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ABSTRACT

DYNAMIC RESPONSE OF WIDTH - AND THICKNESS -TAPERED
COMPOSITE BEAMS USING RAYLEIGH -RITZ METHOD AND MODA L
TESTING

Vijay Kumar Badagi

Tapered composite beams formed by witdtper or by terminating or dropping
off some of the plies fronthe primary structure provide high stiffness to weight ratios,
high modulus to weight ratios, damage tolerance and design tailoring capabilities. Since
they are increasingly and widely being used in a variety of engineering applications such
as robot armslightweight mechanical components, aircraft wings, space structures,
helicopter blades and yokes, turbine blades, and civil infrastructures, it is important to
ensure that their design is reliable and safe. Study of the dynamic response of the tapered
conposite beams helps to optimize the design and avoid future investments on repairs. It
is, therefore, essential for design engineers to evaluate the dynamic characteristics of
tapered composite beams effectively. In the present study, symmetrictapetie and
thickness and widthtapered laminated composite beams are considered and their free
and forced vibration response and the buckling response of tapered composite columns
are investigated. Due to the variety of tapered beam configurations and tHexatnud
partial differential equations that govern their free and forced vibration response and their
buckling response, no closéorm analytical solution can be obtained. Therefore,
RayleighRitz method is used based on Kirchhoff afimensional lamin@d beam
theoryand the efficiency and accuracy are established very systematically -\fidtted

laminated composite beam samples are manufactured using3BICgraphitespoxy



composite material. Experimental modal analysis using impact hammer testing is
conducted for the determination of coherence function, time aneregfionse function

and Frequency Response Function (FRF) of widfiered laminated composite beams.
The natural frequencies obtained from experimental modal analysis are validated with
that obtainedRayleighRitz method. A detailed parametric study is conducted to
investigate the effects of width ratio, taper configuration, taper angle, length ratio,
boundary conditions, laminate configurations, static-axdl force and damping on
dynamic response. Free and forceibration response results obtained using Rayleigh
Ritz method are also compared with that obtained using conventional finite element

formulation in a separate but simultaneous study
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CHAPTER 1

INTRODUCTION, LITERA TURE SURVEY AND SCOPE OF THE THESIS

1.1  Vibration analysis in mechanical design

Vibration is the study of the repetitive motion of objects relative to a stationary frame
of reference or nominal position (usually equilibrium). The vibration which occurs in
most machines, vehicles, structures, buildings and dynamic systems is undesirable, not
only because of the resulting unpleasant motions and the dynamic stresses which may
lead to fatigue and failure of the structure or machine, and the energy losses and
reduction in performance which accompany vibrations, but also because of the noise
produced.Noise is generally considered to be unwanted sound, and since sound is
produced by sme source of motion or vibration causing pressure changes which
propagate through the air or other transmitting medium, vibration control is of
fundamental importance to sound attenuation. Vibration analysis of machines and
structures is therefore oftemacessary prerequisite for controlling not only vibration but

also noise1].

Until early 21% century, machines and structures usually had very high mass and
damping, because heavy beams, timbers, castings and stonework were used in their
construction. Bice the vibration excitation sources were often small in magnitude, the
dynamic response of these highly damped machines was low. However, with the
development of strong lightweight materials, increased knowledge of material properties

1



and structural loadg, and improved analysis and design techniques, the mass of
machines and structures built to fulfill a particular function has decreased. Furthermore,
the efficiency and speed of machinery have increased so that the vibration exciting forces
are higher,and dynamic systems often contain hegrergy sources, which can create
intense noise and vibration problems. This process of increasing excitation with reducing
machine mass and damping has continued at an increasing rate to the present day when
few, if any, machines can be designed without carrying out the necessary vibration
analysis, if their dynamic performance is to be acceptable. The demands made on
machinery, structures, and dynamic systems are also increasing, so that the dynamic

performance requéments are always risinig].

There have been very many cases of systems failing or not meeting performance
targets because of resonance, fatigue, excessive vibration of one component or another or
high noise levels. Because of the very serious effectshwmwanted vibrations can have
on dynamic systems, it is essential that vibration analysis be carried out as an inherent
part of their design, when necessary modifications can most easily be made to eliminate
vibration or at least to reduce it as muctpassible. However, it must also be recognized
that it may sometimes be necessary to reduce the vibration of an existing machine, either
because of inadequate initial design, or by a change in function of the machine, or by a
change in environmental conditis or performance requirements, or by a revision of
acceptable noise levels. Therefore techniques for the analysis of vibration in dynamic

systems should be applicable to existing systems as well as those in the design stage; it is



the solution to the vifation or noise problem which may be different, depending on

whether or not the system already exists.

1.2  Buckling analysis in mechanical design

When analyzing a structure, in addition to looking at maximum deflections,
maximum stresses and natural frequescione must investigate under what loading
conditions instability can occur, which is generally referred to as buckin@hange in
the geometry of a structure or a mechanical component under compression results in the
loss of its ability to resist lahng. Stability of structures under compression can be
grouped into two categories: (1) Instability associated with a bifurcation of equilibrium;
(2) Instability that is associated with a limit of maximum load. The first category is
characterized by the d¢athat as the compressive load increases, the member or system
that originally deflects in the direction of applied force, suddenly deflects in a different
direction. This phenomenon is called buckling. The point of transition from the usual
deflection male under load to an alternative deflection mode is referred to as the point of
bifurcation of equilibrium. The lowest load at the point of bifurcation is called critical

buckling load.

Buckling analysis is basically a subtopic of Horear rather than lisar mechanics.
In linear mechanics of deformable solids, displacements are proportional to the loads. In
buckling, disproportional increase in displacement occurs due to a small increase in the
load. The instability due to buckling can lead to a catasitdpliure of a structure and it

must be taken into accouiwhen one designs a structure



1.3 Composite materials and structures

Development and design of polymer composite materials and structures is the fastest
growing segment of lightweight (durable and tausable) construction and product
engineering (in general 'moving and moved beings’). Since fifteen years for each five
years period the world market volume of advanced polymer composites was doubled
(100% growth per quinquennial). For the first decadéhisf millennium a growth of at

least 700 % is foreseen (350% growth per quinquennial). The majority of structural parts
in novel aircraft and space platform designs will be materialized in polymer composite
materials. In case of fireproof interiors incing floors and supporting structures (beams
and brackets) the applied volume of composites are reaching the maximum of almost 100
% and for the high performance and durable exterior shell structures almost 80% by

volume is within the reacl8].

The same &#nds and developments are true for inshore and offshore wind turbine
blade designs (wing structures possessing a radius equal to the total span of a Boeing
747) and the development of the latest fast transport systems varying from trains, cars,
ferries, ad trucks to ships and yachts, show similar tendencies. In traditional metal
structure design a proper mechanical behaviour as a response to ‘'loads' is realized by a
sufficient volumetric distribution and combination of proper metallic materials (stress and
stiffness level control). For todays and future designers of the ultimate lightweight
structures in general (minimum material, minimum energy, and maximum performance)

a change in attitude and design skills is indispensable. In addition to the volumetric

distribution approach to sustain all kinds of stress and strain states, for composite
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laminates a sophisticated distribution and control of coupled and uncoupled stress and

strain phenomena, induced by both mechanical and physical loads, becomes necessary.

Compared to metals in composite structure design stiffness, strength and durability,
resistance and tolerance with respect to impact events or proper scenarios to absorb
impact energy are becoming true initial design parameters, from material to Ibahgat
structure design. The same is true for acoustic and thswletting properties, stability,
vibrations and aerelasticity. Therefore in near future developments of advanced and
cost effective structures would require a new generation of (sciengifi@gdemic)
developers and designers capable of creating and using new design tools and rules and

last but not least capable to create new paradigms in conceptual and structural design.

1.4  Energy method and RayleighRitz method

For simple mechanical systentise vector methods provide an easy and direct way of
deriving the equations. However, for complicated systems, the procedure becomes more
cumbersome and intractable. In such cases, variational statements can be used to obtain
governing equations, associtdoundary conditions, and in certain simple cases,

solutions for displacements and forces at selective points of a strutjture [

To obtain the governing differential equations and boundary conditions of various
problems we need to apply the virtwebrk principles or their derivatives. These
principles involve setting the first variation of an approximate functional with respect to
the dependent variables to zero. The procedure of the calculus of variations can then be

applied to obtain the governing (EuLagrange) equations of the problem. In contrast,
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the method applied in this thesis seeks a solution in terms of adjustable parameters that
are determined by substituting the assumed solutions into the functional and finding its
stationary value with spect to the parameters. Such solution methods are called direct
methods, because the approximate solutions are obtained directly by applying the same
variational principle that was used to derive the governing equation. The assumed
solutions in the variainal methods are in the form of a finite linear combination of
undetermined parameters with appropriately chosen functions. This amounts to
representing a continuous function by a finite linear combination of functions. Since the
solution of a continuumrpblem in general cannot be completely represented by a finite
set of functions, error is introduced into the solution. Therefore, the solution obtained is
an approximate of the true solution for the equations describing a physical problem. As a
number oflinearly independenterms in the assumed solution @amereased, the error in

the approximation will be reduced and the assumed solution converges to the desired

solution of Eulerdés equations.

The equations governing a physical problem themselves arexappte. The
approximations are introduced via several sources, including the geometry, the
representation of specified loads and displacements, and the material constitution. In the
present study, our primary concern is to determine accurate approxiohaiens to

appropriate analytical descriptions of physical problems.

The variational methods of approximation include those of RayRitth Galerkin,
PetrovGalerkin (weightedesiduals), Kantorovitch, Treffiz, and the finite element

method, whichis@ pi ecewi se 0 ap pGalerkdnartethood.n of t he Ri

t :



In the principle of virtual displacements, the Euler equations are the equilibrium
equations, whereas in the principle of virtual forces, they are the compatibility equations.
These Euler equations are the form of differential equations that are not always
tractable by exact methods of solution. A number of approximate methods exist for
solving differential equations [e.qg., finitkfference methods, perturbation methods, etc.).
The most direct methodsypass the derivation of the Euler equations and go directly
from a variational statement of the problem to the solution of the Euler equations. One
such direct method was proposed by Lord Rayleigh. A generalization of the method was

proposed independentby Ritz (18781909) [6].

The RayleighRitz or Ritz method has found tremendous use during past three
decades in obtaining accurate frequencies and mode shapes for the vibration of
continuum system especially for problems not amendable to exact sobititme
differential equations. Tiamethod is used frequently because of the increasing capability
of digital computers to setup and solve the frequency determinants arising with the
method. This method can be used to solve boundary value problem orveigen
problem by assuming a solution in the form of series of admissible functions (satisfying
at least the geometric boundary conditions) each having an arbitraffigent and
minimizing the appropriate energy functional directly. In this thesis RpyRitz
method is employed to determine the free and fovde@tionresponse of widttapered
and thicknessand widthtaperedlaminatedcomposite beams and buckling response of
tapered composite columns. Admissible functions are taken as series wftproidbeam

mode shapes called trial functions.



1.5 Literature survey

In this section, a comprehensive andtoqulate literature survey is presented on the
relevant topics. Important works done on the dynamic response of uniform,- width
tapered, thicknesandwidth-tapered composite beams including damping and axial load
effects by RayleigiRitz method and experimental modal testing method for composite

beams are chronicled.

1.6  Vibration response of composite beams

There is a wealth of literature available tbe vibration and buckling analyses of
laminated plates and shells. In comparison, study on the analysis of laminated beams has
been scarce despite their applicability in important structures such as turbine blades,
helicopter blades, robot arms, etc. Alte works on vibration and buckling analyses of

laminated beams are not sufficient especially on forced vibration.

Abarcar and Caniff [7] conducted the free vibration analysis of uniform laminated
composite beams without considering the effects of stefarmation and rotary inertia.
Miller and Adams [8] studied the vibration characteristics of the orthotropic clafmped
uniform beams using the classical lamination theory without including the effect of shear
deformation. Vinson and Sierakowski [9]talmed the exact solutions for the natural
frequencies of a simplgupported uniform composite beam based on classical lamination
theory. Roy and Ganesan [10] have studied the response of a tapered composite beam

with general boundary conditions. ldeal.[11] have conducted a review of the works on
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tapered laminated composite structures with focus on interlaminar failures and three
dimensional stress analyses. Steeves and Fleck [12] have studied the compressive
strength of composite laminates with termeth internal plies. Aydogdu [13] have
studied the vibration response of crpbg laminated beams with general boundary
conditions using the Ritz method. Boay and Wee [14] have studied the coupling effects in
bending, buckling and free vibration of gengrdaminated composite beamidassan

and Sabuncu [15] have conducted the stability analysis of a cantilever composite beam
resting on elastic supports. Teoh and Huang [16] studied the vibration of beams of fibre
reinforced materials. Krishnaswamay al.[17] obtained analytical solutions to vibration

of generally layered composite beams. Khdeir and Reddy [18] have studied the free
vibration of crossply laminated beams with arbitrary boundary conditions. Abramovich
and Livshits [19] established analyticadltion of free vibration of noisymmetrical
crossply laminated beams. Houmat [20] investigated the vibration of Timoshenko beams
considering fownode element with variable degrees of freedom where he described
element transverse displacement and esessonal rotations by cubic polynomial plus a
variable number of trigonometric sine terms. Singh and Abdelnassar [21] examined the
forced vibration response of composite beams considering a third order shear
deformation theory. Thicknegapered laminatedomposite beams have been studied for
their dynamic response in the works of Ganesan and Zabihollah [22, 23] using an
advanced finite element formulation and parametric study. Ahmed [24] has studied and
conducted experiments for free and forced vibratiesponse of tapered composite
beams including the effects of axial force and damping. Chen [25] has studied the free

vibration response of tapered composite beams using hierarchical finite element method
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and RayleigkRitz method. Amit and Yadav [26] inv&gated forced nonlinear random
vibration of a simply supported crepy/ laminated composite plate analytically using
Kirchhoff-Love plate theory and VeKarman nonlinear strain displacement
formulations. Asghaet al.[27] studied forced vibration anaigsdeveloped by the modal
superposition technique and the layer wise theory of Reddy to study the low velocity
impact response of laminateplates. Cheunget al. [28] proposed a computationally
efficient and highly accurate numerical method to analyze vilwations of
symmetrically laminated rectangular composite plates with intermediate line supports.
The governing eigen frequency equation is derived using RayRitghmethod. They
developed a set of admissible functions from the static solutions ofam béth
intermediate points of supports under a series of sinusoidal loads. Katiaar29]
studied the forced vibration of an unsymmetrical laminated composite beam subjected to
moving loads. They studied a edanensional element with 24 degrees odeflom,

which included the effects of transverse shear deformation, rotary and higher order inertia
to get the response. Beytullahal.[30] investigated the dynamic behavior of composite
cylindrical helical rods subjected to time dependent loads theahgtin the Laplace
domain. Azraret al.[31] studied the forced nelimear response of clamp&thmped and
simplysupported beams wusing spectral anal ysi
balanced method. They proposed a method to solve the multidamah®uffing
equation and obtained a set of Amear algebraic equation whose numerical solution
leads in each case to the basic function contributicefitdent to the displacement
response function based on harmonic balance method. These cosffigpend on the

excitation frequency and the distribution of the applied loads. Faruk [32] analyzed free
10



and forced vibrations of newmniform composite beams in the Laplace domain. He

adopted Timoshenko beam theory in the derivation of governing equation.

1.7  Buckling response of composite beams

There are few works available on buckling analysis of composite beams in the
literature. Khdeir and Reddy [33] used various plate theories to study the buckling of
laminated plates. Banerjee and Williams [34] obtaicréiital buckling loads for columns
by considering shear deformation effects. Khdeir and Reddy [35] discussed buckling
behavior of crosply rectangular composite beams with different boundary conditions.
They presented analytical solution for compositearhs with different boundary
conditions. Song and Waas [36] discussed the effects of shear deformation on the
buckling of composite beams. They are simple highider theory, which assumes a
cubic distribution for the displacement field through the thedenof the beam. Chen and
Peng [37] studied the stability of rotating composite beams subjected to axial
compressive load. Kinat al.[38] conducted the buckling analysis of crgdg laminate
with onedimensional throughhewidth delaminations. Matsunagi89] studied the
buckling of multtlayer composite beams using higloeder deformation theories. Le¢
al. [40] presented a general analytical model based on the classical laminate theory to
study the lateral buckling of a laminated composite beamIvgéttion. They consided
different laminate configurations and boundary conditions. The exact solutions for

critical buckling loads based on classical laminate theory for different boundary
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conditions are given by Berthol&][ Reddy [6] and Whitney [41Abd EFMaksood [42]
used an advanced finite element formulation to study the buckling of laminated beams.
Recently, Cortinez and Piovan [43] discussed buckling ofwlated composite beams.

Lee and Kim [44] treated the lateral buckling of channel@eciomposite beams.

1.8 Experimental modal testing

It is always recommended to use the updated data of any materials for the analysis. In
this thesis, NCI301 graphiteepoxy is used for all analyses and parametric study. To get
the idea about mechanical pespes, it was found that Ibrahim [45] studied NGO1
graphite epoxy material where he did some experimental work for determining notched
and unnotched strengths of crepty laminates. He studied the effect of notch size on

the reliability of compositéaminates based on stochastic finite element analysis.

Damping analysis of fibereinforced composite has not been considered as a popular
research area since composite materials are designed with stiffness to weight ratio, rather
than damping. Damping itaminated composite materials, where laminae are bonded
with adhesive joints of very low damping capacity, is mostly due to the inelastic or visco
elastic nature of matrix and to relative slipping at the fibatrix interfaces. The only
reliable method foestimating damping in composite is by experimentatfuarezet al.

[46] used random and impulse techniques for measurement of damping in composite
materials under flexural vibrations. They tested specimens-oéinforced epoxy resin,
graphiteepoxy and Eglass polyester composite in order to cover a range of damping

12



values from low (aluminium) to intermediate (composite) to high (epoxy). Morison [47]
developed a model of material damping for a fiber reinforced polymer matrix composite
and experimentbt predicted the loss factor and the temperature and moisture dependant
structural damping of an arbitrary laminate. Hoa and Oullette [48] proposed a rule of
mixture for the calculation of the loss factor for hybrid laminate where they found the
damping Ies factor of individual laminate experimentally using logarithmic decrement
method. Gibson [49] reviewed the progress in analytical and experimental
characterization of dynamic properties of advanced materials. #\dach Bacon [50]
performed a series of p&riments on unidirectional fiber reinforced beams under
longitudinal shear and flexural loading conditions to determine the specific damping
capacity. Zabara®t al. [51] studied viscous damping approximation and transient
response of laminated composgitates using finite element method. Wei and Kukureka
[52] evaluated the damping and elastic properties of composite material and composite
structures experimentally by the resonance method. Adams and Maheri [53] investigated
the damping capacity of fibeeinforced plastic and developed a damping energy
equation for analysis. Damping capacity and frequency of cross ply fiber reinforced
plastic composite plates were compared at room temperature by using finite element
method, RayleigiRitz methodand an exp@mental method. Sedni and Bertholet [54]
analyzed the effect of temperature on the damping properties of unidirectional glass fiber
composite as a function of the frequency and fiber orientation using a cantilever beam
test specimen and an impulse teage. Colakoglu [55] studied damping and vibration

analysis of polyethylene fiber composite under varied temperature where he analyzed
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temperature dependent frequency response experimentally using a damping monitoring

technique.

Eslimy-Isfahay et al. [56] studied the dynamic response of composite beams with
application to aircraft wing€wins [57] presented thtechniques for experimental modal
analysisHe et al.[58] studied thestress distributions in tapered beamasle of composite
materials. Koo and e [59] studied the dynamic kehor of thick composite beams.
McConnell and Varato[60] presented the basic concepts and principles underlying
dynamic testingTsai and Hahn [61] presented the principles governing the mechanical
behavior of composite matals and the unique features in their desigalvorsen and
Brown [62] studied the impulse technique for structural frequency response testing.
Klosterman [@] conducted the experimental determination and use of modal
representations of dynamic charagtcs. Potter [8] studied a general theory of modal

analysis for linear systems.

1.9 Objectives of the thesis

The present thesis is concerned with the dynamic response of tapered laminated
composite beams. The beams are either wg@jplerel or both thicknes and width
tapered. The objectives of the work are: 1) To investigate the free and forced vibration
response and buckling response of tapered laminated composite beams using-Rayleigh
Ritz method and to conduct a detailed parametric study for the effegtglth ratio,

taper configuration, thickness taper angle, length ratio, boundary conditions, and laminate
14



configurations; 2) To investigate the effects of static-axidl compressive and tensile
loads on natural frequencies and forced response of thjzangnated composite beams;
3) To conduct thenodal testing of widthapered composite beams and to compare the
natural frequencies with those obtainesing the RayleighRitz method; and4) To
compare the free and forced vibration response of tapenadated composite beams
obtained using RayleigRitz method withthat obtained usingconventional finite

element method [81].

The dynamicresponse of widttapered and thicknesand widthtapered laminated
composite beams ideveloped based on classicaminate theory by using approximate
RayleighRitz solution. The developed methodology gives accurate and converging

results, and is advantageous in the analysis of composite beam structures.

1.10 Layout of the thesis

The present chapter provided a brief introtibn and literature survey on free and
forced vibration of tapered laminated composite beams and buckling response of tapered
composite columns using Rayleiffitz method and experimental modal testing for

determination of Frequency Response Functior=jFR composite beams.

In chapter 2, elastic behaviour of linear wid#ipered composite beam is determined.
Energy formulation for dynamic response of witliipered laminated composite beam is

developed based on Kirchhoff one dimensional laminated beaonytlusing Rayleigh
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Ritz method. Trial functions for different boundary conditionsgivenin Appendix A.
Free and forced vibration responsee determined including damping and axial force
effects. The firsply failure analysis using Ts&Vu failure citerion is conducted to
understand the effect of tensile static exdhl force on widthapered laminated

composite beams.

In chapter 3, numerical results time dynamic response of widtiapered laminated
composite beams are considered. Rayktgh mehod is used to find the natural
frequencies, forced response and critical buckling loads for sagired laminated
composite beams. The extensional and flexural stiffness distribution for linear width
tapered composite beams is shown. The effects athwatio, length ratio, boundary
conditions, and laminateconfigurations on natural frequencies, maximum transverse
amplitude of tapered composite beams and critical buckling loads of tapered composite
columns are determined. The effectsstdticendaxid load and damping orhe natural
frequencies and forced response of wittpered composite beams have been
investigated. The first ply failure load of widtapered beam is obtained to find the
effects of enehxial tensile load on natural frequenciesd maximum transverse

amplitude of tapered composite beams

In chapter 4, experimental validation for widtpered composite beams has been
carried out. The manufacturing of composite laminate is discussed with fabrication and
processing. Experimental modakting is discussed using impact hammer excitation. The
experimental modal testing results like Coherence function, time and auto response

function and Frequency response Function (FRIF)different width ratios of width
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tapered composite beams are deieed. Comparison ofatural frequencies obtained
using experimental modatestingwith that obtained usingnalytical results for width

tapered composite bearareshown

In chapter 5, free vibration and buckling response of thickreesd widthtapered
laminated composite beams are considered using RayReighmethod. Natural
frequencies and critical buckling loads are determined for the combination of different
angles of thicknestaper and width ratios, laminate configuratiorsd boundary
conditions. The effects of applied static eaxial force and damping on natural
frequencies of thicknessand widthtapered composite beams have been investigated.
Finally a detailed comparison is arranged in tables to compare the natural frequencies
obtained byRayleighRitz method from the current theswith conventional finite
element method obtained from the separate wW8df and graphical plots of forced

response in terms of sinusoidal transverse displacement

The thesis ends with chapter 6, which provittesoverall conclusions of the present

work and some recommendations for future work.
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CHAPTER 2

RAYLEIGH -RITZ FORMULATION FOR DYNAMIC RESPONSE OF WIDTH -

TAPERED LAMINATED CO MPOSITE BEAM

2.1 Introduction

The design of mechanical structures requibesdevelpment of necessary tools for
modeling the mechanical behavior in design and analysis. Laminated composite beams
are increasingly being used as laadrying elements especially in higlerformance
mechanical, aerospace, aircraft, naval, and civil apphieatiwhere higistrength and
high-stiffnessto-weight ratios are desired. In these areas, the dynamic and static
instabilities show themselves as a problem of elastic instability. When their behavior is to
be predicted under various loadings, there i®edrfor accurate analysis of the loading
effects. The practical loadings on aerospace and automobile structures are mostly
dynamic in nature. Therefore, advanced analytical and numerical techniques are required
for the calculation of the dynamic responbaracteristics of structures in order that they
can be designed against failure due to dynamic loads. In this chapter, free and forced
vibration and buckling response of widtpered laminated composite beams are

conducted using RayleigRitz formulationto obtain the equation of motion.

Elastic behavior of lineawidth-tapered laminated composite beam is determined in

section 2.2. In section 2.3, energy formulation for dynamic response of-takhed
18



laminated composite beam basad Kirchhoff ondé dimersional laminated beam theory

is developed. In section 2.3.1 system matrices are formed using Rayigghethod for

free and forced vibration and buckling respoon$evidth-tapered laminated composite
beams Free undamped vibration of widtapered compte beams is shown in section
2.3.2. Forced vibration response including static-axdl force is discussed in section
2.3.3. Forced vibration response considering damping properties are determined in
section 2.31. In section A.5, the formulation bask on RayleigkRitz method for
buckling response isarried outfor width-tapered composite columns. In sectio4 the
formulation for firstply failure of the laminate using Ts#/u tensor theory is carried

out.

A beam is a solid structural member moshawonly used in mechanical structures or
systems. In practical structures, it can take up a great variety of loads such as transverse
load applied between its supports, transverse sheplaite bending and even torsion. A
plane beam resists primarily Idag applied in one plane and has cresstion that is
symmetric with respect to that plane. Odienensional mathematical model of plane
beam is considered on the basis of beam theories. The stiffneficmnts of the
laminated beam are determined luase classical laminate theory (corresponding to the

EulerBernoulli beam theory) [1].
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2.2  Elastic behavior of linear width-tapered laminated composite beam

Many structures made of composite materials are composed of numerous laminae,
which are bonded and/aured together. The superior properties in strength and stiffness
that composites possess, and the ability to stack laminae one on the other in a varied but
unique fashion to result in the optimum laminate properties for a given structural size and
set of loadings are major advantages that composite structures have over more
conventional structures. The focus has been on the-strags or constitutive relations

[80.

For widthtapered laminated composite beam as shown in Figure 2.1, few basic

assumptionsire imposed:

1. The beam is constructed of an arbitrary number of layers of orthotropic sheets
bonded together. However, the orthotropic axes of material symmetry of an individual

layer need not coincide with the xyz axes of the beam.

2. The beam is thin, i.ene thickness H is much smaller than the length L and width
b.

3. The height of the beam is constant, whereas the width is tapered.

4, Transverse shear straigs andg,, are negligible.

5. In-plane displacements u and v are linear functions of the z coordinate.

6. The transverse normal stragnis negligible.

20



7. Each ply obeys Hookeds | aw.

8. The rotatory inertia caused by the rotational accelerainagligible.

9. There are no body forces.

10.  Transverse shear stressgsandty, vanish on the surfaces z = + H/2.

N y=ax+d

by br

- kth ply

Ltk
H 4 = X

I
/

Figure 2.1 Schematic illustration of linear widttapered laminated composite beam and

coordinate system

In this work, Classical Laminate Theory (CLT) is applied to witihered

laminatedcomposite beam.
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The constitutive relation between the force and moment resultants and the midsurface

strains and curvatures are given by [3]:
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It should be noted that in tleguation (2.1), theN, and M, were originally defined for

plate type structures and correspond to unit width in thl@ection, and hence apply
directly to a beam of O6unitdéd width. -In the
direction, it is convenient to multiply all of the above equations by the beam width b(x).

The resulting force and moment equations are expressed as:

P.(X) = N3 b(x), P,(X) =N, 3 b(x), P, () =N,,3b(x) (2.3)
R(¥)=M,*b(x),R (x) =M, 2 b(x),R,(x) =M, b(x) (2.4)

The Equations (23) and (24) are shown as:

A, A, A, By,
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It is to be noted in th&quation (25), the effect of change in width is considered in the
matrix of stiffness elements.
For |l inear width taper, at any arbitrary g

b(x) is given as:

b(x) =h, - S‘é"—b (2.6)
G
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2.3 Energy formulation for dynamic response of widthtapered laminated

composite beams based on on@imensional laminated beam theory

EulerBernoulli beam theory is also defined as classical beam theory. This beam model
accounts for bendingmoment effects on stress and deformation. Transverse shear forces

are recovered from equilibrium but their effect on beam deformation is negledjed [2

2.3.1 System matrices

Classical Laminated Plate Theory (CLPT) states that the transverse shear stresses
through the thickness of the laminate are negligible and further, the normal to the middle
plane remains normal after deformatioB].[ Here we considerpure bending of
symmetrically laminated beams according to CLPT. For symmetric laminates, the
equations for bending deflection are uncoupled from those of the stretching
displacements. If the iplane forces are zero, theprane displacements are zero, and the

problem is reduced to solving for bending deflection.

In the case of pure bending of a symmetrimitzate the constitutive equation

(2.5) reduces to:

&(X)° Dy(X)  b(X)® Dip(X)  b(x)3 Dyg(x)
=$(¥)3 D) b(X)® D,,(x) b(x)® D,
8()° D) b(X)® Dy(x) b(X)* Deg(NE:

2.7)

——) s e ) D:
—’C—> o

‘R K,
R 4 K,
i Ryy k

—~—$ F E’)g :
k<r) —) c: —)—> [}
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In deriving onedimensional laminated beam theory, tBguation (27) is

represented in the inverse form as:

f k.“ (X2 D;y(X) b(X)? D) b(x)3 Dm(x)z e&u

1k, 0= (02 D) b(¥)2 D, b(x)? DX | Rl (2.8)
~ Py u 7

top 8093 D) b2 Dyg(x) b(x)? Do)l | Ryy

I 7y

IekXTu 11(X) DlZ(X) Dle(x)géRxﬂ

Lo Z

1k, 6= eDlz(X) Dzz(x) D250 (2.9)
I o]

}kxyg,/ é D.6(X) Dye(X) Dee(X)URny

In deriving onedimensional laminated beam theory, here it is assumedthbat

momentsR and R are equito zero.

The inverse form of the relation between curvatures to bending moments as shown in the

Equation (29) is represented as:

o W *

K, =- ‘:X =D,(X* R, (2.10a)

o UZW_ . ;

== 1 2 =Duldf R (2.100)

o 2\ .

k, =-25" =D (X R, (2.10¢)
bkl
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The above relationg2.10a) to (2.Dc) s how t hat the defl ecti on

independent of the wvariable 060yo6. DJix bendi

and D,4(x) cancause the beam to lift off its supports. This effect is negligible where the

length to width (L/b) ratimf the beanis sufficiently high.

Neglectingthe bending and twisting induced by the ters,(X) and D,4(x) in the

Equations (2.10b) and (2.100&2 and koy are neglected.

TheEquation (2.1@) isrewritten as

: Q 2

R =- 88#8“_"2" (2.11)
é%ll(x)+ux

From the reference f, the potential energy for uniformvidth composite beam

according to classical laminated beam theory and cylindrical bending theory is given as:

1Y, - Atwd
u =—ﬁoDl,£78 dx (2.12)
2 [T 0

The aboveEquation (2.2) is given for finite uniform width of the composite lamied
beam. As the scale factor for theamwidth increases such that it satisfies the Euler

Bernoul | i beam theory, the width o6bdé is

Equation (2.2).
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For widthtapered laminated composite beam, the term Is(x)ultiplied in the stiffness

elements as shown in tiguation (25).

The strain energy due to flexure of the beam which is giveggimation (2.2) can be

represented according to edienensional beam theons:

a o 2
2 1 a
§ (2.13)

E.(;E)ll(x) —

It is to be noted that, in the abotguation (2.B), the term b(x) is integrated in the

-

-1
2

flexu re

matrix of stiffness and compliance elements. This is one of the prime contributions of the

present formulation.

The work done due topalied static endixial load on the widttapered laminated beam

is represented as follows [3]
1 |;\o 2 [}
Uaxialload =5 PI@M8 dX[:I (214)
2 oW+

Therefore, the total strain enerdy,,,,, which is the sum olJ ;. and U i110aq IS

given as:
1'% 1 Bawewd . 1 tamwg

Utotalz_@ * 0%78 dx+-P 0 dx (2.15)
208D, (IR 2 ogixs
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In the aboveEquation (2.5), the static endxial load applied is tensile load. If the

applied load is compressive lgatenP <P, , where P, is the critical buckling load and

the sign of P will be negative.

A

The kinetic energy denoted as 6T6 of an

as [&A]:
0 ()2 aw g0
n ﬁ%‘} 9 +g ggixdydz (2.16)

where, r . is the density of composite material at the point xyz.

The displacements u, v and w are given by:

u :% Z%M&S (2.17a)
¢ ¢ KX ==
v=0 (2.17b)
W= W(X,t) (2.17¢)
Substitutingequation (2.%) in Equation (2.8),
o 20
n ﬁ% W(X) 0 aéwg 9Ijxdydz (2.18)
cHt =9
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The first term of Equation (2.18) arises due to the change in slope of the deftactie

(or the angle of rotation) with time and is related to the rotational kinetic energy.
According to EuleBernoulli beam or thisbeam theory [1], the rotatory inertia caused by
the rotational acceleration of a beam element is negligible; hencersheefrm is
neglected in Equation (2.18Yhe equation for kinetic energy of the widdpered

laminated beam reduces to:
1 L o 2

T = Fy b(x).HEYE dx (2.19)
2, GH =+

where, H is the height of the laminate.

2.3.1.1Analysis using RayleighRitz method

There exist no exact solutions for the natural frequencies and forced responses for
general noruniform composite beams. Even if they exist for more idealized cases they
are often cumbersome to use, often requiring soluidortranscendental equations to
determine the natural frequencies and subsequent evaluation of infinite series to evaluate
the system response. Therefore, approximate solution based on R&itzighethod is
developed to find the natural frequencies darted response of tapered laminated
composite beams and critical buckling load of tapered laminated composite colamns.
this section, the formulations based on RayldRitz method for widthitapered laminated

composite beams are derived using clas$arainate theory.

29



From the reference [4], the Rayleigh equation is given as:

U
M/Z - to*talmax
T (2.20)

where the kT,noéstexpessesl m@T gxy In BayleighRitz method, the

assumed deflection to be the sum of several functions multiplied by constants is given as

follows:
WX, t) =c/f (X)) +C, (X)) +......... +cf,(X) +.....+c.f.(X) (2.21)

where C; are the undetermined coefficients afd(x) are any admissible

functions satisfying the geometric boundary conditions.

U totalmax @Nd T maxare expressed as:

1.0
Utotalmax - 2a a. Ku i J + a a PGu i ] (222)
i=1 j=1 i=1 j=1
Tmax-Eaal\/lll C, (2.23)
=1 j=1

where the coefficients are derived as:

1§
K; = —8 fil(X).f ji(x).dx (2.24)
0(; 11(X)+
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L
G; = fyi(x).fj(x)dx (2.25)
0

L
M; = Y b(X).H.f (X).f, (X)dx (2.26)

0
IftheRayl ei ghdés proportional damping model i s
C; =a(M;)+ b(K;) (2.27)

]

In the aboveEquation (2.2), C; is the coefficient of Ral ei gho6s proporti ot

[4].

Minimizing w” by differentiating it with respect to each of the constants, the derivative

of w” with respect toC; is given as:

* pU otalmax U.T*max
,/,/2 éU 6 T maX-’[ict:I = Utotalmaxi
HY - H & vam - My =0 (2.28)
l.]CI U'C| ¢ T max = T max
The aboveequation (2.38) is satisfied by
MY oiaimax 2 MT mex -0 (2.29)

HG; MG,

The two terms of th&quation (229) are shown as:
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U . _
U- totalmax — a (K + P'Gij )'Cj (230)

(2.31)

Therebre,Equations (2.8) and (2.3) become:
a(k,+PG,)- wM,)+c, (K, +PG,)- WM, )+....+c (K, +PG, )- w’M, )=0 (2.32)

From theEquation (2.2) , with o6idéd varying from 1 to n.

which are arranged in the matrix form as:

géKn"'P-Gn " W2M11 (K12+ P-Glz)' Wlez Il Il (Km +P-61n)' WZMMLIFQQ
dKest PG WM, g | f f L:)%Cz%
€ f | f f 4 95={)
€ Ul
i T f f f N 3
gk, +PG,)- wh, g g f (K, +PG,)- WM, e

(2.33)

The determinant of thEquation (2.3) is an n degree algebraic equationn, and its

solution results in n eigenvalues.
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2.3.2 Free vibration response of widthtapered laminated composite beams

All systems possessing maamsd elasticity are capable of free vibration, or vibration
that takes place in the absence of external excitation. Of primary interest for such a

system is its natal frequency of vibration

There are many ways to connect the solution of the vibratidolggns with that of the
algebraic eigenvalue problem. The most productive approach is to cast the vibration
problem as a systematic eigenvalue problem because of the special properties associated
with symmetry. The physical nature of mass and stiffnesdaesatis that they are usually

symmetric [®].

The equation (2.33) can be written in the matrix form of equation of motion using

Newt onds second |l aw of motion [1] includin

[MKe} +[clg + (K] + PG }c} ={F} (2.34)

For undamped free vibration without statiodeaxial load, theEquation (2.3% can be

written as:

(M} +[K{c}={a} (2.35)
For free vibration thé&quation (2.3%becomes:

(k]- w2 m]ke}={d} (2.36)
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From the aboveEquation (2.8), w represents the natural frequencies. Replacing

/ =w#in equation (2.3pwhich becomes,

(K]- 7[m]c}={o} (2.37)

The above Buation (2.3) is a classical eigenvalue problem, whéreare eigenvalues

and{c} are mode shapes.
2.3.3 Forced vibration response including static enehxial force

The forced vibration response with reference to finite number of nodal coordinates of

the composite beam is determined in this section.

Considering static endxial force, theEquation (2.3% can be rewritten for undamped

forced vibration as:
(MYe+(x]+ PG lc} ={F} (2.38)

[M].[K],[G] {F}and{c} are the mass matrix, stiffness matrix, geometric stiffness

matrix, force vector and displacement vector of the beam respectively. IBqteion
(2.38), P is the prescribed static efaxial tensile load. Mode superposition method is
considered for forced vibration of laminated composite beam. By mé#kéngoordinate

transformation [4], one can write,

{d=1Pi{y} (2.39)
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where [P] denotes the tilonormal modal matrix. The formation f¢P] is shown in
AppendixB. SubstitutingEquation (239) in (240) and premultiplying by [P]™ on both

sides of uation(2.39, leads to

[PI"IMI[PI{#% +[PI"[KI[PKy} +[P]" PIGI PY{y} =[P]" {F} (2.40)

The normal modes or eigenvectors of the system can be shown to be orthogonal with

respect to the mass, stiffness and geometric stiffness matrices [4].

It can be shown from the above equation@g.the orthogonality relationshigse [4]:
[P IMIIPI=[1] (2.41)
[PI"[KI[P]=(L] (2.42)

where, [I] is the unit matrix andL ] is a diagonal matrix of the eigeriuas which is

given as:
)
u
W, u (2.43)
u
u
¢

By taking the advantages a@frthogonalproperty, the abovéquation (2.9) can be

written as a set of decoupletf Brder differential equations as:

[, +diagw) 2y}, ={F} (2.44)
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The new equations in terms gf are uncoupled and they can be solved as a set of single

degree of freedoraystems.

The solution fory. (t) are in the form:

_ ¥(0) _. f, (t)sinut
y; =Y, (0) coswt +75m W+ ————n

i wQ

(2.45)

Substituting the value oy, from Equation (2.%) in Equation @.39), and representg in

the form of equation (2.2,Lone can get forced vibration response includingadadl

force.
2.3.4 Forced vibration response of composite beam including damping

The definition of composite materials is mostly based on the macrosaspionse
rather than the microscopic mechanisms governing the energy dissipation pBpcEss [
investigate the concept of an equivalent viscous damping mechanism for a multiple
degree of freedom system that is damped by avismous process, thHequatian (2.38) is

extended as:

(M} +[cKe + (<] + PG J{d ={F} (2.46)

By making the coordinate traiasmation as shown ircquation (2.39) and by taking

advantage of orthogonal erties, substituting guation (239) in Equation (2.4) and
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premultiplying by [|5]T on both sides oEquation (246), the Equation (246) can be

written as:

[PI"IMI[P{#% +[PT'ICI P34 +[PI"[KI[ Py} +[PI" PIGI[ PKy} = [PI"{F} (2.47)

It is shown in Ref. [4] thafP]" [M][P] and [P]"[K][P] are diagonal matrices but
[I5]T[C][I5] is not diagonal and the precediBguation (2.Z) is coupled by the damping
matrix. The difficulty with modeling damping in this fashion is that modal analysis
camot in general be used to solkquation (2.Z), because damping provides additional
coupling between the equations of motion. As a result, this cannot be always decoupled
by the modal transformation. Modal analysis can be used to directly Eqglvation

(2.47), if the damping matrifC] can be written as a linear combination of the mass and

stiffness matrices?4).
By using Rayl eighdéds proportional dampi ng
[C]=a[M]+ f[K] (2.48)

wherea and b are masgroportional and stiffnesgroportional constants. Substitution

of Equation (248) into Equation (247) yields,

[PI"IMI[PK#% +[PI" (@a[M] + LIKDI P % +[PI"[KI[ PI{y} +[PI" PIGI PY{y} =[PI"{F}

(2.49)

TheEquation (249) is completely uncoupled and will have the form:

37



#+2zmy +nly, = T (1) (2.50)
where the modal damping is given as:

2zw=a+b (2.51)
This corresponds to the n decoupled modal equations as:

fe@+o HE+u’y =1 (2.52)

Considering the response ofglation (2.2) as viscouslydamped singlelegreeof-

freedom system subject to harmonic excitation, the solutioBdoation (2.2) will be

y _e-ziWnt éj’(o) +ZiM/i
i = e

: g
sinw;t + y(0) cosw;ty+

e Wy, u
]? S (2.53)
g sin(ut - tan* —1—")
Jw? - w)? +(2z,mm)? W, - W
where,
Wy = Wpiy/1- Zi2 (2.54)

Substituting the value oy, from Equation (2.53in Equation (239), and epresenting in

the form of Equation (2.21), the forced vibration response with damping effects is

obtained considering static eadial force.
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2.3.5 Buckling analysis of width-tapered composite columns

It is important in analyzing a structure, in addition to looking at maximum
deflections, andhatural frequencies, one must investigate under what loading conditions

instability can occur, this instability is referred to as buckling.

In this work, the equation for total strain energy which is the sum of strain energy due
to flexure and work doneug to applied static erakial load is given in the equation
(2.22). Considering the applied static eaxial compressive load, the quation @.5 re

written for buckling response of widthpered laminated columns as:

1.2 .0 1.0 .0 =
U =za a K €C; - Ea a PG, cc; (2.55)

o2 i=1 j=1 i=1 j=1
The Equation (2.56) can be written in the matrix form as:

(x]- PIG )t ={a} (2.56)

The above Equation (2.5) i s an ei genval ue regems thd e m,
eigenvalue. The system representedHayation (2.5) has 6énd eigenvalu
represents the total number of degrees of freedom. The smallest eigenvalue will be the

critical buckling load which is represented Rs.
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2.4  First-ply failure analysis

A laminate will fail under increasing mechanical and thermal loads. The laminate
failure, however, may not be catastrophic. It is possible that some layer fails and the
composite continue to take more loads until all the pliels Failed plies may still
contribute to the stiffness and strength of the laminate. Since poiyateix composites
are stronger in the fiber direction relative to the other directions, it is clear that failure
must be a function of the direction of thephed stress relative to the direction of the
fibers. Causing failure of an element of material in the fiber direction requires
significantly more stress than causing failure perpendicular to the fibers. Tensile failure
in the fiber direction is controlleby fiber strength, while tensile failure perpendicular to
the fibers is controlled by the strength of the bond between the fiber and matrix, and by

the strength of the matrix itself.

2.4.1 Tsai-Wu tensor theory

The TsaWu failure criterion is widely used asiggested i{67] to predict the
first-ply failure of laminate. The firgbly tensile failure load is calculated to understand
the effect of tensile endxial load on the dynamic response of witipered laminated

composite beams.

The TsalWu failure criteion reduces to [@:

Flsl + F282 + F6f12 + F:I.ISlZ + Fz*ﬁz2 + Feeflzz Y, I:11|:2251$2 <1 (2-57)
40



The failure constants are given by:

1.1 1 1 .1 1 a1lo

F=—+— ,F.=- JF, = +—,F,=-—— F.=0,F :ﬁ
1 SlT slc 11 SlTSlC 2 52T 2(; 22 SZTSZC 6 66 e 12F§
(2.58)

2.5 Summary

In this chapter, RayleigRitz methodis usedfor the dynamic response of width
tapered laminated composite beams. The resulting force and moment equatiadshfor
tapered composite beams are derived. Energy formulation for dynamic response-of width
tapered laminated composite beaimdescribedbased ononé dimensional laminated
beam theory Formulations for free and forced vibration response of wigjlered
laminated composite beams considering -axidl force and damping are derived.
Buckling response of widttapered laminated composite columns is determined- First

ply failure analysis using Ts&Vu tensor theorys shown
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CHAPTER 3

DYNAMIC RESPONSE OF WID TH-TAPERED LAMINATED CO MPOSITE

BEAMS

3.1 Introduction

In the previous chapter, energy formulations based on Baletoulli beam theory
using RayleigkRitz method weralescribedfor the dynamic response of widthpered
laminated composite beams. First, tlgstem matrices for energy formulation of width
tapered laminated composite beam based ohdimensional laminated beam theory was
considered. Second, the Rayleighz method isusedassuming the deflection to be a
sum of several functions multiplied byefficients. The ceefficients of matrices were
developed for widthapered laminated composite beams. Next, the RayRigh
formulationis usedfor free and forced vibration response of composite beams including
the effects of endxial force and dampgproperties and for buckling response of width
tapered laminated column3he firstply failure analysis for widtltapered composite
beam wasconductedusing TsaWu tensor theory The formulations are used in the
present chapter for a comprehensive patam studyfor free and forced vibration
responseof width-tapered laminated composite beams and buckling response of width

tapered laminated columns.

The material chosen is NE301 graphiteepoxy that is available in the laboratory of

Concordia Centre foComposites (CONCOM). The mechanical properties of the fiber
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and the resin are given in the Tables 3.1 and&s@ectively The geometric properties

are given in detail in Table 3.3. Symmetric laminate is considered in all problems.

The results are summzed in plots to interpret the results. Each subsection is ended

with a short interpretation. Finally, overall summary is provided at the end of the chapter.

Table 3.1 Mechanical properties of unidirectidMdCT-301 graphiteespoxy prepre@24]

Longitudinal modulus (B 113.9 GPa
Transverse modulus {E 7.985 GPa
Es=E, 7.985 GPa
In-plane shear modulus (& 3.137 GPa
Out-of-plane shear modulus £} 2.852 GPa
Density of fiber () 1480 kg/n
Maj or Poi syggonds |0.288

Mi nor Poi :isgfonds |0.018
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Table 3.2 Mechanical properties of resin matefiad]

Elastic modulus (E) 3.93 GPa
Shear modulus (G) 1.034 GPa
Densityof resin ¢ ) 1000 kg/m

Poi ssomps ratio (037

Table 3.3 Geometric properties of widttapered composite beam

Length (L) 0.25m

Width at left section (b 0.016 m

Width ratio (br/by) 0.01, 0.02, 0.09).1, 0.2, 0.4, 0.6, 0.8, 1
Individual ply thickness (t) 0.000125 m

Height of the laminate (H) 0.0045 m

3.2  Elastic behavior of width-tapered laminated composite beam

The design of a tapered structure involves consideration of stiffness, static
strength, gnamic stability and damage tolerance. For designing a wagittred
composite beam, the stiffness distribution, laminate configuration, ply orientation and
width ratio are major considerations. The extensional and flexural stiffness distribution

plays anmportant role in the dynamic response of composite beams.
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3.2.1 Extensional and flexural stiffness distribution for linear width-tapered

composite beam

The linear widthtapered composite beam shown in the Figure 2.1 is considered to
analyze the extensional afiéxural stiffness distribution. The laminate configurations
considered are, 1) LC1 which is the laminate with ([JR@pnfiguration, 2) LC2 which
is the laminate with ([45]g)s configuration, 3) LC3 which is the laminate with
([04/°457])s configuration, and 4) LC4 which is the laminate with {E0]s)s

configuration.

The extensional and flexural stiffness distributions of linear wiattered

composite beams across thedth of the beam for width ratid (/b ) values of 0.01, 0.4

and 1 are determined and are given in the Figure8.3.1Ior laminate configurations
LC1, LC2, LC3 and LC4. The extensional and flexural stiffnesses are represented in

semtlog plot.
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Figures 3.13.3 show the extensional stiffness distribution on laminate

configurations for width ratiob{,/b ) values of 0.01, 0.4 and 1. From the Figure 8.1

can be observed that the laminate configuration LC1 is strongest in terms of extensional
stiffness coefficients A and Ap.. It is fairly evident that from the laminate configurations
considered, most of the @ibers are oriented along the length thie beam for laminate
configuration LC1. Hence values ofAand Assare the leastThe laminate configuration

LC2 is strongest in terms of extensional stiffness coefficiept®aid As. This is because

+45° laminateconfiguration hasigherlaminateshea moduluscomparedo that of LC1,

LC3 and LC4 The laminate configuration LC3 is second largest for extensional stiffness
coefficients A1, A2 and Asg andlowestfor Az, The laminate configuration LC4 is third
largest for extensional stiffness coeffitie A1, A12 and Ags but second largest for A

From the Figure 3.2, the extensional stiffness distribution is similar to the Figure 3.1,
except that the change in the extensional stiffnesses at x=0 and at x=0.25 is smaller,
whereas in the Figure 3.3 tB#ffness distribution is uniform since the beam is uniform.
One can observe from Figures-3.B, that the laminate configuration LC1 is weakest in
terms of extensional stiffness coefficients,fand Ass compared to the laminate
configurations LC2, LC3 ah LC4 because LC1 has lokheower

shear coupling coefficient [82].
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Figure 3.5 Flexural stiffness distributions for linear widthpered composite beam with a
width ratio p_/b ) value of 0.4
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Figure 3.6 Flexural stiffness distributions for linear widthpered composite beam with a
width ratio p_/b, ) value of 1

Figures 3.43.6 show the flexural stiffness distribution on laatenconfigurations for

width ratio @./b) values of 0.01, 0.4 and 1. From the Figure 3.4, the laminate

configuration LC3 is strongest in terms of flexural stiffness coefficigat The laminate

configuration LC1 is second largest, LGIhd LC2 are third rad fourth largest
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respectively This is since most of thé @ibers are oriented along the length of the beam

for the laminate configuration LC3? Gibers have highestFcompared to othdiber
direction which is the direction of the bending loads, wasithe laminate configuration

LC2 is strongest in terms of flexural stiffness coefficienis D,,, Do and Dys. But the
laminate configuration LC1 is strongest in terms of flexural stiffness coefficignthe
laminate configuration LC2 is strongest ierms of flexural stiffness coefficient;§

From the Figure 3.5, the stiffness distribution is similar to the Figure 3.4 except that the
change in the stiffnesses between the length of the beam (x=0 and x=0.25m) is smaller.

From the Figure 3.6, the flaxal stiffness distribution is uniform.

3.3  Free vibration response of widthtapered laminated composite beams

In this section, free vibration response of withpered laminated composite beams is
considered for simphgupported, clampedamped, clampeftee, and freeclamped
boundary conditions. RayleigRitz method is used to find the natural frequencies of
width-tapered composite beams. Comprehensive parametric studies for natural

frequencies of widtltapered composite beams have been shown through plots.

3.3.1 Effect of width ratio (b/b, ) on natural frequencies

To study the effect of width ratido¢/b ) on first three natural frequencies, the

linear widthtapered composite beams with four boundary conditions are considered. The
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boundary conditions considereate: a) SS (Simptgupported), b) CC (Clamped
clamped), c) CF (Clampedee) and d) FC (Freelamped). The width ratio values
considered are 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1, to investigate the effects on
natural frequencies. The laminateniguration considered is ([0/9%)]. The thickness of
the beam is constant. The problems are solved using Raf®égimethod. The results

are summarized in the Figures 3.7, 3.8 and 3.9 to interpret the results.

By using the properties given in the Tebl3.1, 3.2 and 3.3, the current section is

focused to find the effect of width ratib_(b, ) on first three natural frequencies for four

boundary conditions. The natural frequencies are in rad/sec.
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Figure 3.7 Effect of width ratio /b, ) on first natural frequency
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Figures 3.73.9 show the effect of width ratid (b, ) on three natural frequencies
with four boundary conditions. It can be observed that as the width batlp )(values

increase, all three natural frequess increase for simplsuppoted, clampeelamped

and freeclamped boundary conditions. Increasing the width ratifh() valuesresults in

a Q
increase in the value of-directionalbending stiffness tern%)iL g as can be seen
C 11(X)+

from the Equation (2.1}, whichin turn results in increase in stiffness matrix coefficients.
But all three natural frequencies decrease for clanfiiged boundary condition as the

width ratio p./b,) increase along the length of the beam. This is because of the change in

o ~

a Q
the value ofaeflg. Also the stiffness values coincide for clamybegt and free
(3%11(X)+

clamped boundary conditions at wieftio (b_/b, ) =1 as it should be.

3.3.2 Effect of ply orientation and laminate configuration on natural frequencies

To investigate the effects of laminate orientatorfirst three natural frequencies,

the linear widthtapered beam with width ratib (b ) values mentioned previously in the

section 3.3.1 along with four boundary conditions are considered. The laminate
configuration considered ig[°g],). ply group. The beam is made of 36 plies. The
laminate configurations considered for the effect on natural frequencies are: 1)9J{0/90]
denot ed a<s45()dd@Indo,t ed) a(sp/°450)QI2etn,ot3R)d (a[sO 6 LC3d

([0/°60)sd enot ed. as O0LC460
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By using the properties given in the Tables 3.1, 3.2 and 3.3, the current section is
analyzed to find the effect of ply orientation on fundamental natural frequency and the
effect of laminate configurations on first three natural frequencies of ‘apéred
composite beams. The plots 3.10 and 3.11 are showing the variations of natural
frequencies for simphgupported, clampedamped, clampeéree and freeclamped

boundary conditions for uniform and widthpered beam. The width ratib_(b ) value

of 0.5 is considered for widttapered beam to find the effect of ply orientation on

fundamental natural frequency.

T
—— SS-Uniform (4
—+t1+— SS-Tapered ||
—3¢— cC-Uniferm ||
—+— CC-Tapered
CF-Uniform ||

—— CF-Tapered |4
—&— FC-Uniform
—=57 FC-Tapered |]

Fundamental natural frequency(rad/sec)

0 10 20 30 40 50 60 7o 80 90
Ply orientation (degrees)- ([+-theta]9)s

Figure 3.10 Effect of ply orientation on first natural frequency for four boundary

conditions

Figure 3.10 shows the effect of ply orientation on first natural frequency (rad/sec) for
four boundary conditions of uniform and wielilpered beams. From the figure 3.10 it

can be observed that tfiendamentahatural frequency is largest for clampadmped
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boundary condition of uniform beam compared to the widgiered beanilhe second,

third and fourth largest for simplyupported, clampefiee and freeclamped boundary
conditions.The change in the fundamental natural frequency corresponds tordifiéyre
orientations of the laminate. As one can obsénatthe fundamentahaturalfrequency

drops significantly for orientation greater than’.1an semilog plot shown in Figure

3.10, only 5 out of 8 lines in the legend appear to be distinguishdb&isTbecause the
differences in the fundamental natural frequencies among the uniform anetaydted
beams for SS, CC and CF boundary conditions is small on the one hand and a logarithmic
scale is used for the ordinate representing the frequenciheanthierhand It may also

be noted that the difference in the fundamental natural frequency between the uniform
and widthtapered beams for FC boundary condition is larger than that for SS, CC and CF
boundary condition®ecause of the change in craestional stiffness values due to the
restrained conditionThe fundamental natural frequency is second largest for simply

supported, third largest for clampé&ée and fourth largest for freamped condition.
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Figure 3.11 Effect of laminate configurations on natural frequencies

Figure 3.11 shows the effect of laminate configuration on first three natural
frequencies of widthapered composite bearfr four boundary conditiong=rom the
Figure 3.11 one cm observe that the natural frequencies are largest for laminate
configuration LC3, second largest for LC1, third largest for LC4 and fourth largest for
LC2. This difference in natural frequencies is expected for different laminate

configurations becausedahdifferent laminate configurations depend on the stiffness of
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o

a 0]

the beam. The stiffness of the beam depend —eﬁ}—q which is directly related with

o 11(X)§

Qa1 of the ply. Also, as the width ratib (b, ) value increases from 0.01 to 1, the natural

frequencies increader simply-supported, clampedamped and freelamped boundary

conditions. But they decrease for clamyiezk boundary condition.

3.3.3 Effect of length ratio (L /L) on natural frequencies

To study the effect of length ratio (L,) on natural frequencieshe width
tapered composite beams of width ratig/fh) with length ratio (L/L,) as shown in the

Figure 3.12 for four boundary conditions are considered. The plies of {Q/90]
composite beam is made of NG3D1 graphiteepoxy. The geometric propertie$ the

beam are: the beam is considered with 36 plies, the height of the beam is 0.0045 m, and
individual ply thickness g iIs 0.000125 m. fxGd ome @ rhees emitgsu
wider section @f rtelpeg ebeamsabntieobamriower s
represents the Il ength ofreéehreedemtms at hevildem

atwidtht apered se&trieompr,esemdt soLt he | ength of tt

The total length of the beam is kept constant. Changing thehleag® is by changing
length of the beam at wider and narrower sections to achieve different length ratios.

When the length ratio (IL)) is 2, it is that the length of wider section is twice that of
narrower section of the beam. When the length ratjl () is %2, it is that the length of
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wider section is half of the length of narrower section of the bebasreas, when the

length ratio is 1, the length of wider section is equal to the length of narrower section

»<

bw

Toy, 3

La

Lo

Ls

~k" ply

Figure 3.12 Schematic illustration of linear widttapered laminated composite beam

showing the length ratio

By using the properties given in the Tables 3.1, 3.2 and 3.3, the section 3.3.3 is

carried outo find the efect of length ratio (I/L,) on first three natural frequencies with

width ratio (R /b,,) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 considered for

four boundary conditions. The first three natural frequencies for all boundary conditions

areobtained using RayleigRitz method.
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Figure 3.15 Effect of length ratio (I/L,) on third natural frequency

Figures 3.13.15 show theffect of length ratio ([/L,) on three natural frequencies

for all four boundary conditions. From the Figures 33185, it can be observed that as

the length ratiol( /L) increases, all the three natural frequencies increase because as the
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length on thevider section of beam is increased the stiffness of the beam increases. Also

the three natural frequencies increase as the width faflp X valueincreases for SS,

CC and FC boundary conditions, but decrease for CF boundary condition. Another
importantobservation that can be made is the first, second and third natural frequencies

increase for width ratiob(/b, ) values from 0.2 to 0.4 but the natural frequencies remain
unchanged with the increase in width ratin/ ) values beyond 0.4 upto 1. This is

becausavhenthe length of the wider section is bigger than that of the narrower section,

the increase in width ratit(/b, ) has no change in the natural frequencies for SS and CC

boundary condition. But the natural frequencies gradually increase asidtie ratio

(b/b,) values increase from 0.2 to 1 for FC boundary condition, while the natural

frequencies decrease for CF boundary condition.

3.3.4 Effect of boundary condition on natural frequencies

To study the effect of boundary condition on first threauratfrequencies, the

tapered beam of width ratio {ib ) values mentioned in the section 3.3.1 for simply

supported, clampedamped, clampettee and freeclamped boundary conditions are
considered. The different boundary conditions are considereddstigate the degree of
restrain and the position of restraimn the natural frequenciesthe plies of ([0/90Q)s

composite beam is considerd®ly using the properties given in the Tables 3.1, 3.2 and
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3.3, the effect of boundary condition on first thregural frequencies for different width

ratio (b./b,) values isobtained using RayleigRitz method.

Matural frequency (radfsec)

Figure 3.16 Effect of boundary conditions on natural frequencies

Figure 3.16 shows the effect of boungaonditions on first three natural frequencies
for ([0/90]y)s width-tapered composite beankrom the Figure 3.16, it can be observed

that the natural frequencies increase as the width iaib, J values increase from 0.01

to 1 for SS, CC and FC boungarondition, but decrease for CF boundary conditions.
One can observe that for clampeddmped boundary condition, the beam has highest
natural frequencies compared to other boundary condiéistitee beam becomes stiffer.
Beam with freeclamped boundaryondition has lowest natural frequencies because the
beam has lowest stiffness. Then beam with sirsplyported and clampdtee boundary

conditions are second highest and third highest in natural frequencies respectively.
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3.3.5 Effect of end-axial forces on natual frequencies

To investigate the effects of applied emdal (static) forces on first three natural
frequencies, the linear widtiapered beam with width ratid{b, ) values of 0.01, 0.02,
0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 along with four boundamngitons are considered as
shown in the Figure 3.17. The plies of ([0/99tomposite beam which is made by NCT

301 graphitespoxy is considered.

(©

Figure 3.17 Schematic illustration of linear widtapered laminated composite beams
with end axial force for three boundary conditions

Static-end axial compressive and tensile forces are applied at both ends of the beam
as shown in the Figure 3.1F.r om t he Figure 3.-4Udppomadedepd

represents clamped| amped and 0 c 6-free bqumderys eomditiaiThec | a mp e
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natural frequencies are calculated for simglypported, clampedamped and clamped
free boundary conditions. The critical buckling load and-pigttensile failure loasl are
determined in the sections53l and 3.1 respectively. The eraial compressive and
tensile forces which are applied as the percentage of the critical bulddidP_) and

first-ply tensile failure loadP,) in the current section to find théect of axial forces on

natural frequencies.

By using the properties given in the Tables 3.1, 3.2 andti¥3effect of applied
static eneéaxial compressive and tensile forces on first three natural frequencies for three
boundary conditions are determihen the current section. The first three natural

frequencies are obtained using RayleRjtz method.

Table 3.4 Effect of end axial compressive force fnst threenatural frequenciesimply

supported bouwtary condition

Width ratio (/b )

% Pcr| Mode No.
0.01 | 0.02 | 0.05 0.1 0.2 0.4 0.6 0.8 1

1 1199 | 1203 | 1214 | 1227 | 1244 | 1260 | 1267 | 1269 | 1270
0 2 5056 | 5063 | 5077 | 5088 | 5091 | 5086 | 5082 | 5080 | 5080
3 11438| 11446| 11460| 11464| 11456| 11439| 11432| 11429| 11430
1 1017 | 1020 | 1028 | 1038 | 1053 | 1064 | 1070 | 1074 | 1076

50

% decreasg 15 15 15 15 15 16 15 15 15
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2 4888 | 4895 | 4906 | 4912 | 4913 | 4902 | 4897 | 4896 | 4898

% decreasq 3 3 3 3 3 4 4 4 4

3 11269 11276| 11287 | 11288 | 11278| 11257 | 11249| 11248| 11250
% decreasq¢ 1 1 2 2 2 2 2 2 2

1 818 | 820 | 825 | 830 | 845 | 849 | 856 | 861 | 865

% decreasq 32 32 32 32 32 33 32 32 32

2 4733 | 4738 | 4746 | 4748 | 4747 | 4730 | 4725 | 4725 | 4728
95

% decreasq 6 6 7 7 7 7 7 7 7

3 11115| 11121 11129| 11127| 11116| 11090| 11082| 11082 | 11085

% decreasq 3 3 3 3 3 3 3 3 3

Table 3.5 Effect of end axial compressive force &irst three natural frequencie$

clampedclamped boundary condition

Width ratio @R/bL)

% Pcr| Mode No.
0.01 | 0.02 | 0.05 0.1 0.2 0.4 0.6 0.8 1

1 2475 | 2511 | 2591 | 2674 | 2761 | 2836 | 2865 | 2876 | 2879
0 2 7264 | 7328 | 7470 | 7614 | 7759 | 7874 | 7915 | 7931 | 7936
3 14657| 14754 | 14971 | 15188| 15348 | 15485| 15533| 15552| 15558
1 2023 | 2079 | 2179 | 2267 | 2358 | 2433 | 2463 | 2474 | 2477

% decreasqd 18 17 16 15 15 14 14 14 14

2 6610 | 6722 | 6915 | 7077 | 7231 | 7349 | 7392 | 7408 | 7413

> % decreasg 9 8 7 7 7 7 7 7 7
3 13913| 14080| 14361 | 14586| 14782| 14921 | 14970| 14989 | 14995

% decreasqd 5 5 4 4 4 4 4 4 4
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1 1550 | 1613 | 1723 | 1819 | 1916 | 1996 | 2027 | 2039 | 2042

% decreasq 37 36 34 32 31 30 29 29 29

o5 2 6079 | 6194 | 6392 | 6560 | 6718 | 6840 | 6885 | 6902 | 6906

% decreasq¢ 16 15 14 14 13 13 13 13 13

3 13373| 13542| 13826 | 14053| 14253 | 14394 | 14444 | 14463| 14469

% decreasq 9 8 8 7 7 7 7 7 7

Table 3.6 Effect of end axial compressive force &irst three natural frequencie$

clampedfree boundary condition

Width ratio @R/bL)
% Pcr Mode No.
0.01|002|005| 01| 02| 04| 06| 0.8 1
1 902 | 886 | 841 | 781 | 694 | 590 | 527 | 484 452
0 2 3917 | 3851| 3692 | 3511 | 3300 | 3090 | 2974 | 2895| 2835
3 9531 | 9385| 9068 | 8760 | 8456 | 8200 | 8076 | 7997 | 7939
1 787 | 772 | 733 | 681 | 606 | 515 | 461 | 423 396
% decreasg 13 13 13 13 13 13 13 13 13
2 3806 | 3741| 3587 | 3413 | 3212 | 3014 | 2906 | 2832| 2776
>0 % decreasq¢ 3 3 3 3 3 2 2 2 2
3 9427 | 9283 | 8971| 8669 | 8375| 8132 | 8016| 7943| 7889
% decreasg 1 1 1 1 1 1 1 1 1
1 663 | 651 | 618 | 574 | 511 | 435 | 389 | 357 334
% decreasq 27 27 27 26 26 26 26 26 26
% 2 3702 | 3640| 3491 | 3323 | 3131 | 2944 | 2843 | 2774| 2722
% decreasq 5 5 5 5 5 5 4 4 4
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3 9333 | 9191 | 8883 | 8587 | 8302 | 8071 | 7962 | 7893| 7844

% decreasd 2 2 2 2 2 2 1 1 1

Tables 34-3.6 show the effect of end axial compressive forces on first three natural
frequencies for simphgupported, clampedamped and clampedee boundary
conditions. The compressive axial load is applied as % of critical buckling load. From the
Tables 3.43.6, one can observe that as the axial compressive load is increased from 0 to
95 % of critical buckling load, the natural frequencies decrease. This is because as the
axial compressive load is applied at the end of the beam, the beam becomes less stiff
which results in decrease in the natural frequendies. % of decrease in the natural

frequencies due to the application of endal compressive loads is shown

Table 3.7 Effect of end axial tensile force dirst threenatural frequenciessimply-

supported boundary condition

Width ratio @R/bL)

% P, | Mode No.
0.01 | 0.02 | 0.05 0.1 0.2 0.4 0.6 0.8 1

1 1199 | 1203 | 1214 | 1227 | 1244 | 1260 | 1267 | 1269 | 1270
0 2 5056 | 5063 | 5077 | 5088 | 5091 | 5086 | 5082 | 5080 | 5080
3 11438| 1144 | 11460| 11464 | 11456| 11439| 11432| 11429| 11430
1 4234 | 4259 | 4317 | 4382 | 4457 | 4525 | 4552 | 4579 | 4606

50

% increase| 253 254 256 257 258 259 259 261 263
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2 9890 | 9916 | 9974 | 10030| 10082 | 10118| 10129| 10140| 10151

% increase 96 96 96 97 98 99 99 100 100

3 17257| 17282| 17332| 17374| 17405| 17419 | 17423 | 17427 | 17431

% increase 51 51 51 52 52 52 52 52 53

1 5682 | 5721 | 5811 | 5909 | 6020 | 6118 | 6157 | 6192 | 6231

% increase 374 376 379 381 384 386 386 388 391

2 12741| 12780| 12865| 12949| 13029 | 13085| 13103| 13146 | 13164
95

% increase 152 152 153 155 156 157 158 159 159

3 21161 21197| 21270| 21335| 21388 | 21419 | 21428 | 21459 | 21468

% increase 85 85 86 86 87 87 87 88 88

Table 3.8 Effect of end axial tensile force dirst threenatural frequeries i clamped

clamped boundary condition

Width ratio @R/bL)

% P, | Mode No.
0.01 | 0.02 | 0.05 0.1 0.2 0.4 0.6 0.8 1

1 2475 | 2511 | 2591 | 2674 | 2761 | 2836 | 2865 | 2876 | 2879
0 2 7264 | 7328 | 7470 | 7614 | 7759 | 7874 | 7915 | 7931 | 7936
3 14657| 14754 | 14971 | 15188| 15348 | 15485| 15533 | 15552 | 15558
1 5021 | 5086 | 5206 | 5316 | 5430 | 5526 | 5564 | 5578 | 5582

% increase| 103 103 101 99 97 95 94 94 94

50 2 11516| 11625| 11815| 11974| 12120 12228 | 12266 | 12281 | 12285

% increase| 59 59 58 57 56 55 55 55 55

3 19814 | 19972| 20239 | 20451| 20632 | 20757 | 20800| 20817 | 20823
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% increasel 35 35 35 35 34 34 34 34 34

1 6446 | 6524 | 6668 | 6802 | 6942 | 7059 | 7105 | 7123 | 7128

% increase 160 160 157 154 151 149 148 148 148

2 14281| 14398| 14603| 14775| 14931 | 15045| 15084 | 15099 | 15104
95

% increase 97 96 95 94 92 91 91 90 90

3 23562 | 23722| 23995| 24209 | 24391 | 24515| 24557 | 24573 | 24579

% increase 61 61 60 59 59 58 58 58 58

Table 3.9 Effect of end axial tensile force dirst threenatural frequenciesclamped

free boundary condition

Width ratio @R/bL)

% P | Mode No.

0.01 | 0.02 | 0.05 0.1 0.2 0.4 0.6 0.8 1

1 902 886 841 781 694 590 527 484 452
0 2 3917 | 3851 | 3692 | 3511 | 3300 | 3090 | 2974 | 2895 | 2835
3 9531 | 9385 | 9068 | 8760 | 8456 | 8200 | 8076 | 7997 | 7939
1 3694 | 3655 | 3547 | 3396 | 3166 | 2866 | 2674 | 2538 | 24

% increase 309 313 322 335 356 386 407 424 438

2 9045 | 8951 | 8725 | 8472 | 8196 | 7961 | 7856 | 7794 | 7750
50

% increase 131 132 136 141 148 158 164 169 173

3 15818| 15653 | 15301 | 14976| 14687 | 14479 | 14392| 14339 | 14302

% increase| 66 67 69 71 74 77 78 79 80

1 4933 | 4883 | 4743 | 4545 | 4239 | 3838 | 3579 | 3394 | 3254
95

% increase 447 451 464 482 511 551 579 601 619
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2 11759| 11643| 11361 | 11041| 10685| 10382 | 10247 | 10168 | 10115

% increase 200 202 208 214 224 236 245 251 257

3 19721| 19531 19122| 18741| 18401 | 18163 | 18065| 18009 | 17970

% increase 107 108 111 114 118 121 124 125 126

Tables 3.73.9 show the effect of end axial tensile force on first three natural
frequencies for four boundary conditions. The tensile axial load is applied as % of tensile
failure load. From the Tables733.9, one can observe that as the tensile axial load is
increased from 0% to 95 % of tensile failure load, the natural frequencies increase. This
is because as the axial tensile load is applied the beam becomes stiffer thereby increasing
the natural fregencies.It may be noted that the percentage increase in the natural
frequencies is higher for applied eaxial tensile load compared to the case of
percentage decrease in the natural frequencies due to appladiahcompressive load,

because the magdundes of tensile failure loads are higher than the critical buckling load.

3.3.6 Effect of damping on natural frequencies

To investigate the effect of damping on first three natural frequencies, the linear

width-tapered beam with width ratib{/b ) values 0f0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6,

0.8 and 1 for four boundary conditions are considered. The plies of {Q/€@inposite

beam which is made by using N&D1 graphiteepoxy is considered.
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The mass proportional consta@ay and stifhess proportional constaps) are 3.753

and 4.83 10 °respectively which are obtained through experimental modal teisting

described in the section 4.6.1.

By using the properties given in the Tables 3.2,8hd 3.3the effect of damping on
first three natural frequencies for four boundary conditions are carried the gurrent
section. The first three natural frequencies corresponding to the effects of damped and

undamped conditions are obtained usirylRigh-Ritz method.
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Figures 318-3.21 show the effect of damping on first three natdrajuencies for all
four boundary conditions. From the Figu®483.21 it can be observed that the natural
frequencies decrease for damped condition compared to that obtained-dampad
condition. The difference between the undamped and dampedlfedguencies is small

because of low values of damping.

3.4 Comparison of natural frequencies between RayleigiRitz method and

conventional finite element method.

By using the properties given in the Tables 3.1, 3.2 and 3.3, the
current section presentbet comparison ofirst three natural frequencies faimply-
supported, clampedamped, clampettee and freeclamped boundary conditions of
width-tapered composite beams obtained by using RayRigh method with that
obtained usingconventional finiteelement method 81]. The compared results are

summarized in the Tablesl®-3.13 below.

Table 3.10 Comparison of natural frequenci€Simply supported boundary condition

Width ratio| Mode RayleighRitz Conventional finite %
(be/b)) No. Method element method difference
0.01 W1 1199 1199 0.07
Wo 5056 5055 0.00
W3 11438 11428 0.09
0.02 W1 1203 1204 0.10
Wo 5063 5065 0.05
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Ws 11446 11446 0.00
0.05 Wi 1214 1216 0.13
Wo 5077 5083 0.11

Wa 11460 11470 0.08

0.1 Wi 1227 1229 0.14
Wa 5088 5094 0.13

Ws 11464 11478 0.12

0.2 Wi 1244 1246 0.14
Wa 5091 5098 0.13

Ws 11456 11471 0.13

0.4 Wi 1260 1261 0.12
Wa 5086 5092 0.12

Ws 11439 11453 0.12

0.6 Wi 1267 1268 0.11
W2 5082 5087 0.11

Ws 11432 1144 0.11

0.8 Wi 1269 1270 0.10
Wo 5080 5085 0.10

Ws 11429 11440 0.10

1 Wi 1270 1271 0.08
W2 5080 5084 0.08

Wa 11430 11440 0.08

Table 3.11 Comparison of natural frequencie£lampedclamped boundary calition

Width ratio | Mode | RayleighRitz Conventional finite %

(be/b)) No. Method element method difference
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0.01 Wy 2475 2439 1.45
Wo 7264 7159 1.45

Ws 14657 14505 1.04

0.02 Wy 2511 2495 0.65
Wo 7328 7273 0.75

Ws 14754 14679 0.51

0.05 Wy 2591 2501 0.01
Wo 7470 7462 0.11

Ws 14971 14958 0.08

0.1 Wy 2674 2677 0.13
Wo 7614 7621 0.08

Ws 15188 15178 0.07

0.2 Wi 2761 2765 0.14
Wo 7759 7770 0.14

Ws 15348 15370 0.14

0.4 Wi 2836 2839 0.12
Wo 7874 7883 0.12

Ws 15485 15504 0.13

0.6 Wi 2865 2868 0.11
Wo 7915 7924 0.11

Ws 15533 15550 0.11

0.8 Wi 2876 2879 0.10
Wo 7931 7939 0.10

Ws 15552 15567 0.09

1 W 2879 2881 0.08
Wo 7936 7943 0.08

Ws 15558 15571 0.08
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Table 3.12 Comparison of atural frequencigs Clampedfree boundary condition

Width ratio| Mode | RayleighRitz Conventional finite %
(bo/b)) No. Method element method difference
0.01 W1 902 904 0.14
Wo 3917 3922 0.13
W3 9531 9542 0.12
0.02 Wy 886 887 0.14
Wy 3851 3855 0.13
W3 9385 9396 0.12
0.05 W1 841 842 0.14
Wo 3692 3696 0.13
W3 9068 9079 0.12
0.1 Wy 781 782 0.14
Wo 3511 3515 0.13
W3 8760 8771 0.13
0.2 Wy 694 695 0.13
W 3300 3304 0.13
W3 8456 8467 0.13
0.4 W1 590 591 0.12
W, 3090 3093 0.12
W3 8200 8210 0.12
0.6 W1 527 528 0.11
Wo 2974 2977 0.11
W3 8076 8084 0.11
0.8 Wy 484 485 0.10
Wo 2895 2898 0.10
W3 7997 8004 0.10
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W 452 453 0.08
Wo 2835 2838 0.08
W3 7939 7946 0.08

Table 3.13 Compari®n of natural frequenciésFreeclamped boundary condition

Width ratio | Mode | RayleighRitz Conventional finite %
(b/b)) No. Method element method difference
0.01 Wy 151 150 0.66
Wo 2019 2015 0.22
W3 6879 6868 0.16
0.02 Wi 167 167 0.04
W, 2075 2076 0.07
W3 6981 6985 0.07
0.05 W, 199 199 0.19
Wo 2186 2190 0.17
W3 7173 7184 0.16
0.1 Wy 233 233 0.16
Wo 2300 2303 0.16
W3 7348 7359 0.16
0.2 Wy 279 280 0.15
Wo 2438 2442 0.14
W3 7531 7542 0.14
0.4 Wy 341 342 0.13
Wo 2599 2603 0.12
W3 7709 7719 0.13
0.6 Wy 386 387 0.11
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Wo 2701 2704 0.11

Ws3 7810 7818 0.11

0.8 Wy 422 423 0.10
Wo 2776 2779 0.10

Ws3 7882 7889 0.10

1 Wy 452 453 0.08
Wo 2835 2838 0.08

W3 7939 7946 0.08

Tables 310-3.13 show the comparison of three natural freogies for simply
supported, clampedamped, clampettee and freeelamped boundary conditions of
width-tapered composite beams for widttio values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4,
0.6, 0.8 and 1. The comparisons of natfrediuencies were madetixeen RayleigiRitz
method and conventional finite elemantthod [81]for validation purposeFrom the
abovetable, the comparison differences for simplypported boundary condition is
<0.2%, for clampeglamped boundary condition it is <1.5%, falampel-free
boundary condition it is <0.15% and for fremmped boundary condition it is
<0.7%. The comparison differences in natural frequencies from the above tables

arewell accepted.
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3.5  Buckling response of linear widthtapered composite columns

In this setion, buckling response of widtilapered laminated composite columns is
considered for simphgupported, clampedamped, clampeétee and freelamped
boundary conditions. RayleigRitz method is used to find the critical buckling load for

width-tapered omposite columns. The effects of width ratid /b ), laminate

configuration, length ratio and boundary conditions on critical buckling loads for-width

tapered composite columns have been shown through graphical plots.

3.5.1 Effect of width ratio (b/b, ) on critical buckling load (P_)

To study the effect of width ratidg/b, ) on critical buckling load (P), the linear

width-tapered composite columns with SS (simglypported), CC (clampedamped),
CF (clampedfree) and FC (freelamped) boundary conditionseaconsidered. The width

ratio (/b ) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 are considered to
investigate the effects on critical buckling load XPThe plies of ([0/9Q)s composite

beam which is made up of NE301 graphiteepoxy isconsidered to find the critical

buckling loads.

By using the properties given in the Tables 3.1, 3.2 andil®&3effect of width

ratio (/b ) on critical buckling load (P for four boundary conditions is carried out in

the currentection.
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Figure 3.22 Effect of width ratio /b, ) on critical buckling load (Pcr)
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Figure 3.2 shows the effect of width ratid{/b, ) on critical buckling load (&) for all

four boundary conditins. It can be observed that as the width ratio values increase the
critical buckling load increases for SS, CC and FC boundary conditions, but decreases for
CF boundary conditionThis is because the critical buckling load,(Flepends on the
restrainecconditionat both ends of the bearfhe degree of restrdiand the position of
restrairt affect the value of stiffnessf the beamin clampedfree boundary condition, the
beam is fixed at the wider section and free at the narrower sethiercritical luckling

load is highest for clampetlamped boundary condition ardwest for free-clamped
boundary conditionThe critical buckling load is second and third highest for simply

supported and clampédtee boundary conditions respectively.

3.5.2 Effect of laminate configuration on critical buckling load (Pgy)

To investigate the effect of laminate configurations on critical buckling logd (P
the linear widthtapered column with width ratiob(/b ) values mentioned above in

section 3.1 with four boundary conddns are considered. The ply of composite column
is made up of NCEO01l graphiteepoxy and consists of 36 plies. The laminate
configurations considered are: 1) ([0/99d e not ed a s 45k @hofed as?2 ) ([

6LC26 4°48)défidt ed as 06°60Rde n atnedd 49 s (qLOC4 6 .

By using the properties given in the Tables 3.1, 3.2 andi83ffect of laminate

configurations on critical buckling load (JPfor width ratio (R/b, ) vaues of 0.01, 0.02,
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0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 which is obtained using RayRigimethod is carried

out inthecurrent section.
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Figure 3.3 shows the effect of laminate configuration on critical buckling load
for all four boundary conditions. From the Figure3dhe can observe that the critical
buckling load for variation of width ratiqb_/b ) values is largest for laminate
configuration LC3, second largest for LC1, third largest for LC4 and fourth largest for

LC2. This difference in critical buckling load is expected for different laminate

configurations because the stiffness of th&urmm depends omending stiffness term

a Q
e 1 9 which is directly related with Q of the ply.

&1;()() §

3.5.3 Effect of length ratio (L /L) on critical buckling load (P_)

To study the effect of length ratid (L,) on critical buckling load (B, the
tapered column of with ratio f_/b, ) values mentioned in sectiorbal for four boundary

conditions are considered. The plies of ([0§0¢omposite beam which is made up of

NCT-301 graphiteepoxy is considered.
The geometric properties of the column considered are: thathaighe column

is 0.0045 m and individual ply thicknesg) (s 0.000125 m. The column at wider section
section {6 st wdepirre stemd sF it ier

narrower
of,0t heptheldngtmdh thercellsnp atc t i v e

and
ons

narrower sect.
wider s@ctriepnmese mtwidthtageredsecdondt h he cofoumn,
represents the length of the column at narrower section. The total length of the column is
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kept constant. Changing the length ratio yschanging lengths of the column at wider
and narrower sections to achieve different length ratios. When the length ratio is 2, the
length of wider section is twice that of narrower section of the column. When the length
ratio is %, the length of wider demn is half of the length of narrower section of the
column. When the length ratio is 1, the length of wider section is equal to the length of

narrower section.

By using the properties given in the Tables 3.1, 3.2 andtt&3effect of length

ratio (L/L,) on critical buckling load (P with different width ratio (/b ) values for

four boundary conditions is carried outthre current section. The critical buckling loads

(P,) for all boundary conditions are obtained using Raykga method.
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Figure 3.24 Effect of length ratiol(,/L ;) on critical buckling load (#)

Figure 3.2 shows the effect of length ratid (L) on critical buckling load for
all four boundary condition The critical buckling load is highest for length ratig/I( ;)

of 2 and least for length ratio 0.25. Another observation can be made is thatdtithe

ratio (b/b ) increases from Q.to 1, the critical buckling loadncreases for simply
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supported, lampedclamped and freelamped boundary condition butecreasedor

clampedfree boundary condition.

3.5.4 Effect of boundary conditions on critical buckling load (P,)

To study the effect of boundary conditions on critical buckling loagd) the
tapered compsite column with width ratiokt./b ) valuesmentioned in the section 3.5.1

for four boundary conditions are considered. The plies of ([9€pmposite columns
which consists of 36 plies made of N@GU1 graphiteepoxy. By using the properties
given in tre Tables 3.1, 3.2 and 31Be effect of boundary condition on critical buckling

load (P,) with width ratio (k/b,) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1

for four boundary conditions is carried outie current section.
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Figure 3.5 shows the effect of boundary conditions on critical buckling load. It
can be observed that the crititalckling load is highest for clamp&thmped boundary
condition since the column is stiffer and least for ftkemped boundary condition.

Another observation can be made is that as the width kajib, ) values increase from

0.01 to 1, the critical budikg load increases for SS, CC and FC boundary conditions, but

decreases for CF boundary condition.

3.6  First-ply failure load

A laminate will fail under increasing mechanical and thermal loads. The laminate
failure, however, may not be catastrophic. It isgible that some layer fails first and that
the composite continues to take more loads until all the plies8il\Vhen a ply fails, it
may have cracks parallel to the fibers. This ply is still capable of taking load parallel to
the fibers. Here, the acked ply can be replaced by a hypothetical ply that has no
transverse stiffness, transverse tensile strength, and shear strength. The longitudinal
modulus and strength remain unchanged. When a ply fails, fully discount the ply and
replace the ply of nearero stiffness and strength. Near zero values avoid singularities in

stiffness and compliance matrices.

In order to find the effect of static esmial tensile force on natural frequencies
and forced response of widthpered composite beam, the firply failure load for

beams ofvidth ratio(b./b, ) values mentioned in the section 3.5.takculated
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The ply of composite beam is made of NGU1 graphiteepoxy. The laminate
configuration considered is ([0/90] The firstply failure load for 0° and 90glies in the
laminate are obtained using Tisalu failure theory. The geometric properties of the

beam considered are given in Table 3.3.

3.6.1 First-ply failure tensile and compressive loads for widtitapered beam

By using the properties given in the Tables, 82 and 3.3the firstply failure
load for beams of width ratio (fp, ) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and
1 is carried out ithe current section. The tensile and compressive failure load$dnd0
90” plies are obtained by TsHVu failure criterion. The method to find the fisty

failure load using TsaiVu failure criterion is given as:

1 The load applied is axial load, hence only the extensional stiffness matrix is
required. The extensional compliance matrix is calculated@8(QJo)s laminate

1 The midplane strains for symmetric laminates subjecteg=td N are calculated

1 The midplane curvatures are zero because the laminate is symmetric and no
bending and no twisting loads are applied. The global strain for 0° ply is found b
transformationrelation. One can find the global stress for 0° pBing constitutive
relation

i Using the transformation relation the local stresses are found.

i The Tsai Wu failure theory is applied for 0° ply.
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1 Using the parameters,H~, Fs, Fi1, Foo, Fes, and Frp, the TsdiWu failure theory

gives the failure load for 0° ply.

1 The above steps are followed for 90° plies

1 The tensile and compressive failure loads for 0° and 90° plies in the laminate are

summarized in Tables 3.8 and 3.9 respectively.

Table 3.14 Failure loads for Oply

Width  ratio| Tensile failure load Compressive failure
(b/b)) (MN) load (MN)
0.01 3.1456 2.7531
0.02 3.1456 2.7532
0.05 3.1457 2.7533
0.1 3.1459 2.7534
0.2 3.1463 2.7540
04 3.1471 2.7547
0.6 3.1479 2.7553
0.8 3.1486 2.7560
1 3.1494 2.7566
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Table 3.15 Failure loads for 908ly

Width  ratio| Tensile failure | Compressive failure
(be/b)) load (MN) load (MN)
0.01 1.6198 0.926526
0.02 1.6198 0.926537
0.05 1.6199 0.926571
0.1 1.6200 0.926641
0.2 1.6202 0.926754
0.4 1.6206 0.926981
0.6 1.6210 0.927207
0.8 1.6214 0.927432
1 1.6218 0.927658

Tables 314-3.15 show the tensile and compressive failure loads of linear width
taperel composite beam at right most end of the beam. Thepfirdiailure load varies
for different width ratio values of widttapered composite beams. From the TaBlaég
3.15using the TsaWWu theory it can be found that the failure load is minimum for the
90° ply compared to 0° ply. This is considered as-fitgtfailure load for ([0/90))s
laminate. The failure loads (tensile and compressive) for both 0° and 90° plies are least
for width ratio value of 0.01 and highest for 1, this is because of timgeha the cross

section of the beam. The firpty failure load is used to find the natural frequencies and
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forced response including effect of static @nahl load. The load applied is less than the
failure load in tensile condition and lesser than ltbekling load for compressive load

condition.

3.7  Forced vibration analysis of widthtapered laminated composite beams

In this section, a sinusoidal force with excitation frequencys applied at four
excitation points shown in the Figure28.to obtain theforced response in terms of
sinusoidal transversalisplacement of widthapered laminated composite beams for
simply-supported, clampedamped and clampedee boundary conditions. Rayleigh
Ritz method is used to find the sinusoidal transverse displateohemidth-tapered

composite beams

Figure 3.26 Schematic illustration of linear widtapered laminated composite beams

showing the excitation points
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Effects of width ratio lf./b ), laminate configurasn, length ratio (L/Ls),

boundary condition, and static eadial force on sinusoidal transverse displacement of

width-tapered composite beams are discussed in the further sections.

3.7.1 Effect of width ratio (b./b ) on forced response in terms of sinusoidal

transverse displacement

To investigate the effect of width ratid b ) on forced response in terms of

transverse displacement, the linear witithered composite beam of clamgesk
boundary condition at four excitation points as shown in the Fig@@aBe considered.

The width ratio §_/b, ) values considered are 0.2, 0.5, and 1 to investigate the effect on

transverse displacement. The plies of ([0JR0}omposite beam which is made up of

NCT-301 graphiteepoxy is considered.

A sinusoidal force of mgnitude 2N with excitation frequenayis applied at four
excitation points. The sinusoidal force 2N is chosen based on the input force measured in
experimental modal analysis using impact hammer technique as explained in section
4.7.2. By using the mechanical and geometrical properties givére Tables 3.1, 3.2
and 3.3, the forced response in terms of transverse displacement obtained for-clamped
free boundary condition corresponding to the four excitation points. The forced response
in terms of sinusoidal transverse displacement is oldtailseng RayleigiRitz method.

The range of frequency in theaxis is between 1 to 10000 Hz.
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Figure 3.27 Effect of width ratio /b ) on frequencydisplacement response

Figure 327 shows the effect of width ratid(/b ) on forced response in terms of

transverse displacement amplitude with excitation frequenagplied at four excitation

points for clampedree (cantilever) boundary condition. The width rabg/l ) values of

the beam considered are 0.2, 0.5 and 1. From the Fidiifeit3can be observed thédr
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clampedfree boundary conditigriransverselisplacement amplitude is highest for width

ratio (b/b ) value ofl, second highest for width ratio value of 0.5 and ldvfeswidth

ratio value of0.2 This indicates that the transverse displacement amplitude is highest for
higher width ratio values of the beam. As the width ratio value increases, transverse
displacement amplitudancreases The transverse displacement ditope is highest at
excitation point 1 and lowest at excitation point 4. Another observation that can be made
is that the transverse displacement amplitude is highest for mode 1 and lowest for mode 3
at excitation point 1, whereas for excitation point the transverse displacement
amplitude is highest for mode 1 and lowest for mode 2. This is same for all width ratio

values of the beam.

3.7.2 Effect of laminate configuration on forced response in terms of sinusoidal

transverse displacement

To investigate theffect of laminate configuration on forced response in terms of
transverse displacement, the linear wititperedclampedfree beam with width ratio

(bo/b)) values of 0.2, 0.5, and 1 are considefBue laminate configurations are chosen
differently to unerstand the effect of different fiber orientations on forced vibration
responseThe laminate configurations considered are: 1) ([@J9le not ed as O0LC]
([°45p)sd enot ed asJ°HBhadzh,0tI)d (@[s0 o°l6@Rdenotechas d 4)

6 L C Zhe different laminate
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A sinusoidal force of magnitude 2N with excitation frequewdg applied at four
excitation points as shown in the Figur2e3.By usirg the properties given in the Tables
3.1, 3.2 and 3.3, the effect of laminate configuration on forced responses in terms of
sinusoidal transverse displacements are obtained for clafrggetoundary condition at
four excitation points for width ratiobg/b ) values of 0.2, 0.5, and 1. The forced

responses in terms of sinusoidal transverse displacement are obtained using Rayleigh

Ritz method.
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width-ratio (b /b, ) value of 0.2
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Figure 3.29 Effect of laminate configurations on frequermyplitude response for

width-ratio (b /b, ) value of 0.5
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width-ratio (b_/b, ) value of 1
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Figures 8-3.30 shows the effect of laminat®nfiguration on forced response in terms

of sinusoidatransverse displacement amplitude for width ratjgl{ ) values of 0.2, 0.5,

and 1 with excitation frequencwy applied at four excitation points for clampide
boundary condition as shown in theglie 326. From the Figure8.283.30 it can be
observed that the transverse displacement amplitude is largest for laminate configuration
LC2, second largest for laminate configuration LC1, third largest for LC4 and lowest for
laminate configuration LC3This is common at all the excitation points on the beam. The
transverse displacement amplitude is largestaiogle ply laminateL,C2 because the
fibers are oriented along4®’ and -45°, which has lower extensional and bending

stiffness but higher shearodulus

Another observation that can be made is the transverse displacement amplitude is

largest when the width ratito(/b ) value of the beam is 1. The transverse displacement
amplitude reduces as the width ratib /b ) values reduce. Different laminate

configurations of composite beams give the different stiffness according to ply

orientations in the laminate.

3.7.3 Effect of length ratio (Li/L3) on forced response in terms of sinusoidal

transverse displacement

To study the effect of length ratio L3) on forced response in terms of

sinusoidal transverse displacement, the widffered composite beams of width ratio
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(by/b,) with Length ratio (k/Ls) shown in the Figure 3.12 for clampé&éde boundary

condition is considered. The laminate configuration comsdles ([0/90§)s and each ply

of composite beam is made of NGBD1 graphiteepoxy. The geometric properties of the
beam are: the beam is considered with 36 plies, the height of the beam is 0.0045 m, and
individual ply thickness (} is 0.000125 m. A sumsoidal force of magnitude 2N with
excitation frequencyv is applied at four excitation points. By using the properties given

in the Tables 3.1, 3.2 and 3.®e effect of length ratio ¢fL3) on forced response in

terms of sinusoidal transverse displacameith width ratios (f/b,) values of 0.2, 0.5,

and 1 for clampedree boundary conditioms carried out inthe current section. The
forced response in terms of sinusoidal transverse displacements is obtained using

RayleighRitz method.
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Figure 3.33 Effect of length ratio (L/L3) on frequencyamplitude regonse for width

ratio (b, /b,) value of 1

Figures 3.2-3.33 shows the effect of length ratios(L3) on forced response in terms
of transverse amplitude displawents with excitation frequency applied at four

excitation points for clampefilee boundary condition. From the Figa®31-3.33 it can
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be observed that the transverse displacement amplitude is largest for length.fagjo (L
value of 0.25 and lowest for length ratio/lLs) value d 2. The transverse displacement
decrease with increase in length ratio because for largest length ratio values, the length of
wider section of the beam increases, which makes the beam stiff that results in lower
response in terms of transverse displaggewer length ratio value of the beam results

in increase in transverse amplitude displacement.

Another important observation that can be made is the transverse displacement

amplitude is largest at excitation points 1 and 2 for clanipEziboundary audition.

3.7.4 Effect of boundary conditions on forced response in terms of sinusoidal

transverse displacement

To study the effect of boundary conditions on forced response in terms of

transverse displacement, the width rabg/l§ ) values of 0.2, 0.5, and T width-tapered

composite beams with four excitation points are considered. Ssopiyorted, clamped
clamped and clampeftee boundary conditions are considered. The laminate
configuration considered is ([0/9)] and each ply of composite beam is matiBlGT-

301 graphiteepoxy.

A sinusoidal force of magnitude 2N with excitation frequemcis applied at four
excitation points shown in Figure2®. By using the properties given in the Tables 3.1,
3.2 and 3.3the effect of boundary conditions on forceponse in terms of sinusoidal
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transverse displacement is presentethecurrent section. The forced response in terms
of sinusoidal transverse displacement is obtained using RayRtigimethod. The range

of frequency is between 1 to 10000 Hz.
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Figure 3.34 Effect of simplysupported boundary condition on frequeyplitude
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Figure 3.36 Effect of clampeetlamped boundary condition on frequeraayplitude

response

Figures 3.3-3.36 show the effect of boundary conditions on forced response in terms
of transverse displacement amplitude with excitation frequen@pplied at four

excitation points. From the Figurés343.36 one can be observe that the forced
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response in terms of transverse displacement amplitude is largest for claeged
boundary condition and lowest for clampadmped boundary condition. Ehis because

at clampedtree boundary condition of the beam, since the stiffness of the beam is low,
the transverse displacement amplitude if high, and for clarola@dped boundary

condition since the beam is stiffest the transverse displacement amjditaae

The transverse displacement amplitude is largest for clafinpedboundary condition
at excitation point 1, second highest for simplypported at excitation points€23 and
lowest for clampedlamped boundary condition at excitation points 2 andnother
observatiorthatcan be made that is the transverse displacement amplitlmeeist for

width ratio p/b ) value of 0.2 for simply supported and clamjotsimped boundary
conditions for clampeefree boundary condition as the width ratn/p, ) values increase

from 0.2 to 1, the transverse displacement amplitude increases since the beam is less stiff

at the free end of the beam.

3.7.5 Effect of axial forces on forced response in terms of sinusoidal transverse

displacement

To investigate the effectsf applied enehxial (static) tensile and compressive loads
on forced response in terms of transverse displacement, the linear-tapdthd

composite beams with width ratid (b ) values of 0.2, 0.5, and fbr clampedfree

boundary condition with fourxgitation points are considered. The ply of composite
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beam is made up of NC301 graphiteepoxy and the laminate consists of 36 plies. The
length (L) of the beam is 0.25 m, the height of the beam (H) =0.0045 m and individual
ply thickness ) is 0.000125n. Concentrated eraiial compressive and tensile loads as
the % of critical buckling load and tensile fugly failure loadrespectivelyare applied

respectively as shown in the Figure®.3

Figure 3.37 Schematic illustration of linear widttapered laminated composite beams

with endaxial static load

A sinusoidal force of magnitude 2N with excitation frequemcis applied at four
excitation points shown in the Figure 3.8y using the properties given in the Tables
3.1, 3.2 and 3.3he effect of applied erdxial (static) load on forced response in terms
of sinusoidal transverse displacement obtained usiryieRR&-Ritz method is presented

in the current section. The range of frequency in taig is between 1 to 10000 Hz.
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for clampedfree boundary condition for widtatio (b /b, ) value of 0.2
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Figure 3.40 Effect of compressive eralial static load on frequen@mplitude response

for clampedfree boundary condition for widttatio (b_/b, ) value of 1
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Figures 38-3.40 show the effects of eralxial compressive load applied as
percentageof critical buckling load on forced response in terms of transverse

displacement amplitude for widtfatio (b_/b ) values of 0.2, 0.5, and 1 with excitation

frequencyw applied at four excitation points for four boundary conditions. From the
Figures3.383.4Q it can be observed that the forced response in terms of transverse
displacement amplitude is Gest for axial load equal to 95% of critical buckling load for
simply supported boundary condition at excitation points 2 and 3. For claingged
boundary condition the transverse displacement amplitude is largest at excitation point 3,

since the beams gelowest stiffness at this boundary condition.
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Figure 3.41 Effect of tensile endxial static load on frequen@mplitude response for

clampedfree boundary condition for widttatio (bo./b ) value of 0.2
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Figure 3.42 Effect of tensile endxial static load on frequen@mplitude response for

clampedfree boundary condition for widttatio (/b ) valueof 0.5
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Figure 3.43 Effect of tensile endxial static load on frequen@mplitude response for

clampedfree boundary condition for widtratio (/b ) value of 1

Figures 3.4-3.43 show the effects of enraixial tensile load applied as percentage of
tensile firstply failure load on forced response in terms of transverse displacement

amplitude for width ratio k{/b ) values of 0.2, 0.5, and 1 with excitation frequency
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w applied atfour excitation points for clampetee boundary condition. From the
Figures3.41-3.43 it can be observed that the transverse displacement amplitude for
clampedfree boundary condition is largest at excitation points 1 and 2. The transverse
displacementamplitude is largest fobeams that havéow stiffness. The transverse
displacement amplitude decreases as increase in percentage of tensile failure load

because thbeam becomestiffer by applying more axial tensile load.

3.8 Comparison of forced responsein terms of sinusoidal transverse
displacement between RayleigiRitz method and conventional finite element

method.

By using the properties given in the Tables 3.1, 3.2 and 3.3, the
current section presents the comparisonfmted response in terms ofnasoidal
transverse displacement for clamgese simply-supported and clampedamped
boundary conditions of widttapered composite beams obtained by using RayRigh
methodwith that obtained usingonventional ihite elementmethod 81]. The compare

results are presented in the Figuregt846 below.
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Figure 3.44 Comparison of forced response in terms of sinusoidal transverse

displacementclampedfree boundary condiin
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Figure 3.45 Comparison of forced response in terms of sinusoidal transverse

displacementsimply-supported boundary condition
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Figure 3.46 Comparison of forced response in terms of sinusoidal transverse

displacementclampedclamped boundary condition

Figures 3.4-3.46 show thecomparison offorced response in terms of sinusoidal
transverse displaceat for clampedree simply-supported and clampedamped
boundary conditions of widttapered composite beams for widattio valuesf 0.2 0.4,
0.6, 0.8 and 1From theFigures 3.4-3.46, the comparison differences for simply

supported boundary conditiois between 3 4%, for clampeeclamped boundary
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condition it is between -2% and for clampedfree boundary condition it is
between 24.5%. The comparison differencestiansverse displacemefriom the
above Figures3.443.46 are well accepted. Also the ifterences in transverse

displacements is because of no damping is considered.

3.9 Summary

In this chapter, dynamic analyses of wididipered laminated composite beams are
considered. In the present case, RaylRglz methodis used to find the natural
frequencies, forced response and critical buckling loag ®r width-tapered laminated
composite beams. The extensional and flexural stiffness distributions for linear width
tapered composite beams are shown. The previous sections show the effect ot differen
width ratio values, laminate configurations, length ratexsd boundary conditions on
natural frequencies, forced response and critical buckling logyl (Fhe effects of
applied eneaxial static force and damping on natural frequencies and forceahsespf
width-tapered composite beams have been investigated. Thelfiréhilure load of
width-tapered beam is obtained to find the effects ofandl compressive and tensile
load on natural frequencies. From the figures given in different sectioms,can

conclude the following:

1 The laminate configuration LC1 is strongest in terms of extensional stiffngss A
and A». The extensional stiffness is second highest for laminate configuration LC2, third

for LC3 and least for LC4 for all the extensiontiffsesses. The laminate configuration
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LC2 is strongest in terms of extensional stiffness coefficientsa®d Ass. The laminate
configuration LC3 is second largest for extensional stiffness coefficiaatdA and Ass
and least for Ap. The laminate cdiguration LC4 is third largest for extensional stiffness

coefficients A1, A12 and Asg but second largest forA

1 The laminate configuration LC3 is strongest in terms of flexural stiffness
coefficient D1. The laminate configuration LC1 is second largé&i4 is third largest
and LC2 is fourth largest. The laminate configuration LC2 is strongest in terms of
flexural stiffness coefficients 3, Dy, Dog and Qye. But the laminate configuration LC1
is largest in terms of flexural stiffness coefficient,Bhe laminate configuration LC2 is

strongest in terms of flexural stiffness coefficient.D

1 As the width ratio If./b ) valueincreases, all three natural frequencies increase

for simply-supported, clampedamped and freelamped boundary conditions.

Increasing the width ratiobg/b, ) results in increase in the value lénding stiffness

three natural frequencies decrease for clarfpselboundary condition as the width cati

(by/b ) value is increased.

1 The first natural frequency is largest for clamypéaimped boundary condition of
beam constant width compared to the witithered beam. The change in the

fundamental natural frequency corresponds to different ply orientatiotine laminate.

129



The fundamental natural frequency is second largest for sisyplyorted, third largest

for clampedfree and fourth largest for fredamped boundary conditions.

1 For the effect of laminate configuration on first three natural frequeatiglth-
tapered composite beams, the natural frequencies are largest for laminate configuration

LC3, second largest for LC1, third largest for LC4 and fourth largest for LC2. The

o ~

a Q
stiffness of the beam depends %}—9 which is directly related with Q of the ply.
o () £

As the width ratiolf_/b, ) value increases from 0.01 to 1, the natural frequencies increase

for simply-supported, clampedamped and freelamped boundary conditions. But they

decrease for clampédidee boundary condition.

1 As the length ratio (LL,) value increases, all the three natural frequencies
increase. Also the three natural frequencies increase as the widthbrétjg hcreases

for SS, CC and FC boundary conditions, but decrease for CF boundary condition. The

first, second and third natl frequencies increase for width rati/p, ) values from 0.2

to 0.4 but the natural frequencies remain unchanged with the increase in width ratio

(by/b ) values upto 1.

1 The natural frequencies increase as the width ratit () values increase from

0.01 to 1 for SS, CC and FC boundary conditions, but decrease for CF boundary
condition. Clampedlamped boundary condition beam has largest natural frequencies

compared to other boundary conditions whereas-di@mped boundary condition has
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lowest naturafrequencies. The beam with simgypported and clampéddee boundary

conditions is second highest and third highest in natural frequencies respectively.

1 As the axial load is increased from 0 to 95 % of critical buckling load, the natural
frequencies deease. This is because the beam becomes less stiff which results in
decrease in the natural frequencies. As the tensile axial load is increased from 0% to 95
% of tensile failure load, the natural frequencies increase because the beam becomes

stiffer therely increasing the natural frequencies.

1 The natural frequencies decrease for damped condition compareedmped
condition. The difference between the undamped and damped natural frequencies is small

because of low values of damping.

1 The comparisons ofaturalfrequencies were made between Rayldifiz method
and conventional ihite element method. From the observatjonbe comparison
differences for simphsupported boundary condition is <0.2%, for clamyptmped
boundary condition it is <1.5%, falampedfree boundary condition it is <0.15%

and for freeclamped boundary condition it is <0.7%.

1 As the width ratio values increase the critical buckling load increase for SS, CC
and FC boundary conditions, but decrease for CF boundary condition. Tloal criti
buckling load is highest for clamp@&tamped boundary condition and least for free

clamped boundary condition.

i The critical buckling load for variation of width ratib (b ) values is largest for

laminate configuration LC3, second largest for LCirdtHargest for LC4 and fourth
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largest for LC2. This difference in critical buckling load is expected for different laminate

o ~

Q
, . . 1 .
configurations because the stiffness of the column depend 9 which are

[0 11(X)§
directly related with @ of the ply. The critical bucktig load increases for SS, CC and

FC boundary condition, but decreases for CF boundary condition.

The critical buckling load is largest for length ratio/{ls) of 2 and least for

length ratio 0.25. As thevidth ratio (k/b ) values increase from 0.2 to the critical

buckling load increases for simpdypported, clampedamped and freelamped

boundary condition but decreases for clamfsed boundary condition.

1 The critical buckling load is largest for clampeldmped boundary condition
since the columis stiffer and least for freelamped boundary condition. As the width

ratio b./b ) values increase from 0.01 to 1, the critical buckling load increase for SS, CC

and FC boundary conditions, but decreases for CF boundary condition.

1 The firstply failure load varies for different width ratio values of wietpered
composite beams. From the Table$433.15 using the TsaWu theory it can be found
that the failure load is minimum for the 90° ply compared to 0° ply. The failure load
(tensile and compressivir both 0° and 90° plies are least for width ratio vaiti6.01

and highest for 1. The firgly failure load is used to find the natural frequencies and

forced response with respect to displacement with effect of statiaxealdoad.
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i The transverseigplacement amplitude is largest for width rat/ ) value of

1, second largest for width ratio value of 0.5 and lowest for width ratio valQe2 dbr
clampedfree boundary conditionThe transverse displacement amplitude is largest for
higher width ratio values of the beam. As the width ratio value increase, transverse

displacement amplitudacreases

1 The transverse displacement amplitude is largest for laminate configuration LC2,
second largest for laminate configuration LC1, third largest for ba@d lowest for
laminate configuration LC3. The transverse displacement amplitude is largest for
laminate configuration LC2 because the fibers are oriented alorfyandi545°, which

has lower extensional and bending stiffness but higher shear stiffnesgheA
observation that can be made is the transverse displacement amplitude is largest when the

width ratio p./b ) value of the beam is 1. The transverse displacement amplitude reduces

as the width ratiol(./b ) values reduce.

1 The transverse displacemennplitude is largest for length ratio,(L3) value of

0.25 and lowest for length ratio 4L 3) value of 2 for all four boundary conditions. The
transverse displacement decrease with increase in length ratio of the bearsebiec
largerlength ratio vales, the length of wider section of the beam increases, which makes
the beam stiff that results in lower response in terms of transverse displacement, lower
length ratio value of the beam results in increase in transverse amplitude displacement.
Another inportant observation that can be made is the transverse displacement amplitude

is largest at excitation points 1 and 2 for clamfree boundary condition.
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1 The forced response in terms of transverse displacement amplitude is largest for
clampedfree boundar condition and lowest for clampeadiamped boundary condition.

The transverse displacement amplitude is largest for clafnpedoundary condition at
excitation point 1, second largest for frdamped boundary condition at excitation point

1, third highst for simplysupported at excitation pointsa@d 3 and lowest for clamped

clamped boundary condition at excitation points 2 and 3.

1 Another observation can be made that is the transverse displacement amplitude is

lowest for width ratio @_/b ) value of 02 for simply supported and cla®dclamped

boundary condition, foclampedfree and freeclamped boundary conditions as the width

ratio (b /b ) values increase from 0.2 to 1, the transverse displacement amplitude

increases since the beam is less stithatfree end of the beam.

1 The forced response in terms of transverse displacement amplitude is largest for
axial load equal to 95% of critical buckling load for clamybet boundary condition at
excitation pointl, since the beams gets lowest stiffneghiatboundary condition.

1 Another observation that can be made is the transverse displacement is largest for

lower width ratio b_/b ) values of the beams as the beams is less stiff and as the width

ratio values increases the beams becomes more stiffbrhance the transverse

displacement decreases.

1 The transverse displacement amplitude for clarfpsel boundary condition is
largest at excitation points 1 and 2. The transverse displacement amplitude is largest for
beams that have low stiffness. The trarse displacement amplitude decreases as

increase inthe percentage of tensile failure load because the beams become stiffer by
134



applying more axial tensile load. The transverse displacement is largest for lower width

ratio (b./b, ) values of the beams.

1 The comparisons of transverse displacemagitveen RayleighRitz method and

conventional ihite element method show the difference in transverse displacdaorent
simply-supported boundary condition is betweer%, for clampeeclamped boundary

condition it 5 between 2% and for clampedfree boundary condition it is
between 24.5%. The comparison differencestransverse displacemeate well

accepted.
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CHAPTER 4

EXPERIMENTAL VALIDAT ION FOR WIDTH -TAPERED COMPQOSITE

BEAMS

41 Introduction

The laminated compdsi beams are basic structural components used in a variety of
engineering structures such as airplane wings, helicopter blades and turbine blades as
well as manyothers applications the aerospace, mechanical and civil industries. This is
due to their egellent features, such as high strergthwveight and stiffnesso-weight
ratios, the ability of being different strengths in different directions and the nature of
being tailored to satisfy the strength and stiffness requirements in practical designs. An
important element in the dynamic analysis of composite beams is the computation of
natural frequencies. This is important because composite beam structures often operate in
complex environmental conditions and are frequently exposed to a variety of dynami

excitations.

In this chapter, detailed procedures of manufacturing and modal analysis of
composite beams for evaluating the structural properties are describ@chpRrgnated
NCT-301 graphite/epoxy material supplied by NEWPORT Company, USA is uskd in
present thesis for all experiments and analysis. The mechanical properties (longitudinal

modulus E, transverse modulus,Eshear modulus G Poi s smnodtee ply aft i o
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composite laminate has been tested according to ASTM specification DVB089%and

ASTM specification D 35184-01 in a previous work4].

The composite laminates are manufactured using the fabrication of fiber reinforced
with polymer matrix which are placed or shaped into a structural form. Vacuum bag is
prepared for laminateuring. The laminate which is prepared using vacuum bag is cured

using autoclave.

Modal testing is the process of determining the modal parameters of the structure for
all modes in the frequency range of interest. The most popular technique used for moda

testing is impact or hammer excitation techniqus.[6

The frequency response measurements are made by using PUkgiem, the
multi-analyzer system type 3560 from Bruel and Kjaer and a-dbannel signal
analyzer. The excitation force from the iagp hammer is measured from the force
transducer mounted at the tip of the hammer and resulting response is supplied to one of
the inputs of signal analyzer to amplify the input signals. The response is measured by an
accelerometer and the resulting sigisabupplied to another input of signal analyzer to
amplify the output signals. The frequency response obtained here represents the
structureos accel erance, Ssince t he measur
acceleration to force in the frequency damaFor impact hammer excitation, the
accelerometer response position is fixed and asedreference position. The hammer is
used to excite the beam at every translational degree of freedom corresponding to the

degrees of freedom in the model.
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4.2  Manufacturing of composite laminate

The multitude of tasks involved in the manufacturing of composite laminates can be

categorized into two phases:

1) Fabrication

2) Processing

4.2.1 Fabrication

In the fabrication phase the fiber reinforcement and matrix material are placed o
shaped into a structural form. In the present work a flat plate is manufactured from layers

or plies of prempregnated NCI301 graphite/epoxy material.

Tooling: All fabrication methods require tools to provide the shape of the composite
structure/laminge during the processing. In this case a flat aluminum tool is used to

manufacture flat composite plate.

Secondary materials for laminate curing preparatidiany secondary or specialty
materials are used in composite manufacturing such as release atgsme rfilms,
bleeder plies, breather plies, vacuum bag and sealant tape. Each of these materials
provides specific function. A typical layp of a composite structure prepared for

autoclave processing is shown in Figure 4.1.
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Hand layup:

The hand layup d pre-impregnated materials is the oldest and most commonly
used method where the production volume is low and other forms of production would
prove to be expensive. Each step in haneulayf a flat composite laminate must follow
in successive fashion iarder to obtain a high quality composite laminate after final
processing. The major steps that are followed in the handplayf prepreg are briefly

highlighted:

1 At first, the surface of the plate is cleaned and a release agent is applied followed
by onelayer of the release film as shown in Figure 4.2 a. This allows the part to easily

separate from the mold after curing.

1 The preimpregnated material is cut from the prepreg roll according to the required

dimension of respective specimen.

1 A ply is orientedand placed upon the tool and subsequent plies are placed on top
of the lamina according to the laminate configuration. Compaction pressure is applied by
the use of a roller device as shown in Figure 4.2 b to adhere the plies and remove

entrapped air thatowld lead to voids or delamination in between the layers.

i After completing the ply gathering, a sheet of porous release film, the bleeder ply,
the breather plies and vacuum valve are placetth@top of the laminate one after the

shown in theFigures 4.2 ¢c- 4.2g.
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1 After completing all the layp of all the secondary material plies, the sealant tape
is placed around the periphery of the laid laminate and the vacuum bag is placed over the

entire layup as shown in Figure 4.2 h and Figure 4.2 1.

1 The entireassembly is placed inside an autoclave and the vacuum is connected to
vacuum pump of the autoclave to check the leaks between sealant and vacuum bag before

starting the autoclave for processing as shown in Figure 4.2 |.

RELEASE FILM

BAGGING FILM
BLEEDER
BREATHER
B
VACUUM HOSE w / RELEASEFILM , PRESSURE
SENSITIVE

VACUUM g, —
:;%-’i&&&&&«-mx&%#ﬁ&&i{&ﬁ&&e

VALVE

FLASH [ : - %
B LAMINATE | %L
A —
SEALANT
ToOL - \ \
AN NDAM

RELEASE PLY OR
RELEASE FILM

Figure 4.1 Typical autoclave layup (Source: Carbonfiberguru.com)

a (Hand layup) b (Compaction pressure using roller)
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e (breather and bleeder plies) f (vacuum valve)

g (vacuum valve fixed) h (apdication of sealant tape)
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I (vacuum bag prepared) ] (vacuum valve fixed to the autoclave)

Figure 4.2 Hand layup process of NC301 graphite/epoxy composite laminate

4.2.2 Processing

Autoclave curing:

The autoclave shown in the Figure 4.3 is used to provide the necessary heat and
pressure required to consolidate and cure the composite laminate. The major advantages
of the autoclave are that it represents a flexible method tly apguired pressure and

temperature to a composite part, which is controlled by the numeric controller.

142



Figure 4.3 Photograph of typical Autoclave for curing composite materials

Figure 4.4 Photograph of NCI301 graphite/epoxy composite laminate post autoclave

curing

The cure temperature and pressure are selected to meet the following

requirements:

143



i To cure the resin uniformly and to attain @aified degree of cure in the shortest

possible time.

1 To maintain the temperature of any part inside the prepreg this should not exceed

a prescribed limit during the cure.

1 To have sufficient pressure to squeeze out all the excess resin from every ply

before the resin becomes gel at any location inside the prepreg.

1 Pressurization also helps to bond layers and remove persistent voids in the matrix.

In autoclave the temperature plays an important role in initiation of-trndssg and
acceleration of curingrpcess. This cure cycle was given by NEWPORT Company, USA

for the current batch of piienpregnated NCI301 graphite/epoxy material.

In the cure cycle the laminate is heated from room temperature (RT) 1aC186
constant rate in 70 minutes and it is hatdhis temperature for a period of 60 minutes.
There is a single dwell in the current cure cycle. A constant pressure-pdi 5&
maintained inside the autoclave throughout the processing time. Then the laminate is
cooled to room temperature at constaate. A typical cure cycle for NGB0l

graphite/epoxy composite is shown in the Figure 4.5.
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Figure 4.5 Cure cycle for NCT301 graphite/epoxy composite material

4.3 Inspection of NCT-301 graphite/epoxy panel § Laser ultrasonic

Ultrasonic is based on thprinciple of transmitting high frequency sound into a test
part and monitoring the received ultrasonic energy. This novel technology is based on the
use of lasers for the generation and detection of ultrasandccan be used to measure
thicknesses, detect and image surface or bulk flaws in complex structneés,
characterize material microstructure in service or during processing as explaiRefd in

[72] and [73].
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Figure 4.6 Photograph of NCI301 graphite/epoxy panel in a fixture

Figure 4.7 Photograph of NCI301 graphite/epoxy panelC scan (different colors show
the variation in time (thickness) in the sde)p

Figure 4.8 Photograph of NCI301 graphite/epoxy pandBY-Scan #59
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Figure 4.11 Photograph of NCBO1 graphite/epoxy pandBX-Scan #91
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The NCT-301 graphite/epoxy compositaminate made by using autoclave curing is
inspected for detection of flaws and defects using laser ultrasonic method. The laser
ultrasonic inspection was done with the he
(CNRC) Industrial Materials Institutéhe flaws or defects in the composite laminate
may be due to voids, when prepregs are not fully impregnated, inadequate vacuum may

result in internal defects such as delamination.

Ultrasonic data can be collected and displayed in a number of differematéor
The three most common formats areséanB-scanandC-scanpresentations. Each
presentation mode provides a different way of looking at and evaluating the region of

material being inspected. In the current tests, B asdad are conducted.

The Bsan presentations are a profile (cresstional) view of the test specimen.
In the B-scan, the tim®f-flight (travel time) of the sound energy is displayed along the
vertical axis and the linear position of the transducer is displayed along the horizontal
axis. From the Bscan, the depth of the reflector and its approximate linear dimensions in
the scan direction can be determined. Th&c@n presentation provides a ptgpe view
of the location and size of test specimen features. The plane of the srgegallel to the
scan pattern of the transducer. Thedan presentation provides an image of the features

that reflect and scatter the sound within and on the surfaces of the test piece.

From the Figure 4.7, it can be observed from th&c@nh presentatip the green
and yellow patches represent the defects as delaminations in the laminate. From the

Figures 4.8 4.11, the Bscan presentations are a profile (crssstional) view of the test
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specimen. The different colours show the variation in the theskaé different positions

in Xx- and yaxis respectivelyCare is exercised to discard the areas where defects are
present by cutting the laminate using wateoled rotarytype diamond cutter. The
portions which are intact are only used for modal testfrgpmposite beams as discussed

in section 4.4.

4.4  Water-cooled rotary-type diamond cutter

After the autoclave cure process and laser ultrasonic inspection;3RCT
graphite/epoxy composite laminate is cut to the required size by using-cwsated
rotary-type diamond cutter shown in Figure 4.12. The laminate is cut in to five specimens
of beams of ([0/9Q)s laminate configuration with the geometric specification given in

Table 41. All the test specimens are finished by abrading the edges on a fine

carborundm paper.

Figure 4.12 Pictorial representation of water coolextary type diamond cutter and

digital protractor
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Figure 4.13 Pictorial representation of composite beam fixture table and cutting position

The taper profiles of the composite beams are cut using the digital protractor shown
in the Figure 4.12. The composite beams are clamped on the fixture table with desired
taper agle measured using the digital protractor as shown in the Figure 4.13. The

composite beam is cut using the cutter manually following all the safety measures.

As watercooled rotarytype diamond cutting is a hand operation, the quality of the
cut is strongt depends on the skill of the operator. The cost and maintenance of the
process is economical. Factors like quality, speed and feed rate of the cutter depend on
the quality of the cut specimen. Traditional mechanical cutting methods destroy the
structuralintegrity of such materials. Abrasive water jet trimming has emerged as the
preferred method for trimming cured composite laminates. The advantages of abrasive
water jet cutting are that consistent delaminafree edges are produced and the tooling
requrements are simpler because the cutting path is numeric controlled. However to
process using abrasive water jet, large expensive numeric controlled machine tools are

required [78].
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4.5  Experimental modal analysis

Most practical noise and vibration probleme aelated to resonance phenomena,
where the operational forces excite one or more of the modes of vibration. Modes of
vibration which lie within the frequency range of the operational dynamic forces

represent potential problems.

An important property of mies is that any free or forced dynamic response of a

structure can be reduced to a discrete set of modes.

Thestandardnodal parameters are:

1 Modal frequency

1 Modal damping and

1 Mode shape

The modal parameters of all the modes, within the frequency rangeteoést,
constitute a complete dynamic description of the structure. Hence the modes of vibration
represent the inherent dynamic properties of a free structure (a structure on which there
are no forces acting). In this thesis the modal parameters sunbdat frequency and
modal damping are determined. The mode shapes are not found out due-to non

availability of postprocessing software.

Through an i mpact hammer experi mental t e

Response Functions) which relate to theponse given by the specimen when loaded
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with a signal, allowing for determination of the natural frequencies and damping factors,
as shown in the Figure 4.5% block diagram of experimental testifignis was done by

fixing the beam specimen in a rigglipport with one of its sides free to vibrate, as a
cantilever beam. The impact hammer is used to give the input load (pulse) to the
specimen, and the signal analyzer is set from 0 Hz to 1600 Hz. This output was captured
by the accelerometer and togethveith input signal were amplified using Bruel and

Kj aer 6s-charhé poytablé PULSE 3560 multianalyzer system giving the FRF

known as accelerance that is given by acceleration/force.

The dynamic behavior of the composite beams can be viewed asfairsgdividual
modes of vibration, each having a characteristic natural frequency, damping and mode
shape. The modal parameters are determined from a set of frequency response
measurements between a reference point and a number of measurement points. The
modal frequencies and damping can be found from all frequency response measurements
on the beams (except those for which the excitation or response measurement is in a
nodal position, that is, where the displacement is zero). The experimental results were
used to validate the analyticasultsobtainedusing RayleighRitz method ashownin

Chapter 03

In the experimental work, the composite beam specimens shown in the Figure 4.15
are prepared from the NE301 graphite/epoxy beams of laminate configuration
([0/90]e)s and geometric configurations given in the Table 4.1. The composite beam is
mounted on a corner of a big rigid table with vice/fixture providing sufficient clamp force

at the root of the beam to simulate fixed end, similar to cantilevered byuratadition
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as shown in Figure 4.23. The beam is excited by the impact hammer and provides signal

to the amplifier. Response accelerometer is attached at the free end of the beam with
beesd6 wax glue and provides r egpouseddeo t o t I
amplify the signals from the transducers (hammer and response) and they are supplied to

the 4channel portable PULSE 3560 multianalyzer system. It is determined that the

beam specimen is divided in equal lengths into four points whenevireg hammer is

excited at these points marked on the beam specimen as shown in Figure 4.23. The point

of excitation is made such that it does not coincide with nodal point.

Figure 4.14 Block diagram of gperimental modal analysis instrumentation

From the Figure4.14, 1 represents: Fixdree (cantilever) composite beam, 2:
Impact hammer with transducer at the tip, 3: Response transducer (accelerometer), 4:
Oscilloscope, 5: Dual mode charge amplifierd@&hannel Portable PULSE, 3560 multi

analyzer system, 7: Personal computer.
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Figure 4.15 Photographs of NGBO1 graphite/epoxy composite beam specimens

Table 4.1 Specifications of widthapered composite beams

Specimen | Length, L Width, (m) Width Height, H | Mass, m
(m) ratio (m) (9)
by br br/ b
1 0.25 0.015 0.003 0.2 0.0045 26.87
2 0.25 0.016 0.006 0.4 0.0045 27.03
3 0.25 0.016 0.009 0.6 0.0045 27.66
4 0.25 0.015 0.012 0.8 0.0045 37.46
5 0.25 0.016 0.016 1 0.0045 38.36
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4.5.1 Measurement equipments and apparatus

The experimental setp used for mobility measurement is explained below.
There are three major items: (i) Excitation mechanism, (ii) Transdustnsyand (iii)

An analyzer, to extract the desired information.

4.5.1.1Test fixture

The test fixture consists of a rigid mounting support which provides a clamp for

the root of the beam.

4.5.1.2Signal analyzer

PULSEM, the multianalyzer system type 3560, is used asata cicquisition
front-end hardware as shown in Figure 4.16. The Pulse analyzer is connected to the
computer for reatime signal processing. An oscilloscope of type 54624 A from Agilent
technologies shown in Figure 4,1i8 used tamonitor the quality othe signals from

impact hammer and accelerometer.
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Figure416Phot ogr aph o f ™fBonténd KdlteanalyzdrityBeE3560

Figure 4.17 Photograph of tyigal oscilloscope

4.5.1.3Charge amplifiers

The role of the amplifier is to strengthen the signals generated by the transducers
so that they can be fed to the analyzer for measurement. The charge amplifiers used in
this experiment a r e Dudli nsodel aenplifies typ®804 & and c ha nn
Il ntertechnol ogyds PCB 482A 04 piezoelectri
4.19 respectively. These amplifiers are used for conditioning of signals from piezoelectric
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transducers, such as charge accelerometerjngpact hammer to Pulse muéinalyzer

system.

Figure 4.18 Photograph of typical Dual mode amplifier

Figure 4.19 Photograph of piezoelectric charge amptifie
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4.5.1.4lmpact hammer

The specification of the impact hammer used in the experiment is as shown in the
Figure 4.20. Impact force: 0 to 222.5N, sensitivity: (£20%) (22.5 mV/N), measurement

range: 222 N pk, hammer mass: 4.8 g.

The hammer consists of an integnalegrated circuit piezoelectric quartz force
sensor mounted on the striking end of the hammer head. The sensing element functions to
transfer impact force into electrical signal for display and analysis. The hammer is
connected to PCB 482A 04 piezoelectmplifier to amplify the piezoelectric signals to

Pulse multianalyzer system.

Figure 4.20 Photograph of typical impact hammer
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4.5.1.5Accelerometer

For response measurement, the transducer used in the expeasnype 4381
piezoelectric accelerometer as shown in Figure 4.21. When the response transducer is
chosen, the structural loading caused by mounting the transducer must be taken into
consideration. Loading the structure may alter the modal paramekersndss loading
effect should be minimal6P]. The accelerometer is mounted to the beam specimen by
applying a thin layer of beeswax. The specifications of the accelerometer used in the
experiment are: Frequency: G.#800Hz, temperature:74 - 250°C (-101.2- 482.0°F),

Weight: 43grams, Sensitivity: 10(pC/g, Maximum Operational Level (peak): 20§0

Figure 4.21 Photograph of typical response transducer mounted below-taipiéned
beam
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4.5.2 Impact excitation

For mobility measurements the structure must be excited by a measured dynamic
force. The waveform produced by an impact is a transient (short duration) energy transfer
event. The spectrum is continuous, with a maximum amplitude at 0 Hz and decaying

amgitude with increasing frequency.

The duration, and thus the shape of the spectrum, of an impact are determined by
the mass and stiffness of both the impact and the structure. Advantages of hammer testing
are that they are fast as only few averages ofaoghmeasurements are required, no
elaborate fixtures are required, there is no variable mass loading of the structure, and it is

portable and relatively inexpensive.

Figure 4.22 Photograph of experimentaladal analysis test sep
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4.5.3 Impact testing requirements

Even though impact testing is fast and convenient, there are several important
considerations that must be taken into account in order to obtain accurate results. They

include:

Pre-Trigger delay:Becawse the impulse signal exists for such a short period of
time, it is important to capture all of it in the sampling window of FFT analyzer. To
ensure that the entire signal is captured, the analyzer must be able to capture the impulse

and impulse responsggals prior to the occurrence of the impulse.

Force and exponential window$he force window is used to remove noise from
the impulse (force) signal. The force window preserves the samples in the vicinity of the
impulse, and removes the noise from alltloé other samples in the force signal by
making them zero. The exponential window is used to reduce leakage in the spectrum of

the response.

Accept/reject capabilitySince accurate impact testing results depend on the skill
of one doing the impacting, FRmeasurements should be made with spectrum averaging.
In this experiments, 8ampling size is selected for the accurate measurements. If in case
one or two of the impacts during the measurement process may be bad hits, an FFT
analyzer designed for impatesting will have the ability to accept or reject the result of

each impact.
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4.5.4 Response transducer calibration

Most commercial transducers are supplied with calibration certificates, but a

calibration test before every mobility measurement is stronglymwewnded [3]:

1 To check the integrity of the transducers, to detect any errors in the cables,
connectors, conditioning and analyzers, to check that all gain, polarity and attenuator

settings in the system are correct.

1 To check the pair of transducers beusgd, are matched in the frequency band of
interest.
1 To calibrate the entire system is to measure the mobility of the structure.

Generally the known mass is used as reference.

From Newtondbs second | aw:

Force= mas3 acceleration

Therefore, Accelerance is given as:

acceleraton _ 1
force mass

A(W) = (4.1)

A known mass suspended so that it moves in only one direction, with an
accelerometer attached to detect the amptcan be used for hammer techniques. This
gives a ratio calibration, ensuring correct mobility measurements, rather than an absolute

calibration of the individual transducers. For this purpose, even ahleadnass is
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adequate. If the calibration massdonsidered to be absolutely rigid, in the frequency

range of interest, the force and acceleration waveforms are equal.

4.6  Modal testing for damping factor

Damping characteristics in composite materials is an important factor of the
dynamic behavior of statures, controlling the resonant and near resonant vibrations and
thus prolonging the structure service life under fatigue and impact loading. Generally
composite materials have more damping capacity than metals. Damping in vibrating
composite structureefers to a complex physical dynamic nature including from both
constituent level (viscelastic behavior of matrix, damping at fib@atrix interface) and

laminate level (layer orientation, intEaminar effects, stacking sequence, eté).[6

It is difficult to determine accurately the damping parameters by an analytical

approach. The experimental method is very desirable.

4.6.1 Damping loss factor

The methodology of calculating damping loss factor usingp@ier bandwidth

technique is explained in detail ine Ref. [65].

From the experimental modal testindne textracted values of damping loss factor

(h), damping ratio k), mass proportional damping constaré )( and stiffness
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proportional damping constant() from three specimens aobtained using haipower

bandwidth technique [65)hich are presented ithe Table 4.2.

Table 4.2 Damping loss factor measurements

h 1 x 1 h 2 X 2 a b

Specimenl (Uniform beam)

Exci-1 0.0378 0.0189 0.0220 0.0110 2611 | 3.424 1B

Exci-2 0.0094 0.0047 0.0185 0.0093 0.497 3.5% 10

Exci-3 0.0200 0.0100 0.0160 0.0080 1.343 273 10

Specimer2 (Uniform beam)

Exci-1 0.0412 0.0206 0.0152 0.0076 3.082 1.86 19

Exci-2 0.0420 0.0212 0.0131 0.0065 3.208 1.38 19

Exci-3 0.0414 0.0207 0.0207 0.0103 2.835 3.06 19

Specimer3 (Uniform beam)

Exci-1 0.0318 0.0159 0.0170 0.0085 2162 [2.65 10

Exci-2 0.0345 0.0172 0.0166 0.0083 2.361 244 10

Exci-3 0.0193 0.0097 0.0103 0.0052 1.203 3.7 190
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In the Table 4.2, Exel standsfor first excitation and so on. The calculated
damping properties are used to calculate average proportional mass and stiffness
constants to form a Rayl eighds damping mat

stiffness matrices for free and forcednations determined using Raylefgitz method

4.7  Experimental modal analysis results

This section presents the results from experimental investigation, where impact
testing at different excitation points as shown in Figure 4.23 with cantilevered boundary
cordition was carried out. The output data from the modal testing namely coherence
function, time and auto spectrum for hammer impact and transducer response and

Frequency Response Functions are presented.

The experimental modal analysis test was carriedabu@oncordia Centre for
Composites (CONCOM) testing laboratory. The measured modal parameters are served

as a reference for further comparison with solution obtained from RayReigimethod.

@

Figure 4.23 Schematic illustrations of composite beam with excitation points
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From the Figure 4.23) Fixedfree (cantilever) composite beam, b): Impact hammer with

transducer at the tip, c) Response transducer (accelerometer).

4.7.1 Coherence function at different excitaton points for width-tapered

composite beam

The coherence function provides a means for assessing the degree of linearity

between the input and output signals. The coherence function is defined as follows [72]:

G (W)
GXX (M/)GFF(VV)

gw)? 1 ,0¢ gw)® ¢1 4.2)

where G is the crosspectrum between the force and response gyda@d G_are the

autospectra of the response and force respectilrelgxperimental modal testing, the
coherence function at each excitation pointh$ained with the help of PULSE software

rather than by the direct use of Equation (4i2gnabove.

The bounds for coherence function are 1, for no noise in the measurements, and O
for pure noise in the measurements. The interpretation of coherenceruscthat for
each frequencyrit shows the degree of linear relationship between the measured input
and output signals. The coherence function is used to detect possible errors, during

mobility measurements.
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By using the impact excitation technique désed in the Section 4.5.2, test
specimens of NCBO1 graphite/epoxy beam with laminate configuration ([@)3@nd
geometric specification given in Table 4.1 are used to find the coherence function for

different width ratio _/b ) values for fixeefree (antilever) boundary condition of

width--tapered composite beam at four excitation points as shown in Figure 4.23.

Coherence-for width ratio (bRYbL)=0.2

0.4

Coherence function
(=]
(53]

——————— Excitation point 1

0.3 B
——————— Excitation point 2

0.2 s . . B
— — Execitation point 3

01 Excitation point 4 |7

U 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

Fregquency(Hz)

Figure 4.24 Coherence function for width ratio (v ) of 0.2 at four excitation points
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Coherence-for width ratio (bRYBL)=0.4
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Figure 4.25 Coherence function for width ratio (v ) of 0.4 at four excitation points

Coherence-for width ratio (bR/bL)=0.6
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Figure 4.26 Coherence function for width ratio (b ) of 0.6 at fou excitation points
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Coherence-for width ratio (bR/bBL)}=0.8
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Figure 4.27 Coherence function for width ratio (v ) of 0.8 at four excitation points
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Figure 4.28 Coherence function for width rat{b_/b, ) of 1 at four excitation points
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Figures 4.244.28 show the coherence functions obtained through impact testing for
fixed-free (cantilever) boundary condition for wigitapered composite beam at four
excitation points. One can observe from theuFeg 4.24- 4.28 that for all width ratio

(by/b ) values of the beams, the coherence function is poor at the initial frequency values.

This is because of initial disturbance during impact excitation. By using the force
windowing technique these signal veduare tailored for good input signal values for
FRF calculations. Another observation made is that at excitation point 3 for width ratio

(bo/b) values of 0.4 and 0.6, the coherence values are less than 0.5. This is because the

excitation point is closeot a node point, coherence may be extremely low. This is
acceptable however, since the modal strength at this point is weak and not important for

the analysisq9].

4.7.2 Time response and autospectrum response at different excitation points for

width -tapered canposite beam

An autospectrum is calculated by multiplying a spectrum by its complex
conjugate (opposite phase sign), and by averaging a number of independent products.
When the complex conjugate of one spectrum is multiplied by a different spectrum we
obtan the crosspectrum. The crosspectrum is complex, showing the phase shift
between the output and input, and a magnitude representing the coherent product of

power in the input and output.
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The duration of an impact is usually very short compared todaberd length.
The window used is the transient window, this takes the data unweighted during the
period of contact, and sets it to zero for the remaining record. If we observe the time
history of the impact force, negative signals can be observed. Hgsical sense this is
prohibited, but since we are measuring the force within a limited frequency range
(truncation), this short ringing is a correct representation in the particular frequency range
(leakage) [0]. The length of the force window must beoskn such that the entire signal
is included. The response to an impact is a free decay of all the modes of vibration. The
exponential window is used when there is a leakage error or poor-Bgmzike ratio in
the measured data. In the case of leakager,ethe response is forced to decay
completely within the record so that leakage due to truncation is avoided. For poor

signatto-noise ratio, the noise is attenuated by the window [70].

By using the impact excitation technique described in the SectlR, 4est
specimens of NCBO1 graphite/epoxy beam with laminate configuration9Qpé) s and
geometric specification given in Table 4.1 are used to find the time response and FRF
autospectra for input 1 and input 2, which are for impact hammer trarsahat response

accelerometer respectively for different width ratig/lf ) values of widthtapered

composite beam at four excitation points as shown in Figure 4.23.
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Figures 4.29 4.33 show the time response and autospecthtained by impact

testing for different width ratiob(/b ) values for fixeefree (cantilever) boundary

condition of widthtapered composite beam at four excitation points. It is observed from

the Figures 4.29 4.33 that for all width ratiob(/b, ) values of the beams, the impulse

force is highest at excitation point 4 since the stiffness of the beam is higher at this point.
The time response and autospectra of inputs 1 and 2 are for impact hammer transducer
and response accelerometer respectivilythe time and auospectrum response of
Figures 4.291.33, it is important to ensure that the data captured during the excitation is
free from unacceptable sources of error like double hit of the impact hammer, capture of
noise in the output signal due to inshentation and environmental vibrations, ftce

data captured as observed from Figures-4.23 are satisfactorgg).

4.7.3 Frequency Response Function (FRfH ) at different excitation points for

width-tapered composite beam

One very efficient model of bnear system is a frequency domain model, where

the output spectrum is expressed as the input spectrum weighted by a system descriptor,

X(w) =HW).FW) (4.3)

This system descriptoH (1) is called the Frequency Response Function (FRF),

defined as:
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- X(W)

H(w) Fo)

(4.4)

The physical interpretation of the FRF is that a sinusoidal input force, at a
frequency, will produce a sinusoidal output motion at the same frequency. The basis for
one specific class of experimental modal analysis is the measurementseif of
frequency response functions. The mobility measurement used here to describe the FRF
is 6acceleranced, where the motion is desc
excitation and pseud@ndom excitation, Hand H will generally be qual at

resonances. Hs preferred since it is the best estimator at antiresonad@es [

By using the impact excitation technique described in the Section 4.5.2, test
specimens of NC'BO1 graphite/epoxy beam with laminate configuration ([@)@@nd
geametric specification given in Table 4.1 are used in the current section to find the
FrequencyResponseFunction (FRFH;) which is computed as the ratio of ttr@ss

spectrunto the input autospeetm for different width ratiol_/b ) values for fixeefree

(cantilever) boundary condition of widtApered composite beam at four excitation

points.

178


http://zone.ni.com/devzone/cda/tut/p/id/475
http://zone.ni.com/devzone/cda/tut/p/id/475

=
= =
= =
= -
4= S =l =
= —== 1=
=
18 =
L 1
o = - £
E E
= = = =
= 12 =- 12
s — T s = T
= — = —
= L. = L
= = o = = o
2 18 & 2 18 &
fin} = ] E]
ot =2 — =
] @ = =
j 5 =
= {18 v = {8 w
0 [x=1 o— P S =
[N - L
[ o
[N - | W, —
_ {2
=
= 18
= o
-
==
= — — — — — —
= = = = = =
g — — — — —
: 8 = = = = =2
S
(N SWI o3 (M SUI) dd
w og
32 o
"W W W
qqq
= =2
oo e
EEE
i |
i
= =
=2 =]
=
L 18 18
= -
=
L 12 15
o~ [ar] —
= =
=] — = =
2 L 12 = 12
= = _
= — Ta = —
= o =1 o
— _ =} =
= = = = o
‘o . =2 =2 4= =
2 = 5 = T
i} = =
=2 =
i = e @
— L N [ — . L
— f
L
o B
(. = _
- {12
-t
=
L 1= 1=
=] o
-
=
o = — — — — — — — C’D
- ] = ] - =2 = = =2 =2 =2 =
= = = = = = = = =
T -+ a2 ] — - L] [axl
(M= SU) dd
— (Mfz S dd

Figure 4.34 FRF-H; at four excitation points for widtratio (/b ) values of 0.2, 0.4,
0.6,0.8and 1

Figures 4.34 show the Frequency Response Function-KRBbtained by impact

testing for different width ratiob(/b ) values for fixeefree (cantilever) boundary

179



condition of widthtapered composite beaat four excitation points. Figure 4.34 shows
the FRF which is measured for first three natural frequencies (Hz) with amplitude
measured as accelerance @ for individual excitation points. It is observed that the

natural frequencies are highest fordthi ratio /b ) of 0.2 and gradually decreases as
width ratio p./b ) values increases for fixefcee (cantilever) boundary condition. This is
because the stiffness of the beam is highest for width rhtis J of 0.2. Another

observation that can be deis that at excitation point 1, the amplitude at first mode is
highest whereas lowest at mode three. But in the case at excitation point 4, the amplitude
at third mode is highest whereas it is lowest at first mode. This is because the beam at

excitationpoint 1, it is more flexible at the free end of the beam.

4.7.4 Comparison of natural frequencies between experimental modaésting and

Rayleigh-Ritz method for width -tapered composite beam

The analytical and the experimental modal analysis results for hmeén-tapered

beam with different width ratio (#b ) values, for fixeefree (cantilever) boundary

condition, are compared in the current section for validation purpose.

By using the impact excitation technique described in the Section 4.5.2, test
specimas of NCT301 graphite/epoxy beam with laminate configuration ([@)Q0&nd
geometric specification given in Table 4.1 are used in the current section to find the %

difference for three natural frequencies between the experimental resdalg and
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Raylagh-Ritz method, for different width ratid¢/b, ) values of widthtapered composite

beam at four excitation points as shown in Figure 4.23.

Table 4.3 Comparison of natural frequencies for widéipered compgite beams at four

excitation points

width ratio p_/b, ) 0.2 0.4 0.6 0.8 1
w1 (R-R), Hz 110 99.4 90.1 83.4 77.8
w; (Excitation point 1), Hz | 114 103 93 86 80
% difference 3.6 3.6 3.2 3.1 2.8
wi (Excitation point 2), Hz | 114 104 93 86 80
% difference 35 3.5 3.3 3.3 3.2
wi (Excitation point 3), Hz | 114 103 93 86 80
% difference 3.6 3.5 3.3 3.2 3.1
w; (Excitation point 4), Hz | 114 104 93 86 80
% difference 3.6 3.5 3.4 3.3 3.3
w2 (R-R), Hz 525.5 | 5125 500 492.5 488.5
W, (Excitation point 1), Hz | 543 532 520 513 506
% difference 3.3 3.8 4 4.2 3.6
w, (Excitation point 2), Hz | 550 541 528 522 522
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% difference 4.2 3.8 4 4.5 3.5

w, (Excitation point 3), Hz | 550 543 529 523 523
% difference 4.2 3.9 4.4 4.4 3.8

w; (Excitation point 4), Hz 550 541 528 522 523
% difference 4.2 3.9 4.4 4.3 3.8
w3 (R-R), Hz 1346 1354 1354 1356 1372

ws (Excitation point 1), Hz | 1400 1410 1400 1400 1420

% difference 4 41 34 3.2 35

ws (Excitation point 2), Hz | 1420 1430 1420 1430 1430

% difference 55 3 35 34 3.1

ws (Excitation point 3), Hz | 1420 1420 1410 1430 1430

% difference 55 3.6 4.9 3.8 3.1

ws (Excitation point 4), Hz | 1400 1410 1400 1400 1410

% difference 4 35 4.4 3.3 3.4

Table 43 shows the comparison of natural frequencies between the results from
experimerdal modaltestingand RayleighRitz method for linear widtlapered composite

beam with different width ratiobf/b ) values for fixeefree (cantilever) boundary

condition. It can be observed from the Tablgthat the?o difference between the natural
frequencies is lowest as for mode 1 and highest for mode 3%iTtidference is lowest

for width ratio p_/b ) value of 1 and increases as the width rabg/k() value of

decreases until 0.2. Th& difference is lowest at excitation point 1 and highest at
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exdtation point 4 for modes 1 and 3 but for mode 3, the % difference is highest at
excitation points 2 and 3 and lowest at excitation points 1 and 4. The results show good
agreement between the theoretical predictions and the experimental values of @ile natur
frequencies. The natural frequencies are compared for the effect ofi maittihfor
different boundary condition in section (3&)tained usindrayleighRitz methodwith

that obtained using conventionfhite element method8[l]. The % difference iselss

than 1 % and shows good agreement between the two methods.

4.8 Summary

In this chapter, experimental validation for widdpered composite beams has been
carried out. The manufacturing of composite laminate is discussed with fabrication and
processing.The composite laminate manufactured is inspected using laser ultrasonic
technique and the results are discussed. The composite laminate is cut with the geometric
shape of widthapered beams using watmoled rotarstype diamond cutter.
Experimental modalanalysis is conducted using impact hammer excitation. The
measurement equipments and apparatus used are explained. Modal testing for damping
factor for finding out the damping in the beams is conducted usingtalér bandwidth
method P4]. The experimetal modal analysis results like Coherence function, time
response and auto response function and Frequency Response Function (FRF) of
different width ratio values of widttapered composite beams are shown through

graphical plots. Comparison of experimémemdal analysis results and theoretical results
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for width-tapered composite beams are discussed. From the figures and analyses the

following conclusions are drawn:

1 The coherence function is obtained through impact testing for different width
ratio (b./b, ) values of widthtapered composite beams. The coherence function is poor at
the initial frequency values because of initial disturbance during impact excitation. By
using the force windowing technique these signal values are tailored for good input
signal. At excitation point 3 for width ratiob(/b, ) values of 0.4 and 0.6, the coherence
values are less than 0.5.

1 The time response and autospectmasponseas obtained through impact testing

for different width ratio ig./b ) values for fixeefree (cantileve) boundary condition of
width-tapered composite beam at four excitation points. For all width ratio Jlvalues

of the beams, the impulse force is highest at excitation point 4. This is because the beam
is stiff at excitation point 4.

1 The Fequency Rgmonse Function (FRH;) by impact testing is analyzed for
different width ratio /b ) values of widthtapered composite beams. The fundamental
natural frequency is highest for width ratlpfo, ) value of 0.2 and it gradually decreases

as width ratio If./b ) values increases. At excitation point 1 that is at the free end of the

beam, the amplitude at first mode is highest whereas it is lowest at mode three.
1 The % difference between the natural frequencies is lowest as for mode 1 and

highest for mode 3. fie % difference is lowest for width ratido¢/b ) value of 1 and

increases as the width ratio (b, ) valuedecreases until 0.2. THé difference is lowest
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at excitation point 1 and highest at excitation point 4 for modes 1 and 3 but for mode 3,
the % difierence is highest at excitation points 2 and 3 and lowest at excitation points 1
and 4. The results show good agreement betweerarhbtical predictions and the

experimental values of the natural frequencies.
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CHAPTER 5

DYNAMIC RESPONSE OF THICKNESS- AND WIDTH -TAPERED

LAMINATED COMPOSITE BEAMS USING RAYLEIGH -RITZ METHOD

5.1 Introduction

Mechanical vibration deals with the interaction of inertia and restoring forces.
The former is due to the effect of mass of an object, while the latter is due to the
elastc deformation capability of the object. The inertia force tends to maintain the
current state of the object. The restoring force tends to push the object back to its
equilibrium position. Undesired vibrations in equipment cause loss of accuracy as
in the case of measuring equipment, fatigue failure and discomfort for human
beings as in the case of aircrafts and cars. If the frequency of exciting force gets
close to the frequency band of the natural frequencies of the structure, the
mechanical compome¢ experiences severe vibration due to resonance. The
resonance will decrease the lifetime of the structure and causes unpredictable
failures. Dynamic analyses in mechanical design are of great importance to control
the vibration in order to maintain éhoperating performance and to prevent sudden

failures in structures.

In this chapter, free and forced vibration response of thicknasd width

tapered laminated composite beams and buckling response of thiclamelssvidth
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tapered laminated compositwlumns are conducted using Rayleighiz method.In

section 5.2, energy formulation for dynamic responsgéhimkness and widthtapered
laminated composite beamisased on ori@imensional laminated beam theory is
developed. In section 5.2.1 system magiaee formed for thicknesand widthtapered
laminated beams. Properties of the ply in the tapered laminate are shown in the section
5.2.1.1. In section 5.2.2 Rayleidtitz method for free and forced vibration and buckling
response is formed. In sectionm35dynamic response ahickness and widthtapered
laminated composite beams is shownsections 5.3:15.35 free vibration response of
thickness and widthtapered laminated composite beams with effects of angle of

thicknesstaper ¢) and width ratio (/b ), laminate configuration, boundary condition,

endaxial forces and damping are presentebh section 5.4comparisons of natural
frequencies obtained using RayleiBitz methodwith that obtained usingonventional
finite elementmethod B1] are made. In sections %1-55.3 buckling response of
thickness and widthtapered laminated composite columns with effects of angle of

thicknesstaper {) and width ratio (/b ), laminate configuration, boundary condition

are presented. Isection 5.4 comparisons of forced response in terms of sinusoidal
transverse displacement obtained using RayiRigh methodwith that obtained using
conventional finite element method are made. In secti®thB.summary is provided that
serve as factor® be considered in calculating the optimal results. These conclusions can

guide the designer on the choice of different parameters involved in the analysis.
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5.2 Energy formulation for dynamic response of thickness and width-tapered

laminated composite beams based on ci#imensional laminated beam theory

EulerBernoulli beam theory is also defined as classicanbéheory. This beam
model accounts for bending moment effects on stress and deformation. Transverse shear
forces are recovered from equilibrium but their effect on beam deformation is neglected

[24].

5.2.1 System matrices

Classical Laminated Plate Theory (CLPiE considered for the bending of

symmetrically laminated thicknessnd widthtapered laminated bearft.

The equation for first cefficient of the bending stiffness matrix for uniform
thickness and uniforavidth beam is shown in the equation (2.28he should note that
in the thicknessapered beam as shown in the reference [22], the-sem$®n area and

the value ofD,,are not constant through the length of the bead, for a midplane

thicknesstapered uifiorm-width beam is explained in the section.%.2
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5.2.1.1Properties of ply in the tapered laminate

In the case of thicknedapered composite laminate, as shown in the Figure 5.2,
the cross section area and the valueDgf(x) are not consta throughout the length in

the tapered section and there are ply drop offs at specific distances [22].

Ply k

v
X

Figure 5.2 Schematic illustration of properties of typical thicknegseed laminate

Based on the classical laminate theory, the bending or flexural laminate stiffness

of the tapered beam can be written as:

D,.(X) = (5.2)

=~

||QJ:$

LN

co>m,.q>m
xNI

cc,‘g Q
:.,
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where,

. . . t
tkl = hkl - hk-1| =Kk¢’) (5.2)

From the equation (5.1)%, is the distance between the centerline of the inclined ply and

the midplane of the laminate for th&'lply which is given a§22]:

Z = Sx+cC (5.3
where,
S=-tan({) (5.9

Equation (5.1) is rewritten as:

1 et (Sx+c),” t° @_
D — Z Kk k k N _
11(X) 21% COSQ’) + lZCOSs(f) La(Qll)k (5 5)

The above equation (5.5), is the firsteficient of the bending stiffness element for
thicknesstapered and uniforavidth beam of unit width. Thé,,(x) from the equation
(5.5) is plugged in the equation [Rafter mutiplying with the termb(x) . Based on one

dimensional laminated beam theory, equatior®) (2. (2.11) remain the same.

The strain energy due to flexure of the beam which is given in equati@) {@: idth-
tapered laminated compositeam based on ofmtBmensional beam theory remains the
same for thicknessand widthtapered composite beam with the properties of thickness

taper and widthaper in the beam is considered.
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The work done due to applied static emdal load for the widtiapered laminated beam

which is shown in equation (2)Lis the same for the present case. Hence, the total strain
energyU,, ., which is the sum olJ 4, and U ,,ia10a4 iS given in the equation (5}

remainsthe same for thicknesand widthtapered laminated composite beams.

The kinetic energy for uniforrthickness and widttapered laminated beam is given in

equation (2.9).

But for the thicknessand widthtapered beam, the height is not constant across the

length of the beam as shown in the Figure (5.2).

Therefore, the kinetic energy for thickngapered and widttapered laminated beam is

given as:

T=2 5 boHX VS dx (5.6
24 GH =

5.2.2 Analysis using RayleighRitz method

The formulatios based on RayleigRitz method for widtitapered laminated
composite beams which are derived using classical laminate theory in section (2.3.1.1)
are followed the same way here to fitiee natural frequencies and forced response of
thickness and widthtapered laminated composite beams and critical buckling load of

thickness and widthtapered laminated composite columns.
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From the section (2.3.1.1), the -efficients of the stiffness and geometric

stiffness which are given in equations @.and (2.3) remains the same.

But it should be noted that the-efficient of mass for widtltapered laminated
beam is shown in the equation @.2To construct mass matrix for a thicknéspered
beam, one should consider the decreasing value of area due to theppiyf df herefore
the equation (2% is changed fothicknesstapered and widttapered laminated beam

which is given as
M; = L|¢‘}rc.b(x).H(x).fi (X).f; (¥)dx (5.7)

The rest of the equations from (2)20 (2.38) remain unchanged.

The ceefficients of stiffness, geometric stiffness and mass matrices for thickapses
configurations A, B, C and D which were formulated in the reference [22] using finite
element modeling are used after considering widger of the beam. The individual

routines fordifferent thickness and widthtaper configurations have been developed

using MATLAB® software to calculate the stiffness and mass matrices. The resulting
beams with thicknes&and widthtaper configurations A which are shown in Figure 5.1

are analyzed dr the dynamic response. The detail steps followed in numerical
computations of these thicknesad widthtapered composite beams for their dynamic

response are shown in Appendix B.
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5.2.3 Dynamic response of thicknessand width-tapered laminated composite
beans

The formulations that were done on free and forced vibration response of width
tapered laminated composite beams considering stati@ealdforce and damping in
sections 2.3.2, 2.3.3 and 2.3.4 and buckling response of-taiokined laminated columns
in the section 2.3.5, will remain the same for free and forced vibration response of
thickness and widthtapered laminated composite beams considering stati@aal
force and damping and buckling response of thicknassl widthtapered laminated

compoge columns.

5.3 Free vibration response of thicknessand width-tapered laminated composite

beams

In this section, free vibration response of thicknesmsd widthtapered laminated
composite beams is considered for simglpported, clampedamped, and claped
free boundary conditions. The mechanical properties of -REI graphiteepoxy
prepreg fiber and resin that are given in the Tables 3.1 and 3.2 respectively are used to
find the natural frequencies. The geometric properties of the beam are giverTabth

5.1. The configuration of the beam considered is ([@J9@hich has 36 plies.

RayleighRitz method is used to find the natural frequencies of thickresswidth

tapered laminated composite beams. Comprehensive parametric studies for natural
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frequencies of thicknessand widthtapered composite beams have been shown through

plots.

Table 5.1 Geometric properties of thicknesand widthtapered composite beam

Width at left section (B 0.015m

Width ratio (lx/br) 0.2,0.4,0.6,0.8and 1

Individual ply thickness (1) 0.000125m

Height of the laminate on left side (H 0.0045m

Table 5.2 Angle of thicknesdaper, length, length/height ratio and lergfidth at left
section ratio

Angle of thickness

0.344 0.43 0.573 0.86
taper ¢), degrees
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22
L/b, 17 13 10 7
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Table 5.3 Cases for different thicknesand widthtaper configurations

Case | Angle of thicknesgaper (), degrees | Width-taper b /b )
la 0.344 t0 0.86 1

1b 0.344 to 0.86 0.5

1c 0.344 t0 0.86 0.2

2 0.573 0.2to1

5.3.1 Effect of angle of thicknesgtaper (f) and width ratio (b_/b ) on natural

frequencies

To study the effects of angle of thickngaper {) and width réio (b /b ) on the

first four natural frequencies, the thicknessd widthtapered laminated composite
beams of simphsupported, clampedamped, and clampddee boundary conditions are
considered for free vibration response. The results are summanizédures 5.%5.8.
Different cases of thicknesand widthtaper configurations/hich areshown in the Table

5.3 are considered to study tkfect of angle of thicknestaper {) and width ratio

(by/b,) on the natural frequencies
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Figures 5.3.5 show the effects of angle of thicknégper {) and width ratio
(bs/b) on the first four natural frequencies for simglypported, clampedamped, and
clampedfree boundary conditions of thicknesand widthtapered composite beams for
different thicknessand widthtaper configurations as showntime Figure 5.1. It can be
observed from the Figures 8535 that as the angle of thickndaper ¢) and width ratio
(b/b)) increase, all four modes of natural frequencies increase for all three boundary
conditions. From Figures 525, one can obseribat the natural frequencies are highest
for case 1c, second highest for case 1b and lowest for case la forthitkiness and
width-taper configurations for all three boundary conditions. This is because as the width

ratio (b /b, ) values decrease withcrease in thicknedsper {), the beam becomes more

stiff thus results in increase in all four natural frequencies. For clafnpedoundary
condition, the natural frequencies are highest for case 1c and lowest for case la and
second highest for case 1b. The natural frequencesighest for configuration D,
second highest for configuration B, third highest for configuration C and the lowest for

configuration A This indicates that as the width ratiofb ) value decrease the beam

becomes stiffer for clampefdee boundary conddn. Increasing the width ratido(/b, )
directly affects the value diending stiffness ter#él 1 g The stiffness depends on
c 1*(X)+

Qu: of the ply.
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Figures 5.66.8 show the effect of variation of width ratib (b, ) with constant

angle of thicknessaper ) of 0.57 on first fournatural frequencyf the thicknessand
width-tapered compositeelam. In the current case, for simysilypported boundary

condition as the width ratidg/b, ) value increase, the first natural frequency increase for

all the thicknessand widthtaper beam configurations. One can also observe from the
Figure 5.6for simply-supported boundargondition thatthe first natural frequency for

configuration C is lower thathat of configurationA until the width ratio (b /b, ) value

increass from 0.2to 0.6.But as the width ratio value increases from 0.6 ,tth& first

naturd frequency for configuration C is higher thémat for configurationA. This is
because of the change in the stiffness characteristics in the beam configuration. The
configuration C has ply drepff near midplane due to a resin pocket. Configuration A

has alargeresin pocket leading to low stiffnes’he second, third and fourth natural
frequencieslecreasas the width ratio value increas€som the Figure 5.70f clamped
clamped boundary condition, all four modes of natural frequencies increaseighést

natural frequencies for configuration D, second highest for configuration B, third highest
for configuration C and lowest for configuration Arom the Figure 5.80f the clamped

free boundary condition, as the wietitio (b_/b ) value increaserém 0.2 to 1 with

constant angle of thicknesaper ¢) of 0.570, all four modes ofnatural frequencies

decrease.
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5.3.2 Effect of laminate configurations on natural frequencies

In this section the effect of laminate configurations on natural frequefaries

thickness and widthtapered laminated composite beaans obtained usinayleigh

Ritz method. The angle of thicknesper {) value 0f0.57 and width ratiqb,/b, ) value of

0.5 is considered to find the natural frequencies. The TableS.6.8elow show the

variation of natural frequencies for differeatrlinate configurations for simpsupported,
clampedclamped and clampedree boundary conditions. The laminate configurations
considered are: 1) [O/ld enot ed asS45hd€bdt ed) abf°4)hLC26, 3

denoteca s 6 LC36.

Table 5.4 Comparison of natural frequencies for the effect of laminate configuration

Simply-supported boundary condition

Beam Laminate W1 Wo W3 W
configuration|  Configuration (rad/sec) | (rad/sec) | (rad/sec) | (rad/sec)

LC1 798 3208 7216 | 12825

A LC2 578 2326 5232 9299
LC3 724 2913 6553 11647
LC1 824 3438 7698 13647

B LC2 599 2501 5600 9928
LC3 746 3111 6967 12352

C LC1 788 3369 7554 13398
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LC2 563 2414 5412 9599
LC3 721 3077 6900 12237
LC1 1072 4475 10018 17762
D LC2 643 2687 6022 10682
LC3 809 3372 7556 13402

Table 5.5 Comparison of natural frequencies for the effect of laminate configuration
Clampedclamped boundary condition

Beam Laminate Wy W W3 Wa
configuraion Configuration (rad/sec) | (rad/sec) | (rad/sec) (rad/sec)
LC1 1801 4985 9791 16199
A LC2 1306 3614 7098 11744
LC3 1635 4527 8891 14710
LC1 1945 5330 10422 | 17207
B LC2 1417 3880 7584 12520
LC3 1759 4823 9432 15574
LC1 1955 5208 10307 | 16978
C LC2 1404 3801 7391 12170
LC3 1783 4835 9410 15502
LC1 2533 6939 13565 | 22393
D LC2 1526 4180 8171 13489
LC3 1911 5239 10245 | 16914
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Table 5.6 Comparison of naturdrequencies for the effect of laminate configuration

Clampedfree boundary condition

Beam Laminate W1 Wo W3 Wi
configuration| configuration| (rad/sec) | (rad/sec) (rad/sec) | (rad/sec)
LC1 350 1909 5130 9939
A LC2 254 1384 3720 7206
LC3 318 1734 4659 9026
LC1 546 2308 5729 10826
B LC2 400 1682 4171 7877
LC3 492 2086 5184 9797
LC1 568 2285 5625 10621
C LC2 411 1639 4031 7609
LC3 517 2085 5137 9701
LC1 711 3001 7451 14078
D LC2 416 1782 4456 8444
LC3 522 2239 5596 10601

Tables 5.45.6 show the effect of laminate configuration on natural frequencies
with angle of thicknessaper {) of 0.57 and widthratio (/b)) value of 0.5 for three

boundary conditions. One can observe from the Table§.6.4hat the results obtained
for different laminate configurations show that the natural frequencies is largest for
laminate configuration LC1, second largest flaminate configuration LC3 and lowest
for laminate configuration LC2. This difference in natural frequencies is due to the

variation of stiffness in the beam. This is because in the laminate configuration LC1,
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most of the Ofibers are oriented alongdHength of the beam. @ibers have highest E
compared to other fiber direction which is ttieection of the bending loads. Also the
natural frequencies is largest foonfigurationD of the taper configuration with second
largest forconfigurationB, third largest forconfigurationC and lowest foconfiguration
A. These differences in natural frequencies for different taper configuratioegeted

because of the variation of stiffness in the tapered beam configuration.

5.3.3 Effect of boundary condition on natural frequencies

In this section the effect of boundary condition on natural frequencies for

thickness and widthtapered beam are obtained using Raylk&gla method. Thangle of
thicknesstaper {) value 0f0.57 and width ratio 16-/b,) value of0.5 isconsidered to

find the natural frequencies. Simgdypported, clampedamped andclampedfree
boundary conditions are considered. The natural frequencies fdhraé boundary

conditions are obtained using Rayleighz method.

Table 5.7 Comparison of natural frequenci8snply-supported boundary condition

Beam
wi (rad/sec)| wsp(rad/sec) | ws(rad/sec) | wy(rad/sec)
configuration

A 798 3208 7216 12825
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B 824 3438 7698 13647
C 788 3369 7554 13398
D 1072 4475 10018 17762

Table 5.8 Comparison of natural frequenci€ampedclampedooundary condition

Beam
wi (rad/sec) | w, (rad/sec)| ws(rad/sec)| wy(rad/sec)
configuration
A 1801 4985 9791 16199
B 1945 5330 10422 17207
C 1955 5298 10307 16978
D 2533 6939 13565 22393

Table 5.9 Comparson of natural frequenci€&ampedfree boundary condition

Beam
wi (rad/sec) | w, (rad/sec)| ws(rad/sec)| w;(rad/sec)
configuration
A 350 1909 5130 9939
B 546 2308 5729 10826
C 568 2285 5625 10621
D 711 3001 7451 14078
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Tables 5.75.9 show the effect dboundary conditions on four natural frequencies for
thickness and widthtapered laminated composite beam. From the Table§.8,one

can observe that the natural frequencies are largest for clastggepged boundary
condition because the stiffness ofettbeam is largest. Beam with clamgeee
(cantilever) boundary condition has lowest natural frequencies this is because of lower
stiffness. The natural frequencies are second largest for ssupported boundary
condition. Also, one can observe naturaguencies are largest for taper configuration D
and lowest forconfigurationA, second largest foconfigurationB and third largest for

configurationC.

5.3.4 Effects of endaxial forces on natural frequencies

By using the mechanical and geometric propsrtdescribed in section 5.3.the
effect of applied static eralxial tensile and compressive forces on the first four natural
frequencies for simphkgupported, clampedamped, and clampddee boundary

conditions of thicknessand widthtapered compositeeams are carried out in the current
section The angle of thicknegsper { pf 0.57 and width ratio 9-/b, ) value of 0.5 are
considered for the analysi@oncentrated endxial compressive and tensile forces which
are applied as thg@ercentage otritical buckling load and firgbly tensile failure loads

respectively are applied on both ends of the beam to determine the natural frequencies

due to the effect of axial forces.
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The critical bucklingoad isdetermined in the sections1 for thicknessandwidth
tapered composite columns and fipdy tensile failure loads are determined in the section
3.6.1.The results are presented in the plots in Tables®I1®which are obtained using

RayleighRitz method.

Table 5.10 Effect of endaxial compressive force on natural frequenci€snply

supported boundary condition

% Pcr| Beam configuratior w; (rad/sec) w. (rad/sec) ws (rad/sec) w; (rad/sec)
A 798 3208 7216 12825
B 824 3438 7698 13647
° C 788 3369 7554 13398
D 1072 4475 10018 17762
A 678 2951 7000 12697
% decrease 15 8 3 1
B 700 3163 7467 13511
S0 % decrease 15 8 3 1
C 670 3099 7328 13264
% decrease 15 8 3 1
D 911 4117 9717 17584
% decrease 15 8 3 1
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A 542 2630 6783 12440
% decrease 15 8 3 1

B 560 2819 7236 13238
% decrease 15 8 3 1

C 536 2762 7101 12996

95

% decrease 15 8 3 1

D 729 3669 9417 17229
% decrease 15 8 3 1

Table 5.11 Effect of endaxial compressive force onatural frequenciesClamped

clamped boundary condition

% Pcr| Beam configuratior w; (rad/sec) w- (rad/sec)| ws (rad/sec) w; (rad/sec)
A 1801 4985 9791 16199
B 1945 5330 10422 17207
° C 1955 5298 10307 16978
D 2533 6939 13565 22393
A 1477 438/ 8910 15389
% decrease 18 12 9 5
B 1595 4690 9484 16347
50 % decrease 18 12 9 5
C 1603 4662 9379 16129
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% decrease 18 12 9 5
D 2077 6106 12344 21273

% decrease 18 12 9 5
A 1224 4088 9203 15713

% decrease 18 12 9 5
B 1322 4371 9797 1669

95 % decrease 18 12 9 5
C 1329 4344 9689 16469

% decrease 18 12 9 5
D 1722 5690 12751 21721

% decrease 18 12 9 5
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Table 5.12 Effect of endaxial compressive force on natural frequendidampedfree

boundary condition
% Pcr| Beam configuratior w; (rad/sec) w. (rad/sec)| ws (rad/sec) w; (rad/sec)
A 350 1909 5130 9939
B 546 2308 5729 10826
C 568 2285 5625 10621
0 D 711 3001 7451 14078
A 305 1737 4976 9840
% decrease 13 9 3 1
B 475 2100 5557 10718
% decrease 13 9 3 1
C 495 2079 5456 10515
50
% decrease 13 9 3 1
D 618 2731 1227 13937
% decrease 13 9 3 1
A 256 1623 4874 9741
% decrease 13 9 3 1
B 398 1962 5443 10609
% decrease 13 9 3 1
C 415 1942 5344 10409
95
% decease 13 9 3 1
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D

519

2551

7078

13796

% decrease

13

Tables 5.165.12 show the effect of applied easlial (static) compressive forces on

first four natural frequencies for simpgupported, clampedamped, and clampeidee

boundary conditions fothickness and widthtapered composite beams. It can be
observed from th&ables 5.165.12 that as the magnitude of end axial compressive force is
increased all the four natural frequencies decrémsall threeboundary conditions. This

is because ahe axial compressive force is applitie beanbecomes less stiff thereby
decrease in theatural frequencie®One can also observe from the Tables &1 that

the percentage of decrease between the modksvdries in the same taper beam

configuratians.

Table 5.13 Effect of endaxial tensile force on natural frequencimply supported

boundary condition

% P, | Beam configuratior| w;, (rad/sec) w- (rad/sec) ws (rad/sec) w;, (rad/sec)
A 798 3208 7216 12825
B 824 3438 7698 13647
0 C 788 3369 7554 13398
D 1072 4475 10018 17762
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A 5010.5 10558 16970 24496
% increase 528 229 135 91
B 5077.1 10776 17350 25024
50 % increase 516 213 125 83
C 5074.7 10791 17377 25034
% increase 544 220 130 87
D 5131.4 11221 18655 27714
% increase 379 151 86 56
A 6849.3 14128 22084 30967
% increase 759 340 206 141
B 6948.6 14423 22597 31697
95 % increase 743 320 194 132
C 6947.1 14440 22642 31759
% increase 782 329 200 137
D 6989.1 14774 23671 33976
% increase 552 230 136 91

Table 5.14 Effect of endaxial tensile force on natural frequenci€dampedclamped
boundary condition

% P, | Beam configuratior| w, (rad/sec) w, (rad/sec)| ws (rad/sec) wy (rad/sec)
A 1801 4985 9791 16199
B 1945 5330 10422 17207
C 1955 5298 10307 16978
D 2533 6939 13565 22393
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A 5614.7 11819 18952 27238
% increase 212 137 94 68
B 5780 12146 19392 27778
% increase 197 128 86 61
50 C 5827.4 12227 19478 27832
% increase 198 131 89 64
D 6085.9 13071 21429 31478
% increase 140 88 58 41
A 7426.2 15316 23943 33540
% increase 312 207 145 107
B 7631.9 15761 24579 34340
% increase 292 196 136 100
95 C 7682.3 15858 24709 34477
% increase 293 199 140 103
D 7909.2 16565 26333 37549
% increase 212 139 94 68

Table 5.15 Effect of endaxial tensile force on natural frequenei€ampedfree boundary

condition
% P, | Beam configuratior| w;, (rad/sec) w- (rad/se) | ws (rad/sec) w;, (rad/sec)
A 350 1909 5130 9939
B 546 2308 5729 10826
0 C 568 2285 5625 10621
D 711 3001 7451 14078
A 2983.3 8247.2 14302 21321
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50 % increase 752 332 179 115
B 3339.5 8882.3 15282 22662
% increase 512 285 167 109
C 33681 8954.3 15382 22760
% increase 493 292 173 114
D 3439.8 9301.2 16371 24876
% increase 384 210 120 77
A 4048.3 11045 18760 27277
% increase 1056 479 266 174
B 4484.1 11767 19855 28785
% increase 722 410 247 166
95 C 4512.9 11845 19977 2893%
% increase 694 418 255 172
D 4580.3 12151 20830 30763
% increase 545 305 180 119

Tables 5.1%.15 show the effect of applied easial (static) tensile force on first
four natural frequencies for simpfupported, clampedamped, and clampedee
boundary conditions of thicknessand widthtapered composite beams. It can be
observed from th&ables 5.1%.15 that as the magnitude of end axial tensile force is
increased all the four natural frequencies incréasall threeboundary conditions This
is because as the axial tensile force is applied the beammes stiffer thereby increase
in the natural frequencies. Once can observe from the Table$333hat the %
increase in the natural frequencies are high due to the application loferndgxial

tensile load.
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5.3.5 Effect of damping on natural frequencies

To study the effect of damping on the first four natural frequencies, the

mechanical and geometric properties which are described in section 5.3.1 are used in the
current section. The arglof thicknesgaper ¢ )/alueof0.57o and width ratio i/b,)

value of 0.5 are considered for the effect of damping on natural frequencies of thickness
and widthtapered composite beams with simplypported, clampedamped, and

clampedfree boundary conditions.

Table 5.16 Effect of damping on natural frequencies for sirplyported boundary

condition.
Condition Beam Wy Wo W3 Wy
configuration| (rad/sec) | (rad/sec) | (rad/sec)| (rad/sec)
A 798 3208 7216 12825
B 824 343 7698 13647
Undamped
C 788 3369 7554 13398
D 1072 4475 10018 17762
A 780 3135 7052 12534
B 803 3352 7506 13308
Damped
C 768 3282 7360 13054
D 1045 4363 9769 17320
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Table 5.17 Effect of damping on naturalreéquencies for clampedamped boundary

condition
Condition Beam Wy Wo W3 Wy
configuration| (rad/sec) | (rad/sec) | (rad/sec)| (rad/sec)

A 1801 4985 9791 16199
B 1945 5330 10422 17207

Undamped
C 1955 5298 10307 16978
D 2533 6939 13565 22393
A 1778 4921 9666 15992
B 1829 5013 9802 16183

Damped

C 1795 4865 9464 15589
D 2322 6361 12435 20527

Table 5.18 Effect of damping on natural frequencies for clamfzed boundary condition

Condition Beam Wy Wo W3 A

configuration | (rad/sec) | (rad/sec) | (rad/sec)| (rad/sec)

A 350 1909 5130 9939

B 546 2308 5729 10826
Undamped

C 568 2285 5625 10621
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D 711 3001 7451 14078

A 265 1442 3876 7509

B 453 1914 4751 8977
Damped

C 481 1933 4761 8989

D 589 2490 6180 11678

Tables 5.165.18 show the effect of damping on first four naturafjiencies for all
three boundary conditions of thicknessd width tapered laminated composite beams.

The mass proportional constag@t and stiffness proportional constam) are 3.753 and

4.833 10 °respectively are considered to study for the effects of damping obtained
through experimental mod&dsting One can observe from tAables 5.165.18 that the
naturalfrequencies of wwdamped beam are higher than the natural frequendgias w
damping for all boundary conditions. Another important observation is that the
difference between the natural frequencies eflamped and damped beamaryest

for beam configuration D for simplgupported boundary conditiorzor clamped
clamped boudary condition the highest difference between damped and damped

natural frequencies is faonfigurationD andleast forconfigurationA.
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5.4 Comparison of natural frequencies between RayleigiRitz method and

conventional finite element method

By usingthe mechanical and geometric properties given in section 5.3.tuttent
section presents the comparison of first four natural frequencies for sogbprted,
clampedclamped, and clampéddee boundary conditions of thickneasd widthtapered
composie beamsobtained usingRayleighRitz method with that obtained using

conventional finite element metho@1]. The angle of thicknedsper ) value is
increased fron0.344 to 0.86 with keeping constant width ratid b, ) value of 0.5

which is the cas® as shown in th&able 5.3 is considered to compare the natural

frequencies.

Table 5.19 Comparison of natural frequencies foonfiguration A-Simply supported

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

w; (R-R) 780 1219 2165 4868

w1 (FEM) 760 1187 2109 4744
% difference 2.61 2.57 2.55 2.53

w; (R-R) 3244 5068 8999 20219
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w, (FEM) 3221 5032 8948 20133
% difference 0.70 0.71 0.57 0.42

w3 (R-R) 7297 11402 20245 45482

w3 (FEM) 7178 11216 19940 44866
% difference 1.63 1.63 1.50 1.35

Table 5.20 Comparison of natural frequencies @anfigurationA-Clampedclamped
boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

wi (R-R) 1821 2845 5051 11349
wy (FEM) 1808 2825 5024 11302
% difference 0.71 0.69 0.55 0.41
W (R-R) 5041 7876 13985 31420
w, (FEM) 4947 7729 13741 30917
% difference 1.87 1.86 1.74 1.60
w3 (R-R) 9901 15470 27468 61711
w3 (FEM) 9664 15101 26847 60405
% difference 2.39 2.38 2.26 2.12
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Table 521 Comparison of natural frequencies faonfiguration A-Clampedfree

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22
w; (R-R) 563 878 1552 3520
wy (FEM) 582 913 1617 3682
% difference 3.53 4.01 4.20 4.60
W, (R-R) 2212 3457 6137 13918
w, (FEM) 2274 3553 6317 14217
% difference 2.79 2.79 2.93 2.15
w3 (R-R) 5238 8184 14530 32646
w3 (FEM) 5463 8536 15176 34146
% difference 4.29 4.30 4.44 4.60
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Table 5.22 Comparison of natural frequencies foonfiguration B-Simply-supported

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

w1 (R-R) 820 1281 2276 5115
w; (FEM) 837 1307 2322 5230
% difference 2.14 2.02 1.98 2.25
w2 (R-R) 3654 5695 10120 22740
w, (FEM) 3733 5833 10368 23327
% difference 2.15 2.41 2.45 2.58
w3 (R-R) 8125 12680 22540 50548
w3 (FEM) 8347 13042 23187 52166
% difference 2.73 2.86 2.87 3.20
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Table 5.23 Comparison of natural frequencies foonfiguration B-Clampedclamped

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

w1 (R-R) 2135 3322 5897 13225
wy (FEM) 2178 3404 6050 13619
% difference 2.02 2.47 2.60 2.98
w; (R-R) 5716 8910 15810 35548
w, (FEM) 5837 9121 16215 36482
% difference 2.13 2.37 2.56 2.63
ws (R-R) 11092 17283 30643 68897
w3 (FEM) 11322 17691 31451 70762
% difference 2.08 2.37 2.64 2.71
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Table 5.24 Comparison of natural frequencies faonfiguration B-Clampedfree

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 a4 33 22

wi (R-R) 733 1139 2024 4540
w1 (FEM) 751 1170 2080 4693
% difference 2.54 2.71 2.78 3.36
W, (R-R) 2643 4129 7337 16477
w, (FEM) 2710 4233 7526 16939
% difference 2.51 2.52 2.58 2.80
w3 (R-R) 6276 9803 17417 39122
w3 (FEM) 6420 10031 17832 40122
% dfference 2.29 2.32 2.38 2.55
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Table 5.25 Comparison of natural frequencies @mmfigurationC-Simply-supported

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

wi (R-R) 809 1268 2246 5053
w1 (FEM) 827 1296 2299 5175
% difference 2.16 2.21 2.35 241
W, (R-R) 3493 5456 9699 21821
w, (FEM) 3589 5609 9970 22433
% difference 2.75 2.79 2.79 2.80
w3 (R-R) 7840 12238 21740 48911
ws (FEM) 8013 12521 22259 50080
% difference 2.20 2.32 2.39 2.39
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Table 5.26 Comparison of natural frequencies amfigurationC-Clampedclamped

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

w1 (R-R) 1950.3 3046.4 5412.2 12154
w; (FEM) 2031 3174 5641 12693
% difference 4.15 4.19 4.24 4.44
W, (R-R) 5286 8257 14671 32946
w, (FEM) 5540 8656 15388 34623
% difference 4.80 4.83 4.89 5.09
w3 (R-R) 10525 16456 29242 65697
w3 (FEM) 10811 16892 30031 67566
% difference 2.72 2.65 2.70 2.85
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Table 5.27 Comparison of natural frequencies faonfiguration C-Clampedfree

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

wi (R-R) 651 1025 1806 4092
w; (FEM) 680 1069 1890 4269
% difference 4.57 4.29 4.66 4.31
w> (R-R) 2436 3805 6761 15182
w, (FEM) 2564 4006 7123 16026
% difference 5.24 5.28 5.35 5.56
ws (R-R) 5833 9112 16343 36699
w3 (FEM) 6122 9566 17008 38265
% difference 4.96 4.99 4.07 4.27
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Table 5.28 Comparison of natural frequencies foonfiguration D-Simply-supported

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

w1 (R-R) 1065 1665 2958 6646
wy (FEM) 1019 1590 2826 6365
% difference 4.31 4.44 4.48 4.23
w; (R-R) 4454 6958 12364 27776
w, (FEM) 4581 7157 12724 28629
% difference 2.84 2.87 2.92 3.07
w3 (R-R) 9971 15577 27677 62179
w3 (FEM) 10351 16172 28750 64681
% difference 3.81 3.82 3.88 4.03
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Table 5.29 Comparison of natural frequencies foonfiguration D-Clampedclamped

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

w1 (R-R) 2523 3941 7003 15733
wy (FEM) 2570 4015 7140 16066
% difference 1.87 1.89 1.96 2.12
W (R-R) 6908 10792 19176 43080
w, (FEM) 6859 10717 19052 42865
% difference 0.71 0.69 0.64 0.50
w3 (R-R) 13503 21093 37478 84198
w3 (FEM) 13725 21446 38126 85779
% difference 1.65 1.68 1.73 1.88
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Table 5.30 Comparison of natural frequencies faonfiguration D-Clampedfree
boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

w; (R-R) 850 1326 2355 5294
w; (FEM) 869 1357 2411 5425
% difference 2.22 2.33 2.39 2.47
W (R-R) 3088 4825 8567 19262
w, (FEM) 3154 4927 8761 19711
% difference 2.13 2.11 2.26 2.34
w3 (R-R) 7422 11594 20601 46280
w3 (FEM) 7582 11847 21061 47386
% difference 2.16 2.19 2.24 2.39

Tables 5.1%.30 show the comparison dfst four natural frequencies for simply
supported, clampedamped, and clampddee boundary conditions of thickneasd
width-tapered composite beams for case 2. The comparisorawalfrequencies were
made between RayleigRitz method and conventional finite element method. From the

abovetables, the comparison differences éonfigurationA <5%, for configurationB it
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is <4%, for configurationC it is <6% and forconfiguraton D it is <4.5%. This
difference in naturafrequencies is expected from the inside geometry variation; the
location of plies drop-off, because frequencies calculated for different taper
configurations dependn the stiffness of the beam. From the abosables, the

comparisons the differenae natural frequencies are well accepted.

5.5 Buckling response of thickness and width-tapered laminated composite

columns

In this section buckling response of thicknresnd widthtapered laminated
composite columns arconsidered for simplgupported, clampedamped and clamped
free boundary conditions. The taper configurations shown in Figure 5.1 are used for
buckling response. RayleigRitz method is used to find the critical buckling load of
thickness and widthtapered composite columns. Comprehensive parametric studies

have been shown through plots.

5.5.1 Effect of angle of thicknesgaper (f) and width ratio (b/b ) on critical
buckling load

To investigateeffects of angle of thicknedaper ¢) and width ratio If_/b ) on

critical buckling load, the thicknesand widthtapered laminated composite columns of

simply-supported, clampedampeal, and clampedree boundary conditions are
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considered for buckling response. The results are summarizibe FFigures 5-5.12.
Different cases of thicknesand widthtaper configurations as shown in the Table 5.3 are

considered to study the angle ofcmesstaper {) and width ratio If_/b ) on critical

buckling load
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Figure 5.9 Effect of angle of thicknessper {) and width ratiolf./b ) on critical buckling

load for simplysupported bendary condition
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buckling load for clampeftee boundary condition
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Figures 3-5.12 show the effect of angle of thicknetsper {) and widthratio (./b ) on

critical bucklingload (R;) for simplysupported, clampedamped,and clampedree

boundary conditions of thicknesand widthtapered laminatedomposite columns. It can
be observedrom theFigures 5.9.12,that the critical buckling load {fp is highest for case
1c, second highest for case 1lb almvest for case la for althe three boundary
conditions.This indicates that as the anglethicknesgaper {) is increased and width

ratio (b./b, ) value is decreased, the stiffneshe column increases for all three boundary

conditions. Also one can observe from the Figuf thatthe difference in the critical
buckling load between case 1la, 1b and fbr clampedfree boundary conditiorare

largest compared to other boundary conditions. Figur2 $haws the effect of variation
of width ratio p_/b ) with constant angle of thicknetzper (f) of 0.57 on critical

buckling load (B) of thicknessand widthtapered composite column. One can observe from
the Figure 5.2 that the critical buckling load { is largest for configuration D, because
the stiffness of the beam largest compared to the otleemfigurations Second largest is
configurationB, third largest andourth largest areonfigurationsC and A respectively for

all three boundary conditions. d¢an also be observed that as the width ratigb()

values increase for constaamgle of thicknestaper ) of 0.570, the critical buckling
load (R)) is increased fosimply-supported boundary condition, but for clamyotaimped

boundary thecritical buckling load (B) increase until width ratio (i#b ) value is

increased fron®.2 upto 0.4, but decrease hs width ratio value increase from 0.6 to 1
For the case of clampdtee boundary condition, the critical bucklitead (R;) decreases

as the width ratiokt,/b ) value increase from 0.2 to 1.
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5.5.2 Effect of laminate configuration on critical buckling load

In this section the effect of laminate configurations on critical buckling logdf¢P
thickness and widthtapered laminated composite columns are obtained using Rayleigh
Ritz method. The Tables 53133 show the variation of critical buckling load.JFor
simply-supported, clampedamped and clampetee boundary condition3he laminate
configurations considered are: 1) (00 e not ed a$45lgsdEhdt ed) a6 6L

3) ([04°45/])sdenotech s 6L C36.

Table 5.31 Comparison otritical buckling loadSimply-supported boundary condition

Beam configuration Laminate Pcr(KN)
configuration

A LC1 28.9
LC2 155
LC3 23.6

B LC1 21.6
LC2 114
LC3 17.7

C LC1 19.1
LC2 9.7
LC3 16.1

D LC1 36.5
LC2 13.7
LC3 215
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Table 5.32 Comparison otritical buckling loadClampedclamped boundary condition

Beam configuration Laminate Pcr (KN)
configuration

A LC1 114.9
LC2 62.2
LC3 93.7

B LC1 87.8
LC2 45.3
LC3 71.8

C LC1 83.2
LC2 41.3
LC3 69.4

D LC1 147.8
LC2 55.2
LC3 87.7

Table 5.33 Comparison otritical buckling load Clampedfree boundary condition

Beam configuration Laminate Pcr(KN)
configuration

A LC1 9.4
LC2 5.1
LC3 7.7

B LC1 10.2
LC2 5.4
LC3 8.3

C LC1 9.9
LC2 5.1
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LC3 8.3
D LC1 16.8
LC2 6.0
LC3 9.5

Tables 5.345.33 show the effect of laminate configuration on critical buckiozgl
(Pcy) with angle of ticknesstaper {) value 0f0.57 and width ratio /b, ) value of 0.5

for three boundary conditions. One can observe from the Tables 5.3 that the
results obtained for different laminate configuration show that cribigekling load (R)

is largestfor laminate configuration LC1, second largest laminate configuration
LC3 and lowest for laminate configuration LC2. Thliference in critical buckling
load (R)) is due to the variation of stiffness in thelumn. Also the critical buckling
load (R)) is largest for beanconfigurationD of the taperconfiguration with second
largest for model B, third largest for model C and loviestbeamconfigurationA. This

difference in critical buckling load for differeriieam configurationis expected

becaus of the variation of stiffness in the tapered model.

5.5.3 Effect of boundary condition on critical buckling load

In this section the effect of boundary condition on critical buckling &g for

thickness and widthtapered column are obtained using Ragh-Ritz method. The
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angle of thicknessaper t) value of 0.57 and width ratio 0/b,) value of 0.5is

considered to find the critical buckling load for simysiypported, clampedamped
and clampedree boundary conditions. The critical buckling load,)(Ror all three

boundary conditions is obtad using RayleigiRitz method.

Table 5.34 Comparison otritical buckling load Simply-supported boundary condition

Beam configuration Laminate Per (KN)
configuration
A LC1 28.9
B LC1 21.6
C LC1 19.1
D LC1 36.5

Table 5.35 Comparison otritical buckling load-Clampedclamped boundary condition

Beam configuration Laminate Per (KN)
configuration
A LC1 114.9
B LC1 87.8
C LC1 83.2
D LC1 147.8
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Table 5.36 Comparison otritical buckling load Clampedfree boundary condition

Beam configuration Laminate Per (KN)
configuration
A LC1 9.4
B LC1 10.2
C LC1 9.9
D LC1 16.8

Tables 5.34.36 show the effectfoboundary conditions on critical bucklirigad
(Pe) for thickness and width tapered laminated composite column. From Tlables
5.345.36, one can observe that the critical buckling loag (P largest forclamped
clamped boundary condition becauke stiffness of the column is large€olumn with
clampedfree (cantilever) boundary condition has lowest critimatkling load (R)
this is because of lower stiffness. The critical buckling loag (® second largest for
simply-supported boundary cdition. Also, one can obsertle critical buckling load
(Per) is largest forbeamconfigurationmodel D and lowesfor beamconfigurationA,

second largest fdreamconfigurationB and third largest fdneamconfigurationC.
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5.6 Comparison of forced respomse in terms of sinusoidal transverse displacement

between RayleighRitz method and conventional finite element method

By using the mechanical and geometric properties given in section 5.3.1 and
considering case 2 from Table 5.3, therent section presenthe comparison dbrced
response in terms of sinusoidal transverse displacemesinfipty-supported, clamped
free and clampedlamped boundary conditions of thicknesand widthtapered
laminated composite beams obtained by using RayRighmethodwith that obtained
usingconventional finite elememhethod B1]. A sinusoidal force of magnitude 2N with
excitation frequency is applied at the maximum excitation point conditidagr simply
supported boundary and clampadmped boundary conditiongtexcitation point applied
at the centre of the tapered composite beam, while for clafrgetéoundary condition the
excitation point is applied on the free end of the béamcompared results are presented

in the Figures 53-5.15 below.
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displacementclampedclamped boundary condition
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Figures 5.8-5.15 show thecomparison offorced response in terms of sinusoidal
transverse displacement fasimply-supported, clampedamped and clampeidee

boundary condions for thicknessand widthtapered composite beams wiéimgle of
thicknesstaper {) value 0f0.57 and width ratio /b, ) value of 0.5From theFigures

5.13-5.15, the comparison difference for simpdypported boundary condition is
between 57/%, for dampedclamped boundary condition it is betweer6% and for
clampedfree boundary condition it is between-7%. The comparison
differences intransverse displacemeftom the above FigureS.185.20 are well

accepted.

5.7 Summary

In this chapter, the enerdggrmulation for dynamic response thfickness and width
tapered laminated composite beams based oftdinmensional laminated beam theory
is derived following Chapted2. RayleighRitz method is usefbr dynamic response of
thickness and widthtapered lminated composite beamBrom the numerical results

through graphical plots and tables, the following conclusions are drawn:

1 As the angle of thicknegaper ) and width ratiolg_/b, ) increase, all four modes

of natural frequencies increase for all thbeeindary conditions. The natural frequencies
are highest for case 1c, second highest for case 1b and lowest faacase clamped

free boundary condition, the natural frequencies are highest for case 1c and lowest for
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case la and second highest forecdd. The natural frequencies are highest for
configuration D, second highest for configuration B, third highest for configuration C and

the lowest for configuration A

1 In case 2, dér simplysupported boundary condition as the width rabg/l)

value ircrease, the first naturflequency increasdsr all the thicknessand widthtaper

beam configurations. The second, third and fourth natural frequencies remain constant as
the width ratio value increases. For clamjotaimped boundary condition, all foorodes

of natural frequencies increase with highest natural frequencies for configuration D,
second highest for configuration B, third highest for configuration C and lowest for

configuration A. For the clampedee boundary condition, as the wieltdtio (b /b, )

value increase from 0.2 to 1 with constant angle of thicktegss ) of 0.570, the

natural frequencies decrease.

1 The natural frequencies are largest for laminate configuration LC1, skrgedt
for laminate configuration LC3 and lowest ftaminate configuration LC2. Also the
natural frequencies is largest for beam configuration sBcond largest forbeam
configurationB, third largest fobeam configuratio® and lowest fobeam configuratior.

1 The natural frequencies are largest for clamgathped boundary condition.
Beam with clampedree (cantilever)boundary condition haghe lowest natural
frequencies. The natural frequencies are second largest for sappprted boundary
condition. Also, one can observe naturalquencies are largegir beam configuration
D and lowest fobeam configuratiod\, second largest fdsream configuratio® and third

largest forbeam configuratiort.
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1 The comparison between Rayleifitz method developedrom the current
thesis and conventional finite elemiemethod 81] is compared for four natural
frequencies for thicknessind widthtapered composite beams for caseh2. differences
between the two methods are well accepted.

1 As end axial tensile force is increased the natural frequencies increaseydage

for compressive force for all three boundary conditions.

1 The natural frequencies of «amped beam are higher than the natural
frequencies with damping for all boundary conditions

1 The critical buckling load (B is highest for case 1second highst for case 1b and

lowestfor case la for all the three boundary conditions. thereffect of variation of
width ratio p/b ) with constant angle of thicknetaper(f) of0.57,0 the critical buckling

load (R)), islargest for configuration D,esond largest isonfigurationB, third largest and
fourth largest areonfigurationsC and A respectively for all three boundary conditions.

As the width ratio lf_/b, ) valuesincrease for constarangle of thicknestaper {) of

0.570, the critical buckling load (f) is increased fosimply-supported boundary condition,
but for clampeetlamped boundary theritical buckling load (B) increase until width

ratio (/b ) value & increased from 0.2 upto 0.4, but decrease as the width ratio value

increase from 0.6 to 1. For clampide boundary condition, the critical bucklihgad

(Per) decreases as the width rat/p, ) value increase from 0.2to 1

i The critical buckling loadP) is largest for laminate configuration LC4econd
largest for laminate configuration LC3 and lowest for laminadefiguration LC2.

This difference in critical buckling load ¢ is due to the variation of stiffness in the
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column. The critical budkhg load (R)) is largest for beam configuration D of the taper
configuration with second largest for beam configurat®n third largest forbeam
configurationC and lowest fobeam configuratioi.
1 The critical buckling load (B is largest for clampkclamped boundary
condition because the stiffness of the column is largest. Column with
clampedfree (cantilever) boundary condition has lowest critical bucKiiag (R,) this is
because of lower stiffness. The critical buckling loag) (B second legest for simply
supported boundary condition.
1 The comparisons of transverse displacenfentthickness and widthtapered
composite beambetween RayleigiiRitz method and conventional finite element method
show the difference in transverse displacemiensimplysupported boundary condition
is between 5%, for clampeeclamped boundary condition it is betwee6% and for
clampedfree boundary condition it is betweef/%0.

1 The present study helps the designer in the selection of the angle of

thicknesstaper(f) and width ratidb /b ) so as to shift the naturfaéquencies as

desired or to control the vibration level.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1  Major contributions

The primary objectives of the research work are: (1) To inyastithe free and
forced vibration and buckling response of witlipered and thicknesand width
tapered laminated composite beavhtainedusing RayleighRitz method, (2) To conduct
a detailed parametric study on the effects of various material, geéoraetl structural
properties on the dynamic response of tapered composite beams, (3) To conduct modal
testing using impact hammer excitation to determine the Frequency Response Function

(FRF) of widthtapered composite beams.

Following are considered tme the major contributions of the study:

a) The RayleighRitz formulation has beemsedand the efficiency and accuracy are
established very systematically. Formulations have been developed based on Kirchhoff
one dimensional laminated beam theory for free@ famced vibrations of widthapered

and thicknessand width tapered composite beams including damping andasrad

force effects, and for buckling response of tapered composite columns.
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b) The firstply failure analysis using Ts&Vu failure criterion isconducted for
[(0/90)]s laminate and the results are used to determine the effect of statigiahtbrce

on the free and forced vibration response of tapered laminated composite beams.

C) Free and forced response results obtained using Rayighmetha are
compared with that obtained using conventional finite element formula&idnThe free

vibration response results are also validated using experimental tesiitad

d) The codes of programming, involving numerical and symbolic computations are
written in MATLAB software. The beam properties such as stiffness matrix, mass matrix

and force matrix are computed numerically using individual@olgrams.

e) A detailed parametric study has been conducted using the above mentioned
theoretical and experimentdevelopments to determine the influence of the material
properties, geometric properties, structural properties and applied axial force on the
natural frequencies and modal displacement response. The effects of width ratio, taper
configuration, taper angldength ratio, boundary conditions, laminate configurations,
static endaxial force and damping on natural frequencies and modal displacement

response are studied.

f) Experimental modal analysis is conducted for the determination of Coherence
function, timeand auteresponse function and Frequency Response Function (FRF) of
width-tapered laminated composite beams with different width ratios. The damping loss

factor () is extracted from FRF plots using kalbwer bandwidth method.
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6.2 Conclusions

The most impodnt and principal conclusions of the present thesis that provides
insight on the dynamic behaviour of wietipered and thicknesand width tapered

composite beams for design purpose are given in the following:

a) As the width ratio If_/b ) valuesof the b@am increases, the natural frequencies

increase for simphgupported, clampedamped and freelamped boundary conditions,

but decrease for clampdeee boundary condition. Increasing the width ratn/if )

a
results in increase in the valuelsnding stifness tern% 1 =, Which in turn results in
C 11(X) :

ap: OO

increase in stiffness matrix coefficients.

b) As for the effect of laminate configuration on the natural frequencies of -width
tapered composite beams, the natural frequencies are largest for laminate configuration
LC3 (laminate with ([@/°45;])s configuration), second largest for LC1 (laminate with
([0/90]y)s configuration), third largest for LC4 (laminate with ([60]s)s configuration)

and fourth largest for LC2 (laminate witl? §5]o)s configuration).

C) As the length ratio (/L3) increags, all the natural frequencies increase. Also the

natural frequencies increase as the width rajgb() increases for simpigupported,

clampedclamped and freelamped boundary conditions, but decrease for clarmeed

boundary condition.
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d) Observationgor different boundary conditions show that the beam with clamped
clamped boundary condition has the largest natural frequencies whereakrimped
boundary condition has the lowest natural frequencies. The beams with-supplyrted

and clampedree baindary conditions are second highest and third highest in natural
frequencies respectively. As the compressive axial load is increased from 0 to 95 % of
critical buckling load, the natural frequencies decrease. As the tensile axial load is
increased from @ to 95 % of tensile failure load, the natural frequencies increase. The

damped natural frequencies are less than that obtained without damping.

e) As the width ratio value increases the critical buckling load increases for simply
supported, clampedlampedand freeclamped boundary conditions, but decrease for
clampedfree boundary condition. The critical buckling load is largest for laminate
configuration LC3, second largest for LC1, third largest for LC4 and fourth largest for
LC2. The critical buckling lad is largest for length ratio {IL3) value of 2 and least for
length ratio (L/L3) value of 0.25. For the effect of different boundary conditions, the
critical buckling load is largest for clampethmped boundary condition since the

column is stiffer ad is smallest for freelamped boundary condition.

f) The firstply failure loads for [(0/9Q])s laminate are calculated using T¥&u
theory. It was observed that the failure loads (tensile and compressive) are the lowest and
highest for width ratios of resgtively 0.01 and 1, for both 0° and 90° plies. This is

because of the change in the cresstional stiffness of the beam.

0) It is concluded from the parametric study on forced response that the transverse

displacement amplitude is largest for width rati/lf ) value of 0.2, second largest for
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width ratio value of 0.5 and lowest for width ratio value of 1. The transverse
displacement amplitude is largest for laminate configuration LC2, second largest for
laminate configuration LC1, third largest for LC4dalowest for laminate configuration
LC3. The transverse displacement amplitude is largest for length rafig)(kalue of

0.25 and lowest for length ratio{L 3) value of 2 for all four boundary conditions.

h) The transverse displacement amplitude is dargfor clampedree boundary
condition and lowest for clampeadlamped boundary condition. The transverse
displacement amplitude is largest for clamybest boundary condition at excitation point

1, second largest for fredamped boundary condition at éation point 1, third highest

for simply-supported at excitation points &xd 3 and lowest for clampe&thmped
boundary condition at excitation points 2 andrBe transverse displacement amplitude
decreases with increase in the percentage tensile famnlebecause the beam becomes
stiffer by applying axial tensile load. Similarly, the transverse displacement amplitude
increass with increase in percentage compressive failure load because the beam becomes

less stiff by applying axial compressive load.

i) From the comparison of results obtained using RayRigh methodwith that
obtained usingonventional finite element methathe differences in natural frequencies
and transverse displacemebtainedfor all cases are less thafo6 The results found
with 8 to 15 trail functions of RayleigRitz method matched well with the results
calculated by using conventional finite element method for widpered and
thickness and widthtapered composite beams for all taper configurations and all
boundary conditios.

258



)] Experimental modal analysis is conducted using impact hammer excitation.
Modal testing for damping factor for finding out the damping in the beams is conducted
using halfpower bandwidth method [12]. The Frequency Response Function (FRF) is

highest forwidth ratio p_/b ) value of 0.2 and it gradually decreases as width ratio
(b./b,) value increases.

k) Comparison of experimental modal analysis results and theoretical results for
width-tapered composite beams shows good agreement between the natuealcfesyu

) The observations from thicknesand widthtapered composite beams were made
that,the natural frequencies are highest for case 1c, second highest for case 1b and lowest
for case la. For clampdree boundary condition, the natural frequencieshagbest for

case 1c and lowest for case 1a and second highest for case 1b. The natural frequencies are
highest for configuration D, second highest for configuration B, third highest for
configuration C and the lowest for configuration A

m) For simplysuppoted boundary condition as the width ratib_ /b ) value

increase, the first natural frequency increase for all the thickaegswidthtaper beam
configurations. The second, third and fourth natural frequencies remain constant as the
width ratio value ineases. For clampeddamped boundary condition, all four modes of
natural frequencies increase with highest natural frequencies for configuration D, second
highest for configuration B, third highest for configuration C and lowest for configuration
A.

n) Thenatural frequencies are largest for laminate configuration LC1, séaayebt

for laminate configuration LC3 and lowest for laminetafiguration LC2.
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0) The natural frequencies are largest for claragathped boundarycondition.
Beam with clampedree (@ntilever) boundary condition hathe lowest natural
frequencies. The natural frequencies are second largest for soygpprted boundary
condition.

p) The comparison between Rayleiffitz method developed from the current
thesis and conventional finite edent method [81] is compared for four natural
frequencies for thicknessind widthtapered composite beams for caseh. differences
between the two methods are well accepted.

q) The natural frequencies increase with an increase in end axial tensile @ibrce b
decrease with increasing compressive force for all the three boundary conditenmsatural
frequencies of undamped beam are higher than twdeedamping for all boundary
conditions.

r The critical buckling load () is highest for case 1second hghest for case 1b and

lowestfor case la for all the three boundary conditions. thereffect of variation of
width ratio @/b ) with constant angle of thicknetaper(f ) of0.57,0 the critical buckling

load (R)), islargest for configuration D,esond largest isonfigurationB, third largest and
fourth largest areonfigurationsC and A respectively for all three boundary conditions.
S) The critical buckling load () is largest for laminate configuration LC4econd
largest for laminate configuration LC3 and lowest for laminadafiguration LC2.
This difference in critical buckling load {}Pis due to the variation of stiffness in the
column.

t) The critical buckling dad (R;) is largest for clampedlamped boundary

condition Column witlclampedfree (cantilever) boundary condition has lowest critical
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buckling load (R,) this is because of lower stiffness. The critical buckling loag (®
second largest for simplupported boundary condition.

u) The comparisons of transverse displaent for thicknessand widthtapered
composite beambetween RayleigiiRitz method and conventional finite element method
show the difference in transverse displacenfiensimply-supportel boundary condition

is between 5%, for clampeeclamped boundary condition it is betweeit% and for

clampedfree boundary condition it is betweef/%6.

6.3 Recommendations for future work

The present study is an attempt to evaluate the effects of diiffeeterial, geometric and
structural parameters on the dynamic response of tagttred and thicknessd width
tapered composite beamistainedusing RayleigkRitz methodThe study of free and forced
vibration and buckling response of tapered compabsitans can be continued in the future

studies as given in the following recommendations:

a) The free and forced vibration and buckling analyses of wialered composite
beams and columns respectivelytainedusing RayleigkRitz method presented in this
thesis can be extended further combining with other advanced finite element methods

such ashigher order anthierarchical finite element.
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b) The free and forced vibration and buckling respoois&inedusing Rayleigh
Ritz method presented in this thesis can xermded for free and forced vibration and

buckling response of curved beam, plates and shells.

C) The free and forced vibration of widthpered composite bearnbtainedusing
RayleighRitz method presented in this thegsian be extended to transient and oamd

vibrations.

d) The experimental modal analysis conducted in the present thesis can be extended
to analyze the Frequency Response Function (FRF) for tapered beams usitagsical

boundary conditions.

e) The methodology from the present study can be takemafd to optimize the
geometric and material configurations of the laminated beam to avoid design critical

response.
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APPENDIX-A

Flow chart for MATLAB N program for free and forced vibration and buckling

response

Start

Input 1. Material properties

2. Geometric properties

Calculate the value oD, ,(x)

\4
Generat the stiffness, mass and

geometric stiffness matrices

A\ 4

Initializing stiffness and mass matrices

zero
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Harmonic displacement function

satisfying geometriboundary condition

A 4

Apply stationary condition

\ 4

Solve for eigenvalues and eigenvectof

\ 4

Application of modal force vector to fing

the forced vibratn response

A 4

Modal matrix[P] and orthonormal

modal matrix[ P] application to decouplg

A 4

Maximum response calculation for

different excitation frequencies

End
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The individual subroutine programs developed using MATLA@ftwae for free and
forced vibration and buckling response of witlipered and thicknessind widthi

tapered laminated composite beams with graphical plots for parametric studies are

included in theVijay-thesis 2012 cBattached with this thesis.

Trial func tions usedin Rayleigh-Ritz method for different boundary conditions

Boundary condition Trial function
Simply Supported . AKX
Py SUPP w:aci.sm.ae—a"mg
i=1 c L =+
FixedFixed

N
w=§ c.ix.(L- x)?
i=1

FixedFree ;n i
w=g C.X
i=1
Free Fixed n .
w=g ¢.(L- x)'

i=1
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APPENDIX-B
Derivation for orthonormal modal matrix [P]

Orthogonality of Eigenvectors

The normal modes, or the eigenvectors of the system, can be shown to be orthogonal with

respect to the mass and stiffness matrices.

. . h . _ th .
By using thenotation /, for the |I eigenvector, the normal mode equation for thenode

is given as:

Kf, = 1,MF, 1)

Premultiplying the Eh equation by the transposﬁT of the modej, it is obtaned as

follows:

fIKE, = 1,f, "M, ()
Also,

fIKf, =1 £ MF, 3)

Because K and M are symmetric matrices, the following relationship are as follows:
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Ko Ko
ijgorUJi =f" gort\J J. 4)
Mg eMy

Subtractingequation (3) from (2),
(/- 1,)f,'MFf, =0 ()

If /., /;,inthe above equation (5), then equation (5) becomes,

FIMF =0,0, ] (6)

fTKF =0,i, j 7)
Equations (6) and (7) define the orthogonal character of theahonodes.
Ifi=j,

(/- 1,)=0 (8)

Equation (5) is satisfied for any finite value of the products given by equaipos(7),

FTMF. =M. 9)

FTKF =K. (10)
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From the equations (9) and (1M|. and K, are the generalized mass and generalized

stiffness matrices.
Orthonormal modes:

If each of the normahodes/; is divided by the sque root of the generalizadasM ., ,

It is evident from the equatiod)( that the right side of the equation (9) will be unity.

The new normal mode is given as:

(11)

fi 7

From theabove equation (1;L)f~i is called the weighted normal mode or orthonormal

mode.

It is also evident from equation (1), that the right side of the equation (10), will be

eigenvaluey ;.
Thus, the equations (9) and (10) can be written as:
M, =1 (12)

FIKF =1, (13)
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Modal matrix [P] ;

Wh e n 0

noé

nor mal modes (eigenvectors)

normal mode represented by a column, it is cafiesnodal matrix|P]

The modal matrix for a+DOF system can appearfaiows:

ééxlﬂ
[P] el X2IU
& %y

Also,

From the equation @ and (5),

<
Py
| X
by
Re

2

a
I
2U
)
3y

— —'—)(D:
XXX
D <l et d e

The results bP"MPor P"KP, will be diagonal matrix.

Thus,

o O

o O O O

ex 09
I, 1 u_
G0 U=l £y Faeennn £ (14)
Iyl U
| 3y U
n T
ex0 g
|
iua =l £ Foo Al (15)
Tyl U
173y |
(%]
0
0
0 (16)
0
u
nnH
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&, 0 0 0 Og
€0 K, 0 0 0p

P'/KP=€0 0 K, 0O OU 17)
€0 0 0 . 04y
g0 0 0 0 K, H

Note from the above equati®(il6) and (T), the offdiagonal terms are m® because of

the orthogonalityrelationship.

The diagonal terms from equatior6flare generalized mass and from equatiaf) éte

generalized stiffness.

If the normal modeg, in the matrix[P] of equation (11)s replaced by the orthonormal

modesf~i , the modal matrix is designated lﬁi

Thus, the orthogonality relationships are given as

[PI"IMITP] =[1] (18)
[PI"[KI[P] =[L] (19)

where, [I] is the unit matrix an({L] is a diagonal matrix of the eigenvalues which is

given as:

(20)

(o] el e e el
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Contribution of numerical computation for dynamic response of thickness and

width-tapered laminated composite beams

There is a significant contribution made in the numerical computation for the dynamic
response of thicknessand widthtapered composite beams using the principle of

superposition.
Thesteps followedare

1. The detailed analysis for vibration response of unifendith and thickness

tapered composite beams were made in the referéfe [

2. The stiffness, mass and geometric stiffness element matrices were determined for
intemally tapered composite beam for beam configuratior3 Asing finite element

modeling.

3. Using the ceefficients of stiffness, mass and geometric stiffness matrices for
uniformrwidth and thicknesstapered composite beams, and by using-dimensional
laminged beam theory the new -efficients of stiffness, mass and geometric stiffness

matrices for thicknessand width tapered composite beams are derived.

. . . N
4. Individual subroutines programs using MATLABoftware were developed for

dynamic response of thicknessd width tapered composite beams u$tAg method.

5. The results obtained using RayleiBitz method were compared using

conventional finite element method developedif for validation purposg
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APPENDIX-C

Cost estimation report of width-tapered composite beams

Table10.1 Manufacturing ost of widthtapered composite beams

Usage
SI.No. Description of materials Cost
(CAD $)
Fabrication
1 NCT-301 graphite epoxy prepeg $25/1b 100
2 Bleeder plies $100 0
3 Breather plies $148gallon 20
4 Vacuum or sealant tape $7lyard 25
5 Aluminium flat plate $7/yard 25
6 Brush $5 5
7 Release agent $5 5
Miscellaneous supplies (hand
8 $15 15
shovel, scissors ejc.
Processing
9 Autoclave usage $20/hr 30
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10 Manpower cost $50/day 75
Water cooled rotary type diamon
11 $10/hr 20
cutter
Total usage cost/composite laminate plate 320
Total beams manufactured 5
Manufacturing cost of each beam 64

Laminate Configuration of composite laminate plg&/90],),

Table10.2 Dimension of composite laminate plate

SI.No. Dimension Size (inch)
1 Length 16
2 Width 11
3 Height 0.1755
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Table10.3 Vibration testing cost of composite beams

Usage
SI.No. Description of materials Cost
(CAD $)
1 Clamping fixture $40 100
2 Bees wax $10 0
3 Computer 0
B & K's PULSE" front-end multi
4 0
analyzer type 3560
Charge amplifier (a) Dual mode
0
5 amplifier
(a) Piezoelectric charge amplifier 0
6 Impact hammer 0
7 Accelerometer 0
8 Impact excitation 0
Miscellaneous supplies (cables,
9 $50 50
scissors, marker etc.)
10 Manpower cost $50/day 200
Total vibration testing 350
Vibration testing of each beam 70

285




