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Figure 15. Fos protein IR-labeling in the nucleus accumbens shell (NAcShell) and 

ventricles (V) in the heroin-trained-tested condition. A (upper panel): pictograph of 

representative tissue slice from the food restricted (FDR) group (n = 11). B (lower panel): 

pictograph of representative tissue slice from the Sated group (n = 14). Following self-

administration training, on abstinence day 14, rats were immediately sacrificed following 

a 1 h test under extinction conditions.
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Statistical Analyses 

 All analysis were conducted using SPSS software (IBM, SPSS Statistics, version 

20). Training data for the heroin-trained tested group and the heroin-trained-abstinence 

group were analyzed using a within subjects ANOVA, with training day (1-10) as the 

independent variable and active lever responses, inactive lever responses or number of 

infusions as the dependent variable. 

 Number of responses on the active and inactive levers for the heroin-trained-

tested group during the test session were analyzed using an independent samples t-test 

with feeding condition (FDR, Sated) as the independent variables. 

 Three a priori, independent samples t-tests were carried out for each group 

(heroin-trained-tested, heroin-trained-no-test, drug-naive), across all brain region 

(NAcShell, NAcCore, basolateral amygdala (BLA) and central nucleus of the amygdala 

(CeA)) to compare the level of Fos protein IR.  Feeding condition (FDR, Sated) served as 

the independent variable while Fos levels adjusted for region size served as the dependent 

variable. The critical cut-off point for statistically significant results was p ≤ 0.05, with 

the exception of the Fos protein comparisons, where analysis in each brain region used a 

Bonferronni adjusted alpha level of α = .017. 

Results 

 Final analysis included a total of 43 rats. (heroin-trained-tested, n = 25; heroin-

trained-no-tests n = 8; drug-naive, n = 10). Seven rats were removed due to catheter 

leakage, failure to train or issues during the perfusion process. The remaining rats 

acquired reliable heroin self-administration behavior. 
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Behavioral Analysis 

Heroin-trained-tested group 

Training. Mauchly’s test of sphericity assumptions were violated for all training data. All 

values recorded were corrected using the Greenhouse-Geisser correction. A statistically 

significant increase in heroin infusions over time was observed, F (9,270) = 12.70, p < 

.001. Active lever responding  increased across training sessions F (9,270) = 5.67, p = 

.006, while no statistically significant change in inactive lever responding was found. 

Since some rats were removed from the analysis after the group matching was conducted 

(due to inadequate brain perfusion), last five days of training data was used to compare 

the rats assigned to the FDR (n=11) and Sated (n=14) groups. No statistically significant 

differences were found across all criteria: number of infusions, active lever responding 

and body weights. 

 

Test. On test day, average body weights of the Sated group (M = 499.92, SEM = 34.85) 

were statistically significantly greater than the FDR groups (M = 335.18, SEM = 16.95) 

body weights, t (22) = -10.81, p < .001. Furthermore, the FDR group showed a 

statistically significant increase in active lever responding compared to the Sated group, t 

(23) = 5.21, p < .001 (see Figure 16). No statistically significant difference was observed 

for inactive lever responding (see Figure 16).
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Figure 16. The effect of exposure to prolonged food restriction (FDR) on heroin seeking 

in abstinent rats. Data shown are the mean (+SEM) active and inactive lever responding 

on test day, for the FDR (n =11) and Sated groups (n = 14) for experiment one. Test day 

consisted of one 1-h test session under extinction conditions, following heroin self-

administration training and 14 days of abstinence under FDR or sated conditions. Active 

lever responding was statistically significantly greater for the FDR group versus sated 

controls. * p < .001. 
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Heroin-trained-no-test group 

Training. Mauchly’s test of sphericity assumptions were violated for all training data. All 

values recorded were corrected using the Greenhouse-Geisser correction. The number of 

infusions increased over training days, and repeated measures ANOVA revealed a 

statistical trend, F (9,63) = 3.36, p = .075. Active lever responding did not result in an 

overall increase across training sessions, F (9,63) = 1.60, p = .245 as there was a peak in 

responding half way through the training period, which obscured a progressive increase 

over time. No statistically significant change in inactive lever responding was observed. 

Since some rats were removed from the analysis after the group matching was conducted 

(due to inadequate brain perfusion), last five days of training data was used to compare 

the rats assigned to the FDR (n=3) or Sated (n=5) groups. No statistically significant 

differences were found across all criteria; infusions, active lever responding and body 

weights.  

 

Sacrifice day. On abstinence day 14, average body weights of the Sated group (M = 

448.40, SEM = 26.43) were statistically significantly greater than the FDR groups (M = 

347.33, SEM = 9.29) body weights, t (6) = -6.23, p = .001. 

 

Drug-naive group 

 Following an 11 day period of unrestricted access to food in the ACF care facility, 

rats were separated into two groups, FDR (n=5) or Sated (n=5), matched according to 

mean body weights of the last five days. On day 25 in the ACF, average body weights of 
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the Sated group (M =472.00, SEM = 52.39) were statistically significantly greater than 

the FDR groups (M = 369.60, SEM = 28.06) body weights, t (8) = -3.85, p = .005. 

 

Immunohistochemical Analysis 

Nucleus accumbens shell. A statistically significant decrease in the number of Fos protein 

IR-labeled cells was observed for the FDR group, versus the Sated group, in the heroin-

trained-tested rats, t (23) = -2.65, p = .014. No statistically significant differences were 

observed in the heroin-trained-no-test or drug-naive groups (see Figure 17). 

 

Nucleus accumbens core. No statistically significant differences in Fos protein IR-

labeling were observed in the heroin-trained-tested, heroin-trained-no-test or drug-naive 

groups (see Figure 18). 

 

Basolateral amygdala. No statistically significant differences in Fos protein IR-labeling 

were observed in the heroin-trained-tested, heroin-trained-no-test or drug-naive groups 

(see Figure 19). 

 

Central amygdala. No statistically significant differences in Fos protein IR-labeling were 

observed in the heroin-trained-tested, heroin-trained-no-test or drug-naive groups (see 

Figure 20). 
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Prelimbic cortex. No statistically significant differences in Fos protein IR-labeling were 

observed in the heroin-trained-tested, heroin-trained-no-test or drug-naive groups (see 

Figure 21). 

Infralimbic cortex. No statistically significant differences in Fos protein IR-labeling were 

observed in the heroin-trained-tested, heroin-trained-no-test or drug-naive groups (see 

Figure 22). 
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Figure 17. Fos protein IR-labeling in the nucleus accumbens shell. Data shown are the 

mean (+SEM) counts of Fos protein IR cells in the food restricted (FDR) and Sated 

group, for the heroin-trained-tested, heroin-trained-no-test and drug-naive groups. On 

abstinence day 14, rats were immediately sacrificed following a 1 h test under extinction 

conditions, or at the same time a test would have occurred. *p < .014. 
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Figure 18. Fos protein IR-labeling in the nucleus accumbens core. Data shown are the 

mean (+SEM) counts of Fos protein IR cells in the food restricted (FDR) and Sated 

group, for the heroin-trained-tested, heroin-trained-no-test and drug-naive groups. On 

abstinence day 14, rats were immediately sacrificed following a 1 h test under extinction 

conditions, or at the same time a test would have occurred. 
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Figure 19. Fos protein IR-labeling in the basolateral amygdala. Data shown are the mean 

(+SEM) counts of Fos protein IR cells in the food restricted (FDR) and Sated group, for 

the heroin-trained-tested, heroin-trained-no-test and drug-naive groups. On abstinence 

day 14, rats were immediately sacrificed following a 1 h test under extinction conditions, 

or at the same time a test would have occurred. 
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Figure 20. Fos protein IR-labeling in the central amygdala. Data shown are the mean 

(+SEM) counts of Fos protein IR cells in the food restricted (FDR) and Sated group, for 

the heroin-trained-tested, heroin-trained-no-test and drug-naive groups. On abstinence 

day 14, rats were immediately sacrificed following a 1 h test under extinction conditions, 

or at the same time a test would have occurred. 
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Figure 21. Fos protein IR-labeling in the prelimbic cortex. Data shown are the mean 

(+SEM) counts of Fos protein IR cells in the food restricted (FDR) and Sated group, for 

the heroin-trained-tested, heroin-trained-no-test and drug-naive groups. On abstinence 

day 14, rats were immediately sacrificed following a 1 h test under extinction conditions, 

or at the same time a test would have occurred. 
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Figure 22. Fos protein IR-labeling in the infralimbic cortex. Data shown are the mean 

(+SEM) counts of Fos protein IR cells in the food restricted (FDR) and Sated group, for 

the heroin-trained-tested, heroin-trained-no-test and drug-naive groups. On abstinence 

day 14, rats were immediately sacrificed following a 1 h test under extinction conditions, 

or at the same time a test would have occurred.

 



 

 73 

Summary 

 As expected, a robust increase in heroin seeking was observed in food restricted, 

but not sated rats, when they were returned to the drug associated environment. Analysis 

of neuronal activation, as reflected by the expression of Fos protein, revealed a 

significant inhibition of Fos expression in the nucleus accumbens shell of the FDR 

compared to the sated rats in the heroin-trained-tested groups. 
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General Discussion 

 Recent work in our laboratory has demonstrated an augmentation of heroin 

seeking in abstinent, chronically food restricted rats (D’Cunha et al., 2012). Thus, as 

expected, a prolonged period of food restriction resulted in a robust increase in heroin 

seeking, compared to sated rats, across all experimental groups in the current studies. 

These findings are consistent with considerable evidence supporting a modulatory role 

for food restriction on drug-related behaviors in humans (Cheskin et al., 2005; Hall et al., 

1992; Krahn et al., 1992) and in laboratory animals, where food deficiency drastically 

influences drug taking and the reinforcing properties of abused drugs (Carr, 2007; Carroll 

& Meisch, 1984; Stuber, Evans, Higgins, Pu, & Figlewicz, 2002).   

 The goal of the experiments described in Chapter 1 was to investigate the role of 

the CRF and corticosterone stress systems in the augmentation of heroin seeking by 

prolonged food restriction in abstinent rats. Treatment with R121919, a selective CRF1-R 

antagonist, or α-helical CRF, a non-specific CRF-R antagonist, did not result in a 

statistically significant reduction in heroin seeking behavior. However, treatment with 

RU486, a glucocorticoid receptor antagonist, did not have an effect on heroin seeking. 

We therefore suggest that the acute stress response is not a critical factor in the 

augmentation of heroin seeking induced by prolonged food restriction. The experiments 

in Chapter 2 were therefore exploratory in nature and aimed at the identification of brain 

sites involved in this effect.  

 To that end, Fos protein immunoreactivity (Fos-IR) was used to measure neuronal 

activation in the BLA, CeA, NAcS and NAcC, il-PFC and pl-PFC. Interestingly, Fos-IR 

was statistically significantly attenuated in the NAcS of food restricted rats, compared to 



 

 75 

the sated rats in the heroin-trained-tested group, while no other statistically significant 

effects were observed. 

 

The role of stress systems in chronic food-restriction-induced augmentation of heroin 

seeking in the rat 

 Despite previous evidence demonstrating that CRF-R antagonists attenuate food 

deprivation-induced reinstatement of extinguished heroin seeking (Shalev, Marinelli, 

Baumann, Piazza, & Shaham, 2003a), the experiments described in Chapter 1 suggest 

that these findings do not extend to chronic food restriction-induced augmentation of 

heroin seeking in abstinent rats. The observed lack of effect for CRF-R antagonists in 

chronically food restricted rats may be due to the use of different dietary regimens. As 

mentioned in the general introduction, chronic food restriction and acute food deprivation 

may differently affect metabolic systems and behavior. An additional reason for the 

different findings with acute and chronic food restriction might be the differences 

between the reinstatement procedure and our revised procedure. First, rats in the present 

study did not undergo a period of extinction, and as previously mentioned, extinction and 

abstinence can activate distinct neural circuits (Fuchs, Lasseter, Ramirez, & Xie, 2008a). 

Second, our study employed a prolonged period of mild stress (food restriction). 

Alterations in gene expression suggest distinct neural circuitry underly acute and chronic 

stress. For example, increased CRF1-R and c-fos mRNA in the PVN of the hypothalamus 

are observed following acute, but not chronic stress. In contrast, chronic stress results in 

lowered levels of CRF1-R and c-fos mRNA (Bonaz & Rivest, 1998). However, other 

reports have demonstrated the opposite result, where increased levels of CRF1-R mRNA 
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were reported following chronic but not acute stress (Imaki, Nahan, Rivier, Sawchenko, 

& Vale, 1991). Notwithstanding these inconsistencies, there appear to be distinct 

adaptations in the CRF system following exposure to acute or chronic stress.  

 Additionally, it has been demonstrated that CRF can influence the long-term 

enhancement of synaptic transmission (long term potentiation, LTP) in the dentate gyrus 

of the hippocampus. For example, acute infusions of CRF in the hippocampus can result 

in long-lasting adaptations in the synaptic efficacy of hippocampal neurons, an effect 

which is abolished by CRF-R antagonist pre-treatment (Wang, Wayner, Chai, & Lee, 

1998). The hippocampus projects to the NAc and is strongly implicated in memory 

formation and the contribution of emotional memories to addiction (Nestler, 2005a). 

Chronic exposure to cocaine, opiates and nicotine has been shown to inhibit the birth of 

new neurons in the hippocampus (Eisch, 2000; 2002). Moreover, chronic exposure to 

cocaine can also stimulate dendritic growth in the NAc, which consequently allows for an 

enhanced influence on NAc neurons by afferent projections from surrounding regions 

such as the hippocampus (Nestler, 2005a). Nestler and colleagues (2001; 2005b) have 

suggested that cognitive impairments in drug addicted individuals may be driven by these 

long-lasting alterations in hippocampal neurons, and in turn in their influence on the 

reward circuitry. Therefore, the connecting circuitry between the hippocampus and other 

brain regions within the mesocorticolimbic DA circuitry suggests a pathway by which 

CRF can act to cause long lasting adaptations that influence drug seeking behavior.  

 In the present study, rats were exposed to a 14 day food restriction stress, which 

may have resulted in adaptations in critical neuronal circuits long before the test session. 

For example, greater DA tissue levels in the NAc, and reduced levels in the PFC, were 
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found 1 week following a 13 day exposure to CRF (Izzo, Sanna, & Koob, 2005). Thus, 

acute CRF-R antagonist treatment prior to testing may not have an important influence on 

the CRF-induced adaptations in the current procedure. Future studies should investigate 

the effects of chronic CRF-R antagonist treatment, over the food restriction period, in the 

augmentation of heroin seeking induced by chronic food restriction. A differential role 

for acute versus chronic treatment with CRF antagonists is suggested by the findings of 

Mallo and colleagues (2004) who reported a reduction in anxiety (as defined by increased 

exploration) in an elevated-zero-plus-maze test following chronic, but not acute treatment 

with a selective CRF1-R antagonist. 

 Null effects in the present study (Chapter 1; Experiment 1) may have been due to 

the choice of CRF-R antagonists. R121919 and α-helical CRF were used, the former a 

selective CRF1-R antagonist and the latter a non-selective CRF-R antagonist, with a high 

affinity for CRF1 and CRF2-Rs (Behan et al., 1996). As mentioned in the introduction of 

Chapter 1, CRF2-Rs may be involved in increased anxiety-like behaviors and drug self-

administration (Funk & Koob, 2007) however, their role in stress is not clear (Bale & 

Vale, 2004). For example, ethanol dependent rodents decrease ethanol self-administration 

in response to intra-CeA infusions of urocortin 3 (Ucn3), a highly selective CRF2-R 

agonist (Funk et al., 2007). In contrast, intra-CeA infusion of Ucn3 increased ethanol, but 

not water, self-administration in non-ethanol dependent rats (Funk & Koob, 2007). The 

authors further suggest that CRF1-R and CRF2-R may have opposing actions in the basal 

forebrain. Wang and colleagues (2007) have also demonstrated that CRF2, but not CRF1-

R blockade in the VTA can reduce elevated glutamate and DA concentrations and 

attenuate footshock stress-induced reinstatement of cocaine seeking (Wang et al., 2005).  
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 Taken together, these studies suggest that CRF2-Rs activation at particular brain 

areas might have a role in drug seeking, and therefore the results in the present study 

should be interpreted with caution as the CRF2-Rs were not specifically manipulated, and 

no site-specific injections were used. Nevertheless, the fact that blockade of both CRF1-R 

and CRF2-Rs using a non-specific antagonist did not affect drug seeking strongly 

suggests that acute activation of the CRF system is not involved in this phenomenon. 

 An interesting, albeit not statistically significant, trend for a dose dependent 

reduction in responding on the previously heroin paired (active) lever on the test day was 

observed in the α-helical CRF-treated sated group. Recently, CRF-R antagonism was 

shown to reduce cue-induced reinstatement of drug seeking (Moffett & Goeders, 2006), 

which could provide a possible explanation for the reduction of active lever responding 

observed in sated rats in the current experiments, following exposure to the drug-

associated environment and cues. However, a similar pattern was found for inactive lever 

responding in the food restricted and sated groups, suggesting that the reduced lever 

seeking in the α-helical CRF-treated rats was not due to changes in the motivational value 

of the drug-associated stimuli. Furthermore, administration of R121919 did not reduce 

active or inactive lever responding in the drug treated groups, further supporting a lack of 

motivational effects for CRF-R antagonists in the current procedure. It is possible that 

treatment with α-helical CRF resulted in an overall reduction of locomotor responding, 

which was obscured by the increased drug-seeking behavior in the food restricted rats; 

yet, we found no indication for such an effect in the previous studies conducted in our 

laboratory (Shalev et al., 2006). 
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 Since the treatment with α-helical CRF had no effect on drug seeking in the food 

restricted group, the administration of α-helical CRF was investigated under anxiety 

provoking conditions to ensure the efficacy of the drug. In this test, a reduction in 

anxiety, as assessed by a reduction in the latency to consume food and the number of 

approaches prior to food consumption, in food restricted rats that received α-helical CRF 

treatment was found. Rats that did not receive the drug treatment approached the food 

multiple times with no attempt at consumption and would instead continue to explore the 

environment. We interpreted this to be a sign of conflicting behavior resulting from 

elevated anxiety, as the rats were clearly hungry. 

 Given the apparent absence of a role for CRF (Chapter 1; Experiment 1) in 

protracted food restriction-induced augmentation of drug seeking, we investigated the 

role of corticosterone, the major stress-associated hormone (Chapter 1; Experiment 2). 

ACTH and the subsequent production of corticosterone can also be affected by 

mechanisms independent of CRF’s actions in the HPA axis (Tsigos & Chrousos, 2002). 

Previous research suggests an increase in plasma corticosterone concentrations as a result 

of reward and stress (including dietary restriction) presentations (Burgess et al., 1993; 

Goeders, 1997; Heiderstadt, McLaughlin, Wright, Walker, & Gomez-Sanchez, 2000; 

Merali, McIntosh, Kent, Michaud, & Anisman, 1998; Szechtman, Lambrou, Caggiula, & 

Redgate, 1974). These stress-induced elevations in corticosterone, however, are thought 

to have no role in stress-induced reinstatement of drug seeking (Erb et al., 1998; Shaham 

et al., 1997; Shalev, Marinelli, Baumann, Piazza, & Shaham, 2003a). It is relevant to note 

however, that the majority of these reports manipulated drug taking with acute stressors, 

and while stressors such as acute food deprivation can elevate plasma concentrations of 
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did increase the breakpoints on a progressive ratio schedule of heroin reinforcement 

(Maric, Sedki, Ronfard, Chafetz, & Shalev, 2011). It is critical to note, however, that the 

aforementioned study used acute food deprivation in a reinstatement of extinguished drug 

seeking procedure, which as mentioned above might involve different brain mechanisms 

than prolonged food restriction in abstinent rats. 

 Leptin, an anorexigenic hormone that is secreted by peripheral adipocytes, can 

regulate activity in the mesocorticolimbic circuitry (Cummings et al., 2007) through its 

actions on VTA DA neurons, and has been implicated in reward processes. Interestingly, 

leptin was shown to attenuate acute food deprivation-induced reinstatement of heroin 

seeking (Shalev, Yap, & Shaham, 2001b). However, this effect was not consistent across 

stress- (footshock) or heroin priming-induced reinstatement (Shalev et al., 2001b), 

suggesting that leptin’s effect was not mediated by DA or stress-related pathways.  

 The hormones described above may present alternative mechanisms by which the 

augmentation of heroin seeking following prolonged food restriction is achieved. 

 

The effects of chronic food restriction on Fos immunoreactivity in the nucleus accumbens 

in heroin seeking rats 

 In Chapter 2 we described a reduction of Fos protein-immunoreactivity (Fos-IR) 

in the NAcS for heroin-trained-tested rats who where subjected to a prolonged food 

restriction, compared to those with unrestricted access to food (sated). This is in contrast 

to the report that heightened Fos-IR levels are observed in the NAcS after repeated stress 

exposure (Nikulina, Covington, Ganschow, Hammer, & Miczek, 2004), and that transient 

inhibition of the NAcS using GABA agonists attenuates a footshock stress-induced 



 

 85 

reinstatement of cocaine seeking (McFarland et al., 2004). Carr and colleagues (2000), 

however, reported increases in Fos-IR only in amphetamine challenged, but not saline 

control rats using a more severe regiment of food restriction.  

 The food restriction-induced inhibition of neuronal activation in the NAcS we 

report here is in agreement with recent findings indicating that the NAcS may play a 

bidirectional role in drug seeking, depending on DA and glutamatergic inputs. Thus, 

AMPA receptor (a glutamate receptor) activation in the il-PFC (which results in 

glutamate release in the NAcS) resulted in a suppressed cue-induced reinstatement of 

cocaine seeking. This effect was reversed by intra-NAcS infusions of DA, activation of 

VTA DA neurons (thereby increasing DA release in the NAc), or by AMPA receptor 

antagonists (LaLumiere, Smith, & Kalivas, 2012a). These findings suggest that the 

existence of high extracellular DA concentrations or impaired glutamatergic input to the 

NAcS is necessary for the expression of drug seeking. The authors further speculate that 

DA release in the NAcS might inhibit neuronal activation, resulting in the enhanced 

expression of drug seeking. It should be noted, however, that the aforementioned studies 

investigated drug seeking following psychostimulant, but not opiate drug use. 

Nevertheless, preliminary findings in our laboratory show an increase in extracellular DA 

in food restricted, abstinent rats with a history of heroin self-administration, during a test 

for drug seeking (D’Cunha, Hamel, Sedki, & Shalev, 2012).  

 Thus, in the present study, the reduction of Fos-IR in the NAcS of food restricted 

compared to sated rats in the heroin-trained-tested group may be the result of increased 

DA release following exposure to the drug-associated stimuli, resulting in the 

augmentation of drug seeking. A similar reduction in Fos-IR in the food restricted group 
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was not observed in the drug-naive or heroin-trained-no-test rats (that were not exposed 

to the drug environment). 

  Future studies should investigate this reduction in Fos-IR following non-

contingent exposure to heroin, and sucrose or saline self-administration. First, these 

studies can examine whether self-administration as compared to passive exposure to the 

drug is necessary for the decrease in NAcS Fos-IR. Second, they can clarify whether 

reduced activation in the NAcS is associated with exposure to drug-conditioned stimuli as 

compared to natural rewards-conditioned stimuli. Additionally, in the present procedure 

rats were exposed to contextual and discrete cues during the test session. As mentioned in 

Chapter 2, the NAcS is critical for context induced-drug seeking. Further studies should 

examine the particular contribution of the discrete and contextual cues. For example, the 

drug context could be extinguished during the prolonged food restriction prior to the test 

session, and Fos-IR analyzed as in the current study. 

 Previous reports have demonstrated elevated Fos-IR expression in the il-PFC 

following the context-induced reinstatement of heroin seeking. Furthermore, a reduction 

in context-induced reinstatement of heroin seeking is observed following transient 

inhibition of the il-PFC by GABA agonists (Bossert et al., 2011). Furthermore, an 

increase in Fos-IR was observed in the il-PFC cortex following a test for the renewal of 

extinguished cocaine seeking (Hamlin, Clemens, & McNally, 2008). We therefore 

expected a rise in Fos-IR in the il-PFC in food restricted rats compared to sated controls; 

however no increase in activation was observed. It is worth noting that in the above-

mentioned studies, drug seeking was extinguished prior to reinstatement tests. It is 

possible that the il-PFC is involved in the extinction of conditioned drug seeking and not 
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necessarily drug seeking itself. In the present study rats underwent a period of abstinence, 

but not extinction, which could explain the absence of changes in Fos-IR.  

 The absence of any distinct activation in the NAcC or pl-PFC between the food 

restricted and sated groups was unexpected, particularly because the pathway from the 

prelimbic cortex (pl-PFC) to the NAcC has been strongly implicated in the potentiation 

of drug-seeking behavior (LaLumiere & Kalivas, 2008; Peters, Kalivas, & Quirk, 2009). 

Increased output of extracellular glutamate is observed in the pathways from the pl-PFC 

to the NAcC during a cocaine-primed reinstatement (Baker et al., 2003). Moreover, 

increased extra-cellular levels of glutamate have been measured in the NAcC during 

footshock stress-induced reinstatement of cocaine seeking, and this increase was blocked 

by dorsal PFC inactivation (McFarland et al., 2004). We speculate that heightened 

neuronal activation in the NAcC may have occurred in the heroin-trained-tested, but no 

differences were observed as the food manipulation did not affect such activation, 

suggesting that the augmentation of drug seeking in the food restricted rats is not related 

to neuronal activation in the dorsal PFC. This idea is supported by the fact that no 

differences in Fos-IR between the drug-naive food restricted and sated groups were 

observed. Perhaps a comparison between the food restricted heroin-trained-tested group 

versus the food restricted heroin-trained-no-test or drug naive rats would have revealed 

increased activation during the drug seeking test. The purpose of the current study, 

however, was to elucidate the differences between food restricted and sated rats and 

therefore not all possible comparisons were performed, in an attempt to increase the 

power of the statistical analysis.  
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 The absence of differences in Fos-IR in the pl-PFC between the feeding 

conditions was particularly interesting, as acute food deprivation-induced reinstatement 

of heroin seeking resulted in an augmentation of Fos-IR in the pl-PFC (Shalev, Robarts, 

Shaham, & Morales, 2003b). However, rats in the aforementioned study were subjected 

to a period of extinction, and while the pl-PFC is integral to the modulation of drug 

seeking after extinction training, it is not necessary for the expression of drug seeking 

following a period of abstinence without extinction training (Fuchs et al., 2006). 

Furthermore, while there is evidence that supports greater Fos-IR levels in the pl-PFC 

after long-term abstinence from psychostimulant drugs (Ciccocioppo, Sanna, & Weiss, 

2001), there is no literature on the effects of prolonged food restriction.   

 As previously suggested in the introduction to Chapter 2, the amygdala is 

implicated in stress, drug reward, conditioned drug rewards and relapse. For example, 

lesions of the BLA, but not the NAc attenuated responding for a cocaine-paired 

conditioned stimulus (Grimm & See, 2000; Whitelaw et al., 1996). Moreover, stimulation 

of the BLA results in the reinstatement of cocaine and amphetamine seeking (Hayes et 

al., 2003; Taepavarapruk & Phillips, 2003; Vorel, Liu, Hayes, Spector, & Gardner, 2001). 

However, Fuchs and colleagues (2006; 2005) have demonstrated that the BLA is critical 

to the expression of the context-induced reinstatement of extinguished cocaine seeking 

but not to the augmentation of drug seeking following protracted abstinence. 

 Lastly, although exposure to a drug discriminative stimulus following abstinence 

from cocaine has been reported to increase Fos-IR in the BLA (Ciccocioppo et al., 2001), 

drug-cue-induced increases in neuronal activation would have been reflected in both the 

food restricted and sated groups, and apparently it is not affected by feeding condition. 
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This conclusion is supported by the lack of differences in Fos-IR between FDR and sated 

rats in the drug-naive and heroin-trained-no-test-groups. 

 No effects in Fos-IR where observed in CeA. This region was chosen as it is a 

critical component of the brains stress circuit (Kalivas & McFarland, 2003), and is 

involved in expression of drug seeking behavior in response to stress (Kalivas & Volkow, 

2005). Our data, however, are consistent with previous findings indicating no distinct 

patterns of Fos-IR in the CeA in an acute food deprivation-induced reinstatement of 

heroin seeking when compared to sated controls (Shalev, Robarts, Shaham, & Morales, 

2003b). Finally, since the findings described in Chapter 1 suggest that the stress response 

is not involved in food restriction-induced augmentation of drug seeking in our 

procedure, the lack of differences in CeA activation is not an unexpected result. 

 One limitation of the Chapter 2 experimental procedure is the difficulties in the 

use of Fos-IR labeling, which may result in inconsistencies. For example, c-Fos has a 

generally low activation threshold in certain brain areas and therefore neuronal 

deactivation (inhibition) is difficult to identify. A second limitation was the low number 

of rats in the heroin-trained-no-test group (n’s: FDR - 3, Sated - 5). These small sample 

sizes resulted in a large degree of variability within each group and a reduced power. 

Also, the method in which animals were prepared for perfusion may have led to changes 

in Fos protein expression. As previously mentioned, Euthenol was used to anesthetize the 

rats prior to perfusion. In some cases the animal took almost 40 minutes to be fully 

anesthetized. This time was undoubtedly very stressful for the rat and may have 

inadvertently led to increased Fos-IR expression in some regions. Finally, time of 

sacrifice following testing used here might not have been optimal. Rats were sacrificed 
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immediately following a 60 min test session. Others have often used a 90-120 min 

session or a 60 min session followed by a 30 min time out prior to the sacrifice (D'Este, 

Scontrini, Casini, Pontieri, & Renda, 2002; Darcel et al., 2005; Dayas, Liu, Simms, & 

Weiss, 2007; Shalev, Robarts, Shaham, & Morales, 2003b). It is therefore possible that 

we missed the peak of the Fos activation, resulting in less than ideal conditions to identify 

subtle differences between groups.  

 Analysis of all the brain regions involved in drug reward, stress and drug seeking 

is beyond the scope of this thesis and therefore we briefly mention other brain sites that 

may provide insight on the mechanisms that underlie the augmentation of heroin seeking 

in our procedure. These brain sites present viable targets for future analysis due to their 

critical role in the expression of conditioned drug rewards following abstinence. Kalivas 

and colleagues (2005) have indicated that the ventral palladium is crucial as it contributes 

to a “final common pathway” which drives drug-seeking behavior. The same group has 

also proposed a role for the substantia nigra, dorsal striatum and somatosensory cortex in 

the expression of drug seeking following abstinence (Kalivas, 2008). Furthermore, the 

orbitofrontal cortex (OFC) is also implicated in conditioned drug rewards following 

protracted abstinence, as increased Fos-IR levels are found in this region following tests 

for cocaine seeking in abstinent rats (Zavala, Biswas, Harlan, & Neisewander, 2007). 

Finally, studies have suggested that elevated Fos-IR levels in the VTA are observed 

during a cue-induced test for cocaine seeking, following prolonged abstinence (Kufahl et 

al., 2009). Together, these brain sites present viable targets for future analysis due to their 

critical role in the expression of conditioned drug rewards following abstinence. 
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Conclusion 

 In conclusion, we present here a set of experiments (Chapter 1) which indicate 

that pathways involved in the acute response to stress are not critical for the expression of 

augmented drug seeking in abstinent, food restricted rats. The long-term manipulation of 

CRF and the corticosterone stress systems, from the inception of the food restriction 

period to the test session, may elucidate the role of the these hormones in our procedure. 

 Data from Chapter 2 demonstrated that food restriction in heroin-trained-tested 

rats decreased Fos-IR levels in the NAcS, when compared to sated controls. The finding 

that food restriction selectively decreased Fos-IR in the heroin-trained-tested but not the 

heroin-trained-no-test or drug-naive groups suggests that this effect is specific to drug 

seeking and not a general response to food restriction. Finally, our finding is in agreement 

with a recently suggested model that postulates that drug seeking is driven by an 

inhibition of neuronal activation in the NAcS that can result from enhanced DA release 

following exposure to the drug, drug-associated stimuli, or stress (LaLumiere, Smith, & 

Kalivas, 2012b). 
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Appendix A: Project Timeline 

 

 

Figure A1. Timeline of experimental procedure. The procedure consists of three phases: 

animals are first trained to self-administer a drug in the presence of a cue/tone complex 

(training phase), then moved to a different context and undergo a one day, drug washout 

period, followed by a prolonged period of food restriction (FDR) or unlimited access to 

food (abstinence phase) and finally returned to the self-administration environment for a 

drug-seeking test in the presence of drug-paired cues under extinction conditions (test 

phase). 

 

 


