable that counts number of avionics
	vPowersystems	Variable that counts number of power systems
Create	Arrival of EOL aircraft	Events that initiates arrival of EOL aircrafts
Process	Disassemble, sort, package, etc.	Same as on process maps
Resources	Disassembling machine	Resource of disassembling plant
	Sorter	Resource of part sorters
	Manpower	Resource of manual labor
	RFID reader	Resource of RFID reader
	Mover	Resource of movers of parts to physical store
	Shippers	Resource of shippers
	Processing plants	Resource of processing plant

Table 5.2: Simulation model objects

Table 5.2 Continued

Model object	Examples on simulation	Descriptions
names	models	
Separate	Disassemble aircraft	Event that represents separation of EOL aircraft
Batch	Batch_1, Batch_2, etc.	Events that represent separation of EOL aircraft
Decide	Aircraft part type?	5-way condition to decide type of aircraft part
	Material RL types?	4-way condition to decide RL type of aircraft materials
	Avionic RL types?	4-way condition to decide RL type of aircraft avionics
	Aircraft frame RL type?	4-way condition to decide RL type of airframes
	Power system RL type?	4-way condition to decide RL type of aircraft power system
	Component RL type?	4-way condition to decide RL type of aircraft component
Dispose	End1, End2, End3, etc	Events that represent exit of EOL aircraft
Assign	Assign aircraft part types	Assigns distribution values from record-set to materials, components, aircraft frames, avionics, power systems attributes
	Count aircraft, etc.	Assigns new value to aircraft
	Attach RFID tags with AP and RL types	Assigns RL type to tags on part, case or pallet
Readwrite	Check-in	Reads data on EOL aircrafts from Excel file and assigns data to attributes in simulation model
	Record count	Writes counts of RL types for materials, components, aircraft frames, avionics, power systems to Excel file
Expression	ILProcesses, CLProcesses, ILBatchsizes, etc.	Model object that holds mathematical expressions for process distributions, and batch sizes
File	File EOLAircraftData, FileProcessDistribution, FileILBatchSizes	File objects that represents Excel files containing data for EOL aircrafts, process distributions, batch size, respectively.

The names of the Microsoft Excel files used for the input data, and the functions of the data contained in the files are provided in Table 5.3. Worksheets of EOLAircraftData.xls, ProcessDistributions.xlsx, ProcessDistributions_barcode.xlsx, Batchsize.xlsx, and ROI.xlsx are provided in Appendix B.

5.3 Numerical applications

Based on the constraints and assumptions provided in Section 5.1, we simulated the process maps for the EOL aircraft RL network for case-level barcode tagging, item-level RFID tagging, case-level RFID tagging, and pallet-level RFID tagging with this numerical application:

In a year, EOL aircrafts arrive exponentially with a mean inter-arrival rate of one aircraft per 20 days, and work is performed on the aircraft 8 hours per day with the time distributions for processes given in Tables 5.4, Table 5.5, Table 5.6, Table 5.7 for case-level barcode tagging, item-level passive RFID tagging, case-level passive RFID tagging, and pallet-level passive RFID tagging. It takes between 5 to 10 minutes to perform manual scanning, while it takes few seconds, assumed to be 5 to 10 seconds, to perform automatic read or write with RFID tags. The batch sizes for containers are given in Table 5.8. The time distributions for all other processes are the same for barcode and RFID technology. With the initial investment given in Table 5.9 and Table 5.10 for RFID and barcode technologies at year 0, ROI analyzes is conducted for a 5-year period and discount rate of 5 percent to measure the performance of RFID technology deployment relative to the case-level barcode system.

Table 5.3: Files and data used in simulation models

File names	Data in named range of worksheet	Function of data
EOLAircraftData.xlsx	Named range <i>EOLAircraftData</i> on worksheet <i>EOLAircraft Data</i>	Contains data on the model of EOL aircraft, and increasing percentages of part types and RL types in the EOL aircrafts
	Named range ILDistributionProcesses on worksheet Process Data	Contains data on time distributions for processes in EOL aircraft RL network with item level RFID tagging
ProcessDistributions.xlsx	Named range <i>CLDistributionProcesses</i> on worksheet <i>Process Data</i>	Contains data on time distributions for processes in EOL aircraft RL network with case level RFID tagging
	Named range <i>PLDistributionProcesses</i> on worksheet <i>Process Data</i>	Contains data on time distributions for processes in EOL aircraft RL network with pallet level RFID tagging
ProcessDistributions_barcode. xlsx	Named range <i>BDistributionProcesses</i> on worksheet <i>Process Data</i>	Contains data on time distributions for processes in EOL aircraft RL network with barcode tagging
Batchsize.xlsx	Named range <i>ILBatchsize</i> , <i>CLBatchsize</i> , <i>and PLBatchsize</i> on worksheet <i>Batchsize</i>	Contains the batch size for item level, case level, and pallet packaging

Processes	Time	Time Unit
	distributions	
Disassembly	TRIA(5,6,7)	days
Sorting of parts	TRIA(5,8,10)	minutes
Casing of parts	TRIA(15,20,25)	minutes
Attach barcodes with RL types information	TRIA(5,8,10)	minutes
Manually scan barcode and add data to information store	TRIA(3,5,7)	minutes
Move case parts to physical store	TRIA(20,22,25)	minutes
Pick cases	TRIA(20,22,25)	minutes
Add cases to pallet	TRIA(20,22,25)	minutes
Ship pallets	TRIA(20,22,25)	minutes
Arrive at reuse depot	EXPO(10)	minutes
Unload pallets	TRIA(20,22,25)	minutes
Unpack cases	TRIA(20,22,25)	minutes
Prepare parts for process lines	TRIA(20,22,25)	minutes
Process parts according to part's information	TRIA(20,22,25)	minutes

Table 5.4: Time Distributions for processing case-level barcode tagging

Keys:

TRIA (Min, Mode, Max) - Triangular distribution with minimum, modal, and maximum values

EXPO (Mean) - Exponential distribution with mean value

Processes	Time	Time Unit
	distributions	
Disassembly	TRIA(5,6,7)	days
Sorting of parts	TRIA(5,8,10)	minutes
Casing of parts	TRIA(15,20,25)	minutes
Attaching of RFID tags	TRIA(5,8,10)	minutes
Automatically read data and update information store	TRIA(5,8,10)	seconds
Move cased parts to physical store	TRIA(20,22,25)	minutes
Pick cases	TRIA(20,22,25)	minutes
Add cases to pallet	TRIA(20,22,25)	minutes
Ship pallets	TRIA(20,22,25)	minutes
Arrive at reuse depot	EXPO(10)	minutes
Unload pallets	TRIA(20,22,25)	minutes
Unpack cases	TRIA(20,22,25)	minutes
Prepare parts for process lines with special RFID technology	TRIA(20,22,25)	minutes
Process parts according to part's information	TRIA(20,22,25)	minutes

Table 5.5: Time distributions for processing item-level RFID tagging

Keys:

TRIA (Min, Mode, Max) - Triangular distribution with minimum, modal, and maximum values

EXPO (Mean) - Exponential distribution with mean value

Processes	Time	Time Unit
	distributions	
Disassembly	TRIA(5,6,7)	days
Sorting of parts	TRIA(5,8,10)	minutes
Casing of parts	TRIA(15,20,25)	minutes
Attaching of RFID tags	TRIA(5,8,10)	minutes
Automatically read data and update information store	TRIA(5,8,10)	seconds
Move cased parts to physical store	TRIA(20,22,25)	minutes
Pick cases	TRIA(20,22,25)	minutes
Add cases to pallet	TRIA(20,22,25)	minutes
Ship pallets	TRIA(20,22,25)	minutes
Arrive at reuse depot	EXPO(10)	minutes
Unload pallets	TRIA(20,22,25)	minutes
Unpack cases	TRIA(20,22,25)	minutes
Prepare parts for process lines with special RFID technology	TRIA(20,22,25)	minutes
Process parts according to part's information	TRIA(20,22,25)	minutes

Table 5.6: Time distributions for processing case-level RFID tagging

Keys:

TRIA (Min, Mode, Max) - Triangular distribution with minimum, modal, and maximum values

EXPO (Mean) - Exponential distribution with mean value
Processes	Time	Time Unit
	distributions	
Disassembly	TRIA(5,6,7)	days
Sorting of parts	TRIA(5,8,10)	minutes
Casing of parts	TRIA(15,20,25)	minutes
Attaching of RFID tags	TRIA(5,8,10)	minutes
Automatically read data and update information store	TRIA(5,8,10)	seconds
Move cased parts to physical store	TRIA(20,22,25)	minutes
Pick cases	TRIA(20,22,25)	minutes
Add cases to pallet	TRIA(20,22,25)	minutes
Ship pallets	TRIA(20,22,25)	minutes
Arrive at reuse depot	EXPO(10)	minutes
Unload pallets	TRIA(20,22,25)	minutes
Unpack cases	TRIA(20,22,25)	minutes
Prepare parts for process lines with special RFID technology	TRIA(20,22,25)	minutes
Process parts according to part's information	TRIA(20,22,25)	minutes

Table 5.7: Time distributions for processing pallet-level RFID tagging

Table 5.8: Batch size of containers

	Item level	Case level	Pallet level
Batch size	One item	Two items	Two cases each with two items

Components	Unit cost (\$)	Quantity	Total
Web server	5,000	2	10,000
Application server	10,000	2	20,000
Database server	15,000	2	30,000
UPS	1,000	6	6,000
Network switch	2,500	3	7,500
Database system	50,000	2	100,000
Web server software	20,000	6	120,000
Application server software	20,000	6	120,000
Middleware application	100,000	1	100,000
Power and Cabling Infrastructure	50,000	1	50,000
Tracking Application	150,000	1	150,000
RFID gate reader	1,500	5	7,500
Active tag reader	2,500	5	12,500
Passive tag reader	500	5	2,500
Antennae	1,500	10	15,000
Antennae installation HW	200	1	2,00
Handhelds	500	5	2,500
Wi-Fi Access Point	1,000	1	1,000
Wi-Fi-Repeater	200	1	200
Integration with IMS	80,000	1	80,000
Integration with SLS	80,000	1	80,000
Integration with PFS	75,000	1	75,000
Integration with CSS	75,000	1	75,000
			1,064,700

Table 5.9: Initial investment for RFID technology

Components	Unit cost (\$)	Quantity	Total
Web server	5,000	2	10,000
Application server	10,000	2	20,000
Database server	15,000	2	30,000
UPS	1,000	6	6,000
Network switch	2,500	3	7,500
Database system	50,000	2	100,000
Web server software	20,000	6	120,000
Application server software	20,000	6	120,000
Middleware application	100,000	1	100,000
Power and Cabling Infrastructure	50,000	1	50,000
Tracking Application	150,000	1	150,000
Barcode scanner	200	10	2,000
Wi-Fi Access Point	1,000	1	1,000
Wi-Fi-Repeater	200	1	200
Integration with IMS	80,000	1	80,000
Integration with SLS	80,000	1	80,000
Integration with PFS	75,000	1	75,000
Integration with CSS	75,000	1	75,000
			1,026,700

Table 5.10: Initial investment for barcode technology⁷

5.4 Presentation of results

In the simulated 8 hours daily operations lasting 356 day (2910 hours), fifteen EOL aircrafts were disassembled. Each aircraft was disassembled into 100 parts with the percentages values given in Table 5.11. The models were verified for errors, and no error was found. Results obtained from the simulation of the four simulation models for the first year, with eight replications, are presented in Table 5.12, Table 5.13, Table 5.14, Table 5.15, Table 5.16, Table 5.17, Table 5.18, and Table 5.19. The results contain the variable costs, which includes costs of tags, and overhead costs, which include the

⁷ With the assumption that the network and integration costs for barcode and RFID technology are the same

EOL	# of Parts	Materials	Components	Airframe	Avionics	Power System
Aircrafts		(RS, RC, RM, DS)				
		(%)	(%)	(%)	(%)	(%)
1	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
2	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
3	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
4	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
5	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
6	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
7	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
8	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
9	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
10	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
11	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
12	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
13	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
14	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)
15	100	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)

Table 5.11: Distributions	of part types	and part RL type	s in EOL aircrafts
---------------------------	---------------	------------------	--------------------

Keys:

Distribution = Percentage of part- type (percentage of reuse, percentage of remanufacture, percentage of recycle, percentage of dispose)

value added cost and waiting cost, for the as-is system and to-be systems. The variable costs in Table 5.12, Table 5.33, Table 5.14, and Table 5.15 are calculated by using the quantities or counts of tags obtained from Arena in (Microsoft) Excel formula of Equation 4.2; the value added cost and waiting cost are derived programmatically in Arena simulation software from Equation 4.3 and Equation 4.4. We sum these values to obtain the overhead cost in Table 5.16, Table 5.17, Table 5.18, and Table 5.19.

Table 5.12: Variable costs for case-level barcode tagging

Components	Unit cost (\$)	Quantity	Total cost
Barcodes	0.5	1,500	750

Table 5.13: Variable costs for item-level RFID tagging

Components	Unit cost (\$)	Quantity	Total cost
Passive tags	10	1,500	15,000

Table 5.14: Variable costs for case-level RFID tagging

Components	Unit cost (\$)	Quantity	Total cost
Passive tags	10	7,500	7,500

 Table 5.15:
 Variable costs for pallet-level RFID tagging

Components	Unit cost (\$)	Quantity	Total cost
Passive tags	10	375	3,750

Cost type	Cost (\$)
Value added cost	344665.01
Waiting cost	2231.22
Non value added cost	0
Total =	346896.23

Table 5.16: Overhead cost for case-level barcode tagging

Table 5.17: Overhead cost for item-level RFID tagging

Cost type	Cost (\$)
Value added cost	365400.03
Waiting cost	2097.06
Non value added cost	0
Total =	367497.09

Table 5.18: Overhead cost for case-level RFID tagging

Cost type	Cost (\$)
Value added cost	314725.66
Waiting cost	1952.66
Non value added cost	0
Total =	316678.32

Table 5.19: Overhead cost for pallet-level RFID tagging

Cost type	Cost (\$)
Value added cost	321593.30
Waiting cost	3282.05
Non value added cost	0
Total =	324875.35

5.5 Discussion of results

We discuss results obtained from the simulations by analysing the variable cost, value added cost, waiting cost, and overhead cost for the barcode and RFID systems for the

first year, and ROI for the RFID systems since they represent measures of performance for the systems.

5.5.1 Variable cost

Plot of variable costs (costs of tags and labeling) for case-level barcode, item-level RFID tagging, case-level RFID tagging and pallet-level RFID tagging is shown in Figure 5.1. Cost of case-level barcode tagging is very low, while cost decreases linearly from item-level RFID tagging, case-level RFID tagging, and pallet-level RFID tagging.

Figure 5.1: Plot of variable costs for case-level barcode (CLB) tagging, item-level RFID (ILR) tagging, case-level RFID (CLR) tagging and pallet-level (PLR) RFID tagging

5.5.2 Value added cost

Plot of value added costs for case-level barcode tagging, item-level RFID tagging, caselevel RFID tagging and pallet-level RFID tagging is shown in Figure 5.2. The plot shows a high value added cost of \$344665.01 for case-level barcode tagging. Relative to the value added cost of case-level barcode tagging, the value added cost of item-level RFID tagging increased by 0.06%. However, relative to the value added cost of case-level barcode tagging, the value added cost of case-level RFID tagging and pallet level RFID tagging decreased by 0.09% and 0.07%, respectively. Noticeable is the slightly higher value added cost of pallet-level RFID tagging relative to case-level RFID tagging. This can be accounted for by BPR used in pallet-level RFID tagging, which is different from the BPR used in case-level RFID tagging and item-level RFID tagging. In pallet-level RFID tagging, part tagging with RFID is withheld until the point where cases are added to pallets, thus eliminating the cost of holding sorted parts in separate inventories.

Figure 5.2: Plot of value added cost for case-level barcode (CLB) tagging, item-level RFID (ILR), tagging, case-level RFID (CLR) tagging and pallet RFID (PLR) tagging

5.5.3 Waiting cost

Plot of waiting costs for case-level barcode tagging, item-level RFID tagging, case-level RFID tagging, and pallet-level RFID tagging is shown in Figure 5.3. The plot shows a waiting cost of \$2231.22 for case-level barcode tagging. Relative to the waiting cost of case-level barcode tagging, the waiting cost of item-level RFID tagging and case-level RFID tagging decreased by 0.06% and 0.12%, respectively. The waiting cost, however, increased by 0.47% for pallet-level RFID tagging.

Figure 5.3: Plot of waiting costs for case-level barcode (CLB) tagging, item-level RFID (ILR) tagging, case-level RFID (CLR) tagging and pallet RFID (PLR) tagging

5.5.4 Overhead cost

Plot of overhead costs for case-level barcode tagging, item-level RFID tagging, caselevel RFID tagging and pallet-level RFID tagging is shown in Figure 5.4. Since the overhead cost is the sum of value added cost and waiting cost, the plot is a superimposed plot of value added cost (Figure 5.2) and waiting cost (Figure 5.3). The plot shows that relative to the overhead cost case-level barcode tagging (\$34896.23), there is an increase of 0.07% in the overhead costs of item-level RFID tagging, and decrease of 0.08% and 0.06%, respectively, in the overhead costs of case-level RFID tagging and pallet RFID tagging.

Figure 5.4: Plot of overhead costs for case-level barcode (CLB) tagging, item-level RFID (ILR) tagging, case-level RFID (CLR) tagging and pallet RFID (PLR) tagging

5.5.5 Return-On-Investment (ROI)

The ROI calculations for case-level barcode tagging, item-level RFID tagging, case-level RFID tagging and pallet-level RFID tagging are presented in Table 5.20, Table 5.21, Table 5.22 and Table 5.23, respectively. The ROIs obtained for all tagging levels are negative; this implies that projects are not profit yielding. These results are acceptable since financial returns from sales of RL products are not included in the analysis. The

Table 5.20: ROI for case-level barcode tagging

Vear	0	1	2	3	4	5]
Discount rate = 5%	1	0.9524	0.907	0.8638	0.0829	0.7835	
Cost							
Investment cost (\$)	1,026,700	0	0	0	0	0	
Variable cost (Tags and labels) (\$)	0	7,500	7,500	7,500	7,500	7,500	
Overhead cost (\$)	0	346,896	346,896	346,896	346,896	346,896	
Cost of correcting errors on entered data (\$)	0	5,000	5,000	5,000	5,000	5,000	
Cost of shrinkage (\$)	0	5,000	5,000	5,000	5,000	5,000	
Total=	1,026,700	346,896	346,896	346,896	346,896	346,896	
Discounted cost	1,026,700.00	347,050.97	330,507.38	314,765.46	30,208.45	282,566.32	2,331,798.58
Benefits							
Savings from data capturing (C_0) (\$)	0	37,307.93	37,307.93	37,307.93	37,307.93	37,307.93	
Savings from delays (D_0) (\$)	0	2,231	2,231	2,231	2,231	2,231	
Total =	0	5000	5000	5000	5000	5000	
Discounted benefit	0	44539.15	44539.15	44539.15	44539.15	44539.15	159,877.73
ROI =	-0.931						

Keys:

Total cost of capturing data with barcode scanner, $C_0 = b_j + u_j = 37,307.93$

Waiting cost of case level barcode tagging, $D_0 = 2,231.22$

Table 5.21: ROI for item-level RFID tagging

Year	0	1	2	3	4	5	
Discount rate = 5%	1	0.9524	0.907	0.8638	0.0829	0.7835	
Costs							
Investment cost (\$)	1,062,700	0	0	0	0	0	
Variable cost (Tags and labels) (\$)	0	15,000	15,000	15,000	15,000	15,000	
Overhead cost(\$)	0	365,400.03	365,400.03	365,400.03	365,400.03	365,400.03	
Total =	1,062,700	380,400.03	380,400.03	380,400.03	380,400.03	380,400.03	
Discounted cost	1,062,700	362,292.96	345,022.80	328,589.52	31,535.16	298,043.40	2,430,183.84
Benefit							
Savings from data capturing (C_0-C_1) (\$)	30,156.38	30,156.38	30,156.38	30,156.38	30,156.38	30,156.38	
Savings from delays $(D_0 - D_1)$ (\$)	3,015	3,015	3,015	3,015	3,015	3,015	
Savings from correcting errors on entered data(\$)	0	5,000	5,000	5,000	5,000	5,000	
Savings from shrinkage (\$)	0	5,000	5,000	5,000	5,000	5,000	
Total =	0	43170.934	43170.934	43170.934	43170.934	43170.934	
Discounted benefit	0	41,116.00	39,156.04	37,291.05	3,578.87	33,824.43	159,602.16
ROI =	- 0.938						

Keys:

Total cost of capturing data with RFID reader, $C_1 = b_j + u_j = 9,434.92$ Total cost of capturing data with barcode scanner, $C_0 = b_j + u_j = 37,307.93$ Waiting cost of item-level RFID tagging, $D_1 = 2097.06$ Waiting cost of case-level barcode tagging, $D_0 = 2,231.22$

Table 5.22: ROI for case-level RFID tagging

Year	0	1	2	3	4	5	
Discount rate = 5%	1	0.9524	0.907	0.8638	0.0829	0.7835	
Cost							
Investment cost (\$)	1,062,450	0	0	0	0	0	
Variable cost (Tags and labels) (\$)	0	7,500	7,500	7,500	7,500	7,500	
Overhead cost (\$)	0	334,808	334,808	334,808	334,808	334,808	
Total=	1,062,450	342,308	342,308	342,308	342,308	342,308	
Discounted cost	1,062,450.00	326,014.14	310,473.36	295,685.65	28,377.33	268,198.32	2,291,198.80
Benefits							
Savings from data capturing (C_0 - C_2) (\$)	31,896.95	31,896.95	31,896.95	31,896.95	31,896.95	31,896.95	
Savings from delays $(D_0 - D_2)$ (\$)	279	279	279	279	279	279	
Savings from correcting errors on entered data(\$)	5000	5000	5000	5000	5000	5000	
Savings from shrinkage (\$)	5000	5000	5000	5000	5000	5000	
Total =	42175.51	42175.51	42175.51	42175.51	42175.51	42175.51	
Discounted benefit	40,167.96	38,253.19	36,431.21	3,496.35	33,044.51	40,167.96	151,393.21
ROI =	-0.932						

Keys

Total cost of capturing data with RFID reader, $C_2 = b_j + u_j = 5,410.98$ Total cost of capturing data with barcode scanner, $C_0 = b_j + u_j = 37307.93$ Waiting cost of case-level RFID tagging, $D_2 = 1,952.66$ Waiting cost of case-level barcode tagging, $D_0 = 2231.22$

Table 5.23: ROI for pallet-level RFID tagging

Year	0	1	2	3	4	5	
Discount rate = 5%	1	0.9524	0.907	0.8638	0.0829	0.7835	
Costs							
Investment cost (\$)	1,062,700	0	0	0	0	0	
Variable cost (Tags and labels) (\$)	0	3,750	3,750	3,750	3,750	3,750	
Overhead cost (\$)	0	338,195	338,195	338,195	338,195	338,195	
Total =	1,062,450	341,945	341,945	341,945	341,945	341,945	
Discounted cost	1,062,450.00	325,668.42	310,144.12	295,372.09	28,347.24	267,913.91	2,289,895.77
Benefits							
Savings from data capturing							
(C_0-C_3) (\$)	34,187.50	34,187.50	34,187.50	34,187.50	34,187.50	34,187.50	
Savings from delays $(D_0 - D_3)$ (\$)	-1,051	-1,051	-1,051	-1,051	-1,051	-1,051	
Savings from correcting errors on	0	5,000	5,000	5,000	5,000	5,000	
entered data(\$)							
Savings from shrinkage (\$)	0	5,000	5,000	5,000	5,000	5,000	
Total	0	43,136.67	43136.67	43136.67	43136.67	43136.67	
Discounted Benefit	0.00	41,083.36	39,124.96	37,261.46	3,576.03	33,797.58	154,843.39
ROI =	-0.931						

Keys

Total cost of capturing data with RFID reader, $C_3 = b_j + u_j = 3120.43$

Total cost of capturing data with barcode scanner, $C_0 = b_j + u_j = 37307.93$

Waiting cost of pallet-level RFID tagging, $D_2 = 3282.05$

Waiting cost of case-level barcode tagging, $D_0 = 2231.22$

103

current ROIs can be improved by reusing RFID tags and implementing the RFID technology in phases.

5.5.6 Sensitivity analysis

We present in Table 2.24 the outcomes of the experiments we performed to investigate the impact of varied percentage distributions of AP and RL types on the ROI. The high total discounted costs, relative to the total discounted benefits, which exclude the financial returns from sales of RL parts, account for the low negative ROI values. The ROIs increase positively from item-level RFID tagging to case-level RFID tagging and pallet level tagging, and with two-sample standard deviations of 0.0048, 0.0054 and 0.0066, respectively, relative to case-level barcode tagging. From the results presented in Table 2.24, one can deduce that the performance of case-level barcode tagging in terms of ROI is comparable to item-level RFID tagging.

5.6. End note

In this Chapter, we presented the constraints and assumptions guiding our simulation models, described the elements of our simulation models, and presented results obtained from the simulations with discussion of the results.

Summary of results of the numerical application discussed in Section 5.1 is presented in Table 5.25. The result showed negative ROI values for all the tagging levels. The

negative value means that these projects are not profitable⁸. Pallet RFID tagging has the most positive ROI, followed by case-level RFID tagging and item level RFID tagging. Although the ROI of item-level RFID tagging is the lowest, it can be selected based on the fact that it provides the lowest waiting cost, and the highest visibility of parts.

⁸ Financial returns from sales of RL products are not included in the analysis, therefore there is no profit.

Table 5.24: Sensitivity analysis

# of Parts	Materials	Components	Airframe	Avionics	Power System				
	(RS, RC, RM, DS)	(RS, RC, RM, DS)	(RS, RC, RM, DS)	(RS, RC, RM, DS)	(RS, RC, RM, DS)	ROI of	ROI of	ROI of	ROI of
	(%)	(%)	(%)	(%)	(%)	CLB	ILK	CLK	I LN
1500	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	10 (25, 25, 25, 25)	-0.933	-0.936	-0.919	-0.918
1500	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	20 (25, 25, 25, 25)	30 (25, 25, 25, 25)	20 (25, 25, 25, 25)	-0.933	-0.934	-0.927	-0.922
1500	10 (25, 25, 25, 25)	20 (25, 25, 25, 25)	40 (25, 25, 25, 25)	20 (25, 25, 25, 25)	10 (25, 25, 25, 25)	-0.932	-0.963	-0.956	-0.951
1500	10 (25, 25, 25, 25)	40 (25, 25, 25, 25)	20 (25, 25, 25, 25)	15 (25, 25, 25, 25)	15 (25, 25, 25, 25)	-0.932	-0.935	-0.931	-0.929
1500	10 (25, 25, 25, 25)	20 (30, 30, 30, 10)	10 (30, 30, 30, 10)	20 (25, 25, 25, 25)	10 (25, 25, 25, 25)	-0.937	-0.937	-0.932	978
1500	10 (40, 30, 20,10)	20 (25, 25, 25, 25, 25)	20 (40, 30, 20, 10)	20 (25, 25, 25, 25)	10 (25, 25, 25, 25)	-0.937	-0.933	-0.924	-0.914

Keys:

Distribution = Percentage of part- type (percentage of reuse, percentage of remanufacture, percentage of recycle, percentage of dispose)

CLB – Case-level barcode tagging

ILR – Item-level RFID tagging

CLR – Case-level RFID tagging

PLR-Pallet-level RFID tagging

TTL	Performances measured relative to CLB tagging									
	VC	VAC	WC	OC	ROI					
CLB	750	344,665.01	2231.22	346,896	-0.931					
ITR	1900% increase	0.06% increase	0.06% decrease	0.07 % increase	-0.938					
CLR	900% increase	0.09% decrease	0.12% decrease	0.08% decrease	-0.932					
PR	400% increase	0.07% decrease	0.47% increase	0.06% decrease	-0.931					

Keys

- TTL Technology and Tagging Levels
- CLB Case-level barcode tagging
- ITR Item level RFID tagging
- CLR Case level RFID tagging
- PLR Pallet level RFID tagging

- VC Variable cost
- VAC Value added cost
- WC Waiting cost
- VC Variable cost
- OC Overhead cost

Chapter 6:

Conclusions and Future Works

In this Chapter, we present our conclusions and recommendations for future work

6.1 Conclusions

In this research, by extensively reviewing literature on the technological potentials and economical impacts of RFID technology, we have been able to create selection model for determining the most appropriate or suitable RFID solution for the EOL aircraft RL network. We have also proposed a layout or schema for managing data on the RFID tag memory and database for EOL aircraft RL network IS. We have developed process maps of hypothesized as-is EOL aircraft RL network with case-level barcode tagging and hypothesized to-be EOL RL network with item-level RFID tagging, case-level RFID tagging, pallet-level RFID tagging. We modeled and simulated the process maps in Arena simulations software to analyze and compare the ROI investments for the to-be systems.

Although all parts of EOL aircraft are assumed cased to protect them from damage, to ensure safety, and to reduce interference and absorption of RFID signals, this assumption holds true particularly for parts meant for reuse or remanufacture. For parts designated for recycling or disposal this assumption may not necessarily apply; in this situation, normal RFID tags or protected RFID tags can be attached to the parts. Also, data obtained at the end-of-life of aircrafts, and used in the RL network, can be enhanced with historic data. As demonstrated in the RFID integrated solution developed by Boeing (Swedberg, 2012), service-life information on aircraft parts can be captured using RFID technology.

The results obtained from this simulation demonstrate that compared to barcode system, RFID technology has greater capacity to reduce running costs of the EOL aircraft RL network. However, due to the huge initial investment cost of RFID technology, properly planning, such as BPR, tag reuse, and phased implementation, may be required to achieve more positive ROI.

6.2 Future works

In present work, we developed hypothesized models of the EOL aircraft RL network with the assumption that only passive tags were used in the simulation models. Our simulation models were verified to ensure that they work as required and that they are error free. The simulations models were validated partially by comparing with the provisions in the AFRA best management practice manual.

In future works, the simulation models will be validated with real systems, and required modifications or improvements will be incorporated. Pilot test will be performed to measure the process improvements realizable with different tags, and data obtained will be used in our simulation models. Simulated studies will be conducted to evaluate the impact of tag reuse, BPR, and phased implementation on the ROI of RFID-enabled EOL aircraft RL network.

References

- Airbus. (2008). The Airbus way: Towards Eco-Efficiency and Sustainable Development. Environmental, Social and Economic report. Retrieved July 12, 2012, from http://www.airbus.com/fileadmin/media_gallery/files/brochures_publications/Airbus_-_EnvironmentSocialEconomic_-_report2008.pdf
- Aircraft Fleet Recycling Association (AFRA). (2009). Best Management Practice for Management of Used Aircraft Parts and Assemblies version 2.0. AFRA. Retrieved April 2, 2012, from http://www.afraassociation.org/AFRAPartsBMPv2 2.pdf
- Airframer Index. (2012). *Boeing 787 Dreamliner*. Retrieved 04 16, 2012, from http://www.airframer.com/pdf_progs/airframer_prog8.pdf
- Arena Variables Guide. (2005). Rockwell Software Inc.
- Banks, J., Carson, J.S., Nelson, B.L., and Nicol, D.M. (2010). *Discrete-Event System Simulation*. (5th, Ed.) New Jersey: Pearson Education, Inc.
- Banks, J., Hanny, D., Pachano, M.A and Thompson, L.G. (2007). *RFID Applied.* John Wiley & Sons, Inc.
- Beamon, B.M. (1998). Supply chain design and analysis: models and methods. *International Journal of Production Economics*, 55, 281-294.
- Becker, J. V. (2010). A model based approach for calculating the process driven business value of RFID investments. *International Journal of Production Economics*, *127*, 358-371.
- Bottani, E. and Rizzi, A. (2008). Economic assessment of the impact of RFID technology and EPC system on the fast-moving consumer goods supply chain. *International Journal of Production Economics*, *112*, 548-569.
- Business dictionary. (n.d.). Retrieved June 20, 2012, from http://www.businessdictionary.com
- Cambel, D.M. and Embley, D.W. (1987). Graphical Query Formulation for an Entity Relationship Model. *Data and Knowledge Engineering*, 2(2), 89-121.
- Chang, Y.S, Chang, H.O., Whang, Y.S., Lee, J.J, Kwon, J.A, Kang, M.S and Park, J.S. (2006). Development of RFID enabled Aircraft maintenace system. *Proceedings of IEEE International Conference on Industrial Informatics*, (pp. 224-229). Singapore.
- Collins, J. (2005, December 23). KPN to use RFID to track phones. Retrieved August 12, 2012, from RFID Journal: http://www.rfidjournal.com/article/view/2061/1

- Demirel, N.Ö and Gökçen, H. (2008). A mixed integer programming model for remanufacturing in reverse logistic environment. *Int J Adv Manuf Technol*, *39*, 1197–1206.
- Directive 2000/53/EC of the European Parliament and COUNCIL of 18 September 2000 on end-of life vehicles. (n.d.). Retrieved January 14, 2012, from http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2000L0053:20050701:EN:PDF
- Fleisch, E. and Tellkamp C. (2005). Inventory inaccuracy and supply chain performance: a simulation study of a retail supply chain. *International Journal of Production Economics*, 95, 373-385.
- Garrison, R.H, Noreen E.W., Brewer, P.C. (2009). *Managerial Accounting* (13th ed.). McGraw-Hill Irwin.
- Harun, K., Cheng, K. and Wibbelmann, M. (2008). RFID-enabled aerospace manufacturing: theoretical Models, simulation and implementation issues. *Proceedings of the IEEE IEEM*, (pp. 1824 - 1829). Singapore.
- Heese, H. (2007). Inventory record inaccuracy, double margination, and RFID adoption. *Production and Operations Management 16(5)*, 542-328.
- Hoshino, T., Yura, K., and Hitomi, K. (1995). Optimization analysis for recycle-oriented manufacturing systems. *International Journal of Production Research*, *33*(8), 2069-78.
- Karagiannaki, A., Katerina, P. and Doukidis G. (2010). Using simulation to design and evaluate RFID implementation in the supply chain. *Processings of Operation Research Society Simulation Workshop.* Worcestershire.
- Kelton, W. D., Sadowski, R. P., and Sturrock, D. T. (2004). *Simulation with Arena* (3rd ed.). New York: McGraw Hill.
- Kelton, W.D., Sadowski, R.P., and Sadowski, D.A. (2009). *Simulation with Arena*. (2nd, Ed.) McGraw Hill.
- Khan M.A, Sharma, A. and Brahmandha, P.R. (2009). Survey of RFID tags. *International Journal of Recent Trends in Engineering*, 1(4), 68-71.
- Kim, H.S. and Sohn, S.Y. (2009). Cost of ownership model for the RFID logistics system applicable to u-city. *European Journal of Operational Research*, 194, 406-417.
- Lee, C.K.M and Chan, T.M. (2009). Development of RFID-based Reverse Logistics System. *Expert* Systems with Applications, 36, 9299-9307.

- Lee, I. and Lee, B. (2010). An investment evaluation of supply chain RFID technologies: A normative modeling approach. *International Journal Production Economics*, 125, 313-323.
- Lee, Y.M., Cheng, F. and Leung, Y.T. (2004). Exploring the impact of RFID on supply chain dynamics. *Proceedings of the 2004 Winter Simulation Conference*, (pp. 1145-1152). Washington.
- Leung, Y.T, Cheng, F., Lee, Y. M. and Hennessy, J.J. (2007). A Tool Set for Exploring the Value of RFID in a Supply Chain in Trends in: Supply Chain Design and Management. Springer Series in Advanced Manufacturing, pp. 49-70.
- Lu, W., Huang, G.Q. and Li, H. (2011). Scenarios for applying RFID technology in construction project management. *Automation in Construction*, *20*, 101-106.
- New aerospace centre to study recycling aircraft parts opens near Montreal. (2011, November 25). Retrieved January 15, 2012, from The Guardian: http://www.theguardian.pe.ca/Business/2011-11-24/article-2814883/New-aerospace-centre-to-study--recycling-aircraft-parts-opens-near-Montreal/1
- Poon T.C, Choy, K.L., Chow, H. K.H., Lau, H.C.W., Chanm, F.T.S., Ho, K.C. (2009). A RFID casebased logistics resource management system for managing order-picking operations in warehouses. *Expert Systems with Applications*, 36, 8277–8301.
- Ramudhin, A., Paquet, M., Artiba, A., Dupré, P., Varvaro, D., and Thomson, V. (2008). A generic framework to support the selection of an RFID-based control system with application to the MRO activities of an aircraft engine manufacturer. *Production Planning and Control*, 19(2), 183-196.
- Roberti, M. (2004, August 9). *DOD releases final RFID policy*. (RFID Journals) Retrieved January 22, 2012, from RFID Journal: http://www.rfidjournal.com/article/view/1080
- Roberti, M. (2005, June 30). *FAA to publish passive RFID policy*. Retrieved August 12, 2012, from RFID Journal: http://www.rfidjournal.com/article/articleview/1695/1/1/
- Roberti, M. (2005, October 7). *Navy tests RFID for reverse logistics*. (RFID Journal) Retrieved January 22, 2012, from RFID Journal: http://www.rfidjournal.com/article/view/1910
- Rogers, D.S and Tibben-Lembke, R.S. (1998). *Going Backwards: Reverse Logistics Trends and Practices*. Reno, Nevada: Reverse Logistics Executive Council.
- Roh, J.J., Kunnathur, A. and Tarafdar, M. . (2009). Classification of RFID adoption: An expected benefits approach. *Information and Management*, *46*(6), 357-363.
- Rossetti, M. (2010). Simulation Modeling and Arena. Hoboken: John Wiley & Sons.

- Sarac, A., Absi, N., and Dauzère-Pérè, S. (2008). A simulation approach to evaluate the impact of introducing RFID technology in a three-level supply chain. *Proceedings of Winter Simulation Conference.* Miami.
- Sarac, A., Absi, N., and Dauzère-Pérè, S. (2010). A literature review on the impact of RFID technologies on supply chain management. *International Journal of Production Economics*, 128, 77-95.
- Schwalbe K. (2010). Information technology management. (6th, Ed.) Boston: Cengage Learning.
- Shih, L.H. (2001). Reverse logistics system planning for recycling electrical appliances and computers in Taiwan. *Elsevier Resources, Conservation and Recyling, 32*, 55-72.
- Sounderpandian, J.,Boppana, R.V. and Chalasani, S. (2008). Models for Cost-Benefit Analysis of RFID Implementations in Retail Stores. *IEEE Systems Journal,* 1, 388-398.
- Souza, R., Goh, M., Sundarakani, B., Wai, W.T., Toh, K. and Yong, W. (2011). Return on investment calculator for RFID ecosystem of high tech company. *Computers in Industry*, 62, 820-829.
- Spengler, T., Puckert, H., Penkuhn T., Rentz, O. (1997). Environmental integrated production and recycling management. *European Journal of Operations Research*, *97*, 308-306.
- Storey, V.C. (1991). Relationship database design based on the Entity-Relationship model. *Data* and *Knowledge Engineering*, 7(1), 47-83.
- Su, Y. and Roan, J. (2011). Investigating the impacts of RFID application on supply chain dynamics with Chaos theory. WSEAS Transaction on Information Science and Application, 8(1).
- Swarnkar, R. and Harding, J.A. (2009). Modelling and optimisation of a product recovery network. *International Journal of Sustainable Engineering*, 2(1), 40–55.
- Swedberg, C. (2012, January 11). Boeing to launch RFID programs for Airlines in Febuary. Retrieved September 13, 2012, from RFID Journal: http://www.rfidjournal.com/ article /view/9107
- Szmerekovsky, J.G and Zhang, J. (2008). Coordination and adoption of item-level RFID with vendor managed inventory. *International Journal of Production Economics*, *114*, 388–398.
- Tajima, M. (2007). Strategic value of RFID in supply chain management . *Journal of Purchasing* and Supply Management, 13(4), 261-273.

- Trappey, A.J.C, Trappey, C.V and Wu, C. (2010). Genetic algorithm dynamic performance evaluation for RFID reverse logistic management. *Expert Systems with Applications, 37*, 7329-7335.
- Tu, Y., Zhou, W. and Piramuthu, S. (2009). Identifying RFID-embedded objects in pervasive healthcare applications. *Decision Support Systems*, *46*, 586-593.
- Tzeng, S., Chen, W. and Pai, F. (2008). Evaluating the business value of RFID: Evidence from five case studies. *International Journal of Production Economics*, *112*, 601-613.
- Uçkun, C. Karaesmen, F., and Savas, S. (2008). Investment in improved inventory accuracy in a decentralized supply chain. *International Journal of Production Economics*, *113*, 546–566.
- Uzsoy, R. (1997). Production planning for companies with product recovery and remanufacturing capability. *Proceedings of the International Symposium on Electronics and the Environment.* San Francisco.
- Véronneau, S. and Roy, J. (2009). RFID benefits, costs, and possibilities: The economical analysis of RFID deployment in a cruise corporation globalservice supply chain. *International Journal of Production Economics*, *122*, 692–702.
- Wal-Mart Opts for EPC Class 1, V2. (2003, November 5). (RFID Journal) Retrieved January 22, 2012, from http://www.rfidjournal.com/article/view/641
- Wamba, S.F., Lefebvre, L.A., Bendavid, Y., and Lefebvre E. (2008). Exploring the impact of RFID technology and the EPC network on mobile B2B eCommerce: A case study in the retail industry. *International Journal of Production Economics*, *112*, 614-629.
- Wang, C., Even, J., Adams, S. (1995). A mixed-integer linear model for optimal processing and transport of secondary materials. *Resource, Conservation and Recycling, 15*, 65-78.
- Wang, S., Liu, S. and Wang, W. (2008). The simulated impact of RFID-enabled supply chain on pull-based inventory replenishment in TFT-LCD industry. *International Journal of Production Economics*, *112*, 570-586.
- Wyld D.C. (2006). RFID 101: the next big thing. Management Research News, 29(4), 154 173.
- Zarei, M., Mansoud, S., Kashan, A.H., and Karimi, B. (2010). Designing a Reverse Logistics Network for End-of-Life Vehicles Recovery. *Hindawi Publishing Corporation Mathematic Problems in Engineering*, 16.

Appendix A

A.1. Procedures for creating new simulation model

- We create new model by clicking *File*, and *New*, on the main menu or pressing <Ctrl + N> on the keyboard
- We click run from the main menu, clicking *Setup*, and provide the title of project in the project title textbox menu under tab *Project Parameters* (Figure A.1)
- 3. We specify the number of replications, replication length, time units, hours per day, base time units and terminating conditions under the *Replication Parameters* tab of the *Run Setup* dialog box (Figure A.2).

Run Setup				×
Run Speed Project Parameters	Run Control Replication Para	 meters	Reports Array Sizes	1
Project Title:		·		1
Analyst Name:	aselevel Krib_tagg	<u></u>		
Concordia University				
Project Description:				
- Statistics Collection -				
Costing	Queues	Trans	porters	
Entities	Processes	Conv	eyors	
Resources	Stations	C Activi	ty Areas	
Tanks				
ОК	Cancel	Apply	Help	

Figure A.1: Project parameter

n Setup							
Run Speed Project Parameters	Run Control Reports Replication Parameters Array S	zes					
Number of Replications:	Initialize Between Replications						
Start Date and Time:	:10 PM	_ -					
Warm-up Period:	Time Units:	_					
J0.0	Hours	▼					
Replication Length: 365	Time Units:						
Hours Per Day:		_					
Base Time Units:	•						
Terminating Condition:		_					
	-						
ОК	Cancel Apply H	elp					

Figure A.2: Replication parameters

A.2. Procedures for creating entities

- We click *Entity* from the *Basic Process* tab of the *Project Bar* menu (Figure A.3).
- 2. We create an entity by double clicking the data module underlining figure.
- 3. We specify the entity type, initial picture, holding cost/hour and initial costs for the entity in the entity data module.

Figure A.3: Create an Entity

A.3. Procedures for creating attributes

- 1. We click *Attribute* from the *Basic Process* tab of the *Project Bar* menu to display the attribute data module in the Arena plain area as shown in the Figure A.4.
- 2. We double click the data module to create a new attribute.
- 3. We provide the name, rows and columns (for array attributes), data type and initial value for the attribute in the attribute data module.

Ai Arena Enterprise Suite Academic - [EOLAircraftILRFID_tagging.doe]													
🗒 File Edit View Tools Ar	rrange O	bject Run Window He	lp										
🛛 🗅 🖨 🔛 🎥 🗳 🏼	₫ <u>%</u>	₽ ₽ ∽ ~ ■	$ \rho $	66%	- 🗮	1 5	►н	→ II I	• =		J		▶?
]∖ 4 ∩ 2 ⊡ ≫ @	A 🚄	<u></u>	- ≡		∕ ≓ - ≖	=	48) -	• •	X	i 16	₩ I	i ye	1 ¹⁰ 1
Project Bar ×													
Advanced Process													
♦ Basic Process													
Create	Attribute	e - Basic Process											
		Name	Rows	Columns	Data Type	Initial Values	ļ						
Process	1 🕨	Name 💌			String	0 rows							
◇ Decide	2	Model			Real	0 rows							
Batch	3	NParts			Real	0 rows							
💭 Separate	4	Aircraft part type			Real	0 rows							
Assign	5	Avionics	1	5	Real	0 rows							
Record	6	Materials	1	5	Real	0 rows							
Attribute	7	Componente	1	5	Deal	0.0000							
E Entity	, 	Aircraft Crosse		-	Deel	UTOWS							
🖽 Queue	•	Aircran Frame	1	0	Real	0 rows							
E Resource	9	Power systems	1	5	Real	0 rows							
🖽 Variable	10	MaterialRL type			Real	0 rows							
Schedule	11	ComponentRL type			Real	0 rows							
🖽 Set	12	AircraftFramesRL type			Real	0 rows							
	13	AvionicsRL type			Real	0 rows							
	14	PowersystemsRL type			Real	0 rows							

Figure A.4: Create an Attribute

A.4. Procedures for creating variables

- 1. We click Variable from the Basic Process tab of the Project Bar menu to display the variable data module in the Arena plain area as shown in Figure A.5.
- 2. We double click the data module to create a new variable.
- 3. We provide the name, rows and columns (for array attributes), data type and initial value for the variable in the variable data module.

Figure A.5: Create a Variable

A.5. Procedures for creating resource

- 1. We click *Resource* from the *Basic Process* tab of the *Project Bar* menu to display the resource data module in the Arena plain area as shown in Figure A.6.
- 2. We double click the data module to create a new resource.
- 3. We provide the name, type (Fixed capacity or schedule), busy hour, idle hour, per user, and failures.

No.										
纉 Arena Enterprise Suite Aca	ademic	 [EOLAircraftILRFID_t 	agging.doe]							
📴 File Edit View Tools Arr	range (Object Run Window H	telp							
🛛 🗅 🖨 🖬 🖾 🕰 🕌 1	à .∣∦	🖹 🛍 🗠 🖓	- 66% -		▶ 🕾 🕨	нж	н	=)-		.
]∖ ५ ೧ २ 🖩 🄌 👁	$\mathbf{A} \mid_{\mathbf{H}}$	<u>Z + 2 + A</u> + 8	• = • ≡ • ≣	-	- 🖾 - 48	≻ -] ¢	- \$¥ I		🖻 4	⊧ ≣ *a
Project Bar ×										
Basic Process	<u> </u>									
	Resour	ce - Basic Process								
Disease		Name	Туре	Capacity	Busy / Hour	Idle / Hour	Per Use	StateSet Name	Failures	Report Statistics
Dispose	1 🕨	Sorter 💌	Fixed Capacity	1	100	0.0	20		0 rows	
Decide	2	Dissembling Machine	Fixed Capacity	1	40	0.0	10		0 rows	
Batch	3	Shipper	Fixed Capacity	5	50	0.0	10		0 rows	
🗔 Separate	4	Manpower	Fixed Capacity	1	40	0.0	10		0 rows	
Assign	5	RFID Reader	Fixed Capacity	1	5	0.0	2		0 rows	
Record	6	Movers	Fixed Capacity	1	15	0.0	5		0 rows	
🖽 Attribute	7	Processing plant	Fixed Canacity	1	100	0.0	20		0.0000	
Entity	<u> </u>			•		•.•			UTOWS	L.
🖽 Queue		Double-click here to add	a new row.							
**** Resource										
🖽 Variable										
Lei Schedule										
ttil Set										

Figure A.6: Create a Resource

A.6. Procedures for creating events

To create a *Create* event

- We click on the *Create* event (yellow-shaped polygon) under the *Basic Process* tab of the *Project Bar* menu and drag it to the plain area of the page as shown in Figure A.7.
- 2. We double click the event to display its properties .

Figure A.7: Make a Create event

Create			? ×
Name:		Entity Type:	
Create 1		 Entity 1 	-
Time Between Arrivals Type:	Value:	Units:	
Random (Expo)	1	Hours	•
Entities per Arrival:	Max Arrivals:	First Creation:	
1	Infinite	0.0	
	ОК	Cancel H	lelp

Figure A.8: Edit the properties of Create event

To create a Process event

- We click on the *Process* event (yellow-shaped polygon) under the *Basic Process* tab of the *Project Bar* menu and drag it to the plain area of the page
- 2. We connect the *Process* event and *Create* event with a connector.
- 3. We double click the event to display its properties.
- 4. We modify the properties of the *Process* event as required.

Figure A.9: Make a Process event

Process			<u>?</u> ×
Name:		Туре:	
Process 1	•	Standard	•
- Logic			
Action:		Priority:	
Seize Delay Release		Medium(2)	•
Resources:		,	
<end list="" of=""></end>		Add	
		Edit	
1		Delete	
Delay Type:	Units:	Allocation:	
Triangular 💌	Hours	Value Added	•
Minimum:	Value (Most Likely):	Maximum:	
.5	1	1.5	
Report Statistics			
	OK	Cancel He	lp

Figure A.10: Edit the properties of the Process event

To create a *Dispose* event:

- 1. We click on the *Dispose* event (yellow-shaped polygon) under the *Basic Process* tab of the Project Bar menu and drag it to the plain area of the page
- 2. We connect the Process, Create, and Dispose events with a connector.
- 3. We double click the event to display its properties.
- 4. We provide the name of the event, and check the record entity statistics checkbox.

∬ \	🛛 🗹 🔻 🖄 👻 🚣	\ • @ • ≡ • ≡	• ≓ • ≖ •	• 4XÞ •		💴 🖬 🌆 🐱	i 🖬 🕪 🖬 📲
Project Bar ×							
Advanced Transfer							
Advanced Process							
Basic Process							
Create							
Dispose							
Process							
◇ Decide							
🖵 Batch							
🖵 Separate		a	D				
Assign							
Record		Create 1	Prob		- Dispos	•	
🖽 Attribute					R		
Entity							
🛄 Queue							
Resource							
🖽 Variable							
data Schedule							
📖 Set							

Figure A.11: Make a Dispose event

Figure A.12: Edit the properties of the Dispose event

A. 7. Procedures for creating file object

Step 1:

- 1. We create a Microsoft Excel 2007 file on the hard drive.
- 2. We open the file and create a new workbook and worksheet
- 3. We select and name a range (termed "named ranged") on the worksheet where we want to read data from or write data to (Figure A.13).

	Function Library												
	ILBa	tchsize	• (f_x									
	А	В	С	D									
1	Casing												
2		Item level	Case level	Pallet level									
3	Batch size	1	2	2									
4													

Figure A.13: Create a named range

Step 2:

- In Arena simulation software, we click *File* from the *Advanced Process* tab of the Project Bar menu to display the *File* data module in the Arena plain area as shown in Figure A14.
- 2. We double click the data module to create a new *File* object.

We provide the name of the *File* object, the access type (Microsoft Excel 2007), the location of the file on the hard-drive, the end of file action (disposed and the initial option (hold)). The last column of the file object, called *Recordsets*, is very important, it is discussed in the next step.

🛱 File Edit View Tools		c - [Model	3]				
ll	Arrange	Object R	un Window Help				
] 🗅 😂 🖬 😂 😂 🛎	ا 🕰 🖥	¥ 🖻 🖻	L ທ ຕະ 🔚 🔎 58% 💽] 🦗 🌢 🕾 🕨 н эк п н 🗉 🔂 📕 😽			
\ 4 ∩ 2 ■ Ø	A	<u>1</u> - D	$\star \underline{\mathbb{A}} \star \underline{\mathbb{A}} \star \equiv \star \equiv \star \equiv$; - == - - - - - - - - -			
Project Bar :	× 🗌						
Advanced Transfer							
Advanced Process							
	-						
linstore							
UNDIDIC							
Adjust							
Variable							
	File -	Advanced F	Process				
		Name	Access Type	Operating System File Name	End of File Action	Initialize Option	Recordsets
Advanced Set	1 🕨	File 1	Microsoft Excel (*.xls)	C:\Users\kalen813\Desktop\Reference Papers\Batchsize.xlsx	Dispose	Hold	0 rows
		Double-	click here to add a new row.				
Expression							
	11						
Failure							
Faiure							
Failure							
Faiure							

Figure A.14: Create a File object

- We click the *Recordsets* column to display the dialogbox in Figure A.15.
- 4. We specify the name of the recordset (Recordset 1), and the named range (*ILBatchsize*), and click on the *Add/Update* button to create the recordset.
- 5. We click the *OK* button to close the dialogbox.

Figure A.15: Create a Recordset for the File object

Appendix **B**

B.1. EOLAircraftData.xlsx

	. 9	• (° •)	Ŧ						EOLAircraft	Data.xlsx - Micro	osoft Excel								-	σx
	Home	Insert	Page Lay	yout Fo	rmulas	Data Re	view Vi	ew Tea	m										0 - 1	5 X
	🔏 Cut		Calibri	* 11	• A A	==	= >>	📑 Wrap	Text	General	-				• 🐄		Σ AutoSum	- 47	A	
Past	Cop	y	BZI	.	& - A -			Mero	e & Center *	\$ - % ,	•.0 .00	Conditi	ional Format Ce	I Inser	t Delete	Format	🛃 Fill 👻	Sort &	Find &	
*	Forr Clipboard	mat Painter		Font			Alion	ment	6	Numbe	J	Formatt	ting + as Table + Style	5 * *	Cells	-	∠ Clear *	Filter *	Select *	
	coposari	H34		- (a	fx	-,	, angi					L	Syres		centr			ining		¥
	Δ	B	C	D	F	F	G	н			к		I M		N		0	p	0	
1 10)	Name	Model	Nparts	Materials	MRS	MRM	MRC	MD .	Components	CRS	CRI	M CRC	CD		Aircraft	Frames A	FRS	AFRM	7
2	1	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	50
3	2	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	;0
4	3	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	0
5	4	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	<i>i</i> 0
6	5	Boeling	/0/	100	10	25	50	/5	100	30		25	50	75	100		50	25	- 5	0
0	7	Booling	707	100	10	20	50	75	100	30		25	50	75	100		50	25	5	50
9	, 8	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	50
10	9	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	50
11	10	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	50
12	11	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	j0
13	12	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	i0
14	13	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	0
15	14	Boeling	707	100	10	25	50	75	5 100	30		25	50	75	100		50	25	5	<i>i</i> 0
16	15	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	0
1/	16	Boeling	707	100	10	25	50	/5	100	30		25	50	75	100		50	25	5	0
10	17	Boeling	707	100	10	25	50	73	100	30		25	50	75	100		50	25	5	50
20	10	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	50
21	20	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	50
22	21	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	j0
23	22	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	j0
24	23	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	;0
25	24	Boeling	707	100	10	25	50	75	i 100	30		25	50	75	100		50	25	5	0
26	25	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	<i>i</i> 0
27	26	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	0
28	27	Boeling	/0/	100	10	25	50	/5	100	30		25	50	75	100		50	25	5	0
29	20	Boeling	707	100	10	23	50	73	100	30		25	50	75	100		50	25	5	50
31	30	Boeling	707	100	10	25	50	75	100	30		25	50	75	100		50	25	5	50
32															200					- I
33																				
34									1											
35																				
36																				_
37																				_
38	H EOL/	AircraftDat	a / 🞾 🖊	1	1	1	1	1	1		1	14								> I
B.2. ProcessDistributions.xlsx

0	Process Distributions.xlsx - Microsoft Excel							
C	Home Insert Page Layout Formulas Data Review View Team							
Pas	Image: Comparison of the comparison							
		C25 • (* fx						
	Α	В	С	D	E	F		
1								
2				Process Distributions				
3			Time unit	Item level	Case level	Pallet level		
4	1	Arrival of EOL aircraft	days	EXPO(20)	EXPO(20)	EXPO(20)		
5	2	Disassembly	days	TRIA(5,6,7)	TRIA(5,6,7)	TRIA(5,6,7)		
6	3	Sorting of parts	minutes	TRIA(5,8,10)	TRIA(5,8,10)	TRIA(5,8,10)		
7	4	Casing of parts	minutes	TRIA(15,20,25)	TRIA(15,20,25)	TRIA(15,20,25)		
8	5	Attaching of RFID tags	minutes	TRIA(5,8,10)	TRIA(5,8,10)	TRIA(5,8,10)		
9	6	Automatically read data and update information store	seconds	TRIA(5,8,10)	TRIA(5,8,10)	TRIA(5,8,10)		
10	7	Move cased parts to physical store	minutes	TRIA(20,22,25)	TRIA(20,22,25)	TRIA(20,22,25)		
11	8	Pick cases	minutes	TRIA(20,22,25)	TRIA(20,22,25)	TRIA(20,22,25)		
12	9	Add cases to pallet	minutes	TRIA(20,22,25)	TRIA(20,22,25)	TRIA(20,22,25)		
13	10	Ship pallets	minutes	TRIA(20,22,25)	TRIA(20,22,25)	TRIA(20,22,25)		
14	11	Arrive at reuse depot	minutes	EXPO(10)	EXPO(10)	EXPO(10)		
15	12	Unload pallets	minutes	TRIA(20,22,25)	TRIA(20,22,25)	TRIA(20,22,25)		
16	13	Unpack cases	minutes	TRIA(20,22,25)	TRIA(20,22,25)	TRIA(20,22,25)		
17	14	Prepare parts for process lines with special RFID technology	minutes	TRIA(20,22,25)	TRIA(20,22,25)	TRIA(20,22,25)		
18	15	Process parts according to part's information	minutes	TRIA(20,22,25)	TRIA(20,22,25)	TRIA(20,22,25)		
19								
20								

B.3. ProcessDistributions_barcode.xlsx

Process Distributions - barcode.xlsx - Microso						
C	Home	Insert Page Layout Formulas Data Review	View Team			
Paste		y mat Painter $\begin{bmatrix} Calibri & \cdot & 11 & \cdot & A^* & A^* \\ B & I & U & \cdot & U^* & A^* \\ \end{bmatrix} \begin{bmatrix} \Xi & \Xi & \Xi \end{bmatrix}$	Wrap Text	General ▼ \$ ▼ % > .0 .00		
	Clipboar	d 🕼 Font 🕼 Ali	gnment 🕞	Number 🕞		
		D30 - f _x				
	А	В	С	D		
1						
2			Process Distributions			
3			Time unit	Barcode		
4	1	Arrival of EOL aircraft	days	EXPO(20)		
5	2	Disassembly	days	TRIA(5,6,7)		
6	3	Sorting of parts	minutes	TRIA(5,8,10)		
7	4	Casing of parts	minutes	TRIA(15,20,25)		
8	5	Attach barcodes with RL types information	minutes	TRIA(5,8,10)		
9	6	Manually scan barcode and add data to information store	minutes	TRIA(3,5,7)		
10	7	Move case to physical store	minutes	TRIA(20,22,25)		
11	8	Pick cases	minutes	TRIA(20,22,25)		
12	9	Add cases to pallet	minutes	TRIA(20,22,25)		
13	10	Ship pallets	minutes	TRIA(20,22,25)		
14	11	Arrive at reuse depot	minutes	EXPO(10)		
15	12	Unload pallets	minutes	TRIA(20,22,25)		
16	13	Unpack cases	minutes	TRIA(20,22,25)		
17	14	Prepare parts for process lines	minutes	TRIA(20,22,25)		
18	15	Process parts according to part's information	minutes	TRIA(20,22,25)		
19						
20						
21						
22						
23						

B.4. Batchsize.xlsx

	Function Library						
	ILBa	tchsize	▼ (f _x				
	А	В	С	D			
1	Casing						
2		Item level	Case level	Pallet level			
3	Batch size	1	2	2			
4							

B.5. ROI.xlsx

	₩) = (₩ =) =				ROLxIs	x - Microsoft Ex	cel	
н	ome Insert Page Layout	Formulas Da	ta Review	View Team				
	Cut							
	Copy	11 · A A	= = **	Wrap Te	xt	General	•	
Paste 🦼	Format Painter	- 🗞 - A -	토콜콜 같!	📕 🎰 Merge 8	Center 👻	\$ - % ,	€.0 .00 0.€ 00.	Conditional Format C
Clipk	poard 5 Font	5	Ali	anment	G	Number	5	Formatting * as lable * Styl Styles
	172	fr.						
	1/2 +	- Jx	2	-	-	0		
25 A	B	L.	U	E	F	G	н	1 J
26								
27								
28								
29	Table 6.11: ROI for case-level RFID tag	ging						-
30	Years	0	1	2		3 4	0.700	5
31	Discount rate = 5%	1	0.9524	0.907	0.8638	8 0.0829	0.783	5
32	Cost	1075150	0	0				
33	Investment cost (5)	0010/01	7500	7500	7500	7500	750))
34	Cost of tagging and labeling (5)	0	224909	224909	224900	224000	224900	
36	Total-	1975150	342308	342308	342308	342308	34230	2
37	Discounted cost	\$1,975,150.00	326,014.14	310,473.36	295,685.65	28,377.33	268,198.3	2 2,935,700.48
38					í.	ĺ ĺ	· · · · ·	
39	Benefit							
40	Savings from manpower (\$)	0	39653	39653	39653	39653	39653	3
41	Savings from shrinkage(\$)	0	5000	5000	5000	5000	5000	0
42	Savings from delay(\$)	0	2456	2456	2450	5 2456	2450	5
43	Savings from correcting errors on enter	0	10000	10000	10000	10000	1000)
44	Total =	0	57109	57109	57109	57109	57109	9
45	Discounted benefit	0	\$54,390.61	\$51,797.86	\$49,330.75	\$4,734.34	\$44,744.90	\$204,998.47
46	POI -							
47	ROI =	-0.93						
49								
50	Table 6.12: ROI for pallet-level RFID ta	gging						
51	Years	0	1	2	3	3 4		5
52	Discount rate = 5%	1	0.9524	0.907	0.8638	0.0829	0.783	5
53	Cost							
54	Investment cost (\$)	1975150	0	0	() 0	()
55	Cost of tagging and labeling (\$)	0	3700	3700	3700	3700	3700	0
56	Overhead cost (\$)	0	338195	338195	338195	338195	33819:	5
57	Total =	1975150	341895	341895	341895	341895	34189:	5
58	Discounted cost	1975150	325,620.80	310,098.77	295,328.90	28,343.10	267,874.73	3,202,416.29
59								
61	Benefit							
62	Savings from manpower (\$)	0	39653	39653	39653	39653	3965	3
63	Savings from shrinkage (\$)	0	5000	5000	5000	5000	5000	7
64	Savings from delay (\$)	0	3467	3467	346	3467	346	7
65	Savings from correcting errors on enter	0	10000	10000	10000	10000	1000	0
66	Total	0	58120	58120	58120	58120	58120	0
67	Discounted Benefit	0	55,353.49	52,714.84	50,204.06	4,818.15	45,537.02	2 208,627.55
68								
69	ROI =	-0.93						
70								
71								
72								
14 4 F FI	Scenario 1 Tagcounter Return	on Investment	2					

Appendix C

C.1. Simulation of case-level barcode tagging

Figure C.1: Screen-shot of simulation for case-level barcode tagging

C.2. Simulation of item-level RFID tagging

Figure C.2: Screen-shot of simulation of item-level RFID tagging

C.3. Simulation of case-level RFID tagging

Figure C.3: Screen-shot of simulation for case-level RFID tagging

C.4. Simulation of pallet-level RFID tagging

Figure C.4: Screen-shot of simulation of pallet-level RFID tagging