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‡ Department of Mechanical and Industrial Engineering, Concordia University, Montréal, QC, H3G 1M8, CA
(Received 00 Month 200x; in final form 00 Month 200x)

This paper addresses the problem of robust stability of piecewise affine (PWA) uncertain systems with unknown time-varying delay in
the state. It is assumed that the uncertainty is norm-bounded and that the upper bounds on the state delay and its rate of change
are available. A set of LMIs is derived providing sufficient conditions for the stability of the system. These conditions depend on the
upper bound of the delay. The main contributions of the paper are as follows. First, new delay-dependent linear matrix inequality (LMI)
conditions are derived for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of uncertain
PWA time-delay systems. Numerical examples are presented to show the effectiveness of the approach.

1 Introduction

Continuous-time piecewise affine (PWA) systems have attracted considerable interest in the control lit-
erature in recent years (Johansson 2003), (Kulkarni et al. 2004), (Rodrigues 2004), (Hassibi and Boyd
1998), (Rodrigues and Boyd 2005), (Rodrigues and How 2006), (Rodrigues and Boukas 2006), (Rodrigues
and How 2003). The theory of PWA systems has found important applications in CPU processing control
(Azuma and Imura 2003), boost DC-DC converters (Beccuti et al. 2005) and aerospace (Wei et al. 2006),
to name only a few. In brief, a PWA system consists of a set of affine subsystems (representing the different
operating conditions of a system, or an approximation of a complex nonlinear system) and a switching law
that enables switching between different subsystems. It is to be noted that switching is also used in control
to stabilize and regulate highly uncertain systems (Momeni and Aghdam 2007), (Aghdam and Davison
2003), (Aghdam and Davison 2007), (Tousi et al. 2008).

Many practical systems are subject to input and/or state delay. Examples of time-delay systems include
power systems (Bibian and Jin 2000) and communication networks (Zhang et al. 2001). It is known that
time-delay can cause poor performance or even instability if its effect is neglected in control design. The
existing results for robust stability of time-delay systems can be categorized as delay independent and delay
dependent results. Different delay independent robust stability criteria have been developed in (Verriest
et al. 1993) and (Wang et al. 1987). Delay independent stability results are conservative, in general because
they do not take into account any available information on the delay. Delay dependent approaches for the
systems subject to parameter uncertainty, on the other hand, are investigated in (Fridman and Shaked
2003), (C. Lin and Lee 2006), (Su 1994), (Han and Gu 2001), (Parlakci 2006). Stability analysis for switched
systems with time-delay is provided in (Sun et al. 2006b), (Zhai et al. 2003), (Sun et al. 2006a). In (Sun
et al. 2006b), a common Lyapunov functional is used for robust stability analysis of switched uncertain
time-delay systems with arbitrary switching. However, any stability analysis using a common quadratic
Lyapunov function is typically known to be conservative. In (Sun et al. 2006a), sufficient conditions for
exponential stability of linear time-delay systems with a class of switching signals is developed . To the
best of the knowledge of the authors, however, the stability problem for PWA time-delay systems has
only been addressed in (Kulkarni et al. 2004), where a piecewise quadratic Lyapunov function is used to
derive LMIs for stability analysis following the approach of (Johansson 2003). Nevertheless, the important
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and practically relevant case of robust stability of PWA time-delay systems in presence of parametric
uncertainty has not been considered in (Kulkarni et al. 2004). Furthermore, the affine term of the dynamics
did not have a delay in that paper.

Based on the considerations of the previous paragraph, PWA uncertain systems with unknown time-delay
are investigated in this paper, and LMI-based conditions for asymptotic stability are derived following the
approach of (Rodrigues and How 2003). It is assumed that the parameter uncertainties are norm bounded
and that upper bounds on the time-varying delay and its rate of change are given. In order to reduce the
conservativeness of the results, piecewise quadratic Lyapunov functions are employed for stability analysis.
The main contributions of this work are as follows. First, new delay dependent LMI conditions are derived
for the stability of PWA time-delay systems. Second, the stability conditions are extended to the case of
uncertain PWA time-delay systems.

This paper is organized as follows. The problem statement and formulation are given in Section 2. The
main result of the paper is provided in Section 3, followed by robustness analysis in Section 4. Simulation
results are presented in Section 5. Finally, some concluding remarks are drawn in Section 6.

2 Problem Formulation

Consider an uncertain piecewise affine system with time-delay described as

ẋ(t) = (Ai + ∆Ai)x(t) + (Adi + ∆Adi)x(t− τ(t)) + (ai + ∆ai) + (bi + ∆bi) 1(t− τ(t)), x(t) ∈ Xi (1)

where Ai, Adi ∈ Rn×n, ai, bi ∈ Rn, and {Xi} ⊆ Rn form a partition of the state space into a number of
open (possibly unbounded) polyhedral cells with pairwise empty intersection. The index set of the cells is
denoted by I = {1, ...,M}. The set of cells that include the origin is denoted by I0 ⊆ I, and its complement
is represented by I1 = I/I0. It is assumed that ai = 0, ∆ai = 0, bi = 0, ∆bi = 0 for i ∈ I0. In addition,
∆Ai, ∆Adi, ∆ai and ∆bi are norm-bounded uncertainties which will be defined later. Furthermore, 1(t)
is the step function. In (1), τ(t) is a positive time-varying delay such that

0 ≤ τ(t) ≤ h, τ̇(t) ≤ d < 1 (2)

where h and d are positive constants.
Assume the initial condition

x(θ) = φ(θ), θ ∈ [−h, 0]

for the system (1) such that φ(θ) is a differentiable vector-valued initial function on [−h, 0], h > 0. Assume
also x(t) is a continuous piecewise C1 function of time. Following (Johansson 2003), (Rodrigues and How
2003), the state space is partitioned based on x(t) such that x(t) ∈

⋃
Xi as follows. Let Ēi =

[
Ei ei

]
,

(ei = 0, ∀i ∈ I0), such that

Ēi

[
x(t)
1

]
≥ 0 ∀x(t) ∈ Xi, i ∈ I (3)

Let Ni denote the set of neighbouring cells that share a common facet with the cell Xi. The facet boundary
between the cells Xi and Xk is contained in the set {x ∈ Rn | cT

ikx(t)− dik = 0}, where cik ∈ Rn, dik ∈ R,
for all i ∈ I, k ∈ Ni. Moreover, assume the description of the boundaries as follows

X̄i ∩ X̄k ⊆ {lik + Fiks|s ∈ Rn−1} (4)

for all i ∈ I, k ∈ Ni, where Fik ∈ Rn×(n−1) is a full rank matrix whose columns span the null space of cT
ik

and lik ∈ Rn is given by lik = cik(cT
ikcik)−1dik.



June 28, 2008 21:49 International Journal of Control ijc˙pwa˙delay10

3

The main objective of this paper is to determine a set of computationally tractable conditions un-
der which (1) is asymptotically stable. In the next section, a Lyapunov functional will be introduced to
determine the stability of PWA systems.

3 Nominal Analysis

In this section, sufficient LMI conditions will be established for the stability of (1) without uncertainties.
These conditions will be extended to the systems with uncertainties in Section 4. To proceed further, we
define the following matrices and sets

Āi :=
[
Ai ai

0 0

]
, Ādi :=

[
Adi 0
0 0

]
, b̄i :=

[
bi

0

]

Ā =
{[

Aj aj

0 0

]
, ∀j ∈ I

}
, A = {Aj , ∀j ∈ I} , E = {aj , ∀j ∈ I1}

B̄ =
{[

bj

0

]
, ∀j ∈ I1

}
, B = {bj , ∀j ∈ I1}

Ād =
{[

Adj 0
0 0

]
, ∀j ∈ I

}
, Ad = {Adj , ∀j ∈ I}

Note that system (1) without uncertainties can be rewritten as follows

˙̄x = Āix̄(t) + Ādix̄(t− τ(t)) + b̄i 1(t− τ(t)) (5)

where x̄(t) = [xT (t), 1]T and x̄(t− τ(t)) = [xT (t− τ(t)), 1]T , with x(t) ∈ Xi. We use the expression

x̄(t− τ(t)) = x̄(t)−
∫ t

t−τ(t)

˙̄x(s)ds (6)

Hence, considering (5), the equation (6) can be rewritten as

˙̄x(t) =(Āi + Ādi)x̄(t) + b̄i 1(t− τ(t))− Ādi

∫ t

t−τ(t)
Āj(s)x̄(s) ds

− Ādi

∫ t

t−τ(t)
Ādj(s)x̄(s− τ(s)) ds− Ādi

∫ t

t−τ(t)
b̄j(s) 1(s− τ(s)) ds

(7)

Note that j(s) in (7) is a piecewise constant function which represents the index of the matrices Āj(s) ∈ Ā,
b̄j(s) ∈ B̄, Ādj(s) ∈ Ād at time s. In order to proceed further, the following well-known lemma is borrowed
from (Wang et al. 1992).

Lemma 1 : For any vectors or matrices z and y with appropriate dimensions and any symmetric matrix
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P > 0, the following inequalities are satisfied:

−zT y − yT z ≤ zT Pz + yT P−1y

zT y + yT z ≤ zT Pz + yT P−1y
(8)

Proof : See (Wang et al. 1992).
The following Theorem presents sufficient conditions for the stability of the PWA system (5).

Theorem 1: Consider symmetric matrices Ūi, Ui and W̄i,Wi, where Ūi, Ui and W̄i,Wi are composed of
non-negative entries, and


H ′

i hPiAdi S31 +
[
0n×n R3 + S3

]
∗ −hM1i 0

∗ ∗ S̄2 − (1− d)R̄ +
[
0n×n 0n×1

01×n S2 + R2

]
+

[
0n×(n+1)

S32

]
+

[
0(n+1)×n ST

32

]
 < 0 (9)


hQi

[
hPiAdiAj hPiAdiaj

] [
hPiAdiAdj 0

]
∗ S̄1 −

[
0 0
0 hbT

j M1ibj

]
S̄3

∗ S̄T
3 S̄2

 ≥ 0 (10)

Pi − ET
i UiEi > 0, M1i > 0 (11)

where

H ′
i = Pi(Ai + Adi) + (Adi + Ai)T Pi + S1 + R1 + hQi + ET

i UiEi (12)

for any fixed i ∈ I0 and for all Aj ∈ A, bj ∈ B, aj ∈ E , Adj ∈ Ad, such that

S̄1 =
[
S1 S3

ST
3 S2

]
, S̄3 =

[
S31

S32

]
, S1 ∈ Rn×n, S2 ∈ R, S3 ∈ Rn×1, S31 ∈ Rn×(n+1), S32 ∈ R1×(n+1)

R̄ =
[
R1 R3

RT
3 R2

]
, R1 ∈ Rn×n, R2 ∈ R, R3 ∈ Rn×1

satisfying [
S̄1 S̄3

S̄T
3 S̄2

]
> 0, R̄ > 0 (13)

for S̄1, S̄2 and S̄3. Furthermore, let the following inequalities hold


H̄ ′

i P̄i hP̄iĀdi S̄3

∗ −M̄1i 0 0
∗ ∗ −hM̄2i 0
∗ ∗ ∗ S̄2 − (1− d)R̄

 < 0 (14)
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
hQ̄i hP̄iĀdiĀj hP̄iĀdiĀdj

∗ S̄1 −
[
0 0
0 hb̄T

j M̄2ib̄j

]
S̄3

∗ ∗ S̄2

 ≥ 0 (15)

P̄i − ĒT
i W̄iĒi > 0, M̄ki > 0, k = 1, 2 (16)

for any fixed i ∈ I1 and for all Āj ∈ Ā, b̄j ∈ B̄, Ādj ∈ Ād, where

H̄ ′
i := P̄i(Āi + Ādi) + (Ādi + Āi)T P̄i + S̄1 + R̄ +

[
0 0
0 b̄T

i M̄1ib̄i

]
+ hQ̄i + ĒT

i ŪiĒi (17)

Assume also that for all i ∈ I and k ∈ Ni,

F T
ik(Pi − Pk)Fik = 0 (18a)

F T
ik(Pi − Pk)lik + F T

ik(qi − qk) = 0 (18b)

lTik(Pi − Pk)lik + 2(qi − qk)T lik + (ri − rk) = 0 (18c)

where P̄i :=
[
Pi qi

qT
i ri

]
, for all i ∈ I.

Under conditions (2), (3) and (9)-(18), every piecewise C1 trajectory x(t), governed by (5) for t ≥ 0,
tends to zero asymptotically in the absence of sliding modes.

Proof: Define the candidate Lyapunov-Krasovsky functional

V̄i = V̄1i + V̄2i + V̄3i (19)

where, for x(t) ∈ Xi, i ∈ I1

V̄1i = x̄T (t)P̄ix̄(t) (20a)

V̄2i =
∫ t

t−τ(t)
x̄T (s)R̄x̄(s)ds (20b)

V̄3i = h−1

∫ 0

−h

∫ t

t+s

[
x̄(θ)

x̄(θ − τ(θ))

]T [
S̄1 S̄3

S̄T
3 S̄2

] [
x̄(θ)

x̄(θ − τ(θ))

]
dθds (20c)

The conditions that guarantee the continuity of the Lyapunov function at the boundaries are give in (18a-
c), and can be obtained directly using the same approach as the one in (Rodrigues and How 2003). Note
that the candidate Lyapunov functional is positive definite because of (16) and (13). Applying Leibnitz
integral rule and using (2), the derivative of this Lyapunov functional will be obtained as
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˙̄Vi ≤2x̄(t)T P̄i ˙̄x(t) + x̄T (t)R̄x̄(t)− x̄T (t− τ(t))(1− d)R̄x̄(t− τ(t)) + x̄T (t)S̄1x̄(t)

+ x̄T (t− τ(t))S̄2x̄(t− τ(t)) + 2x̄T (t)S̄3x̄(t− τ(t))

− h−1

∫ t

t−τ(t)

[
x̄(s)

x̄(s− τ(s))

]T [
S̄1 S̄3

S̄T
3 S̄2

] [
x̄(s)

x̄(s− τ(s))

]
ds

(21)

Substituting (7) in (21) leads to

˙̄Vi ≤ 2x̄T (t)P̄i(Āi + Ādi)x̄(t) + 2x̄T (t)P̄ib̄i 1(t− τ(t))

+ x̄T (t)(S̄1 + R̄)x̄(t) + 2x̄T (t)S̄3x̄(t− τ(t)) + x̄T (t− τ(t))(S̄2 − (1− d)R̄)x̄(t− τ(t))

− 2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
Āj(s)x̄(s) ds− 2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
Ādj(s)x̄(s− τ(s)) ds

− 2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
b̄j(s) 1(s− τ(s)) ds

− h−1

∫ t

t−τ(t)

[
x̄(s)

x̄(s− τ(s))

]T [
S̄1 S̄3

S̄T
3 S̄2

] [
x̄(s)

x̄(s− τ(s))

]
ds

(22)

Now, considering positive-definite matrices M̄ki, k = 1, 2, i ∈ I1 using Lemma 1 and the inequalities (2),
(22) yields

˙̄Vi ≤ 2x̄T (t)P̄i(Āi + Ādi)x̄(t) + x̄T (t)P̄iM̄
−1
1i P̄ix̄(t) + b̄T

i M̄1ib̄i 1(t− τ(t))

+ x̄T (t)(S̄1 + R̄)x̄(t) + x̄T (t− τ(t))(S̄2 − (1− d)R̄)x̄(t− τ(t)) + 2x̄T (t)S̄3x̄(t− τ(t))

− 2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
Āj(s)x̄(s) ds− 2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
Ādj(s)x̄(s− τ(s)) ds

+ hx̄T (t)P̄iĀdiM̄
−1
2i ĀT

diP̄ix̄(t) +
∫ t

t−τ(t)
b̄T
j(s)M̄2ib̄j(s) 1(s− τ(s)) ds

− h−1

∫ t

t−τ(t)

[
x̄(s)

x̄(s− τ(s))

]T [
S̄1 S̄3

S̄T
3 S̄2

] [
x̄(s)

x̄(s− τ(s))

]
ds

(23)

Note that from (2), there always exists a symmetric positive semi-definite matrix Q̄i such that

hx̄T (t)Q̄ix̄(t)−
∫ t

t−τ(t)
x̄T (t)Q̄ix̄(t)ds ≥ 0 (24)

Define now

H̄i := P̄i(Āi + Ādi) + (Ādi + Āi)T P̄i + S̄1 + R̄ +
[
0 0
0 b̄T

i M̄1ib̄i

]
+ hQ̄i (25a)

Z̄i :=
[
H̄i + P̄iM̄

−1
1i P̄i + hP̄iĀdiM̄

−1
2i ĀT

diP̄i S̄3

S̄T
3 S̄2 − (1− d)R̄

]
(25b)
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Ȳj(s) := −


hQ̄i hP̄iĀdiĀj(s) hP̄iĀdiĀdj(s)

∗ S̄1 −
[
0 0
0 hb̄T

j(s)M̄2ib̄j(s)

]
S̄3

∗ ∗ S̄2

 (25c)

Then by adding inequality (24) to the right hand side of (23) and considering (25a-c), one can write the
following for x(t) ∈ Xi, i ∈ I1

˙̄Vi ≤ξ̄T (t, τ(t))Z̄iξ̄(t, τ(t))

+ h−1

∫ t

t−τ(t)
η̄T (t, s, τ(s))Ȳj(s)η̄(t, s, τ(s))ds

(26)

where ξ̄(t, τ(t)) =
[
x̄T (t), x̄T (t− τ(t))

]T and η̄(t, s, τ(s)) =
[
x̄T (t), x̄T (s), x̄T (s− τ(s))

]T . Note that (14)
and (16) imply

ξ̄T (·)(Z̄i + ˜̄ET
i

˜̄Ui
˜̄Ei)ξ̄(·) < 0 (27)

using the Schur complement, where ˜̄Ui = diag[Ūi, 0], ˜̄Ei = [Ēi, 0], and Ūi has only non-negative entries.
Note also that from (3), the inequality Ēix̄(t) ≥ 0 holds for x(t) ∈ Xi. This leads to

˜̄Eiξ̄ ≥ 0, ∀x(t) ∈ Xi, i ∈ I1

and consequently it follows that

ξ̄T (·) ˜̄ET
i

˜̄Ui
˜̄Eiξ̄(·) ≥ 0, x(t) ∈ Xi, i ∈ I1 (28)

Therefore, the relations (3), (16) and (14) imply ξ̄T (·)Z̄iξ̄(·) < 0, for all x(t) ∈ Xi, i ∈ I1. Furthermore,
(15) implies Ȳj(s) ≤ 0 and from (26), ˙̄Vi < 0, x(t) ∈ Xi, i ∈ I1. A similar procedure can be repeated for
the case when the switching index belongs to I0 leading to (9)-(11) and V̇i < 0, x(t) ∈ Xi, i ∈ I0. Thus
the system is asymptotically stable. �

Remark 1: Theorem 1 assumes the absence of sliding modes. To avoid sliding modes at the boundaries
the following conditions can be added. Let the set {x ∈ Rn|σik = cT

ikx−dik = 0} denote the sliding surface
between the cells Xi and Xk. According to (Rodrigues and How 2003), σ̇ik must be continuous across the
boundary described in (4), which yields

cT
ik [Ai(Fiks + lik) + Adix(t− τ(t)) + ai + bi 1(t− τ(t))]

= cT
ik [Ak(Fiks + lik) + Adkx(t− τ(t)) + ak + bk 1(t− τ(t))]

for all s ∈ Rn−1, k ∈ Ni. The above equation can be rewritten as follows

cT
ik(Ai −Ak)Fik = 0 (29a)

cT
ik(Adi −Adk) = 0 (29b)

cT
ik [(Ai −Ak)lik + (ai − ak)] = 0 (29c)

cT
ik(bi − bk) = 0 (29d)

Remark 2: Using a procedure similar to the one presented here, one can apply the results of (Mondie
and Kharitonov 2005) and define the following Lyapunov-Krasovsky functional
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V̄ ′
i =x̄T (t)P̄ix̄(t) +

∫ t

t−τ(t)
x̄T (s)eβ(s−t)R̄x̄(s)ds

+ h−1

∫ 0

−h

∫ t

t+s

[
x̄(θ)

x̄(θ − τ(θ))

]T

eβ(θ−t)

[
S̄1 S̄3

S̄T
3 S̄2

] [
x̄(θ)

x̄(θ − τ(θ))

]
dθds

to obtain the LMIs that determine the exponential stability of the system (5). It is to be noted that
exponential stability typically is stronger than asymptotic stability, at the cost of more conservative LMIs.

4 Robustness Analysis

Consider now the system (1) and define the matrices Ãi = Ai + ∆Ai, Ãdi = Adi + ∆Adi, ãi = ai + ∆ai,
b̃i = bi + ∆bi (i ∈ I) and

¯̃Ai = Āi + ∆Āi, ∆Āi =
[
∆Ai ∆ai

0 0

]

¯̃Adi = Ādi + ∆Ādi, ∆Ādi =
[
∆Adi 0

0 0

]

¯̃
bi = b̄i + ∆b̄i, ∆b̄i =

[
∆bi

0

]

∆Ā =
{[

∆Aj ∆aj

0 0

]
, ∀j ∈ I

}
, ∆A = {∆Aj , ∀j ∈ I} , ∆E = {∆aj , ∀j ∈ I1}

∆B̄ =
{[

∆bj

0

]
, ∀j ∈ I1

}
, ∆B = {∆bj , ∀j ∈ I1}

∆Ād =
{[

∆Adj 0
0 0

]
, ∀j ∈ I

}
, ∆Ad = {∆Adj , ∀j ∈ I}

Let || · || denote the 2-norm. The following bounds are assumed to be given for the norm of relevant
matrices

‖∆Ai‖ ≤ αi, ‖∆Adi‖ ≤ βi

‖∆Āi‖ ≤ ᾱi, ‖∆Ādi‖ ≤ β̄i, ||∆b̄i|| ≤ δ̄i

max
X∈∆Ā

||X|| ≤ ᾱ∗, max
X∈∆Ād

||X|| = max
X∈∆Ad

||X|| ≤ β∗
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max
X∈∆A

||X|| ≤ α∗, max
X∈∆E

||X|| ≤ γ∗

max
X∈∆B̄

||X|| = max
X∈∆B

||X|| ≤ δ∗

The following theorem presents sufficient conditions for the stability of uncertain PWA systems described
by (1).

Theorem 2 : Consider symmetric matrices Ūi, Ui and W̄i,Wi, where Ūi, Ui and W̄i,Wi are composed
of non-negative entries. Then, the uncertain PWA time-delay system (1) is asymptotically stable in the
absence of sliding modes, if (11), (16), (13) and (18a-c) hold, and there exist positive definite matrices Lki,
k = 1, ..., 10, L̄ki, (k = 1, ..., 9), M1i, i ∈ I0 and M̄pi, p = 1, 2, i ∈ I1 such that

266666666666666666666666664

hQi hPiβiα∗ hPiβi hPiα∗Adi hPiβiβ∗ hPiβ2
i hPiβ∗Adi hPiβiδ∗ hPiAdiδ∗ hPiβ2

i hPiβi hPiβiγ∗ hPiAdiγ∗ hPiAdi[Aj aj ] hPiAdi[Adj 0]
∗ hρL1i

I 0 0 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ hρX1i
I 0 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ hρL3i
I 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ hρL4i
I 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ hρX2i
I 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ hρL6i
I 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ hl2iI 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ hl3iI 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ hρL9i

I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ hρL10i
I 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ hl1iI 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ hl4iI 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S1 − Π1
j S3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S2 − Π2
i

377777777777777777777777775

≥ 0

(30)

where

Π1
j = h(L1i + L2i + L3i +

[
0 0
0 bT

j (M1i + L9i)bj

]
+

[
0 0
0 aT

j L10iaj

]
), Π2

i = h(L4i + L5i + L6i)


H ′

i hPiAdi Piαi Piβi S31 +
[
0n×n R3 + S3

]
∗ −hM1i 0 0 0
∗ ∗ −ρL7i

I 0 0
∗ ∗ ∗ −ρL8i

I 0

∗ ∗ ∗ ∗ S̄2 − (1− d)R̄ +
[
0n×n 0n×1

01×n S2 + R2

]
+

[
0n×(n+1)

S32

]
+

[
0(n+1)×n ST

32

]

 < 0 (31)

[
X1i X1iAj

∗ L2i

]
> 0,

[
X2i X2iAdj

∗ L5i

]
> 0 (32)

for any fixed i ∈ I0 and for all Aj ∈ A, bj ∈ B, aj ∈ E , Adj ∈ Ad. In addition, let the following LMIs hold
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26666666666666666664

hQ̄i hP̄iβ̄iᾱ
∗ hP̄iβ̄i hP̄iᾱ

∗Ādi hP̄iβ̄iβ̄
∗ hP̄iβ̄

2
i hP̄iβ̄

∗Ādi hP̄iβ̄iδ
∗ hP̄iĀdiδ

∗ hP̄iβ̄i hP̄iĀdiĀj hP̄iĀdiĀdj

∗ hρ̄L̄1i
I 0 0 0 0 0 0 0 0 0 0

∗ ∗ hρ̄X̄1i
I 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ hρ̄L̄3i
I 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ hρ̄L̄4i
I 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ hρ̄X̄2i
I 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ hρ̄L̄6i
I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ hl̄2iI 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ hl̄3iI 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ hρ̄L̄9i

I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S̄1 − Π̄1
j S̄3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S̄2 − Π̄2
i

37777777777777777775

≥ 0 (33)

Π̄1
j = h(L̄1i + L̄2i + L̄3i +

[
0 0
0 b̄T

j (M̄2i + L̄9i)b̄j

]
), Π̄2

i = h(L̄4i + L̄5i + L̄6i)



ˆ̄Hi P̄i hP̄iĀdi P̄iᾱi P̄iβ̄i P̄iδ̄i S̄3

∗ −M̄1i 0 0 0 0 0
∗ ∗ −hM̄2i 0 0 0 0
∗ ∗ ∗ −ρ̄L̄7i

I 0 0 0
∗ ∗ ∗ ∗ −ρ̄L̄8i

I 0 0
∗ ∗ ∗ ∗ ∗ −l̄1iI 0
∗ ∗ ∗ ∗ ∗ ∗ S̄2 − (1− d)R̄


< 0 (34)

[
X̄1i X̄1iĀj

∗ L̄2i

]
> 0,

[
X̄2i X̄2iĀdj

∗ L̄5i

]
> 0 (35)

for any fixed i ∈ I1 and for all Āj ∈ Ā, b̄j ∈ B̄, Ādj ∈ Ād, where the following inequalities are satisfied

ρLki
> 0, Lki − ρLki

I > 0, k = 1, 3, 4, 6, 7, ..., 10 ∀i ∈ I0 (36)

ρ̄L̄ki
> 0, L̄ki − ρ̄L̄ki

I > 0, k = 1, 3, 4, 6, 7, 8, 9 ∀i ∈ I1 (37)

ρXki
> 0, ρXki

I −Xki < 0, k = 1 and 2 ∀i ∈ I0 (38)

ρ̄X̄ki
> 0, ρ̄X̄ki

I − X̄ki < 0, k = 1 and 2 ∀i ∈ I1 (39)

where

Ĥi = H ′
i + L7i + L8i +

[
0 0
0 hl1i + hl4i

]
, ˆ̄Hi = H̄ ′

i + L̄7i + L̄8i +
[
0 0
0 l̄1i + hl̄2i + hl̄3i

]
(note that H ′

i and H̄ ′
i are defined in (12) and (17), respectively).

Proof: The proof follows the steps of the proof of Theorem 1, after replacing Āi with, ¯̃Ai, Ādi with ¯̃Adi

and b̄i with ¯̃
bi.
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Doing this, expression (26) becomes for x(t) ∈ Xi, i ∈ I1

˙̄V ≤ξ̄T (t, τ(t))Z̄iξ̄(t, τ(t))

+ h−1

∫ t

t−τ(t)
η̄T (t, s, τ(s))Ȳj(s)η̄(t, s, τ(s))ds

+ 2x̄T P̄i

[
(∆Āi + ∆Ādi)x̄(t) + ∆b̄i 1(t− τ(t))−∆Ādi

∫ t

t−τ(t)
∆Āj(s)x̄(s) ds

−∆Ādi

∫ t

t−τ(t)
Āj(s)x̄(s) ds− Ādi

∫ t

t−τ(t)
∆Āj(s)x̄(s) ds

−∆Ādi

∫ t

t−τ(t)
∆Ādj(s)x̄(s− τ(s))ds− Ādi

∫ t

t−τ(t)
∆Ādj(s)x̄(s− τ(s))ds

−∆Ādi

∫ t

t−τ(t)
b̄j(s)1(s− τ(s))ds−∆Ādi

∫ t

t−τ(t)
∆b̄j(s)1(s− τ(s))ds

−Ādi

∫ t

t−τ(t)
∆b̄j(s)1(s− τ(s))ds−∆Ādi

∫ t

t−τ(t)
Ādj(s)x̄(s− τ(s))ds

]

(40)

The objective now is to find upper bounds to all terms of (40). Defining positive definite matrices L̄7i, L̄8i,
a positive constant l̄1i and using Lemma 1, yields

2x̄T (t)P̄i

[
(∆Āi + ∆Ādi)x̄(t) + ∆b̄i 1(t− τ(t))

]
≤ x̄T (t)P̄i∆ĀiL̄

−1
7i ∆ĀT

i P̄ix̄(t)

+ x̄T (t)P̄i∆ĀdiL̄
−1
8i ∆ĀT

diP̄ix̄(t) + x̄T (t)P̄i∆b̄i l̄
−1
1i ∆b̄T

i P̄ix̄(t) + x̄T (t)L̄7ix̄(t) + x̄T (t)L̄8ix̄(t) + l̄1i 1(t− τ(t))
(41)

Considering the fact that, λ−1
min(L̄ki) = λmax(L̄−1

ki ), k = 1, ..., 9, and ||x̄T (t)P̄i||2 = x̄T (t)P̄iP̄ix̄(t), expres-
sion (41) can be rewritten as

2x̄T (t)P̄i

[
(∆Āi + ∆Ādi)x̄(t) + ∆b̄i 1(t− τ(t))

]
≤ x̄T (t)P̄i(ᾱ2

i λ
−1
min(L̄7i) + β̄2

i λ−1
min(L̄8i) + δ̄2

i l̄
−1
1i )P̄ix̄(t)

x̄T (t)(L̄7i + L̄8i)x̄(t) + l̄1i

(42)

Defining positive definite matrices L̄ki, k = 1, 3, 4, 6, 9, positive constants l̄mi, m = 2, 3 and following the
same procedure as stated above, it can be shown that

−2x̄T (t)P̄i∆Ādi

∫ t

t−τ(t)
∆Āj(s)x̄(s) ds ≤

∫ t

t−τ(t)
x̄T (s)L̄1ix̄(s)ds

+
∫ t

t−τ(t)
x̄T (t)P̄iβ̄

2
i (ᾱ∗)2λ−1

min(L̄1i)P̄ix̄(t)ds

(43)

−2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
∆Āj(s)x̄(s) ds ≤

∫ t

t−τ(t)
x̄T (s)L̄3ix̄(s)ds

+
∫ t

t−τ(t)
x̄T (t)P̄iĀdi(ᾱ∗)2λ−1

min(L̄3i)ĀT
diP̄ix̄(t)ds

(44)
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−2x̄T (t)P̄i∆Ādi

∫ t

t−τ(t)
∆Ādj(s)x̄(s− τ(s)) ds ≤

∫ t

t−τ(t)
x̄T (s− τ(s))L̄4ix̄(s− τ(s))ds

+
∫ t

t−τ(t)
x̄T (t)P̄iβ̄

2
i (β̄∗)2λ−1

min(L̄4i)P̄ix̄(t)ds

(45)

−2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
∆Ādj(s)x̄(s− τ(s)) ds ≤

∫ t

t−τ(t)
x̄T (s− τ(s))L̄6ix̄(s− τ(s))ds

+
∫ t

t−τ(t)
x̄T (t)P̄iĀdi(β̄∗)2λ−1

min(L̄6i)ĀT
diP̄ix̄(t)ds

(46)

−2x̄T (t)P̄i∆Ādi

∫ t

t−τ(t)
b̄j(s)1(s− τ(s)) ds ≤

∫ t

t−τ(t)
b̄T
j(s)L̄9ib̄j(s)1̄(s− τ(s))ds

+
∫ t

t−τ(t)
x̄T (t)P̄iβ̄

2
i λ−1

min(L̄9i)P̄ix̄(t)ds

(47)

−2x̄T (t)P̄i∆Ādi

∫ t

t−τ(t)
∆b̄j(s)1(s− τ(s)) ds ≤

∫ t

t−τ(t)
l̄2i1(s− τ(s))ds

+
∫ t

t−τ(t)
x̄T (t)P̄i(δ∗)2β̄2

i l̄−1
2i P̄ix̄(t)ds

(48)

−2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
∆b̄j(s)1(s− τ(s)) ds ≤

∫ t

t−τ(t)
l̄3i1(s− τ(s))ds

+
∫ t

t−τ(t)
x̄T (t)P̄iĀdi(δ∗)2 l̄−1

3i ĀT
diP̄ix̄(t)ds

(49)

−2x̄T (t)P̄i∆Ādi

∫ t

t−τ(t)
Āj(s)x̄(s) ds ≤

∫ t

t−τ(t)
x̄T (s)L̄2ix̄(s)ds

+
∫ t

t−τ(t)
x̄T (t)P̄i∆Ādi

[
Āj(s)L̄

−1
2i ĀT

j(s)

]
∆ĀT

diP̄ix̄(t)ds

(50)

If (35) is verified then there exist positive definite matrices X̄1i, L̄2i and X̄2i, L̄5i such that (Da et al.
2000)

Āj(s)L̄
−1
2i ĀT

j(s) < X̄−1
1i and Ādj(s)L̄

−1
5i ĀT

dj(s) < X̄−1
2i (51)
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Using (51), and the fact that λmax(X̄−1
ki ) = λ−1

min(X̄ki), k = 1, 2 in inequality (50) yields

−2x̄T (t)P̄i∆Ādi

∫ t

t−τ(t)
Āj(s)x̄(s) ds ≤

∫ t

t−τ(t)
x̄T (s)L̄2ix̄(s)ds

+
∫ t

t−τ(t)
x̄T (t)P̄iβ̄

2
i λ−1

min(X̄1i)P̄ix̄(t)ds

(52)

Finally, applying the above argument to the last term of (40) and using (51) leads to

−2x̄T (t)P̄i∆Ādi

∫ t

t−τ(t)
Ādj(s)x̄(s− τ(s)) ds ≤

∫ t

t−τ(t)
x̄T (s− τ(s))L̄5ix̄(s− τ(s))ds

+
∫ t

t−τ(t)
x̄T (t)P̄iβ̄

2
i λ−1

min(X̄2i)P̄ix̄(t)ds

(53)

Hence, substituting (42)-(49), (52) and (53) in (40) yields

˙̄V ≤ ξ̄T (t, τ(t))Z̄iξ̄(t, τ(t))

+ x̄T (t)P̄i(λ−1
min(L̄7i)ᾱ2

i + λ−1
min(L̄8i)β̄2

i + δ̄−1
1i )P̄ix̄(t)

+ x̄T (t)(L̄7i + L̄8i)x̄(t) + l̄1i + hl̄2i + hl̄3i

+ h−1

∫ t

t−τ(t)
ηT (t, s, τ(s))Ȳj(s)η(t, s, τ(s))ds

+ h−1

∫ t

t−τ(t)
(x̄T (t)hP̄i

[
λ−1

min(L̄1i)β̄2
i (ᾱ∗)2 + λ−1

min(X̄1i)β̄2
i

+ λ−1
min(L̄3i)(ᾱ∗)2ĀdiĀ

T
di + λ−1

min(L̄4i)β̄2
i (β̄∗)2

+λ−1
min(X̄2i)β̄2

i + λ−1
min(L̄6i)(β̄∗)2ĀdiĀ

T
di

+(δ∗)2β2
i l̄−1

2i + AdiA
T
di(δ

∗)2 l̄−1
3i + β2

i λ−1
min(L̄9i)

]
P̄ix̄(t))ds

+ h−1

∫ t

t−τ(t)
hx̄T (s)(L̄1i + L̄2i + L̄3i +

[
0 0
0 bT

j(s)L̄9ibj(s)

]
)x̄(s)ds

+ h−1

∫ t

t−τ(t)
hx̄T (s− τ(s))(L̄4i + L̄5i + L̄6i)x̄(s− τ(s))ds

(54)

On the other hand, it is known that

λmin(L̄ki) I ≤ L̄ki, λmin(X̄pi) I ≤ X̄pi

Inequalities (37) and (39) imply that one can find positive constants ρ̄Lk̄i
and ρ̄X̄pi

such that (Mondie and
Kharitonov 2005)

ρ̄L̄ki
I − L̄ki < 0, ρ̄X̄pi

I − X̄pi < 0 (55)

where k = 1, 3, 4, 6, 7, 8, 9 and p = 1, 2. This implies that ρ̄L̄ki
< λmin(L̄ki) and ρ̄X̄pi

< λmin(X̄pi). Let
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us denote

Ω̄ =

 Ω̄11 0 0
0 Ω̄22 0
0 0 Ω̄33

 , Γ̄ =
[
Γ̄11 0
0 0

]
(56)

where

Ω̄11 =hP̄i[ρ̄−1
L̄1i

β̄2
i (ᾱ∗)2 + ρ̄−1

X̄1i
β̄2

i + ρ̄−1
L̄3i

(ᾱ∗)2ĀdiĀ
T
di

+ ρ̄−1
L̄4i

β̄2
i (β̄∗)2 + ρ̄−1

X̄2i
β̄2

i + ρ̄−1
L̄6i

(β̄∗)2ĀdiĀ
T
di

+ (δ∗)2β2
i l̄−1

2i + ĀdiĀ
T
di(δ

∗)2 l̄−1
3i + β̄2

i ρ̄−1
L̄9i

]P̄i

(57a)

Ω̄22 = h(L̄1i + L̄2i + L̄3i +
[
0 0
0 bT

j(s)L̄9ibj(s)

]
) (57b)

Ω̄33 = h(L̄4i + L̄5i + L̄6i) (57c)

Γ̄11 = P̄i(ρ̄−1
L̄7i

ᾱ2
i + ρ̄−1

L̄8i
β̄2

i + δ̄2
i l̄
−1
1i )P̄i + L̄7i + L̄8i +

[
0 0
0 l̄1i + hl̄2i + hl̄3i

]
(57d)

Therefore, from (54), (55) and (57a)-(57d) one can write

˙̄V ≤ξ̄T (t, τ(t))(Z̄i + Γ̄)ξ̄(t, τ(t))

+ h−1

∫ t

t−τ(t)
ηT (t, s, τ(s))(Ȳj(s) + Ω̄)η(t, s, τ(s))ds

(58)

Similar to the proof of Theorem 1, note that inequality (34) implies

ξ̄T (·)(Z̄i + Γ̄ + ˜̄ET
i

˜̄Ui
˜̄Ei)ξ(·) < 0 (59)

using the Schur complement, where ˜̄Ui and ˜̄Ei are defined in Theorem 1. Note also that (28) and (34) imply
ξ̄T (·)(Z̄i + Γ̄)ξ̄(·) < 0, x(t) ∈ Xi, i ∈ I1. Furthermore, (33) implies Ȳj(s) + Ω̄ ≤ 0 and from (58), ˙̄Vi < 0,
x(t) ∈ Xi, i ∈ I1. A similar procedure can be repeated for the case when the switching index belongs to
I0 leading to (30)-(32) and V̇i < 0, x(t) ∈ Xi, i ∈ I0. Thus the system is asymptotic stable following the
argument of Theorem 1. �

Remark 3: Extension of the results of Theorem 2 to PWA time-delay systems with the following dynamics

ẋ(t) =(Ai + ∆Ai)x(t) +
L∑

l=1

(Adil
+ ∆Adil

)x(t− τl(t)) + (ai + ∆ai) +
L∑

l=1

(bil + ∆bil) 1(t− τl(t))

where 0 < τl ≤ hl, τ̇l(t) ≤ dl < 1, Adil
∈ Rn×n, τl(t) ∈ R+, and l ∈ N , is straightforward and is not

developed in this paper due to space constraints.
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5 Numerical Example

In this section, four examples are provided to show the effectiveness of the proposed approach.
Example 1: In this example the stability of a time-delay system is investigated and it is shown that while

the LMIs proposed in Kulkarni et al. (2004) are infeasible, the ones introduced in this paper are quite
effective. Consider the piecewise linear time-delay system ẋ(t) = Aix(t) + Adix(t − τ) with the system
matrices given by

A1 = A3 = −
[
0.1 0
0 0.1

]
A2 = A4 = −

[
0.3 0
0 0.3

]

Ad1 = Ad3 =
[
0 0
0 0

]
Ad2 = Ad4 =

[
5 0
0 0

]
and let the cell partition be given by

E1 = −E3 =
[
−1 1
−1 −1

]
E2 = −E4 =

[
−1 1
1 1

]
(60)

One can verify that using the LMIs proposed in Kulkarni et al. (2004), stability of the system is guaranteed
only for time-delays less than 0.005, which is a very small margin. However, the LMIs derived in Theorem 1
ensure the stability for the time-delays as large as h = 105.

Example 2: Consider the piecewise linear time-delay system ẋ(t) = Aix(t) + Adix(t− τ), with the same
cell partition as in (60), and the system matrices given by

A1 = A3 = −
[
1 0
0 1

]
, A2 = A4 = −

[
0.9 0
0 0.9

]

Ad1 = Ad3 =
[

0.1 5.0
−5.0 0.1

]
, Ad2 = Ad4 =

[
1.0 5.0
−5.0 −1.0

]
The LMIs derived in Theorem 1 are feasible for time-delays less than or equal to h = 0.0264 in this example.
Using simulation the system is unstable for τmax = 0.031. This seems to indicate that the result obtained
in this example using the approach proposed for systems with no uncertainty is not too conservative.

Assume now that the matrices Ai and Adi (i = 1, ..., 4) in the above example are subject to uncertainty.
It can be verified that for ||∆Ai|| ≤ 0.1 and ||∆Adi|| ≤ 0.1 (i = 1, ..., 4) the LMIs given in Theorem 2 are
feasible for the time-delays less than or equal to h = 0.024.

Example 3: In Fig. 1 a water tank and a pipe with the length of L (m) are shown. In this example a
nonlinear model of a water tank is considered as follows (Franklin et al. 2002)

ẋ(t) =
1

Aρ
(uin(t− τ(t))− 1

R

√
ρgx(t)) (61)

where ρ = 1000 Kg
m3 , g = 9.8 m

s2 , A = 10 m2 and R = 11.3882 1√
m Kg

. The output pipe diameter of the
water tank is assumed to be D = 0.2 m. It is assumed that the pipe length L (m) causes a delay τ for the
input water to drop to the tank. It is desired to keep the level of water inside the tank at x = 0.5 m. To
this end, the PWA model of the above nonlinear system around two points, x0 = 0.25 and x0 = 0.75 is
obtained
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ẋ(t) = − gx(t)
2AR

√
0.25ρg

+
(

0.25g

2AR
√

0.25ρg
−
√

0.25ρg

ρAR

)
+

1
Aρ

uin(t− τ(t)) + ∆a1, 0 ≤ x < 0.5 (62a)

ẋ(t) = − gx(t)
2AR

√
0.75ρg

+
(

0.75g

2AR
√

0.75ρg
−
√

0.75ρg

ρAR

)
+

1
Aρ

uin(t− τ(t)) + ∆A2x(t), 0.5 ≤ x ≤ 1 (62b)

where ||∆a1|| ≤ 0.04 and ||∆A2|| ≤ 0.01 represent the approximation error due to the linearization, and
can be treated as uncertainties. Assume a control input of the form

uin(t) =Aρ [−0.11 1(t)− 0.2(x(t)− 0.5 1(t))] , 0 ≤ x(t) < 0.5 (63a)

uin(t) =− 0.1Aρx(t), 0.5 ≤ x(t) ≤ 1 (63b)

Using the LMIs derived in Theorem 2 the maximum delay is h = 1.57 s. This implies that, e.g., by
assuming the water speed be constant uin = 1 m

s , the maximum pipe length must be less than L = uinh =
1.57 m.

Example 4: Consider the equation of motion of a simple pendulum (Franklin et al. 2002) as follows

T (t− τ(t))−mgl sin(θ(t)) = ml2θ̈(t) (64)

where l is the length of the pendulum, g is the gravitational acceleration, m is the pendulum mass and
T is the input torque. It is assumed that the communication link between the sensor and the controller
has the delay of τ(t). It is desired to keep the pendulum at θ = 0.3491 rad = 20 deg. To that end, the
nonlinear model (64) is linearized around θ0 = 0.7854 rad and θ0 = 0 rad as follows

[
θ̇(t)
θ̈(t)

]
=

[
0 1
−g

l 0

] [
θ(t)
θ̇(t)

]
+

[
0

1
ml2 T (t− τ(t))

]
+ ∆A1x(t), 0 ≤ θ(t) < 0.3927 (65a)

[
θ̇(t)
θ̈(t)

]
=

[
0 1

−0.7071g
l 0

] [
θ(t)
θ̇(t)

]
+

[
0

1
ml2 T (t− τ(t))

]
+

[
0

−1.2625g
l

]
+∆A2x(t), 0.3927 ≤ θ(t) ≤ 0.7854 (65b)

where similar to the previous example, ||∆A1|| ≤ 1.4 and ||∆A2|| ≤ 1.2 represent the approximation error



June 28, 2008 21:49 International Journal of Control ijc˙pwa˙delay10

REFERENCES 17

due to the linearization, and can be treated as uncertainties. The controller input to be used is as follows

T (t) =[−16 − 8]
[
θ(t− τ(t))
θ̇(t− τ(t))

]
+ 0.3150 1(t), 0 ≤ θ(t) < 0.3927 (66)

T (t) =[13.1296 − 8]
[
θ(t− τ(t))
θ̇(t− τ(t))

]
+ 6.0725 1(t), 0.3927 ≤ θ(t) ≤ 0.7854 (67)

Now it is desired to find the upper bound on delay τ(t), such that the system be stable. Using the LMIs
in Theorem 2 the maximum value of delay τ(t) becomes h = 0.026 s.

6 Conclusions

In this paper, robust stability of a class of piecewise affine systems with time-varying delay is considered.
It is assumed that the system is subject to bounded uncertainty. It is also assumed that the time delay is
unknown and time-varying, but an upper bound on the magnitude of the delay and its rate of variation
exist. Sufficient conditions in the form of LMIs are derived for robust stability of the system. Numerical
examples are provided to show the usefulness of the proposed approach. The following open problems can
be considered for future work: (i) finding less conservative LMIs using different Lyapunov functionals; (ii)
robust performance analysis of time-delay PWA systems; (iii) finding stability conditions for other types
of uncertainties such as polytopic and polynomial, and (iv) stability analysis for neutral-type time-delay
PWA systems.
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