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ABSTRACT 

DYNAMIC RESPONSE OF WIDTH- AND THICKNESS-TAPERED 

COMPOSITE BEAMS USING RAYLEIGH-RITZ METHOD AND MODAL 

TESTING 

 

Vijay Kumar Badagi 

 Tapered composite beams formed by width-taper or by terminating or dropping-

off some of the plies from the primary structure provide high stiffness to weight ratios, 

high modulus to weight ratios, damage tolerance and design tailoring capabilities. Since 

they are increasingly and widely being used in a variety of engineering applications such 

as robot arms, lightweight mechanical components, aircraft wings, space structures, 

helicopter blades and yokes, turbine blades, and civil infrastructures, it is important to 

ensure that their design is reliable and safe. Study of the dynamic response of the tapered 

composite beams helps to optimize the design and avoid future investments on repairs. It 

is, therefore, essential for design engineers to evaluate the dynamic characteristics of 

tapered composite beams effectively. In the present study, symmetric width-tapered and 

thickness- and width-tapered laminated composite beams are considered and their free 

and forced vibration response and the buckling response of tapered composite columns 

are investigated. Due to the variety of tapered beam configurations and the complexity of 

partial differential equations that govern their free and forced vibration response and their 

buckling response, no closed-form analytical solution can be obtained. Therefore, 

Rayleigh-Ritz method is used based on Kirchhoff one-dimensional laminated beam 

theory and the efficiency and accuracy are established very systematically. Width-tapered 

laminated composite beam samples are manufactured using NCT-301 graphite-epoxy 
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composite material. Experimental modal analysis using impact hammer testing is 

conducted for the determination of coherence function, time and auto-response function 

and Frequency Response Function (FRF) of width-tapered laminated composite beams. 

The natural frequencies obtained from experimental modal analysis are validated with 

that obtained Rayleigh-Ritz method. A detailed parametric study is conducted to 

investigate the effects of width ratio, taper configuration, taper angle, length ratio, 

boundary conditions, laminate configurations, static end-axial force, and damping on 

dynamic response. Free and forced vibration response results obtained using Rayleigh-

Ritz method are also compared with that obtained using conventional finite element 

formulation in a separate but simultaneous study. 
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1. CHAPTER 1 

INTRODUCTION, LITERATURE SURVEY AND SCOPE OF THE THESIS 

 

1.1 Vibration analysis in mechanical design 

Vibration is the study of the repetitive motion of objects relative to a stationary frame 

of reference or nominal position (usually equilibrium). The vibration which occurs in 

most machines, vehicles, structures, buildings and dynamic systems is undesirable, not 

only because of the resulting unpleasant motions and the dynamic stresses which may 

lead to fatigue and failure of the structure or machine, and the energy losses and 

reduction in performance which accompany vibrations, but also because of the noise 

produced. Noise is generally considered to be unwanted sound, and since sound is 

produced by some source of motion or vibration causing pressure changes which 

propagate through the air or other transmitting medium, vibration control is of 

fundamental importance to sound attenuation. Vibration analysis of machines and 

structures is therefore often a necessary prerequisite for controlling not only vibration but 

also noise [1].  

Until early 21
st
 century, machines and structures usually had very high mass and 

damping, because heavy beams, timbers, castings and stonework were used in their 

construction. Since the vibration excitation sources were often small in magnitude, the 

dynamic response of these highly damped machines was low. However, with the 

development of strong lightweight materials, increased knowledge of material properties 
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and structural loading, and improved analysis and design techniques, the mass of 

machines and structures built to fulfill a particular function has decreased. Furthermore, 

the efficiency and speed of machinery have increased so that the vibration exciting forces 

are higher, and dynamic systems often contain high-energy sources, which can create 

intense noise and vibration problems. This process of increasing excitation with reducing 

machine mass and damping has continued at an increasing rate to the present day when 

few, if any, machines can be designed without carrying out the necessary vibration 

analysis, if their dynamic performance is to be acceptable. The demands made on 

machinery, structures, and dynamic systems are also increasing, so that the dynamic 

performance requirements are always rising [2]. 

There have been very many cases of systems failing or not meeting performance 

targets because of resonance, fatigue, excessive vibration of one component or another or 

high noise levels. Because of the very serious effects which unwanted vibrations can have 

on dynamic systems, it is essential that vibration analysis be carried out as an inherent 

part of their design, when necessary modifications can most easily be made to eliminate 

vibration or at least to reduce it as much as possible. However, it must also be recognized 

that it may sometimes be necessary to reduce the vibration of an existing machine, either 

because of inadequate initial design, or by a change in function of the machine, or by a 

change in environmental conditions or performance requirements, or by a revision of 

acceptable noise levels. Therefore techniques for the analysis of vibration in dynamic 

systems should be applicable to existing systems as well as those in the design stage; it is 
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the solution to the vibration or noise problem which may be different, depending on 

whether or not the system already exists.  

1.2 Buckling analysis in mechanical design 

When analyzing a structure, in addition to looking at maximum deflections, 

maximum stresses and natural frequencies, one must investigate under what loading 

conditions instability can occur, which is generally referred to as buckling [2]. Change in 

the geometry of a structure or a mechanical component under compression results in the 

loss of its ability to resist loading. Stability of structures under compression can be 

grouped into two categories: (1) Instability associated with a bifurcation of equilibrium; 

(2) Instability that is associated with a limit of maximum load. The first category is 

characterized by the fact that as the compressive load increases, the member or system 

that originally deflects in the direction of applied force, suddenly deflects in a different 

direction. This phenomenon is called buckling. The point of transition from the usual 

deflection mode under load to an alternative deflection mode is referred to as the point of 

bifurcation of equilibrium. The lowest load at the point of bifurcation is called critical 

buckling load. 

Buckling analysis is basically a subtopic of non-linear rather than linear mechanics. 

In linear mechanics of deformable solids, displacements are proportional to the loads. In 

buckling, disproportional increase in displacement occurs due to a small increase in the 

load. The instability due to buckling can lead to a catastrophic failure of a structure and it 

must be taken into account when one designs a structure. 
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1.3 Composite materials and structures 

Development and design of polymer composite materials and structures is the fastest 

growing segment of lightweight (durable and sustainable) construction and product 

engineering (in general 'moving and moved beings'). Since fifteen years for each five 

years period the world market volume of advanced polymer composites was doubled 

(100% growth per quinquennial). For the first decade of this millennium a growth of at 

least 700 % is foreseen (350% growth per quinquennial). The majority of structural parts 

in novel aircraft and space platform designs will be materialized in polymer composite 

materials. In case of fireproof interiors including floors and supporting structures (beams 

and brackets) the applied volume of composites are reaching the maximum of almost 100 

% and for the high performance and durable exterior shell structures almost 80% by 

volume is within the reach [3]. 

The same trends and developments are true for inshore and offshore wind turbine 

blade designs (wing structures possessing a radius equal to the total span of a Boeing 

747) and the development of the latest fast transport systems varying from trains, cars, 

ferries, and trucks to ships and yachts, show similar tendencies. In traditional metal 

structure design a proper mechanical behaviour as a response to 'loads' is realized by a 

sufficient volumetric distribution and combination of proper metallic materials (stress and 

stiffness level control). For todays and future designers of the ultimate lightweight 

structures in general (minimum material, minimum energy, and maximum performance) 

a change in attitude and design skills is indispensable. In addition to the volumetric 

distribution approach to sustain all kinds of stress and strain states, for composite 
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laminates a sophisticated distribution and control of coupled and uncoupled stress and 

strain phenomena, induced by both mechanical and physical loads, becomes necessary.  

Compared to metals in composite structure design stiffness, strength and durability, 

resistance and tolerance with respect to impact events or proper scenarios to absorb 

impact energy are becoming true initial design parameters, from material to load path and 

structure design. The same is true for acoustic and thermo-isolating properties, stability, 

vibrations and aero-elasticity. Therefore in near future developments of advanced and 

cost effective structures would require a new generation of (scientific, academic) 

developers and designers capable of creating and using new design tools and rules and 

last but not least capable to create new paradigms in conceptual and structural design.  

1.4 Energy method and Rayleigh-Ritz method 

For simple mechanical systems, the vector methods provide an easy and direct way of 

deriving the equations. However, for complicated systems, the procedure becomes more 

cumbersome and intractable. In such cases, variational statements can be used to obtain 

governing equations, associated boundary conditions, and in certain simple cases, 

solutions for displacements and forces at selective points of a structure [4].  

To obtain the governing differential equations and boundary conditions of various 

problems we need to apply the virtual-work principles or their derivatives. These 

principles involve setting the first variation of an approximate functional with respect to 

the dependent variables to zero. The procedure of the calculus of variations can then be 

applied to obtain the governing (Euler-Lagrange) equations of the problem. In contrast, 
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the method applied in this thesis seeks a solution in terms of adjustable parameters that 

are determined by substituting the assumed solutions into the functional and finding its 

stationary value with respect to the parameters. Such solution methods are called direct 

methods, because the approximate solutions are obtained directly by applying the same 

variational principle that was used to derive the governing equation. The assumed 

solutions in the variational methods are in the form of a finite linear combination of 

undetermined parameters with appropriately chosen functions. This amounts to 

representing a continuous function by a finite linear combination of functions. Since the 

solution of a continuum problem in general cannot be completely represented by a finite 

set of functions, error is introduced into the solution. Therefore, the solution obtained is 

an approximate of the true solution for the equations describing a physical problem. As a 

number of linearly independent terms in the assumed solution are increased, the error in 

the approximation will be reduced and the assumed solution converges to the desired 

solution of Euler’s equations. 

The equations governing a physical problem themselves are approximate. The 

approximations are introduced via several sources, including the geometry, the 

representation of specified loads and displacements, and the material constitution. In the 

present study, our primary concern is to determine accurate approximate solutions to 

appropriate analytical descriptions of physical problems. 

The variational methods of approximation include those of Rayleigh-Ritz, Galerkin, 

Petrov-Galerkin (weighted-residuals), Kantorovitch, Treffiz, and the finite element 

method, which is a “piecewise” application of the Ritz-Galerkin method. 
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In the principle of virtual displacements, the Euler equations are the equilibrium 

equations, whereas in the principle of virtual forces, they are the compatibility equations. 

These Euler equations are in the form of differential equations that are not always 

tractable by exact methods of solution. A number of approximate methods exist for 

solving differential equations [e.g., finite-difference methods, perturbation methods, etc.). 

The most direct methods bypass the derivation of the Euler equations and go directly 

from a variational statement of the problem to the solution of the Euler equations. One 

such direct method was proposed by Lord Rayleigh. A generalization of the method was 

proposed independently by Ritz (1878-1909) [6].  

The Rayleigh-Ritz or Ritz method has found tremendous use during past three 

decades in obtaining accurate frequencies and mode shapes for the vibration of 

continuum system especially for problems not amendable to exact solution of the 

differential equations. This method is used frequently because of the increasing capability 

of digital computers to setup and solve the frequency determinants arising with the 

method. This method can be used to solve boundary value problem or eigen value 

problem by assuming a solution in the form of series of admissible functions (satisfying 

at least the geometric boundary conditions) each having an arbitrary co-efficient and 

minimizing the appropriate energy functional directly. In this thesis Rayleigh-Ritz 

method is employed to determine the free and forced vibration response of width-tapered 

and thickness- and width-tapered laminated composite beams and buckling response of 

tapered composite columns. Admissible functions are taken as series of products of beam 

mode shapes called trial functions. 
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1.5 Literature survey 

In this section, a comprehensive and up-to-date literature survey is presented on the 

relevant topics. Important works done on the dynamic response of uniform, width-

tapered, thickness- and width-tapered composite beams including damping and axial load 

effects by Rayleigh-Ritz method and experimental modal testing method for composite 

beams are chronicled.  

 

1.6 Vibration response of composite beams 

There is a wealth of literature available for the vibration and buckling analyses of 

laminated plates and shells. In comparison, study on the analysis of laminated beams has 

been scarce despite their applicability in important structures such as turbine blades, 

helicopter blades, robot arms, etc. Also, the works on vibration and buckling analyses of 

laminated beams are not sufficient especially on forced vibration.  

Abarcar and Caniff [7] conducted the free vibration analysis of uniform laminated 

composite beams without considering the effects of shear deformation and rotary inertia. 

Miller and Adams [8] studied the vibration characteristics of the orthotropic clamped-free 

uniform beams using the classical lamination theory without including the effect of shear 

deformation. Vinson and Sierakowski [9] obtained the exact solutions for the natural 

frequencies of a simply-supported uniform composite beam based on classical lamination 

theory. Roy and Ganesan [10] have studied the response of a tapered composite beam 

with general boundary conditions. He et al. [11] have conducted a review of the works on 
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tapered laminated composite structures with focus on interlaminar failures and three-

dimensional stress analyses. Steeves and Fleck [12] have studied the compressive 

strength of composite laminates with terminated internal plies. Aydogdu [13] have 

studied the vibration response of cross-ply laminated beams with general boundary 

conditions using the Ritz method. Boay and Wee [14] have studied the coupling effects in 

bending, buckling and free vibration of generally laminated composite beams. Hassan 

and Sabuncu [15] have conducted the stability analysis of a cantilever composite beam 

resting on elastic supports. Teoh and Huang [16] studied the vibration of beams of fibre 

reinforced materials. Krishnaswamy et al. [17] obtained analytical solutions to vibration 

of generally layered composite beams. Khdeir and Reddy [18] have studied the free 

vibration of cross-ply laminated beams with arbitrary boundary conditions. Abramovich 

and Livshits [19] established analytical solution of free vibration of non-symmetrical 

cross-ply laminated beams. Houmat [20] investigated the vibration of Timoshenko beams 

considering four-node element with variable degrees of freedom where he described 

element transverse displacement and cross-sectional rotations by cubic polynomial plus a 

variable number of trigonometric sine terms. Singh and Abdelnassar [21] examined the 

forced vibration response of composite beams considering a third order shear 

deformation theory.  Thickness-tapered laminated composite beams have been studied for 

their dynamic response in the works of Ganesan and Zabihollah [22, 23] using an 

advanced finite element formulation and parametric study. Ahmed [24] has studied and 

conducted experiments for free and forced vibration response of tapered composite 

beams including the effects of axial force and damping. Chen [25] has studied the free 

vibration response of tapered composite beams using hierarchical finite element method 
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and Rayleigh-Ritz method.  Amit and Yadav [26] investigated forced nonlinear random 

vibration of a simply supported cross-ply laminated composite plate analytically using 

Kirchhoff-Love plate theory and Von-Karman nonlinear strain displacement 

formulations. Asghar et al. [27] studied forced vibration analysis developed by the modal 

superposition technique and the layer wise theory of Reddy to study the low velocity 

impact response of laminated plates. Cheung et al. [28] proposed a computationally 

efficient and highly accurate numerical method to analyze the vibrations of 

symmetrically laminated rectangular composite plates with intermediate line supports. 

The governing eigen frequency equation is derived using Rayleigh-Ritz method. They 

developed a set of admissible functions from the static solutions of a beam with 

intermediate points of supports under a series of sinusoidal loads. Kadivar et al. [29] 

studied the forced vibration of an unsymmetrical laminated composite beam subjected to 

moving loads. They studied a one-dimensional element with 24 degrees of freedom, 

which included the effects of transverse shear deformation, rotary and higher order inertia 

to get the response. Beytullah et al. [30] investigated the dynamic behavior of composite 

cylindrical helical rods subjected to time dependent loads theoretically in the Laplace 

domain. Azrar et al. [31] studied the forced non-linear response of clamped-clamped and 

simply-supported beams using spectral analysis, Lagrange’s equations and harmonic 

balanced method. They proposed a method to solve the multidimensional Duffing 

equation and obtained a set of non-linear algebraic equation whose numerical solution 

leads in each case to the basic function contribution co-efficient to the displacement 

response function based on harmonic balance method. These coefficients depend on the 

excitation frequency and the distribution of the applied loads. Faruk [32] analyzed free 
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and forced vibrations of non-uniform composite beams in the Laplace domain. He 

adopted Timoshenko beam theory in the derivation of governing equation.  

 

1.7 Buckling response of composite beams 

There are few works available on buckling analysis of composite beams in the 

literature. Khdeir and Reddy [33] used various plate theories to study the buckling of 

laminated plates. Banerjee and Williams [34] obtained critical buckling loads for columns 

by considering shear deformation effects. Khdeir and Reddy [35] discussed buckling 

behavior of cross-ply rectangular composite beams with different boundary conditions. 

They presented analytical solution for composite beams with different boundary 

conditions. Song and Waas [36] discussed the effects of shear deformation on the 

buckling of composite beams. They are simple higher-order theory, which assumes a 

cubic distribution for the displacement field through the thickness of the beam. Chen and 

Peng [37] studied the stability of rotating composite beams subjected to axial 

compressive load. Kim et al. [38] conducted the buckling analysis of cross-ply laminate 

with one-dimensional through-the-width delaminations. Matsunaga [39] studied the 

buckling of multi-layer composite beams using higher-order deformation theories. Lee et 

al. [40] presented a general analytical model based on the classical laminate theory to 

study the lateral buckling of a laminated composite beam with I-section. They considered 

different laminate configurations and boundary conditions. The exact solutions for 

critical buckling loads based on classical laminate theory for different boundary 
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conditions are given by Bertholet [3], Reddy [6] and Whitney [41]. Abd El-Maksood [42] 

used an advanced finite element formulation to study the buckling of laminated beams. 

Recently, Cortinez and Piovan [43] discussed buckling of thin-walled composite beams. 

Lee and Kim [44] treated the lateral buckling of channel section composite beams. 

 

1.8 Experimental modal testing 

It is always recommended to use the updated data of any materials for the analysis. In 

this thesis, NCT-301 graphite-epoxy is used for all analyses and parametric study. To get 

the idea about mechanical properties, it was found that Ibrahim [45] studied NCT-301 

graphite epoxy material where he did some experimental work for determining notched 

and un-notched strengths of cross-ply laminates. He studied the effect of notch size on 

the reliability of composite laminates based on stochastic finite element analysis. 

Damping analysis of fiber-reinforced composite has not been considered as a popular 

research area since composite materials are designed with stiffness to weight ratio, rather 

than damping. Damping in laminated composite materials, where laminae are bonded 

with adhesive joints of very low damping capacity, is mostly due to the inelastic or visco-

elastic nature of matrix and to relative slipping at the fiber-matrix interfaces. The only 

reliable method for estimating damping in composite is by experimentation. Suarez et al. 

[46] used random and impulse techniques for measurement of damping in composite 

materials under flexural vibrations. They tested specimens of un-reinforced epoxy resin, 

graphite-epoxy and E-glass polyester composite in order to cover a range of damping 
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values from low (aluminium) to intermediate (composite) to high (epoxy). Morison [47] 

developed a model of material damping for a fiber reinforced polymer matrix composite 

and experimentally predicted the loss factor and the temperature and moisture dependant 

structural damping of an arbitrary laminate. Hoa and Oullette [48] proposed a rule of 

mixture for the calculation of the loss factor for hybrid laminate where they found the 

damping loss factor of individual laminate experimentally using logarithmic decrement 

method. Gibson [49] reviewed the progress in analytical and experimental 

characterization of dynamic properties of advanced materials. Adams and Bacon [50] 

performed a series of experiments on unidirectional fiber reinforced beams under 

longitudinal shear and flexural loading conditions to determine the specific damping 

capacity. Zabaras et al. [51] studied viscous damping approximation and transient 

response of laminated composite plates using finite element method. Wei and Kukureka 

[52] evaluated the damping and elastic properties of composite material and composite 

structures experimentally by the resonance method. Adams and Maheri [53] investigated 

the damping capacity of fiber-reinforced plastic and developed a damping energy 

equation for analysis. Damping capacity and frequency of cross ply fiber reinforced 

plastic composite plates were compared at room temperature by using finite element 

method, Rayleigh-Ritz method and an experimental method. Sefrani and Bertholet [54] 

analyzed the effect of temperature on the damping properties of unidirectional glass fiber 

composite as a function of the frequency and fiber orientation using a cantilever beam 

test specimen and an impulse technique. Colakoglu [55] studied damping and vibration 

analysis of polyethylene fiber composite under varied temperature where he analyzed 
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temperature dependent frequency response experimentally using a damping monitoring 

technique.  

Eslimy-Isfahay et al. [56] studied the dynamic response of composite beams with 

application to aircraft wings. Ewins [57] presented the techniques for experimental modal 

analysis. He et al. [58] studied the stress distributions in tapered beamsmade of composite 

materials. Koo and Lee [59] studied the dynamic behavior of thick composite beams. 

McConnell and Varato [60] presented the basic concepts and principles underlying 

dynamic testing. Tsai and Hahn [61] presented the principles governing the mechanical 

behavior of composite materials and the unique features in their design. Halvorsen and 

Brown [62] studied the impulse technique for structural frequency response testing. 

Klosterman [63] conducted the experimental determination and use of modal 

representations of dynamic characteristics. Potter [64] studied a general theory of modal 

analysis for linear systems.  

 

1.9 Objectives of the thesis 

The present thesis is concerned with the dynamic response of tapered laminated 

composite beams. The beams are either width-tapered or both thickness- and width-

tapered. The objectives of the work are: 1) To investigate the free and forced vibration 

response and buckling response of tapered laminated composite beams using Rayleigh-

Ritz method and to conduct a detailed parametric study for the effects of width ratio, 

taper configuration, thickness taper angle, length ratio, boundary conditions, and laminate 
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configurations; 2) To investigate the effects of static end-axial compressive and tensile 

loads on natural frequencies and forced response of tapered laminated composite beams; 

3) To conduct the modal testing of width-tapered composite beams and to compare the 

natural frequencies with those obtained using the Rayleigh-Ritz method; and, 4) To 

compare the free and forced vibration response of tapered laminated composite beams 

obtained using Rayleigh-Ritz method with that obtained using conventional finite 

element method [81]. 

The dynamic response of width-tapered and thickness- and width-tapered laminated 

composite beams is developed based on classical laminate theory by using approximate 

Rayleigh-Ritz solution. The developed methodology gives accurate and converging 

results, and is advantageous in the analysis of composite beam structures. 

 

1.10 Layout of the thesis 

The present chapter provided a brief introduction and literature survey on free and 

forced vibration of tapered laminated composite beams and buckling response of tapered 

composite columns using Rayleigh-Ritz method and experimental modal testing for 

determination of Frequency Response Function (FRF) of composite beams. 

In chapter 2, elastic behaviour of linear width-tapered composite beam is determined. 

Energy formulation for dynamic response of width-tapered laminated composite beam is 

developed based on Kirchhoff one dimensional laminated beam theory using Rayleigh-
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Ritz method. Trial functions for different boundary conditions are given in Appendix A. 

Free and forced vibration responses are determined including damping and axial force 

effects. The first-ply failure analysis using Tsai-Wu failure criterion is conducted to 

understand the effect of tensile static end-axial force on width-tapered laminated 

composite beams. 

In chapter 3, numerical results on the dynamic response of width-tapered laminated 

composite beams are considered. Rayleigh-Ritz method is used to find the natural 

frequencies, forced response and critical buckling loads for width-tapered laminated 

composite beams. The extensional and flexural stiffness distribution for linear width-

tapered composite beams is shown. The effects of width ratio, length ratio, boundary 

conditions, and laminate configurations on natural frequencies, maximum transverse 

amplitude of tapered composite beams and critical buckling loads of tapered composite 

columns are determined. The effects of static end-axial load and damping on the natural 

frequencies and forced response of width-tapered composite beams have been 

investigated. The first ply failure load of width-tapered beam is obtained to find the 

effects of end-axial tensile load on natural frequencies and maximum transverse 

amplitude of tapered composite beams. 

In chapter 4, experimental validation for width-tapered composite beams has been 

carried out. The manufacturing of composite laminate is discussed with fabrication and 

processing. Experimental modal testing is discussed using impact hammer excitation. The 

experimental modal testing results like Coherence function, time and auto response 

function and Frequency response Function (FRF) for different width ratios of width-
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tapered composite beams are determined. Comparison of natural frequencies obtained 

using experimental modal testing with that obtained using analytical results for width-

tapered composite beams are shown.  

In chapter 5, free vibration and buckling response of thickness- and width-tapered 

laminated composite beams are considered using Rayleigh-Ritz method. Natural 

frequencies and critical buckling loads are determined for the combination of different 

angles of thickness-taper and width ratios, laminate configurations, and boundary 

conditions. The effects of applied static end-axial force and damping on natural 

frequencies of thickness- and width-tapered composite beams have been investigated. 

Finally a detailed comparison is arranged in tables to compare the natural frequencies 

obtained by Rayleigh-Ritz method from the current thesis with conventional finite 

element method obtained from the separate work [81] and graphical plots of forced 

response in terms of sinusoidal transverse displacement. 

The thesis ends with chapter 6, which provides the overall conclusions of the present 

work and some recommendations for future work. 
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2. CHAPTER 2 

RAYLEIGH-RITZ FORMULATION FOR DYNAMIC RESPONSE OF WIDTH-

TAPERED LAMINATED COMPOSITE BEAM 

 

2.1 Introduction 

The design of mechanical structures requires the development of necessary tools for 

modeling the mechanical behavior in design and analysis. Laminated composite beams 

are increasingly being used as load-carrying elements especially in high-performance 

mechanical, aerospace, aircraft, naval, and civil applications, where high-strength- and 

high-stiffness-to-weight ratios are desired. In these areas, the dynamic and static 

instabilities show themselves as a problem of elastic instability. When their behavior is to 

be predicted under various loadings, there is a need for accurate analysis of the loading 

effects. The practical loadings on aerospace and automobile structures are mostly 

dynamic in nature. Therefore, advanced analytical and numerical techniques are required 

for the calculation of the dynamic response characteristics of structures in order that they 

can be designed against failure due to dynamic loads. In this chapter, free and forced 

vibration and buckling response of width-tapered laminated composite beams are 

conducted using Rayleigh-Ritz formulation to obtain the equation of motion. 

Elastic behavior of linear-width-tapered laminated composite beam is determined in 

section 2.2. In section 2.3, energy formulation for dynamic response of width-tapered 
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laminated composite beam based on Kirchhoff one–dimensional laminated beam theory 

is developed. In section 2.3.1 system matrices are formed using Rayleigh-Ritz method for 

free and forced vibration and buckling response of width-tapered laminated composite 

beams. Free undamped vibration of width-tapered composite beams is shown in section 

2.3.2. Forced vibration response including static end-axial force is discussed in section 

2.3.3. Forced vibration response considering damping properties are determined in 

section 2.3.4. In section 2.3.5, the formulation based on Rayleigh-Ritz method for 

buckling response is carried out for width-tapered composite columns. In section 2.4 the 

formulation for first-ply failure of the laminate using Tsai-Wu tensor theory is carried 

out. 

A beam is a solid structural member most commonly used in mechanical structures or 

systems. In practical structures, it can take up a great variety of loads such as transverse 

load applied between its supports, transverse shear, bi-plane bending and even torsion. A 

plane beam resists primarily loading applied in one plane and has cross-section that is 

symmetric with respect to that plane. One–dimensional mathematical model of plane 

beam is considered on the basis of beam theories. The stiffness co-efficients of the 

laminated beam are determined based on classical laminate theory (corresponding to the 

Euler-Bernoulli beam theory) [1]. 
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2.2 Elastic behavior of linear width-tapered laminated composite beam 

Many structures made of composite materials are composed of numerous laminae, 

which are bonded and/or cured together. The superior properties in strength and stiffness 

that composites possess, and the ability to stack laminae one on the other in a varied but 

unique fashion to result in the optimum laminate properties for a given structural size and 

set of loadings are major advantages that composite structures have over more 

conventional structures. The focus has been on the stress-strain or constitutive relations 

[80]. 

For width-tapered laminated composite beam as shown in Figure 2.1, few basic 

assumptions are imposed: 

1. The beam is constructed of an arbitrary number of layers of orthotropic sheets 

bonded together. However, the orthotropic axes of material symmetry of an individual 

layer need not coincide with the xyz axes of the beam. 

2. The beam is thin, i.e the thickness H is much smaller than the length L and width 

b. 

3. The height of the beam is constant, whereas the width is tapered. 

4. Transverse shear strains xz and yz are negligible. 

5. In-plane displacements u and v are linear functions of the z coordinate. 

6. The transverse normal strain z is negligible. 
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7. Each ply obeys Hooke’s law. 

8. The rotatory inertia caused by the rotational acceleration is negligible. 

9. There are no body forces. 

10. Transverse shear stresses xz and yz vanish on the surfaces z = ± H/2. 

z

H

L

x
tk

k
th

 ply

x

y

bL
bR

y=ax+d

 

Figure 2.1 Schematic illustration of linear width- tapered laminated composite beam and 

coordinate system 

 

In this work, Classical Laminate Theory (CLT) is applied to width-tapered 

laminated composite beam.  
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The constitutive relation between the force and moment resultants and the midsurface 

strains and curvatures are given by [3]:  
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where,  
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with i, j = 1, 2, 6.  
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It should be noted that in the Equation (2.1), the xN  and xM  were originally defined for 

plate type structures and correspond to unit width in the y-direction, and hence apply 

directly to a beam of ‘unit’ width. In the present thesis, since the width varies along the x-

direction, it is convenient to multiply all of the above equations by the beam width b(x).  

The resulting force and moment equations are expressed as: 

)()( xbNxP xx  , )()( xbNxP yy  , )()( xbNxP xyxy                      (2.3) 

)()( xbMxR xx  , )()( xbMxR yy  , )()( xbMxR xyxy                                                    (2.4)    

The Equations (2.3) and (2.4) are shown as: 
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It is to be noted in the Equation (2.5), the effect of change in width is considered in the 

matrix of stiffness elements. 

For linear width taper, at any arbitrary position ‘x’ of the beam as shown in Figure 2.1, 

b(x) is given as: 

x)x( 






 


L

bb
bb RL

L
                        (2.6) 
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2.3 Energy formulation for dynamic response of width-tapered laminated 

composite beams based on one–dimensional laminated beam theory 

Euler-Bernoulli beam theory is also defined as classical beam theory. This beam model 

accounts for bending moment effects on stress and deformation. Transverse shear forces 

are recovered from equilibrium but their effect on beam deformation is neglected [24]. 

 

2.3.1 System matrices 

Classical Laminated Plate Theory (CLPT) states that the transverse shear stresses 

through the thickness of the laminate are negligible and further, the normal to the middle 

plane remains normal after deformation [5]. Here we consider pure bending of 

symmetrically laminated beams according to CLPT. For symmetric laminates, the 

equations for bending deflection are uncoupled from those of the stretching 

displacements. If the in-plane forces are zero, the in-plane displacements are zero, and the 

problem is reduced to solving for bending deflection.  

In the case of pure bending of a symmetric laminate the constitutive equation 

(2.5) reduces to: 
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In deriving one-dimensional laminated beam theory, the Equation (2.7) is 

represented in the inverse form as:  
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The Equation (2.8) is given as:  
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In deriving one-dimensional laminated beam theory, here it is assumed that the 

moments yR and xyR are equal to zero. 

The inverse form of the relation between curvatures to bending moments as shown in the 

Equation (2.9) is represented as: 
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The above relations (2.10a) to (2.10c) show that the deflection ‘w’ cannot be strictly 

independent of the variable ‘y’. The bending and twisting induced by the terms 
*

12 )(xD  

and 
*

16 )(xD  can cause the beam to lift off its supports. This effect is negligible where the 

length to width (L/b) ratio of the beam is sufficiently high. 

Neglecting the bending and twisting induced by the terms 
*

12 )(xD  and 
*

16 )(xD
 
in the 

Equations (2.10b) and (2.10c),

 

o

yk  and 
o

yk

 

are neglected.  

The Equation (2.10a) is rewritten as:  
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From the reference [24], the potential energy for uniform width composite beam 

according to classical laminated beam theory and cylindrical bending theory is given as: 

dx
x
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                                  (2.12)  

The above Equation (2.12) is given for finite uniform width of the composite laminated 

beam. As the scale factor for the beam width increases such that it satisfies the Euler-

Bernoulli beam theory, the width ‘b’ is multiplied in the strain energy as shown in the 

Equation (2.12). 
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For width-tapered laminated composite beam, the term b(x) is multiplied in the stiffness 

elements as shown in the Equation (2.5).  

The strain energy due to flexure of the beam which is given in Equation (2.12) can be 

represented according to one-dimensional beam theory as: 
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It is to be noted that, in the above Equation (2.13), the term b(x) is integrated in the 

matrix of stiffness and compliance elements. This is one of the prime contributions of the 

present formulation. 

The work done due to applied static end-axial load on the width-tapered laminated beam 

is represented as follows [3]: 
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Therefore, the total strain energy totalU  which is the sum of flexureU  and axialloadU  is 

given as: 
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In the above Equation (2.15), the static end-axial load applied is tensile load. If the 

applied load is compressive load, then crPP  , where crP  is the critical buckling load and 

the sign of P will be negative. 

The kinetic energy denoted as ‘T’ of an elastic body in terms of xyz coordinates is given 

as [24]: 
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where, c  is the density of composite material at the point xyz. 

The displacements u, v and w are given by: 
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Substituting Equation (2.17) in Equation (2.16),  

.
)(

2

1
22

2

dxdydz
t

w

tx

xw
zT

V

c 





































                                (2.18)   

 



29 

 

The first term of Equation (2.18) arises due to the change in slope of the deflection curve 

(or the angle of rotation) with time and is related to the rotational kinetic energy. 

According to Euler-Bernoulli beam or thin-beam theory [1], the rotatory inertia caused by 

the rotational acceleration of a beam element is negligible; hence the first term is 

neglected in Equation (2.18). The equation for kinetic energy of the width-tapered 

laminated beam reduces to: 
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where, H  is the height of the laminate. 

 

2.3.1.1 Analysis using Rayleigh-Ritz method 

There exist no exact solutions for the natural frequencies and forced responses for 

general non-uniform composite beams. Even if they exist for more idealized cases they 

are often cumbersome to use, often requiring solution for transcendental equations to 

determine the natural frequencies and subsequent evaluation of infinite series to evaluate 

the system response. Therefore, approximate solution based on Rayleigh-Ritz method is 

developed to find the natural frequencies and forced response of tapered laminated 

composite beams and critical buckling load of tapered laminated composite columns. In 

this section, the formulations based on Rayleigh-Ritz method for width-tapered laminated 

composite beams are derived using classical laminate theory.  



30 

 

From the reference [4], the Rayleigh equation is given as: 
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*
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T

U total
                                              (2.20)  

where the kinetic energy ‘ maxT ’ is expressed as max
*2T . In Rayleigh-Ritz method, the 

assumed deflection to be the sum of several functions multiplied by constants is given as 

follows: 

)(......)(.........)()(),( 2211 xcxcxcxctxw nnii                                   (2.21)  

where ic  are the undetermined coefficients and )(xi  are any admissible 

functions satisfying the geometric boundary conditions. 
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where the coefficients are derived as: 
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If the Rayleigh’s proportional damping model is used, 

)()( ijijij KMC                                     (2.27)   

In the above Equation (2.27), ijC  is the coefficient of Rayleigh’s proportional damping 

[4]. 

Minimizing 2  by differentiating it with respect to each of the constants, the derivative 

of 2  with respect to ic  is given as: 
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The above Equation (2.28) is satisfied by: 
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The two terms of the Equation (2.29) are shown as: 
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Therefore, Equations (2.30) and (2.31) become: 
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From the Equation (2.32), with ‘i’ varying from 1 to n, there will be n such equations, 

which are arranged in the matrix form as: 
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                                    (2.33)  

The determinant of the Equation (2.33) is an n degree algebraic equation in 2 , and its 

solution results in n eigenvalues. 
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2.3.2 Free vibration response of width-tapered laminated composite beams 

All systems possessing mass and elasticity are capable of free vibration, or vibration 

that takes place in the absence of external excitation. Of primary interest for such a 

system is its natural frequency of vibration. 

There are many ways to connect the solution of the vibration problems with that of the 

algebraic eigenvalue problem. The most productive approach is to cast the vibration 

problem as a systematic eigenvalue problem because of the special properties associated 

with symmetry. The physical nature of mass and stiffness matrices is that they are usually 

symmetric [65]. 

The equation (2.33) can be written in the matrix form of equation of motion using 

Newton’s second law of motion [1] including forced excitation and damping as follows: 

             FcGPKcCcM                                    (2.34)              

For undamped free vibration without static end-axial load, the Equation (2.34) can be 

written as: 

       0 cKcM                                   (2.35)              

For free vibration the Equation (2.35) becomes: 

       02  cMK                                   (2.36)                
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From the above Equation (2.36),   represents the natural frequencies. Replacing 

2  in equation (2.36) which becomes,  

       0 cMK                                  (2.37)                

The above Equation (2.37) is a classical eigenvalue problem, where   are eigenvalues 

and  c  are mode shapes. 

2.3.3 Forced vibration response including static end-axial force 

The forced vibration response with reference to finite number of nodal coordinates of 

the composite beam is determined in this section.  

Considering static end-axial force, the Equation (2.34) can be re-written for undamped 

forced vibration as: 

          FcGPKcM                                   (2.38)             

][M , ][K , ][G , F and c  are the mass matrix, stiffness matrix, geometric stiffness 

matrix, force vector and displacement vector of the beam respectively. In the Equation 

(2.38), P  is the prescribed static end-axial tensile load. Mode superposition method is 

considered for forced vibration of laminated composite beam. By making the coordinate 

transformation [4], one can write, 

   yPc ]
~

[                                                                                                                    (2.39)                    
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where ]
~

[P  denotes the orthonormal modal matrix. The formation for ]
~

[P  is shown in 

Appendix-B. Substituting Equation (2.39) in (2.40) and pre-multiplying by TP]
~

[  on both 

sides of Equation (2.38), leads to 

       FPyPGPPyPKPyPMP TTTT ]
~

[]
~

][[]
~

[]
~

][[]
~

[]
~

][[]
~

[                                   (2.40)   

The normal modes or eigenvectors of the system can be shown to be orthogonal with 

respect to the mass, stiffness and geometric stiffness matrices [4].  

It can be shown from the above equation (2.40), the orthogonality relationships are [4]: 

 IPMP T ]
~

][[]
~

[                                   (2.41)          

 ]
~

][[]
~

[ PKP T                                   (2.42) 

where, ][  is the unit matrix and    is a diagonal matrix of the eigenvalues which is 

given as: 























2

2

2

2

1

.

n





                                 (2.43)              

By taking the advantages of orthogonal property, the above Equation (2.40) can be 

written as a set of decoupled 2
nd

 order differential equations as: 

     
iiii

fydiagy
~

)(
2

                                                                                            (2.44)                    
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The new equations in terms of y  are uncoupled and they can be solved as a set of single 

degree of freedom systems. 

The solution for )(tyi  are in the form: 

2

1

sin)(
~

sin
)0(

cos)0(















i

i
i

i

i
iii

ttf
t

y
tyy












                                                            (2.45)                  

Substituting the value of iy  from Equation (2.45) in Equation (2.39), and representing in 

the form of equation (2.21), one can get forced vibration response including end-axial 

force. 

2.3.4 Forced vibration response of composite beam including damping 

The definition of composite materials is mostly based on the macroscopic response 

rather than the microscopic mechanisms governing the energy dissipation process [3]. To 

investigate the concept of an equivalent viscous damping mechanism for a multiple 

degree of freedom system that is damped by a non-viscous process, the Equation (2.38) is 

extended as: 

             FcGPKcCcM                                                                   (2.46)                         

By making the coordinate transformation as shown in Equation (2.39) and by taking 

advantage of orthogonal properties, substituting Equation (2.39) in Equation (2.46) and 
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pre-multiplying by TP]
~

[ on both sides of Equation (2.46), the Equation (2.46) can be 

written as: 

         FPyPGPPyPKPyPCPyPMP TTTTT ]
~

[]
~

][[]
~

[]
~

][[]
~

[]
~

][[]
~

[]
~

][[]
~

[                 (2.47)         

It is shown in Ref. [4] that ]
~

][[]
~

[ PMP T  and ]
~

][[]
~

[ PKP T  are diagonal matrices but 

]
~

][[]
~

[ PCP T  is not diagonal and the preceding Equation (2.47) is coupled by the damping 

matrix. The difficulty with modeling damping in this fashion is that modal analysis 

cannot in general be used to solve Equation (2.47), because damping provides additional 

coupling between the equations of motion. As a result, this cannot be always decoupled 

by the modal transformation. Modal analysis can be used to directly solve Equation 

(2.47), if the damping matrix ][C  can be written as a linear combination of the mass and 

stiffness matrices [24]. 

By using Rayleigh’s proportional damping which is given as: 

][][][ KMC                                                                                                         (2.48)                          

where   and   are mass-proportional and stiffness-proportional constants. Substitution 

of Equation (2.48) into Equation (2.47) yields, 

         FPyPGPPyPKPyPKMPyPMP TTTTT ]
~

[]
~

][[]
~

[]
~

][[]
~

[]
~

])[[][(]
~

[]
~

][[]
~

[                 

                                   (2.49)               

The Equation (2.49) is completely uncoupled and will have the form: 
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)(
~

2
2

tfyyy iiiiii                                                                                              (2.50)                                 

where the modal damping is given as: 

2
2 iii                                                                                                             (2.51)                            

This corresponds to the n decoupled modal equations as: 

)(
~

)(
22

tfyyy iiiii                                                                                       (2.52)                                  

Considering the response of Equation (2.52) as viscously-damped single-degree-of-

freedom system subject to harmonic excitation, the solution for Equation (2.52) will be 
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                                                 (2.53)                 

where, 

2
1 inidi                                                                                                            (2.54)                         

Substituting the value of iy  from Equation (2.53) in Equation (2.39), and representing in 

the form of Equation (2.21), the forced vibration response with damping effects is 

obtained considering static end-axial force. 
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2.3.5 Buckling analysis of width-tapered composite columns 

It is important in analyzing a structure, in addition to looking at maximum 

deflections, and natural frequencies, one must investigate under what loading conditions 

instability can occur, this instability is referred to as buckling.  

In this work, the equation for total strain energy which is the sum of strain energy due 

to flexure and work done due to applied static end-axial load is given in the equation 

(2.22). Considering the applied static end-axial compressive load, the quation (2.22) is re-

written for buckling response of width-tapered laminated columns as: 


  


n

i

n

j

jiij

n

i

n

j

jiijTotal ccGPccKU
1 11 1

..
2

1
.

2

1
                                         (2.55)                     

The Equation (2.56) can be written in the matrix form as: 

       0 cGPK                                  (2.56)                

The above Equation (2.56) is an eigenvalue problem, where ‘P’ represents the 

eigenvalue. The system represented by Equation (2.56) has ‘n’ eigenvalues where ‘n’ 

represents the total number of degrees of freedom. The smallest eigenvalue will be the 

critical buckling load which is represented as crP . 
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2.4 First-ply failure analysis 

A laminate will fail under increasing mechanical and thermal loads. The laminate 

failure, however, may not be catastrophic. It is possible that some layer fails and the 

composite continue to take more loads until all the plies fail. Failed plies may still 

contribute to the stiffness and strength of the laminate. Since polymer-matrix composites 

are stronger in the fiber direction relative to the other directions, it is clear that failure 

must be a function of the direction of the applied stress relative to the direction of the 

fibers. Causing failure of an element of material in the fiber direction requires 

significantly more stress than causing failure perpendicular to the fibers. Tensile failure 

in the fiber direction is controlled by fiber strength, while tensile failure perpendicular to 

the fibers is controlled by the strength of the bond between the fiber and matrix, and by 

the strength of the matrix itself. 

 

2.4.1 Tsai-Wu tensor theory 

The Tsai-Wu failure criterion is widely used as suggested in [67] to predict the 

first-ply failure of laminate. The first-ply tensile failure load is calculated to understand 

the effect of tensile end-axial load on the dynamic response of width-tapered laminated 

composite beams. 

The Tsai-Wu failure criterion reduces to [80]: 

1 FFF +F + F + F + F+ F 212211

2

1266

2

222

2

1111262211                                        (2.57)                      
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The failure constants are given by: 
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                                      (2.58)                

2.5 Summary  

In this chapter, Rayleigh-Ritz method is used for the dynamic response of width-

tapered laminated composite beams. The resulting force and moment equations for width-

tapered composite beams are derived. Energy formulation for dynamic response of width-

tapered laminated composite beams is described based on one–dimensional laminated 

beam theory. Formulations for free and forced vibration response of width-tapered 

laminated composite beams considering end-axial force and damping are derived. 

Buckling response of width-tapered laminated composite columns is determined. First-

ply failure analysis using Tsai-Wu tensor theory is shown. 
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3. CHAPTER 3 

DYNAMIC RESPONSE OF WIDTH-TAPERED LAMINATED COMPOSITE 

BEAMS 

 

3.1 Introduction 

In the previous chapter, energy formulations based on Euler-Bernoulli beam theory 

using Rayleigh-Ritz method were described for the dynamic response of width-tapered 

laminated composite beams. First, the system matrices for energy formulation of width-

tapered laminated composite beam based on one–dimensional laminated beam theory was 

considered. Second, the Rayleigh-Ritz method is used assuming the deflection to be a 

sum of several functions multiplied by coefficients. The co-efficients of matrices were 

developed for width-tapered laminated composite beams. Next, the Rayleigh-Ritz 

formulation is used for free and forced vibration response of composite beams including 

the effects of end-axial force and damping properties and for buckling response of width-

tapered laminated columns. The first-ply failure analysis for width-tapered composite 

beam was conducted using Tsai-Wu tensor theory. The formulations are used in the 

present chapter for a comprehensive parametric study for free and forced vibration 

response of width-tapered laminated composite beams and buckling response of width-

tapered laminated columns. 

The material chosen is NCT-301 graphite-epoxy that is available in the laboratory of 

Concordia Centre for Composites (CONCOM). The mechanical properties of the fiber 
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and the resin are given in the Tables 3.1 and 3.2 respectively. The geometric properties 

are given in detail in Table 3.3. Symmetric laminate is considered in all problems. 

The results are summarized in plots to interpret the results. Each subsection is ended 

with a short interpretation. Finally, overall summary is provided at the end of the chapter.  

 

Table 3.1 Mechanical properties of unidirectional NCT-301 graphite-epoxy prepreg [24] 

Longitudinal modulus (E1) 113.9 GPa 

Transverse modulus (E2) 7.985 GPa 

E3=E2  7.985 GPa 

In-plane shear modulus (G12) 3.137 GPa 

Out-of-plane shear modulus (G23) 2.852 GPa 

Density of fiber (k) 1480 kg/m
3
 

Major Poisson’s ratio (12) 0.288 

Minor Poisson’s ratio (21) 0.018 
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Table 3.2 Mechanical properties of resin material [24] 

Elastic modulus (E) 3.93 GPa 

Shear modulus (G) 1.034 GPa 

Density of resin (r) 1000 kg/m
3
 

Poisson’s ratio () 0.37 

 

Table 3.3 Geometric properties of width-tapered composite beam 

Length (L) 0.25 m 

Width at left section (bL) 0.016 m 

Width ratio (bR/bL) 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1 

Individual ply thickness (t) 0.000125 m 

Height of the laminate (H) 0.0045 m 

 

3.2 Elastic behavior of width-tapered laminated composite beam 

The design of a tapered structure involves consideration of stiffness, static 

strength, dynamic stability and damage tolerance. For designing a width-tapered 

composite beam, the stiffness distribution, laminate configuration, ply orientation and 

width ratio are major considerations. The extensional and flexural stiffness distribution 

plays an important role in the dynamic response of composite beams. 



45 

 

3.2.1 Extensional and flexural stiffness distribution for linear width-tapered 

composite beam  

The linear width-tapered composite beam shown in the Figure 2.1 is considered to 

analyze the extensional and flexural stiffness distribution. The laminate configurations 

considered are, 1) LC1 which is the laminate with ([0/90]9)s configuration,  2) LC2 which 

is the laminate with ([45]9)s configuration, 3) LC3 which is the laminate with 

([04/457])s configuration, and 4) LC4 which is the laminate with ([0/60]6)s 

configuration. 

The extensional and flexural stiffness distributions of linear width-tapered 

composite beams across the length of the beam for width ratio (b
R
/b

L
) values of 0.01, 0.4 

and 1 are determined and are given in the Figures 3.1-3.3 for laminate configurations 

LC1, LC2, LC3 and LC4.  The extensional and flexural stiffnesses are represented in 

semi-log plot. 
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Figure 3.1 Extensional stiffness distributions for linear width-tapered composite beam 

with a width ratio (b
R
/b

L
) value of 0.01 
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Figure 3.2 Extensional stiffness distributions for linear width-tapered composite beam 

with a width ratio (b
R
/b

L
) value of 0.4 
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Figure 3.3 Extensional stiffness distributions for linear width-tapered composite beam 

with a width ratio (b
R
/b

L
) value of 1 
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Figures 3.1-3.3 show the extensional stiffness distribution on laminate 

configurations for width ratio (b
R
/b

L
) values of 0.01, 0.4 and 1. From the Figure 3.1, it 

can be observed that the laminate configuration LC1 is strongest in terms of extensional 

stiffness coefficients A11 and A22. It is fairly evident that from the laminate configurations 

considered, most of the 0
0
 fibers are oriented along the length of the beam for laminate 

configuration LC1. Hence values of A12 and A66 are the least.  The laminate configuration 

LC2 is strongest in terms of extensional stiffness coefficients A12 and A66.This is because 

±45
0
 laminate configuration has higher laminate shear modulus compared to that of LC1, 

LC3 and LC4. The laminate configuration LC3 is second largest for extensional stiffness 

coefficients A11, A12 and A66 and lowest for A22. The laminate configuration LC4 is third 

largest for extensional stiffness coefficients A11, A12 and A66 but second largest for A22. 

From the Figure 3.2, the extensional stiffness distribution is similar to the Figure 3.1, 

except that the change in the extensional stiffnesses at x=0 and at x=0.25 is smaller, 

whereas in the Figure 3.3 the stiffness distribution is uniform since the beam is uniform. 

One can observe from Figures 3.1-3.3, that the laminate configuration LC1 is weakest in 

terms of extensional stiffness coefficients A12 and A66 compared to the laminate 

configurations LC2, LC3 and LC4 because LC1 has lower Poisson’s ratio and lower 

shear coupling coefficient [82]. 
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Figure 3.4 Flexural stiffness distributions for linear width-tapered composite beam 

with a width ratio (b
R
/b

L
) value of 0.01 

 

 



51 

 

 

Figure 3.5 Flexural stiffness distributions for linear width-tapered composite beam with a 

width ratio (b
R
/b

L
) value of 0.4 
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Figure 3.6 Flexural stiffness distributions for linear width-tapered composite beam with a 

width ratio (b
R
/b

L
) value of 1 

Figures 3.4-3.6 show the flexural stiffness distribution on laminate configurations for 

width ratio (b
R
/b

L
) values of 0.01, 0.4 and 1. From the Figure 3.4, the laminate 

configuration LC3 is strongest in terms of flexural stiffness coefficient D11. The laminate 

configuration LC1 is second largest, LC4 and LC2 are third and fourth largest 
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respectively. This is since most of the 0
0
 fibers are oriented along the length of the beam 

for the laminate configuration LC3, 0
0
 fibers have highest E1 compared to other fiber 

direction which is the direction of the bending loads, whereas the laminate configuration 

LC2 is strongest in terms of flexural stiffness coefficients D12, D22, D26 and D66.  But the 

laminate configuration LC1 is strongest in terms of flexural stiffness coefficient D12, the 

laminate configuration LC2 is strongest in terms of flexural stiffness coefficient D16. 

From the Figure 3.5, the stiffness distribution is similar to the Figure 3.4 except that the 

change in the stiffnesses between the length of the beam (x=0 and x=0.25m) is smaller. 

From the Figure 3.6, the flexural stiffness distribution is uniform. 

 

3.3 Free vibration response of width-tapered laminated composite beams 

In this section, free vibration response of width-tapered laminated composite beams is 

considered for simply-supported, clamped-clamped, clamped-free, and free-clamped 

boundary conditions. Rayleigh-Ritz method is used to find the natural frequencies of 

width-tapered composite beams. Comprehensive parametric studies for natural 

frequencies of width-tapered composite beams have been shown through plots. 

 

3.3.1 Effect of width ratio (b
R
/b

L
) on natural frequencies 

To study the effect of width ratio (b
R
/b

L
) on first three natural frequencies, the 

linear width-tapered composite beams with four boundary conditions are considered. The 
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boundary conditions considered are: a) SS (Simply-supported), b) CC (Clamped-

clamped), c) CF (Clamped-free) and d) FC (Free-clamped). The width ratio values 

considered are 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1, to investigate the effects on 

natural frequencies. The laminate configuration considered is ([0/90]9)s. The thickness of 

the beam is constant. The problems are solved using Rayleigh-Ritz method. The results 

are summarized in the Figures 3.7, 3.8 and 3.9 to interpret the results.  

By using the properties given in the Tables 3.1, 3.2 and 3.3, the current section is 

focused to find the effect of width ratio (b
R
/b

L
) on first three natural frequencies for four 

boundary conditions. The natural frequencies are in rad/sec. 

 

Figure 3.7 Effect of width ratio (b
R
/b

L
) on first natural frequency 
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Figure 3.8 Effect of width ratio (b
R
/b

L
) on second natural frequency 

 

Figure 3.9 Effect of width ratio (b
R
/b

L
) on third natural frequency 
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Figures 3.7-3.9 show the effect of width ratio (b
R
/b

L
) on three natural frequencies 

with four boundary conditions. It can be observed that as the width ratio (b
R
/b

L
) values 

increase, all three natural frequencies increase for simply-supported, clamped-clamped 

and free-clamped boundary conditions. Increasing the width ratio (b
R
/b

L
) values results in 

increase in the value of x-directional bending stiffness term 














*

11 )(

1

xD

 as can be seen 

from the Equation (2.11), which in turn results in increase in stiffness matrix coefficients. 

But all three natural frequencies decrease for clamped-free boundary condition as the 

width ratio (b
R
/b

L
) increase along the length of the beam. This is because of the change in 

the value of 














*

11 )(

1

xD

. Also the stiffness values coincide for clamped-free and free-

clamped boundary conditions at width-ratio (b
R
/b

L
) =1 as it should be. 

3.3.2 Effect of ply orientation and laminate configuration on natural frequencies 

To investigate the effects of laminate orientation on first three natural frequencies, 

the linear width-tapered beam with width ratio (b
R
/b

L
) values mentioned previously in the 

section 3.3.1 along with four boundary conditions are considered. The laminate 

configuration considered is 
s9)]([   

ply group. The beam is made of 36 plies. The 

laminate configurations considered for the effect on natural frequencies are: 1) ([0/90]9)s 

denoted as ‘LC1’, 2) ([45]9)s denoted as ‘LC2’, 3) ([04/457])s denoted as ‘LC3’, and 4) 

([0/60]6)s denoted as ‘LC4’.  
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By using the properties given in the Tables 3.1, 3.2 and 3.3, the current section is 

analyzed to find the effect of ply orientation on fundamental natural frequency and the 

effect of laminate configurations on first three natural frequencies of width-tapered 

composite beams. The plots 3.10 and 3.11 are showing the variations of natural 

frequencies for simply-supported, clamped-clamped, clamped-free and free-clamped 

boundary conditions for uniform and width-tapered beam. The width ratio (b
R
/b

L
) value 

of 0.5 is considered for width-tapered beam to find the effect of ply orientation on 

fundamental natural frequency. 

 

Figure 3.10 Effect of ply orientation on first natural frequency for four boundary 

conditions 

Figure 3.10 shows the effect of ply orientation on first natural frequency (rad/sec) for 

four boundary conditions of uniform and width-tapered beams. From the figure 3.10 it 

can be observed that the fundamental natural frequency is largest for clamped-clamped 
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boundary condition of uniform beam compared to the width-tapered beam. The second, 

third and fourth largest for simply-supported, clamped-free and free-clamped boundary 

conditions. The change in the fundamental natural frequency corresponds to different ply 

orientations of the laminate. As one can observe that the fundamental natural frequency 

drops significantly for orientation greater than 10
0
.  In semi-log plot shown in Figure 

3.10, only 5 out of 8 lines in the legend appear to be distinguishable. This is because the 

differences in the fundamental natural frequencies among the uniform and width-tapered 

beams for SS, CC and CF boundary conditions is small on the one hand and a logarithmic 

scale is used for the ordinate representing the frequency, on the other hand.  It may also 

be noted that the difference in the fundamental natural frequency between the uniform 

and width-tapered beams for FC boundary condition is larger than that for SS, CC and CF 

boundary conditions because of the change in cross-sectional stiffness values due to the 

restrained condition. The fundamental natural frequency is second largest for simply-

supported, third largest for clamped-free and fourth largest for free-clamped condition.  
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Figure 3.11 Effect of laminate configurations on natural frequencies 

 

Figure 3.11 shows the effect of laminate configuration on first three natural 

frequencies of width-tapered composite beams for four boundary conditions. From the 

Figure 3.11 one can observe that the natural frequencies are largest for laminate 

configuration LC3, second largest for LC1, third largest for LC4 and fourth largest for 

LC2. This difference in natural frequencies is expected for different laminate 

configurations because the different laminate configurations depend on the stiffness of 
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the beam. The stiffness of the beam depends on 
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 which is directly related with 

Q11 of the ply. Also, as the width ratio (b
R
/b

L
) value increases from 0.01 to 1, the natural 

frequencies increase for simply-supported, clamped-clamped and free-clamped boundary 

conditions. But they decrease for clamped-free boundary condition.  

 

3.3.3 Effect of length ratio (L
1
/L

3
) on natural frequencies 

To study the effect of length ratio (L
1
/L

3
) on natural frequencies, the width-

tapered composite beams of width ratio (b
N
/b

w
) with length ratio (L

1
/L

3
) as shown in the 

Figure 3.12 for four boundary conditions are considered. The plies of ([0/90]9)s 

composite beam is made of NCT-301  graphite-epoxy. The geometric properties of the 

beam are: the beam is considered with 36 plies, the height of the beam is 0.0045 m, and 

individual ply thickness (tk) is 0.000125 m. From the Figure 3.12 ‘bW’ represents the 

wider section of the beam and ‘bN’ represents the narrower section of the beam. ‘L
1
’ 

represents the length of the beam at wider section, ‘L
2
’ represents the length of the beam 

at width-tapered section, and ‘L
3
’ represents the length of the beam at narrower section. 

The total length of the beam is kept constant. Changing the length ratio is by changing 

length of the beam at wider and narrower sections to achieve different length ratios. 

When the length ratio (L
1
/L

3
) is 2, it is that the length of wider section is twice that of 

narrower section of the beam. When the length ratio (L
1
/L

3
) is ½, it is that the length of 
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wider section is half of the length of narrower section of the beam whereas, when the 

length ratio is 1, the length of wider section is equal to the length of narrower section. 

tk

z

H
x

L1 L2 L3

bN
x

y

bW

k
th

 ply

 

Figure 3.12 Schematic illustration of linear width- tapered laminated composite beam 

showing the length ratio 

. 

By using the properties given in the Tables 3.1, 3.2 and 3.3, the section 3.3.3 is 

carried out to find the effect of length ratio (L
1
/L

3
) on first three natural frequencies with 

width ratio (b
N
/b

W
) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 considered for 

four boundary conditions. The first three natural frequencies for all boundary conditions 

are obtained using Rayleigh-Ritz method. 
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Figure 3.13 Effect of length ratio (L1/L3) on first natural frequency 
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Figure 3.14 Effect of length ratio (L1/L3) on second natural frequency 
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Figure 3.15 Effect of length ratio (L
1
/L

3
) on third natural frequency 

 

Figures 3.13-3.15 show the effect of length ratio (L
1
/L

3
) on three natural frequencies 

for all four boundary conditions. From the Figures 3.13-3.15, it can be observed that as 

the length ratio (L
1
/L

3
) increases, all the three natural frequencies increase because as the 
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length on the wider section of beam is increased the stiffness of the beam increases. Also 

the three natural frequencies increase as the width ratio (b
R
/b

L
) value increases for SS, 

CC and FC boundary conditions, but decrease for CF boundary condition. Another 

important observation that can be made is the first, second and third natural frequencies 

increase for width ratio (b
R
/b

L
) values from 0.2 to 0.4 but the natural frequencies remain 

unchanged with the increase in width ratio (b
R
/b

L
) values beyond 0.4 upto 1. This is 

because when the length of the wider section is bigger than that of the narrower section, 

the increase in width ratio (b
R
/b

L
) has no change in the natural frequencies for SS and CC 

boundary condition. But the natural frequencies gradually increase as the width ratio 

(b
R
/b

L
) values increase from 0.2 to 1 for FC boundary condition, while the natural 

frequencies decrease for CF boundary condition. 

 

3.3.4 Effect of boundary condition on natural frequencies 

To study the effect of boundary condition on first three natural frequencies, the 

tapered beam of width ratio (b
R
/b

L
) values mentioned in the section 3.3.1 for simply-

supported, clamped-clamped, clamped-free, and free-clamped boundary conditions are 

considered. The different boundary conditions are considered to investigate the degree of 

restraint and the position of restraint on the natural frequencies. The plies of ([0/90]9)s 

composite beam is considered. By using the properties given in the Tables 3.1, 3.2 and 
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3.3, the effect of boundary condition on first three natural frequencies for different width 

ratio (b
R
/b

L
) values is obtained using Rayleigh-Ritz method. 

 

Figure 3.16 Effect of boundary conditions on natural frequencies 

Figure 3.16 shows the effect of boundary conditions on first three natural frequencies 

for ([0/90]9)s width-tapered composite beam.  From the Figure 3.16, it can be observed 

that the natural frequencies increase as the width ratio (b
R
/b

L
) values increase from 0.01 

to 1 for SS, CC and FC boundary condition, but decrease for CF boundary conditions. 

One can observe that for clamped-clamped boundary condition, the beam has highest 

natural frequencies compared to other boundary conditions as the beam becomes stiffer. 

Beam with free-clamped boundary condition has lowest natural frequencies because the 

beam has lowest stiffness. Then beam with simply-supported and clamped-free boundary 

conditions are second highest and third highest in natural frequencies respectively. 
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3.3.5 Effect of end-axial forces on natural frequencies  

To investigate the effects of applied end-axial (static) forces on first three natural 

frequencies, the linear width-tapered beam with width ratio (b
R
/b

L
) values of 0.01, 0.02, 

0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 along with four boundary conditions are considered as 

shown in the Figure 3.17. The plies of ([0/90]9)s composite beam which is made by NCT-

301 graphite-epoxy is considered.  

 

Figure 3.17 Schematic illustration of linear width- tapered laminated composite beams 

with end axial force for three boundary conditions 

 

Static -end axial compressive and tensile forces are applied at both ends of the beam 

as shown in the Figure 3.17. From the Figure 3.17, ‘a’ represents simply-supported, ‘b’ 

represents clamped-clamped and ‘c’ represents clamped-free boundary condition. The 

(a) (b) 

(c) 
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natural frequencies are calculated for simply-supported, clamped-clamped and clamped-

free boundary conditions. The critical buckling load and first-ply tensile failure loads are 

determined in the sections 3.5.1 and 3.6.1 respectively. The end-axial compressive and 

tensile forces which are applied as the percentage of the critical buckling load (P
cr

) and 

first-ply tensile failure load (P
1
) in the current section to find the effect of axial forces on 

natural frequencies. 

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of applied 

static end-axial compressive and tensile forces on first three natural frequencies for three 

boundary conditions are determined in the current section. The first three natural 

frequencies are obtained using Rayleigh-Ritz method. 

 

Table 3.4 Effect of end axial compressive force on first three natural frequencies -simply 

supported boundary condition 

% Pcr Mode No. 

Width ratio (b
R
/b

L
) 

0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1 

0 

1 1199 1203 1214 1227 1244 1260 1267 1269 1270 

2 5056 5063 5077 5088 5091 5086 5082 5080 5080 

3 11438 11446 11460 11464 11456 11439 11432 11429 11430 

50 

1 1017 1020 1028 1038 1053 1064 1070 1074 1076 

% decrease 15 15 15 15 15 16 15 15 15 
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2 4888 4895 4906 4912 4913 4902 4897 4896 4898 

% decrease 3 3 3 3 3 4 4 4 4 

3 11269 11276 11287 11288 11278 11257 11249 11248 11250 

% decrease 1 1 2 2 2 2 2 2 2 

95 

1 818 820 825 830 845 849 856 861 865 

% decrease 32 32 32 32 32 33 32 32 32 

2 4733 4738 4746 4748 4747 4730 4725 4725 4728 

% decrease 6 6 7 7 7 7 7 7 7 

3 11115 11121 11129 11127 11116 11090 11082 11082 11085 

% decrease 3 3 3 3 3 3 3 3 3 

 

Table 3.5 Effect of end axial compressive force on first three natural frequencies –

clamped-clamped boundary condition 

% Pcr Mode No. 

Width ratio (b
R
/b

L
) 

0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1 

0 

1 2475 2511 2591 2674 2761 2836 2865 2876 2879 

2 7264 7328 7470 7614 7759 7874 7915 7931 7936 

3 14657 14754 14971 15188 15348 15485 15533 15552 15558 

50 

1 2023 2079 2179 2267 2358 2433 2463 2474 2477 

% decrease 18 17 16 15 15 14 14 14 14 

2 6610 6722 6915 7077 7231 7349 7392 7408 7413 

% decrease 9 8 7 7 7 7 7 7 7 

3 13913 14080 14361 14586 14782 14921 14970 14989 14995 

% decrease 5 5 4 4 4 4 4 4 4 
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95 

1 1550 1613 1723 1819 1916 1996 2027 2039 2042 

% decrease 37 36 34 32 31 30 29 29 29 

2 6079 6194 6392 6560 6718 6840 6885 6902 6906 

% decrease 16 15 14 14 13 13 13 13 13 

3 13373 13542 13826 14053 14253 14394 14444 14463 14469 

% decrease 9 8 8 7 7 7 7 7 7 

 

Table 3.6 Effect of end axial compressive force on first three natural frequencies –

clamped-free boundary condition 

% Pcr Mode No. 

Width ratio (b
R
/b

L
) 

0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1 

0 

1 902 886 841 781 694 590 527 484 452 

2 3917 3851 3692 3511 3300 3090 2974 2895 2835 

3 9531 9385 9068 8760 8456 8200 8076 7997 7939 

50 

1 787 772 733 681 606 515 461 423 396 

% decrease 13 13 13 13 13 13 13 13 13 

2 3806 3741 3587 3413 3212 3014 2906 2832 2776 

% decrease 3 3 3 3 3 2 2 2 2 

3 9427 9283 8971 8669 8375 8132 8016 7943 7889 

% decrease 1 1 1 1 1 1 1 1 1 

95 

1 663 651 618 574 511 435 389 357 334 

% decrease 27 27 27 26 26 26 26 26 26 

2 3702 3640 3491 3323 3131 2944 2843 2774 2722 

% decrease 5 5 5 5 5 5 4 4 4 
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3 9333 9191 8883 8587 8302 8071 7962 7893 7844 

% decrease 2 2 2 2 2 2 1 1 1 

 

Tables 3.4-3.6 show the effect of end axial compressive forces on first three natural 

frequencies for simply-supported, clamped-clamped and clamped-free boundary 

conditions. The compressive axial load is applied as % of critical buckling load. From the 

Tables 3.4-3.6, one can observe that as the axial compressive load is increased from 0 to 

95 % of critical buckling load, the natural frequencies decrease. This is because as the 

axial compressive load is applied at the end of the beam, the beam becomes less stiff 

which results in decrease in the natural frequencies. The % of decrease in the natural 

frequencies due to the application of end-axial compressive loads is shown  

 

Table 3.7 Effect of end axial tensile force on first three natural frequencies –simply-

supported boundary condition 

% P
1
 Mode No. 

Width ratio (b
R
/b

L
) 

0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1 

0 

1 1199 1203 1214 1227 1244 1260 1267 1269 1270 

2 5056 5063 5077 5088 5091 5086 5082 5080 5080 

3 11438 11446 11460 11464 11456 11439 11432 11429 11430 

50 

1 4234 4259 4317 4382 4457 4525 4552 4579 4606 

% increase 253 254 256 257 258 259 259 261 263 
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2 9890 9916 9974 10030 10082 10118 10129 10140 10151 

% increase 96 96 96 97 98 99 99 100 100 

3 17257 17282 17332 17374 17405 17419 17423 17427 17431 

% increase 51 51 51 52 52 52 52 52 53 

95 

1 5682 5721 5811 5909 6020 6118 6157 6192 6231 

% increase 374 376 379 381 384 386 386 388 391 

2 12741 12780 12865 12949 13029 13085 13103 13146 13164 

% increase 152 152 153 155 156 157 158 159 159 

3 21161 21197 21270 21335 21388 21419 21428 21459 21468 

% increase 85 85 86 86 87 87 87 88 88 

 

Table 3.8 Effect of end axial tensile force on first three natural frequencies –clamped-

clamped boundary condition 

% P
1
 Mode No. 

Width ratio (b
R
/b

L
) 

0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1 

0 

1 2475 2511 2591 2674 2761 2836 2865 2876 2879 

2 7264 7328 7470 7614 7759 7874 7915 7931 7936 

3 14657 14754 14971 15188 15348 15485 15533 15552 15558 

50 

1 5021 5086 5206 5316 5430 5526 5564 5578 5582 

% increase 103 103 101 99 97 95 94 94 94 

2 11516 11625 11815 11974 12120 12228 12266 12281 12285 

% increase 59 59 58 57 56 55 55 55 55 

3 19814 19972 20239 20451 20632 20757 20800 20817 20823 



73 

 

% increase 35 35 35 35 34 34 34 34 34 

95 

1 6446 6524 6668 6802 6942 7059 7105 7123 7128 

% increase 160 160 157 154 151 149 148 148 148 

2 14281 14398 14603 14775 14931 15045 15084 15099 15104 

% increase 97 96 95 94 92 91 91 90 90 

3 23562 23722 23995 24209 24391 24515 24557 24573 24579 

% increase 61 61 60 59 59 58 58 58 58 

 

Table 3.9 Effect of end axial tensile force on first three natural frequencies –clamped-

free boundary condition 

% P
1
 Mode No. 

Width ratio (b
R
/b

L
) 

0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1 

0 

1 902 886 841 781 694 590 527 484 452 

2 3917 3851 3692 3511 3300 3090 2974 2895 2835 

3 9531 9385 9068 8760 8456 8200 8076 7997 7939 

50 

1 3694 3655 3547 3396 3166 2866 2674 2538 2434 

% increase 309 313 322 335 356 386 407 424 438 

2 9045 8951 8725 8472 8196 7961 7856 7794 7750 

% increase 131 132 136 141 148 158 164 169 173 

3 15818 15653 15301 14976 14687 14479 14392 14339 14302 

% increase 66 67 69 71 74 77 78 79 80 

95 

1 4933 4883 4743 4545 4239 3838 3579 3394 3254 

% increase 447 451 464 482 511 551 579 601 619 



74 

 

2 11759 11643 11361 11041 10685 10382 10247 10168 10115 

% increase 200 202 208 214 224 236 245 251 257 

3 19721 19531 19122 18741 18401 18163 18065 18009 17970 

% increase 107 108 111 114 118 121 124 125 126 

 

Tables 3.7-3.9 show the effect of end axial tensile force on first three natural 

frequencies for four boundary conditions. The tensile axial load is applied as % of tensile 

failure load. From the Tables 3.7-3.9, one can observe that as the tensile axial load is 

increased from 0% to 95 % of tensile failure load, the natural frequencies increase. This 

is because as the axial tensile load is applied the beam becomes stiffer thereby increasing 

the natural frequencies. It may be noted that the percentage increase in the natural 

frequencies is higher for applied end-axial tensile load compared to the case of 

percentage decrease in the natural frequencies due to applied end-axial compressive load, 

because the magnitudes of tensile failure loads are higher than the critical buckling load. 

 

3.3.6 Effect of damping on natural frequencies  

To investigate the effect of damping on first three natural frequencies, the linear 

width-tapered beam with width ratio (b
R
/b

L
) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 

0.8 and 1 for four boundary conditions are considered. The plies of ([0/90]9)s composite 

beam which is made by using NCT-301 graphite-epoxy is considered. 
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The mass proportional constant )(  and stiffness proportional constant )(  are 753.3  

and 51083.4  respectively which are obtained through experimental modal testing is 

described in the section 4.6.1. 

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of damping on 

first three natural frequencies for four boundary conditions are carried out in the current 

section. The first three natural frequencies corresponding to the effects of damped and 

undamped conditions are obtained using Rayleigh-Ritz method. 
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Figure 3.18 Effect of damping on natural frequencies for simply-supported boundary 

condition 
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Figure 3.19 Effect of damping on natural frequencies for clamped-clamped boundary 

condition 



78 

 

 

Figure 3.20 Effect of damping on natural frequencies for clamped-free boundary 

condition 
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Figure 3.21 Effect of damping on natural frequencies for free-clamped boundary 

condition 
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Figures 3.18-3.21 show the effect of damping on first three natural frequencies for all 

four boundary conditions. From the Figures 3.18-3.21, it can be observed that the natural 

frequencies decrease for damped condition compared to that obtained for un-damped 

condition. The difference between the undamped and damped natural frequencies is small 

because of low values of damping.  

 

3.4 Comparison of natural frequencies between Rayleigh-Ritz method and 

conventional finite element method. 

By using the properties given in the Tables 3.1, 3.2 and 3.3, the  

current section presents the comparison of first three natural frequencies for simply- 

supported, clamped-clamped, clamped-free and free-clamped boundary conditions of  

width-tapered composite beams obtained by using Rayleigh-Ritz method with that 

obtained using conventional finite element method [81]. The compared results are 

summarized in the Tables 3.10-3.13 below. 

Table 3.10 Comparison of natural frequencies--Simply supported boundary condition 

Width ratio 

(b
R
/b

L
) 

Mode 

No. 

Rayleigh-Ritz 

Method 

Conventional finite 

element method 

% 

difference 

0.01  1199 1199 0.07 

 5056 5055 0.00 

 11438 11428 0.09 

0.02  1203 1204 0.10 

 5063 5065 0.05 
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  11446 11446 0.00 

0.05  1214 1216 0.13 

 5077 5083 0.11 

 11460 11470 0.08 

0.1  1227 1229 0.14 

 5088 5094 0.13 

 11464 11478 0.12 

0.2  1244 1246 0.14 

 5091 5098 0.13 

 11456 11471 0.13 

0.4  1260 1261 0.12 

 5086 5092 0.12 

 11439 11453 0.12 

0.6  1267 1268 0.11 

 5082 5087 0.11 

 11432 11444 0.11 

0.8  1269 1270 0.10 

 5080 5085 0.10 

 11429 11440 0.10 

1  1270 1271 0.08 

 5080 5084 0.08 

 11430 11440 0.08 

 

Table 3.11 Comparison of natural frequencies—Clamped-clamped boundary condition 

Width ratio 

(b
R
/b

L
) 

Mode 

No. 

Rayleigh-Ritz 

Method 

Conventional finite 

element method 

% 

difference 
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0.01  2475 2439 1.45 

 7264 7159 1.45 

 14657 14505 1.04 

0.02 

 

 2511 2495 0.65 

 7328 7273 0.75 

 14754 14679 0.51 

0.05  2591 2591 0.01 

 7470 7462 0.11 

 14971 14958 0.08 

0.1  2674 2677 0.13 

 7614 7621 0.08 

 15188 15178 0.07 

0.2  2761 2765 0.14 

 7759 7770 0.14 

 15348 15370 0.14 

0.4  2836 2839 0.12 

 7874 7883 0.12 

 15485 15504 0.13 

0.6  2865 2868 0.11 

 7915 7924 0.11 

 15533 15550 0.11 

0.8  2876 2879 0.10 

 7931 7939 0.10 

 15552 15567 0.09 

1  2879 2881 0.08 

 7936 7943 0.08 

 15558 15571 0.08 
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Table 3.12 Comparison of natural frequencies—Clamped-free boundary condition 

Width ratio 

(b
R
/b

L
) 

Mode 

No. 

Rayleigh-Ritz 

Method 

Conventional finite 

element method 

% 

difference 

0.01  902 904 0.14 

 3917 3922 0.13 

 9531 9542 0.12 

0.02 

 

 886 887 0.14 

 3851 3855 0.13 

 9385 9396 0.12 

0.05  841 842 0.14 

 3692 3696 0.13 

 9068 9079 0.12 

0.1  781 782 0.14 

 3511 3515 0.13 

 8760 8771 0.13 

0.2  694 695 0.13 

 3300 3304 0.13 

 8456 8467 0.13 

0.4  590 591 0.12 

 3090 3093 0.12 

 8200 8210 0.12 

0.6  527 528 0.11 

 2974 2977 0.11 

 8076 8084 0.11 

0.8  484 485 0.10 

 2895 2898 0.10 

 7997 8004 0.10 
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1  452 453 0.08 

 2835 2838 0.08 

 7939 7946 0.08 

 

Table 3.13 Comparison of natural frequencies—Free-clamped boundary condition 

Width ratio 

(b
R
/b

L
) 

Mode 

No. 

Rayleigh-Ritz 

Method 

Conventional finite 

element method 

% 

difference 

0.01  151 150 0.66 

 2019 2015 0.22 

 6879 6868 0.16 

0.02 

 

 167 167 0.04 

 2075 2076 0.07 

 6981 6985 0.07 

0.05  199 199 0.19 

 2186 2190 0.17 

 7173 7184 0.16 

0.1  233 233 0.16 

 2300 2303 0.16 

 7348 7359 0.16 

0.2  279 280 0.15 

 2438 2442 0.14 

 7531 7542 0.14 

0.4  341 342 0.13 

 2599 2603 0.12 

 7709 7719 0.13 

0.6  386 387 0.11 
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 2701 2704 0.11 

 7810 7818 0.11 

0.8  422 423 0.10 

 2776 2779 0.10 

 7882 7889 0.10 

1  452 453 0.08 

 2835 2838 0.08 

 7939 7946 0.08 

 

Tables 3.10-3.13 show the comparison of three natural frequencies for simply- 

supported, clamped-clamped, clamped-free and free-clamped boundary conditions of 

width-tapered composite beams for width-ratio values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 

0.6, 0.8 and 1. The comparisons of natural frequencies were made between Rayleigh-Ritz 

method and conventional finite element method [81] for validation purpose. From the 

above table, the comparison differences for simply-supported boundary condition is 

<0.2%, for clamped-clamped boundary condition it is <1.5%, for clamped-free 

boundary condition it is <0.15% and for free-clamped boundary condition it is 

<0.7%. The comparison differences in natural frequencies from the above tables 

are well accepted.  
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3.5 Buckling response of linear width-tapered composite columns 

In this section, buckling response of width-tapered laminated composite columns is 

considered for simply-supported, clamped-clamped, clamped-free and free-clamped 

boundary conditions. Rayleigh-Ritz method is used to find the critical buckling load for 

width-tapered composite columns. The effects of width ratio (b
R
/b

L
), laminate 

configuration, length ratio and boundary conditions on critical buckling loads for width-

tapered composite columns have been shown through graphical plots. 

 

3.5.1 Effect of width ratio (b
R
/b

L
) on critical buckling load (P

cr
) 

To study the effect of width ratio (b
R
/b

L
) on critical buckling load (P

cr
), the linear 

width-tapered composite columns with SS (simply-supported), CC (clamped-clamped), 

CF (clamped-free) and FC (free-clamped) boundary conditions are considered. The width 

ratio (b
R
/b

L
) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 are considered to 

investigate the effects on critical buckling load (P
cr

). The plies of ([0/90]9)s composite 

beam which is made up of NCT-301 graphite-epoxy is considered to find the critical 

buckling loads. 

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of width 

ratio (b
R
/b

L
) on critical buckling load (P

cr
) for four boundary conditions is carried out in 

the current section. 
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Figure 3.22 Effect of width ratio (b
R
/b

L
) on critical buckling load (Pcr) 
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Figure 3.22 shows the effect of width ratio (b
R
/b

L
) on critical buckling load (Pcr) for all 

four boundary conditions. It can be observed that as the width ratio values increase the 

critical buckling load increases for SS, CC and FC boundary conditions, but decreases for 

CF boundary condition. This is because the critical buckling load (Pcr) depends on the 

restrained condition at both ends of the beam. The degree of restraint and the position of 

restraint affect the value of stiffness of the beam. In clamped-free boundary condition, the 

beam is fixed at the wider section and free at the narrower section. The critical buckling 

load is highest for clamped-clamped boundary condition and lowest for free-clamped 

boundary condition. The critical buckling load is second and third highest for simply-

supported and clamped-free boundary conditions respectively. 

 

3.5.2 Effect of laminate configuration on critical buckling load (Pcr) 

To investigate the effect of laminate configurations on critical buckling load (P
cr

), 

the linear width-tapered column with width ratio (b
R
/b

L
) values mentioned above in 

section 3.5.1 with four boundary conditions are considered. The ply of composite column 

is made up of NCT-301 graphite-epoxy and consists of 36 plies. The laminate 

configurations considered are: 1) ([0/90]9)s denoted as ‘LC1’, 2) ([45]9)s denoted as 

‘LC2’, 3) ([04/457])s denoted as ‘LC3’, and 4) ([0/60]6)s denoted as ‘LC4’.  

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of laminate 

configurations on critical buckling load (P
cr

) for width ratio (b
R
/b

L
) values of 0.01, 0.02, 
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0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 which is obtained using Rayleigh-Ritz method  is carried 

out in the current section. 

 

 

Figure 3.23 Effect of laminate configuration on critical buckling load (P
cr

) 
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Figure 3.23 shows the effect of laminate configuration on critical buckling load 

for all four boundary conditions. From the Figure 3.23 one can observe that the critical 

buckling load for variation of width ratio (b
R
/b

L
) values is largest for laminate 

configuration LC3, second largest for LC1, third largest for LC4 and fourth largest for 

LC2. This difference in critical buckling load is expected for different laminate 

configurations because the stiffness of the column depends on bending stiffness term 















*

11 )(

1

xD

 which is directly related with Q11 of the ply.   

 

3.5.3 Effect of length ratio (L
1
/L

3
) on critical buckling load (P

cr
) 

To study the effect of length ratio (L
1
/L

3
) on critical buckling load (P

cr
), the 

tapered column of width ratio (b
R
/b

L
) values mentioned in section 3.5.1 for four boundary 

conditions are considered. The plies of ([0/90]9)s composite beam which is made up of 

NCT-301 graphite-epoxy is considered. 

The geometric properties of the column considered are: the height of the column 

is 0.0045 m and individual ply thickness (tk) is 0.000125 m. The column at wider section 

and narrower section is shown in the Figure 3.12. ‘b
W

’ and ‘b
N
’ represents the wider and 

narrower sections of the column respectively. ‘L
1
’ represents the length of the column at 

wider section, ‘L
2
’ represents the length at width-tapered section of the column, and ‘L

3
’ 

represents the length of the column at narrower section. The total length of the column is 
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kept constant. Changing the length ratio is by changing lengths of the column at wider 

and narrower sections to achieve different length ratios. When the length ratio is 2, the 

length of wider section is twice that of narrower section of the column. When the length 

ratio is ½, the length of wider section is half of the length of narrower section of the 

column. When the length ratio is 1, the length of wider section is equal to the length of 

narrower section. 

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of length 

ratio (L
1
/L

3
) on critical buckling load (P

cr
) with different width ratio (b

R
/b

L
) values for 

four boundary conditions is carried out in the current section. The critical buckling loads 

(P
cr

) for all boundary conditions are obtained using Rayleigh-Ritz method. 
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Figure 3.24 Effect of length ratio (L
1
/L

3
) on critical buckling load (Pcr) 

Figure 3.24 shows the effect of length ratio (L
1
/L

3
) on critical buckling load for 

all four boundary conditions. The critical buckling load is highest for length ratio (L
1
/L

3
) 

of 2 and least for length ratio 0.25. Another observation can be made is that as the width 

ratio (b
R
/b

L
) increases from 0.2 to 1, the critical buckling load increases for simply-
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supported, clamped-clamped and free-clamped boundary condition but decreases for 

clamped-free boundary condition. 

3.5.4 Effect of boundary conditions on critical buckling load (P
cr

) 

To study the effect of boundary conditions on critical buckling load (P
cr

) the 

tapered composite column with width ratio (b
R
/b

L
) values mentioned in the section 3.5.1 

for four boundary conditions are considered. The plies of ([0/90]9)s composite columns 

which consists of 36 plies made of NCT-301 graphite-epoxy. By using the properties 

given in the Tables 3.1, 3.2 and 3.3, the effect of boundary condition on critical buckling 

load (P
cr

) with width ratio (b
R
/b

L
) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 

for four boundary conditions is carried out in the current section.  

 

Figure 3.25 Effect of boundary conditions on critical buckling load (Pcr) 
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Figure 3.25 shows the effect of boundary conditions on critical buckling load. It 

can be observed that the critical buckling load is highest for clamped-clamped boundary 

condition since the column is stiffer and least for free-clamped boundary condition.  

Another observation can be made is that as the width ratio (b
R
/b

L
) values increase from 

0.01 to 1, the critical buckling load increases for SS, CC and FC boundary conditions, but 

decreases for CF boundary condition. 

 

3.6 First-ply failure load 

A laminate will fail under increasing mechanical and thermal loads. The laminate 

failure, however, may not be catastrophic. It is possible that some layer fails first and that 

the composite continues to take more loads until all the plies fail [79]. When a ply fails, it 

may have cracks parallel to the fibers. This ply is still capable of taking load parallel to 

the fibers. Here, the cracked ply can be replaced by a hypothetical ply that has no 

transverse stiffness, transverse tensile strength, and shear strength. The longitudinal 

modulus and strength remain unchanged. When a ply fails, fully discount the ply and 

replace the ply of near zero stiffness and strength. Near zero values avoid singularities in 

stiffness and compliance matrices. 

In order to find the effect of static end-axial tensile force on natural frequencies 

and forced response of width-tapered composite beam, the first- ply failure load for 

beams of width ratio (b
R
/b

L
) values mentioned in the section 3.5.1 is calculated. 
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The ply of composite beam is made of NCT-301 graphite-epoxy. The laminate 

configuration considered is ([0/90]9)s. The first-ply failure load for 0° and 90° plies in the 

laminate are obtained using Tsai–Wu failure theory. The geometric properties of the 

beam considered are given in Table 3.3. 

 

3.6.1 First-ply failure tensile and compressive loads for width-tapered beam 

By using the properties given in the Tables 3.1, 3.2 and 3.3, the first-ply failure 

load for beams of width ratio (b
R
/b

L
) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 

1 is carried out in the current section. The tensile and compressive failure loads for 0
0 

and 

90
0
 plies are obtained by Tsai-Wu failure criterion. The method to find the first-ply 

failure load using Tsai-Wu failure criterion is given as:  

 The load applied is axial load, hence only the extensional stiffness matrix is 

required. The extensional compliance matrix is calculated for ([0/90]9)s laminate 

 The midplane strains for symmetric laminates subjected to Px= 1 N are calculated 

 The midplane curvatures are zero because the laminate is symmetric and no 

bending and no twisting loads are applied. The global strain for 0° ply is found by 

transformation relation. One can find the global stress for 0° ply using constitutive 

relation. 

 Using the transformation relation the local stresses are found. 

 The Tsai–Wu failure theory is applied for 0° ply.  
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 Using the parameters F1, F2, F6, F11, F22, F66, and F12, the Tsai–Wu failure theory 

gives the failure load for 0° ply. 

 The above steps are followed for 90° plies  

 The tensile and compressive failure loads for 0° and 90° plies in the laminate are 

summarized in Tables 3.8 and 3.9 respectively. 

 

Table 3.14 Failure loads for 0°
 
ply 

 

Width ratio 

(b
R
/b

L
) 

Tensile failure load 

(MN) 

Compressive failure 

load (MN) 

0.01 3.1456 2.7531 

0.02 3.1456 2.7532 

0.05 3.1457 2.7533 

0.1 3.1459 2.7534 

0.2 3.1463 2.7540 

0.4 3.1471 2.7547 

0.6 3.1479 2.7553 

0.8 3.1486 2.7560 

1 3.1494 2.7566 
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Table 3.15 Failure loads for 90°
 
ply 

Width ratio 

(b
R
/b

L
) 

Tensile failure 

load (MN) 

Compressive failure 

load (MN) 

0.01 1.6198 0.926526 

0.02 1.6198 0.926537 

0.05 1.6199 0.926571 

0.1 1.6200 0.926641 

0.2 1.6202 0.926754 

0.4 1.6206 0.926981 

0.6 1.6210 0.927207 

0.8 1.6214 0.927432 

1 1.6218 0.927658 

 

Tables 3.14-3.15 show the tensile and compressive failure loads of linear width-

tapered composite beam at right most end of the beam. The first-ply failure load varies 

for different width ratio values of width-tapered composite beams. From the Tables 3.14-

3.15 using the Tsai-Wu theory it can be found that the failure load is minimum for the 

90° ply compared to 0° ply.  This is considered as first-ply failure load for ([0/90]9)s 

laminate. The failure loads (tensile and compressive) for both 0° and 90° plies are least 

for width ratio value of  0.01 and highest for 1, this is because of the change in the cross-

section of the beam. The first-ply failure load is used to find the natural frequencies and 
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forced response including effect of static end-axial load. The load applied is less than the 

failure load in tensile condition and lesser than the buckling load for compressive load 

condition.  

3.7 Forced vibration analysis of width-tapered laminated composite beams 

In this section, a sinusoidal force with excitation frequency  is applied at four 

excitation points shown in the Figure 3.26 to obtain the forced response in terms of 

sinusoidal transverse-displacement of width-tapered laminated composite beams for 

simply-supported, clamped-clamped and clamped-free boundary conditions. Rayleigh-

Ritz method is used to find the sinusoidal transverse displacement of width-tapered 

composite beams.  

 

Figure 3.26  Schematic illustration of linear width- tapered laminated composite beams 

showing the excitation points 
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Effects of width ratio (b
R
/b

L
), laminate configuration, length ratio (L1/L3), 

boundary condition, and static end-axial force on sinusoidal transverse displacement of 

width-tapered composite beams are discussed in the further sections. 

 

3.7.1 Effect of width ratio (b
R
/b

L
) on forced response in terms of sinusoidal 

transverse displacement  

To investigate the effect of width ratio (b
R
/b

L
) on forced response in terms of 

transverse displacement, the linear width-tapered composite beam of clamped-free 

boundary condition at four excitation points as shown in the Figure 3.26 are considered. 

The width ratio (b
R
/b

L
) values considered are 0.2, 0.5, and 1 to investigate the effect on 

transverse displacement. The plies of ([0/90]9)s composite beam which is made up of 

NCT-301 graphite-epoxy is considered. 

A sinusoidal force of magnitude 2N with excitation frequency  is applied at four 

excitation points. The sinusoidal force 2N is chosen based on the input force measured in 

experimental modal analysis using impact hammer technique as explained in section 

4.7.2. By using the mechanical and geometrical properties given in the Tables 3.1, 3.2 

and 3.3, the forced response in terms of transverse displacement obtained for clamped-

free boundary condition corresponding to the four excitation points. The forced response 

in terms of sinusoidal transverse displacement is obtained using Rayleigh-Ritz method. 

The range of frequency in the x-axis is between 1 to 10000 Hz. 
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Figure 3.27 Effect of width ratio (b
R
/b

L
) on frequency-displacement response 

Figure 3.27 shows the effect of width ratio (b
R
/b

L
) on forced response in terms of 

transverse displacement amplitude with excitation frequency applied at four excitation 

points for clamped-free (cantilever) boundary condition. The width ratio (b
R
/b

L
) values of 

the beam considered are 0.2, 0.5 and 1. From the Figure 3.27, it can be observed that for 
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clamped-free boundary condition, transverse displacement amplitude is highest for width 

ratio (b
R
/b

L
) value of 1, second highest for width ratio value of 0.5 and lowest for width 

ratio value of 0.2. This indicates that the transverse displacement amplitude is highest for 

higher width ratio values of the beam. As the width ratio value increases, transverse 

displacement amplitude increases. The transverse displacement amplitude is highest at 

excitation point 1 and lowest at excitation point 4. Another observation that can be made 

is that the transverse displacement amplitude is highest for mode 1 and lowest for mode 3 

at excitation point 1, whereas for excitation point 4, the transverse displacement 

amplitude is highest for mode 1 and lowest for mode 2. This is same for all width ratio 

values of the beam.  

 

3.7.2 Effect of laminate configuration on forced response in terms of sinusoidal 

transverse displacement 

To investigate the effect of laminate configuration on forced response in terms of 

transverse displacement, the linear width-tapered clamped-free beam with width ratio 

(b
R
/b

L
) values of 0.2, 0.5, and 1 are considered. The laminate configurations are chosen 

differently to understand the effect of different fiber orientations on forced vibration 

response. The laminate configurations considered are: 1) ([0/90]9)s denoted as ‘LC1’, 2) 

([45]9)s denoted as ‘LC2’, 3) ([04/457])s denoted as ‘LC3’, and 4) ([0/60]6)s denoted as 

‘LC4’. The different laminate 
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A sinusoidal force of magnitude 2N with excitation frequency  is applied at four 

excitation points as shown in the Figure 3.26. By using the properties given in the Tables 

3.1, 3.2 and 3.3, the effect of laminate configuration on forced responses in terms of 

sinusoidal transverse displacements are obtained for clamped-free boundary condition at 

four excitation points for width ratio (b
R
/b

L
) values of 0.2, 0.5, and 1. The forced 

responses in terms of sinusoidal transverse displacement are obtained using Rayleigh-

Ritz method.  
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Figure 3.28 Effect of laminate configurations on frequency-amplitude response for 

width-ratio (b
R
/b

L
) value of 0.2 
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Figure 3.29 Effect of laminate configurations on frequency-amplitude response for 

width-ratio (b
R
/b

L
) value of 0.5 
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Figure 3.30 Effect of laminate configurations on frequency-amplitude response for 

width-ratio (b
R
/b

L
) value of 1 
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Figures 3.28-3.30 shows the effect of laminate configuration on forced response in terms 

of sinusoidal transverse displacement amplitude for width ratio (b
R
/b

L
) values of 0.2, 0.5, 

and 1 with excitation frequency applied at four excitation points for clamped-free 

boundary condition as shown in the Figure 3.26. From the Figures 3.28-3.30, it can be 

observed that the transverse displacement amplitude is largest for laminate configuration 

LC2, second largest for laminate configuration LC1, third largest for LC4 and lowest for 

laminate configuration LC3. This is common at all the excitation points on the beam. The 

transverse displacement amplitude is largest for angle ply laminate LC2 because the 

fibers are oriented along +45
0
 and -45

0
, which has lower extensional and bending 

stiffness but higher shear modulus. 

Another observation that can be made is the transverse displacement amplitude is 

largest when the width ratio (b
R
/b

L
) value of the beam is 1. The transverse displacement 

amplitude reduces as the width ratio (b
R
/b

L
) values reduce. Different laminate 

configurations of composite beams give the different stiffness according to ply 

orientations in the laminate.  

 

3.7.3 Effect of length ratio (L1/L3) on forced response in terms of sinusoidal 

transverse displacement 

To study the effect of length ratio (L1/L3) on forced response in terms of 

sinusoidal transverse displacement, the width-tapered composite beams of width ratio 
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(b
N
/b

w
) with Length ratio (L1/L3) shown in the Figure 3.12 for clamped-free boundary 

condition is considered. The laminate configuration considered is ([0/90]9)s  and each ply 

of composite beam is made of NCT-301  graphite-epoxy. The geometric properties of the 

beam are: the beam is considered with 36 plies, the height of the beam is 0.0045 m, and 

individual ply thickness (tk) is 0.000125 m. A sinusoidal force of magnitude 2N with 

excitation frequency  is applied at four excitation points. By using the properties given 

in the Tables 3.1, 3.2 and 3.3, the effect of length ratio (L1/L3) on forced response in 

terms of sinusoidal transverse displacement with width ratios (b
N
/b

w
) values of 0.2, 0.5, 

and 1 for clamped-free boundary condition is carried out in the current section. The 

forced response in terms of sinusoidal transverse displacements is obtained using 

Rayleigh-Ritz method. 
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Figure 3.31 Effect of length ratio (L1/L3) on frequency-amplitude response for width-

ratio (b
N
/b

w
) value of 0.2 
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Figure 3.32 Effect of length ratio (L1/L3) on frequency-amplitude response for width-

ratio (b
N
/b

w
) value of 0.5 
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Figure 3.33 Effect of length ratio (L1/L3) on frequency-amplitude response for width-

ratio (b
N
/b

w
) value of 1 

Figures 3.31-3.33 shows the effect of length ratio (L1/L3) on forced response in terms 

of transverse amplitude displacements with excitation frequency applied at four 

excitation points for clamped-free boundary condition. From the Figures 3.31-3.33, it can 



111 

 

be observed that the transverse displacement amplitude is largest for length ratio (L1/L3) 

value of 0.25 and lowest for length ratio (L1/L3) value of 2. The transverse displacement 

decrease with increase in length ratio because for largest length ratio values, the length of  

wider section of the beam increases, which makes the beam stiff that results in lower 

response in terms of transverse displacement, lower length ratio value of the beam results 

in increase in transverse amplitude displacement.  

Another important observation that can be made is the transverse displacement 

amplitude is largest at excitation points 1 and 2 for clamped-free boundary condition. 

 

3.7.4 Effect of boundary conditions on forced response in terms of sinusoidal 

transverse displacement 

To study the effect of boundary conditions on forced response in terms of 

transverse displacement, the width ratio (b
R
/b

L
) values of 0.2, 0.5, and 1 of width-tapered 

composite beams with four excitation points are considered. Simply-supported, clamped-

clamped and clamped-free boundary conditions are considered. The laminate 

configuration considered is ([0/90]9)s  and each ply of composite beam is made of NCT-

301  graphite-epoxy. 

A sinusoidal force of magnitude 2N with excitation frequency  is applied at four 

excitation points shown in Figure 3.26. By using the properties given in the Tables 3.1, 

3.2 and 3.3, the effect of boundary conditions on forced response in terms of sinusoidal 
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transverse displacement is presented in the current section. The forced response in terms 

of sinusoidal transverse displacement is obtained using Rayleigh-Ritz method. The range 

of frequency is between 1 to 10000 Hz. 

 

Figure 3.34 Effect of simply-supported boundary condition on frequency-amplitude 

response 
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Figure 3.35 Effect of clamped-free boundary condition on frequency-amplitude response 
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Figure 3.36 Effect of clamped-clamped boundary condition on frequency-amplitude 

response 

Figures 3.34-3.36 show the effect of boundary conditions on forced response in terms 

of transverse displacement amplitude with excitation frequency applied at four 

excitation points. From the Figures 3.34-3.36, one can be observe that the forced 
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response in terms of transverse displacement amplitude is largest for clamped-free 

boundary condition and lowest for clamped-clamped boundary condition. This is because 

at clamped-free boundary condition of the beam, since the stiffness of the beam is low, 

the transverse displacement amplitude if high, and for clamped-clamped boundary 

condition since the beam is stiffest the transverse displacement amplitude is low.  

The transverse displacement amplitude is largest for clamped-free boundary condition 

at excitation point 1, second highest for simply-supported at excitation points 2
 
& 3 and 

lowest for clamped-clamped boundary condition at excitation points 2 and 3. Another 

observation that can be made that is the transverse displacement amplitude is lowest for 

width ratio (b
R
/b

L
) value of 0.2 for simply supported and clamped-clamped boundary 

conditions, for clamped-free boundary condition as the width ratio (b
R
/b

L
) values increase 

from 0.2 to 1, the transverse displacement amplitude increases since the beam is less stiff 

at the free end of the beam. 

 

3.7.5 Effect of axial forces on forced response in terms of sinusoidal transverse 

displacement 

To investigate the effects of applied end-axial (static) tensile and compressive loads 

on forced response in terms of transverse displacement, the linear width-tapered 

composite beams with width ratio (b
R
/b

L
) values of 0.2, 0.5, and 1 for clamped-free 

boundary condition with four excitation points are considered. The ply of composite 
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beam is made up of NCT-301 graphite-epoxy and the laminate consists of 36 plies. The 

length (L) of the beam is 0.25 m, the height of the beam (H) =0.0045 m and individual 

ply thickness (tk) is 0.000125 m. Concentrated end-axial compressive and tensile loads as 

the % of critical buckling load and tensile first-ply failure load respectively are applied 

respectively as shown in the Figure 3.37.  

 

Figure 3.37 Schematic illustration of linear width- tapered laminated composite beams 

with end-axial static load 

A sinusoidal force of magnitude 2N with excitation frequency  is applied at four 

excitation points shown in the Figure 3.37. By using the properties given in the Tables 

3.1, 3.2 and 3.3, the effect of applied end-axial (static) load on forced response in terms 

of sinusoidal transverse displacement obtained using Rayleigh-Ritz method is presented 

in the current section. The range of frequency in the x-axis is between 1 to 10000 Hz. 
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Figure 3.38 Effect of compressive end-axial static load on frequency-amplitude response 

for clamped-free boundary condition for width-ratio (b
R
/b

L
) value of 0.2 
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Figure 3.39 Effect of compressive end-axial static load on frequency-amplitude response 

for clamped-free boundary condition for width-ratio (b
R
/b

L
) value of 0.5 
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Figure 3.40 Effect of compressive end-axial static load on frequency-amplitude response 

for clamped-free boundary condition for width-ratio (b
R
/b

L
) value of 1 
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Figures 3.38-3.40 show the effects of end-axial compressive load applied as 

percentage of critical buckling load on forced response in terms of transverse 

displacement amplitude for width ratio (b
R
/b

L
) values of 0.2, 0.5, and 1 with excitation 

frequency applied at four excitation points for four boundary conditions. From the 

Figures 3.38-3.40, it can be observed that the forced response in terms of transverse 

displacement amplitude is largest for axial load equal to 95% of critical buckling load for 

simply supported boundary condition at excitation points 2 and 3. For clamped-free 

boundary condition the transverse displacement amplitude is largest at excitation point 3, 

since the beams gets lowest stiffness at this boundary condition.  
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Figure 3.41 Effect of tensile end-axial static load on frequency-amplitude response for 

clamped-free boundary condition for width-ratio (b
R
/b

L
) value of 0.2 
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Figure 3.42 Effect of tensile end-axial static load on frequency-amplitude response for 

clamped-free boundary condition for width-ratio (b
R
/b

L
) value of 0.5 
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Figure 3.43 Effect of tensile end-axial static load on frequency-amplitude response for 

clamped-free boundary condition for width-ratio (b
R
/b

L
) value of 1 

Figures 3.41-3.43 show the effects of end-axial tensile load applied as percentage of 

tensile first-ply failure load on forced response in terms of transverse displacement 

amplitude for width ratio (b
R
/b

L
) values of 0.2, 0.5, and 1 with excitation frequency 
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applied at four excitation points for clamped-free boundary condition. From the 

Figures 3.41-3.43, it can be observed that the transverse displacement amplitude for 

clamped-free boundary condition is largest at excitation points 1 and 2. The transverse 

displacement amplitude is largest for beams that have low stiffness. The transverse 

displacement amplitude decreases as increase in percentage of tensile failure load 

because the beam becomes stiffer by applying more axial tensile load.  

 

3.8 Comparison of forced response in terms of sinusoidal transverse 

displacement between Rayleigh-Ritz method and conventional finite element 

method. 

By using the properties given in the Tables 3.1, 3.2 and 3.3, the  

current section presents the comparison of forced response in terms of sinusoidal 

transverse displacement for clamped-free simply-supported and clamped-clamped 

boundary conditions of width-tapered composite beams obtained by using Rayleigh-Ritz 

method with that obtained using conventional finite element method [81]. The compared 

results are presented in the Figures 3.44-3.46 below. 
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Figure 3.44 Comparison of forced response in terms of sinusoidal transverse 

displacement- clamped-free boundary condition 
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Figure 3.45 Comparison of forced response in terms of sinusoidal transverse 

displacement- simply-supported boundary condition 
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Figure 3.46 Comparison of forced response in terms of sinusoidal transverse 

displacement- clamped-clamped boundary condition 

Figures 3.44-3.46 show the comparison of forced response in terms of sinusoidal 

transverse displacement for clamped-free simply-supported and clamped-clamped 

boundary conditions of width-tapered composite beams for width-ratio values of 0.2, 0.4, 

0.6, 0.8 and 1. From the Figures 3.44-3.46, the comparison differences for simply-

supported boundary condition is between 3- 4%, for clamped-clamped boundary 
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condition it is between 2-4% and for clamped-free boundary condition it is 

between 2-4.5%. The comparison differences in transverse displacement from the 

above Figures 3.44-3.46 are well accepted. Also the differences in transverse 

displacements is because of no damping is considered. 

 

3.9 Summary 

In this chapter, dynamic analyses of width-tapered laminated composite beams are 

considered. In the present case, Rayleigh-Ritz method is used to find the natural 

frequencies, forced response and critical buckling load (Pcr) for width-tapered laminated 

composite beams. The extensional and flexural stiffness distributions for linear width-

tapered composite beams are shown. The previous sections show the effect of different 

width ratio values, laminate configurations, length ratios, and boundary conditions on 

natural frequencies, forced response and critical buckling load (Pcr). The effects of 

applied end-axial static force and damping on natural frequencies and forced response of 

width-tapered composite beams have been investigated. The first-ply failure load of 

width-tapered beam is obtained to find the effects of end-axial compressive and tensile 

load on natural frequencies. From the figures given in different sections, one can 

conclude the following: 

 The laminate configuration LC1 is strongest in terms of extensional stiffness A11 

and A22.  The extensional stiffness is second highest for laminate configuration LC2, third 

for LC3 and least for LC4 for all the extensional stiffnesses. The laminate configuration 
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LC2 is strongest in terms of extensional stiffness coefficients A12 and A66. The laminate 

configuration LC3 is second largest for extensional stiffness coefficients A11, A12 and A66 

and least for A22. The laminate configuration LC4 is third largest for extensional stiffness 

coefficients A11, A12 and A66 but second largest for A22. 

 The laminate configuration LC3 is strongest in terms of flexural stiffness 

coefficient D11. The laminate configuration LC1 is second largest, LC4 is third largest 

and LC2 is fourth largest. The laminate configuration LC2 is strongest in terms of 

flexural stiffness coefficients D12, D22, D26 and D66.  But the laminate configuration LC1 

is largest in terms of flexural stiffness coefficient D12, the laminate configuration LC2 is 

strongest in terms of flexural stiffness coefficient D16.  

 As the width ratio (b
R
/b

L
) value increases, all three natural frequencies increase 

for simply-supported, clamped-clamped and free-clamped boundary conditions. 

Increasing the width ratio (b
R
/b

L
) results in increase in the value of bending stiffness 

term














*

11 )(

1

xD

, which in turn results in increase in stiffness matrix coefficients. But all 

three natural frequencies decrease for clamped-free boundary condition as the width ratio 

(b
R
/b

L
) value is increased. 

 The first natural frequency is largest for clamped-clamped boundary condition of 

beam constant width compared to the width-tapered beam. The change in the 

fundamental natural frequency corresponds to different ply orientations of the laminate. 
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The fundamental natural frequency is second largest for simply-supported, third largest 

for clamped-free and fourth largest for free-clamped boundary conditions.  

 For the effect of laminate configuration on first three natural frequencies of width-

tapered composite beams, the natural frequencies are largest for laminate configuration 

LC3, second largest for LC1, third largest for LC4 and fourth largest for LC2. The 

stiffness of the beam depends on 














*

11 )(

1

xD

 which is directly related with Q
11

 of the ply. 

As the width ratio (b
R
/b

L
) value increases from 0.01 to 1, the natural frequencies increase 

for simply-supported, clamped-clamped and free-clamped boundary conditions. But they 

decrease for clamped-free boundary condition.  

 As the length ratio (L
1
/L

3
) value increases, all the three natural frequencies 

increase. Also the three natural frequencies increase as the width ratio (b
R
/b

L
) increases 

for SS, CC and FC boundary conditions, but decrease for CF boundary condition. The 

first, second and third natural frequencies increase for width ratio (b
R
/b

L
) values from 0.2 

to 0.4 but the natural frequencies remain unchanged with the increase in width ratio 

(b
R
/b

L
) values upto 1.  

 The natural frequencies increase as the width ratio (b
R
/b

L
) values increase from 

0.01 to 1 for SS, CC and FC boundary conditions, but decrease for CF boundary 

condition. Clamped-clamped boundary condition beam has largest natural frequencies 

compared to other boundary conditions whereas free-clamped boundary condition has 
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lowest natural frequencies. The beam with simply-supported and clamped-free boundary 

conditions is second highest and third highest in natural frequencies respectively. 

 As the axial load is increased from 0 to 95 % of critical buckling load, the natural 

frequencies decrease. This is because the beam becomes less stiff which results in 

decrease in the natural frequencies. As the tensile axial load is increased from 0% to 95 

% of tensile failure load, the natural frequencies increase because the beam becomes 

stiffer thereby increasing the natural frequencies.  

 The natural frequencies decrease for damped condition compared to un-damped 

condition. The difference between the undamped and damped natural frequencies is small 

because of low values of damping.  

 The comparisons of natural frequencies were made between Rayleigh-Ritz method 

and conventional finite element method. From the observations, the comparison 

differences for simply-supported boundary condition is <0.2%, for clamped-clamped 

boundary condition it is <1.5%, for clamped-free boundary condition it is <0.15% 

and for free-clamped boundary condition it is <0.7%. 

 As the width ratio values increase the critical buckling load increase for SS, CC 

and FC boundary conditions, but decrease for CF boundary condition. The critical 

buckling load is highest for clamped-clamped boundary condition and least for free-

clamped boundary condition.  

 The critical buckling load for variation of width ratio (b
R
/b

L
) values is largest for 

laminate configuration LC3, second largest for LC1, third largest for LC4 and fourth 
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largest for LC2. This difference in critical buckling load is expected for different laminate 

configurations because the stiffness of the column depends on 














*

11 )(

1

xD

 which are 

directly related with Q11 of the ply. The critical buckling load increases for SS, CC and 

FC boundary condition, but decreases for CF boundary condition. 

The critical buckling load is largest for length ratio (L1/L3) of 2 and least for 

length ratio 0.25. As the width ratio (b
R
/b

L
) values increase from 0.2 to 1, the critical 

buckling load increases for simply-supported, clamped-clamped and free-clamped 

boundary condition but decreases for clamped-free boundary condition. 

 The critical buckling load is largest for clamped-clamped boundary condition 

since the column is stiffer and least for free-clamped boundary condition. As the width 

ratio b
R
/b

L
) values increase from 0.01 to 1, the critical buckling load increase for SS, CC 

and FC boundary conditions, but decreases for CF boundary condition. 

 The first-ply failure load varies for different width ratio values of width-tapered 

composite beams. From the Tables 3.14-3.15 using the Tsai-Wu theory it can be found 

that the failure load is minimum for the 90° ply compared to 0° ply. The failure load 

(tensile and compressive) for both 0° and 90° plies are least for width ratio value of 0.01 

and highest for 1. The first-ply failure load is used to find the natural frequencies and 

forced response with respect to displacement with effect of static end-axial load.  
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 The transverse displacement amplitude is largest for width ratio (b
R
/b

L
) value of 

1, second largest for width ratio value of 0.5 and lowest for width ratio value of 0.2 for 

clamped-free boundary condition. The transverse displacement amplitude is largest for 

higher width ratio values of the beam. As the width ratio value increase, transverse 

displacement amplitude increases.  

 The transverse displacement amplitude is largest for laminate configuration LC2, 

second largest for laminate configuration LC1, third largest for LC4 and lowest for 

laminate configuration LC3. The transverse displacement amplitude is largest for 

laminate configuration LC2 because the fibers are oriented along +45
0
 and -45

0
, which 

has lower extensional and bending stiffness but higher shear stiffness. Another 

observation that can be made is the transverse displacement amplitude is largest when the 

width ratio (b
R
/b

L
) value of the beam is 1. The transverse displacement amplitude reduces 

as the width ratio (b
R
/b

L
) values reduce. 

 The transverse displacement amplitude is largest for length ratio (L1/L3) value of 

0.25 and lowest for length ratio (L1/L3) value of 2 for all four boundary conditions. The 

transverse displacement decrease with increase in length ratio of the beam because for 

larger length ratio values, the length of wider section of the beam increases, which makes 

the beam stiff that results in lower response in terms of transverse displacement, lower 

length ratio value of the beam results in increase in transverse amplitude displacement. 

Another important observation that can be made is the transverse displacement amplitude 

is largest at excitation points 1 and 2 for clamped-free boundary condition. 
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 The forced response in terms of transverse displacement amplitude is largest for 

clamped-free boundary condition and lowest for clamped-clamped boundary condition. 

The transverse displacement amplitude is largest for clamped-free boundary condition at 

excitation point 1, second largest for free-clamped boundary condition at excitation point 

1, third highest for simply-supported at excitation points 2
 
and 3 and lowest for clamped-

clamped boundary condition at excitation points 2 and 3.  

 Another observation can be made that is the transverse displacement amplitude is 

lowest for width ratio (b
R
/b

L
) value of 0.2 for simply supported and clamped-clamped 

boundary condition, for clamped-free and free-clamped boundary conditions as the width 

ratio (b
R
/b

L
) values increase from 0.2 to 1, the transverse displacement amplitude 

increases since the beam is less stiff at the free end of the beam. 

 The forced response in terms of transverse displacement amplitude is largest for 

axial load equal to 95% of critical buckling load for clamped-free boundary condition at 

excitation point 1, since the beams gets lowest stiffness at this boundary condition.  

 Another observation that can be made is the transverse displacement is largest for 

lower width ratio (b
R
/b

L
) values of the beams as the beams is less stiff and as the width 

ratio values increases the beams becomes more stiffer and hence the transverse 

displacement decreases. 

 The transverse displacement amplitude for clamped-free boundary condition is 

largest at excitation points 1 and 2. The transverse displacement amplitude is largest for 

beams that have low stiffness. The transverse displacement amplitude decreases as 

increase in the percentage of tensile failure load because the beams become stiffer by 
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applying more axial tensile load. The transverse displacement is largest for lower width 

ratio (b
R
/b

L
) values of the beams.  

 The comparisons of transverse displacement between Rayleigh-Ritz method and 

conventional finite element method show the difference in transverse displacement for 

simply-supported boundary condition is between 3- 4%, for clamped-clamped boundary 

condition it is between 2-4% and for clamped-free boundary condition it is 

between 2-4.5%. The comparison differences in transverse displacement are well 

accepted.  
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4. CHAPTER 4 

EXPERIMENTAL VALIDATION FOR WIDTH-TAPERED COMPOSITE 

BEAMS 

 

4.1 Introduction 

The laminated composite beams are basic structural components used in a variety of 

engineering structures such as airplane wings, helicopter blades and turbine blades as 

well as many others applications in the aerospace, mechanical and civil industries. This is 

due to their excellent features, such as high strength-to-weight and stiffness-to-weight 

ratios, the ability of being different strengths in different directions and the nature of 

being tailored to satisfy the strength and stiffness requirements in practical designs.  An 

important element in the dynamic analysis of composite beams is the computation of 

natural frequencies. This is important because composite beam structures often operate in 

complex environmental conditions and are frequently exposed to a variety of dynamic 

excitations.  

In this chapter, detailed procedures of manufacturing and modal analysis of 

composite beams for evaluating the structural properties are described. Pre-impregnated 

NCT-301 graphite/epoxy material supplied by NEWPORT Company, USA is used in the 

present thesis for all experiments and analysis. The mechanical properties (longitudinal 

modulus E1, transverse modulus E2, shear modulus G12, Poisson’s ratio 12) of the ply of 
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composite laminate has been tested according to ASTM specification D 3039 M-00 and 

ASTM specification D 3518-94-01 in a previous work [24].  

The composite laminates are manufactured using the fabrication of fiber reinforced 

with polymer matrix which are placed or shaped into a structural form. Vacuum bag is 

prepared for laminate curing. The laminate which is prepared using vacuum bag is cured 

using autoclave.  

Modal testing is the process of determining the modal parameters of the structure for 

all modes in the frequency range of interest. The most popular technique used for modal 

testing is impact or hammer excitation technique [65].   

The frequency response measurements are made by using PULSE
TM

 system, the 

multi-analyzer system type 3560 from Bruel and Kjaer and a four-channel signal 

analyzer.  The excitation force from the impact hammer is measured from the force 

transducer mounted at the tip of the hammer and resulting response is supplied to one of 

the inputs of signal analyzer to amplify the input signals. The response is measured by an 

accelerometer and the resulting signal is supplied to another input of signal analyzer to 

amplify the output signals. The frequency response obtained here represents the 

structure’s accelerance, since the measured quantity is the complex ratio of the 

acceleration to force in the frequency domain. For impact hammer excitation, the 

accelerometer response position is fixed and used as a reference position. The hammer is 

used to excite the beam at every translational degree of freedom corresponding to the 

degrees of freedom in the model.  
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4.2 Manufacturing of composite laminate 

The multitude of tasks involved in the manufacturing of composite laminates can be 

categorized into two phases: 

1) Fabrication 

2) Processing 

 

4.2.1 Fabrication 

In the fabrication phase the fiber reinforcement and matrix material are placed or 

shaped into a structural form. In the present work a flat plate is manufactured from layers 

or plies of pre-impregnated NCT-301 graphite/epoxy material. 

Tooling: All fabrication methods require tools to provide the shape of the composite 

structure/laminate during the processing. In this case a flat aluminum tool is used to 

manufacture flat composite plate. 

Secondary materials for laminate curing preparation: Many secondary or specialty 

materials are used in composite manufacturing such as release agent, release films, 

bleeder plies, breather plies, vacuum bag and sealant tape. Each of these materials 

provides specific function. A typical lay-up of a composite structure prepared for 

autoclave processing is shown in Figure 4.1. 
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Hand lay-up: 

The hand lay-up of pre-impregnated materials is the oldest and most commonly 

used method where the production volume is low and other forms of production would 

prove to be expensive. Each step in hand lay-up of a flat composite laminate must follow 

in successive fashion in order to obtain a high quality composite laminate after final 

processing. The major steps that are followed in the hand lay-up of prepreg are briefly 

highlighted: 

 At first, the surface of the plate is cleaned and a release agent is applied followed 

by one layer of the release film as shown in Figure 4.2 a. This allows the part to easily 

separate from the mold after curing. 

 The preimpregnated material is cut from the prepreg roll according to the required 

dimension of respective specimen. 

 A ply is oriented and placed upon the tool and subsequent plies are placed on top 

of the lamina according to the laminate configuration. Compaction pressure is applied by 

the use of a roller device as shown in Figure 4.2 b to adhere the plies and remove 

entrapped air that could lead to voids or delamination in between the layers. 

 After completing the ply gathering, a sheet of porous release film, the bleeder ply, 

the breather plies and vacuum valve are placed on the top of the laminate one after the as 

shown in the Figures 4.2 c- 4.2 g. 
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 After completing all the lay-up of all the secondary material plies, the sealant tape 

is placed around the periphery of the laid laminate and the vacuum bag is placed over the 

entire lay-up as shown in Figure 4.2 h and Figure 4.2 i. 

 The entire assembly is placed inside an autoclave and the vacuum is connected to 

vacuum pump of the autoclave to check the leaks between sealant and vacuum bag before 

starting the autoclave for processing as shown in Figure 4.2 j. 

 

Figure 4.1 Typical autoclave layup (Source: Carbonfiberguru.com) 

                                                  

a (Hand layup)                                                    b (Compaction pressure using roller) 
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              c (porous release film)                    d (vacuum bag sheet) 

             

        e (breather and bleeder plies)                                 f (vacuum valve) 

             

            g (vacuum valve fixed)                          h (application of sealant tape) 
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               i (vacuum bag prepared)         j (vacuum valve fixed to the autoclave) 

Figure 4.2 Hand layup process of NCT-301 graphite/epoxy composite laminate 

 

4.2.2 Processing 

Autoclave curing: 

The autoclave shown in the Figure 4.3 is used to provide the necessary heat and 

pressure required to consolidate and cure the composite laminate. The major advantages 

of the autoclave are that it represents a flexible method to apply required pressure and 

temperature to a composite part, which is controlled by the numeric controller. 
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Figure 4.3 Photograph of typical Autoclave for curing composite materials 

 

             

Figure 4.4 Photograph of NCT-301 graphite/epoxy composite laminate post autoclave 

curing 

 

The cure temperature and pressure are selected to meet the following 

requirements: 
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 To cure the resin uniformly and to attain a specified degree of cure in the shortest 

possible time. 

 To maintain the temperature of any part inside the prepreg this should not exceed 

a prescribed limit during the cure. 

 To have sufficient pressure to squeeze out all the excess resin from every ply 

before the resin becomes gel at any location inside the prepreg. 

 Pressurization also helps to bond layers and remove persistent voids in the matrix. 

In autoclave the temperature plays an important role in initiation of cross-linking and 

acceleration of curing process. This cure cycle was given by NEWPORT Company, USA 

for the current batch of pre-impregnated NCT-301 graphite/epoxy material. 

 In the cure cycle the laminate is heated from room temperature (RT) to 135
0
 C at 

constant rate in 70 minutes and it is held at this temperature for a period of 60 minutes. 

There is a single dwell in the current cure cycle. A constant pressure of 55-psi is 

maintained inside the autoclave throughout the processing time. Then the laminate is 

cooled to room temperature at constant rate. A typical cure cycle for NCT-301 

graphite/epoxy composite is shown in the Figure 4.5. 
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Figure 4.5 Cure cycle for NCT-301 graphite/epoxy composite material 

 

4.3 Inspection of NCT-301 graphite/epoxy panel by Laser ultrasonic 

Ultrasonics is based on the principle of transmitting high frequency sound into a test 

part and monitoring the received ultrasonic energy. This novel technology is based on the 

use of lasers for the generation and detection of ultrasound and can be used to measure 

thicknesses, detect and image surface or bulk flaws in complex structures, and 

characterize material microstructure in service or during processing as explained in Refs. 

[72] and [73]. 
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Figure 4.6 Photograph of NCT-301 graphite/epoxy panel in a fixture 

 

Figure 4.7 Photograph of NCT-301 graphite/epoxy panel - C scan (different colors show 

the variation in time (thickness) in the sample) 

 

Figure 4.8 Photograph of NCT-301 graphite/epoxy panel- BY-Scan #59 
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Figure 4.9 Photograph of NCT-301 graphite/epoxy panel- BY-Scan #111 

 

Figure 4.10 Photograph of NCT-301 graphite/epoxy panel- BY-Scan #220 

 

 

Figure 4.11 Photograph of NCT-301 graphite/epoxy panel- BX-Scan #91 
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The NCT-301 graphite/epoxy composite laminate made by using autoclave curing is 

inspected for detection of flaws and defects using laser ultrasonic method. The laser 

ultrasonic inspection was done with the help of National Research Council of Canada’s 

(CNRC) Industrial Materials Institute. The flaws or defects in the composite laminate 

may be due to voids, when prepregs are not fully impregnated, inadequate vacuum may 

result in internal defects such as delamination.  

Ultrasonic data can be collected and displayed in a number of different formats. 

The three most common formats are A-scan, B-scan and C-scan presentations. Each 

presentation mode provides a different way of looking at and evaluating the region of 

material being inspected. In the current tests, B and C-scan are conducted. 

The B-scan presentations are a profile (cross-sectional) view of the test specimen. 

In the B-scan, the time-of-flight (travel time) of the sound energy is displayed along the 

vertical axis and the linear position of the transducer is displayed along the horizontal 

axis. From the B-scan, the depth of the reflector and its approximate linear dimensions in 

the scan direction can be determined. The C-scan presentation provides a plan-type view 

of the location and size of test specimen features. The plane of the image is parallel to the 

scan pattern of the transducer. The C-scan presentation provides an image of the features 

that reflect and scatter the sound within and on the surfaces of the test piece. 

From the Figure 4.7, it can be observed from the C-scan presentation, the green 

and yellow patches represent the defects as delaminations in the laminate. From the 

Figures 4.8 - 4.11, the B-scan presentations are a profile (cross-sectional) view of the test 
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specimen. The different colours show the variation in the thickness at different positions 

in x- and y-axis respectively. Care is exercised to discard the areas where defects are 

present by cutting the laminate using water-cooled rotary-type diamond cutter. The 

portions which are intact are only used for modal testing of composite beams as discussed 

in section 4.4. 

 

4.4 Water-cooled rotary-type diamond cutter 

After the autoclave cure process and laser ultrasonic inspection, NCT-301 

graphite/epoxy composite laminate is cut to the required size by using water-cooled 

rotary-type diamond cutter shown in Figure 4.12. The laminate is cut in to five specimens 

of beams of ([0/90]9)s laminate configuration with the geometric specification given in 

Table 4.1. All the test specimens are finished by abrading the edges on a fine 

carborundum paper.  

             

Figure 4.12 Pictorial representation of water cooled-rotary type diamond cutter and 

digital protractor 
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Figure 4.13 Pictorial representation of composite beam fixture table and cutting position 

   

The taper profiles of the composite beams are cut using the digital protractor shown 

in the Figure 4.12. The composite beams are clamped on the fixture table with desired 

taper angle measured using the digital protractor as shown in the Figure 4.13. The 

composite beam is cut using the cutter manually following all the safety measures. 

As water-cooled rotary-type diamond cutting is a hand operation, the quality of the 

cut is strongly depends on the skill of the operator. The cost and maintenance of the 

process is economical. Factors like quality, speed and feed rate of the cutter depend on 

the quality of the cut specimen. Traditional mechanical cutting methods destroy the 

structural integrity of such materials. Abrasive water jet trimming has emerged as the 

preferred method for trimming cured composite laminates. The advantages of abrasive 

water jet cutting are that consistent delamination-free edges are produced and the tooling 

requirements are simpler because the cutting path is numeric controlled. However to 

process using abrasive water jet, large expensive numeric controlled machine tools are 

required [78]. 
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4.5 Experimental modal analysis  

Most practical noise and vibration problems are related to resonance phenomena, 

where the operational forces excite one or more of the modes of vibration. Modes of 

vibration which lie within the frequency range of the operational dynamic forces 

represent potential problems. 

An important property of modes is that any free or forced dynamic response of a 

structure can be reduced to a discrete set of modes. 

The standard modal parameters are: 

 Modal frequency 

 Modal damping and  

 Mode shape 

The modal parameters of all the modes, within the frequency range of interest, 

constitute a complete dynamic description of the structure. Hence the modes of vibration 

represent the inherent dynamic properties of a free structure (a structure on which there 

are no forces acting). In this thesis the modal parameters such as modal frequency and 

modal damping are determined. The mode shapes are not found out due to non-

availability of post-processing software. 

Through an impact hammer experimental test, determined are the FRF’s (Frequency 

Response Functions) which relate to the response given by the specimen when loaded 
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with a signal, allowing for determination of the natural frequencies and damping factors, 

as shown in the Figure 4.14 as block diagram of experimental testing. This was done by 

fixing the beam specimen in a rigid support with one of its sides free to vibrate, as a 

cantilever beam. The impact hammer is used to give the input load (pulse) to the 

specimen, and the signal analyzer is set from 0 Hz to 1600 Hz. This output was captured 

by the accelerometer and together with input signal were amplified using Bruel and 

Kjaer’s (B&K) 4-channel portable PULSE
TM

 3560 multi-analyzer system giving the FRF 

known as accelerance that is given by acceleration/force. 

The dynamic behavior of the composite beams can be viewed as a set of individual 

modes of vibration, each having a characteristic natural frequency, damping and mode 

shape. The modal parameters are determined from a set of frequency response 

measurements between a reference point and a number of measurement points. The 

modal frequencies and damping can be found from all frequency response measurements 

on the beams (except those for which the excitation or response measurement is in a 

nodal position, that is, where the displacement is zero).  The experimental results were 

used to validate the analytical results obtained using Rayleigh-Ritz method as shown in 

Chapter 03. 

In the experimental work, the composite beam specimens shown in the Figure 4.15 

are prepared from the NCT-301 graphite/epoxy beams of laminate configuration 

([0/90]9)s and geometric configurations given in the Table 4.1. The composite beam is 

mounted on a corner of a big rigid table with vice/fixture providing sufficient clamp force 

at the root of the beam to simulate fixed end, similar to cantilevered boundary condition 
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as shown in Figure 4.23. The beam is excited by the impact hammer and provides signal 

to the amplifier. Response accelerometer is attached at the free end of the beam with 

bees’ wax glue and provides response to the amplifier. Dual mode amplifier is used to 

amplify the signals from the transducers (hammer and response) and they are supplied to 

the 4-channel portable PULSE
TM

 3560 multi-analyzer system. It is determined that the 

beam specimen is divided in equal lengths into four points where the roving hammer is 

excited at these points marked on the beam specimen as shown in Figure 4.23. The point 

of excitation is made such that it does not coincide with nodal point. 

1

2

3

4 5

6

8

LAN

7

 

Figure 4.14 Block diagram of experimental modal analysis instrumentation 

 

From the Figure  4.14, 1 represents: Fixed-free (cantilever) composite beam, 2: 

Impact hammer with transducer at the tip, 3: Response transducer (accelerometer), 4: 

Oscilloscope, 5: Dual mode charge amplifier, 6: 4-channel Portable PULSE, 3560 multi-

analyzer system, 7: Personal computer. 
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Figure 4.15 Photographs of NCT-301 graphite/epoxy composite beam specimens 

 

Table 4.1 Specifications of width-tapered composite beams 

 

Specimen Length, L 

(m) 

Width, (m) Width 

ratio 

Height, H 

(m) 

Mass, m 

(g) 

bL bR bR/ bL 

1 0.25 0.015 0.003 0.2  0.0045 26.87 

2 0.25 0.016 0.006 0.4 0.0045 27.03 

3 0.25 0.016 0.009 0.6 0.0045 27.66 

4 0.25 0.015 0.012 0.8 0.0045 37.46 

5 0.25 0.016 0.016 1 0.0045 38.36 
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4.5.1 Measurement equipments and apparatus 

The experimental set-up used for mobility measurement is explained below. 

There are three major items: (i) Excitation mechanism, (ii) Transducer system and (iii) 

An analyzer, to extract the desired information. 

4.5.1.1 Test fixture 

The test fixture consists of a rigid mounting support which provides a clamp for 

the root of the beam. 

4.5.1.2 Signal analyzer 

PULSE
TM

, the multi-analyzer system type 3560, is used as a data acquisition 

front-end hardware as shown in Figure 4.16. The Pulse analyzer is connected to the 

computer for real-time signal processing. An oscilloscope of type 54624 A from Agilent 

technologies shown in Figure 4.17, is used to monitor the quality of the signals from 

impact hammer and accelerometer. 
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Figure 4.16 Photograph of B & K’s PULSE
TM 

front-end multi-analyzer type 3560 

 

 

Figure 4.17 Photograph of typical oscilloscope 

4.5.1.3 Charge amplifiers 

The role of the amplifier is to strengthen the signals generated by the transducers 

so that they can be fed to the analyzer for measurement. The charge amplifiers used in 

this experiment are Kistler’s three channels - Dual mode amplifier type-5804 A and 

Intertechnology’s PCB 482A 04 piezoelectric amplifier as shown in Figures 4.18 and 

4.19 respectively. These amplifiers are used for conditioning of signals from piezoelectric 
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transducers, such as charge accelerometer, and impact hammer to Pulse multi-analyzer 

system. 

 

Figure 4.18 Photograph of typical Dual mode amplifier 

 

 

Figure 4.19 Photograph of piezoelectric charge amplifier 
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4.5.1.4 Impact hammer 

The specification of the impact hammer used in the experiment is as shown in the 

Figure 4.20.  Impact force: 0 to 222.5N, sensitivity: (±20%) (22.5 mV/N), measurement 

range: 222 N pk, hammer mass: 4.8 g. 

The hammer consists of an integral integrated circuit piezoelectric quartz force 

sensor mounted on the striking end of the hammer head. The sensing element functions to 

transfer impact force into electrical signal for display and analysis. The hammer is 

connected to PCB 482A 04 piezoelectric amplifier to amplify the piezoelectric signals to 

Pulse multi-analyzer system. 

 

 

Figure 4.20 Photograph of typical impact hammer 
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4.5.1.5 Accelerometer 

For response measurement, the transducer used in the experiment is type 4381- 

piezoelectric accelerometer as shown in Figure 4.21. When the response transducer is 

chosen, the structural loading caused by mounting the transducer must be taken into 

consideration. Loading the structure may alter the modal parameters. The mass loading 

effect should be minimal [69]. The accelerometer is mounted to the beam specimen by 

applying a thin layer of beeswax. The specifications of the accelerometer used in the 

experiment are: Frequency: 0.1 - 4800 Hz, temperature: -74 - 250 ºC (-101.2 - 482.0 °F), 

Weight: 43 grams, Sensitivity: 100  pC/g, Maximum Operational Level (peak): 2000 g. 

 

Figure 4.21 Photograph of typical response transducer mounted below width-tapered 

beam 
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4.5.2 Impact excitation  

For mobility measurements the structure must be excited by a measured dynamic 

force. The waveform produced by an impact is a transient (short duration) energy transfer 

event. The spectrum is continuous, with a maximum amplitude at 0 Hz and decaying 

amplitude with increasing frequency. 

 The duration, and thus the shape of the spectrum, of an impact are determined by 

the mass and stiffness of both the impact and the structure. Advantages of hammer testing 

are that they are fast as only few averages of impact measurements are required, no 

elaborate fixtures are required, there is no variable mass loading of the structure, and it is 

portable and relatively inexpensive. 

 

Figure 4.22 Photograph of experimental modal analysis test set-up 
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4.5.3 Impact testing requirements 

Even though impact testing is fast and convenient, there are several important 

considerations that must be taken into account in order to obtain accurate results. They 

include: 

Pre-Trigger delay: Because the impulse signal exists for such a short period of 

time, it is important to capture all of it in the sampling window of FFT analyzer. To 

ensure that the entire signal is captured, the analyzer must be able to capture the impulse 

and impulse response signals prior to the occurrence of the impulse. 

Force and exponential windows: The force window is used to remove noise from 

the impulse (force) signal. The force window preserves the samples in the vicinity of the 

impulse, and removes the noise from all of the other samples in the force signal by 

making them zero. The exponential window is used to reduce leakage in the spectrum of 

the response. 

Accept/reject capability: Since accurate impact testing results depend on the skill 

of one doing the impacting, FRF measurements should be made with spectrum averaging. 

In this experiments, 10-sampling size is selected for the accurate measurements. If in case 

one or two of the impacts during the measurement process may be bad hits, an FFT 

analyzer designed for impact testing will have the ability to accept or reject the result of 

each impact. 
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4.5.4 Response transducer calibration 

Most commercial transducers are supplied with calibration certificates, but a 

calibration test before every mobility measurement is strongly recommended [57]: 

 To check the integrity of the transducers, to detect any errors in the cables, 

connectors, conditioning and analyzers, to check that all gain, polarity and attenuator 

settings in the system are correct. 

 To check the pair of transducers being used, are matched in the frequency band of 

interest. 

 To calibrate the entire system is to measure the mobility of the structure. 

Generally the known mass is used as reference. 

From Newton’s second law: 

Force= mass  acceleration 

Therefore, Accelerance is given as: 

massforce

onaccelerati 1
)A( 

                                                                                      

(4.1) 

A known mass suspended so that it moves in only one direction, with an 

accelerometer attached to detect the motion, can be used for hammer techniques. This 

gives a ratio calibration, ensuring correct mobility measurements, rather than an absolute 

calibration of the individual transducers. For this purpose, even a hand-held mass is 
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adequate. If the calibration mass is considered to be absolutely rigid, in the frequency 

range of interest, the force and acceleration waveforms are equal. 

 

4.6 Modal testing for damping factor 

Damping characteristics in composite materials is an important factor of the 

dynamic behavior of structures, controlling the resonant and near resonant vibrations and 

thus prolonging the structure service life under fatigue and impact loading. Generally 

composite materials have more damping capacity than metals. Damping in vibrating 

composite structures refers to a complex physical dynamic nature including from both 

constituent level (visco-elastic behavior of matrix, damping at fiber-matrix interface) and 

laminate level (layer orientation, inter-laminar effects, stacking sequence, etc) [65]. 

It is difficult to determine accurately the damping parameters by an analytical 

approach. The experimental method is very desirable.  

 

4.6.1 Damping loss factor 

The methodology of calculating damping loss factor using half-power bandwidth 

technique is explained in detail in the Ref. [65].  

From the experimental modal testing , the extracted values of damping loss factor 

( ), damping ratio ( ), mass proportional damping constant ( ) and stiffness 
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proportional damping constant (  ) from three specimens are obtained using half-power 

bandwidth technique [65] which are presented in the Table 4.2. 

 

Table 4.2 Damping loss factor measurements 

 

      

Specimen-1 (Uniform beam) 

Exci-1 0.0378 0.0189 0.0220 0.0110 2.611 3.44
-05

 

Exci-2 0.0094 0.0047 0.0185 0.0093 0.497 3.59
-05

 

Exci-3 0.0200 0.0100 0.0160 0.0080 1.343 2.73
-05

 

Specimen-2 (Uniform beam) 

Exci-1 0.0412 0.0206 0.0152 0.0076 3.082 1.86
-05

 

Exci-2 0.0420 0.0212 0.0131 0.0065 3.208 1.31
-05

 

Exci-3 0.0414 0.0207 0.0207 0.0103 2.835 3.06
-05

 

Specimen-3 (Uniform beam) 

Exci-1 0.0318 0.0159 0.0170 0.0085 2.162 2.65
-05

 

Exci-2 0.0345 0.0172 0.0166 0.0083 2.361 2.44
-05

 

Exci-3 0.0193 0.0097 0.0103 0.0052 1.203 3.77
-05
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In the Table 4.2, Exci-1 stands for first excitation and so on. The calculated 

damping properties are used to calculate average proportional mass and stiffness 

constants to form a Rayleigh’s damping matrix [C] as a linear combination of mass and 

stiffness matrices for free and forced vibrations determined using Rayleigh-Ritz method 

 

4.7 Experimental modal analysis results 

This section presents the results from experimental investigation, where impact 

testing at different excitation points as shown in Figure 4.23 with cantilevered boundary 

condition was carried out. The output data from the modal testing namely coherence 

function, time and auto spectrum for hammer impact and transducer response and 

Frequency Response Functions are presented.  

The experimental modal analysis test was carried out at Concordia Centre for 

Composites (CONCOM) testing laboratory. The measured modal parameters are served 

as a reference for further comparison with solution obtained from Rayleigh-Ritz method. 

1234

a

b

c
 

Figure 4.23 Schematic illustrations of composite beam with excitation points 
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From the Figure 4.23-a) Fixed-free (cantilever) composite beam, b): Impact hammer with 

transducer at the tip, c) Response transducer (accelerometer). 

 

4.7.1 Coherence function at different excitation points for width-tapered 

composite beam 

 The coherence function provides a means for assessing the degree of linearity 

between the input and output signals. The coherence function is defined as follows [72]: 

)().G(G

)(G
)(

FFXX

2

XF2




  , 1)(0 2                                                                          (4.2) 

where G
XF is the cross-spectrum between the force and response and G

XX
 and G

FF are the 

autospectra of the response and force respectively. In experimental modal testing, the 

coherence function at each excitation point is obtained with the help of PULSE software 

rather than by the direct use of Equation (4.2) given above. 

The bounds for coherence function are 1, for no noise in the measurements, and 0 

for pure noise in the measurements. The interpretation of coherence function is that for 

each frequency  it shows the degree of linear relationship between the measured input 

and output signals. The coherence function is used to detect possible errors, during 

mobility measurements. 
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By using the impact excitation technique described in the Section 4.5.2, test 

specimens of NCT-301 graphite/epoxy beam with laminate configuration ([0/90]9)s and 

geometric specification given in Table 4.1 are used to find the coherence function for 

different width ratio (b
R
/b

L
) values for fixed-free (cantilever) boundary condition of 

width--tapered composite beam at four excitation points as shown in Figure 4.23.  

 

Figure 4.24 Coherence function for width ratio (b
R
/b

L
) of 0.2 at four excitation points 
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Figure 4.25 Coherence function for width ratio (b
R
/b

L
) of 0.4 at four excitation points 

 

 

Figure 4.26 Coherence function for width ratio (b
R
/b

L
) of 0.6 at four excitation points 
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Figure 4.27 Coherence function for width ratio (b
R
/b

L
) of 0.8 at four excitation points 

 

 

Figure 4.28 Coherence function for width ratio (b
R
/b

L
) of 1 at four excitation points 
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Figures 4.24-4.28 show the coherence functions obtained through impact testing for 

fixed-free (cantilever) boundary condition for width--tapered composite beam at four 

excitation points. One can observe from the Figures 4.24 - 4.28 that for all width ratio 

(b
R
/b

L
) values of the beams, the coherence function is poor at the initial frequency values. 

This is because of initial disturbance during impact excitation. By using the force 

windowing technique these signal values are tailored for good input signal values for 

FRF calculations. Another observation made is that at excitation point 3 for width ratio 

(b
R
/b

L
) values of 0.4 and 0.6, the coherence values are less than 0.5. This is because the 

excitation point is close to a node point, coherence may be extremely low. This is 

acceptable however, since the modal strength at this point is weak and not important for 

the analysis [69]. 

 

4.7.2 Time response and autospectrum response at different excitation points for 

width-tapered composite beam 

An autospectrum is calculated by multiplying a spectrum by its complex 

conjugate (opposite phase sign), and by averaging a number of independent products. 

When the complex conjugate of one spectrum is multiplied by a different spectrum we 

obtain the cross-spectrum. The cross-spectrum is complex, showing the phase shift 

between the output and input, and a magnitude representing the coherent product of 

power in the input and output.  
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The duration of an impact is usually very short compared to the record length. 

The window used is the transient window, this takes the data unweighted during the 

period of contact, and sets it to zero for the remaining record. If we observe the time 

history of the impact force, negative signals can be observed. In a physical sense this is 

prohibited, but since we are measuring the force within a limited frequency range 

(truncation), this short ringing is a correct representation in the particular frequency range 

(leakage) [70]. The length of the force window must be chosen such that the entire signal 

is included. The response to an impact is a free decay of all the modes of vibration. The 

exponential window is used when there is a leakage error or poor signal-to-noise ratio in 

the measured data. In the case of leakage error, the response is forced to decay 

completely within the record so that leakage due to truncation is avoided. For poor 

signal-to-noise ratio, the noise is attenuated by the window [70]. 

By using the impact excitation technique described in the Section 4.5.2, test 

specimens of NCT-301 graphite/epoxy beam with laminate configuration ([0/90] 9) s and 

geometric specification given in Table 4.1 are used to find the time response and FRF 

autospectra for input 1 and input 2, which are for impact hammer transducer and response 

accelerometer respectively for different width ratio (b
R
/b

L
) values of width-tapered 

composite beam at four excitation points as shown in Figure 4.23. 
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Figure 4.29 Time response and autospectrum response for width ratio (b
R
/b

L
) of 0.2 at 

four excitation points 
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Figure 4.30 Time response and autospectrum response for width ratio (b
R
/b

L
) of 0.4 at 

four excitation points 
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Figure 4.31 Time response and autospectrum response for width ratio (b
R
/b

L
) of 0.6 at 

four excitation points 
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Figure 4.32 Time response and autospectrum response for width ratio (b
R
/b

L
) of 0.8 at 

four excitation points 
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Figure 4.33 Time response and autospectrum response for width ratio (b
R
/b

L
) of 1 at four 

excitation points 
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Figures 4.29 - 4.33 show the time response and autospectrum obtained by impact 

testing for different width ratio (b
R
/b

L
) values for fixed-free (cantilever) boundary 

condition of width-tapered composite beam at four excitation points. It is observed from 

the Figures 4.29 - 4.33 that for all width ratio (b
R
/b

L
) values of the beams, the impulse 

force is highest at excitation point 4 since the stiffness of the beam is higher at this point. 

The time response and autospectra of inputs 1 and 2 are for impact hammer transducer 

and response accelerometer respectively. In the time and auospectrum response of 

Figures 4.29-4.33, it is important to ensure that the data captured during the excitation is 

free from unacceptable sources of error like double hit of the impact hammer, capture of 

noise in the output signal due to instrumentation and environmental vibrations, etc. The 

data captured as observed from Figures 4.29-4.33 are satisfactory [69]. 

 

4.7.3 Frequency Response Function (FRF-H
1
) at different excitation points for 

width-tapered composite beam 

 One very efficient model of a linear system is a frequency domain model, where 

the output spectrum is expressed as the input spectrum weighted by a system descriptor, 

)).F(H()X(                (4.3) 

This system descriptor )H(  is called the Frequency Response Function (FRF), 

defined as: 
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)F(

)X(
)H(




 

                         

(4.4) 

The physical interpretation of the FRF is that a sinusoidal input force, at a 

frequency, will produce a sinusoidal output motion at the same frequency. The basis for 

one specific class of experimental modal analysis is the measurement of a set of 

frequency response functions. The mobility measurement used here to describe the FRF 

is ‘accelerance’, where the motion is described in terms of acceleration/force. For impact 

excitation and pseudo-random excitation, H1 and H2 will generally be equal at 

resonances. H1 is preferred since it is the best estimator at antiresonances [69]. 

By using the impact excitation technique described in the Section 4.5.2, test 

specimens of NCT-301 graphite/epoxy beam with laminate configuration ([0/90]9)s and 

geometric specification given in Table 4.1 are used in the current section to find the 

Frequency Response Function (FRF-H1) which is computed as the ratio of the cross 

spectrum to the input autospectrum for different width ratio (b
R
/b

L
) values for fixed-free 

(cantilever) boundary condition of width-tapered composite beam at four excitation 

points. 

http://zone.ni.com/devzone/cda/tut/p/id/475
http://zone.ni.com/devzone/cda/tut/p/id/475
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Figure 4.34 FRF -H1 at four excitation points for width ratio (b
R
/b

L
) values of 0.2, 0.4, 

0.6, 0.8 and 1 

 

Figures 4.34 show the Frequency Response Function (FRF-H1) obtained by impact 

testing for different width ratio (b
R
/b

L
) values for fixed-free (cantilever) boundary 
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condition of width-tapered composite beam at four excitation points. Figure 4.34 shows 

the FRF which is measured for first three natural frequencies (Hz) with amplitude 

measured as accelerance (ms
-2

/N) for individual excitation points. It is observed that the 

natural frequencies are highest for width ratio (b
R
/b

L
) of 0.2 and gradually decreases as 

width ratio (b
R
/b

L
) values increases for fixed-free (cantilever) boundary condition. This is 

because the stiffness of the beam is highest for width ratio (b
R
/b

L
) of 0.2. Another 

observation that can be made is that at excitation point 1, the amplitude at first mode is 

highest whereas lowest at mode three. But in the case at excitation point 4, the amplitude 

at third mode is highest whereas it is lowest at first mode. This is because the beam at 

excitation point 1, it is more flexible at the free end of the beam. 

 

4.7.4 Comparison of natural frequencies between experimental modal testing and 

Rayleigh-Ritz method for width-tapered composite beam  

The analytical and the experimental modal analysis results for linear width-tapered 

beam with different width ratio (b
R
/b

L
) values, for fixed-free (cantilever) boundary 

condition, are compared in the current section for validation purpose. 

By using the impact excitation technique described in the Section 4.5.2, test 

specimens of NCT-301 graphite/epoxy beam with laminate configuration ([0/90]9)s  and 

geometric specification given in Table 4.1 are used in the current section to find the % 

difference for three natural frequencies between the experimental modal testing and 
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Rayleigh-Ritz method, for different width ratio (b
R
/b

L
) values of width-tapered composite 

beam at four excitation points as shown in Figure 4.23. 

 

Table 4.3 Comparison of natural frequencies for width-tapered composite beams at four 

excitation points 

 

width ratio (b
R
/b

L
) 0.2 0.4 0.6 0.8 1 

1 (R-R), Hz 110 99.4 90.1 83.4 77.8 

1 (Excitation point 1), Hz 114 103 93 86 80 

% difference 3.6 3.6 3.2 3.1 2.8 

1 (Excitation point 2), Hz 114 104 93 86 80 

% difference 3.5 3.5 3.3 3.3 3.2 

1 (Excitation point 3), Hz 114 103 93 86 80 

% difference 3.6 3.5 3.3 3.2 3.1 

1 (Excitation point 4), Hz 114 104 93 86 80 

% difference 3.6 3.5 3.4 3.3 3.3 

2 (R-R), Hz 525.5 512.5 500 492.5 488.5 

2 (Excitation point 1), Hz 543 532 520 513 506 

% difference 3.3 3.8 4 4.2 3.6 

2 (Excitation point 2), Hz 550 541 528 522 522 
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% difference 4.2 3.8 4 4.5 3.5 

2 (Excitation point 3), Hz 550 543 529 523 523 

% difference 4.2 3.9 4.4 4.4 3.8 

2 (Excitation point 4), Hz 550 541 528 522 523 

% difference 4.2 3.9 4.4 4.3 3.8 

3 (R-R), Hz 1346 1354 1354 1356 1372 

3 (Excitation point 1), Hz 1400 1410 1400 1400 1420 

% difference 4 4.1 3.4 3.2 3.5 

3 (Excitation point 2), Hz 1420 1430 1420 1430 1430 

% difference 5.5 3 3.5 3.4 3.1 

3 (Excitation point 3), Hz 1420 1420 1410 1430 1430 

% difference 5.5 3.6 4.9 3.8 3.1 

3 (Excitation point 4), Hz 1400 1410 1400 1400 1410 

% difference 4 3.5 4.4 3.3 3.4 

 

Table 4.3 shows the comparison of natural frequencies between the results from 

experimental modal testing and Rayleigh-Ritz method for linear width-tapered composite 

beam with different width ratio (b
R
/b

L
) values for fixed-free (cantilever) boundary 

condition. It can be observed from the Table 4.3 that the % difference between the natural 

frequencies is lowest as for mode 1 and highest for mode 3. The % difference is lowest 

for width ratio (b
R
/b

L
) value of 1 and increases as the width ratio (b

R
/b

L
) value of 

decreases until 0.2. The % difference is lowest at excitation point 1 and highest at 
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excitation point 4 for modes 1 and 3 but for mode 3, the % difference is highest at 

excitation points 2 and 3 and lowest at excitation points 1 and 4. The results show good 

agreement between the theoretical predictions and the experimental values of the natural 

frequencies. The natural frequencies are compared for the effect of width–ratio for 

different boundary condition in section (3.5) obtained using Rayleigh-Ritz method with 

that obtained using conventional finite element method [81]. The % difference is less 

than 1 % and shows good agreement between the two methods.  

 

4.8 Summary 

In this chapter, experimental validation for width-tapered composite beams has been 

carried out. The manufacturing of composite laminate is discussed with fabrication and 

processing. The composite laminate manufactured is inspected using laser ultrasonic 

technique and the results are discussed. The composite laminate is cut with the geometric 

shape of width-tapered beams using water-cooled rotary-type diamond cutter. 

Experimental modal analysis is conducted using impact hammer excitation. The 

measurement equipments and apparatus used are explained. Modal testing for damping 

factor for finding out the damping in the beams is conducted using half-power bandwidth 

method [24]. The experimental modal analysis results like Coherence function, time 

response and auto response function and Frequency Response Function (FRF) of 

different width ratio values of width-tapered composite beams are shown through 

graphical plots. Comparison of experimental modal analysis results and theoretical results 
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for width-tapered composite beams are discussed. From the figures and analyses the 

following conclusions are drawn: 

 The coherence function is obtained through impact testing for different width 

ratio (b
R
/b

L
) values of width-tapered composite beams. The coherence function is poor at 

the initial frequency values because of initial disturbance during impact excitation. By 

using the force windowing technique these signal values are tailored for good input 

signal. At excitation point 3 for width ratio (b
R
/b

L
) values of 0.4 and 0.6, the coherence 

values are less than 0.5.  

 The time response and autospectrum response is obtained through impact testing 

for different width ratio (b
R
/b

L
) values for fixed-free (cantilever) boundary condition of 

width-tapered composite beam at four excitation points. For all width ratio (bR/bL) values 

of the beams, the impulse force is highest at excitation point 4. This is because the beam 

is stiff at excitation point 4. 

 The Frequency Response Function (FRF-H1) by impact testing is analyzed for 

different width ratio (b
R
/b

L
) values of width-tapered composite beams. The fundamental 

natural frequency is highest for width ratio (b
R
/b

L
) value of 0.2 and it gradually decreases 

as width ratio (b
R
/b

L
) values increases. At excitation point 1 that is at the free end of the 

beam, the amplitude at first mode is highest whereas it is lowest at mode three.  

 The % difference between the natural frequencies is lowest as for mode 1 and 

highest for mode 3. The % difference is lowest for width ratio (b
R
/b

L
) value of 1 and 

increases as the width ratio (b
R
/b

L
) value decreases until 0.2. The % difference is lowest 



185 

 

at excitation point 1 and highest at excitation point 4 for modes 1 and 3 but for mode 3, 

the % difference is highest at excitation points 2 and 3 and lowest at excitation points 1 

and 4. The results show good agreement between the analytical predictions and the 

experimental values of the natural frequencies. 
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5. CHAPTER 5 

DYNAMIC RESPONSE OF THICKNESS- AND WIDTH-TAPERED 

LAMINATED COMPOSITE BEAMS USING RAYLEIGH-RITZ METHOD 

 

5.1 Introduction 

Mechanical vibration deals with the interaction of inertia and restoring forces.  

The former is due to the effect of mass of an object, while the latter is due to the  

elastic deformation capability of the object. The inertia force tends to maintain the  

current state of the object. The restoring force tends to push the object back to its  

equilibrium position. Undesired vibrations in equipment cause loss of accuracy as  

in the case of measuring equipment, fatigue failure and discomfort for human  

beings as in the case of aircrafts and cars. If the frequency of exciting force gets  

close to the frequency band of the natural frequencies of the structure, the  

mechanical component experiences severe vibration due to resonance. The  

resonance will decrease the lifetime of the structure and causes unpredictable  

failures. Dynamic analyses in mechanical design are of great importance to control  

the vibration in order to maintain the operating performance and to prevent sudden  

failures in structures.  

In this chapter, free and forced vibration response of thickness- and width-

tapered laminated composite beams and buckling response of thickness- and width-
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tapered laminated composite columns are conducted using Rayleigh-Ritz method. In 

section 5.2, energy formulation for dynamic response of thickness- and width-tapered 

laminated composite beams based on one–dimensional laminated beam theory is 

developed. In section 5.2.1 system matrices are formed for thickness- and width-tapered 

laminated beams. Properties of the ply in the tapered laminate are shown in the section 

5.2.1.1. In section 5.2.2 Rayleigh-Ritz method for free and forced vibration and buckling 

response is formed. In section 5.3 dynamic response of thickness- and width-tapered 

laminated composite beams is shown. In sections 5.3.1- 5.3.5 free vibration response of 

thickness- and width-tapered laminated composite beams with effects of angle of 

thickness-taper () and width ratio (b
R
/b

L
), laminate configuration, boundary condition, 

end-axial forces, and damping are presented. In section 5.4 comparisons of natural 

frequencies obtained using Rayleigh-Ritz method with that obtained using conventional 

finite element method [81] are made. In sections 5.5.1-5.5.3 buckling response of  

thickness- and width-tapered laminated composite columns with effects of angle of 

thickness-taper () and width ratio (b
R
/b

L
), laminate configuration, boundary condition 

are presented. In section 5.4 comparisons of forced response in terms of sinusoidal 

transverse displacement obtained using Rayleigh-Ritz method with that obtained using 

conventional finite element method are made. In section 5.6 the summary is provided that 

serve as factors to be considered in calculating the optimal results. These conclusions can 

guide the designer on the choice of different parameters involved in the analysis.  
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Figure 5.1 Schematic illustration of thickness- and width-tapered composite beam 

configurations 

 



189 

 

5.2 Energy formulation for dynamic response of thickness- and width-tapered 

laminated composite beams based on one–dimensional laminated beam theory 

Euler-Bernoulli beam theory is also defined as classical beam theory. This beam 

model accounts for bending moment effects on stress and deformation. Transverse shear 

forces are recovered from equilibrium but their effect on beam deformation is neglected 

[24]. 

 

5.2.1 System matrices 

Classical Laminated Plate Theory (CLPT) is considered for the bending of 

symmetrically laminated thickness- and width-tapered laminated beams [5].  

The equation for first co-efficient of the bending stiffness matrix for uniform-

thickness and uniform-width beam is shown in the equation (2.2c). One should note that 

in the thickness-tapered beam as shown in the reference [22], the cross-section area and 

the value of 11D are not constant through the length of the beam.  11D  for a mid-plane 

thickness-tapered uniform-width beam is explained in the section 5.2.1.1 
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5.2.1.1 Properties of ply in the tapered laminate 

In the case of thickness-tapered composite laminate, as shown in the Figure 5.2, 

the cross section area and the value of )(11 xD  are not constant throughout the length in 

the tapered section and there are ply drop offs at specific distances [22]. 



tk' tkc

x

z

hk' hk-1'

Ply k

 

Figure 5.2 Schematic illustration of properties of typical thickness-tapered laminate 

 

Based on the classical laminate theory, the bending or flexural laminate stiffness 

of the tapered beam can be written as: 
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where, 

)cos(
1



k

kkk

t
hht 








                                   (5.2) 

From the equation (5.1), kz is the distance between the centerline of the inclined ply and 

the mid-plane of the laminate for the k
th

 ply which is given as [22]:   

cSxzk                                                                 (5.3) 

where, 

)tan(S                                                                                   (5.4) 

Equation (5.1) is rewritten as: 
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                                                            (5.5) 

The above equation (5.5), is the first co-efficient of the bending stiffness element for 

thickness-tapered and uniform-width beam of unit width. The )(11 xD  from the equation 

(5.5) is plugged in the equation (2.7) after multiplying with the term )(xb . Based on one-

dimensional laminated beam theory, equations (2.9) to (2.11) remain the same. 

The strain energy due to flexure of the beam which is given in equation (2.13) for width-

tapered laminated composite beam based on one-dimensional beam theory remains the 

same for thickness- and width-tapered composite beam with the properties of thickness-

taper and width-taper in the beam is considered. 
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The work done due to applied static end-axial load for the width-tapered laminated beam 

which is shown in equation (2.14) is the same for the present case. Hence, the total strain 

energy totalU  which is the sum of flexureU  and axialloadU  is given in the equation (2.15) 

remains the same for thickness- and width-tapered laminated composite beams. 

The kinetic energy for uniform-thickness and width-tapered laminated beam is given in 

equation (2.19). 

But for the thickness- and width-tapered beam, the height is not constant across the 

length of the beam as shown in the Figure (5.2). 

Therefore, the kinetic energy for thickness-tapered and width-tapered laminated beam is 

given as:  

 













L

c dx
t

w
xHxbT

0

2

).().(.
2

1
                           (5.6) 

 

5.2.2 Analysis using Rayleigh-Ritz method 

The formulations based on Rayleigh-Ritz method for width-tapered laminated 

composite beams which are derived using classical laminate theory in section (2.3.1.1) 

are followed the same way here to find the natural frequencies and forced response of 

thickness- and width-tapered laminated composite beams and critical buckling load of 

thickness- and width-tapered laminated composite columns. 
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From the section (2.3.1.1), the co-efficients of the stiffness and geometric 

stiffness which are given in equations (2.24) and (2.25) remains the same. 

But it should be noted that the co-efficient of mass for width-tapered laminated 

beam is shown in the equation (2.26). To construct mass matrix for a thickness-tapered 

beam, one should consider the decreasing value of area due to the ply drop-off. Therefore 

the equation (2.26) is changed for thickness-tapered and width-tapered laminated beam 

which is given as: 


L

jicij dxxxxHxbM
0

)().().().(.                       (5.7) 

The rest of the equations from (2.27) to (2.33) remain unchanged. 

The co-efficients of stiffness, geometric stiffness and mass matrices for thickness-taper 

configurations A, B, C and D which were formulated in the reference [22] using finite 

element modeling are used after considering width-taper of the beam. The individual 

routines for different thickness- and width-taper configurations have been developed 

using MATLAB
®

 software to calculate the stiffness and mass matrices. The resulting 

beams with thickness- and width-taper configurations A-D which are shown in Figure 5.1 

are analyzed for the dynamic response. The detail steps followed in numerical 

computations of these thickness- and width-tapered composite beams for their dynamic 

response are shown in Appendix B. 
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5.2.3 Dynamic response of thickness- and width-tapered laminated composite 

beams 

 

The formulations that were done on free and forced vibration response of width-

tapered laminated composite beams considering static end-axial force and damping in 

sections 2.3.2, 2.3.3 and 2.3.4 and buckling response of width-tapered laminated columns 

in the section 2.3.5, will remain the same for free and forced vibration response of 

thickness- and width-tapered laminated composite beams considering static end-axial 

force and damping and buckling response of thickness- and width-tapered laminated 

composite columns. 

 

5.3 Free vibration response of thickness- and width-tapered laminated composite 

beams 

In this section, free vibration response of thickness- and width-tapered laminated 

composite beams is considered for simply-supported, clamped-clamped, and clamped-

free boundary conditions.  The mechanical properties of NCT-301 graphite-epoxy 

prepreg fiber and resin that are given in the Tables 3.1 and 3.2 respectively are used to 

find the natural frequencies.  The geometric properties of the beam are given in the Table 

5.1. The configuration of the beam considered is ([0/90]9)s which has 36 plies. 

Rayleigh-Ritz method is used to find the natural frequencies of thickness- and width-

tapered laminated composite beams. Comprehensive parametric studies for natural 
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frequencies of thickness- and width-tapered composite beams have been shown through 

plots. 

 

Table 5.1 Geometric properties of thickness- and width-tapered composite beam 

 

Width at left section (bL) 0.015 m 

Width ratio (bR/bL) 0.2, 0.4, 0.6, 0.8 and 1 

Individual ply thickness (t) 0.000125 m 

Height of the laminate on left side (HL) 0.0045 m 

 

 

Table 5.2 Angle of thickness-taper, length, length/height ratio and length/width at left 

section ratio 

 

Angle of thickness-

taper (), degrees 

0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

L/bL 17 13 10 7 
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Table 5.3 Cases for different thickness- and width-taper configurations 

 

Case Angle of thickness-taper (), degrees Width-taper (b
R
/b

L
) 

1a 0.344 to 0.86 1 

1b 0.344 to 0.86 0.5 

1c 0.344 to 0.86 0.2 

2 0.573 0.2 to 1 

 

5.3.1 Effect of angle of thickness-taper () and width ratio (b
R
/b

L
) on natural 

frequencies 

 

To study the effects of angle of thickness-taper () and width ratio (b
R
/b

L
) on the 

first four natural frequencies, the thickness- and width-tapered laminated composite 

beams of simply-supported, clamped-clamped, and clamped-free boundary conditions are 

considered for free vibration response. The results are summarized in Figures 5.3-5.8. 

Different cases of thickness- and width-taper configurations which are shown in the Table 

5.3 are considered to study the effect of angle of thickness-taper () and width ratio 

(b
R
/b

L
) on the natural frequencies. 
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Figure 5.3 Effect of angle of thickness-taper and width ratio on the natural frequencies 

for simply-supported composite beam 
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Figure 5.4 Effect of angle of thickness-taper and width ratio on the natural frequencies 

for clamped-clamped composite beam 
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Figure 5.5 Effect of angle of thickness-taper and width ratio on the natural frequencies 

for clamped-free composite beam 
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Figures 5.3-5.5 show the effects of angle of thickness-taper () and width ratio 

(b
R
/b

L
) on the first four natural frequencies for simply-supported, clamped-clamped, and 

clamped-free boundary conditions of thickness- and width-tapered composite beams for 

different thickness- and width-taper configurations as shown in the Figure 5.1. It can be 

observed from the Figures 5.3-5.5 that as the angle of thickness-taper () and width ratio 

(b
R
/b

L
) increase, all four modes of natural frequencies increase for all three boundary 

conditions. From Figures 5.3-5.5, one can observe that the natural frequencies are highest 

for case 1c, second highest for case 1b and lowest for case 1a for all the thickness- and 

width-taper configurations for all three boundary conditions. This is because as the width 

ratio (b
R
/b

L
) values decrease with increase in thickness-taper (), the beam becomes more 

stiff thus results in increase in all four natural frequencies. For clamped-free boundary 

condition, the natural frequencies are highest for case 1c and lowest for case 1a and 

second highest for case 1b. The natural frequencies are highest for configuration D, 

second highest for configuration B, third highest for configuration C and the lowest for 

configuration A. This indicates that as the width ratio (b
R
/b

L
) value decrease the beam 

becomes stiffer for clamped-free boundary condition. Increasing the width ratio (b
R
/b

L
) 

directly affects the value of bending stiffness term














)(

1
*

11 xD
. The stiffness depends on 

Q11 of the ply. 
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Figure 5.6 Effect of width ratio for angle of thickness-taper () of 0.57
0
 on natural 

frequencies (case 2) – simply-supported boundary condition 
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Figure 5.7 Effect of width ratio for angle of thickness-taper () of 0.57
0
 on natural 

frequencies (case 2) - clamped-clamped boundary condition 
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Figure 5.8 Effect of width ratio for angle of thickness-taper () of 0.57
0
 on natural 

frequencies (case 2) - clamped-free boundary condition 
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Figures 5.6-5.8 show the effect of variation of width ratio (b
R
/b

L
) with constant 

angle of thickness-taper () of 0.57
o
 on first four natural frequency of the thickness- and 

width-tapered composite beam. In the current case, for simply-supported boundary 

condition as the width ratio (b
R
/b

L
) value increase, the first natural frequency increase for 

all the thickness- and width-taper beam configurations. One can also observe from the 

Figure 5.6 for simply-supported boundary condition, that the first natural frequency for 

configuration C is lower than that of configuration A until the width ratio (b
R
/b

L
) value 

increases from 0.2 to 0.6. But as the width ratio value increases from 0.6 to 1, the first 

natural frequency for configuration C is higher than that for configuration A. This is 

because of the change in the stiffness characteristics in the beam configuration. The 

configuration C has ply drop-off near mid-plane due to a resin pocket. Configuration A 

has a large resin pocket leading to low stiffness.  The second, third and fourth natural 

frequencies decrease as the width ratio value increases. From the Figure 5.7 for clamped-

clamped boundary condition, all four modes of natural frequencies increase with highest 

natural frequencies for configuration  D, second highest for configuration B, third highest 

for configuration C and lowest for configuration A. From the Figure 5.8 for the clamped-

free boundary condition, as the width-ratio (b
R
/b

L
) value increase from 0.2 to 1 with 

constant angle of thickness-taper () of 0.57
o
, all four modes of natural frequencies 

decrease.  
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5.3.2 Effect of laminate configurations on natural frequencies  

In this section the effect of laminate configurations on natural frequencies for 

thickness- and width-tapered laminated composite beams are obtained using Rayleigh-

Ritz method. The angle of thickness-taper () value of 0.57
o 

and width ratio (b
R
/b

L
) value of 

0.5 is considered to find the natural frequencies. The Tables 5.4-5.6 below show the 

variation of natural frequencies for different laminate configurations for simply-supported, 

clamped-clamped and clamped-free boundary conditions. The laminate configurations 

considered are: 1) ([0/90]9)s denoted as ‘LC1’, 2) ([45]9)s denoted as ‘LC2’, 3) ([04/457])s 

denoted as ‘LC3’.  

 

Table 5.4 Comparison of natural frequencies for the effect of laminate configuration -

Simply-supported boundary condition 

 

Beam 

configuration 

Laminate 

Configuration 

1     

(rad/sec) 

2       

(rad/sec) 

3         

(rad/sec) 

4 

(rad/sec)

A 

LC1 798 3208 7216 12825 

LC2 578 2326 5232 9299 

LC3 724 2913 6553 11647 

B 

LC1 824 3438 7698 13647 

LC2 599 2501 5600 9928 

LC3 746 3111 6967 12352 

C LC1 788 3369 7554 13398 
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LC2 563 2414 5412 9599 

LC3 721 3077 6900 12237 

D 

LC1 1072 4475 10018 17762 

LC2 643 2687 6022 10682 

LC3 809 3372 7556 13402 

 

Table 5.5 Comparison of natural frequencies for the effect of laminate configuration –

Clamped-clamped boundary condition 

 

Beam 

configuration 

Laminate 

Configuration 

1     

(rad/sec) 

2       

(rad/sec) 

3         

(rad/sec) 

4 

(rad/sec)

A 

LC1 1801 4985 9791 16199 

LC2 1306 3614 7098 11744 

LC3 1635 4527 8891 14710 

  B 

LC1 1945 5330 10422 17207 

LC2 1417 3880 7584 12520 

LC3 1759 4823 9432 15574 

C 

LC1 1955 5298 10307 16978 

LC2 1404 3801 7391 12170 

LC3 1783 4835 9410 15502 

D 

LC1 2533 6939 13565 22393 

LC2 1526 4180 8171 13489 

LC3 1911 5239 10245 16914 
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Table 5.6 Comparison of natural frequencies for the effect of laminate configuration –

Clamped-free boundary condition 

 

Beam 

configuration 

Laminate 

configuration 

1     

(rad/sec) 

2       

(rad/sec) 

3         

(rad/sec) 

4 

(rad/sec)

A 

LC1 350 1909 5130 9939 

LC2 254 1384 3720 7206 

LC3 318 1734 4659 9026 

B 

LC1 546 2308 5729 10826 

LC2 400 1682 4171 7877 

LC3 492 2086 5184 9797 

C 

LC1 568 2285 5625 10621 

LC2 411 1639 4031 7609 

LC3 517 2085 5137 9701 

D 

LC1 711 3001 7451 14078 

LC2 416 1782 4456 8444 

LC3 522 2239 5596 10601 

 

Tables 5.4-5.6 show the effect of laminate configuration on natural frequencies 

with angle of thickness-taper () of 0.57
o
 and width ratio (b

R
/b

L
) value of 0.5 for three 

boundary conditions. One can observe from the Tables 5.4-5.6 that the results obtained 

for different laminate configurations show that the natural frequencies is largest for 

laminate configuration LC1, second largest for laminate configuration LC3 and lowest 

for laminate configuration LC2. This difference in natural frequencies is due to the 

variation of stiffness in the beam. This is because in the laminate configuration LC1, 
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most of the 0
o
 fibers are oriented along the length of the beam. 0

o
 fibers have highest E

1
 

compared to other fiber direction which is the direction of the bending loads. Also the 

natural frequencies is largest for configuration D of the taper configuration with second 

largest for configuration B, third largest for configuration C and lowest for configuration 

A. These differences in natural frequencies for different taper configurations are expected 

because of the variation of stiffness in the tapered beam configuration. 

 

5.3.3 Effect of boundary condition on natural frequencies  

In this section the effect of boundary condition on natural frequencies for 

thickness- and width-tapered beam are obtained using Rayleigh-Ritz method. The angle of 

thickness-taper () value of 0.57
o 

and width ratio (b
R
/b

L
) value of 0.5 is considered to 

find the natural frequencies. Simply-supported, clamped-clamped and clamped-free 

boundary conditions are considered. The natural frequencies for all three boundary 

conditions are obtained using Rayleigh-Ritz method.  

 

Table 5.7 Comparison of natural frequencies-Simply-supported boundary condition  

Beam 

configuration 

1 (rad/sec) 2 (rad/sec) 3 (rad/sec) 4 (rad/sec) 

 A 798 3208 7216 12825 
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B 824 3438 7698 13647 

C 788 3369 7554 13398 

D 1072 4475 10018 17762 

 

Table 5.8 Comparison of natural frequencies-Clamped-clamped boundary condition 

 Beam 

configuration 

1 (rad/sec) 2 (rad/sec) 3 (rad/sec) 4 (rad/sec) 

A 1801 4985 9791 16199 

B 1945 5330 10422 17207 

C 1955 5298 10307 16978 

D 2533 6939 13565 22393 

 

Table 5.9 Comparison of natural frequencies-Clamped-free boundary condition  

Beam 

configuration 

1 (rad/sec) 2 (rad/sec) 3 (rad/sec) 4 (rad/sec) 

A 350 1909 5130 9939 

B 546 2308 5729 10826 

C 568 2285 5625 10621 

D 711 3001 7451 14078 
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Tables 5.7-5.9 show the effect of boundary conditions on four natural frequencies for 

thickness- and width-tapered laminated composite beam. From the Tables 5.7-5.9, one 

can observe that the natural frequencies are largest for clamped-clamped boundary 

condition because the stiffness of the beam is largest. Beam with clamped-free 

(cantilever) boundary condition has lowest natural frequencies this is because of lower 

stiffness. The natural frequencies are second largest for simply-supported boundary 

condition. Also, one can observe natural frequencies are largest for taper configuration D 

and lowest for configuration A, second largest for configuration B and third largest for 

configuration C.  

 

5.3.4 Effects of end-axial forces on natural frequencies  

By using the mechanical and geometric properties described in section 5.3.1, the 

effect of applied static end-axial tensile and compressive forces on the first four natural 

frequencies for simply-supported, clamped-clamped, and clamped-free boundary 

conditions of thickness- and width-tapered composite beams are carried out in the current 

section. The angle of thickness-taper (of0.57
o 

and width ratio (b
R
/b

L
) value of 0.5 are 

considered for the analysis. Concentrated end-axial compressive and tensile forces which 

are applied as the percentage of critical buckling load and first-ply tensile failure loads 

respectively are applied on both ends of the beam to determine the natural frequencies 

due to the effect of axial forces. 
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The critical buckling load is determined in the section 5.5.1 for thickness- and width 

tapered composite columns and first-ply tensile failure loads are determined in the section 

3.6.1. The results are presented in the plots in Tables 5.10-5.15 which are obtained using 

Rayleigh-Ritz method. 

 

Table 5.10 Effect of end-axial compressive force on natural frequencies -Simply 

supported boundary condition 

 

% Pcr Beam configuration 1 (rad/sec) 2 (rad/sec) 3 (rad/sec) 4 (rad/sec) 

 

0 

A 798 3208 7216 12825 

B 824 3438 7698 13647 

C 788 3369 7554 13398 

D 1072 4475 10018 17762 

 

 

50 

A 678 2951 7000 12697 

% decrease 15 8 3 1 

B 700 3163 7467 13511 

% decrease 15 8 3 1 

C 670 3099 7328 13264 

% decrease 15 8 3 1 

D 911 4117 9717 17584 

% decrease 15 8 3 1 
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95 

A 542 2630 6783 12440 

% decrease 15 8 3 1 

B 560 2819 7236 13238 

% decrease 15 8 3 1 

C 536 2762 7101 12996 

% decrease 15 8 3 1 

D 729 3669 9417 17229 

% decrease 15 8 3 1 

 

Table 5.11 Effect of end-axial compressive force on natural frequencies- Clamped-

clamped boundary condition 

 

% Pcr Beam configuration 1 (rad/sec) 2 (rad/sec) 3 (rad/sec) 4 (rad/sec) 

 

0 

A 1801 4985 9791 16199 

B 1945 5330 10422 17207 

C 1955 5298 10307 16978 

D 2533 6939 13565 22393 

 

 

50 

A 1477 4387 8910 15389 

% decrease 18 12 9 5 

B 1595 4690 9484 16347 

% decrease 18 12 9 5 

C 1603 4662 9379 16129 
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% decrease 18 12 9 5 

D 2077 6106 12344 21273 

% decrease 18 12 9 5 

 

 

95 

A 1224 4088 9203 15713 

% decrease 18 12 9 5 

B 1322 4371 9797 16691 

% decrease 18 12 9 5 

C 1329 4344 9689 16469 

% decrease 18 12 9 5 

D 1722 5690 12751 21721 

% decrease 18 12 9 5 
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Table 5.12 Effect of end-axial compressive force on natural frequencies- Clamped-free 

boundary condition 

% Pcr Beam configuration 1 (rad/sec) 2 (rad/sec) 3 (rad/sec) 4 (rad/sec) 

 

 

0 

A 350 1909 5130 9939 

B 546 2308 5729 10826 

C 568 2285 5625 10621 

D 711 3001 7451 14078 

 

 

 

50 

A 305 1737 4976 9840 

% decrease 13 9 3 1 

B 475 2100 5557 10718 

% decrease 13 9 3 1 

C 495 2079 5456 10515 

% decrease 13 9 3 1 

D 618 2731 7227 13937 

% decrease 13 9 3 1 

 

 

 

95 

A 256 1623 4874 9741 

% decrease 13 9 3 1 

B 398 1962 5443 10609 

% decrease 13 9 3 1 

C 415 1942 5344 10409 

% decrease 13 9 3 1 
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D 519 2551 7078 13796 

% decrease 13 9 3 1 

 

Tables 5.10-5.12 show the effect of applied end-axial (static) compressive forces on 

first four natural frequencies for simply-supported, clamped-clamped, and clamped-free 

boundary conditions of thickness- and width-tapered composite beams. It can be 

observed from the Tables 5.10-5.12 that as the magnitude of end axial compressive force is 

increased all the four natural frequencies decrease for all three boundary conditions.  This 

is because as the axial compressive force is applied, the beam becomes less stiff thereby 

decrease in the natural frequencies. One can also observe from the Tables 5.10-5.12 that 

the percentage of decrease between the modes 1-4 varies in the same taper beam 

configurations. 

 

Table 5.13 Effect of end-axial tensile force on natural frequencies -Simply supported 

boundary condition 

 

% P
1
 Beam configuration 1 (rad/sec) 2 (rad/sec) 3 (rad/sec) 4 (rad/sec) 

 

0 

A 798 3208 7216 12825 

B 824 3438 7698 13647 

C 788 3369 7554 13398 

D 1072 4475 10018 17762 
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50 

A 5010.5 10558 16970 24496 

% increase 528 229 135 91 

B 5077.1 10776 17350 25024 

% increase 516 213 125 83 

C 5074.7 10791 17377 25034 

% increase 544 220 130 87 

D 5131.4 11221 18655 27714 

% increase 379 151 86 56 

 

 

95 

A 6849.3 14128 22084 30967 

% increase 759 340 206 141 

B 6948.6 14423 22597 31697 

% increase 743 320 194 132 

C 6947.1 14440 22642 31759 

% increase 782 329 200 137 

D 6989.1 14774 23671 33976 

% increase 552 230 136 91 

 

 

Table 5.14 Effect of end-axial tensile force on natural frequencies- Clamped-clamped 

boundary condition 

 

% P
1
 Beam configuration 1 (rad/sec) 2 (rad/sec) 3 (rad/sec) 4 (rad/sec) 

 

 

A 1801 4985 9791 16199 

B 1945 5330 10422 17207 

C 1955 5298 10307 16978 

D 2533 6939 13565 22393 
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50 

A 5614.7 11819 18952 27238 

% increase 212 137 94 68 

B 5780 12146 19392 27778 

% increase 197 128 86 61 

C 5827.4 12227 19478 27832 

% increase 198 131 89 64 

D 6085.9 13071 21429 31478 

% increase 140 88 58 41 

 

 

95 

A 7426.2 15316 23943 33540 

% increase 312 207 145 107 

B 7631.9 15761 24579 34340 

% increase 292 196 136 100 

C 7682.3 15858 24709 34477 

% increase 293 199 140 103 

D 7909.2 16565 26333 37549 

% increase 212 139 94 68 

 

Table 5.15 Effect of end-axial tensile force on natural frequencies- Clamped-free boundary 

condition 

 

% P
1
 Beam configuration 1 (rad/sec) 2 (rad/sec) 3 (rad/sec) 4 (rad/sec) 

 

0 

A 350 1909 5130 9939 

B 546 2308 5729 10826 

C 568 2285 5625 10621 

D 711 3001 7451 14078 

 A 2983.3 8247.2 14302 21321 
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50 % increase 752 332 179 115 

B 3339.5 8882.3 15282 22662 

% increase 512 285 167 109 

C 3368.1 8954.3 15382 22760 

% increase 493 292 173 114 

D 3439.8 9301.2 16371 24876 

% increase 384 210 120 77 

 

 

95 

A 4048.3 11045 18760 27277 

% increase 1056 479 266 174 

B 4484.1 11767 19855 28785 

% increase 722 410 247 166 

C 4512.9 11845 19977 28936 

% increase 694 418 255 172 

D 4580.3 12151 20830 30763 

% increase 545 305 180 119 

 

Tables 5.13-5.15 show the effect of applied end-axial (static) tensile force on first  

four natural frequencies for simply-supported, clamped-clamped, and clamped-free  

boundary conditions of thickness- and width-tapered composite beams. It can be  

observed from the Tables 5.13-5.15 that as the magnitude of end axial tensile force is 

increased all the four natural frequencies increase for all three boundary conditions.  This 

is because as the axial tensile force is applied the beam becomes stiffer thereby increase 

in the natural frequencies. Once can observe from the Tables 5.13-5.15 that the % 

increase in the natural frequencies are high due to the application of  high end-axial 

tensile load. 
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5.3.5 Effect of damping on natural frequencies 

 

To study the effect of damping on the first four natural frequencies, the 

mechanical and geometric properties which are described in section 5.3.1 are used in the 

current section. The angle of thickness-taper (valueof0.57
o 

and width ratio (b
R
/b

L
) 

value of 0.5 are considered for the effect of damping on natural frequencies of thickness- 

and width-tapered composite beams with simply-supported, clamped-clamped, and 

clamped-free boundary conditions. 

 

Table 5.16 Effect of damping on natural frequencies for simply-supported boundary 

condition. 

Condition Beam 

configuration 

1  

(rad/sec) 

2 

(rad/sec) 

3 

(rad/sec) 

4 

(rad/sec) 

 

Undamped 

A 798 3208 7216 12825 

B 824 3438 7698 13647 

C 788 3369 7554 13398 

D 1072 4475 10018 17762 

 

Damped 

A 780 3135 7052 12534 

B 803 3352 7506 13308 

C 768 3282 7360 13054 

D 1045 4363 9769 17320 
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Table 5.17 Effect of damping on natural frequencies for clamped-clamped boundary 

condition 

 

Condition Beam 

configuration 

1 

(rad/sec) 

2 

(rad/sec) 

3 

(rad/sec) 

4 

(rad/sec) 

 

Undamped 

 A 1801 4985 9791 16199 

B 1945 5330 10422 17207 

C 1955 5298 10307 16978 

D 2533 6939 13565 22393 

 

Damped 

A 1778 4921 9666 15992 

B 1829 5013 9802 16183 

C 1795 4865 9464 15589 

D 2322 6361 12435 20527 

 

Table 5.18 Effect of damping on natural frequencies for clamped-free boundary condition 

 

Condition Beam 

configuration 

1 

(rad/sec) 

2 

(rad/sec) 

3 

(rad/sec) 

4 

(rad/sec) 

 

Undamped 

 A 350 1909 5130 9939 

B 546 2308 5729 10826 

C 568 2285 5625 10621 
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D 711 3001 7451 14078 

 

Damped 

A 265 1442 3876 7509 

B 453 1914 4751 8977 

C 481 1933 4761 8989 

D 589 2490 6180 11678 

 

Tables 5.16-5.18 show the effect of damping on first four natural frequencies for all 

three boundary conditions of thickness- and width- tapered laminated composite beams. 

The mass proportional constant )(  and stiffness proportional constant )( are 753.3  and 

51083.4  respectively are considered to study for the effects of damping obtained 

through experimental modal testing. One can observe from the Tables 5.16-5.18, that the 

natural frequencies of un-damped beam are higher than the natural frequencies with 

damping for all boundary conditions. Another important observation is that the 

difference between the natural frequencies of un-damped and damped beam is largest 

for beam configuration D for simply-supported boundary condition. For clamped-

clamped boundary condition the highest difference between un- damped and damped 

natural frequencies is for configuration D and least for configuration A.  
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5.4 Comparison of natural frequencies between Rayleigh-Ritz method and 

conventional finite element method  

By using the mechanical and geometric properties given in section 5.3.1, the current 

section presents the comparison of first four natural frequencies for simply-supported, 

clamped-clamped, and clamped-free boundary conditions of thickness-and width-tapered 

composite beams obtained using Rayleigh-Ritz method with that obtained using 

conventional finite element method [81]. The angle of thickness-taper () value is 

increased from 0.344
o 

to 0.86
o 

with keeping constant width ratio (b
R
/b

L
) value of 0.5 

which is the case 2 as shown in the Table 5.3 is considered to compare the natural 

frequencies.  

 

Table 5.19 Comparison of natural frequencies for configuration A-Simply supported 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 780 1219 2165 4868 

1 (FEM) 760 1187 2109 4744 

% difference 2.61 2.57 2.55 2.53 

2 (R-R) 3244 5068 8999 20219 
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2 (FEM) 3221 5032 8948 20133 

% difference 0.70 0.71 0.57 0.42 

3 (R-R) 7297 11402 20245 45482 

3 (FEM) 7178 11216 19940 44866 

% difference 1.63 1.63 1.50 1.35 

 

Table 5.20 Comparison of natural frequencies for configuration A-Clamped-clamped 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 1821 2845 5051 11349 

1 (FEM) 1808 2825 5024 11302 

% difference 0.71 0.69 0.55 0.41 

2 (R-R) 5041 7876 13985 31420 

2 (FEM) 4947 7729 13741 30917 

% difference 1.87 1.86 1.74 1.60 

3 (R-R) 9901 15470 27468 61711 

3 (FEM) 9664 15101 26847 60405 

% difference 2.39 2.38 2.26 2.12 
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Table 5.21 Comparison of natural frequencies for configuration A-Clamped-free 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 563 878 1552 3520 

1 (FEM) 582 913 1617 3682 

% difference 3.53 4.01 4.20 4.60 

2 (R-R) 2212 3457 6137 13918 

2 (FEM) 2274 3553 6317 14217 

% difference 2.79 2.79 2.93 2.15 

3 (R-R) 5238 8184 14530 32646 

3 (FEM) 5463 8536 15176 34146 

% difference 4.29 4.30 4.44 4.60 
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Table 5.22 Comparison of natural frequencies for configuration B-Simply-supported 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 820 1281 2276 5115 

1 (FEM) 837 1307 2322 5230 

% difference 2.14 2.02 1.98 2.25 

2 (R-R) 3654 5695 10120 22740 

2 (FEM) 3733 5833 10368 23327 

% difference 2.15 2.41 2.45 2.58 

3 (R-R) 8125 12680 22540 50548 

3 (FEM) 8347 13042 23187 52166 

% difference 2.73 2.86 2.87 3.20 
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Table 5.23 Comparison of natural frequencies for configuration B-Clamped-clamped 

boundary condition 

  

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 2135 3322 5897 13225 

1 (FEM) 2178 3404 6050 13619 

% difference 2.02 2.47 2.60 2.98 

2 (R-R) 5716 8910 15810 35548 

2 (FEM) 5837 9121 16215 36482 

% difference 2.13 2.37 2.56 2.63 

3 (R-R) 11092 17283 30643 68897 

3 (FEM) 11322 17691 31451 70762 

% difference 2.08 2.37 2.64 2.71 
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Table 5.24 Comparison of natural frequencies for configuration B-Clamped-free 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 733 1139 2024 4540 

1 (FEM) 751 1170 2080 4693 

% difference 2.54 2.71 2.78 3.36 

2 (R-R) 2643 4129 7337 16477 

2 (FEM) 2710 4233 7526 16939 

% difference 2.51 2.52 2.58 2.80 

3 (R-R) 6276 9803 17417 39122 

3 (FEM) 6420 10031 17832 40122 

% difference 2.29 2.32 2.38 2.55 
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Table 5.25 Comparison of natural frequencies for configuration C-Simply-supported 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 809 1268 2246 5053 

1 (FEM) 827 1296 2299 5175 

% difference 2.16 2.21 2.35 2.41 

2 (R-R) 3493 5456 9699 21821 

2 (FEM) 3589 5609 9970 22433 

% difference 2.75 2.79 2.79 2.80 

3 (R-R) 7840 12238 21740 48911 

3 (FEM) 8013 12521 22259 50080 

% difference 2.20 2.32 2.39 2.39 
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Table 5.26 Comparison of natural frequencies for configuration C-Clamped-clamped 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 1950.3 3046.4 5412.2 12154 

1 (FEM) 2031 3174 5641 12693 

% difference 4.15 4.19 4.24 4.44 

2 (R-R) 5286 8257 14671 32946 

2 (FEM) 5540 8656 15388 34623 

% difference 4.80 4.83 4.89 5.09 

3 (R-R) 10525 16456 29242 65697 

3 (FEM) 10811 16892 30031 67566 

% difference 2.72 2.65 2.70 2.85 
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Table 5.27 Comparison of natural frequencies for configuration C-Clamped-free 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 651 1025 1806 4092 

1 (FEM) 680 1069 1890 4269 

% difference 4.57 4.29 4.66 4.31 

2 (R-R) 2436 3805 6761 15182 

2 (FEM) 2564 4006 7123 16026 

% difference 5.24 5.28 5.35 5.56 

3 (R-R) 5833 9112 16343 36699 

3 (FEM) 6122 9566 17008 38265 

% difference 4.96 4.99 4.07 4.27 
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Table 5.28 Comparison of natural frequencies for configuration D-Simply-supported 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 1065 1665 2958 6646 

1 (FEM) 1019 1590 2826 6365 

% difference 4.31 4.44 4.48 4.23 

2 (R-R) 4454 6958 12364 27776 

2 (FEM) 4581 7157 12724 28629 

% difference 2.84 2.87 2.92 3.07 

3 (R-R) 9971 15577 27677 62179 

3 (FEM) 10351 16172 28750 64684 

% difference 3.81 3.82 3.88 4.03 
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Table 5.29 Comparison of natural frequencies for configuration D-Clamped-clamped 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 2523 3941 7003 15733 

1 (FEM) 2570 4015 7140 16066 

% difference 1.87 1.89 1.96 2.12 

2 (R-R) 6908 10792 19176 43080 

2 (FEM) 6859 10717 19052 42865 

% difference 0.71 0.69 0.64 0.50 

3 (R-R) 13503 21093 37478 84198 

3 (FEM) 13725 21446 38126 85779 

% difference 1.65 1.68 1.73 1.88 
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Table 5.30 Comparison of natural frequencies for configuration D-Clamped-free 

boundary condition 

 

Angle (deg) 0.344 0.43 0.573 0.86 

L,m 0.25 0.2 0.15 0.1 

L/H 56 44 33 22 

1 (R-R) 850 1326 2355 5294 

1 (FEM) 869 1357 2411 5425 

% difference 2.22 2.33 2.39 2.47 

2 (R-R) 3088 4825 8567 19262 

2 (FEM) 3154 4927 8761 19711 

% difference 2.13 2.11 2.26 2.34 

3 (R-R) 7422 11594 20601 46280 

3 (FEM) 7582 11847 21061 47386 

% difference 2.16 2.19 2.24 2.39 

 

Tables 5.19-5.30 show the comparison of first four natural frequencies for simply-

supported, clamped-clamped, and clamped-free boundary conditions of thickness-and 

width-tapered composite beams for case 2. The comparisons of natural frequencies were 

made between Rayleigh-Ritz method and conventional finite element method. From the 

above tables, the comparison differences for configuration A <5%, for configuration B it 



234 

 

is <4%, for configuration C it is <6% and for configuration D it is <4.5%. This 

difference in natural frequencies is expected from the inside geometry variation; the 

location of plies drop-off, because frequencies calculated for different taper 

configurations depend on the stiffness of the beam. From the above tables, the 

comparisons the difference in natural frequencies are well accepted.  

 

5.5 Buckling response of thickness- and width-tapered laminated composite 

columns 

In this section buckling response of thickness- and width-tapered laminated 

composite columns are considered for simply-supported, clamped-clamped and clamped-

free boundary conditions.  The taper configurations shown in Figure 5.1 are used for 

buckling response. Rayleigh-Ritz method is used to find the critical buckling load of 

thickness- and width-tapered composite columns. Comprehensive parametric studies 

have been shown through plots. 

 

5.5.1 Effect of angle of thickness-taper () and width ratio (b
R
/b

L
) on critical 

buckling load 

To investigate effects of angle of thickness-taper () and width ratio (b
R
/b

L
) on 

critical buckling load, the thickness- and width-tapered laminated  composite columns of 

simply-supported, clamped-clamped, and clamped-free boundary conditions are 
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considered for buckling response. The results are summarized in the Figures 5.9-5.12. 

Different cases of thickness- and width-taper configurations as shown in the Table 5.3 are 

considered to study the angle of thickness-taper () and width ratio (b
R
/b

L
) on critical 

buckling load. 
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Figure 5.9 Effect of angle of thickness-taper () and width ratio (b
R
/b

L
) on critical buckling 

load for simply-supported boundary condition 
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Figure 5.10 Effect of angle of thickness-taper () and width ratio (b
R
/b

L
) on critical 

buckling load for clamped-clamped boundary condition 
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Figure 5.11 Effect of angle of thickness-taper () and width ratio (b
R
/b

L
) on critical 

buckling load for clamped-free boundary condition 
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Figure 5.12 Effect of constant angle of thickness-taper () of 0.57
o
 and width ratio (b

R
/b

L
) 

(case 2) on critical buckling load 
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Figures 5.9-5.12 show the effect of angle of thickness-taper () and width ratio (b
R
/b

L
) on 

critical buckling load (Pcr) for simply-supported, clamped-clamped, and clamped-free 

boundary conditions of thickness- and width-tapered laminated composite columns. It can 

be observed from the Figures 5.9-5.12, that the critical buckling load (Pcr) is highest for case 

1c, second highest for case 1b and lowest for case 1a for all the three boundary 

conditions. This indicates that as the angle of thickness-taper () is increased and width 

ratio (b
R
/b

L
) value is decreased, the stiffness of the column increases for all three boundary 

conditions. Also one can observe from the Figure 5.9 that the difference in the critical 

buckling loads between case 1a, 1b and 1c for clamped-free boundary condition are 

largest compared to other boundary conditions. Figure 5.12 shows the effect of variation 

of width ratio (b
R
/b

L
) with constant angle of thickness-taper () of 0.57

o
 on critical 

buckling load (Pcr) of thickness- and width-tapered composite column. One can observe from 

the Figure 5.12 that the critical buckling load (Pcr) is largest for configuration D, because 

the stiffness of the beam is largest compared to the other configurations. Second largest is 

configuration B, third largest and fourth largest are configurations C and A respectively for 

all three boundary conditions. It can also be observed that as the width ratio (b
R
/b

L
) 

values increase for constant angle of thickness-taper () of 0.57
o
, the critical buckling 

load (Pcr) is increased for simply-supported boundary condition, but for clamped-clamped 

boundary the critical buckling load (Pcr) increase until width ratio (b
R
/b

L
) value is 

increased from 0.2 upto 0.4, but decrease as the width ratio value increase from 0.6 to 1. 

For the case of clamped-free boundary condition, the critical buckling load (Pcr) decreases 

as the width ratio (b
R
/b

L
) value increase from 0.2 to 1.  
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5.5.2 Effect of laminate configuration on critical buckling load 

 

In this section the effect of laminate configurations on critical buckling load (Pcr) for 

thickness- and width-tapered laminated composite columns are obtained using Rayleigh-

Ritz method. The Tables 5.31-5.33 show the variation of critical buckling load (Pcr) for 

simply-supported, clamped-clamped and clamped-free boundary conditions. The laminate 

configurations considered are: 1) ([0/90]9)s denoted as ‘LC1’, 2) ([45]9)s denoted as ‘LC2’, 

3) ([04/457])s denoted as ‘LC3’.  

Table 5.31 Comparison of critical buckling load-Simply-supported boundary condition 

Beam configuration  Laminate 

configuration 

Pcr (KN) 

A LC1 28.9 

LC2 15.5 

LC3 23.6 

B LC1 21.6 

LC2 11.4 

LC3 17.7 

C LC1 19.1 

LC2 9.7 

LC3 16.1 

D LC1 36.5 

LC2 13.7 

LC3 21.5 
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Table 5.32 Comparison of critical buckling load -Clamped-clamped boundary condition 

Beam configuration  Laminate 

configuration 

Pcr (KN) 

A LC1 114.9 

LC2 62.2 

LC3 93.7 

B LC1 87.8 

LC2 45.3 

LC3 71.8 

C LC1 83.2 

LC2 41.3 

LC3 69.4 

D LC1 147.8 

LC2 55.2 

LC3 87.7 

 

Table 5.33 Comparison of critical buckling load - Clamped-free boundary condition 

Beam configuration  Laminate 

configuration 

Pcr (KN) 

A LC1 9.4 

LC2 5.1 

LC3 7.7 

B LC1 10.2 

LC2 5.4 

LC3 8.3 

C LC1 9.9 

LC2 5.1 
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LC3 8.3 

D LC1 16.8 

LC2 6.0 

LC3 9.5 

 

Tables 5.31-5.33 show the effect of laminate configuration on critical buckling load 

(Pcr) with angle of thickness-taper () value of 0.57
o 

and width ratio (b
R
/b

L
) value of 0.5 

for three boundary conditions. One can observe from the Tables 5.31- 5.33 that the 

results obtained for different laminate configuration show that critical buckling load (Pcr) 

is largest for laminate configuration LC1, second largest for laminate configuration 

LC3 and lowest for laminate configuration LC2. This difference in critical buckling 

load (Pcr) is due to the variation of stiffness in the column. Also the critical buckling 

load (Pcr) is largest for beam configuration D of the taper configuration with second 

largest for model B, third largest for model C and lowest for beam configuration A. This 

difference in critical buckling load for different beam configuration is expected 

because of the variation of stiffness in the tapered model. 

 

5.5.3  Effect of boundary condition on critical buckling load  

 

In this section the effect of boundary condition on critical buckling load (Pcr) for 

thickness and width- tapered column are obtained using Rayleigh-Ritz method. The 



244 

 

angle of thickness-taper () value of 0.57
o 

and width ratio (b
R
/b

L
) value of 0.5 is 

considered to find the critical buckling load for simply-supported, clamped-clamped 

and clamped-free boundary conditions. The critical buckling load (Pcr) for all three 

boundary conditions is obtained using Rayleigh-Ritz method. 

  

Table 5.34 Comparison of critical buckling load -Simply-supported boundary condition 

 

Beam configuration  Laminate 

configuration 

Pcr (KN) 

A LC1 28.9 

B LC1 21.6 

C LC1 19.1 

D LC1 36.5 

 

 

Table 5.35 Comparison of critical buckling load -Clamped-clamped boundary condition 

 

Beam configuration  Laminate 

configuration 

Pcr (KN) 

A LC1 114.9 

B LC1 87.8 

C LC1 83.2 

D LC1 147.8 
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Table 5.36 Comparison of critical buckling load -Clamped-free boundary condition 

 

Beam configuration  Laminate 

configuration 

Pcr (KN) 

A LC1 9.4 

B LC1 10.2 

C LC1 9.9 

D LC1 16.8 

 

Tables 5.34-5.36 show the effect of boundary conditions on critical buckling load 

(Pcr) for thickness- and width- tapered laminated composite column. From the Tables 

5.34-5.36, one can observe that the critical buckling load (Pcr) is largest for clamped-

clamped boundary condition because the stiffness of the column is largest. Column with 

clamped-free (cantilever) boundary condition has lowest critical buckling load (Pcr) 

this is because of lower stiffness. The critical buckling load (Pcr) is second largest for 

simply-supported boundary condition. Also, one can observe the critical buckling load 

(Pcr) is largest for beam configuration model D and lowest for beam configuration A, 

second largest for beam configuration B and third largest for beam configuration C.  

 

 



246 

 

5.6 Comparison of forced response in terms of sinusoidal transverse displacement 

between Rayleigh-Ritz method and conventional finite element method 

 

By using the mechanical and geometric properties given in section 5.3.1 and 

considering case 2 from Table 5.3, the current section presents the comparison of forced 

response in terms of sinusoidal transverse displacement for simply-supported, clamped-

free and clamped-clamped boundary conditions of thickness- and width-tapered 

laminated composite beams obtained by using Rayleigh-Ritz method with that obtained 

using conventional finite element method [81].  A sinusoidal force of magnitude 2N with 

excitation frequency  is applied at the maximum excitation point conditions. For simply-

supported boundary and clamped-clamped boundary condition the excitation point applied 

at the centre of the tapered composite beam, while for clamped-free boundary condition the 

excitation point is applied on the free end of the beam. The compared results are presented 

in the Figures 5.13-5.15 below. 
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Figure 5.13 Comparison of forced response in terms of sinusoidal transverse 

displacement- simply-supported boundary condition 
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Figure 5.14 Comparison of forced response in terms of sinusoidal transverse 

displacement- clamped-clamped boundary condition 
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Figure 5.15 Comparison of forced response in terms of sinusoidal transverse 

displacement- clamped-free boundary condition 
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Figures 5.13-5.15 show the comparison of forced response in terms of sinusoidal 

transverse displacement for simply-supported, clamped-clamped and clamped-free 

boundary conditions for thickness-and width-tapered composite beams with angle of 

thickness-taper () value of 0.57
o 

and width ratio (b
R
/b

L
) value of 0.5. From the Figures 

5.13-5.15, the comparison difference for simply-supported boundary condition is 

between 5-7%, for clamped-clamped boundary condition it is between 4-6% and for 

clamped-free boundary condition it is between 5-7%. The comparison 

differences in transverse displacement from the above Figures 5.18-5.20 are well 

accepted.  

 

5.7 Summary 

In this chapter, the energy formulation for dynamic response of thickness- and width 

tapered laminated composite beams based on one-dimensional laminated beam theory 

is derived following Chapter-02. Rayleigh-Ritz method is used for dynamic response of 

thickness- and width-tapered laminated composite beams. From the numerical results 

through graphical plots and tables, the following conclusions are drawn:  

 As the angle of thickness-taper () and width ratio (b
R
/b

L
) increase, all four modes 

of natural frequencies increase for all three boundary conditions. The natural frequencies 

are highest for case 1c, second highest for case 1b and lowest for case 1a. For clamped-

free boundary condition, the natural frequencies are highest for case 1c and lowest for 
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case 1a and second highest for case 1b. The natural frequencies are highest for 

configuration D, second highest for configuration B, third highest for configuration C and 

the lowest for configuration A.  

 In case 2, for simply-supported boundary condition as the width ratio (b
R
/b

L
) 

value increase, the first natural frequency increases for all the thickness- and width-taper 

beam configurations. The second, third and fourth natural frequencies remain constant as 

the width ratio value increases. For clamped-clamped boundary condition, all four modes 

of natural frequencies increase with highest natural frequencies for configuration  D, 

second highest for configuration B, third highest for configuration C and lowest for 

configuration A. For the clamped-free boundary condition, as the width-ratio (b
R
/b

L
) 

value increase from 0.2 to 1 with constant angle of thickness-taper () of 0.57
o
, the 

natural frequencies decrease. 

 The natural frequencies are largest for laminate configuration LC1, second largest 

for laminate configuration LC3 and lowest for laminate configuration LC2. Also the 

natural frequencies is largest for beam configuration D, second largest for beam 

configuration B, third largest for beam configuration C and lowest for beam configuration A.  

 The natural frequencies are largest for clamped-clamped boundary condition. 

Beam with clamped-free (cantilever) boundary condition has the lowest natural 

frequencies. The natural frequencies are second largest for simply-supported boundary 

condition. Also, one can observe natural frequencies are largest for beam configuration 

D and lowest for beam configuration A, second largest for beam configuration B and third 

largest for beam configuration C.  
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 The comparison between Rayleigh-Ritz method developed from the current 

thesis and conventional finite element method [81] is compared for four natural 

frequencies for thickness- and width-tapered composite beams for case 2.The differences 

between the two methods are well accepted.  

 As end axial tensile force is increased the natural frequencies increase, but decrease 

for compressive force for all three boundary conditions.  

 The natural frequencies of un-damped beam are higher than the natural 

frequencies with damping for all boundary conditions  

 The critical buckling load (Pcr) is highest for case 1c, second highest for case 1b and 

lowest for case 1a for all the three boundary conditions. For the effect of variation of 

width ratio (b
R
/b

L
) with constant angle of thickness-taper () of 0.57,

o
 the critical buckling 

load (Pcr), is largest for configuration D, second largest is configuration B, third largest and 

fourth largest are configurations C and A respectively for all three boundary conditions. 

As the width ratio (b
R
/b

L
) values increase for constant angle of thickness-taper () of 

0.57
o
, the critical buckling load (Pcr) is increased for simply-supported boundary condition, 

but for clamped-clamped boundary the critical buckling load (Pcr) increase until width 

ratio (b
R
/b

L
) value is increased from 0.2 upto 0.4, but decrease as the width ratio value 

increase from 0.6 to 1. For clamped-free boundary condition, the critical buckling load 

(Pcr) decreases as the width ratio (b
R
/b

L
) value increase from 0.2 to 1  

 The critical buckling load (Pcr) is largest for laminate configuration LC1, second 

largest for laminate configuration LC3 and lowest for laminate configuration LC2. 

This difference in critical buckling load (Pcr) is due to the variation of stiffness in the 
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column. The critical buckling load (Pcr) is largest for beam configuration D of the taper 

configuration with second largest for beam configuration B, third largest for beam 

configuration C and lowest for beam configuration A.  

 The critical buckling load (Pcr) is largest for clamped-clamped boundary 

condition because the stiffness of the column is largest. Column with  

clamped-free (cantilever) boundary condition has lowest critical buckling load (Pcr) this is 

because of lower stiffness. The critical buckling load (Pcr) is second largest for simply-

supported boundary condition.  

 The comparisons of transverse displacement for thickness- and width-tapered 

composite beams between Rayleigh-Ritz method and conventional finite element method 

show the difference in transverse displacement for simply-supported boundary condition 

is between 5-7%, for clamped-clamped boundary condition it is between 4-6% and for 

clamped-free boundary condition it is between 5-7%.  

 The present study helps the designer in the selection of the angle of 

thickness-taper ()  and  width  ratio (b
R
/b

L
)  so  as  to  shift  the  natural frequencies as 

desired or to control the vibration level.  
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6. CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Major contributions 

The primary objectives of the research work are: (1) To investigate the free and 

forced vibration and buckling response of width-tapered and thickness- and width- 

tapered laminated composite beams obtained using Rayleigh-Ritz method, (2) To conduct 

a detailed parametric study on the effects of various material, geometric and structural 

properties on the dynamic response of tapered composite beams, (3) To conduct modal 

testing using impact hammer excitation to determine the Frequency Response Function 

(FRF) of width-tapered composite beams.  

Following are considered to be the major contributions of the study:  

a) The Rayleigh-Ritz formulation has been used and the efficiency and accuracy are 

established very systematically. Formulations have been developed based on Kirchhoff 

one dimensional laminated beam theory for free and forced vibrations of width-tapered 

and thickness- and width–tapered composite beams including damping and end-axial 

force effects, and for buckling response of tapered composite columns.  
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b) The first-ply failure analysis using Tsai-Wu failure criterion is conducted for 

[(0/90)9]s laminate and the results are used to determine the effect of static end-axial force 

on the free and forced vibration response of tapered laminated composite beams. 

c) Free and forced response results obtained using Rayleigh-Ritz method are 

compared with that obtained using conventional finite element formulation [81]. The free 

vibration response results are also validated using experimental modal testing. 

d) The codes of programming, involving numerical and symbolic computations are 

written in MATLAB software. The beam properties such as stiffness matrix, mass matrix 

and force matrix are computed numerically using individual sub-programs. 

e) A detailed parametric study has been conducted using the above mentioned 

theoretical and experimental developments to determine the influence of the material 

properties, geometric properties, structural properties and applied axial force on the 

natural frequencies and modal displacement response. The effects of width ratio, taper 

configuration, taper angle, length ratio, boundary conditions, laminate configurations, 

static end-axial force, and damping on natural frequencies and modal displacement 

response are studied. 

f) Experimental modal analysis is conducted for the determination of Coherence 

function, time and auto-response function and Frequency Response Function (FRF) of 

width-tapered laminated composite beams with different width ratios. The damping loss 

factor ( ) is extracted from FRF plots using half-power bandwidth method. 



256 

 

6.2 Conclusions 

The most important and principal conclusions of the present thesis that provides 

insight on the dynamic behaviour of width-tapered and thickness- and width- tapered 

composite beams for design purpose are given in the following: 

a) As the width ratio (b
R
/b

L
) values of the beam increases, the natural frequencies 

increase for simply-supported, clamped-clamped and free-clamped boundary conditions, 

but decrease for clamped-free boundary condition. Increasing the width ratio (b
R
/b

L
) 

results in increase in the value of bending stiffness term














*

11 )(

1

xD

, which in turn results in 

increase in stiffness matrix coefficients.  

b) As for the effect of laminate configuration on the natural frequencies of width-

tapered composite beams, the natural frequencies are largest for laminate configuration 

LC3 (laminate with ([04/457])s configuration), second largest for LC1 (laminate with 

([0/90]9)s configuration), third largest for LC4 (laminate with ([0/60]6)s configuration) 

and fourth largest for LC2 (laminate with ([45]9)s configuration). 

c) As the length ratio (L1/L3) increases, all the natural frequencies increase. Also the 

natural frequencies increase as the width ratio (b
R
/b

L
) increases for simply-supported, 

clamped-clamped and free-clamped boundary conditions, but decrease for clamped-free 

boundary condition. 
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d) Observations for different boundary conditions show that the beam with clamped-

clamped boundary condition has the largest natural frequencies whereas free-clamped 

boundary condition has the lowest natural frequencies. The beams with simply-supported 

and clamped-free boundary conditions are second highest and third highest in natural 

frequencies respectively. As the compressive axial load is increased from 0 to 95 % of 

critical buckling load, the natural frequencies decrease. As the tensile axial load is 

increased from 0% to 95 % of tensile failure load, the natural frequencies increase. The 

damped natural frequencies are less than that obtained without damping.  

e) As the width ratio value increases the critical buckling load increases for simply-

supported, clamped-clamped and free-clamped boundary conditions, but decrease for 

clamped-free boundary condition. The critical buckling load is largest for laminate 

configuration LC3, second largest for LC1, third largest for LC4 and fourth largest for 

LC2. The critical buckling load is largest for length ratio (L1/L3) value of 2 and least for 

length ratio (L1/L3) value of 0.25. For the effect of different boundary conditions, the 

critical buckling load is largest for clamped-clamped boundary condition since the 

column is stiffer and is smallest for free-clamped boundary condition. 

f) The first-ply failure loads for [(0/90)9]s laminate are calculated using Tsai-Wu 

theory. It was observed that the failure loads (tensile and compressive) are the lowest and 

highest for width ratios of respectively 0.01 and 1, for both 0° and 90° plies. This is 

because of the change in the cross-sectional stiffness of the beam. 

g) It is concluded from the parametric study on forced response that the transverse 

displacement amplitude is largest for width ratio (b
R
/b

L
) value of 0.2, second largest for 
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width ratio value of 0.5 and lowest for width ratio value of 1. The transverse 

displacement amplitude is largest for laminate configuration LC2, second largest for 

laminate configuration LC1, third largest for LC4 and lowest for laminate configuration 

LC3. The transverse displacement amplitude is largest for length ratio (L1/L3) value of 

0.25 and lowest for length ratio (L1/L3) value of 2 for all four boundary conditions.  

h) The transverse displacement amplitude is largest for clamped-free boundary 

condition and lowest for clamped-clamped boundary condition. The transverse 

displacement amplitude is largest for clamped-free boundary condition at excitation point 

1, second largest for free-clamped boundary condition at excitation point 1, third highest 

for simply-supported at excitation points 2
 
and 3 and lowest for clamped-clamped 

boundary condition at excitation points 2 and 3. The transverse displacement amplitude 

decreases with increase in the percentage tensile failure load because the beam becomes 

stiffer by applying axial tensile load. Similarly, the transverse displacement amplitude 

increases with increase in percentage compressive failure load because the beam becomes 

less stiff by applying axial compressive load. 

i) From the comparison of results obtained using Rayleigh-Ritz method with that 

obtained using conventional finite element method, the differences in natural frequencies 

and transverse displacement obtained for all cases are less than 6%. The results found 

with 8 to 15 trail functions of Rayleigh-Ritz method matched well with the results 

calculated by using conventional finite element method for width-tapered and 

thickness- and width-tapered composite beams for all taper configurations and all 

boundary conditions. 



259 

 

j) Experimental modal analysis is conducted using impact hammer excitation. 

Modal testing for damping factor for finding out the damping in the beams is conducted 

using half-power bandwidth method [12]. The Frequency Response Function (FRF) is 

highest for width ratio (b
R
/b

L
) value of 0.2 and it gradually decreases as width ratio 

(b
R
/b

L
) value increases.  

k) Comparison of experimental modal analysis results and theoretical results for 

width-tapered composite beams shows good agreement between the natural frequencies. 

l) The observations from thickness- and width-tapered composite beams were made 

that, the natural frequencies are highest for case 1c, second highest for case 1b and lowest 

for case 1a. For clamped-free boundary condition, the natural frequencies are highest for 

case 1c and lowest for case 1a and second highest for case 1b. The natural frequencies are 

highest for configuration D, second highest for configuration B, third highest for 

configuration C and the lowest for configuration A.  

m) For simply-supported boundary condition as the width ratio (b
R
/b

L
) value 

increase, the first natural frequency increase for all the thickness- and width-taper beam 

configurations. The second, third and fourth natural frequencies remain constant as the 

width ratio value increases. For clamped-clamped boundary condition, all four modes of 

natural frequencies increase with highest natural frequencies for configuration  D, second 

highest for configuration B, third highest for configuration C and lowest for configuration 

A.  

n) The natural frequencies are largest for laminate configuration LC1, second largest 

for laminate configuration LC3 and lowest for laminate configuration LC2.  
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o) The natural frequencies are largest for clamped-clamped boundary condition. 

Beam with clamped-free (cantilever) boundary condition has the lowest natural 

frequencies. The natural frequencies are second largest for simply-supported boundary 

condition.  

p) The comparison between Rayleigh-Ritz method developed from the current 

thesis and conventional finite element method [81] is compared for four natural 

frequencies for thickness- and width-tapered composite beams for case 2.The differences 

between the two methods are well accepted.  

q) The natural frequencies increase with an increase in end axial tensile force but 

decrease with increasing compressive force for all the three boundary conditions. The natural 

frequencies of undamped beam are higher than those with damping for all boundary 

conditions. 

r) The critical buckling load (Pcr) is highest for case 1c, second highest for case 1b and 

lowest for case 1a for all the three boundary conditions. For the effect of variation of 

width ratio (b
R
/b

L
) with constant angle of thickness-taper () of 0.57,

o
 the critical buckling 

load (Pcr), is largest for configuration D, second largest is configuration B, third largest and 

fourth largest are configurations C and A respectively for all three boundary conditions.  

s) The critical buckling load (Pcr) is largest for laminate configuration LC1, second 

largest for laminate configuration LC3 and lowest for laminate configuration LC2. 

This difference in critical buckling load (Pcr) is due to the variation of stiffness in the 

column.  

t) The critical buckling load (Pcr) is largest for clamped-clamped boundary 

condition Column with clamped-free (cantilever) boundary condition has lowest critical 
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buckling load (Pcr) this is because of lower stiffness. The critical buckling load (Pcr) is 

second largest for simply-supported boundary condition.  

u) The comparisons of transverse displacement for thickness- and width-tapered 

composite beams between Rayleigh-Ritz method and conventional finite element method 

show the difference in transverse displacement for simply-supported boundary condition 

is between 5-7%, for clamped-clamped boundary condition it is between 4-6% and for 

clamped-free boundary condition it is between 5-7%.  

 

6.3 Recommendations for future work 

The present study is an attempt to evaluate the effects of different material, geometric and 

structural parameters on the dynamic response of width-tapered and thickness-and width-

tapered composite beams obtained using Rayleigh-Ritz method. The study of free and forced 

vibration and buckling response of tapered composite beams can be continued in the future 

studies as given in the following recommendations: 

a) The free and forced vibration and buckling analyses of width-tapered composite 

beams and columns respectively obtained using Rayleigh-Ritz method presented in this 

thesis can be extended further combining with other advanced finite element methods 

such as higher order and hierarchical finite element. 
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b) The free and forced vibration and buckling response obtained using Rayleigh-

Ritz method presented in this thesis can be extended for free and forced vibration and 

buckling response of curved beam, plates and shells. 

c) The free and forced vibration of width-tapered composite beams obtained using 

Rayleigh-Ritz method presented in this thesis can be extended to transient and random 

vibrations. 

d) The experimental modal analysis conducted in the present thesis can be extended 

to analyze the Frequency Response Function (FRF) for tapered beams using non-classical 

boundary conditions. 

e) The methodology from the present study can be taken forward to optimize the 

geometric and material configurations of the laminated beam to avoid design critical 

response. 
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8. APPENDIX-A 

 

Flow chart for MATLAB


 program for free and forced vibration and buckling 

response 

  

 

 

 

 

 

 

 

 

 

Start 

Input 

Calculate the value of 
*

11 )(xD  

Generate the stiffness, mass and 

geometric stiffness matrices 

 
Initializing stiffness and mass matrices to 

zero 

1. Material properties 

2. Geometric properties 

A 
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Solve for eigenvalues and eigenvectors 
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Application of modal force vector to find 

the forced vibration response  

 Modal matrix ][P  and orthonormal 

modal matrix ]
~

[P application to decouple 

ODE 

 

Maximum response calculation for 

different excitation frequencies 

 
End 

Harmonic displacement function 

satisfying geometric boundary condition 

 
Apply stationary condition 
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The individual subroutine programs developed using MATLAB


 software for free and 

forced vibration and buckling response of width-tapered and thickness- and width –

tapered laminated composite beams with graphical plots for parametric studies are 

included in the Vijay-thesis 2012 CD


 attached with this thesis. 

 

Trial functions used in Rayleigh-Ritz method for different boundary conditions 

 

Boundary condition Trial function 

Simply Supported  










 L

xi
cw

n

i

i



1

.sin.  

Fixed-Fixed  
2

1

)(... xLxicw
N

i

i

i 


 

Fixed-Free  




n

i

i

i xcw
1

.  

Free- Fixed  
i

n

i

i xLcw )(.
1




 

 



277 

 

 

9. APPENDIX-B 

Derivation for orthonormal modal matrix ]
~

[P  

Orthogonality of Eigenvectors 

The normal modes, or the eigenvectors of the system, can be shown to be orthogonal with 

respect to the mass and stiffness matrices. 

By using the notation i for the i
th

 eigenvector, the normal mode equation for the i
th

 mode 

is given as: 

iii MK                     (1) 

Pre-multiplying the i
th

 equation by the transpose 
T

j of the mode j, it is obtained as 

follows: 

i

T

jii

T

j MK                   (2) 

Also,  

j

T

ijj

T

i MK                   (3) 

Because K and M are symmetric matrices, the following relationship are as follows: 
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j

T

ii

T

j

M

or

K

M

or

K





































                                                                                                       (4) 

Subtracting equation (3) from (2), 

0)(  j

T

iji M                 (5) 

If 
ji   , in the above equation (5), then equation (5) becomes, 

 0j

T

i M , ji                   (6) 

It is also evident from equation (2) or equation (3) that as a consequence of equation (6), 

0j

T

i K , ji                  (7) 

Equations (6) and (7) define the orthogonal character of the normal modes. 

If ji  ,  

0)(  ji                              (8)  

 Equation (5) is satisfied for any finite value of the products given by equations (6) or (7), 

iii

T

i MM                   (9) 

iii

T

i KK                 (10) 
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From the equations (9) and (10), iiM  and iiK  are the generalized mass and generalized 

stiffness matrices. 

Orthonormal modes: 

If each of the normal modes i  is divided by the square root of the generalized mass iiM , 

It is evident from the equation (1), that the right side of the equation (9) will be unity. 

The new normal mode is given as: 

i

ii

i

M


 ~
                 (11) 

From the above equation (11), i
~

 is called the weighted normal mode or orthonormal 

mode. 

It is also evident from equation (1), that the right side of the equation (10), will be 

eigenvalues i . 

Thus, the equations (9) and (10) can be written as: 

1
~~
i

T

i M                (12) 

ii

T

i K  
~~

               (13) 
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Modal matrix  P  : 

When ‘n’ normal modes (eigenvectors) are assembled into a square matrix with each 

normal mode represented by a column, it is called the modal matrix  P  

The modal matrix for a n- DOF system can appear as follows: 

   n

n

x

x

x

x

x

x

x

x

x

x

x

x

P  ............,.., 321

3

2

1

3

3

2

1

2

3

2

1

1

3

2

1



















































































                             (14) 

Also, 

    Tn

T
n

T

x

x

x

x

x

x

x

x

x

x

x

x

P  ............,.., 321

3

2

1

3

3

2

1

2

3

2

1

1

3

2

1


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














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
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






























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























                   (15) 

From the equation (14) and (15),  

The results of MPPT or KPPT , will be diagonal matrix. 

Thus, 

 

























nn

T

M

M

M

M
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                                 (16) 
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























nn

T

K

K

K

K

KPP

0000
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0000

0000

33

22

11

            (17) 

Note from the above equations (16) and (17), the off-diagonal terms are zero, because of 

the orthogonality relationship. 

The diagonal terms from equation (16) are generalized mass and from equation (17) are 

generalized stiffness. 

If the normal modes i  in the matrix  P  of equation (11) is replaced by the orthonormal 

modes i
~

, the modal matrix is designated as  P
~

 

Thus, the orthogonality relationships are given as 

 IPMP T ]
~

][[]
~

[                                      (18) 

 ]
~

][[]
~

[ PKP T                                     (19) 

where, ][  is the unit matrix and    is a diagonal matrix of the eigenvalues which is 

given as: 












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
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




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2

2

2

2

1

.

n





                         (20) 
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Contribution of numerical computation for dynamic response of thickness- and 

width-tapered laminated composite beams 

There is a significant contribution made in the numerical computation for the dynamic 

response of thickness- and width-tapered composite beams using the principle of 

superposition. 

The steps followed are: 

1. The detailed analysis for vibration response of uniform-width and thickness-

tapered composite beams were made in the reference [68] 

2. The stiffness, mass and geometric stiffness element matrices were determined for 

internally tapered composite beam for beam configurations A-D using finite element 

modeling. 

3. Using the co-efficients of stiffness, mass and geometric stiffness matrices for 

uniform-width and thickness-tapered composite beams, and by using one-dimensional 

laminated beam theory the new co-efficients of stiffness, mass and geometric stiffness 

matrices for thickness- and width tapered composite beams are derived. 

4. Individual subroutines programs using MATLAB


 software were developed for 

dynamic response of thickness- and width tapered composite beams using R-R method. 

5. The results obtained using Rayleigh-Ritz method were compared using 

conventional finite element method developed in [81] for validation purposes. 
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10. APPENDIX-C 

Cost estimation report of width-tapered composite beams 

 

Table 10.1 Manufacturing cost of width-tapered composite beams 

 

Sl.No. Description of materials Cost 

Usage 

(CAD $) 

Fabrication 

1 NCT-301 graphite epoxy prepeg $25/lb 100 

2 Bleeder plies $100  0 

3 Breather plies $148gallon 20 

4 Vacuum or sealant tape $7/yard 25 

5 Aluminium flat plate $7/yard 25 

6 Brush $5  5 

7 Release agent $5  5 

8 

Miscellaneous supplies (hand 

shovel, scissors etc.) 

$15  15 

                                               Processing 

9 Autoclave usage $20/hr 30 
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10 Manpower cost $50/day 75 

11 

Water cooled rotary type diamond 

cutter 

$10/hr 20 

Total usage cost/composite laminate plate 320 

Total beams manufactured 5 

Manufacturing cost of each beam 64 

 

Laminate Configuration of composite laminate plate- ([0/90]
9
)
s
 

 

Table 10.2 Dimension of composite laminate plate 

 

Sl.No. Dimension Size (inch) 

1 Length 16 

2 Width 11 

3 Height 0.1755 
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Table 10.3 Vibration testing cost of composite beams 

 

Sl.No. Description of materials Cost 

Usage 

(CAD $) 

1 Clamping fixture $40  100 

2 Bees wax $10  0 

3 Computer   0 

4 

B & K's PULSE
TM

 front-end multi-

analyzer type 3560 

  0 

5 

Charge amplifier (a) Dual mode 

amplifier 

  0 

(a) Piezoelectric charge amplifier   0 

6 Impact hammer   0 

7 Accelerometer   0 

8 Impact excitation   0 

9 

Miscellaneous supplies (cables, 

scissors, marker etc.) 

$50  50 

10 Manpower cost $50/day 200 

Total vibration testing 350 

Vibration testing of each beam 70 

 


