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ABSTRACT

DYNAMIC RESPONSE OF WIDTH- AND THICKNESS-TAPERED
COMPOSITE BEAMS USING RAYLEIGH-RITZ METHOD AND MODAL
TESTING

Vijay Kumar Badagi

Tapered composite beams formed by width-taper or by terminating or dropping-
off some of the plies from the primary structure provide high stiffness to weight ratios,
high modulus to weight ratios, damage tolerance and design tailoring capabilities. Since
they are increasingly and widely being used in a variety of engineering applications such
as robot arms, lightweight mechanical components, aircraft wings, space structures,
helicopter blades and yokes, turbine blades, and civil infrastructures, it is important to
ensure that their design is reliable and safe. Study of the dynamic response of the tapered
composite beams helps to optimize the design and avoid future investments on repairs. It
is, therefore, essential for design engineers to evaluate the dynamic characteristics of
tapered composite beams effectively. In the present study, symmetric width-tapered and
thickness- and width-tapered laminated composite beams are considered and their free
and forced vibration response and the buckling response of tapered composite columns
are investigated. Due to the variety of tapered beam configurations and the complexity of
partial differential equations that govern their free and forced vibration response and their
buckling response, no closed-form analytical solution can be obtained. Therefore,
Rayleigh-Ritz method is used based on Kirchhoff one-dimensional laminated beam
theory and the efficiency and accuracy are established very systematically. Width-tapered

laminated composite beam samples are manufactured using NCT-301 graphite-epoxy

111



composite material. Experimental modal analysis using impact hammer testing is
conducted for the determination of coherence function, time and auto-response function
and Frequency Response Function (FRF) of width-tapered laminated composite beams.
The natural frequencies obtained from experimental modal analysis are validated with
that obtained Rayleigh-Ritz method. A detailed parametric study is conducted to
investigate the effects of width ratio, taper configuration, taper angle, length ratio,
boundary conditions, laminate configurations, static end-axial force, and damping on
dynamic response. Free and forced vibration response results obtained using Rayleigh-
Ritz method are also compared with that obtained using conventional finite element

formulation in a separate but simultaneous study.
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CHAPTER 1

INTRODUCTION, LITERATURE SURVEY AND SCOPE OF THE THESIS

1.1 Vibration analysis in mechanical design

Vibration is the study of the repetitive motion of objects relative to a stationary frame
of reference or nominal position (usually equilibrium). The vibration which occurs in
most machines, vehicles, structures, buildings and dynamic systems is undesirable, not
only because of the resulting unpleasant motions and the dynamic stresses which may
lead to fatigue and failure of the structure or machine, and the energy losses and
reduction in performance which accompany vibrations, but also because of the noise
produced. Noise is generally considered to be unwanted sound, and since sound is
produced by some source of motion or vibration causing pressure changes which
propagate through the air or other transmitting medium, vibration control is of
fundamental importance to sound attenuation. Vibration analysis of machines and
structures is therefore often a necessary prerequisite for controlling not only vibration but

also noise [1].

Until early 21% century, machines and structures usually had very high mass and
damping, because heavy beams, timbers, castings and stonework were used in their
construction. Since the vibration excitation sources were often small in magnitude, the
dynamic response of these highly damped machines was low. However, with the
development of strong lightweight materials, increased knowledge of material properties
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and structural loading, and improved analysis and design techniques, the mass of
machines and structures built to fulfill a particular function has decreased. Furthermore,
the efficiency and speed of machinery have increased so that the vibration exciting forces
are higher, and dynamic systems often contain high-energy sources, which can create
intense noise and vibration problems. This process of increasing excitation with reducing
machine mass and damping has continued at an increasing rate to the present day when
few, if any, machines can be designed without carrying out the necessary vibration
analysis, if their dynamic performance is to be acceptable. The demands made on
machinery, structures, and dynamic systems are also increasing, so that the dynamic

performance requirements are always rising [2].

There have been very many cases of systems failing or not meeting performance
targets because of resonance, fatigue, excessive vibration of one component or another or
high noise levels. Because of the very serious effects which unwanted vibrations can have
on dynamic systems, it is essential that vibration analysis be carried out as an inherent
part of their design, when necessary modifications can most easily be made to eliminate
vibration or at least to reduce it as much as possible. However, it must also be recognized
that it may sometimes be necessary to reduce the vibration of an existing machine, either
because of inadequate initial design, or by a change in function of the machine, or by a
change in environmental conditions or performance requirements, or by a revision of
acceptable noise levels. Therefore techniques for the analysis of vibration in dynamic

systems should be applicable to existing systems as well as those in the design stage; it is



the solution to the vibration or noise problem which may be different, depending on

whether or not the system already exists.

1.2 Buckling analysis in mechanical design

When analyzing a structure, in addition to looking at maximum deflections,
maximum stresses and natural frequencies, one must investigate under what loading
conditions instability can occur, which is generally referred to as buckling [2]. Change in
the geometry of a structure or a mechanical component under compression results in the
loss of its ability to resist loading. Stability of structures under compression can be
grouped into two categories: (1) Instability associated with a bifurcation of equilibrium,;
(2) Instability that is associated with a limit of maximum load. The first category is
characterized by the fact that as the compressive load increases, the member or system
that originally deflects in the direction of applied force, suddenly deflects in a different
direction. This phenomenon is called buckling. The point of transition from the usual
deflection mode under load to an alternative deflection mode is referred to as the point of
bifurcation of equilibrium. The lowest load at the point of bifurcation is called critical

buckling load.

Buckling analysis is basically a subtopic of non-linear rather than linear mechanics.
In linear mechanics of deformable solids, displacements are proportional to the loads. In
buckling, disproportional increase in displacement occurs due to a small increase in the
load. The instability due to buckling can lead to a catastrophic failure of a structure and it

must be taken into account when one designs a structure.



1.3 Composite materials and structures

Development and design of polymer composite materials and structures is the fastest
growing segment of lightweight (durable and sustainable) construction and product
engineering (in general 'moving and moved beings'). Since fifteen years for each five
years period the world market volume of advanced polymer composites was doubled
(100% growth per quinquennial). For the first decade of this millennium a growth of at
least 700 % is foreseen (350% growth per quinquennial). The majority of structural parts
in novel aircraft and space platform designs will be materialized in polymer composite
materials. In case of fireproof interiors including floors and supporting structures (beams
and brackets) the applied volume of composites are reaching the maximum of almost 100
% and for the high performance and durable exterior shell structures almost 80% by

volume is within the reach [3].

The same trends and developments are true for inshore and offshore wind turbine
blade designs (wing structures possessing a radius equal to the total span of a Boeing
747) and the development of the latest fast transport systems varying from trains, cars,
ferries, and trucks to ships and yachts, show similar tendencies. In traditional metal
structure design a proper mechanical behaviour as a response to 'loads' is realized by a
sufficient volumetric distribution and combination of proper metallic materials (stress and
stiffness level control). For todays and future designers of the ultimate lightweight
structures in general (minimum material, minimum energy, and maximum performance)
a change in attitude and design skills is indispensable. In addition to the volumetric

distribution approach to sustain all kinds of stress and strain states, for composite
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laminates a sophisticated distribution and control of coupled and uncoupled stress and

strain phenomena, induced by both mechanical and physical loads, becomes necessary.

Compared to metals in composite structure design stiffness, strength and durability,
resistance and tolerance with respect to impact events or proper scenarios to absorb
impact energy are becoming true initial design parameters, from material to load path and
structure design. The same is true for acoustic and thermo-isolating properties, stability,
vibrations and aero-elasticity. Therefore in near future developments of advanced and
cost effective structures would require a new generation of (scientific, academic)
developers and designers capable of creating and using new design tools and rules and

last but not least capable to create new paradigms in conceptual and structural design.

1.4  Energy method and Rayleigh-Ritz method

For simple mechanical systems, the vector methods provide an easy and direct way of
deriving the equations. However, for complicated systems, the procedure becomes more
cumbersome and intractable. In such cases, variational statements can be used to obtain
governing equations, associated boundary conditions, and in certain simple cases,

solutions for displacements and forces at selective points of a structure [4].

To obtain the governing differential equations and boundary conditions of various
problems we need to apply the virtual-work principles or their derivatives. These
principles involve setting the first variation of an approximate functional with respect to
the dependent variables to zero. The procedure of the calculus of variations can then be

applied to obtain the governing (Euler-Lagrange) equations of the problem. In contrast,
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the method applied in this thesis seeks a solution in terms of adjustable parameters that
are determined by substituting the assumed solutions into the functional and finding its
stationary value with respect to the parameters. Such solution methods are called direct
methods, because the approximate solutions are obtained directly by applying the same
variational principle that was used to derive the governing equation. The assumed
solutions in the variational methods are in the form of a finite linear combination of
undetermined parameters with appropriately chosen functions. This amounts to
representing a continuous function by a finite linear combination of functions. Since the
solution of a continuum problem in general cannot be completely represented by a finite
set of functions, error is introduced into the solution. Therefore, the solution obtained is
an approximate of the true solution for the equations describing a physical problem. As a
number of linearly independent terms in the assumed solution are increased, the error in
the approximation will be reduced and the assumed solution converges to the desired

solution of Euler’s equations.

The equations governing a physical problem themselves are approximate. The
approximations are introduced via several sources, including the geometry, the
representation of specified loads and displacements, and the material constitution. In the
present study, our primary concern is to determine accurate approximate solutions to

appropriate analytical descriptions of physical problems.

The variational methods of approximation include those of Rayleigh-Ritz, Galerkin,
Petrov-Galerkin (weighted-residuals), Kantorovitch, Treffiz, and the finite element

method, which is a “piecewise” application of the Ritz-Galerkin method.

6



In the principle of virtual displacements, the Euler equations are the equilibrium
equations, whereas in the principle of virtual forces, they are the compatibility equations.
These Euler equations are in the form of differential equations that are not always
tractable by exact methods of solution. A number of approximate methods exist for
solving differential equations [e.g., finite-difference methods, perturbation methods, etc.).
The most direct methods bypass the derivation of the Euler equations and go directly
from a variational statement of the problem to the solution of the Euler equations. One
such direct method was proposed by Lord Rayleigh. A generalization of the method was

proposed independently by Ritz (1878-1909) [6].

The Rayleigh-Ritz or Ritz method has found tremendous use during past three
decades in obtaining accurate frequencies and mode shapes for the vibration of
continuum system especially for problems not amendable to exact solution of the
differential equations. This method is used frequently because of the increasing capability
of digital computers to setup and solve the frequency determinants arising with the
method. This method can be used to solve boundary value problem or eigen value
problem by assuming a solution in the form of series of admissible functions (satisfying
at least the geometric boundary conditions) each having an arbitrary co-efficient and
minimizing the appropriate energy functional directly. In this thesis Rayleigh-Ritz
method is employed to determine the free and forced vibration response of width-tapered
and thickness- and width-tapered laminated composite beams and buckling response of
tapered composite columns. Admissible functions are taken as series of products of beam

mode shapes called trial functions.



1.5 Literature survey

In this section, a comprehensive and up-to-date literature survey is presented on the
relevant topics. Important works done on the dynamic response of uniform, width-
tapered, thickness- and width-tapered composite beams including damping and axial load
effects by Rayleigh-Ritz method and experimental modal testing method for composite

beams are chronicled.

1.6 Vibration response of composite beams

There is a wealth of literature available for the vibration and buckling analyses of
laminated plates and shells. In comparison, study on the analysis of laminated beams has
been scarce despite their applicability in important structures such as turbine blades,
helicopter blades, robot arms, etc. Also, the works on vibration and buckling analyses of

laminated beams are not sufficient especially on forced vibration.

Abarcar and Caniff [7] conducted the free vibration analysis of uniform laminated
composite beams without considering the effects of shear deformation and rotary inertia.
Miller and Adams [8] studied the vibration characteristics of the orthotropic clamped-free
uniform beams using the classical lamination theory without including the effect of shear
deformation. Vinson and Sierakowski [9] obtained the exact solutions for the natural
frequencies of a simply-supported uniform composite beam based on classical lamination
theory. Roy and Ganesan [10] have studied the response of a tapered composite beam

with general boundary conditions. He et al. [11] have conducted a review of the works on
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tapered laminated composite structures with focus on interlaminar failures and three-
dimensional stress analyses. Steeves and Fleck [12] have studied the compressive
strength of composite laminates with terminated internal plies. Aydogdu [13] have
studied the vibration response of cross-ply laminated beams with general boundary
conditions using the Ritz method. Boay and Wee [14] have studied the coupling effects in
bending, buckling and free vibration of generally laminated composite beams. Hassan
and Sabuncu [15] have conducted the stability analysis of a cantilever composite beam
resting on elastic supports. Teoh and Huang [16] studied the vibration of beams of fibre
reinforced materials. Krishnaswamy et al. [17] obtained analytical solutions to vibration
of generally layered composite beams. Khdeir and Reddy [18] have studied the free
vibration of cross-ply laminated beams with arbitrary boundary conditions. Abramovich
and Livshits [19] established analytical solution of free vibration of non-symmetrical
cross-ply laminated beams. Houmat [20] investigated the vibration of Timoshenko beams
considering four-node element with variable degrees of freedom where he described
element transverse displacement and cross-sectional rotations by cubic polynomial plus a
variable number of trigonometric sine terms. Singh and Abdelnassar [21] examined the
forced vibration response of composite beams considering a third order shear
deformation theory. Thickness-tapered laminated composite beams have been studied for
their dynamic response in the works of Ganesan and Zabihollah [22, 23] using an
advanced finite element formulation and parametric study. Ahmed [24] has studied and
conducted experiments for free and forced vibration response of tapered composite
beams including the effects of axial force and damping. Chen [25] has studied the free

vibration response of tapered composite beams using hierarchical finite element method
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and Rayleigh-Ritz method. Amit and Yadav [26] investigated forced nonlinear random
vibration of a simply supported cross-ply laminated composite plate analytically using
Kirchhoff-Love plate theory and Von-Karman nonlinear strain displacement
formulations. Asghar et al. [27] studied forced vibration analysis developed by the modal
superposition technique and the layer wise theory of Reddy to study the low velocity
impact response of laminated plates. Cheung et al. [28] proposed a computationally
efficient and highly accurate numerical method to analyze the vibrations of
symmetrically laminated rectangular composite plates with intermediate line supports.
The governing eigen frequency equation is derived using Rayleigh-Ritz method. They
developed a set of admissible functions from the static solutions of a beam with
intermediate points of supports under a series of sinusoidal loads. Kadivar et al. [29]
studied the forced vibration of an unsymmetrical laminated composite beam subjected to
moving loads. They studied a one-dimensional element with 24 degrees of freedom,
which included the effects of transverse shear deformation, rotary and higher order inertia
to get the response. Beytullah et al. [30] investigated the dynamic behavior of composite
cylindrical helical rods subjected to time dependent loads theoretically in the Laplace
domain. Azrar et al. [31] studied the forced non-linear response of clamped-clamped and
simply-supported beams using spectral analysis, Lagrange’s equations and harmonic
balanced method. They proposed a method to solve the multidimensional Duffing
equation and obtained a set of non-linear algebraic equation whose numerical solution
leads in each case to the basic function contribution co-efficient to the displacement
response function based on harmonic balance method. These coefficients depend on the

excitation frequency and the distribution of the applied loads. Faruk [32] analyzed free
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and forced vibrations of non-uniform composite beams in the Laplace domain. He

adopted Timoshenko beam theory in the derivation of governing equation.

1.7 Buckling response of composite beams

There are few works available on buckling analysis of composite beams in the
literature. Khdeir and Reddy [33] used various plate theories to study the buckling of
laminated plates. Banerjee and Williams [34] obtained critical buckling loads for columns
by considering shear deformation effects. Khdeir and Reddy [35] discussed buckling
behavior of cross-ply rectangular composite beams with different boundary conditions.
They presented analytical solution for composite beams with different boundary
conditions. Song and Waas [36] discussed the effects of shear deformation on the
buckling of composite beams. They are simple higher-order theory, which assumes a
cubic distribution for the displacement field through the thickness of the beam. Chen and
Peng [37] studied the stability of rotating composite beams subjected to axial
compressive load. Kim et al. [38] conducted the buckling analysis of cross-ply laminate
with one-dimensional through-the-width delaminations. Matsunaga [39] studied the
buckling of multi-layer composite beams using higher-order deformation theories. Lee et
al. [40] presented a general analytical model based on the classical laminate theory to
study the lateral buckling of a laminated composite beam with I-section. They considered
different laminate configurations and boundary conditions. The exact solutions for

critical buckling loads based on classical laminate theory for different boundary
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conditions are given by Bertholet [3], Reddy [6] and Whitney [41]. Abd El-Maksood [42]
used an advanced finite element formulation to study the buckling of laminated beams.
Recently, Cortinez and Piovan [43] discussed buckling of thin-walled composite beams.

Lee and Kim [44] treated the lateral buckling of channel section composite beams.

1.8 Experimental modal testing

It is always recommended to use the updated data of any materials for the analysis. In
this thesis, NCT-301 graphite-epoxy is used for all analyses and parametric study. To get
the idea about mechanical properties, it was found that Ibrahim [45] studied NCT-301
graphite epoxy material where he did some experimental work for determining notched
and un-notched strengths of cross-ply laminates. He studied the effect of notch size on

the reliability of composite laminates based on stochastic finite element analysis.

Damping analysis of fiber-reinforced composite has not been considered as a popular
research area since composite materials are designed with stiffness to weight ratio, rather
than damping. Damping in laminated composite materials, where laminae are bonded
with adhesive joints of very low damping capacity, is mostly due to the inelastic or visco-
elastic nature of matrix and to relative slipping at the fiber-matrix interfaces. The only
reliable method for estimating damping in composite is by experimentation. Suarez et al.
[46] used random and impulse techniques for measurement of damping in composite
materials under flexural vibrations. They tested specimens of un-reinforced epoxy resin,
graphite-epoxy and E-glass polyester composite in order to cover a range of damping
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values from low (aluminium) to intermediate (composite) to high (epoxy). Morison [47]
developed a model of material damping for a fiber reinforced polymer matrix composite
and experimentally predicted the loss factor and the temperature and moisture dependant
structural damping of an arbitrary laminate. Hoa and Oullette [48] proposed a rule of
mixture for the calculation of the loss factor for hybrid laminate where they found the
damping loss factor of individual laminate experimentally using logarithmic decrement
method. Gibson [49] reviewed the progress in analytical and experimental
characterization of dynamic properties of advanced materials. Adams and Bacon [50]
performed a series of experiments on unidirectional fiber reinforced beams under
longitudinal shear and flexural loading conditions to determine the specific damping
capacity. Zabaras et al. [51] studied viscous damping approximation and transient
response of laminated composite plates using finite element method. Wei and Kukureka
[52] evaluated the damping and elastic properties of composite material and composite
structures experimentally by the resonance method. Adams and Maheri [53] investigated
the damping capacity of fiber-reinforced plastic and developed a damping energy
equation for analysis. Damping capacity and frequency of cross ply fiber reinforced
plastic composite plates were compared at room temperature by using finite element
method, Rayleigh-Ritz method and an experimental method. Sefrani and Bertholet [54]
analyzed the effect of temperature on the damping properties of unidirectional glass fiber
composite as a function of the frequency and fiber orientation using a cantilever beam
test specimen and an impulse technique. Colakoglu [55] studied damping and vibration

analysis of polyethylene fiber composite under varied temperature where he analyzed
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temperature dependent frequency response experimentally using a damping monitoring

technique.

Eslimy-Isfahay et al. [56] studied the dynamic response of composite beams with
application to aircraft wings. Ewins [57] presented the techniques for experimental modal
analysis. He et al. [58] studied the stress distributions in tapered beamsmade of composite
materials. Koo and Lee [59] studied the dynamic behavior of thick composite beams.
McConnell and Varato [60] presented the basic concepts and principles underlying
dynamic testing. Tsai and Hahn [61] presented the principles governing the mechanical
behavior of composite materials and the unique features in their design. Halvorsen and
Brown [62] studied the impulse technique for structural frequency response testing.
Klosterman [63] conducted the experimental determination and use of modal
representations of dynamic characteristics. Potter [64] studied a general theory of modal

analysis for linear systems.

1.9 Objectives of the thesis

The present thesis is concerned with the dynamic response of tapered laminated
composite beams. The beams are either width-tapered or both thickness- and width-
tapered. The objectives of the work are: 1) To investigate the free and forced vibration
response and buckling response of tapered laminated composite beams using Rayleigh-
Ritz method and to conduct a detailed parametric study for the effects of width ratio,

taper configuration, thickness taper angle, length ratio, boundary conditions, and laminate
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configurations; 2) To investigate the effects of static end-axial compressive and tensile
loads on natural frequencies and forced response of tapered laminated composite beams;
3) To conduct the modal testing of width-tapered composite beams and to compare the
natural frequencies with those obtained using the Rayleigh-Ritz method; and, 4) To
compare the free and forced vibration response of tapered laminated composite beams
obtained using Rayleigh-Ritz method with that obtained using conventional finite

element method [81].

The dynamic response of width-tapered and thickness- and width-tapered laminated
composite beams is developed based on classical laminate theory by using approximate
Rayleigh-Ritz solution. The developed methodology gives accurate and converging

results, and is advantageous in the analysis of composite beam structures.

1.10 Layout of the thesis

The present chapter provided a brief introduction and literature survey on free and
forced vibration of tapered laminated composite beams and buckling response of tapered
composite columns using Rayleigh-Ritz method and experimental modal testing for

determination of Frequency Response Function (FRF) of composite beams.

In chapter 2, elastic behaviour of linear width-tapered composite beam is determined.
Energy formulation for dynamic response of width-tapered laminated composite beam is

developed based on Kirchhoff one dimensional laminated beam theory using Rayleigh-
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Ritz method. Trial functions for different boundary conditions are given in Appendix A.
Free and forced vibration responses are determined including damping and axial force
effects. The first-ply failure analysis using Tsai-Wu failure criterion is conducted to
understand the effect of tensile static end-axial force on width-tapered laminated

composite beams.

In chapter 3, numerical results on the dynamic response of width-tapered laminated
composite beams are considered. Rayleigh-Ritz method is used to find the natural
frequencies, forced response and critical buckling loads for width-tapered laminated
composite beams. The extensional and flexural stiffness distribution for linear width-
tapered composite beams is shown. The effects of width ratio, length ratio, boundary
conditions, and laminate configurations on natural frequencies, maximum transverse
amplitude of tapered composite beams and critical buckling loads of tapered composite
columns are determined. The effects of static end-axial load and damping on the natural
frequencies and forced response of width-tapered composite beams have been
investigated. The first ply failure load of width-tapered beam is obtained to find the
effects of end-axial tensile load on natural frequencies and maximum transverse

amplitude of tapered composite beams.

In chapter 4, experimental validation for width-tapered composite beams has been
carried out. The manufacturing of composite laminate is discussed with fabrication and
processing. Experimental modal testing is discussed using impact hammer excitation. The
experimental modal testing results like Coherence function, time and auto response

function and Frequency response Function (FRF) for different width ratios of width-
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tapered composite beams are determined. Comparison of natural frequencies obtained
using experimental modal testing with that obtained using analytical results for width-

tapered composite beams are shown.

In chapter 5, free vibration and buckling response of thickness- and width-tapered
laminated composite beams are considered using Rayleigh-Ritz method. Natural
frequencies and critical buckling loads are determined for the combination of different
angles of thickness-taper and width ratios, laminate configurations, and boundary
conditions. The effects of applied static end-axial force and damping on natural
frequencies of thickness- and width-tapered composite beams have been investigated.
Finally a detailed comparison is arranged in tables to compare the natural frequencies
obtained by Rayleigh-Ritz method from the current thesis with conventional finite
element method obtained from the separate work [81] and graphical plots of forced

response in terms of sinusoidal transverse displacement.

The thesis ends with chapter 6, which provides the overall conclusions of the present

work and some recommendations for future work.
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CHAPTER 2

RAYLEIGH-RITZ FORMULATION FOR DYNAMIC RESPONSE OF WIDTH-

TAPERED LAMINATED COMPOSITE BEAM

2.1 Introduction

The design of mechanical structures requires the development of necessary tools for
modeling the mechanical behavior in design and analysis. Laminated composite beams
are increasingly being used as load-carrying elements especially in high-performance
mechanical, aerospace, aircraft, naval, and civil applications, where high-strength- and
high-stiffness-to-weight ratios are desired. In these areas, the dynamic and static
instabilities show themselves as a problem of elastic instability. When their behavior is to
be predicted under various loadings, there is a need for accurate analysis of the loading
effects. The practical loadings on aerospace and automobile structures are mostly
dynamic in nature. Therefore, advanced analytical and numerical techniques are required
for the calculation of the dynamic response characteristics of structures in order that they
can be designed against failure due to dynamic loads. In this chapter, free and forced
vibration and buckling response of width-tapered laminated composite beams are

conducted using Rayleigh-Ritz formulation to obtain the equation of motion.

Elastic behavior of linear-width-tapered laminated composite beam is determined in

section 2.2. In section 2.3, energy formulation for dynamic response of width-tapered
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laminated composite beam based on Kirchhoff one—dimensional laminated beam theory
is developed. In section 2.3.1 system matrices are formed using Rayleigh-Ritz method for
free and forced vibration and buckling response of width-tapered laminated composite
beams. Free undamped vibration of width-tapered composite beams is shown in section
2.3.2. Forced vibration response including static end-axial force is discussed in section
2.3.3. Forced vibration response considering damping properties are determined in
section 2.3.4. In section 2.3.5, the formulation based on Rayleigh-Ritz method for
buckling response is carried out for width-tapered composite columns. In section 2.4 the
formulation for first-ply failure of the laminate using Tsai-Wu tensor theory is carried

out.

A beam is a solid structural member most commonly used in mechanical structures or
systems. In practical structures, it can take up a great variety of loads such as transverse
load applied between its supports, transverse shear, bi-plane bending and even torsion. A
plane beam resists primarily loading applied in one plane and has cross-section that is
symmetric with respect to that plane. One—dimensional mathematical model of plane
beam is considered on the basis of beam theories. The stiffness co-efficients of the
laminated beam are determined based on classical laminate theory (corresponding to the

Euler-Bernoulli beam theory) [1].
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2.2 Elastic behavior of linear width-tapered laminated composite beam

Many structures made of composite materials are composed of numerous laminae,
which are bonded and/or cured together. The superior properties in strength and stiffness
that composites possess, and the ability to stack laminae one on the other in a varied but
unique fashion to result in the optimum laminate properties for a given structural size and
set of loadings are major advantages that composite structures have over more
conventional structures. The focus has been on the stress-strain or constitutive relations

[80].

For width-tapered laminated composite beam as shown in Figure 2.1, few basic

assumptions are imposed:

1. The beam is constructed of an arbitrary number of layers of orthotropic sheets
bonded together. However, the orthotropic axes of material symmetry of an individual

layer need not coincide with the xyz axes of the beam.

2. The beam is thin, i.e the thickness H is much smaller than the length L and width
b.

3. The height of the beam is constant, whereas the width is tapered.

4. Transverse shear strains yx, and yy, are negligible.

5. In-plane displacements u and v are linear functions of the z coordinate.

6. The transverse normal strain g, is negligible.
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7. Each ply obeys Hooke’s law.

8. The rotatory inertia caused by the rotational acceleration is negligible.

0. There are no body forces.

10. Transverse shear stresses 1y, and 1y, vanish on the surfaces z =+ H/2.
y

by,

- kth ply

Ltk
H 4 = X

A

Figure 2.1 Schematic illustration of linear width- tapered laminated composite beam and

coordinate system

In this work, Classical Laminate Theory (CLT) is applied to width-tapered

laminated composite beam.
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The constitutive relation between the force and moment resultants and the midsurface

strains and curvatures are given by [3]:

_ e,
N, 4, 4, A B, B, Bgl|l,
Ny AIZ Azz A26 B12 Bzz B26 iy
ny _ A¢ A Ay By B,y Bg Vs o
M, B, B, B, D, D, Dg kox
My B, B,, B,y Dy, D), Dy ko
M, | Bis By Bgs Dig Dys Dy | .
kxy
where,
H
B
4= [0,z (2.22)
H
2
H
B
B, =0, zd (2.2b)
H
)
H
?_
D, =[0,7d (2.2¢)
H
2

withi,j=1,2, 6.
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It should be noted that in the Equation (2.1), the N and M, were originally defined for

plate type structures and correspond to unit width in the y-direction, and hence apply
directly to a beam of “unit’ width. In the present thesis, since the width varies along the x-
direction, it is convenient to multiply all of the above equations by the beam width b(x).
The resulting force and moment equations are expressed as:

P.(x)= N, xb(x), P,(x) = N, xb(x), P, (x)=N,, xb(x) (2.3)
R,(x)=M, xb(x),R,(x) = M, xb(x), R, (x) = M,, xb(x) (2.4)

The Equations (2.3) and (2.4) are shown as:

P, 4, A, 4s B, B, By ix
Py A, Ay, Ay B, By By iy
b, — b(x)x A Ay A By By B ||V, (2.5)
R, B, B, By D, D, Dj k(:
R, By, By, By, D, D, D ]é
R, | Bis By By Dig Dy D | .
ky,

It is to be noted in the Equation (2.5), the effect of change in width is considered in the
matrix of stiffness elements.
For linear width taper, at any arbitrary position ‘x’ of the beam as shown in Figure 2.1,

b(x) is given as:

b(x)=h, —[bL ;bR jx (2.6)
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23 Energy formulation for dynamic response of width-tapered laminated

composite beams based on one—dimensional laminated beam theory

Euler-Bernoulli beam theory is also defined as classical beam theory. This beam model
accounts for bending moment effects on stress and deformation. Transverse shear forces

are recovered from equilibrium but their effect on beam deformation is neglected [24].

2.3.1 System matrices

Classical Laminated Plate Theory (CLPT) states that the transverse shear stresses
through the thickness of the laminate are negligible and further, the normal to the middle
plane remains normal after deformation [5]. Here we consider pure bending of
symmetrically laminated beams according to CLPT. For symmetric laminates, the
equations for bending deflection are uncoupled from those of the stretching
displacements. If the in-plane forces are zero, the in-plane displacements are zero, and the

problem is reduced to solving for bending deflection.

In the case of pure bending of a symmetric laminate the constitutive equation

(2.5) reduces to:

R, b(x)xDyy(x)  b(x)xDy,(x)  b(x)x Dig(x) lgx
R, ¢ =|b(x)xDyy(x) b(x)xD,,(x) b(x)xDyg(x) |3 &, 2.7
R,

b(x)x Dyg(x) b(x)xDys(x)  b(x)x Dye(x) kiy
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In deriving one-dimensional laminated beam theory, the Equation (2.7) is

represented in the inverse form as:

IS

1

b(x)x Dy (x) b(x)xDy,(x) bx)xD(x)| | R

=

X

K, b=|b(x)x Dy(x)  b(x)x Doy(x) b(x)x Dy(x) | {R, 2.8)
ko b(x)x Dig(x) b(x)xDys(x) b(x)xDg(x)] (R,

The Equation (2.8) is given as:

k. D, (x) D,,(x) D, (x) R,
k, 1 =D, (x) Dy(x) Dy(x) |y R, (2.9)
kxy Dl 6 (x) D26 (.X) D6(, (x) ny

In deriving one-dimensional laminated beam theory, here it is assumed that the

moments R and R, are equal to zero.

The inverse form of the relation between curvatures to bending moments as shown in the

Equation (2.9) is represented as:

0 2 *
k, = —gx—vf = D, (x)xR, (2.10a)
0 o*w *
Tt Dy, (x)x R, (2.10b)
° o*w *
k, =-2 = D, (X)xR, (2.10¢)
v oxoy e *
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The above relations (2.10a) to (2.10c) show that the deflection ‘w’ cannot be strictly
independent of the variable ‘y’. The bending and twisting induced by the terms D ,(x)

and D, (x) can cause the beam to lift off its supports. This effect is negligible where the

length to width (L/b) ratio of the beam is sufficiently high.

Neglecting the bending and twisting induced by the terms D,,(x) and D, (x) in the

Equations (2.10b) and (2.10c), k, and ko‘ are neglected.

The Equation (2.10a) is rewritten as:

2
Ro=- 1 ZZV 2.11)
Dll(x) X

From the reference [24], the potential energy for uniform width composite beam

according to classical laminated beam theory and cylindrical bending theory is given as:
1 (owY)
U= bD“[—WJ dx (2.12)

The above Equation (2.12) is given for finite uniform width of the composite laminated
beam. As the scale factor for the beam width increases such that it satisfies the Euler-
Bernoulli beam theory, the width ‘b’ is multiplied in the strain energy as shown in the

Equation (2.12).
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For width-tapered laminated composite beam, the term b(x) is multiplied in the stiffness

elements as shown in the Equation (2.5).

The strain energy due to flexure of the beam which is given in Equation (2.12) can be

represented according to one-dimensional beam theory as:

151 |(erwY

U pore =5 || —— | dx (2.13)
% 2 ox?

0 Dll(x)

It is to be noted that, in the above Equation (2.13), the term b(x) is integrated in the
matrix of stiffness and compliance elements. This is one of the prime contributions of the

present formulation.

The work done due to applied static end-axial load on the width-tapered laminated beam

is represented as follows [3]:

1t owY
Uaxiallaad = 5 PJ‘ |:(aj dxi| (2 14)

Therefore, the total strain energy U,,,, which is the sum of U, and U ..1100a 15

exure

given as:

L 2 2 L 2
U, = % | : '@ V;J dx + lPI(Z—Wj dx (2.15)
o\ Dy,(x) X X
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In the above Equation (2.15), the static end-axial load applied is tensile load. If the

applied load is compressive load, then P < P, where P, is the critical buckling load and

cr? cr

the sign of P will be negative.

The kinetic energy denoted as ‘T’ of an elastic body in terms of xyz coordinates is given

as [24]:

r- 2 [@_J {27+ (%)Z]deydz.

where, p. is the density of composite material at the point xyz.

The displacements u, v and w are given by:

%)

v=0

w=w(x,?)

Substituting Equation (2.17) in Equation (2.16),

| *wx) ) (ow)
(5 e
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(2.17a)

(2.17b)

(2.17¢)

(2.18)



The first term of Equation (2.18) arises due to the change in slope of the deflection curve
(or the angle of rotation) with time and is related to the rotational kinetic energy.
According to Euler-Bernoulli beam or thin-beam theory [1], the rotatory inertia caused by
the rotational acceleration of a beam element is negligible; hence the first term is
neglected in Equation (2.18). The equation for kinetic energy of the width-tapered

laminated beam reduces to:

1k ow\’
= { P, .b(x).H{Ej dx (2.19)

where, H is the height of the laminate.

2.3.1.1 Analysis using Rayleigh-Ritz method

There exist no exact solutions for the natural frequencies and forced responses for
general non-uniform composite beams. Even if they exist for more idealized cases they
are often cumbersome to use, often requiring solution for transcendental equations to
determine the natural frequencies and subsequent evaluation of infinite series to evaluate
the system response. Therefore, approximate solution based on Rayleigh-Ritz method is
developed to find the natural frequencies and forced response of tapered laminated
composite beams and critical buckling load of tapered laminated composite columns. In
this section, the formulations based on Rayleigh-Ritz method for width-tapered laminated

composite beams are derived using classical laminate theory.
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From the reference [4], the Rayleigh equation is given as:

U
2 totalmax
w =—"— 2.20
T (2.20)

2

where the kinetic energy ‘7.’ is expressed as @’T max . In Rayleigh-Ritz method, the

assumed deflection to be the sum of several functions multiplied by constants is given as

follows:
w(x,t) = g (x) +c, P, (X)) +......... +cd(X)+..c... +c,@,(x) (2.21)

where C; are the undetermined coefficients and ¢,(x) are any admissible

functions satisfying the geometric boundary conditions.

*
U jorate and T max are expressed as:

Ui = ZZKU e, +— ZZPG,, cpc; (2.22)

llj] 111]

T max =—ZZM,, cc, (2.23)

11]1

where the coefficients are derived as:

—— | ()4} (x).dx (2.24)
Dy, (x)

i

>~
Il
S ey
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G

l:]_:

/(x).¢; (x)dx (2.25)

ot~

M, = j p.b(x).H ¢ (x).4,(x)dlx (2.26)

If the Rayleigh’s proportional damping model is used,
C, =a(M;)+BK,;) (2.27)

In the above Equation (2.27), C; is the coefficient of Rayleigh’s proportional damping

[4].

Minimizing @ by differentiating it with respect to each of the constants, the derivative

of @® with respect to C; is given as:

* aU T*max
0w’ 0 (U T =5 = Ut aa
@ _ O [ Yiraim | - % _9 (2.28)
oc,  0c\\ T max T ax
The above Equation (2.28) is satisfied by:
oU " e
ity _ 2 OT max (2.29)

oc. oc.

1 1

The two terms of the Equation (2.29) are shown as:
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totalmax — (K,] + P(_;U )‘Cj (230)
aci J=1
OT max <
:ZMi/'C/ (2.31)
aci = yo,

Therefore, Equations (2.30) and (2.31) become:

(&, +PG,)-0’M,)+c, (K, + PG, )0’ M, )+....+¢, (K, + PG, )-*M, )=0  (2.32)

mn

From the Equation (2.32), with ‘i’ varying from 1 to n, there will be n such equations,

which are arranged in the matrix form as:

[k, +PG,)-0'M,, (K,+PG,)-0'M,, 5 5 (k, +PG, oM, ][c
(KZIHDE21 —a)zM21 o . . . ¢
[ ] [ ) [ ] [ ] [ ] o= {0}
[ ] L[] [ ] [ ] [ ) L]
(K, +PG, )-a'M, . . . (k,+PG,)-o'M, |lc,

(2.33)

The determinant of the Equation (2.33) is an n degree algebraic equation in >, and its

solution results in n eigenvalues.
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2.3.2 Free vibration response of width-tapered laminated composite beams

All systems possessing mass and elasticity are capable of free vibration, or vibration
that takes place in the absence of external excitation. Of primary interest for such a

system is its natural frequency of vibration.

There are many ways to connect the solution of the vibration problems with that of the
algebraic eigenvalue problem. The most productive approach is to cast the vibration
problem as a systematic eigenvalue problem because of the special properties associated
with symmetry. The physical nature of mass and stiffness matrices is that they are usually

symmetric [65].

The equation (2.33) can be written in the matrix form of equation of motion using

Newton’s second law of motion [1] including forced excitation and damping as follows:

MY+ [clel+ (K]+ PG e} = {F} (2.34)

For undamped free vibration without static end-axial load, the Equation (2.34) can be

written as:

[M]ei+[K Je}= {0 (235)
For free vibration the Equation (2.35) becomes:

(&1~ @*[M])c}=1{o} (2.36)
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From the above Equation (2.36), @ represents the natural frequencies. Replacing

A = @ in equation (2.36) which becomes,

(K]-2[M])e} = {0} 2.37)

The above Equation (2.37) is a classical eigenvalue problem, where A4 are eigenvalues

and {c} are mode shapes.
2.3.3 Forced vibration response including static end-axial force

The forced vibration response with reference to finite number of nodal coordinates of

the composite beam is determined in this section.

Considering static end-axial force, the Equation (2.34) can be re-written for undamped

forced vibration as:
[M)e+ (K]+ PG el = {F) (2.38)

[M ],[K],[é],{F }and {c} are the mass matrix, stiffness matrix, geometric stiffness

matrix, force vector and displacement vector of the beam respectively. In the Equation
(2.38), P is the prescribed static end-axial tensile load. Mode superposition method is
considered for forced vibration of laminated composite beam. By making the coordinate

transformation [4], one can write,

{e}=1P1{y} (2.39)
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where [P] denotes the orthonormal modal matrix. The formation for [P] is shown in
Appendix-B. Substituting Equation (2.39) in (2.40) and pre-multiplying by [P]” on both

sides of Equation (2.38), leads to

[P [MI[PI3}+ [P [KI[PIy}+ [P PIGIPYy}=[P]"{F} (2.40)

The normal modes or eigenvectors of the system can be shown to be orthogonal with

respect to the mass, stiffness and geometric stiffness matrices [4].

It can be shown from the above equation (2.40), the orthogonality relationships are [4]:
[PV [M1[P)=[1] (2:41)
[P1[KI[P]=([A] (2.42)

where, [I] is the unit matrix and [A] is a diagonal matrix of the eigenvalues which is

given as:

Aol @ (2.43)

By taking the advantages of orthogonal property, the above Equation (2.40) can be

written as a set of decoupled 2™ order differential equations as:

3}, + diag(e),* v}, = {T} (2.44)
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The new equations in terms of y are uncoupled and they can be solved as a set of single

degree of freedom systems.

The solution for y,(¢) are in the form:

Vi :yi(O)Coswit+MSina)it+M

a)i

Substituting the value of y, from Equation (2.45) in Equation (2.39), and representing in

(2.45)

the form of equation (2.21), one can get forced vibration response including end-axial

force.
2.3.4 Forced vibration response of composite beam including damping

The definition of composite materials is mostly based on the macroscopic response
rather than the microscopic mechanisms governing the energy dissipation process [3]. To
investigate the concept of an equivalent viscous damping mechanism for a multiple
degree of freedom system that is damped by a non-viscous process, the Equation (2.38) is

extended as:

M} +[Chet+ (K]+ PG e} = i) (2.46)

By making the coordinate transformation as shown in Equation (2.39) and by taking

advantage of orthogonal properties, substituting Equation (2.39) in Equation (2.46) and
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pre-multiplying by [P]” on both sides of Equation (2.46), the Equation (2.46) can be

written as:

[PT IMI[PKp}+[PT [CIPI7}+ [P IKIPHy}+[ P PIGIPKy} =[P] {F} (2.47)

It is shown in Ref. [4] that [P]'[M][P] and [P]'[K][P] are diagonal matrices but
[P]"[C][P] is not diagonal and the preceding Equation (2.47) is coupled by the damping
matrix. The difficulty with modeling damping in this fashion is that modal analysis
cannot in general be used to solve Equation (2.47), because damping provides additional
coupling between the equations of motion. As a result, this cannot be always decoupled
by the modal transformation. Modal analysis can be used to directly solve Equation

(2.47), if the damping matrix [C] can be written as a linear combination of the mass and

stiffness matrices [24].
By using Rayleigh’s proportional damping which is given as:
[Cl=a[M]+ pIK] (2.48)

where « and [ are mass-proportional and stiffness-proportional constants. Substitution

of Equation (2.48) into Equation (2.47) yields,

[PTIMIPIp}+[PT (A M1+ BIKDPIi}+ [ PT IKIPHy}+[P] PIGI[PYy}=[PT {F}

(2.49)

The Equation (2.49) is completely uncoupled and will have the form:
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¥+ 2003, + 07y, = [0 (2.50)
where the modal damping is given as:

20, = a+ po (2.51)
This corresponds to the n decoupled modal equations as:

3 +(a+ B’ )i+ oy, = F() (2.52)

Considering the response of Equation (2.52) as viscously-damped single-degree-of-

freedom system subject to harmonic excitation, the solution for Equation (2.52) will be

e[ 2O+,

V, ———"Lsinw,t+ y(0)cosw,t |+
Wy;
~ (2.53)
. 280 .
Jo sin(wt —tan™ %L’”wz)
\/(a)ni2 _a)z)z +(2é,ia)nia))2 a)”i -0
where,

@, = 0,1-¢; (2.54)

Substituting the value of y;, from Equation (2.53) in Equation (2.39), and representing in

the form of Equation (2.21), the forced vibration response with damping effects is

obtained considering static end-axial force.
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2.3.5 Buckling analysis of width-tapered composite columns

It is important in analyzing a structure, in addition to looking at maximum
deflections, and natural frequencies, one must investigate under what loading conditions

instability can occur, this instability is referred to as buckling.

In this work, the equation for total strain energy which is the sum of strain energy due
to flexure and work done due to applied static end-axial load is given in the equation
(2.22). Considering the applied static end-axial compressive load, the quation (2.22) is re-

written for buckling response of width-tapered laminated columns as:

1 n n 1 n n .
Uy = EZZKU e, — EZZP.GU cc; (2.55)

i=l j=1 i=l j=1

The Equation (2.56) can be written in the matrix form as:

(&1~ PG e} = o} (2.56)

The above Equation (2.56) is an eigenvalue problem, where ‘P’ represents the
eigenvalue. The system represented by Equation (2.56) has ‘n’ eigenvalues where ‘n’
represents the total number of degrees of freedom. The smallest eigenvalue will be the

critical buckling load which is represented as P, .
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2.4  First-ply failure analysis

A laminate will fail under increasing mechanical and thermal loads. The laminate
failure, however, may not be catastrophic. It is possible that some layer fails and the
composite continue to take more loads until all the plies fail. Failed plies may still
contribute to the stiffness and strength of the laminate. Since polymer-matrix composites
are stronger in the fiber direction relative to the other directions, it is clear that failure
must be a function of the direction of the applied stress relative to the direction of the
fibers. Causing failure of an element of material in the fiber direction requires
significantly more stress than causing failure perpendicular to the fibers. Tensile failure
in the fiber direction is controlled by fiber strength, while tensile failure perpendicular to
the fibers is controlled by the strength of the bond between the fiber and matrix, and by

the strength of the matrix itself.

2.4.1 Tsai-Wu tensor theory

The Tsai-Wu failure criterion is widely used as suggested in [67] to predict the
first-ply failure of laminate. The first-ply tensile failure load is calculated to understand
the effect of tensile end-axial load on the dynamic response of width-tapered laminated

composite beams.

The Tsai-Wu failure criterion reduces to [80]:

Ko, +Fo, t K7, + Fnal2 + Fzzo-z2 + 1:662'122 -vEE,o00, <1 (2.57)
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The failure constants are given by:

2
11 1 1 1 1
F=—t+—. = .h=—"Ft—c.Fn="5—0.l :OaF%:[—F]
| 1 1 Oy o, O, 2 O, T2
(2.58)

2.5  Summary

In this chapter, Rayleigh-Ritz method is used for the dynamic response of width-
tapered laminated composite beams. The resulting force and moment equations for width-
tapered composite beams are derived. Energy formulation for dynamic response of width-
tapered laminated composite beams is described based on one—dimensional laminated
beam theory. Formulations for free and forced vibration response of width-tapered
laminated composite beams considering end-axial force and damping are derived.
Buckling response of width-tapered laminated composite columns is determined. First-

ply failure analysis using Tsai-Wu tensor theory is shown.
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CHAPTER 3

DYNAMIC RESPONSE OF WIDTH-TAPERED LAMINATED COMPOSITE

BEAMS

3.1 Introduction

In the previous chapter, energy formulations based on Euler-Bernoulli beam theory
using Rayleigh-Ritz method were described for the dynamic response of width-tapered
laminated composite beams. First, the system matrices for energy formulation of width-
tapered laminated composite beam based on one—dimensional laminated beam theory was
considered. Second, the Rayleigh-Ritz method is used assuming the deflection to be a
sum of several functions multiplied by coefficients. The co-efficients of matrices were
developed for width-tapered laminated composite beams. Next, the Rayleigh-Ritz
formulation is used for free and forced vibration response of composite beams including
the effects of end-axial force and damping properties and for buckling response of width-
tapered laminated columns. The first-ply failure analysis for width-tapered composite
beam was conducted using Tsai-Wu tensor theory. The formulations are used in the
present chapter for a comprehensive parametric study for free and forced vibration
response of width-tapered laminated composite beams and buckling response of width-

tapered laminated columns.

The material chosen is NCT-301 graphite-epoxy that is available in the laboratory of

Concordia Centre for Composites (CONCOM). The mechanical properties of the fiber
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and the resin are given in the Tables 3.1 and 3.2 respectively. The geometric properties

are given in detail in Table 3.3. Symmetric laminate is considered in all problems.

The results are summarized in plots to interpret the results. Each subsection is ended

with a short interpretation. Finally, overall summary is provided at the end of the chapter.

Table 3.1 Mechanical properties of unidirectional NCT-301 graphite-epoxy prepreg [24]

Longitudinal modulus (E;) 113.9 GPa
Transverse modulus (E,) 7.985 GPa
Es=E, 7.985 GPa
In-plane shear modulus (Gy;) 3.137 GPa
Out-of-plane shear modulus (G23) 2.852 GPa
Density of fiber (pk) 1480 kg/m’
Major Poisson’s ratio (vi2) 0.288
Minor Poisson’s ratio (v21) 0.018
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Table 3.2 Mechanical properties of resin material [24]

Elastic modulus (E) 3.93 GPa
Shear modulus (G) 1.034 GPa
Density of resin (py) 1000 kg/m’
Poisson’s ratio (v) 0.37

Table 3.3 Geometric properties of width-tapered composite beam

Length (L) 0.25 m

Width at left section (by) 0.016 m

Width ratio (br/by) 0.01, 0.02, 0.05,0.1,0.2,0.4, 0.6, 0.8, 1
Individual ply thickness (t) 0.000125 m

Height of the laminate (H) 0.0045 m

3.2 Elastic behavior of width-tapered laminated composite beam

The design of a tapered structure involves consideration of stiffness, static
strength, dynamic stability and damage tolerance. For designing a width-tapered
composite beam, the stiffness distribution, laminate configuration, ply orientation and
width ratio are major considerations. The extensional and flexural stiffness distribution

plays an important role in the dynamic response of composite beams.
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3.2.1 Extensional and flexural stiffness distribution for linear width-tapered

composite beam

The linear width-tapered composite beam shown in the Figure 2.1 is considered to
analyze the extensional and flexural stiffness distribution. The laminate configurations
considered are, 1) LC1 which is the laminate with ([0/90]¢)s configuration, 2) LC2 which
is the laminate with ([£45]9)s configuration, 3) LC3 which is the laminate with
([04/£457])s configuration, and 4) LC4 which is the laminate with ([0/£60]¢)s

configuration.

The extensional and flexural stiffness distributions of linear width-tapered

composite beams across the length of the beam for width ratio (b /b, ) values of 0.01, 0.4

and 1 are determined and are given in the Figures 3.1-3.3 for laminate configurations
LC1, LC2, LC3 and LC4. The extensional and flexural stiffnesses are represented in

semi-log plot.
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Figure 3.1 Extensional stiffness distributions for linear width-tapered composite beam

with a width ratio (b,/b, ) value of 0.01
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Figure 3.2 Extensional stiffness distributions for linear width-tapered composite beam

with a width ratio (b, /b, ) value of 0.4
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Figure 3.3 Extensional stiffness distributions for linear width-tapered composite beam

with a width ratio (b, /b, ) value of 1
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Figures 3.1-3.3 show the extensional stiffness distribution on laminate

configurations for width ratio (b,/b,) values of 0.01, 0.4 and 1. From the Figure 3.1, it

can be observed that the laminate configuration LCI is strongest in terms of extensional
stiffness coefficients Aj; and Aj». It is fairly evident that from the laminate configurations
considered, most of the 0° fibers are oriented along the length of the beam for laminate
configuration LC1. Hence values of A, and Age are the least. The laminate configuration
LC2 is strongest in terms of extensional stiffness coefficients A, and Age.This is because
+45° laminate configuration has higher laminate shear modulus compared to that of LCI,
LC3 and LC4. The laminate configuration LC3 is second largest for extensional stiffness
coefficients Ajj, Aj; and Age and lowest for Aj,. The laminate configuration LC4 is third
largest for extensional stiffness coefficients Ajj, A, and Age but second largest for Ajs.
From the Figure 3.2, the extensional stiffness distribution is similar to the Figure 3.1,
except that the change in the extensional stiffnesses at x=0 and at x=0.25 is smaller,
whereas in the Figure 3.3 the stiffness distribution is uniform since the beam is uniform.
One can observe from Figures 3.1-3.3, that the laminate configuration LC1 is weakest in
terms of extensional stiffness coefficients Aj, and Ags compared to the laminate
configurations LC2, LC3 and LC4 because LC1 has lower Poisson’s ratio and lower

shear coupling coefficient [82].
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Figure 3.5 Flexural stiffness distributions for linear width-tapered composite beam with a

width ratio (b, /b, ) value of 0.4
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Figure 3.6 Flexural stiffness distributions for linear width-tapered composite beam with a

width ratio (b,/b, ) value of 1

Figures 3.4-3.6 show the flexural stiffness distribution on laminate configurations for

width ratio (b,/b,) values of 0.01, 0.4 and 1. From the Figure 3.4, the laminate

configuration LC3 is strongest in terms of flexural stiffness coefficient D;;. The laminate

configuration LC1 is second largest, LC4 and LC2 are third and fourth largest
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respectively. This is since most of the 0° fibers are oriented along the length of the beam
for the laminate configuration LC3, 0° fibers have highest E; compared to other fiber
direction which is the direction of the bending loads, whereas the laminate configuration
LC2 is strongest in terms of flexural stiffness coefficients Dj,, Dy, Dog and Dgs. But the
laminate configuration LCI is strongest in terms of flexural stiffness coefficient D, the
laminate configuration LC2 is strongest in terms of flexural stiffness coefficient Dys.
From the Figure 3.5, the stiffness distribution is similar to the Figure 3.4 except that the
change in the stiffnesses between the length of the beam (x=0 and x=0.25m) is smaller.

From the Figure 3.6, the flexural stiffness distribution is uniform.

33 Free vibration response of width-tapered laminated composite beams

In this section, free vibration response of width-tapered laminated composite beams is
considered for simply-supported, clamped-clamped, clamped-free, and free-clamped
boundary conditions. Rayleigh-Ritz method is used to find the natural frequencies of
width-tapered composite beams. Comprehensive parametric studies for natural

frequencies of width-tapered composite beams have been shown through plots.

3.3.1 Effect of width ratio (b,/b, ) on natural frequencies

To study the effect of width ratio (b,/b,) on first three natural frequencies, the

linear width-tapered composite beams with four boundary conditions are considered. The
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boundary conditions considered are: a) SS (Simply-supported), b) CC (Clamped-
clamped), c) CF (Clamped-free) and d) FC (Free-clamped). The width ratio values
considered are 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1, to investigate the effects on
natural frequencies. The laminate configuration considered is ([0/90]y)s. The thickness of
the beam is constant. The problems are solved using Rayleigh-Ritz method. The results

are summarized in the Figures 3.7, 3.8 and 3.9 to interpret the results.

By using the properties given in the Tables 3.1, 3.2 and 3.3, the current section is

focused to find the effect of width ratio (b,/b ) on first three natural frequencies for four

boundary conditions. The natural frequencies are in rad/sec.
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Figure 3.7 Effect of width ratio (b,/b, ) on first natural frequency
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Figures 3.7-3.9 show the effect of width ratio (b,/b,) on three natural frequencies
with four boundary conditions. It can be observed that as the width ratio (b,/b,) values

increase, all three natural frequencies increase for simply-supported, clamped-clamped

and free-clamped boundary conditions. Increasing the width ratio (b, /b, ) values results in

increase in the value of x-directional bending stiffness term as can be seen

s

D, (x)
from the Equation (2.11), which in turn results in increase in stiffness matrix coefficients.

But all three natural frequencies decrease for clamped-free boundary condition as the

width ratio (b,/b, ) increase along the length of the beam. This is because of the change in
the value of ; . Also the stiffness values coincide for clamped-free and free-
Dy, (x)

clamped boundary conditions at width-ratio (b,/b ) =1 as it should be.

3.3.2 Effect of ply orientation and laminate configuration on natural frequencies

To investigate the effects of laminate orientation on first three natural frequencies,

the linear width-tapered beam with width ratio (b, /b, ) values mentioned previously in the
section 3.3.1 along with four boundary conditions are considered. The laminate
configuration considered is ([+4],), ply group. The beam is made of 36 plies. The
laminate configurations considered for the effect on natural frequencies are: 1) ([0/90]9)s
denoted as ‘LC1’, 2) ([£45]y)s denoted as ‘LC2’, 3) ([04/2457])s denoted as ‘LC3’, and 4)

([0/£60]6)s denoted as ‘LC4°.
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By using the properties given in the Tables 3.1, 3.2 and 3.3, the current section is
analyzed to find the effect of ply orientation on fundamental natural frequency and the
effect of laminate configurations on first three natural frequencies of width-tapered
composite beams. The plots 3.10 and 3.11 are showing the variations of natural
frequencies for simply-supported, clamped-clamped, clamped-free and free-clamped

boundary conditions for uniform and width-tapered beam. The width ratio (b,/b,) value

of 0.5 is considered for width-tapered beam to find the effect of ply orientation on

fundamental natural frequency.

T

—— SS-Uniform (4
—+t1+— SS-Tapered ||
—3¢— cC-Uniferm ||
—+— CC-Tapered

CF-Uniform ||
—— CF-Tapered |4
—&— FC-Uniform
—=57 FC-Tapered |]

Fundamental natural frequency(rad/sec)

0 10 20 30 40 50 60 7o 80 90
Ply orientation (degrees)- ([+-theta]9)s

Figure 3.10 Effect of ply orientation on first natural frequency for four boundary

conditions

Figure 3.10 shows the effect of ply orientation on first natural frequency (rad/sec) for
four boundary conditions of uniform and width-tapered beams. From the figure 3.10 it

can be observed that the fundamental natural frequency is largest for clamped-clamped
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boundary condition of uniform beam compared to the width-tapered beam. The second,
third and fourth largest for simply-supported, clamped-free and free-clamped boundary
conditions. The change in the fundamental natural frequency corresponds to different ply
orientations of the laminate. As one can observe that the fundamental natural frequency
drops significantly for orientation greater than 10°. In semi-log plot shown in Figure
3.10, only 5 out of 8 lines in the legend appear to be distinguishable. This is because the
differences in the fundamental natural frequencies among the uniform and width-tapered
beams for SS, CC and CF boundary conditions is small on the one hand and a logarithmic
scale is used for the ordinate representing the frequency, on the other hand. It may also
be noted that the difference in the fundamental natural frequency between the uniform
and width-tapered beams for FC boundary condition is larger than that for SS, CC and CF
boundary conditions because of the change in cross-sectional stiffness values due to the
restrained condition. The fundamental natural frequency is second largest for simply-

supported, third largest for clamped-free and fourth largest for free-clamped condition.
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Figure 3.11 Effect of laminate configurations on natural frequencies

Figure 3.11 shows the effect of laminate configuration on first three natural
frequencies of width-tapered composite beams for four boundary conditions. From the
Figure 3.11 one can observe that the natural frequencies are largest for laminate
configuration LC3, second largest for LC1, third largest for LC4 and fourth largest for
LC2. This difference in natural frequencies is expected for different laminate

configurations because the different laminate configurations depend on the stiffness of
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the beam. The stiffness of the beam depends on 1 which is directly related with
Dy, (x)

Qi1 of the ply. Also, as the width ratio (b, /b, ) value increases from 0.01 to 1, the natural

frequencies increase for simply-supported, clamped-clamped and free-clamped boundary

conditions. But they decrease for clamped-free boundary condition.

3.3.3 Effect of length ratio (L,/L,) on natural frequencies

To study the effect of length ratio (L,/L,) on natural frequencies, the width-
tapered composite beams of width ratio (b,/b ) with length ratio (L /L,) as shown in the

Figure 3.12 for four boundary conditions are considered. The plies of ([0/90]9)s
composite beam is made of NCT-301 graphite-epoxy. The geometric properties of the
beam are: the beam is considered with 36 plies, the height of the beam is 0.0045 m, and
individual ply thickness (tx) is 0.000125 m. From the Figure 3.12 ‘by’ represents the

wider section of the beam and ‘bn’ represents the narrower section of the beam. ‘Ll’
represents the length of the beam at wider section, ‘L,” represents the length of the beam

at width-tapered section, and ‘L.’ represents the length of the beam at narrower section.

The total length of the beam is kept constant. Changing the length ratio is by changing
length of the beam at wider and narrower sections to achieve different length ratios.

When the length ratio (L /L,) is 2, it is that the length of wider section is twice that of
narrower section of the beam. When the length ratio (L /L,) is '3, it is that the length of
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wider section is half of the length of narrower section of the beam whereas, when the

length ratio is 1, the length of wider section is equal to the length of narrower section.

>4

b
bw %’x

Ly Ly L3

-k ply v
T k

Figure 3.12 Schematic illustration of linear width- tapered laminated composite beam

showing the length ratio

By using the properties given in the Tables 3.1, 3.2 and 3.3, the section 3.3.3 is

carried out to find the effect of length ratio (L /L) on first three natural frequencies with
width ratio (bN/bW) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 considered for

four boundary conditions. The first three natural frequencies for all boundary conditions

are obtained using Rayleigh-Ritz method.
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Figure 3.13 Effect of length ratio (Ly/L3) on first natural frequency
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Figure 3.15 Effect of length ratio (L,/L,) on third natural frequency

Figures 3.13-3.15 show the effect of length ratio (L,/L,) on three natural frequencies

for all four boundary conditions. From the Figures 3.13-3.15, it can be observed that as

the length ratio (L /L,) increases, all the three natural frequencies increase because as the
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length on the wider section of beam is increased the stiffness of the beam increases. Also

the three natural frequencies increase as the width ratio (b,/b,) value increases for SS,

CC and FC boundary conditions, but decrease for CF boundary condition. Another
important observation that can be made is the first, second and third natural frequencies

increase for width ratio (b,/b, ) values from 0.2 to 0.4 but the natural frequencies remain
unchanged with the increase in width ratio (b,/b,) values beyond 0.4 upto 1. This is

because when the length of the wider section is bigger than that of the narrower section,

the increase in width ratio (b, /b, ) has no change in the natural frequencies for SS and CC

boundary condition. But the natural frequencies gradually increase as the width ratio

(be/b,) values increase from 0.2 to 1 for FC boundary condition, while the natural

frequencies decrease for CF boundary condition.

3.3.4 Effect of boundary condition on natural frequencies

To study the effect of boundary condition on first three natural frequencies, the
tapered beam of width ratio (b,/b,) values mentioned in the section 3.3.1 for simply-
supported, clamped-clamped, clamped-free, and free-clamped boundary conditions are
considered. The different boundary conditions are considered to investigate the degree of
restraint and the position of restraint on the natural frequencies. The plies of ([0/90]9)s

composite beam is considered. By using the properties given in the Tables 3.1, 3.2 and
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3.3, the effect of boundary condition on first three natural frequencies for different width

ratio (b, /b, ) values is obtained using Rayleigh-Ritz method.

1.5 -

I

=
n
g

Matural frequency (radfsec)

=1
i

Figure 3.16 Effect of boundary conditions on natural frequencies

Figure 3.16 shows the effect of boundary conditions on first three natural frequencies
for ([0/90]9)s width-tapered composite beam. From the Figure 3.16, it can be observed

that the natural frequencies increase as the width ratio (b/b, ) values increase from 0.01

to 1 for SS, CC and FC boundary condition, but decrease for CF boundary conditions.
One can observe that for clamped-clamped boundary condition, the beam has highest
natural frequencies compared to other boundary conditions as the beam becomes stiffer.
Beam with free-clamped boundary condition has lowest natural frequencies because the
beam has lowest stiffness. Then beam with simply-supported and clamped-free boundary

conditions are second highest and third highest in natural frequencies respectively.
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3.3.5 Effect of end-axial forces on natural frequencies

To investigate the effects of applied end-axial (static) forces on first three natural

frequencies, the linear width-tapered beam with width ratio (b,/b,) values of 0.01, 0.02,

0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 along with four boundary conditions are considered as
shown in the Figure 3.17. The plies of ([0/90]y)s composite beam which is made by NCT-

301 graphite-epoxy is considered.

(c)

Figure 3.17 Schematic illustration of linear width- tapered laminated composite beams

with end axial force for three boundary conditions

Static -end axial compressive and tensile forces are applied at both ends of the beam
as shown in the Figure 3.17. From the Figure 3.17, ‘a’ represents simply-supported, ‘b’

represents clamped-clamped and ‘c’ represents clamped-free boundary condition. The
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natural frequencies are calculated for simply-supported, clamped-clamped and clamped-
free boundary conditions. The critical buckling load and first-ply tensile failure loads are
determined in the sections 3.5.1 and 3.6.1 respectively. The end-axial compressive and

tensile forces which are applied as the percentage of the critical buckling load (P_) and
first-ply tensile failure load (P) in the current section to find the effect of axial forces on

natural frequencies.

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of applied
static end-axial compressive and tensile forces on first three natural frequencies for three
boundary conditions are determined in the current section. The first three natural

frequencies are obtained using Rayleigh-Ritz method.

Table 3.4 Effect of end axial compressive force on first three natural frequencies -simply

supported boundary condition

Width ratio (b, /b, )
% Pcr | Mode No.

0.01 0.02 | 0.05 0.1 0.2 0.4 0.6 0.8 1
1 1199 | 1203 | 1214 | 1227 | 1244 | 1260 | 1267 | 1269 | 1270
0 2 5056 | 5063 | 5077 | 5088 | 5091 | 5086 | 5082 | 5080 | 5080
3 11438 | 11446 | 11460 | 11464 | 11456 | 11439 | 11432 | 11429 | 11430
1 1017 | 1020 | 1028 | 1038 | 1053 | 1064 | 1070 | 1074 | 1076

50 % decrease 15 15 15 15 15 16 15 15 15
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2 4888 | 4895 | 4906 | 4912 | 4913 | 4902 | 4897 | 4896 | 4898

% decrease 3 3 3 3 3 4 4 4 4

3 11269 | 11276 | 11287 | 11288 | 11278 | 11257 | 11249 | 11248 | 11250
% decrease 1 1 2 2 2 2 2 2 2

1 818 820 825 830 845 849 856 861 865

% decrease 32 32 32 32 32 33 32 32 32

2 4733 | 4738 | 4746 | 4748 | 4747 | 4730 | 4725 | 4725 | 4728

” % decrease 6 6 7 7 7 7 7 7 7
3 11115 | 11121 | 11129 | 11127 | 11116 | 11090 | 11082 | 11082 | 11085

% decrease 3 3 3 3 3 3 3 3 3

Table 3.5 Effect of end axial compressive force on first three natural frequencies —

clamped-clamped boundary condition

Width ratio (b, /b))
% Pcr | Mode No.

0.01 0.02 | 0.05 0.1 0.2 0.4 0.6 0.8 1
1 2475 | 2511 | 2591 | 2674 | 2761 | 2836 | 2865 | 2876 | 2879
0 2 7264 | 7328 | 7470 | 7614 | 7759 | 7874 | 7915 | 7931 | 7936
3 14657 | 14754 | 14971 | 15188 | 15348 | 15485 | 15533 | 15552 | 15558
1 2023 | 2079 | 2179 | 2267 | 2358 | 2433 | 2463 | 2474 | 2477

% decrease 18 17 16 15 15 14 14 14 14
2 6610 | 6722 | 6915 | 7077 | 7231 | 7349 | 7392 | 7408 | 7413

50 % decrease 9 8 7 7 7 7 7 7 7
3 13913 | 14080 | 14361 | 14586 | 14782 | 14921 | 14970 | 14989 | 14995

% decrease 5 5 4 4 4 4 4 4 4
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1 1550 | 1613 | 1723 | 1819 | 1916 | 1996 | 2027 | 2039 | 2042
% decrease 37 36 34 32 31 30 29 29 29

05 2 6079 | 6194 | 6392 | 6560 | 6718 | 6840 | 6885 | 6902 | 6906
% decrease 16 15 14 14 13 13 13 13 13

3 13373 | 13542 | 13826 | 14053 | 14253 | 14394 | 14444 | 14463 | 14469
% decrease 9 8 8 7 7 7 7

Table 3.6 Effect of end axial compressive force on first three natural frequencies

clamped-free boundary condition

Width ratio (b, /b, )
% Pcr Mode No.
0.01 | 0.02 | 0.05 | 0.1 02 | 04 | 06 | 08 1
1 902 | 886 | 841 | 781 | 694 | 590 | 527 | 484 452
0 2 3917 | 3851 | 3692 | 3511 | 3300 | 3090 | 2974 | 2895 2835
3 9531 | 9385 | 9068 | 8760 | 8456 | 8200 | 8076 | 7997 7939
1 787 | 772 | 733 | 681 | 606 | 515 | 461 | 423 396
% decrease | 13 13 13 13 13 13 13 13 13
2 3806 | 3741 | 3587 | 3413 | 3212 | 3014 | 2906 | 2832 | 2776
50 % decrease 3 3 3 3 3 2 2 2 2
3 9427 | 9283 | 8971 | 8669 | 8375 | 8132 | 8016 | 7943 7889
% decrease 1 1 1 1 1 1 1 1 1
1 663 | 651 | 618 | 574 | 511 | 435 | 389 | 357 334
% decrease | 27 27 27 26 26 26 26 26 26
” 2 3702 | 3640 | 3491 | 3323 | 3131 | 2944 | 2843 | 2774 | 2722
% decrease 5 5 5 5 5 5 4 4 4
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3 9333 | 9191 | 8883 | 8587 | 8302 | 8071 | 7962 | 7893 7844

% decrease 2 2 2 2 2 2 1 1 1

Tables 3.4-3.6 show the effect of end axial compressive forces on first three natural
frequencies for simply-supported, clamped-clamped and clamped-free boundary
conditions. The compressive axial load is applied as % of critical buckling load. From the
Tables 3.4-3.6, one can observe that as the axial compressive load is increased from 0 to
95 % of critical buckling load, the natural frequencies decrease. This is because as the
axial compressive load is applied at the end of the beam, the beam becomes less stiff
which results in decrease in the natural frequencies. The % of decrease in the natural

frequencies due to the application of end-axial compressive loads is shown

Table 3.7 Effect of end axial tensile force on first three natural frequencies —simply-

supported boundary condition

Width ratio (bR/bL)
% P | Mode No.
0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1

1 1199 | 1203 1214 | 1227 | 1244 | 1260 | 1267 1269 1270
0 2 5056 | 5063 | 5077 | 5088 | 5091 | 5086 | 5082 | 5080 | 5080

3 11438 | 11446 | 11460 | 11464 | 11456 | 11439 | 11432 | 11429 | 11430

1 4234 | 4259 | 4317 | 4382 | 4457 | 4525 | 4552 | 4579 | 4606
50 % increase | 253 254 256 257 258 259 259 261 263
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2 9890 | 9916 | 9974 | 10030 | 10082 | 10118 | 10129 | 10140 | 10151

% increase 96 96 96 97 98 99 99 100 100

3 17257 | 17282 | 17332 | 17374 | 17405 | 17419 | 17423 | 17427 | 17431
% increase 51 51 51 52 52 52 52 52 53
1 5682 | 5721 5811 5909 | 6020 | 6118 | 6157 | 6192 | 6231

% increase | 374 376 379 381 384 386 386 388 391

2 12741 | 12780 | 12865 | 12949 | 13029 | 13085 | 13103 | 13146 | 13164
95

% increase 152 152 153 155 156 157 158 159 159

3 21161 | 21197 | 21270 | 21335 | 21388 | 21419 | 21428 | 21459 | 21468

% increase 85 85 86 86 87 87 87 88 88

Table 3.8 Effect of end axial tensile force on first three natural frequencies —clamped-

clamped boundary condition

Width ratio (bR/bL)
%P | Mode No.
0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1
1 2475 | 2511 | 2591 | 2674 | 2761 | 2836 | 2865 | 2876 | 2879
0 2 7264 | 7328 | 7470 | 7614 | 7759 | 7874 | 7915 | 7931 | 7936
3 14657 | 14754 | 14971 | 15188 | 15348 | 15485 | 15533 | 15552 | 15558
1 5021 | 5086 | 5206 | 5316 | 5430 | 5526 | 5564 | 5578 | 5582

% increase | 103 103 101 99 97 95 94 94 94

50 2 11516 | 11625 | 11815 | 11974 | 12120 | 12228 | 12266 | 12281 | 12285

% increase 59 59 58 57 56 55 55 55 55

3 19814 | 19972 | 20239 | 20451 | 20632 | 20757 | 20800 | 20817 | 20823
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% increase 35 35 35 35 34 34 34 34 34

1 6446 | 6524 | 6668 | 6802 | 6942 | 7059 | 7105 | 7123 | 7128

% increase 160 160 157 154 151 149 148 148 148

2 14281 | 14398 | 14603 | 14775 | 14931 | 15045 | 15084 | 15099 | 15104
95

% increase 97 96 95 94 92 91 91 90 90

3 23562 | 23722 | 23995 | 24209 | 24391 | 24515 | 24557 | 24573 | 24579

% increase 61 61 60 59 59 58 58 58 58

Table 3.9 Effect of end axial tensile force on first three natural frequencies —clamped-

free boundary condition

Width ratio (b_/b )
R L
%P | Mode No.
0.01 0.02 0.05 0.1 0.2 0.4 0.6 0.8 1
1 902 886 841 781 694 590 527 484 452
0 2 3917 | 3851 | 3692 | 3511 | 3300 | 3090 | 2974 | 2895 | 2835
3 9531 | 9385 | 9068 | 8760 | 8456 | 8200 | 8076 | 7997 | 7939
1 3694 | 3655 | 3547 | 3396 | 3166 | 2866 | 2674 | 2538 | 2434

% increase | 309 313 322 335 356 386 407 424 438

2 9045 | 8951 | 8725 | 8472 | 8196 | 7961 | 7856 | 7794 | 7750
50 % increase | 131 132 136 141 148 158 164 169 173
3 15818 | 15653 | 15301 | 14976 | 14687 | 14479 | 14392 | 14339 | 14302
% increase 66 67 69 71 74 77 78 79 80
1 4933 | 4883 | 4743 | 4545 | 4239 | 3838 | 3579 | 3394 | 3254
95

% increase | 447 451 464 482 511 551 579 601 619
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2 11759 | 11643 | 11361 | 11041 | 10685 | 10382 | 10247 | 10168 | 10115

% increase | 200 202 208 214 224 236 245 251 257

3 19721 | 19531 | 19122 | 18741 | 18401 | 18163 | 18065 | 18009 | 17970

% increase | 107 108 111 114 118 121 124 125 126

Tables 3.7-3.9 show the effect of end axial tensile force on first three natural
frequencies for four boundary conditions. The tensile axial load is applied as % of tensile
failure load. From the Tables 3.7-3.9, one can observe that as the tensile axial load is
increased from 0% to 95 % of tensile failure load, the natural frequencies increase. This
is because as the axial tensile load is applied the beam becomes stiffer thereby increasing
the natural frequencies. It may be noted that the percentage increase in the natural
frequencies is higher for applied end-axial tensile load compared to the case of
percentage decrease in the natural frequencies due to applied end-axial compressive load,

because the magnitudes of tensile failure loads are higher than the critical buckling load.

3.3.6 Effect of damping on natural frequencies

To investigate the effect of damping on first three natural frequencies, the linear

width-tapered beam with width ratio (bR/bL) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6,

0.8 and 1 for four boundary conditions are considered. The plies of ([0/90]9)s composite

beam which is made by using NCT-301 graphite-epoxy is considered.
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The mass proportional constant (¢) and stiffness proportional constant () are 3.753

and 4.83x107 respectively which are obtained through experimental modal testing is

described in the section 4.6.1.

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of damping on
first three natural frequencies for four boundary conditions are carried out in the current
section. The first three natural frequencies corresponding to the effects of damped and

undamped conditions are obtained using Rayleigh-Ritz method.
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Figures 3.18-3.21 show the effect of damping on first three natural frequencies for all
four boundary conditions. From the Figures 3.18-3.21, it can be observed that the natural
frequencies decrease for damped condition compared to that obtained for un-damped
condition. The difference between the undamped and damped natural frequencies is small

because of low values of damping.

3.4 Comparison of natural frequencies between Rayleigh-Ritz method and

conventional finite element method.

By using the properties given in the Tables 3.1, 3.2 and 3.3, the
current section presents the comparison of first three natural frequencies for simply-
supported, clamped-clamped, clamped-free and free-clamped boundary conditions of
width-tapered composite beams obtained by using Rayleigh-Ritz method with that
obtained using conventional finite element method [81]. The compared results are

summarized in the Tables 3.10-3.13 below.

Table 3.10 Comparison of natural frequencies--Simply supported boundary condition

Width ratio | Mode Rayleigh-Ritz Conventional finite %
(bg/b)) No. Method element method difference
0.01 ®] 1199 1199 0.07
[0)) 5056 5055 0.00
3 11438 11428 0.09
0.02 ®] 1203 1204 0.10
[0)) 5063 5065 0.05
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o3 11446 11446 0.00

0.05 Y 1214 1216 0.13
0)2 5077 5083 0.11

o3 11460 11470 0.08

0.1 Y 1227 1229 0.14
0)2 5088 5094 0.13

s 11464 11478 0.12

0.2 o) 1244 1246 0.14
coz 5091 5098 0.13

3 11456 11471 0.13

0.4 o1 1260 1261 0.12
w, 5086 5092 0.12

3 11439 11453 0.12

0.6 o) 1267 1268 0.11
w, 5082 5087 0.11

o3 11432 11444 0.11

0.8 o 1269 1270 0.10
(Dz 5080 5085 0.10

3 11429 11440 0.10

1 o 1270 1271 0.08
(Dz 5080 5084 0.08

o3 11430 11440 0.08

Table 3.11 Comparison of natural frequencies—Clamped-clamped boundary condition

Width ratio | Mode | Rayleigh-Ritz Conventional finite %
(be/b,) No. Method element method difference
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0.01 O] 2475 2439 1.45
0 7264 7159 1.45

03 14657 14505 1.04

0.02 O] 2511 2495 0.65
0 7328 7273 0.75

03 14754 14679 0.51

0.05 ® 2591 2591 0.01
0)) 7470 7462 0.11

03 14971 14958 0.08

0.1 ® 2674 2677 0.13
O 7614 7621 0.08

03 15188 15178 0.07

0.2 O] 2761 2765 0.14
0)) 7759 7770 0.14

03 15348 15370 0.14

0.4 ] 2836 2839 0.12
() 7874 7883 0.12

03 15485 15504 0.13

0.6 O] 2865 2868 0.11
0)) 7915 7924 0.11

03 15533 15550 0.11

0.8 O] 2876 2879 0.10
() 7931 7939 0.10

03 15552 15567 0.09

1 O] 2879 2881 0.08
0)) 7936 7943 0.08

3 15558 15571 0.08
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Table 3.12 Comparison of natural frequencies—Clamped-free boundary condition

Width ratio | Mode Rayleigh-Ritz Conventional finite %
(bp/b)) No. Method element method difference
0.01 ®] 902 904 0.14
0)) 3917 3922 0.13
03 9531 9542 0.12
0.02 ] 886 887 0.14
0)) 3851 3855 0.13
3 9385 9396 0.12
0.05 O] 841 842 0.14
0)) 3692 3696 0.13
o3 9068 9079 0.12
0.1 ®] 781 782 0.14
0)) 3511 3515 0.13
o3 8760 8771 0.13
0.2 ®] 694 695 0.13
0)) 3300 3304 0.13
™3 8456 8467 0.13
0.4 ®] 590 591 0.12
0)) 3090 3093 0.12
™3 8200 8210 0.12
0.6 O] 527 528 0.11
0)) 2974 2977 0.11
o3 8076 8084 0.11
0.8 o 484 485 0.10
[O)) 2895 2898 0.10
3 7997 8004 0.10
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o) 452 453 0.08
0 2835 2838 0.08
03 7939 7946 0.08

Table 3.13 Comparison of natural frequencies—Free-clamped boundary condition

Width ratio | Mode | Rayleigh-Ritz Conventional finite %
(be/b,) No. Method element method difference
0.01 ®] 151 150 0.66
) 2019 2015 0.22
®3 6879 6868 0.16
0.02 o 167 167 0.04
) 2075 2076 0.07
O3 6981 6985 0.07
0.05 o 199 199 0.19
) 2186 2190 0.17
®3 7173 7184 0.16
0.1 O] 233 233 0.16
) 2300 2303 0.16
®3 7348 7359 0.16
0.2 O 279 280 0.15
0} 2438 2442 0.14
®3 7531 7542 0.14
0.4 O] 341 342 0.13
0)) 2599 2603 0.12
®3 7709 7719 0.13
0.6 O] 386 387 0.11
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0 2701 2704 0.11
03 7810 7818 0.11
0.8 o) 422 423 0.10
0 2776 2779 0.10
03 7882 7889 0.10
1 o)l 452 453 0.08
0 2835 2838 0.08
03 7939 7946 0.08

Tables 3.10-3.13 show the comparison of three natural frequencies for simply-
supported, clamped-clamped, clamped-free and free-clamped boundary conditions of
width-tapered composite beams for width-ratio values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4,
0.6, 0.8 and 1. The comparisons of natural frequencies were made between Rayleigh-Ritz
method and conventional finite element method [81] for validation purpose. From the
above table, the comparison differences for simply-supported boundary condition is
<0.2%, for clamped-clamped boundary condition it is <1.5%, for clamped-free
boundary condition it is <0.15% and for free-clamped boundary condition it is
<0.7%. The comparison differences in natural frequencies from the above tables

are well accepted.
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3.5  Buckling response of linear width-tapered composite columns

In this section, buckling response of width-tapered laminated composite columns is
considered for simply-supported, clamped-clamped, clamped-free and free-clamped
boundary conditions. Rayleigh-Ritz method is used to find the critical buckling load for

width-tapered composite columns. The effects of width ratio (by/b,), laminate

configuration, length ratio and boundary conditions on critical buckling loads for width-

tapered composite columns have been shown through graphical plots.

3.5.1 Effect of width ratio (b,/b, ) on critical buckling load (P )

To study the effect of width ratio (b/b, ) on critical buckling load (P ), the linear

width-tapered composite columns with SS (simply-supported), CC (clamped-clamped),
CF (clamped-free) and FC (free-clamped) boundary conditions are considered. The width

ratio (bR/bL) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 are considered to
investigate the effects on critical buckling load (P_). The plies of ([0/90]9)s composite

beam which is made up of NCT-301 graphite-epoxy is considered to find the critical

buckling loads.

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of width

ratio (b,/b,) on critical buckling load (P_) for four boundary conditions is carried out in

the current section.
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Figure 3.22 Effect of width ratio (b,/b, ) on critical buckling load (Pcr)
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Figure 3.22 shows the effect of width ratio (b,/b,) on critical buckling load (P) for all

four boundary conditions. It can be observed that as the width ratio values increase the
critical buckling load increases for SS, CC and FC boundary conditions, but decreases for
CF boundary condition. This is because the critical buckling load (P.;) depends on the
restrained condition at both ends of the beam. The degree of restraint and the position of
restraint affect the value of stiffness of the beam. In clamped-free boundary condition, the
beam is fixed at the wider section and free at the narrower section. The critical buckling
load is highest for clamped-clamped boundary condition and lowest for free-clamped
boundary condition. The critical buckling load is second and third highest for simply-

supported and clamped-free boundary conditions respectively.

3.5.2 Effect of laminate configuration on critical buckling load (P¢;)

To investigate the effect of laminate configurations on critical buckling load (P ),
the linear width-tapered column with width ratio (b,/b,) values mentioned above in

section 3.5.1 with four boundary conditions are considered. The ply of composite column
is made up of NCT-301 graphite-epoxy and consists of 36 plies. The laminate
configurations considered are: 1) ([0/90]9)s denoted as ‘LC1’, 2) ([+45]9)s denoted as

‘LC2’, 3) ([04/£457])s denoted as ‘LC3’, and 4) ([0/£60]¢)s denoted as ‘LC4°.

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of laminate

configurations on critical buckling load (P ) for width ratio (b,/b, ) values of 0.01, 0.02,
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0.05,0.1,0.2,0.4, 0.6, 0.8 and 1 which is obtained using Rayleigh-Ritz method is carried

out in the current section.
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Figure 3.23 Effect of laminate configuration on critical buckling load (P_)
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Figure 3.23 shows the effect of laminate configuration on critical buckling load
for all four boundary conditions. From the Figure 3.23 one can observe that the critical

buckling load for variation of width ratio (b, /b)) values is largest for laminate

configuration LC3, second largest for LC1, third largest for LC4 and fourth largest for
LC2. This difference in critical buckling load is expected for different laminate

configurations because the stiffness of the column depends on bending stiffness term

% which is directly related with Q;; of the ply.
D, (x)

3.5.3 Effect of length ratio (L,/L,) on critical buckling load (P )

To study the effect of length ratio (L,/L,) on critical buckling load (P_), the
tapered column of width ratio (b,/b, ) values mentioned in section 3.5.1 for four boundary

conditions are considered. The plies of ([0/90]y)s composite beam which is made up of

NCT-301 graphite-epoxy is considered.

The geometric properties of the column considered are: the height of the column
is 0.0045 m and individual ply thickness (tx) is 0.000125 m. The column at wider section

and narrower section is shown in the Figure 3.12. ‘b’ and ‘b’ represents the wider and
narrower sections of the column respectively. ‘L, represents the length of the column at
wider section, ‘L, represents the length at width-tapered section of the column, and ‘L.’

represents the length of the column at narrower section. The total length of the column is
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kept constant. Changing the length ratio is by changing lengths of the column at wider
and narrower sections to achieve different length ratios. When the length ratio is 2, the
length of wider section is twice that of narrower section of the column. When the length
ratio is 'z, the length of wider section is half of the length of narrower section of the
column. When the length ratio is 1, the length of wider section is equal to the length of

narrower section.

By using the properties given in the Tables 3.1, 3.2 and 3.3, the effect of length

ratio (L,/L,) on critical buckling load (P_) with different width ratio (b,/b,) values for

four boundary conditions is carried out in the current section. The critical buckling loads

(P_) for all boundary conditions are obtained using Rayleigh-Ritz method.
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Figure 3.24 Effect of length ratio (L,/L,) on critical buckling load (Per)

Figure 3.24 shows the effect of length ratio (L /L,) on critical buckling load for
all four boundary conditions. The critical buckling load is highest for length ratio (L,/L;)
of 2 and least for length ratio 0.25. Another observation can be made is that as the width

ratio (b,/b,) increases from 0.2 to 1, the critical buckling load increases for simply-
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supported, clamped-clamped and free-clamped boundary condition but decreases for

clamped-free boundary condition.

3.5.4 Effect of boundary conditions on critical buckling load (P )

To study the effect of boundary conditions on critical buckling load (P ) the
tapered composite column with width ratio (b,/b, ) values mentioned in the section 3.5.1

for four boundary conditions are considered. The plies of ([0/90]9)s composite columns
which consists of 36 plies made of NCT-301 graphite-epoxy. By using the properties
given in the Tables 3.1, 3.2 and 3.3, the effect of boundary condition on critical buckling

load (Pcr) with width ratio (bR/bL) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1

for four boundary conditions is carried out in the current section.
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Figure 3.25 Effect of boundary conditions on critical buckling load (P,)
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Figure 3.25 shows the effect of boundary conditions on critical buckling load. It
can be observed that the critical buckling load is highest for clamped-clamped boundary
condition since the column is stiffer and least for free-clamped boundary condition.

Another observation can be made is that as the width ratio (b,/b,) values increase from

0.01 to 1, the critical buckling load increases for SS, CC and FC boundary conditions, but

decreases for CF boundary condition.

3.6  First-ply failure load

A laminate will fail under increasing mechanical and thermal loads. The laminate
failure, however, may not be catastrophic. It is possible that some layer fails first and that
the composite continues to take more loads until all the plies fail [79]. When a ply fails, it
may have cracks parallel to the fibers. This ply is still capable of taking load parallel to
the fibers. Here, the cracked ply can be replaced by a hypothetical ply that has no
transverse stiffness, transverse tensile strength, and shear strength. The longitudinal
modulus and strength remain unchanged. When a ply fails, fully discount the ply and
replace the ply of near zero stiffness and strength. Near zero values avoid singularities in

stiffness and compliance matrices.

In order to find the effect of static end-axial tensile force on natural frequencies
and forced response of width-tapered composite beam, the first- ply failure load for

beams of width ratio (b, /b, ) values mentioned in the section 3.5.1 is calculated.
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The ply of composite beam is made of NCT-301 graphite-epoxy. The laminate
configuration considered is ([0/90]y)s. The first-ply failure load for 0° and 90° plies in the
laminate are obtained using Tsai—Wu failure theory. The geometric properties of the

beam considered are given in Table 3.3.

3.6.1 First-ply failure tensile and compressive loads for width-tapered beam

By using the properties given in the Tables 3.1, 3.2 and 3.3, the first-ply failure
load for beams of width ratio (bR/bL) values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and
1 is carried out in the current section. The tensile and compressive failure loads for 0° and
90° plies are obtained by Tsai-Wu failure criterion. The method to find the first-ply

failure load using Tsai-Wu failure criterion is given as:

o The load applied is axial load, hence only the extensional stiffness matrix is
required. The extensional compliance matrix is calculated for ([0/90]9)s laminate

o The midplane strains for symmetric laminates subjected to Py=1 N are calculated
J The midplane curvatures are zero because the laminate is symmetric and no
bending and no twisting loads are applied. The global strain for 0° ply is found by
transformation relation. One can find the global stress for 0° ply using constitutive
relation.

o Using the transformation relation the local stresses are found.

. The Tsai—Wu failure theory is applied for 0° ply.

95



) Using the parameters Fy, Fy, Fe, Fi1, F2, Fge, and Fj, the Tsai—Wu failure theory
gives the failure load for 0° ply.

. The above steps are followed for 90° plies

J The tensile and compressive failure loads for 0° and 90° plies in the laminate are

summarized in Tables 3.8 and 3.9 respectively.

Table 3.14 Failure loads for 0° ply

Width  ratio | Tensile failure load | Compressive failure
(be/b,) (MN) load (MN)
0.01 3.1456 2.7531
0.02 3.1456 2.7532
0.05 3.1457 2.7533
0.1 3.1459 2.7534
0.2 3.1463 2.7540
0.4 3.1471 2.7547
0.6 3.1479 2.7553
0.8 3.1486 2.7560
1 3.1494 2.7566
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Table 3.15 Failure loads for 90° ply

Width  ratio | Tensile failure Compressive failure
(be/b,) load (MN) load (MN)
0.01 1.6198 0.926526
0.02 1.6198 0.926537
0.05 1.6199 0.926571
0.1 1.6200 0.926641
0.2 1.6202 0.926754
0.4 1.6206 0.926981
0.6 1.6210 0.927207
0.8 1.6214 0.927432
1 1.6218 0.927658

Tables 3.14-3.15 show the tensile and compressive failure loads of linear width-
tapered composite beam at right most end of the beam. The first-ply failure load varies
for different width ratio values of width-tapered composite beams. From the Tables 3.14-
3.15 using the Tsai-Wu theory it can be found that the failure load is minimum for the
90° ply compared to 0° ply. This is considered as first-ply failure load for ([0/90])s
laminate. The failure loads (tensile and compressive) for both 0° and 90° plies are least
for width ratio value of 0.01 and highest for 1, this is because of the change in the cross-

section of the beam. The first-ply failure load is used to find the natural frequencies and
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forced response including effect of static end-axial load. The load applied is less than the
failure load in tensile condition and lesser than the buckling load for compressive load

condition.

3.7 Forced vibration analysis of width-tapered laminated composite beams

In this section, a sinusoidal force with excitation frequency ® is applied at four
excitation points shown in the Figure 3.26 to obtain the forced response in terms of
sinusoidal transverse-displacement of width-tapered laminated composite beams for
simply-supported, clamped-clamped and clamped-free boundary conditions. Rayleigh-
Ritz method is used to find the sinusoidal transverse displacement of width-tapered

composite beams.

Figure 3.26 Schematic illustration of linear width- tapered laminated composite beams

showing the excitation points
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Effects of width ratio (b,/b ), laminate configuration, length ratio (L1/Ls),

boundary condition, and static end-axial force on sinusoidal transverse displacement of

width-tapered composite beams are discussed in the further sections.

3.7.1 Effect of width ratio (b, /b/) on forced response in terms of sinusoidal

transverse displacement

To investigate the effect of width ratio (b,/b ) on forced response in terms of

transverse displacement, the linear width-tapered composite beam of clamped-free
boundary condition at four excitation points as shown in the Figure 3.26 are considered.

The width ratio (b,/b,) values considered are 0.2, 0.5, and 1 to investigate the effect on

transverse displacement. The plies of ([0/90]¢)s composite beam which is made up of

NCT-301 graphite-epoxy is considered.

A sinusoidal force of magnitude 2N with excitation frequency o is applied at four
excitation points. The sinusoidal force 2N is chosen based on the input force measured in
experimental modal analysis using impact hammer technique as explained in section
4.7.2. By using the mechanical and geometrical properties given in the Tables 3.1, 3.2
and 3.3, the forced response in terms of transverse displacement obtained for clamped-
free boundary condition corresponding to the four excitation points. The forced response
in terms of sinusoidal transverse displacement is obtained using Rayleigh-Ritz method.

The range of frequency in the x-axis is between 1 to 10000 Hz.
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Figure 3.27 Effect of width ratio (b,/b, ) on frequency-displacement response

Figure 3.27 shows the effect of width ratio (b,/b ) on forced response in terms of

transverse displacement amplitude with excitation frequency o applied at four excitation

points for clamped-free (cantilever) boundary condition. The width ratio (b/b,) values of

the beam considered are 0.2, 0.5 and 1. From the Figure 3.27, it can be observed that for
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clamped-free boundary condition, transverse displacement amplitude is highest for width

ratio (b,/b,) value of 1, second highest for width ratio value of 0.5 and lowest for width

ratio value of 0.2. This indicates that the transverse displacement amplitude is highest for
higher width ratio values of the beam. As the width ratio value increases, transverse
displacement amplitude increases. The transverse displacement amplitude is highest at
excitation point 1 and lowest at excitation point 4. Another observation that can be made
is that the transverse displacement amplitude is highest for mode 1 and lowest for mode 3
at excitation point 1, whereas for excitation point 4, the transverse displacement
amplitude is highest for mode 1 and lowest for mode 2. This is same for all width ratio

values of the beam.

3.7.2 Effect of laminate configuration on forced response in terms of sinusoidal

transverse displacement

To investigate the effect of laminate configuration on forced response in terms of
transverse displacement, the linear width-tapered clamped-free beam with width ratio
(be/b,) values of 0.2, 0.5, and 1 are considered. The laminate configurations are chosen
differently to understand the effect of different fiber orientations on forced vibration
response. The laminate configurations considered are: 1) ([0/90]y)s denoted as ‘LC1°, 2)
([£45]9)s denoted as ‘LC2’, 3) ([04/1457])s denoted as ‘LC3’, and 4) ([0/£60]¢)s denoted as

‘LC4’. The different laminate
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A sinusoidal force of magnitude 2N with excitation frequency o is applied at four
excitation points as shown in the Figure 3.26. By using the properties given in the Tables
3.1, 3.2 and 3.3, the effect of laminate configuration on forced responses in terms of
sinusoidal transverse displacements are obtained for clamped-free boundary condition at
four excitation points for width ratio (b,/b) values of 0.2, 0.5, and 1. The forced
responses in terms of sinusoidal transverse displacement are obtained using Rayleigh-

Ritz method.
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Figure 3.28 Effect of laminate configurations on frequency-amplitude response for

width-ratio (b, /b, ) value of 0.2
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Figure 3.29 Effect of laminate configurations on frequency-amplitude response for

width-ratio (b, /b, ) value of 0.5
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Figure 3.30 Effect of laminate configurations on frequency-amplitude response for

width-ratio (b,/b, ) value of 1
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Figures 3.28-3.30 shows the effect of laminate configuration on forced response in terms

of sinusoidal transverse displacement amplitude for width ratio (b,/b,) values of 0.2, 0.5,

and 1 with excitation frequency o applied at four excitation points for clamped-free
boundary condition as shown in the Figure 3.26. From the Figures 3.28-3.30, it can be
observed that the transverse displacement amplitude is largest for laminate configuration
LC2, second largest for laminate configuration LC1, third largest for LC4 and lowest for
laminate configuration LC3. This is common at all the excitation points on the beam. The
transverse displacement amplitude is largest for angle ply laminate LC2 because the
fibers are oriented along +45° and -45°, which has lower extensional and bending

stiffness but higher shear modulus.

Another observation that can be made is the transverse displacement amplitude is

largest when the width ratio (b,/b,) value of the beam is 1. The transverse displacement
amplitude reduces as the width ratio (b,/b ) values reduce. Different laminate

configurations of composite beams give the different stiffness according to ply

orientations in the laminate.

3.7.3 Effect of length ratio (L;/L;) on forced response in terms of sinusoidal

transverse displacement

To study the effect of length ratio (L;/Ls;) on forced response in terms of

sinusoidal transverse displacement, the width-tapered composite beams of width ratio
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(by/b,) with Length ratio (Li/L;) shown in the Figure 3.12 for clamped-free boundary

condition is considered. The laminate configuration considered is ([0/90]y)s and each ply
of composite beam is made of NCT-301 graphite-epoxy. The geometric properties of the
beam are: the beam is considered with 36 plies, the height of the beam is 0.0045 m, and
individual ply thickness (tx) is 0.000125 m. A sinusoidal force of magnitude 2N with
excitation frequency o is applied at four excitation points. By using the properties given
in the Tables 3.1, 3.2 and 3.3, the effect of length ratio (L;/L3) on forced response in

terms of sinusoidal transverse displacement with width ratios (b /b ) values of 0.2, 0.5,

and 1 for clamped-free boundary condition is carried out in the current section. The
forced response in terms of sinusoidal transverse displacements is obtained using

Rayleigh-Ritz method.
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Figure 3.31 Effect of length ratio (L1/L3) on frequency-amplitude response for width-

ratio (by/b ) value of 0.2
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Figure 3.33 Effect of length ratio (L/L3) on frequency-amplitude response for width-

ratio (b,/b_ ) value of 1

Figures 3.31-3.33 shows the effect of length ratio (L,/L3) on forced response in terms
of transverse amplitude displacements with excitation frequency o applied at four

excitation points for clamped-free boundary condition. From the Figures 3.31-3.33, it can
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be observed that the transverse displacement amplitude is largest for length ratio (L,/L3)
value of 0.25 and lowest for length ratio (L;/L3) value of 2. The transverse displacement
decrease with increase in length ratio because for largest length ratio values, the length of
wider section of the beam increases, which makes the beam stiff that results in lower
response in terms of transverse displacement, lower length ratio value of the beam results

in increase in transverse amplitude displacement.

Another important observation that can be made is the transverse displacement

amplitude is largest at excitation points 1 and 2 for clamped-free boundary condition.

3.7.4 Effect of boundary conditions on forced response in terms of sinusoidal

transverse displacement

To study the effect of boundary conditions on forced response in terms of

transverse displacement, the width ratio (b,/b,) values of 0.2, 0.5, and 1 of width-tapered

composite beams with four excitation points are considered. Simply-supported, clamped-
clamped and clamped-free boundary conditions are considered. The laminate
configuration considered is ([0/90]¢)s and each ply of composite beam is made of NCT-

301 graphite-epoxy.

A sinusoidal force of magnitude 2N with excitation frequency o is applied at four
excitation points shown in Figure 3.26. By using the properties given in the Tables 3.1,
3.2 and 3.3, the effect of boundary conditions on forced response in terms of sinusoidal
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transverse displacement is presented in the current section. The forced response in terms
of sinusoidal transverse displacement is obtained using Rayleigh-Ritz method. The range

of frequency is between 1 to 10000 Hz.
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Figure 3.34 Effect of simply-supported boundary condition on frequency-amplitude

response
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Figure 3.35 Effect of clamped-free boundary condition on frequency-amplitude response
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Figure 3.36 Effect of clamped-clamped boundary condition on frequency-amplitude

response

Figures 3.34-3.36 show the effect of boundary conditions on forced response in terms
of transverse displacement amplitude with excitation frequency o applied at four

excitation points. From the Figures 3.34-3.36, one can be observe that the forced
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response in terms of transverse displacement amplitude is largest for clamped-free
boundary condition and lowest for clamped-clamped boundary condition. This is because
at clamped-free boundary condition of the beam, since the stiffness of the beam is low,
the transverse displacement amplitude if high, and for clamped-clamped boundary

condition since the beam is stiffest the transverse displacement amplitude is low.

The transverse displacement amplitude is largest for clamped-free boundary condition
at excitation point 1, second highest for simply-supported at excitation points 2 & 3 and
lowest for clamped-clamped boundary condition at excitation points 2 and 3. Another
observation that can be made that is the transverse displacement amplitude is lowest for

width ratio (b,/b,) value of 0.2 for simply supported and clamped-clamped boundary
conditions, for clamped-free boundary condition as the width ratio (b,/b, ) values increase

from 0.2 to 1, the transverse displacement amplitude increases since the beam is less stiff

at the free end of the beam.

3.7.5 Effect of axial forces on forced response in terms of sinusoidal transverse

displacement

To investigate the effects of applied end-axial (static) tensile and compressive loads
on forced response in terms of transverse displacement, the linear width-tapered

composite beams with width ratio (b,/b ) values of 0.2, 0.5, and 1 for clamped-free

boundary condition with four excitation points are considered. The ply of composite
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beam is made up of NCT-301 graphite-epoxy and the laminate consists of 36 plies. The
length (L) of the beam is 0.25 m, the height of the beam (H) =0.0045 m and individual
ply thickness (tx) is 0.000125 m. Concentrated end-axial compressive and tensile loads as
the % of critical buckling load and tensile first-ply failure load respectively are applied

respectively as shown in the Figure 3.37.

Figure 3.37 Schematic illustration of linear width- tapered laminated composite beams

with end-axial static load

A sinusoidal force of magnitude 2N with excitation frequency o is applied at four
excitation points shown in the Figure 3.37. By using the properties given in the Tables
3.1, 3.2 and 3.3, the effect of applied end-axial (static) load on forced response in terms
of sinusoidal transverse displacement obtained using Rayleigh-Ritz method is presented

in the current section. The range of frequency in the x-axis is between 1 to 10000 Hz.
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Figure 3.38 Effect of compressive end-axial static load on frequency-amplitude response

for clamped-free boundary condition for width-ratio (b,/b, ) value of 0.2
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Figure 3.39 Effect of compressive end-axial static load on frequency-amplitude response

for clamped-free boundary condition for width-ratio (b,/b, ) value of 0.5
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Figure 3.40 Effect of compressive end-axial static load on frequency-amplitude response

for clamped-free boundary condition for width-ratio (b, /b, ) value of 1
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Figures 3.38-3.40 show the effects of end-axial compressive load applied as
percentage of critical buckling load on forced response in terms of transverse

displacement amplitude for width ratio (b,/b ) values of 0.2, 0.5, and 1 with excitation

frequency o applied at four excitation points for four boundary conditions. From the
Figures 3.38-3.40, it can be observed that the forced response in terms of transverse
displacement amplitude is largest for axial load equal to 95% of critical buckling load for
simply supported boundary condition at excitation points 2 and 3. For clamped-free
boundary condition the transverse displacement amplitude is largest at excitation point 3,

since the beams gets lowest stiffness at this boundary condition.
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Figure 3.41 Effect of tensile end-axial static load on frequency-amplitude response for

clamped-free boundary condition for width-ratio (b,/b,) value of 0.2
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Figure 3.42 Effect of tensile end-axial static load on frequency-amplitude response for

clamped-free boundary condition for width-ratio (b,/b, ) value of 0.5
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Figure 3.43 Effect of tensile end-axial static load on frequency-amplitude response for

clamped-free boundary condition for width-ratio (b,/b,) value of 1

Figures 3.41-3.43 show the effects of end-axial tensile load applied as percentage of
tensile first-ply failure load on forced response in terms of transverse displacement

amplitude for width ratio (b./b,) values of 0.2, 0.5, and 1 with excitation frequency
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o applied at four excitation points for clamped-free boundary condition. From the
Figures 3.41-3.43, it can be observed that the transverse displacement amplitude for
clamped-free boundary condition is largest at excitation points 1 and 2. The transverse
displacement amplitude is largest for beams that have low stiffness. The transverse
displacement amplitude decreases as increase in percentage of tensile failure load

because the beam becomes stiffer by applying more axial tensile load.

3.8 Comparison of forced response in terms of sinusoidal transverse
displacement between Rayleigh-Ritz method and conventional finite element

method.

By wusing the properties given in the Tables 3.1, 3.2 and 3.3, the
current section presents the comparison of forced response in terms of sinusoidal
transverse displacement for clamped-free simply-supported and clamped-clamped
boundary conditions of width-tapered composite beams obtained by using Rayleigh-Ritz
method with that obtained using conventional finite element method [81]. The compared

results are presented in the Figures 3.44-3.46 below.
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Figure 3.44 Comparison of forced response in terms of sinusoidal transverse

displacement- clamped-free boundary condition
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Figure 3.45 Comparison of forced response in terms of sinusoidal transverse

displacement- simply-supported boundary condition
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Figure 3.46 Comparison of forced response in terms of sinusoidal transverse

displacement- clamped-clamped boundary condition

Figures 3.44-3.46 show the comparison of forced response in terms of sinusoidal

127

transverse displacement for clamped-free simply-supported and clamped-clamped
boundary conditions of width-tapered composite beams for width-ratio values of 0.2, 0.4,
0.6, 0.8 and 1. From the Figures 3.44-3.46, the comparison differences for simply-

supported boundary condition is between 3- 4%, for clamped-clamped boundary



condition it is between 2-4% and for clamped-free boundary condition it is
between 2-4.5%. The comparison differences in transverse displacement from the
above Figures 3.44-3.46 are well accepted. Also the differences in transverse

displacements is because of no damping is considered.

3.9 Summary

In this chapter, dynamic analyses of width-tapered laminated composite beams are
considered. In the present case, Rayleigh-Ritz method is used to find the natural
frequencies, forced response and critical buckling load (P.;) for width-tapered laminated
composite beams. The extensional and flexural stiffness distributions for linear width-
tapered composite beams are shown. The previous sections show the effect of different
width ratio values, laminate configurations, length ratios, and boundary conditions on
natural frequencies, forced response and critical buckling load (P.). The effects of
applied end-axial static force and damping on natural frequencies and forced response of
width-tapered composite beams have been investigated. The first-ply failure load of
width-tapered beam is obtained to find the effects of end-axial compressive and tensile
load on natural frequencies. From the figures given in different sections, one can

conclude the following:

. The laminate configuration LC1 is strongest in terms of extensional stiffness Aj;
and Aj,. The extensional stiffness is second highest for laminate configuration LC2, third

for LC3 and least for LC4 for all the extensional stiffnesses. The laminate configuration
128



LC2 is strongest in terms of extensional stiffness coefficients A, and Ags. The laminate
configuration LC3 is second largest for extensional stiffness coefficients A;;, Aj; and Ags
and least for Aj,. The laminate configuration LC4 is third largest for extensional stiffness

coefficients A, A, and Age but second largest for Aj,.

. The laminate configuration LC3 is strongest in terms of flexural stiffness
coefficient Dy;. The laminate configuration LC1 is second largest, LC4 is third largest
and LC2 is fourth largest. The laminate configuration LC2 is strongest in terms of
flexural stiffness coefficients D1,, D2y, Dy and Dgg. But the laminate configuration LC1
is largest in terms of flexural stiffness coefficient D, the laminate configuration LC2 is

strongest in terms of flexural stiffness coefficient Dye.

o As the width ratio (b,/b,) value increases, all three natural frequencies increase

for simply-supported, clamped-clamped and free-clamped boundary conditions.

Increasing the width ratio (b,/b,) results in increase in the value of bending stiffness

term| ——— |, which in turn results in increase in stiffness matrix coefficients. But all
D, (x)

three natural frequencies decrease for clamped-free boundary condition as the width ratio

(bg/b, ) value is increased.

J The first natural frequency is largest for clamped-clamped boundary condition of
beam constant width compared to the width-tapered beam. The change in the

fundamental natural frequency corresponds to different ply orientations of the laminate.
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The fundamental natural frequency is second largest for simply-supported, third largest

for clamped-free and fourth largest for free-clamped boundary conditions.

. For the effect of laminate configuration on first three natural frequencies of width-
tapered composite beams, the natural frequencies are largest for laminate configuration

LC3, second largest for LCI1, third largest for LC4 and fourth largest for LC2. The

stiffness of the beam depends on 1 which is directly related with Q,, of the ply.
D, (x)

As the width ratio (b/b, ) value increases from 0.01 to I, the natural frequencies increase

for simply-supported, clamped-clamped and free-clamped boundary conditions. But they

decrease for clamped-free boundary condition.

. As the length ratio (L /L,) value increases, all the three natural frequencies
increase. Also the three natural frequencies increase as the width ratio (b,/b,) increases

for SS, CC and FC boundary conditions, but decrease for CF boundary condition. The

first, second and third natural frequencies increase for width ratio (b,/b,) values from 0.2

to 0.4 but the natural frequencies remain unchanged with the increase in width ratio

(bg/b, ) values upto 1.

J The natural frequencies increase as the width ratio (b,/b,) values increase from

0.01 to 1 for SS, CC and FC boundary conditions, but decrease for CF boundary
condition. Clamped-clamped boundary condition beam has largest natural frequencies

compared to other boundary conditions whereas free-clamped boundary condition has
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lowest natural frequencies. The beam with simply-supported and clamped-free boundary

conditions is second highest and third highest in natural frequencies respectively.

. As the axial load is increased from 0 to 95 % of critical buckling load, the natural
frequencies decrease. This is because the beam becomes less stiff which results in
decrease in the natural frequencies. As the tensile axial load is increased from 0% to 95
% of tensile failure load, the natural frequencies increase because the beam becomes

stiffer thereby increasing the natural frequencies.

o The natural frequencies decrease for damped condition compared to un-damped
condition. The difference between the undamped and damped natural frequencies is small

because of low values of damping.

o The comparisons of natural frequencies were made between Rayleigh-Ritz method
and conventional finite element method. From the observations, the comparison
differences for simply-supported boundary condition is <0.2%, for clamped-clamped
boundary condition it is <1.5%, for clamped-free boundary condition it is <0.15%

and for free-clamped boundary condition it is <0.7%.

. As the width ratio values increase the critical buckling load increase for SS, CC
and FC boundary conditions, but decrease for CF boundary condition. The critical
buckling load is highest for clamped-clamped boundary condition and least for free-

clamped boundary condition.

. The critical buckling load for variation of width ratio (b,/b,) values is largest for

laminate configuration LC3, second largest for LCI, third largest for LC4 and fourth
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largest for LC2. This difference in critical buckling load is expected for different laminate

: . 1 :
configurations because the stiffness of the column depends on - which are
Dy, (x)

directly related with Q;; of the ply. The critical buckling load increases for SS, CC and

FC boundary condition, but decreases for CF boundary condition.

The critical buckling load is largest for length ratio (L;/L;) of 2 and least for

length ratio 0.25. As the width ratio (b,/b,) values increase from 0.2 to 1, the critical

buckling load increases for simply-supported, clamped-clamped and free-clamped

boundary condition but decreases for clamped-free boundary condition.

o The critical buckling load is largest for clamped-clamped boundary condition
since the column is stiffer and least for free-clamped boundary condition. As the width

ratio bR/bL) values increase from 0.01 to 1, the critical buckling load increase for SS, CC

and FC boundary conditions, but decreases for CF boundary condition.

J The first-ply failure load varies for different width ratio values of width-tapered
composite beams. From the Tables 3.14-3.15 using the Tsai-Wu theory it can be found
that the failure load is minimum for the 90° ply compared to 0° ply. The failure load
(tensile and compressive) for both 0° and 90° plies are least for width ratio value of 0.01
and highest for 1. The first-ply failure load is used to find the natural frequencies and

forced response with respect to displacement with effect of static end-axial load.
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o The transverse displacement amplitude is largest for width ratio (b,/b ) value of

1, second largest for width ratio value of 0.5 and lowest for width ratio value of 0.2 for
clamped-free boundary condition. The transverse displacement amplitude is largest for
higher width ratio values of the beam. As the width ratio value increase, transverse

displacement amplitude increases.

. The transverse displacement amplitude is largest for laminate configuration LC2,
second largest for laminate configuration LCI, third largest for LC4 and lowest for
laminate configuration LC3. The transverse displacement amplitude is largest for
laminate configuration LC2 because the fibers are oriented along +45° and -45°, which
has lower extensional and bending stiffness but higher shear stiffness. Another
observation that can be made is the transverse displacement amplitude is largest when the

width ratio (b,/b,) value of the beam is 1. The transverse displacement amplitude reduces

as the width ratio (b,/b, ) values reduce.

. The transverse displacement amplitude is largest for length ratio (L;/L3) value of
0.25 and lowest for length ratio (L;/L3) value of 2 for all four boundary conditions. The
transverse displacement decrease with increase in length ratio of the beam because for
larger length ratio values, the length of wider section of the beam increases, which makes
the beam stiff that results in lower response in terms of transverse displacement, lower
length ratio value of the beam results in increase in transverse amplitude displacement.
Another important observation that can be made is the transverse displacement amplitude

is largest at excitation points 1 and 2 for clamped-free boundary condition.
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o The forced response in terms of transverse displacement amplitude is largest for
clamped-free boundary condition and lowest for clamped-clamped boundary condition.
The transverse displacement amplitude is largest for clamped-free boundary condition at
excitation point 1, second largest for free-clamped boundary condition at excitation point
1, third highest for simply-supported at excitation points 2 and 3 and lowest for clamped-

clamped boundary condition at excitation points 2 and 3.

o Another observation can be made that is the transverse displacement amplitude is

lowest for width ratio (b,/b,) value of 0.2 for simply supported and clamped-clamped

boundary condition, for clamped-free and free-clamped boundary conditions as the width

ratio (b,/b,) values increase from 0.2 to 1, the transverse displacement amplitude

increases since the beam is less stiff at the free end of the beam.

. The forced response in terms of transverse displacement amplitude is largest for
axial load equal to 95% of critical buckling load for clamped-free boundary condition at
excitation point 1, since the beams gets lowest stiffness at this boundary condition.

. Another observation that can be made is the transverse displacement is largest for

lower width ratio (b,/b,) values of the beams as the beams is less stiff and as the width

ratio values increases the beams becomes more stiffer and hence the transverse

displacement decreases.

. The transverse displacement amplitude for clamped-free boundary condition is
largest at excitation points 1 and 2. The transverse displacement amplitude is largest for
beams that have low stiffness. The transverse displacement amplitude decreases as

increase in the percentage of tensile failure load because the beams become stiffer by
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applying more axial tensile load. The transverse displacement is largest for lower width

ratio (b, /b, ) values of the beams.

J The comparisons of transverse displacement between Rayleigh-Ritz method and
conventional finite element method show the difference in transverse displacement for
simply-supported boundary condition is between 3- 4%, for clamped-clamped boundary
condition it is between 2-4% and for clamped-free boundary condition it is
between 2-4.5%. The comparison differences in transverse displacement are well

accepted.
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CHAPTER 4

EXPERIMENTAL VALIDATION FOR WIDTH-TAPERED COMPOSITE

BEAMS

4.1 Introduction

The laminated composite beams are basic structural components used in a variety of
engineering structures such as airplane wings, helicopter blades and turbine blades as
well as many others applications in the aerospace, mechanical and civil industries. This is
due to their excellent features, such as high strength-to-weight and stiffness-to-weight
ratios, the ability of being different strengths in different directions and the nature of
being tailored to satisfy the strength and stiffness requirements in practical designs. An
important element in the dynamic analysis of composite beams is the computation of
natural frequencies. This is important because composite beam structures often operate in
complex environmental conditions and are frequently exposed to a variety of dynamic

excitations.

In this chapter, detailed procedures of manufacturing and modal analysis of
composite beams for evaluating the structural properties are described. Pre-impregnated
NCT-301 graphite/epoxy material supplied by NEWPORT Company, USA is used in the
present thesis for all experiments and analysis. The mechanical properties (longitudinal

modulus E,, transverse modulus E,, shear modulus Gy, Poisson’s ratio vi,) of the ply of
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composite laminate has been tested according to ASTM specification D 3039 M-00 and

ASTM specification D 3518-94-01 in a previous work [24].

The composite laminates are manufactured using the fabrication of fiber reinforced
with polymer matrix which are placed or shaped into a structural form. Vacuum bag is
prepared for laminate curing. The laminate which is prepared using vacuum bag is cured

using autoclave.

Modal testing is the process of determining the modal parameters of the structure for
all modes in the frequency range of interest. The most popular technique used for modal

testing is impact or hammer excitation technique [65].

The frequency response measurements are made by using PULSE™ system, the
multi-analyzer system type 3560 from Bruel and Kjaer and a four-channel signal
analyzer. The excitation force from the impact hammer is measured from the force
transducer mounted at the tip of the hammer and resulting response is supplied to one of
the inputs of signal analyzer to amplify the input signals. The response is measured by an
accelerometer and the resulting signal is supplied to another input of signal analyzer to
amplify the output signals. The frequency response obtained here represents the
structure’s accelerance, since the measured quantity is the complex ratio of the
acceleration to force in the frequency domain. For impact hammer excitation, the
accelerometer response position is fixed and used as a reference position. The hammer is
used to excite the beam at every translational degree of freedom corresponding to the

degrees of freedom in the model.
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4.2 Manufacturing of composite laminate

The multitude of tasks involved in the manufacturing of composite laminates can be

categorized into two phases:

1) Fabrication

2) Processing

4.2.1 Fabrication

In the fabrication phase the fiber reinforcement and matrix material are placed or
shaped into a structural form. In the present work a flat plate is manufactured from layers

or plies of pre-impregnated NCT-301 graphite/epoxy material.

Tooling: All fabrication methods require tools to provide the shape of the composite
structure/laminate during the processing. In this case a flat aluminum tool is used to

manufacture flat composite plate.

Secondary materials for laminate curing preparation: Many secondary or specialty
materials are used in composite manufacturing such as release agent, release films,
bleeder plies, breather plies, vacuum bag and sealant tape. Each of these materials
provides specific function. A typical lay-up of a composite structure prepared for

autoclave processing is shown in Figure 4.1.
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Hand lay-up:

The hand lay-up of pre-impregnated materials is the oldest and most commonly
used method where the production volume is low and other forms of production would
prove to be expensive. Each step in hand lay-up of a flat composite laminate must follow
in successive fashion in order to obtain a high quality composite laminate after final

processing. The major steps that are followed in the hand lay-up of prepreg are briefly

highlighted:

. At first, the surface of the plate is cleaned and a release agent is applied followed
by one layer of the release film as shown in Figure 4.2 a. This allows the part to easily

separate from the mold after curing.

o The preimpregnated material is cut from the prepreg roll according to the required

dimension of respective specimen.

. A ply is oriented and placed upon the tool and subsequent plies are placed on top
of the lamina according to the laminate configuration. Compaction pressure is applied by
the use of a roller device as shown in Figure 4.2 b to adhere the plies and remove

entrapped air that could lead to voids or delamination in between the layers.

o After completing the ply gathering, a sheet of porous release film, the bleeder ply,
the breather plies and vacuum valve are placed on the top of the laminate one after the as

shown in the Figures 4.2 c- 4.2 g.
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J After completing all the lay-up of all the secondary material plies, the sealant tape
is placed around the periphery of the laid laminate and the vacuum bag is placed over the

entire lay-up as shown in Figure 4.2 h and Figure 4.2 1.

J The entire assembly is placed inside an autoclave and the vacuum is connected to
vacuum pump of the autoclave to check the leaks between sealant and vacuum bag before

starting the autoclave for processing as shown in Figure 4.2 j.

RELEASE FILM

BAGGING FILM
BLEEDER
BHEATHER
PEEL PL'I DR
VACUUM HOSE RELEASE F]LM PRESSURE
SENSITIVE

VACUUM ﬁm&wm&&&wﬁ&&/&ewy(maw&g TAPE

VALVE

B
TAPE A E— - %
— L LAMINATE
A p—
SEALANT
TOOL \ \
AN DA
RELEASE PLY OR

RELEASE FILM

Figure 4.1 Typical autoclave layup (Source: Carbonfiberguru.com)

a (Hand layup) b (Compaction pressure using roller)
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e (breather and bleeder plies) f (vacuum valve)

g (vacuum valve fixed) h (application of sealant tape)
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i (vacuum bag prepared) j (vacuum valve fixed to the autoclave)

Figure 4.2 Hand layup process of NCT-301 graphite/epoxy composite laminate

4.2.2 Processing

Autoclave curing:

The autoclave shown in the Figure 4.3 is used to provide the necessary heat and
pressure required to consolidate and cure the composite laminate. The major advantages
of the autoclave are that it represents a flexible method to apply required pressure and

temperature to a composite part, which is controlled by the numeric controller.
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Figure 4.3 Photograph of typical Autoclave for curing composite materials

Figure 4.4 Photograph of NCT-301 graphite/epoxy composite laminate post autoclave

curing

The cure temperature and pressure are selected to meet the following

requirements:
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J To cure the resin uniformly and to attain a specified degree of cure in the shortest

possible time.

J To maintain the temperature of any part inside the prepreg this should not exceed

a prescribed limit during the cure.

. To have sufficient pressure to squeeze out all the excess resin from every ply

before the resin becomes gel at any location inside the prepreg.

. Pressurization also helps to bond layers and remove persistent voids in the matrix.

In autoclave the temperature plays an important role in initiation of cross-linking and
acceleration of curing process. This cure cycle was given by NEWPORT Company, USA

for the current batch of pre-impregnated NCT-301 graphite/epoxy material.

In the cure cycle the laminate is heated from room temperature (RT) to 135° C at
constant rate in 70 minutes and it is held at this temperature for a period of 60 minutes.
There is a single dwell in the current cure cycle. A constant pressure of 55-psi is
maintained inside the autoclave throughout the processing time. Then the laminate is
cooled to room temperature at constant rate. A typical cure cycle for NCT-301

graphite/epoxy composite is shown in the Figure 4.5.

144



135

Temperature (deg.C)

RT

A\

A
Y
4
Y
A
Y

70 60

Time (min)

Figure 4.5 Cure cycle for NCT-301 graphite/epoxy composite material

4.3 Inspection of NCT-301 graphite/epoxy panel by Laser ultrasonic

Ultrasonics is based on the principle of transmitting high frequency sound into a test
part and monitoring the received ultrasonic energy. This novel technology is based on the
use of lasers for the generation and detection of ultrasound and can be used to measure
thicknesses, detect and image surface or bulk flaws in complex structures, and

characterize material microstructure in service or during processing as explained in Refs.

[72] and [73].
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Figure 4.6 Photograph of NCT-301 graphite/epoxy panel in a fixture

Figure 4.7 Photograph of NCT-301 graphite/epoxy panel - C scan (different colors show

the variation in time (thickness) in the sample)

Figure 4.8 Photograph of NCT-301 graphite/epoxy panel- BY-Scan #59
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Figure 4.10 Photograph of NCT-301 graphite/epoxy panel- BY-Scan #220

3.8us

Figure 4.11 Photograph of NCT-301 graphite/epoxy panel- BX-Scan #91
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The NCT-301 graphite/epoxy composite laminate made by using autoclave curing is
inspected for detection of flaws and defects using laser ultrasonic method. The laser
ultrasonic inspection was done with the help of National Research Council of Canada’s
(CNRC) Industrial Materials Institute. The flaws or defects in the composite laminate
may be due to voids, when prepregs are not fully impregnated, inadequate vacuum may

result in internal defects such as delamination.

Ultrasonic data can be collected and displayed in a number of different formats.
The three most common formats are A-scan, B-scan and C-scan presentations. Each
presentation mode provides a different way of looking at and evaluating the region of

material being inspected. In the current tests, B and C-scan are conducted.

The B-scan presentations are a profile (cross-sectional) view of the test specimen.
In the B-scan, the time-of-flight (travel time) of the sound energy is displayed along the
vertical axis and the linear position of the transducer is displayed along the horizontal
axis. From the B-scan, the depth of the reflector and its approximate linear dimensions in
the scan direction can be determined. The C-scan presentation provides a plan-type view
of the location and size of test specimen features. The plane of the image is parallel to the
scan pattern of the transducer. The C-scan presentation provides an image of the features

that reflect and scatter the sound within and on the surfaces of the test piece.

From the Figure 4.7, it can be observed from the C-scan presentation, the green
and yellow patches represent the defects as delaminations in the laminate. From the

Figures 4.8 - 4.11, the B-scan presentations are a profile (cross-sectional) view of the test
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specimen. The different colours show the variation in the thickness at different positions
in x- and y-axis respectively. Care is exercised to discard the areas where defects are
present by cutting the laminate using water-cooled rotary-type diamond cutter. The
portions which are intact are only used for modal testing of composite beams as discussed

in section 4.4.

4.4  Water-cooled rotary-type diamond cutter

After the autoclave cure process and laser ultrasonic inspection, NCT-301
graphite/epoxy composite laminate is cut to the required size by using water-cooled
rotary-type diamond cutter shown in Figure 4.12. The laminate is cut in to five specimens
of beams of ([0/90]y)s laminate configuration with the geometric specification given in

Table 4.1. All the test specimens are finished by abrading the edges on a fine

carborundum paper.

—

- L .

Figure 4.12 Pictorial representation of water cooled-rotary type diamond cutter and

digital protractor
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Figure 4.13 Pictorial representation of composite beam fixture table and cutting position

The taper profiles of the composite beams are cut using the digital protractor shown
in the Figure 4.12. The composite beams are clamped on the fixture table with desired
taper angle measured using the digital protractor as shown in the Figure 4.13. The

composite beam is cut using the cutter manually following all the safety measures.

As water-cooled rotary-type diamond cutting is a hand operation, the quality of the
cut is strongly depends on the skill of the operator. The cost and maintenance of the
process is economical. Factors like quality, speed and feed rate of the cutter depend on
the quality of the cut specimen. Traditional mechanical cutting methods destroy the
structural integrity of such materials. Abrasive water jet trimming has emerged as the
preferred method for trimming cured composite laminates. The advantages of abrasive
water jet cutting are that consistent delamination-free edges are produced and the tooling
requirements are simpler because the cutting path is numeric controlled. However to
process using abrasive water jet, large expensive numeric controlled machine tools are

required [78].
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4.5  Experimental modal analysis

Most practical noise and vibration problems are related to resonance phenomena,
where the operational forces excite one or more of the modes of vibration. Modes of
vibration which lie within the frequency range of the operational dynamic forces

represent potential problems.

An important property of modes is that any free or forced dynamic response of a

structure can be reduced to a discrete set of modes.

The standard modal parameters are:

o Modal frequency

o Modal damping and

o Mode shape

The modal parameters of all the modes, within the frequency range of interest,
constitute a complete dynamic description of the structure. Hence the modes of vibration
represent the inherent dynamic properties of a free structure (a structure on which there
are no forces acting). In this thesis the modal parameters such as modal frequency and
modal damping are determined. The mode shapes are not found out due to non-

availability of post-processing software.

Through an impact hammer experimental test, determined are the FRF’s (Frequency

Response Functions) which relate to the response given by the specimen when loaded

151



with a signal, allowing for determination of the natural frequencies and damping factors,
as shown in the Figure 4.14 as block diagram of experimental testing. This was done by
fixing the beam specimen in a rigid support with one of its sides free to vibrate, as a
cantilever beam. The impact hammer is used to give the input load (pulse) to the
specimen, and the signal analyzer is set from 0 Hz to 1600 Hz. This output was captured
by the accelerometer and together with input signal were amplified using Bruel and
Kjaer’s (B&K) 4-channel portable PULSE™ 3560 multi-analyzer system giving the FRF

known as accelerance that is given by acceleration/force.

The dynamic behavior of the composite beams can be viewed as a set of individual
modes of vibration, each having a characteristic natural frequency, damping and mode
shape. The modal parameters are determined from a set of frequency response
measurements between a reference point and a number of measurement points. The
modal frequencies and damping can be found from all frequency response measurements
on the beams (except those for which the excitation or response measurement is in a
nodal position, that is, where the displacement is zero). The experimental results were
used to validate the analytical results obtained using Rayleigh-Ritz method as shown in

Chapter 03.

In the experimental work, the composite beam specimens shown in the Figure 4.15
are prepared from the NCT-301 graphite/epoxy beams of laminate configuration
([0/90]9)s and geometric configurations given in the Table 4.1. The composite beam is
mounted on a corner of a big rigid table with vice/fixture providing sufficient clamp force

at the root of the beam to simulate fixed end, similar to cantilevered boundary condition
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as shown in Figure 4.23. The beam is excited by the impact hammer and provides signal
to the amplifier. Response accelerometer is attached at the free end of the beam with
bees’ wax glue and provides response to the amplifier. Dual mode amplifier is used to
amplify the signals from the transducers (hammer and response) and they are supplied to
the 4-channel portable PULSE™ 3560 multi-analyzer system. It is determined that the
beam specimen is divided in equal lengths into four points where the roving hammer is
excited at these points marked on the beam specimen as shown in Figure 4.23. The point

of excitation is made such that it does not coincide with nodal point.

@
B~
Ny
@
Figure 4.14 Block diagram of experimental modal analysis instrumentation

From the Figure 4.14, 1 represents: Fixed-free (cantilever) composite beam, 2:
Impact hammer with transducer at the tip, 3: Response transducer (accelerometer), 4:
Oscilloscope, 5: Dual mode charge amplifier, 6: 4-channel Portable PULSE, 3560 multi-

analyzer system, 7: Personal computer.
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Figure 4.15 Photographs of NCT-301 graphite/epoxy composite beam specimens

Table 4.1 Specifications of width-tapered composite beams

Specimen Length, L Width, (m) Width Height, H | Mass, m
(m) ratio (m) (g)
br br br/ br
1 0.25 0.015 0.003 0.2 0.0045 26.87
2 0.25 0.016 0.006 0.4 0.0045 27.03
3 0.25 0.016 0.009 0.6 0.0045 27.66
4 0.25 0.015 0.012 0.8 0.0045 37.46
5 0.25 0.016 0.016 1 0.0045 38.36
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4.5.1 Measurement equipments and apparatus

The experimental set-up used for mobility measurement is explained below.
There are three major items: (i) Excitation mechanism, (i1) Transducer system and (iii)

An analyzer, to extract the desired information.

4.5.1.1 Test fixture

The test fixture consists of a rigid mounting support which provides a clamp for

the root of the beam.

4.5.1.2 Signal analyzer

PULSE™, the multi-analyzer system type 3560, is used as a data acquisition
front-end hardware as shown in Figure 4.16. The Pulse analyzer is connected to the
computer for real-time signal processing. An oscilloscope of type 54624 A from Agilent
technologies shown in Figure 4.17, is used to monitor the quality of the signals from

impact hammer and accelerometer.
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Figure 4.17 Photograph of typical oscilloscope

4.5.1.3 Charge amplifiers

The role of the amplifier is to strengthen the signals generated by the transducers
so that they can be fed to the analyzer for measurement. The charge amplifiers used in
this experiment are Kistler’s three channels - Dual mode amplifier type-5804 A and
Intertechnology’s PCB 482A 04 piezoelectric amplifier as shown in Figures 4.18 and
4.19 respectively. These amplifiers are used for conditioning of signals from piezoelectric

156



transducers, such as charge accelerometer, and impact hammer to Pulse multi-analyzer

system.

Figure 4.18 Photograph of typical Dual mode amplifier

Figure 4.19 Photograph of piezoelectric charge amplifier
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4.5.1.4 Impact hammer

The specification of the impact hammer used in the experiment is as shown in the
Figure 4.20. Impact force: 0 to 222.5N, sensitivity: (£20%) (22.5 mV/N), measurement

range: 222 N pk, hammer mass: 4.8 g.

The hammer consists of an integral integrated circuit piezoelectric quartz force
sensor mounted on the striking end of the hammer head. The sensing element functions to
transfer impact force into electrical signal for display and analysis. The hammer is
connected to PCB 482A 04 piezoelectric amplifier to amplify the piezoelectric signals to

Pulse multi-analyzer system.

Figure 4.20 Photograph of typical impact hammer
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4.5.1.5 Accelerometer

For response measurement, the transducer used in the experiment is type 4381-
piezoelectric accelerometer as shown in Figure 4.21. When the response transducer is
chosen, the structural loading caused by mounting the transducer must be taken into
consideration. Loading the structure may alter the modal parameters. The mass loading
effect should be minimal [69]. The accelerometer is mounted to the beam specimen by
applying a thin layer of beeswax. The specifications of the accelerometer used in the
experiment are: Frequency: 0.1 - 4800 Hz, temperature: -74 - 250 °C (-101.2 - 482.0 °F),

Weight: 43 grams, Sensitivity: 100 pC/g, Maximum Operational Level (peak): 2000 g.

Figure 4.21 Photograph of typical response transducer mounted below width-tapered

beam
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4.5.2 Impact excitation

For mobility measurements the structure must be excited by a measured dynamic
force. The waveform produced by an impact is a transient (short duration) energy transfer
event. The spectrum is continuous, with a maximum amplitude at 0 Hz and decaying

amplitude with increasing frequency.

The duration, and thus the shape of the spectrum, of an impact are determined by
the mass and stiffness of both the impact and the structure. Advantages of hammer testing
are that they are fast as only few averages of impact measurements are required, no
elaborate fixtures are required, there is no variable mass loading of the structure, and it is

portable and relatively inexpensive.

Figure 4.22 Photograph of experimental modal analysis test set-up
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4.5.3 Impact testing requirements

Even though impact testing is fast and convenient, there are several important
considerations that must be taken into account in order to obtain accurate results. They

include:

Pre-Trigger delay: Because the impulse signal exists for such a short period of
time, it is important to capture all of it in the sampling window of FFT analyzer. To
ensure that the entire signal is captured, the analyzer must be able to capture the impulse

and impulse response signals prior to the occurrence of the impulse.

Force and exponential windows: The force window is used to remove noise from
the impulse (force) signal. The force window preserves the samples in the vicinity of the
impulse, and removes the noise from all of the other samples in the force signal by
making them zero. The exponential window is used to reduce leakage in the spectrum of

the response.

Accept/reject capability: Since accurate impact testing results depend on the skill
of one doing the impacting, FRF measurements should be made with spectrum averaging.
In this experiments, 10-sampling size is selected for the accurate measurements. If in case
one or two of the impacts during the measurement process may be bad hits, an FFT
analyzer designed for impact testing will have the ability to accept or reject the result of

each impact.
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4.5.4 Response transducer calibration

Most commercial transducers are supplied with calibration certificates, but a

calibration test before every mobility measurement is strongly recommended [57]:

. To check the integrity of the transducers, to detect any errors in the cables,
connectors, conditioning and analyzers, to check that all gain, polarity and attenuator

settings in the system are correct.

o To check the pair of transducers being used, are matched in the frequency band of
interest.
. To calibrate the entire system is to measure the mobility of the structure.

Generally the known mass is used as reference.
From Newton’s second law:

Force= mass x acceleration

Therefore, Accelerance is given as:

j 1
A@) = acceleration _

(4.1)
force mass
A known mass suspended so that it moves in only one direction, with an
accelerometer attached to detect the motion, can be used for hammer techniques. This
gives a ratio calibration, ensuring correct mobility measurements, rather than an absolute

calibration of the individual transducers. For this purpose, even a hand-held mass is
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adequate. If the calibration mass is considered to be absolutely rigid, in the frequency

range of interest, the force and acceleration waveforms are equal.

4.6 Modal testing for damping factor

Damping characteristics in composite materials is an important factor of the
dynamic behavior of structures, controlling the resonant and near resonant vibrations and
thus prolonging the structure service life under fatigue and impact loading. Generally
composite materials have more damping capacity than metals. Damping in vibrating
composite structures refers to a complex physical dynamic nature including from both
constituent level (visco-elastic behavior of matrix, damping at fiber-matrix interface) and

laminate level (layer orientation, inter-laminar effects, stacking sequence, etc) [65].

It is difficult to determine accurately the damping parameters by an analytical

approach. The experimental method is very desirable.

4.6.1 Damping loss factor

The methodology of calculating damping loss factor using half-power bandwidth

technique is explained in detail in the Ref. [65].

From the experimental modal testing , the extracted values of damping loss factor

(77), damping ratio (&), mass proportional damping constant (« ) and stiffness
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proportional damping constant ( /) from three specimens are obtained using half-power

bandwidth technique [65] which are presented in the Table 4.2.

Table 4.2 Damping loss factor measurements

nl £l n2 g2 a p
Specimen-1 (Uniform beam)
Exci-1 0.0378 0.0189 0.0220 0.0110 2.611 | 3.44x107
Exci-2 0.0094 0.0047 0.0185 0.0093 0.497 | 3.59x10™
Exci-3 0.0200 0.0100 0.0160 0.0080 1.343 | 2.73x10"°
Specimen-2 (Uniform beam)
Exci-1 0.0412 0.0206 0.0152 0.0076 3.082 | 1.86x10™
Exci-2 0.0420 0.0212 0.0131 0.0065 3208 | 1.31x10™
Exci-3 0.0414 0.0207 0.0207 0.0103 2.835 | 3.06x10"
Specimen-3 (Uniform beam)
Exci-1 0.0318 0.0159 0.0170 0.0085 2.162 | 2.65x10%
Exci-2 0.0345 0.0172 0.0166 0.0083 2361 | 2.44x10™
Exci-3 0.0193 0.0097 0.0103 0.0052 1203 | 3.77x10"
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In the Table 4.2, Exci-1 stands for first excitation and so on. The calculated
damping properties are used to calculate average proportional mass and stiffness
constants to form a Rayleigh’s damping matrix [C] as a linear combination of mass and

stiffness matrices for free and forced vibrations determined using Rayleigh-Ritz method

4.7 Experimental modal analysis results

This section presents the results from experimental investigation, where impact
testing at different excitation points as shown in Figure 4.23 with cantilevered boundary
condition was carried out. The output data from the modal testing namely coherence
function, time and auto spectrum for hammer impact and transducer response and

Frequency Response Functions are presented.

The experimental modal analysis test was carried out at Concordia Centre for
Composites (CONCOM) testing laboratory. The measured modal parameters are served

as a reference for further comparison with solution obtained from Rayleigh-Ritz method.

&

Figure 4.23 Schematic illustrations of composite beam with excitation points
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From the Figure 4.23-a) Fixed-free (cantilever) composite beam, b): Impact hammer with

transducer at the tip, ¢) Response transducer (accelerometer).

4.7.1 Coherence function at different excitation points for width-tapered

composite beam

The coherence function provides a means for assessing the degree of linearity

between the input and output signals. The coherence function is defined as follows [72]:

|GXF (50)|2
Gx (@).Ggp(w) ’

y(w)’ = 0<y(w) <1 (4.2)

where G, is the cross-spectrum between the force and response and G, and G, are the

autospectra of the response and force respectively. In experimental modal testing, the
coherence function at each excitation point is obtained with the help of PULSE software

rather than by the direct use of Equation (4.2) given above.

The bounds for coherence function are 1, for no noise in the measurements, and 0
for pure noise in the measurements. The interpretation of coherence function is that for
each frequency wit shows the degree of linear relationship between the measured input
and output signals. The coherence function is used to detect possible errors, during

mobility measurements.
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By using the impact excitation technique described in the Section 4.5.2, test
specimens of NCT-301 graphite/epoxy beam with laminate configuration ([0/90]y)s and
geometric specification given in Table 4.1 are used to find the coherence function for

different width ratio (b./b,) values for fixed-free (cantilever) boundary condition of

width--tapered composite beam at four excitation points as shown in Figure 4.23.
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Figure 4.24 Coherence function for width ratio (b, /b, ) of 0.2 at four excitation points
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Coherence-for width ratio (bRYBL)=0.4
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Figure 4.25 Coherence function for width ratio (b,/b, ) of 0.4 at four excitation points
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Figure 4.26 Coherence function for width ratio (b,/b, ) of 0.6 at four excitation points
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Coherence-for width ratio (bR/bBL)}=0.8
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Figure 4.27 Coherence function for width ratio (b,/b,) of 0.8 at four excitation points
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Figure 4.28 Coherence function for width ratio (b,/b,) of 1 at four excitation points
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Figures 4.24-4.28 show the coherence functions obtained through impact testing for
fixed-free (cantilever) boundary condition for width--tapered composite beam at four
excitation points. One can observe from the Figures 4.24 - 4.28 that for all width ratio

(be/b,) values of the beams, the coherence function is poor at the initial frequency values.

This is because of initial disturbance during impact excitation. By using the force
windowing technique these signal values are tailored for good input signal values for
FRF calculations. Another observation made is that at excitation point 3 for width ratio

(be/b,) values of 0.4 and 0.6, the coherence values are less than 0.5. This is because the

excitation point is close to a node point, coherence may be extremely low. This is
acceptable however, since the modal strength at this point is weak and not important for

the analysis [69].

4.7.2 Time response and autospectrum response at different excitation points for

width-tapered composite beam

An autospectrum is calculated by multiplying a spectrum by its complex
conjugate (opposite phase sign), and by averaging a number of independent products.
When the complex conjugate of one spectrum is multiplied by a different spectrum we
obtain the cross-spectrum. The cross-spectrum is complex, showing the phase shift
between the output and input, and a magnitude representing the coherent product of

power in the input and output.
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The duration of an impact is usually very short compared to the record length.
The window used is the transient window, this takes the data unweighted during the
period of contact, and sets it to zero for the remaining record. If we observe the time
history of the impact force, negative signals can be observed. In a physical sense this is
prohibited, but since we are measuring the force within a limited frequency range
(truncation), this short ringing is a correct representation in the particular frequency range
(leakage) [70]. The length of the force window must be chosen such that the entire signal
is included. The response to an impact is a free decay of all the modes of vibration. The
exponential window is used when there is a leakage error or poor signal-to-noise ratio in
the measured data. In the case of leakage error, the response is forced to decay
completely within the record so that leakage due to truncation is avoided. For poor

signal-to-noise ratio, the noise is attenuated by the window [70].

By using the impact excitation technique described in the Section 4.5.2, test
specimens of NCT-301 graphite/epoxy beam with laminate configuration ([0/90] ¢) s and
geometric specification given in Table 4.1 are used to find the time response and FRF
autospectra for input 1 and input 2, which are for impact hammer transducer and response

accelerometer respectively for different width ratio (by/b,) values of width-tapered

composite beam at four excitation points as shown in Figure 4.23.

171



(zH)fauanbary

003 00F 0OZL OOOL Q03 Q09 00F O0C O

#1mod nonEeoxg
pymoduoneimyy —

7modnoneimry — —
}.,r Twod nonEyxg --- - -

7 0=(1074a) one: ygoum{zandu) wnoadsopny 4

(REEITTE

el

| g 90 70 0

+ymod nonENaxy
H & mod vomeimn] — —
7 mrod nomEIN] — —
1 ur0d DOQEINT - .o -.n

7 0={19040) one yipimk oy (7 nduy) auwi

000k

=
=]
L

00

0004

=
(. suiuojeia|anog

(- sSwluoijelajaooy

(zH)fauanbaq

003L 00FL OOZL 00OL 008 009 DOF 002

#1mod noneyary

M gomoduoneneg —
7 imod nonEyg —
T Imod wonENg oo

2 0=(1a70) ones yypun{ ) winisoadsomy fy

[RESENTE

| 80 90 F0 0

0 nonEg
rl e woduonemy — —
7 Jmod nonEEg — —
TImI08 BODEIN - oveo e

7/0={1074) 2ex ygpise oy (|, yndlu) &

(M) apnydung

(M) 2pnypdurg

29 Time response and autospectrum response for width ratio (b,/b,) of 0.2 at

4.

Figure

four excitation points
172



(zu)fauanbaly

007

003L 007k 00ZL OOOL QOB (09

#1mod nonENaxg

¢ moduomEyr] — —
7modvomEmry — —

‘_,z_f 13mod uomEIDXNg

——————
70=(10740) onles yipu{zindu) wniadsomy 444 -
(788)awnp
| 80 50 0 &0 0
T T T T 009
r 00t
r 00z
0
H #mod noneyoxg 00z
¢ jmod nomEyaNy — —
H zimod noneymeg — i
T imod HomENINT —eeeeen
: : : 009

7 0={10749) onex yipisk 1o} 7 nduy) ewi |

(= _swluonelajaaoyy

[z _Swluonela|aaoyy

009+ 00%l

(zu)fouanbaiy
008 003 00F

00z+ 000k

002

+ymod nonEINg

£ mod woneqmry — —
7 nod wonEEy — —
TImod nomeLs - e nn e

0=(19740) onex pinw{ induf) wnaoadsoiny L4

REREIY
| 80 90 70 &0
T T T T
H #Imod nonEimg
£ moduonerg — —
H zimod woneymrg — —
TIu0d UODEINT .- -...-

7 0=(10743) ane uypiak 1oy (). nclu) s

(M) 2pnudung

(M) 2pnydurg

30 Time response and autospectrum response for width ratio (b, /b,) of 0.4 at

4.

Figure

four excitation points
173



(M) apnudurg

(z4)fauanbayy (zHfouenbaiy
003, OOPL 00ZL 00Ok Q0 005 0OF OO 0 03 oOFk  00Zk 000K OB 009 oy 002 ce
T T T T T T T . i T T T T T T I3
yImod wonEIDIg
£ mod womERy — —
7 mod womeRy — —
,.S
]
a
o
o
g
A5
T2
3
1]
J
n.E §mod nonEENy ——
gmoduoneeg — 0
zimod monEDKg — — ¢
T m0d WORENAKT .o
) ) ) ) ) I n . . L . . L 0
50={7a4a) ones ypu-{zindu)) wiugdadsomny Jy4 : 90={1a7a) e tput{Indu) winsyaadsiny 4 )
(segfauny (oas)awn|
LoE) g0 0 90 50§00 70 10 0 b m_D m_g H,D m,D m,o q,o m,D N_D __D Dﬁ.
T T T T T T T T T 00g-
r 1009 e 0
r 1007 L 4
)4
3]
r 0z 8
7 r 1
o
U
J
= r 1t
. fwz @
- z 1
1l #utod wonEY@Eg 100v # mod uonEInNg
£ wod wonEE] — — g Imodwoney — —
H zmoduonsmyy — 1009 [ zmod nomesmng — — 78
Touod wonEy ... Tamodwonery -.o....
1 1 L L L L L L Dmm 1 1 Il Il Il Il Il 1 1 m
9 0={ 1) o yipu o (7 nd) sy 970={Tana) ey yypun 1} () awy

(M) Bpnudung

174

d autospectrum response for width ratio (b,/b,) of 0.6 at
four excitation points

1me reésponse an

31 Ti

4

igure

F



(z1)fouanbaiy

00z

fmoduonEEeg
£ utod vonENy — —
7 utod vonENYy — —
T Y0d TOQEXT - --- e

003 00vh 00ck OOOb Q0B 003 Q0%
T T T

(o8s)atun

90 70 ¢l

0=19748) ones yipuk{z3ndu) wnnsadsoiny

Famod nonEnr] ——
gamodvogeyyg —
7modvoneymyy
13Wed ROREIRE] ...

g0

) g 1o} (Z 1ndu)

00%

=1
=
=

=

=1
=
=

—
=
=

=1
=
=

SWUOIjEIa| 20D

G

SWuoijEla| 200

Lo

(z1)/fauanbai

08 009 00y

Famod nonEnry ——
gamodvogeyyg —
7wedroREE] — —
1u0d nonEyoYy -

P A 1
T T T

M) =pnydung

§0=F1n4g) ones o

ndu) wn

(23]t
50 70 £

Ipadsony 44

#3mod noneymry
gimod nonenorg
7umoduoneyog —
13004 UORENDNT .o eevee

(M) @pnupdurg

§0={1074) oner o

1 0} (| ) e |

4.32 Time response and autospectrum response for width ratio (b, /b, ) of 0.8 at

Figure

four excitation points

175



(zH)fauanbaiy

009 00rk 00z O0OL OB 009 OOF 002
T T T

+1mod noneyog
gymoduogEyDry —
7 M0 NOBEMIN] — —

T W0 HOREIRK] -------

1=(19749) ol yapu{Zandu) wnzadsoiny fy

(as)awn)

b0 80 L0 90 50 v0 €0 20 W0
T

+Imod RoREIRE] ———
gymoduogEyDry —
7ymoduoneyory —
Tuod woneIEg ..o

=

=107 e ey (7 wndu) ew

005

(- SWIUOIIEIS |80y

(= swiuollela|aooy

(zH)fauanbal4

003 0oy 002 000K 00B 009  (Q0F
T T T

§Imod uonENANT ———
£ imoduonEy —
7 vwod nonEDK — —
T imod UOmENDKT . - ....

=(19749) oy yipe{ ) wn

(as)awi

adsoiny 444

0

!

90 50 10 €0
T

mod uonENaN ———
£ imoduonEy] —
| zmoduoneyary —
1 vutod nomENNg L.

) o) o Joj

| ncy) eu

(N) spnyduny

(N} spnudurgy

4.33 Time response and autospectrum response for width ratio (b, /b, ) of 1 at four

Figure

excitation points

176



Figures 4.29 - 4.33 show the time response and autospectrum obtained by impact

testing for different width ratio (b,/b,) values for fixed-free (cantilever) boundary

condition of width-tapered composite beam at four excitation points. It is observed from

the Figures 4.29 - 4.33 that for all width ratio (b/b,) values of the beams, the impulse

force is highest at excitation point 4 since the stiffness of the beam is higher at this point.
The time response and autospectra of inputs 1 and 2 are for impact hammer transducer
and response accelerometer respectively. In the time and auospectrum response of
Figures 4.29-4.33, it is important to ensure that the data captured during the excitation is
free from unacceptable sources of error like double hit of the impact hammer, capture of
noise in the output signal due to instrumentation and environmental vibrations, etc. The

data captured as observed from Figures 4.29-4.33 are satisfactory [69].

4.7.3 Frequency Response Function (FRF-H)) at different excitation points for

width-tapered composite beam

One very efficient model of a linear system is a frequency domain model, where

the output spectrum is expressed as the input spectrum weighted by a system descriptor,

X(w) = H(w).F(w) (4.3)

This system descriptor H(®) is called the Frequency Response Function (FRF),

defined as:

177



H(w) = X(@) (4.4)
F(w)

The physical interpretation of the FRF is that a sinusoidal input force, at a
frequency, will produce a sinusoidal output motion at the same frequency. The basis for
one specific class of experimental modal analysis is the measurement of a set of
frequency response functions. The mobility measurement used here to describe the FRF
is ‘accelerance’, where the motion is described in terms of acceleration/force. For impact

excitation and pseudo-random excitation, H; and H, will generally be equal at

resonances. H; is preferred since it is the best estimator at antiresonances [69].

By using the impact excitation technique described in the Section 4.5.2, test
specimens of NCT-301 graphite/epoxy beam with laminate configuration ([0/90]9)s and
geometric specification given in Table 4.1 are used in the current section to find the
Frequency Response Function (FRF-H;) which is computed as the ratio of the cross

spectrum to the input autospectrum for different width ratio (b,/b,) values for fixed-free

(cantilever) boundary condition of width-tapered composite beam at four excitation

points.
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Figure 4.34 FRF -H, at four excitation points for width ratio (b,/b, ) values of 0.2, 0.4,

0.6,0.8 and 1

Figures 4.34 show the Frequency Response Function (FRF-H;) obtained by impact

testing for different width ratio (b, /b ) values for fixed-free (cantilever) boundary
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condition of width-tapered composite beam at four excitation points. Figure 4.34 shows
the FRF which is measured for first three natural frequencies (Hz) with amplitude
measured as accelerance (ms~>/N) for individual excitation points. It is observed that the

natural frequencies are highest for width ratio (b,/b,) of 0.2 and gradually decreases as
width ratio (b,/b, ) values increases for fixed-free (cantilever) boundary condition. This is
because the stiffness of the beam is highest for width ratio (b,/b,) of 0.2. Another

observation that can be made is that at excitation point 1, the amplitude at first mode is
highest whereas lowest at mode three. But in the case at excitation point 4, the amplitude
at third mode is highest whereas it is lowest at first mode. This is because the beam at

excitation point 1, it is more flexible at the free end of the beam.

4.7.4 Comparison of natural frequencies between experimental modal testing and

Rayleigh-Ritz method for width-tapered composite beam

The analytical and the experimental modal analysis results for linear width-tapered

beam with different width ratio (b, /b ) values, for fixed-free (cantilever) boundary

condition, are compared in the current section for validation purpose.

By using the impact excitation technique described in the Section 4.5.2, test
specimens of NCT-301 graphite/epoxy beam with laminate configuration ([0/90]9)s and
geometric specification given in Table 4.1 are used in the current section to find the %

difference for three natural frequencies between the experimental modal testing and
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Rayleigh-Ritz method, for different width ratio (b,/b, ) values of width-tapered composite

beam at four excitation points as shown in Figure 4.23.

Table 4.3 Comparison of natural frequencies for width-tapered composite beams at four

excitation points

width ratio (b,/b,) 0.2 04 0.6 0.8 1
o1 (R-R), Hz 110 99.4 90.1 83.4 77.8
o; (Excitation point 1), Hz 114 103 93 86 80
% difference 3.6 3.6 3.2 3.1 2.8
o (Excitation point 2), Hz 114 104 93 86 80
% difference 3.5 3.5 33 33 32
o; (Excitation point 3), Hz 114 103 93 86 80
% difference 3.6 3.5 33 3.2 3.1
o (Excitation point 4), Hz 114 104 93 86 80
% difference 3.6 3.5 34 33 33
2 (R-R), Hz 525.5 512.5 500 492.5 488.5
; (Excitation point 1), Hz 543 532 520 513 506
% difference 33 3.8 4 4.2 3.6
; (Excitation point 2), Hz 550 541 528 522 522
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% difference 4.2 3.8 4 4.5 3.5
o, (Excitation point 3), Hz 550 543 529 523 523
% difference 4.2 3.9 4.4 4.4 3.8
o, (Excitation point 4), Hz 550 541 528 522 523
% difference 4.2 3.9 4.4 4.3 3.8
o3 (R-R), Hz 1346 1354 1354 1356 1372
o3 (Excitation point 1), Hz 1400 1410 1400 1400 1420
% difference 4 4.1 34 3.2 3.5
w3 (Excitation point 2), Hz 1420 1430 1420 1430 1430
% difference 5.5 3 3.5 34 3.1
3 (Excitation point 3), Hz 1420 1420 1410 1430 1430
% difference 55 3.6 4.9 3.8 3.1
o3 (Excitation point 4), Hz 1400 1410 1400 1400 1410
% difference 4 3.5 4.4 33 34

Table 4.3 shows the comparison of natural frequencies between the results from
experimental modal testing and Rayleigh-Ritz method for linear width-tapered composite

beam with different width ratio (b./b,) values for fixed-free (cantilever) boundary

condition. It can be observed from the Table 4.3 that the % difference between the natural
frequencies is lowest as for mode 1 and highest for mode 3. The % difference is lowest

for width ratio (b,/b ) value of 1 and increases as the width ratio (b, /b ) value of

decreases until 0.2. The % difference is lowest at excitation point 1 and highest at
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excitation point 4 for modes 1 and 3 but for mode 3, the % difference is highest at
excitation points 2 and 3 and lowest at excitation points 1 and 4. The results show good
agreement between the theoretical predictions and the experimental values of the natural
frequencies. The natural frequencies are compared for the effect of width—ratio for
different boundary condition in section (3.5) obtained using Rayleigh-Ritz method with
that obtained using conventional finite element method [81]. The % difference is less

than 1 % and shows good agreement between the two methods.

4.8 Summary

In this chapter, experimental validation for width-tapered composite beams has been
carried out. The manufacturing of composite laminate is discussed with fabrication and
processing. The composite laminate manufactured is inspected using laser ultrasonic
technique and the results are discussed. The composite laminate is cut with the geometric
shape of width-tapered beams using water-cooled rotary-type diamond cutter.
Experimental modal analysis is conducted using impact hammer excitation. The
measurement equipments and apparatus used are explained. Modal testing for damping
factor for finding out the damping in the beams is conducted using half-power bandwidth
method [24]. The experimental modal analysis results like Coherence function, time
response and auto response function and Frequency Response Function (FRF) of
different width ratio values of width-tapered composite beams are shown through

graphical plots. Comparison of experimental modal analysis results and theoretical results
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for width-tapered composite beams are discussed. From the figures and analyses the

following conclusions are drawn:

. The coherence function is obtained through impact testing for different width
ratio (b,/b,) values of width-tapered composite beams. The coherence function is poor at
the initial frequency values because of initial disturbance during impact excitation. By
using the force windowing technique these signal values are tailored for good input
signal. At excitation point 3 for width ratio (b,/b,) values of 0.4 and 0.6, the coherence
values are less than 0.5.

o The time response and autospectrum response is obtained through impact testing
for different width ratio (b,/b ) values for fixed-free (cantilever) boundary condition of
width-tapered composite beam at four excitation points. For all width ratio (bgr/by) values
of the beams, the impulse force is highest at excitation point 4. This is because the beam
is stiff at excitation point 4.

. The Frequency Response Function (FRF-H;) by impact testing is analyzed for
different width ratio (b,/b,) values of width-tapered composite beams. The fundamental
natural frequency is highest for width ratio (b,/b,) value of 0.2 and it gradually decreases

as width ratio (b,/b,) values increases. At excitation point 1 that is at the free end of the

beam, the amplitude at first mode is highest whereas it is lowest at mode three.
o The % difference between the natural frequencies is lowest as for mode 1 and

highest for mode 3. The % difference is lowest for width ratio (b,/b,) value of 1 and

increases as the width ratio (b,/b,) value decreases until 0.2. The % difference is lowest
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at excitation point 1 and highest at excitation point 4 for modes 1 and 3 but for mode 3,
the % difference is highest at excitation points 2 and 3 and lowest at excitation points 1
and 4. The results show good agreement between the analytical predictions and the

experimental values of the natural frequencies.
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CHAPTER 5

DYNAMIC RESPONSE OF THICKNESS- AND WIDTH-TAPERED

LAMINATED COMPOSITE BEAMS USING RAYLEIGH-RITZ METHOD

5.1 Introduction

Mechanical vibration deals with the interaction of inertia and restoring forces.
The former is due to the effect of mass of an object, while the latter is due to the
elastic deformation capability of the object. The inertia force tends to maintain the
current state of the object. The restoring force tends to push the object back to its
equilibrium position. Undesired vibrations in equipment cause loss of accuracy as
in the case of measuring equipment, fatigue failure and discomfort for human
beings as in the case of aircrafts and cars. If the frequency of exciting force gets
close to the frequency band of the natural frequencies of the structure, the
mechanical component experiences severe vibration due to resonance. The
resonance will decrease the lifetime of the structure and causes unpredictable
failures. Dynamic analyses in mechanical design are of great importance to control
the vibration in order to maintain the operating performance and to prevent sudden

failures in structures.

In this chapter, free and forced vibration response of thickness- and width-

tapered laminated composite beams and buckling response of thickness- and width-
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tapered laminated composite columns are conducted using Rayleigh-Ritz method. In
section 5.2, energy formulation for dynamic response of thickness- and width-tapered
laminated composite beams based on one—dimensional laminated beam theory is
developed. In section 5.2.1 system matrices are formed for thickness- and width-tapered
laminated beams. Properties of the ply in the tapered laminate are shown in the section
5.2.1.1. In section 5.2.2 Rayleigh-Ritz method for free and forced vibration and buckling
response is formed. In section 5.3 dynamic response of thickness- and width-tapered
laminated composite beams is shown. In sections 5.3.1- 5.3.5 free vibration response of
thickness- and width-tapered laminated composite beams with effects of angle of

thickness-taper (¢) and width ratio (b,/b,), laminate configuration, boundary condition,

end-axial forces, and damping are presented. In section 5.4 comparisons of natural
frequencies obtained using Rayleigh-Ritz method with that obtained using conventional
finite element method [81] are made. In sections 5.5.1-5.5.3 buckling response of
thickness- and width-tapered laminated composite columns with effects of angle of

thickness-taper (¢) and width ratio (b,/b,), laminate configuration, boundary condition

are presented. In section 5.4 comparisons of forced response in terms of sinusoidal
transverse displacement obtained using Rayleigh-Ritz method with that obtained using
conventional finite element method are made. In section 5.6 the summary is provided that
serve as factors to be considered in calculating the optimal results. These conclusions can

guide the designer on the choice of different parameters involved in the analysis.
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5.2 Energy formulation for dynamic response of thickness- and width-tapered

laminated composite beams based on one—dimensional laminated beam theory

Euler-Bernoulli beam theory is also defined as classical beam theory. This beam
model accounts for bending moment effects on stress and deformation. Transverse shear
forces are recovered from equilibrium but their effect on beam deformation is neglected

[24].

5.2.1 System matrices

Classical Laminated Plate Theory (CLPT) is considered for the bending of

symmetrically laminated thickness- and width-tapered laminated beams [5].

The equation for first co-efficient of the bending stiffness matrix for uniform-
thickness and uniform-width beam is shown in the equation (2.2¢). One should note that
in the thickness-tapered beam as shown in the reference [22], the cross-section area and

the value of D,,are not constant through the length of the beam. D,, for a mid-plane

thickness-tapered uniform-width beam is explained in the section 5.2.1.1
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5.2.1.1 Properties of ply in the tapered laminate

In the case of thickness-tapered composite laminate, as shown in the Figure 5.2,
the cross section area and the value of D,,(x) are not constant throughout the length in

the tapered section and there are ply drop offs at specific distances [22].

Ply k

v
>

Figure 5.2 Schematic illustration of properties of typical thickness-tapered laminate

Based on the classical laminate theory, the bending or flexural laminate stiffness

of the tapered beam can be written as:

3

Dn(x)zzn: tk’sz"'tlk_z (Ql)k (5.1)

190



where,

- cos(@) (5-2)

From the equation (5.1), Z, is the distance between the centerline of the inclined ply and

the mid-plane of the laminate for the k™ ply which is given as [22]:
=Sx+c (5.3)
where,

S = —tan(g) (5.4)

Equation (5.1) is rewritten as:

3

t (Sx+c)k t,
D, (x) = Z o) 12005 @) Q1) (5.5)

The above equation (5.5), is the first co-efficient of the bending stiffness element for
thickness-tapered and uniform-width beam of unit width. The D,,(x) from the equation
(5.5) is plugged in the equation (2.7) after multiplying with the term b(x). Based on one-

dimensional laminated beam theory, equations (2.9) to (2.11) remain the same.

The strain energy due to flexure of the beam which is given in equation (2.13) for width-
tapered laminated composite beam based on one-dimensional beam theory remains the
same for thickness- and width-tapered composite beam with the properties of thickness-

taper and width-taper in the beam is considered.
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The work done due to applied static end-axial load for the width-tapered laminated beam

which is shown in equation (2.14) is the same for the present case. Hence, the total strain

energy U, ,, which is the sum of U and U,_.1.s i given in the equation (2.15)

flexure

remains the same for thickness- and width-tapered laminated composite beams.

The kinetic energy for uniform-thickness and width-tapered laminated beam is given in

equation (2.19).

But for the thickness- and width-tapered beam, the height is not constant across the

length of the beam as shown in the Figure (5.2).

Therefore, the kinetic energy for thickness-tapered and width-tapered laminated beam is

given as:

1k ow)’
r=- ! p. .b(x).H(x).[EJ dx (5.6)

5.2.2 Analysis using Rayleigh-Ritz method

The formulations based on Rayleigh-Ritz method for width-tapered laminated
composite beams which are derived using classical laminate theory in section (2.3.1.1)
are followed the same way here to find the natural frequencies and forced response of
thickness- and width-tapered laminated composite beams and critical buckling load of

thickness- and width-tapered laminated composite columns.
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From the section (2.3.1.1), the co-efficients of the stiffness and geometric

stiffness which are given in equations (2.24) and (2.25) remains the same.

But it should be noted that the co-efficient of mass for width-tapered laminated
beam is shown in the equation (2.26). To construct mass matrix for a thickness-tapered
beam, one should consider the decreasing value of area due to the ply drop-off. Therefore
the equation (2.26) is changed for thickness-tapered and width-tapered laminated beam

which is given as:

L

M, = [ p.b(x).H(x) ¢,(x).¢, (x)dx (5.7)

0
The rest of the equations from (2.27) to (2.33) remain unchanged.

The co-efficients of stiffness, geometric stiffness and mass matrices for thickness-taper
configurations A, B, C and D which were formulated in the reference [22] using finite
element modeling are used after considering width-taper of the beam. The individual

routines for different thickness- and width-taper configurations have been developed

using MATLAB® software to calculate the stiffness and mass matrices. The resulting
beams with thickness- and width-taper configurations A-D which are shown in Figure 5.1
are analyzed for the dynamic response. The detail steps followed in numerical
computations of these thickness- and width-tapered composite beams for their dynamic

response are shown in Appendix B.
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5.2.3 Dynamic response of thickness- and width-tapered laminated composite
beams

The formulations that were done on free and forced vibration response of width-
tapered laminated composite beams considering static end-axial force and damping in
sections 2.3.2, 2.3.3 and 2.3.4 and buckling response of width-tapered laminated columns
in the section 2.3.5, will remain the same for free and forced vibration response of
thickness- and width-tapered laminated composite beams considering static end-axial
force and damping and buckling response of thickness- and width-tapered laminated

composite columns.

5.3 Free vibration response of thickness- and width-tapered laminated composite

beams

In this section, free vibration response of thickness- and width-tapered laminated
composite beams is considered for simply-supported, clamped-clamped, and clamped-
free boundary conditions. The mechanical properties of NCT-301 graphite-epoxy
prepreg fiber and resin that are given in the Tables 3.1 and 3.2 respectively are used to
find the natural frequencies. The geometric properties of the beam are given in the Table

5.1. The configuration of the beam considered is ([0/90]o)s which has 36 plies.

Rayleigh-Ritz method is used to find the natural frequencies of thickness- and width-

tapered laminated composite beams. Comprehensive parametric studies for natural
194



frequencies of thickness- and width-tapered composite beams have been shown through

plots.

Table 5.1 Geometric properties of thickness- and width-tapered composite beam

Width at left section (by) 0.015 m

Width ratio (br/by) 0.2,0.4,0.6,0.8and 1
Individual ply thickness (t) 0.000125 m
Height of the laminate on left side (Hy) 0.0045 m

Table 5.2 Angle of thickness-taper, length, length/height ratio and length/width at left

section ratio

Angle of thickness-

0.344 0.43 0.573 0.86
taper (¢), degrees
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22
L/bL 17 13 10 7
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Table 5.3 Cases for different thickness- and width-taper configurations

Case Angle of thickness-taper (¢), degrees | Width-taper (b,/b, )
la 0.344 t0 0.86 1

1b 0.344 t0 0.86 0.5

Ic 0.344 t0 0.86 0.2

2 0.573 0.2to1

5.3.1 Effect of angle of thickness-taper (¢) and width ratio (by/b,) on natural

frequencies

To study the effects of angle of thickness-taper (¢) and width ratio (b,/b ) on the

first four natural frequencies, the thickness- and width-tapered laminated composite
beams of simply-supported, clamped-clamped, and clamped-free boundary conditions are
considered for free vibration response. The results are summarized in Figures 5.3-5.8.
Different cases of thickness- and width-taper configurations which are shown in the Table

5.3 are considered to study the effect of angle of thickness-taper (¢) and width ratio

(bg/b, ) on the natural frequencies.
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Figures 5.3-5.5 show the effects of angle of thickness-taper (¢) and width ratio
(be/b,) on the first four natural frequencies for simply-supported, clamped-clamped, and
clamped-free boundary conditions of thickness- and width-tapered composite beams for
different thickness- and width-taper configurations as shown in the Figure 5.1. It can be
observed from the Figures 5.3-5.5 that as the angle of thickness-taper (¢) and width ratio
(be/b,) increase, all four modes of natural frequencies increase for all three boundary
conditions. From Figures 5.3-5.5, one can observe that the natural frequencies are highest
for case lc, second highest for case 1b and lowest for case la for all the thickness- and
width-taper configurations for all three boundary conditions. This is because as the width

ratio (b, /b, ) values decrease with increase in thickness-taper (¢), the beam becomes more

stiff thus results in increase in all four natural frequencies. For clamped-free boundary
condition, the natural frequencies are highest for case lc and lowest for case la and
second highest for case 1b. The natural frequencies are highest for configuration D,
second highest for configuration B, third highest for configuration C and the lowest for

configuration A. This indicates that as the width ratio (b,/b,) value decrease the beam

becomes stiffer for clamped-free boundary condition. Increasing the width ratio (b./b,)

directly affects the value of bending stiffness term(D 1( )J. The stiffness depends on
11 X

Qi of the ply.
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Figure 5.8 Effect of width ratio for angle of thickness-taper (¢) of 0.57° on natural

frequencies (case 2) - clamped-free boundary condition
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Figures 5.6-5.8 show the effect of variation of width ratio (b,/b,) with constant

angle of thickness-taper (¢) of 0.57° on first four natural frequency of the thickness- and
width-tapered composite beam. In the current case, for simply-supported boundary

condition as the width ratio (b,/b, ) value increase, the first natural frequency increase for

all the thickness- and width-taper beam configurations. One can also observe from the
Figure 5.6 for simply-supported boundary condition, that the first natural frequency for

configuration C is lower than that of configuration A until the width ratio (b,/b,) value

increases from 0.2 to 0.6. But as the width ratio value increases from 0.6 to 1, the first
natural frequency for configuration C is higher than that for configuration A. This is
because of the change in the stiffness characteristics in the beam configuration. The
configuration C has ply drop-off near mid-plane due to a resin pocket. Configuration A
has a large resin pocket leading to low stiffness. The second, third and fourth natural
frequencies decrease as the width ratio value increases. From the Figure 5.7 for clamped-
clamped boundary condition, all four modes of natural frequencies increase with highest
natural frequencies for configuration D, second highest for configuration B, third highest
for configuration C and lowest for configuration A. From the Figure 5.8 for the clamped-

free boundary condition, as the width-ratio (b,/b,) value increase from 0.2 to 1 with

constant angle of thickness-taper (¢) of 0.570, all four modes of natural frequencies

decrease.
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5.3.2 Effect of laminate configurations on natural frequencies

In this section the effect of laminate configurations on natural frequencies for

thickness- and width-tapered laminated composite beams are obtained using Rayleigh-
Ritz method. The angle of thickness-taper (¢) value of 0.57° and width ratio (by/b,) value of

0.5 is considered to find the natural frequencies. The Tables 5.4-5.6 below show the
variation of natural frequencies for different laminate configurations for simply-supported,
clamped-clamped and clamped-free boundary conditions. The laminate configurations
considered are: 1) ([0/90]y)s denoted as ‘LC1°, 2) ([£45]o)s denoted as ‘LC2’, 3) ([04/£457])s

denoted as ‘LC3’.

Table 5.4 Comparison of natural frequencies for the effect of laminate configuration -

Simply-supported boundary condition

Beam Laminate ) Q) 3 4
configuration Configuration (rad/sec) (rad/sec) (rad/sec) | (rad/sec)

LCl 798 3208 7216 12825

A LC2 578 2326 5232 9299
LC3 724 2913 6553 11647
LC1 824 3438 7698 13647

B LC2 599 2501 5600 9928
LC3 746 3111 6967 12352

C LCl1 788 3369 7554 13398
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LC2 563 2414 5412 9599
LC3 721 3077 6900 12237
LC1 1072 4475 10018 17762
D LC2 643 2687 6022 10682
LC3 809 3372 7556 13402

Table 5.5 Comparison of natural frequencies for the effect of laminate configuration —

Clamped-clamped boundary condition

Beam Laminate oy o o3 4
configuration Configuration (rad/sec) (rad/sec) (rad/sec) (rad/sec)
LCI 1801 4985 9791 16199
A LC2 1306 3614 7098 11744
LC3 1635 4527 8891 14710
LC1 1945 5330 10422 17207
B LC2 1417 3880 7584 12520
LC3 1759 4823 9432 15574
LC1 1955 5298 10307 16978
C LC2 1404 3801 7391 12170
LC3 1783 4835 9410 15502
LC1 2533 6939 13565 22393
D LC2 1526 4180 8171 13489
LC3 1911 5239 10245 16914
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Table 5.6 Comparison of natural frequencies for the effect of laminate configuration —

Clamped-free boundary condition

Beam Laminate o] Wy 3 W4
configuration | configuration | (rad/sec) (rad/sec) (rad/sec) (rad/sec)
LCl1 350 1909 5130 9939
A LC2 254 1384 3720 7206
LC3 318 1734 4659 9026
LC1 546 2308 5729 10826
B LC2 400 1682 4171 7877
LC3 492 2086 5184 9797
LC1 568 2285 5625 10621
C LC2 411 1639 4031 7609
LC3 517 2085 5137 9701
LCl1 711 3001 7451 14078
D LC2 416 1782 4456 8444
LC3 522 2239 5596 10601

Tables 5.4-5.6 show the effect of laminate configuration on natural frequencies
with angle of thickness-taper (¢) of 0.57" and width ratio (be/b,) value of 0.5 for three

boundary conditions. One can observe from the Tables 5.4-5.6 that the results obtained
for different laminate configurations show that the natural frequencies is largest for
laminate configuration LC1, second largest for laminate configuration LC3 and lowest
for laminate configuration LC2. This difference in natural frequencies is due to the

variation of stiffness in the beam. This is because in the laminate configuration LCI1,
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most of the 0° fibers are oriented along the length of the beam. 0 fibers have highest E|

compared to other fiber direction which is the direction of the bending loads. Also the
natural frequencies is largest for configuration D of the taper configuration with second
largest for configuration B, third largest for configuration C and lowest for configuration
A. These differences in natural frequencies for different taper configurations are expected

because of the variation of stiffness in the tapered beam configuration.

5.3.3 Effect of boundary condition on natural frequencies

In this section the effect of boundary condition on natural frequencies for

thickness- and width-tapered beam are obtained using Rayleigh-Ritz method. The angle of
thickness-taper (¢) value of 0.57" and width ratio (bg/b,) value of 0.5 is considered to

find the natural frequencies. Simply-supported, clamped-clamped and clamped-free
boundary conditions are considered. The natural frequencies for all three boundary

conditions are obtained using Rayleigh-Ritz method.

Table 5.7 Comparison of natural frequencies-Simply-supported boundary condition

Beam
) (rad/sec) | w; (rad/sec) s (rad/sec) | 4 (rad/sec)
configuration
A 798 3208 7216 12825
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B 824 3438 7698 13647
C 788 3369 7554 13398
D 1072 4475 10018 17762

Table 5.8 Comparison of natural frequencies-Clamped-clamped boundary condition

Beam
o (rad/sec) | ,(rad/sec) | s (rad/sec) | w4 (rad/sec)
configuration
A 1801 4985 9791 16199
B 1945 5330 10422 17207
C 1955 5298 10307 16978
D 2533 6939 13565 22393

Table 5.9 Comparison of natural frequencies-Clamped-free boundary condition

Beam
o (rad/sec) | m;(rad/sec) | ws(rad/sec) | w4 (rad/sec)
configuration
A 350 1909 5130 9939
B 546 2308 5729 10826
C 568 2285 5625 10621
D 711 3001 7451 14078
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Tables 5.7-5.9 show the effect of boundary conditions on four natural frequencies for
thickness- and width-tapered laminated composite beam. From the Tables 5.7-5.9, one
can observe that the natural frequencies are largest for clamped-clamped boundary
condition because the stiffness of the beam is largest. Beam with clamped-free
(cantilever) boundary condition has lowest natural frequencies this is because of lower
stifftness. The natural frequencies are second largest for simply-supported boundary
condition. Also, one can observe natural frequencies are largest for taper configuration D
and lowest for configuration A, second largest for configuration B and third largest for

configuration C.

5.3.4 Effects of end-axial forces on natural frequencies

By using the mechanical and geometric properties described in section 5.3.1, the
effect of applied static end-axial tensile and compressive forces on the first four natural
frequencies for simply-supported, clamped-clamped, and clamped-free boundary

conditions of thickness- and width-tapered composite beams are carried out in the current
section. The angle of thickness-taper (¢) of 0.57° and width ratio (be/b,) value of 0.5 are
considered for the analysis. Concentrated end-axial compressive and tensile forces which
are applied as the percentage of critical buckling load and first-ply tensile failure loads

respectively are applied on both ends of the beam to determine the natural frequencies

due to the effect of axial forces.
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The critical buckling load is determined in the section 5.5.1 for thickness- and width
tapered composite columns and first-ply tensile failure loads are determined in the section
3.6.1. The results are presented in the plots in Tables 5.10-5.15 which are obtained using

Rayleigh-Ritz method.

Table 5.10 Effect of end-axial compressive force on natural frequencies -Simply

supported boundary condition

% Pcr | Beam configuration | o, (rad/sec) | w, (rad/sec) | w; (rad/sec) | o4 (rad/sec)
A 798 3208 7216 12825
B 824 3438 7698 13647
" C 788 3369 7554 13398
D 1072 4475 10018 17762
A 678 2951 7000 12697
% decrease 15 8 3 1
B 700 3163 7467 13511
50 % decrease 15 8 3 1
C 670 3099 7328 13264
% decrease 15 8 3 1
D 911 4117 9717 17584
% decrease 15 8 3 1
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95

A 542 2630 6783 12440
% decrease 15 8 3 1

B 560 2819 7236 13238
% decrease 15 8 3 1

C 536 2762 7101 12996
% decrease 15 8 3 1

D 729 3669 9417 17229
% decrease 15 8 3 1

Table 5.11 Effect of end-axial compressive force on natural frequencies- Clamped-

clamped boundary condition

% Pcr | Beam configuration | o, (rad/sec) | o, (rad/sec) | ms (rad/sec) | w4 (rad/sec)
A 1801 4985 9791 16199
B 1945 5330 10422 17207
" C 1955 5298 10307 16978
D 2533 6939 13565 22393
A 1477 4387 8910 15389
% decrease 18 12 9 5
B 1595 4690 9484 16347
50 % decrease 18 12 9 5
C 1603 4662 9379 16129

212




% decrease 18 12 9 5
D 2077 6106 12344 21273

% decrease 18 12 9 5
A 1224 4088 9203 15713

% decrease 18 12 9 5
B 1322 4371 9797 16691

95 % decrease 18 12 9 5
C 1329 4344 9689 16469

% decrease 18 12 9 5
D 1722 5690 12751 21721

% decrease 18 12 9 5
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Table 5.12 Effect of end-axial compressive force on natural frequencies- Clamped-free

boundary condition
% Pcr | Beam configuration | o, (rad/sec) | m; (rad/sec) | w; (rad/sec) | w4 (rad/sec)
A 350 1909 5130 9939
B 546 2308 5729 10826
C 568 2285 5625 10621
0 D 711 3001 7451 14078
A 305 1737 4976 9840
% decrease 13 9 3 1
B 475 2100 5557 10718
% decrease 13 9 3 1
C 495 2079 5456 10515
50
% decrease 13 9 3 1
D 618 2731 7227 13937
% decrease 13 9 3 1
A 256 1623 4874 9741
% decrease 13 9 3 1
B 398 1962 5443 10609
% decrease 13 9 3 1
C 415 1942 5344 10409
95
% decrease 13 9 3 1
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D

519

2551

7078

13796

% decrease

13

Tables 5.10-5.12 show the effect of applied end-axial (static) compressive forces on
first four natural frequencies for simply-supported, clamped-clamped, and clamped-free
boundary conditions of thickness- and width-tapered composite beams. It can be
observed from the Tables 5.10-5.12 that as the magnitude of end axial compressive force is
increased all the four natural frequencies decrease for all three boundary conditions. This
is because as the axial compressive force is applied, the beam becomes less stiff thereby
decrease in the natural frequencies. One can also observe from the Tables 5.10-5.12 that

the percentage of decrease between the modes 1-4 varies in the same taper beam

configurations.

Table 5.13 Effect of end-axial tensile force on natural frequencies -Simply supported

boundary condition

% P, | Beam configuration | @, (rad/sec) | w, (rad/sec) | w3 (rad/sec) | w4 (rad/sec)
A 798 3208 7216 12825
B 824 3438 7698 13647
0 C 788 3369 7554 13398
D 1072 4475 10018 17762
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A 5010.5 10558 16970 24496
% increase 528 229 135 91
B 5077.1 10776 17350 25024
50 % increase 516 213 125 83
C 5074.7 10791 17377 25034
% increase 544 220 130 87
D 5131.4 11221 18655 27714
% increase 379 151 86 56
A 6849.3 14128 22084 30967
% increase 759 340 206 141
B 6948.6 14423 22597 31697
95 % increase 743 320 194 132
C 6947.1 14440 22642 31759
% increase 782 329 200 137
D 6989.1 14774 23671 33976
% increase 552 230 136 91

Table 5.14 Effect of end-axial tensile force on natural frequencies- Clamped-clamped

boundary condition

% P | Beam configuration | ; (rad/sec) | w, (rad/sec) | w3 (rad/sec) | o4 (rad/sec)
A 1801 4985 9791 16199
B 1945 5330 10422 17207
C 1955 5298 10307 16978
D 2533 6939 13565 22393
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A 5614.7 11819 18952 27238
% increase 212 137 94 68
B 5780 12146 19392 27778
% increase 197 128 86 61
50 C 5827.4 12227 19478 27832
% increase 198 131 89 64
D 6085.9 13071 21429 31478
% increase 140 88 58 41
A 7426.2 15316 23943 33540
% increase 312 207 145 107
B 7631.9 15761 24579 34340
% increase 292 196 136 100
95 C 7682.3 15858 24709 34477
% increase 293 199 140 103
D 7909.2 16565 26333 37549
% increase 212 139 94 68

Table 5.15 Effect of end-axial tensile force on natural frequencies- Clamped-free boundary

condition
% P, | Beam configuration | w; (rad/sec) | w, (rad/sec) | w3 (rad/sec) | w4 (rad/sec)
A 350 1909 5130 9939
B 546 2308 5729 10826
0 C 568 2285 5625 10621
D 711 3001 7451 14078
A 2983.3 8247.2 14302 21321
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50 % increase 752 332 179 115
B 3339.5 8882.3 15282 22662
% increase 512 285 167 109
C 3368.1 8954.3 15382 22760
% increase 493 292 173 114
D 3439.8 9301.2 16371 24876
% increase 384 210 120 77
A 4048.3 11045 18760 27277
% increase 1056 479 266 174
B 4484.1 11767 19855 28785
% increase 722 410 247 166
95 C 4512.9 11845 19977 28936
% increase 694 418 255 172
D 4580.3 12151 20830 30763
% increase 545 305 180 119

Tables 5.13-5.15 show the effect of applied end-axial (static) tensile force on first
four natural frequencies for simply-supported, clamped-clamped, and clamped-free
boundary conditions of thickness- and width-tapered composite beams. It can be
observed from the Tables 5.13-5.15 that as the magnitude of end axial tensile force is
increased all the four natural frequencies increase for all three boundary conditions. This
is because as the axial tensile force is applied the beam becomes stiffer thereby increase
in the natural frequencies. Once can observe from the Tables 5.13-5.15 that the %
increase in the natural frequencies are high due to the application of high end-axial

tensile load.
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5.3.5 Effect of damping on natural frequencies

To study the effect of damping on the first four natural frequencies, the

mechanical and geometric properties which are described in section 5.3.1 are used in the
current section. The angle of thickness-taper (¢) value of 0.57 and width ratio (be/b,)

value of 0.5 are considered for the effect of damping on natural frequencies of thickness-
and width-tapered composite beams with simply-supported, clamped-clamped, and

clamped-free boundary conditions.

Table 5.16 Effect of damping on natural frequencies for simply-supported boundary

condition.
Condition Beam o)) o) 3 W4
configuration | (rad/sec) (rad/sec) | (rad/sec) | (rad/sec)
A 798 3208 7216 12825
B 824 3438 7698 13647
Undamped
C 788 3369 7554 13398
D 1072 4475 10018 17762
A 780 3135 7052 12534
B 803 3352 7506 13308
Damped
C 768 3282 7360 13054
D 1045 4363 9769 17320
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Table 5.17 Effect of damping on natural frequencies for clamped-clamped boundary

condition
Condition Beam oY %) 3 o
configuration | (rad/sec) (rad/sec) | (rad/sec) | (rad/sec)
A 1801 4985 9791 16199
B 1945 5330 10422 17207
Undamped
C 1955 5298 10307 16978
D 2533 6939 13565 22393
A 1778 4921 9666 15992
B 1829 5013 9802 16183
Damped
C 1795 4865 9464 15589
D 2322 6361 12435 20527

Table 5.18 Effect of damping on natural frequencies for clamped-free boundary condition

Condition Beam o] oy ;3 Wy

configuration | (rad/sec) (rad/sec) | (rad/sec) | (rad/sec)

A 350 1909 5130 9939

B 546 2308 5729 10826
Undamped

C 568 2285 5625 10621
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D 711 3001 7451 14078

A 265 1442 3876 7509

B 453 1914 4751 8977
Damped

C 481 1933 4761 8989

D 589 2490 6180 11678

Tables 5.16-5.18 show the effect of damping on first four natural frequencies for all
three boundary conditions of thickness- and width- tapered laminated composite beams.

The mass proportional constant (¢) and stiffness proportional constant (g)are 3.753 and

4.83x107 respectively are considered to study for the effects of damping obtained
through experimental modal testing. One can observe from the Tables 5.16-5.18, that the
natural frequencies of un-damped beam are higher than the natural frequencies with
damping for all boundary conditions. Another important observation is that the
difference between the natural frequencies of un-damped and damped beam is largest
for beam configuration D for simply-supported boundary condition. For clamped-
clamped boundary condition the highest difference between un- damped and damped

natural frequencies is for configuration D and least for configuration A.
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5.4 Comparison of natural frequencies between Rayleigh-Ritz method and

conventional finite element method

By using the mechanical and geometric properties given in section 5.3.1, the current
section presents the comparison of first four natural frequencies for simply-supported,
clamped-clamped, and clamped-free boundary conditions of thickness-and width-tapered
composite beams obtained using Rayleigh-Ritz method with that obtained using

conventional finite element method [81]. The angle of thickness-taper (¢) value is
increased from 0.344° to 0.86 with keeping constant width ratio (b,/b,) value of 0.5

which is the case 2 as shown in the Table 5.3 is considered to compare the natural

frequencies.

Table 5.19 Comparison of natural frequencies for configuration A-Simply supported

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

®; (R-R) 780 1219 2165 4868

®; (FEM) 760 1187 2109 4744
% difference 2.61 2.57 2.55 2.53

@ (R-R) 3244 5068 8999 20219
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o, (FEM) 3221 5032 8948 20133
% difference 0.70 0.71 0.57 0.42

®3 (R-R) 7297 11402 20245 45482

o3 (FEM) 7178 11216 19940 44866
% difference 1.63 1.63 1.50 1.35

Table 5.20 Comparison of natural frequencies for configuration A-Clamped-clamped
boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

®; (R-R) 1821 2845 5051 11349
o1 (FEM) 1808 2825 5024 11302
% difference 0.71 0.69 0.55 0.41
®; (R-R) 5041 7876 13985 31420
o, (FEM) 4947 7729 13741 30917
% difference 1.87 1.86 1.74 1.60
®3 (R-R) 9901 15470 27468 61711
o3 (FEM) 9664 15101 26847 60405
% difference 2.39 2.38 2.26 2.12
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Table 5.21 Comparison of natural frequencies for configuration A-Clamped-free

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

o1 (R-R) 563 878 1552 3520
o1 (FEM) 582 913 1617 3682
% difference 3.53 4.01 4.20 4.60
2 (R-R) 2212 3457 6137 13918
o, (FEM) 2274 3553 6317 14217
% difference 2.79 2.79 2.93 2.15
o3 (R-R) 5238 8184 14530 32646
o3 (FEM) 5463 8536 15176 34146
% difference 4.29 4.30 4.44 4.60
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Table 5.22 Comparison of natural frequencies for configuration B-Simply-supported

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

o1 (R-R) 820 1281 2276 5115
o1 (FEM) 837 1307 2322 5230
% difference 2.14 2.02 1.98 2.25
o (R-R) 3654 5695 10120 22740
o, (FEM) 3733 5833 10368 23327
% difference 2.15 2.41 2.45 2.58
o3 (R-R) 8125 12680 22540 50548
o3 (FEM) 8347 13042 23187 52166
% difference 2.73 2.86 2.87 3.20
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Table 5.23 Comparison of natural frequencies for configuration B-Clamped-clamped

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

o1 (R-R) 2135 3322 5897 13225
o1 (FEM) 2178 3404 6050 13619
% difference 2.02 2.47 2.60 2.98
®; (R-R) 5716 8910 15810 35548
o, (FEM) 5837 9121 16215 36482
% difference 2.13 2.37 2.56 2.63
o3 (R-R) 11092 17283 30643 68897
o3 (FEM) 11322 17691 31451 70762
% difference 2.08 2.37 2.64 2.71
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Table 5.24 Comparison of natural frequencies for configuration B-Clamped-free

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

®; (R-R) 733 1139 2024 4540
o1 (FEM) 751 1170 2080 4693
% difference 2.54 2.71 2.78 3.36
@, (R-R) 2643 4129 7337 16477
o, (FEM) 2710 4233 7526 16939
% difference 2.51 2.52 2.58 2.80
®3; (R-R) 6276 9803 17417 39122
o3 (FEM) 6420 10031 17832 40122
% difference 2.29 2.32 2.38 2.55
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Table 5.25 Comparison of natural frequencies for configuration C-Simply-supported

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

®; (R-R) 809 1268 2246 5053
o1 (FEM) 827 1296 2299 5175
% difference 2.16 2.21 2.35 2.41
@ (R-R) 3493 5456 9699 21821
o, (FEM) 3589 5609 9970 22433
% difference 2.75 2.79 2.79 2.80
3 (R-R) 7840 12238 21740 48911
o3 (FEM) 8013 12521 22259 50080
% difference 2.20 2.32 2.39 2.39
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Table 5.26 Comparison of natural frequencies for configuration C-Clamped-clamped

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

o1 (R-R) 1950.3 3046.4 5412.2 12154
®; (FEM) 2031 3174 5641 12693
% difference 4.15 4.19 4.24 4.44
®; (R-R) 5286 8257 14671 32946
o, (FEM) 5540 8656 15388 34623
% difference 4.80 4.83 4.89 5.09
o3 (R-R) 10525 16456 29242 65697
o3 (FEM) 10811 16892 30031 67566
% difference 2.72 2.65 2.70 2.85
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Table 5.27 Comparison of natural frequencies for configuration C-Clamped-free

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

o1 (R-R) 651 1025 1806 4092
®; (FEM) 680 1069 1890 4269
% difference 4.57 4.29 4.66 4.31
@ (R-R) 2436 3805 6761 15182
o, (FEM) 2564 4006 7123 16026
% difference 5.24 5.28 5.35 5.56
®3 (R-R) 5833 9112 16343 36699
o3 (FEM) 6122 9566 17008 38265
% difference 4.96 4.99 4.07 4.27
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Table 5.28 Comparison of natural frequencies for configuration D-Simply-supported

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

o1 (R-R) 1065 1665 2958 6646
o1 (FEM) 1019 1590 2826 6365
% difference 431 4.44 4.48 4.23
®; (R-R) 4454 6958 12364 27776
o, (FEM) 4581 7157 12724 28629
% difference 2.84 2.87 2.92 3.07
o3 (R-R) 9971 15577 27677 62179
o3 (FEM) 10351 16172 28750 64684
% difference 3.81 3.82 3.88 4.03
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Table 5.29 Comparison of natural frequencies for configuration D-Clamped-clamped

boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

o) (R-R) 2523 3941 7003 15733
o) (FEM) 2570 4015 7140 16066
% difference 1.87 1.89 1.96 2.12
®, (R-R) 6908 10792 19176 43080
o, (FEM) 6859 10717 19052 42865
% difference 0.71 0.69 0.64 0.50
o3 (R-R) 13503 21093 37478 84198
o3 (FEM) 13725 21446 38126 85779
% difference 1.65 1.68 1.73 1.88
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Table 5.30 Comparison of natural frequencies for configuration D-Clamped-free
boundary condition

Angle (deg) 0.344 0.43 0.573 0.86
L,m 0.25 0.2 0.15 0.1
L/H 56 44 33 22

®; (R-R) 850 1326 2355 5294
®; (FEM) 869 1357 2411 5425
% difference 2.22 2.33 2.39 2.47
@ (R-R) 3088 4825 8567 19262
o, (FEM) 3154 4927 8761 19711
% difference 2.13 2.11 2.26 2.34
®3 (R-R) 7422 11594 20601 46280
o3 (FEM) 7582 11847 21061 47386
% difference 2.16 2.19 2.24 2.39

Tables 5.19-5.30 show the comparison of first four natural frequencies for simply-
supported, clamped-clamped, and clamped-free boundary conditions of thickness-and
width-tapered composite beams for case 2. The comparisons of natural frequencies were
made between Rayleigh-Ritz method and conventional finite element method. From the

above tables, the comparison differences for configuration A <5%, for configuration B it
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is <4%, for configuration C it is <6% and for configuration D it is <4.5%. This
difference in natural frequencies is expected from the inside geometry variation; the
location of plies drop-off, because frequencies calculated for different taper
configurations depend on the stiffness of the beam. From the above tables, the

comparisons the difference in natural frequencies are well accepted.

5.5 Buckling response of thickness- and width-tapered laminated composite

columns

In this section buckling response of thickness- and width-tapered laminated
composite columns are considered for simply-supported, clamped-clamped and clamped-
free boundary conditions. The taper configurations shown in Figure 5.1 are used for
buckling response. Rayleigh-Ritz method is used to find the critical buckling load of
thickness- and width-tapered composite columns. Comprehensive parametric studies

have been shown through plots.

5.5.1 Effect of angle of thickness-taper (¢) and width ratio (bg/b,) on critical
buckling load

To investigate effects of angle of thickness-taper (¢) and width ratio (b,/b,) on

critical buckling load, the thickness- and width-tapered laminated composite columns of

simply-supported, clamped-clamped, and clamped-free boundary conditions are
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considered for buckling response. The results are summarized in the Figures 5.9-5.12.
Different cases of thickness- and width-taper configurations as shown in the Table 5.3 are

considered to study the angle of thickness-taper (¢) and width ratio (b,/b,) on critical

buckling load.
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Figure 5.9 Effect of angle of thickness-taper (¢) and width ratio (b,/b, ) on critical buckling

load for simply-supported boundary condition
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Figure 5.10 Effect of angle of thickness-taper (¢) and width ratio (b, /b, ) on critical

buckling load for clamped-clamped boundary condition
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Figure 5.11 Effect of angle of thickness-taper (¢) and width ratio (b,/b, ) on critical

buckling load for clamped-free boundary condition
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Figure 5.12 Effect of constant angle of thickness-taper (¢) of 0.57 and width ratio (b,/b,)

(case 2) on critical buckling load
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Figures 5.9-5.12 show the effect of angle of thickness-taper (¢) and width ratio (b,/b,) on

critical buckling load (P.) for simply-supported, clamped-clamped, and clamped-free
boundary conditions of thickness- and width-tapered laminated composite columns. It can
be observed from the Figures 5.9-5.12, that the critical buckling load (P,;) is highest for case
Ic, second highest for case 1b and lowest for case la for all the three boundary
conditions. This indicates that as the angle of thickness-taper (¢) is increased and width

ratio (b,/b, ) value is decreased, the stiffness of the column increases for all three boundary

conditions. Also one can observe from the Figure 5.9 that the difference in the critical
buckling loads between case la, 1b and lc for clamped-free boundary condition are

largest compared to other boundary conditions. Figure 5.12 shows the effect of variation
of width ratio (b,/b,) with constant angle of thickness-taper (¢) of 0.57 on critical

buckling load (P) of thickness- and width-tapered composite column. One can observe from
the Figure 5.12 that the critical buckling load (P) is largest for configuration D, because
the stiffness of the beam is largest compared to the other configurations. Second largest is
configuration B, third largest and fourth largest are configurations C and A respectively for

all three boundary conditions. It can also be observed that as the width ratio (b,/b,)

values increase for constant angle of thickness-taper (¢) of 0.570, the critical buckling
load (P,;) is increased for simply-supported boundary condition, but for clamped-clamped

boundary the critical buckling load (P) increase until width ratio (b./b,) value is

increased from 0.2 upto 0.4, but decrease as the width ratio value increase from 0.6 to 1.
For the case of clamped-free boundary condition, the critical buckling load (P.,) decreases

as the width ratio (b,/b, ) value increase from 0.2 to 1.
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5.5.2 Effect of laminate configuration on critical buckling load

In this section the effect of laminate configurations on critical buckling load (P,) for
thickness- and width-tapered laminated composite columns are obtained using Rayleigh-
Ritz method. The Tables 5.31-5.33 show the variation of critical buckling load (P,,) for
simply-supported, clamped-clamped and clamped-free boundary conditions. The laminate
configurations considered are: 1) ([0/90]y)s denoted as ‘L.C1°, 2) ([£45]o)s denoted as ‘LC2’,

3) (J04/£457])s denoted as ‘LC3’.

Table 5.31 Comparison of critical buckling load-Simply-supported boundary condition

Beam configuration Laminate Pcr (KN)
configuration

A LC1 28.9
LC2 15.5
LC3 23.6

B LClI 21.6
LC2 11.4
LC3 17.7

C LC1 19.1
LC2 9.7
LC3 16.1

D LC1 36.5
LC2 13.7
LC3 21.5
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Table 5.32 Comparison of critical buckling load -Clamped-clamped boundary condition

Beam configuration Laminate Pcr (KN)
configuration

A LClI 114.9
LC2 62.2
LC3 93.7

B LClI 87.8
LC2 45.3
LC3 71.8

C LC1 83.2
LC2 413
LC3 69.4

D LClI 147.8
LC2 55.2
LC3 87.7

Table 5.33 Comparison of critical buckling load - Clamped-free boundary condition

Beam configuration Laminate Pcr (KN)
configuration

A LC1 9.4
LC2 5.1
LC3 7.7

B LC1 10.2
LC2 54
LC3 8.3

C LC1 9.9
LC2 5.1
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LC3 8.3

D LClI 16.8
LC2 6.0
LC3 9.5

Tables 5.31-5.33 show the effect of laminate configuration on critical buckling load
(P.r) with angle of thickness-taper (¢) value of 0.57 and width ratio (bg/b,) value of 0.5

for three boundary conditions. One can observe from the Tables 5.31- 5.33 that the
results obtained for different laminate configuration show that critical buckling load (P.;)
is largest for laminate configuration LCI1, second largest for laminate configuration
LC3 and lowest for laminate configuration LC2. This difference in critical buckling
load (P.;) is due to the variation of stiffness in the column. Also the critical buckling
load (P, is largest for beam configuration D of the taper configuration with second
largest for model B, third largest for model C and lowest for beam configuration A. This
difference in critical buckling load for different beam configuration is expected

because of the variation of stiffness in the tapered model.

5.5.3 Effect of boundary condition on critical buckling load

In this section the effect of boundary condition on critical buckling load (P.;) for

thickness and width- tapered column are obtained using Rayleigh-Ritz method. The
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angle of thickness-taper (¢) value of 0.57 and width ratio (be/b,) value of 0.5 is

considered to find the critical buckling load for simply-supported, clamped-clamped
and clamped-free boundary conditions. The critical buckling load (P.) for all three

boundary conditions is obtained using Rayleigh-Ritz method.

Table 5.34 Comparison of critical buckling load -Simply-supported boundary condition

Beam configuration Laminate P (KN)
configuration
A LC1 28.9
B LC1 21.6
C LC1 19.1
D LC1 36.5

Table 5.35 Comparison of critical buckling load -Clamped-clamped boundary condition

Beam configuration Laminate P (KN)
configuration
A LClI 114.9
B LClI 87.8
C LC1 83.2
D LClI 147.8
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Table 5.36 Comparison of critical buckling load -Clamped-free boundary condition

Beam configuration Laminate P (KN)
configuration
A LClI 9.4
B LC1 10.2
C LC1 9.9
D LCl 16.8

Tables 5.34-5.36 show the effect of boundary conditions on critical buckling load
(Per) for thickness- and width- tapered laminated composite column. From the Tables
5.34-5.36, one can observe that the critical buckling load (P.) is largest for clamped-
clamped boundary condition because the stiffness of the column is largest. Column with
clamped-free (cantilever) boundary condition has lowest critical buckling load (P)
this is because of lower stiffness. The critical buckling load (P.) is second largest for
simply-supported boundary condition. Also, one can observe the critical buckling load
(P.r) is largest for beam configuration model D and lowest for beam configuration A,

second largest for beam configuration B and third largest for beam configuration C.
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5.6 Comparison of forced response in terms of sinusoidal transverse displacement

between Rayleigh-Ritz method and conventional finite element method

By using the mechanical and geometric properties given in section 5.3.1 and
considering case 2 from Table 5.3, the current section presents the comparison of forced
response in terms of sinusoidal transverse displacement for simply-supported, clamped-
free and clamped-clamped boundary conditions of thickness- and width-tapered
laminated composite beams obtained by using Rayleigh-Ritz method with that obtained
using conventional finite element method [81]. A sinusoidal force of magnitude 2N with
excitation frequency o is applied at the maximum excitation point conditions. For simply-
supported boundary and clamped-clamped boundary condition the excitation point applied
at the centre of the tapered composite beam, while for clamped-free boundary condition the
excitation point is applied on the free end of the beam. The compared results are presented

in the Figures 5.13-5.15 below.
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Figure 5.13 Comparison of forced response in terms of sinusoidal transverse

displacement- simply-supported boundary condition
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displacement- clamped-clamped boundary condition
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Figures 5.13-5.15 show the comparison of forced response in terms of sinusoidal
transverse displacement for simply-supported, clamped-clamped and clamped-free

boundary conditions for thickness-and width-tapered composite beams with angle of
thickness-taper (¢) value of 0.57 and width ratio (be/b, ) value of 0.5. From the Figures

5.13-5.15, the comparison difference for simply-supported boundary condition is
between 5-7%, for clamped-clamped boundary condition it is between 4-6% and for
clamped-free boundary condition it is between 5-7%. The comparison
differences in transverse displacement from the above Figures 5.18-5.20 are well

accepted.

5.7 Summary

In this chapter, the energy formulation for dynamic response of thickness- and width
tapered laminated composite beams based on one-dimensional laminated beam theory
is derived following Chapter-02. Rayleigh-Ritz method is used for dynamic response of
thickness- and width-tapered laminated composite beams. From the numerical results

through graphical plots and tables, the following conclusions are drawn:

o As the angle of thickness-taper (¢) and width ratio (b, /b, ) increase, all four modes

of natural frequencies increase for all three boundary conditions. The natural frequencies
are highest for case Ic, second highest for case 1b and lowest for case la. For clamped-

free boundary condition, the natural frequencies are highest for case 1c¢ and lowest for
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case la and second highest for case 1b. The natural frequencies are highest for
configuration D, second highest for configuration B, third highest for configuration C and

the lowest for configuration A.

. In case 2, for simply-supported boundary condition as the width ratio (by/b,)

value increase, the first natural frequency increases for all the thickness- and width-taper
beam configurations. The second, third and fourth natural frequencies remain constant as
the width ratio value increases. For clamped-clamped boundary condition, all four modes
of natural frequencies increase with highest natural frequencies for configuration D,
second highest for configuration B, third highest for configuration C and lowest for

configuration A. For the clamped-free boundary condition, as the width-ratio (b,/b,)

value increase from 0.2 to 1 with constant angle of thickness-taper (¢) of 0.570, the

natural frequencies decrease.

o The natural frequencies are largest for laminate configuration LC1, second largest
for laminate configuration LC3 and lowest for laminate configuration LC2. Also the
natural frequencies is largest for beam configuration D, second largest for beam
configuration B, third largest for beam configuration C and lowest for beam configuration A.
. The natural frequencies are largest for clamped-clamped boundary condition.
Beam with clamped-free (cantilever) boundary condition has the lowest natural
frequencies. The natural frequencies are second largest for simply-supported boundary
condition. Also, one can observe natural frequencies are largest for beam configuration
D and lowest for beam configuration A, second largest for beam configuration B and third

largest for beam configuration C.
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J The comparison between Rayleigh-Ritz method developed from the current
thesis and conventional finite element method [81] is compared for four natural
frequencies for thickness- and width-tapered composite beams for case 2.The differences
between the two methods are well accepted.

. As end axial tensile force is increased the natural frequencies increase, but decrease
for compressive force for all three boundary conditions.

J The natural frequencies of un-damped beam are higher than the natural
frequencies with damping for all boundary conditions

o The critical buckling load (P,;) is highest for case 1c, second highest for case 1b and

lowest for case la for all the three boundary conditions. For the effect of variation of
width ratio (b, /b, ) with constant angle of thickness-taper (¢) of 0.57,O the critical buckling

load (P), is largest for configuration D, second largest is configuration B, third largest and
fourth largest are configurations C and A respectively for all three boundary conditions.

As the width ratio (b,/b,) values increase for constant angle of thickness-taper (¢) of

0.570, the critical buckling load (P,) is increased for simply-supported boundary condition,
but for clamped-clamped boundary the critical buckling load (P.,) increase until width

ratio (b,/b,) value is increased from 0.2 upto 0.4, but decrease as the width ratio value

increase from 0.6 to 1. For clamped-free boundary condition, the critical buckling load

(Per) decreases as the width ratio (b, /b, ) value increase from 0.2 to 1

. The critical buckling load (P,) is largest for laminate configuration LC1, second
largest for laminate configuration LC3 and lowest for laminate configuration LC2.

This difference in critical buckling load (P;) is due to the variation of stiffness in the

252



column. The critical buckling load (P.,) is largest for beam configuration D of the taper
configuration with second largest for beam configuration B, third largest for beam
configuration C and lowest for beam configuration A.
o The critical buckling load (P.) is largest for clamped-clamped boundary
condition because the stiffness of the column is largest. Column with
clamped-free (cantilever) boundary condition has lowest critical buckling load (P,;) this is
because of lower stiffness. The critical buckling load (P.;) is second largest for simply-
supported boundary condition.
. The comparisons of transverse displacement for thickness- and width-tapered
composite beams between Rayleigh-Ritz method and conventional finite element method
show the difference in transverse displacement for simply-supported boundary condition
is between 5-7%, for clamped-clamped boundary condition it is between 4-6% and for
clamped-free boundary condition it is between 5-7%.

e The present study helps the designer in the selection of the angle of

thickness-taper (¢) and width ratio (b,/b,) so as to shift the natural frequencies as

desired or to control the vibration level.

253



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Major contributions

The primary objectives of the research work are: (1) To investigate the free and
forced vibration and buckling response of width-tapered and thickness- and width-
tapered laminated composite beams obtained using Rayleigh-Ritz method, (2) To conduct
a detailed parametric study on the effects of various material, geometric and structural
properties on the dynamic response of tapered composite beams, (3) To conduct modal
testing using impact hammer excitation to determine the Frequency Response Function

(FRF) of width-tapered composite beams.

Following are considered to be the major contributions of the study:

a) The Rayleigh-Ritz formulation has been used and the efficiency and accuracy are
established very systematically. Formulations have been developed based on Kirchhoff
one dimensional laminated beam theory for free and forced vibrations of width-tapered
and thickness- and width—tapered composite beams including damping and end-axial

force effects, and for buckling response of tapered composite columns.
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b) The first-ply failure analysis using Tsai-Wu failure criterion is conducted for
[(0/90)¢]s laminate and the results are used to determine the effect of static end-axial force

on the free and forced vibration response of tapered laminated composite beams.

C) Free and forced response results obtained using Rayleigh-Ritz method are
compared with that obtained using conventional finite element formulation [81]. The free

vibration response results are also validated using experimental modal testing.

d) The codes of programming, involving numerical and symbolic computations are
written in MATLAB software. The beam properties such as stiffness matrix, mass matrix

and force matrix are computed numerically using individual sub-programs.

e) A detailed parametric study has been conducted using the above mentioned
theoretical and experimental developments to determine the influence of the material
properties, geometric properties, structural properties and applied axial force on the
natural frequencies and modal displacement response. The effects of width ratio, taper
configuration, taper angle, length ratio, boundary conditions, laminate configurations,
static end-axial force, and damping on natural frequencies and modal displacement

response are studied.

f) Experimental modal analysis is conducted for the determination of Coherence
function, time and auto-response function and Frequency Response Function (FRF) of
width-tapered laminated composite beams with different width ratios. The damping loss

factor (77) 1s extracted from FRF plots using half-power bandwidth method.
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6.2 Conclusions

The most important and principal conclusions of the present thesis that provides
insight on the dynamic behaviour of width-tapered and thickness- and width- tapered

composite beams for design purpose are given in the following:

a) As the width ratio (b,/b,) values of the beam increases, the natural frequencies

increase for simply-supported, clamped-clamped and free-clamped boundary conditions,

but decrease for clamped-free boundary condition. Increasing the width ratio (by/b,)

results in increase in the value of bending stiffness term - , which in turn results in
D, (x)

increase in stiffness matrix coefficients.

b) As for the effect of laminate configuration on the natural frequencies of width-
tapered composite beams, the natural frequencies are largest for laminate configuration
LC3 (laminate with ([04/£457])s configuration), second largest for LC1 (laminate with
([0/90]9)s configuration), third largest for LC4 (laminate with ([0/£60]¢)s configuration)

and fourth largest for LC2 (laminate with ([£45]y)s configuration).

c) As the length ratio (L;/L3) increases, all the natural frequencies increase. Also the

natural frequencies increase as the width ratio (b,/b,) increases for simply-supported,

clamped-clamped and free-clamped boundary conditions, but decrease for clamped-free

boundary condition.
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d) Observations for different boundary conditions show that the beam with clamped-
clamped boundary condition has the largest natural frequencies whereas free-clamped
boundary condition has the lowest natural frequencies. The beams with simply-supported
and clamped-free boundary conditions are second highest and third highest in natural
frequencies respectively. As the compressive axial load is increased from 0 to 95 % of
critical buckling load, the natural frequencies decrease. As the tensile axial load is
increased from 0% to 95 % of tensile failure load, the natural frequencies increase. The

damped natural frequencies are less than that obtained without damping.

e) As the width ratio value increases the critical buckling load increases for simply-
supported, clamped-clamped and free-clamped boundary conditions, but decrease for
clamped-free boundary condition. The critical buckling load is largest for laminate
configuration LC3, second largest for LC1, third largest for LC4 and fourth largest for
LC2. The critical buckling load is largest for length ratio (L;/Ls) value of 2 and least for
length ratio (L,/L3) value of 0.25. For the effect of different boundary conditions, the
critical buckling load is largest for clamped-clamped boundary condition since the

column is stiffer and is smallest for free-clamped boundary condition.

f) The first-ply failure loads for [(0/90)¢]s laminate are calculated using Tsai-Wu
theory. It was observed that the failure loads (tensile and compressive) are the lowest and
highest for width ratios of respectively 0.01 and 1, for both 0° and 90° plies. This is

because of the change in the cross-sectional stiffness of the beam.

g) It is concluded from the parametric study on forced response that the transverse

displacement amplitude is largest for width ratio (b,/b,) value of 0.2, second largest for
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width ratio value of 0.5 and lowest for width ratio value of 1. The transverse
displacement amplitude is largest for laminate configuration LC2, second largest for
laminate configuration LC1, third largest for LC4 and lowest for laminate configuration
LC3. The transverse displacement amplitude is largest for length ratio (L;/L;) value of

0.25 and lowest for length ratio (L;/Ls) value of 2 for all four boundary conditions.

h) The transverse displacement amplitude is largest for clamped-free boundary
condition and lowest for clamped-clamped boundary condition. The transverse
displacement amplitude is largest for clamped-free boundary condition at excitation point
1, second largest for free-clamped boundary condition at excitation point 1, third highest
for simply-supported at excitation points 2 and 3 and lowest for clamped-clamped
boundary condition at excitation points 2 and 3. The transverse displacement amplitude
decreases with increase in the percentage tensile failure load because the beam becomes
stiffer by applying axial tensile load. Similarly, the transverse displacement amplitude
increases with increase in percentage compressive failure load because the beam becomes

less stiff by applying axial compressive load.

1) From the comparison of results obtained using Rayleigh-Ritz method with that
obtained using conventional finite element method, the differences in natural frequencies
and transverse displacement obtained for all cases are less than 6%. The results found
with 8 to 15 trail functions of Rayleigh-Ritz method matched well with the results
calculated by using conventional finite element method for width-tapered and
thickness- and width-tapered composite beams for all taper configurations and all
boundary conditions.
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1) Experimental modal analysis is conducted using impact hammer excitation.
Modal testing for damping factor for finding out the damping in the beams is conducted
using half-power bandwidth method [12]. The Frequency Response Function (FRF) is

highest for width ratio (b,/b,) value of 0.2 and it gradually decreases as width ratio
(be/b,) value increases.

k) Comparison of experimental modal analysis results and theoretical results for
width-tapered composite beams shows good agreement between the natural frequencies.
1) The observations from thickness- and width-tapered composite beams were made
that, the natural frequencies are highest for case 1c, second highest for case 1b and lowest
for case la. For clamped-free boundary condition, the natural frequencies are highest for
case 1c and lowest for case 1a and second highest for case 1b. The natural frequencies are
highest for configuration D, second highest for configuration B, third highest for
configuration C and the lowest for configuration A.

m) For simply-supported boundary condition as the width ratio (b./b ) value

increase, the first natural frequency increase for all the thickness- and width-taper beam
configurations. The second, third and fourth natural frequencies remain constant as the
width ratio value increases. For clamped-clamped boundary condition, all four modes of
natural frequencies increase with highest natural frequencies for configuration D, second
highest for configuration B, third highest for configuration C and lowest for configuration
A.

n) The natural frequencies are largest for laminate configuration LC1, second largest

for laminate configuration LC3 and lowest for laminate configuration LC2.
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0) The natural frequencies are largest for clamped-clamped boundary condition.
Beam with clamped-free (cantilever) boundary condition has the lowest natural
frequencies. The natural frequencies are second largest for simply-supported boundary
condition.

P) The comparison between Rayleigh-Ritz method developed from the current
thesis and conventional finite element method [81] is compared for four natural
frequencies for thickness- and width-tapered composite beams for case 2.The differences
between the two methods are well accepted.

q) The natural frequencies increase with an increase in end axial tensile force but
decrease with increasing compressive force for all the three boundary conditions. The natural
frequencies of undamped beam are higher than those with damping for all boundary
conditions.

r) The critical buckling load (P.,) is highest for case 1c, second highest for case 1b and

lowest for case la for all the three boundary conditions. For the effect of variation of
width ratio (b /b, ) with constant angle of thickness-taper (¢) of 0.57,O the critical buckling

load (P), is largest for configuration D, second largest is configuration B, third largest and
fourth largest are configurations C and A respectively for all three boundary conditions.

S) The critical buckling load (P) is largest for laminate configuration LC1, second
largest for laminate configuration LC3 and lowest for laminate configuration LC2.
This difference in critical buckling load (P.) is due to the variation of stiffness in the
column.

t) The critical buckling load (P) is largest for clamped-clamped boundary

condition Column with clamped-free (cantilever) boundary condition has lowest critical
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buckling load (P) this is because of lower stiffness. The critical buckling load (P,) is
second largest for simply-supported boundary condition.

u) The comparisons of transverse displacement for thickness- and width-tapered
composite beams between Rayleigh-Ritz method and conventional finite element method
show the difference in transverse displacement for simply-supported boundary condition
is between 5-7%, for clamped-clamped boundary condition it is between 4-6% and for

clamped-free boundary condition it is between 5-7%.

6.3 Recommendations for future work

The present study is an attempt to evaluate the effects of different material, geometric and
structural parameters on the dynamic response of width-tapered and thickness-and width-
tapered composite beams obtained using Rayleigh-Ritz method. The study of free and forced
vibration and buckling response of tapered composite beams can be continued in the future

studies as given in the following recommendations:

a) The free and forced vibration and buckling analyses of width-tapered composite
beams and columns respectively obtained using Rayleigh-Ritz method presented in this
thesis can be extended further combining with other advanced finite element methods

such as higher order and hierarchical finite element.
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b) The free and forced vibration and buckling response obtained using Rayleigh-
Ritz method presented in this thesis can be extended for free and forced vibration and

buckling response of curved beam, plates and shells.

C) The free and forced vibration of width-tapered composite beams obtained using
Rayleigh-Ritz method presented in this thesis can be extended to transient and random

vibrations.

d) The experimental modal analysis conducted in the present thesis can be extended
to analyze the Frequency Response Function (FRF) for tapered beams using non-classical

boundary conditions.

e) The methodology from the present study can be taken forward to optimize the
geometric and material configurations of the laminated beam to avoid design critical

response.
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APPENDIX-A

Flow chart for MATLAB® program for free and forced vibration and buckling

response

Start

Input 1. Material properties

2. Geometric properties

Calculate the value of D,,(x)

\ 4

Generate the stiffness, mass and

geometric stiffness matrices

A\ 4

Initializing stiffness and mass matrices to

Z€ro
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Harmonic displacement function

satisfying geometric boundary condition

A 4

Apply stationary condition

\ 4

Solve for eigenvalues and eigenvectors

\ 4

Application of modal force vector to find

the forced vibration response

A 4

Modal matrix [P] and orthonormal

modal matrix [P]application to decouple

A 4

Maximum response calculation for

different excitation frequencies

End
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The individual subroutine programs developed using MATLAB" software for free and
forced vibration and buckling response of width-tapered and thickness- and width —

tapered laminated composite beams with graphical plots for parametric studies are

included in the Vijay-thesis 2012 CD@ attached with this thesis.

Trial functions used in Rayleigh-Ritz method for different boundary conditions

Boundary condition Trial function

Simply Supported U . (1‘ m]
w= Zci.sm. —

i=l1

Fixed-Fixed N <
w= Zci ix'(L—-x)*
i=1

Fixed-Free Ul

w:Zci.x’

i=1

Free- Fixed "

w=>c.(L-x)

i=l1
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APPENDIX-B
Derivation for orthonormal modal matrix [P]

Orthogonality of Eigenvectors

The normal modes, or the eigenvectors of the system, can be shown to be orthogonal with

respect to the mass and stiffness matrices.

. . the . .th
By using the notation ¢, for the i eigenvector, the normal mode equation for the i mode

is given as:

K¢, = ,M¢, (1

h
Pre-multiplying the i equation by the transpose ¢jT of the mode j, it is obtained as

follows:

¢, K¢, =29, M¢, )
Also,

¢ K¢, = 1,0" Mg, 3)

Because K and M are symmetric matrices, the following relationship are as follows:
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K K

¢_,'T or |9, :¢iT or ¢_/ 4)
M M

Subtracting equation (3) from (2),

(ﬂi _Z’j)¢iTM¢j =0 (5)

If 4, # A,, in the above equation (5), then equation (5) becomes,

@' Mp, =0, i#] (6)

It is also evident from equation (2) or equation (3) that as a consequence of equation (6),

¢iTK¢j =0,i#/ (7

Equations (6) and (7) define the orthogonal character of the normal modes.

Ifi=j,

(2, =2,)=0 ®)

Equation (5) is satisfied for any finite value of the products given by equations (6) or (7),

¢iTM¢i =M, )

¢1’TK¢1' =K, (10)
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From the equations (9) and (10), M, and K, are the generalized mass and generalized

stiffness matrices.
Orthonormal modes:

If each of the normal modes ¢, is divided by the square root of the generalized mass M ,,,

It is evident from the equation (1), that the right side of the equation (9) will be unity.

The new normal mode is given as:

==, (11)

From the above equation (11), Zl is called the weighted normal mode or orthonormal

mode.

It is also evident from equation (1), that the right side of the equation (10), will be

eigenvalues 4.

Thus, the equations (9) and (10) can be written as:

4 Mg, =1 (12)

¢ K¢, =4, (13)
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Modal matrix [P] :

When ‘n’ normal modes (eigenvectors) are assembled into a square matrix with each

normal mode represented by a column, it is called the modal matrix [P]

The modal matrix for a n- DOF system can appear as follows:

X, : X, ? X, } X, !
Pl=l{x,l 4nt 4t oAb =2l 6 e ?,] (14)
X3 X3 X5 X3
Also,
1 2 3 n T
X, X X X
[P]T “x, X, X, s 47, :[[¢1 /S N ¢n]]T (15)
X3 X3 X3 X3

From the equation (14) and (15),

The results of P" MPor P"KP, will be diagonal matrix.

Thus,

P'MP= (16)

o o o o X
ooowio
IS}
oowioo
w
o o o o
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'K, 0 0 0 0]
0 K,, 0 0 0
P'KP= 0 0 K, 0 0 (17)
0 0 0 0
0 0 0 0 K,]|

Note from the above equations (16) and (17), the off-diagonal terms are zero, because of

the orthogonality relationship.

The diagonal terms from equation (16) are generalized mass and from equation (17) are

generalized stiffness.

If the normal modes ¢, in the matrix [P] of equation (11) is replaced by the orthonormal

modes Zl , the modal matrix is designated as [13]

Thus, the orthogonality relationships are given as

[P [M][P1=[1] (18)
[PY'KI[P1=[A] (19)
where, [I] is the unit matrix and [A] is a diagonal matrix of the eigenvalues which is
given as:

A= @ (20)
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Contribution of numerical computation for dynamic response of thickness- and

width-tapered laminated composite beams

There is a significant contribution made in the numerical computation for the dynamic
response of thickness- and width-tapered composite beams using the principle of

superposition.
The steps followed are:

1. The detailed analysis for vibration response of uniform-width and thickness-

tapered composite beams were made in the reference [68]

2. The stiffness, mass and geometric stiffness element matrices were determined for
internally tapered composite beam for beam configurations A-D using finite element

modeling.

3. Using the co-efficients of stiffness, mass and geometric stiffness matrices for
uniform-width and thickness-tapered composite beams, and by using one-dimensional
laminated beam theory the new co-efficients of stiffness, mass and geometric stiffness

matrices for thickness- and width tapered composite beams are derived.

®
4. Individual subroutines programs using MATLAB software were developed for

dynamic response of thickness- and width tapered composite beams using R-R method.

5. The results obtained using Rayleigh-Ritz method were compared using

conventional finite element method developed in [81] for validation purposes.
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APPENDIX-C

Cost estimation report of width-tapered composite beams

Table 10.1 Manufacturing cost of width-tapered composite beams

Usage
S1.No. Description of materials Cost
(CADS)
Fabrication
| NCT-301 graphite epoxy prepeg $25/1b 100
2 Bleeder plies $100 0
3 Breather plies $148gallon 20
4 Vacuum or sealant tape $7/yard 25
5 Aluminium flat plate $7/yard 25
6 Brush $5 5
7 Release agent $5 5
Miscellaneous supplies (hand
8 $15 15
shovel, scissors etc.)
Processing
9 Autoclave usage $20/hr 30
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10 Manpower cost $50/day 75
Water cooled rotary type diamond
11 $10/hr 20
cutter
Total usage cost/composite laminate plate 320
Total beams manufactured 5
Manufacturing cost of each beam 64

Laminate Configuration of composite laminate plate- ([0/90],)

Table 10.2 Dimension of composite laminate plate

S1.No. Dimension Size (inch)
1 Length 16
2 Width 11
3 Height 0.1755
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Table 10.3 Vibration testing cost of composite beams

Usage
S1.No. Description of materials Cost
(CADYS)
1 Clamping fixture $40 100
2 Bees wax $10 0
3 Computer 0
B & K's PULSE™ front-end multi-
4 0
analyzer type 3560
Charge amplifier (a) Dual mode
0
5 amplifier
(a) Piezoelectric charge amplifier 0
6 Impact hammer 0
7 Accelerometer 0
8 Impact excitation 0
Miscellaneous supplies (cables,
9 $50 50
scissors, marker etc.)
10 Manpower cost $50/day 200
Total vibration testing 350
Vibration testing of each beam 70
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