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ANNA SIERPINSKA, GEORGEANA BOBOS AND ANDREEA PRUNCUT 

TEACHING ABSOLUTE VALUE INEQUALITIES TO MATURE STUDENTS 

 

Abstract: 

This paper gives an account of a teaching experiment on absolute value inequalities, whose aim 

was to identify characteristics of an approach that would realize the potential of the topic to 

develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, 

urban North American university. The potential is demonstrated in an epistemological analysis 

of the topic. It is also shown that this potential is not realized in the way the topic is presently 

taught in prerequisite mathematics courses. Three groups of students enrolled in such courses 

were each exposed to one of three approaches we conceived for teaching the topic, labeled the 

Procedural (PA), the Theoretical (TA) and the Visual (VA) approaches. The design of the three 

lectures was constrained by institutional characteristics of college level courses, and informed by 

epistemological and didactical analyses of the topic. It was found that following the VA lecture, 

which proposed two equally valid mathematical techniques (graphical and analytic), one of 

which could be used to test the validity of results obtained by the other, students were more 

likely to engage in some aspects of theoretical thinking. They displayed more reflective and 

systemic thinking than other groups, and were better equipped to deal with the logical intricacies 

of absolute value inequalities. VA afforded students a synthetic grasp of the inequalities, and a 

flexibility of thought not easily available to PA and TA students. However, without sufficient 

attention to tasks not easily solved by graphical means, VA approach provided students with a 

way to avoid the challenges of systemic and analytic thinking, some of which were more 

apparent in TA students. PA students expectedly behaved more as procedural knowers, but we 

saw interesting examples of engagement with theoretical thinking while dealing with the 

procedures proposed in the PA lecture.  

INTRODUCTION 

Students of prerequisite mathematics courses
i
 can be frustrated with their fast pace and 

overloaded curricula (Sierpinska, Bobos, & Knipping, 2008), but if we look at the mathematical 

content of the prerequisite courses we find that it is not so much the content that is overwhelming 

as the number of conceptually disconnected types of tasks into which it has been divided 

(Sierpinska & Hardy, 2010), and absence of a theoretical organization (Barbé, Bosch, Espinoza, 

& Gascón, 2005). Consequently, students have no control over the validity of their solutions and 

therefore “need the teacher to tell them if they are right or wrong” (Sierpinska, 2007). They are 

not given a chance to develop theoretical thinking in mathematics, which is essential for gaining 

autonomy as learners.  
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 To gain an idea of how teaching mathematics in prerequisite courses could be improved, 

we conducted a teaching experiment on absolute value inequalities – a topic typically taught in 

prerequisite College Algebra courses. This topic has been chosen not only because of the 

intrinsic epistemological significance of the notion of absolute value, especially in the theoretical 

foundation of number, and its role in applications but also because, as suggested in previous 

research [ (Brumfiel, 1980); (Chiarugi, Fracassina, & Furinghetti, 1990); (Denton, 1975); 

(Duroux, 1983); (Gagatsis & Thomaidis, 1994); (Monaghan & Ozmantar, 2006); (Perrin-

Glorian, 1995); (Perrin-Glorian, 1997); (Wilhelmi, Godino, & Lacasta, 2007)], what can be 

learned from it exceeds the purpose of teaching any particular mathematical concept.  

Students in prerequisite courses rarely aim at specializing in mathematics. They are 

therefore more likely to encounter absolute value inequalities in the context of Statistics (e.g. 

when the median is presented as the minimum deviation location (Weisberg, 1992)) or physics 

(e.g. in error tolerance estimation) than in the context of epsilon-delta argumentation in Real 

Analysis. In their future studies, these students are usually not expected to process absolute value 

inequalities algebraically themselves; they are only expected to use the inequalities that are given 

to them in lectures in choosing the appropriate statistic in their processing of concrete numerical 

data and using the formulas by substituting numerical values for variables. Analytic proofs of the 

inequalities are rarely if ever given in statistics lectures for non-mathematical students. At most, 

an informal explanation is given (Hanley, Platt, Chung, & Bélisle, 2001). This deprives students 

of any theoretical control over the mathematics they are applying. They may remain unaware of 

the hypothetical character of theorems that include the formulas they are using and therefore of 

the limitations of their applicability. Developing a more theoretical grasp of processing at least 

certain simple cases of inequalities with absolute value would give them a chance to apply 

mathematics in their future studies and professions in a more critical way. 

In our research, therefore, we were looking for characteristics of an approach to teaching 

absolute value inequalities in College Algebra courses for students who take them as prerequisite 

for programs other than specialization in mathematics that would promote students’ theoretical 

thinking about the topic. The challenge, for us, was to do this while complying with the regular 

format of prerequisite courses, characterized by particularly rigid institutional constraints: the 

courses are short and intensive, classes are large, and student-teacher interaction is often limited 
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to the lecture-and-assess style of communication. Our research consisted in a teaching 

experiment, where three approaches to teaching absolute value inequalities were tried.  

We start by explaining in what sense we consider our study to be a “teaching 

experiment”. We then present the theoretical framework that disciplined the design of the 

experiment and analysis of the results. This is followed by epistemological and didactic analyses 

of the notion of absolute value underlying our design of the experiment and analysis of its 

results. Remaining sections contain an outline of the three lectures we experimented with, 

research procedures, results and conclusions. 

The paper is accompanied by “Supporting documentation” files
ii
 containing slides of the 

three lectures we experimented with, students’ solutions to exercises, and transcripts of 

interviews with them.  

METHODOLOGY: TEACHING EXPERIMENT 

As mentioned, our research started from the intention to teach absolute value inequalities in 

prerequisite mathematics courses in a way that would promote theoretical thinking. Three 

approaches to teaching the topic – “Procedural” (PA), “Theoretical” (TA) and “Visual” (VA) – 

were tried: they were communicated to students as three lectures followed by a set of exercises to 

be solved individually. Thus, we “experimented with” each approach, looking for the good and 

not so good aspects of each, from the point of view of our teaching goals. Such “experimenting” 

is very common in the practice of teaching. To some extent, it could be argued that, when 

researchers engage in teaching experiments, they transcend the teacher-researcher divide: there is 

always an expectation that students go through a learning cycle. While teachers rely mostly on 

their craft knowledge to encourage such developments in students, however, when researchers 

use teaching experiment methodologies, they circumscribe both the design and the evaluation of 

the teaching intervention within explicit conceptual boundaries. The design of our lectures was 

thus informed by theoretical conclusions derived from epistemological and didactical analyses of 

the notion of absolute value. It resembled classical experimental design only in the following 

sense:   

[T]he researcher selects one or more samples from a target population and subjects it or them to 

various treatments. The effect of one treatment is compared to the effects of others, with the 

intention of specifying differences between or among them. [(Steffe & Thompson, 2000), p. 

270, in reference to (Campbell & Stanley, 1966)] 
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Our analysis of students’ problem solving behaviors and of their responses in the 

interviews following the intervention departed from traditional notion of experiment in social 

sciences. We did not “suppress[…] conceptual analysis in the conduct of research” and we did 

not assume that “an experimental manipulation would causally affect other variables – such as 

measures of students’ mathematical achievement – quite apart from the individuals involved in 

the treatment” (Steffe & Thompson, ibid., p. 270-271). In analyzing data, exploring students’ 

mathematical activity was of primary interest for us. Furthermore, we withheld from formulating 

a hypothesis to be proved or disproved, or from considering students treated with any one of the 

approaches as a “control group”. This exploratory nature brought our research closer to the way 

teaching experiment methodology is used in mathematics education research, as described in 

(Steffe & Thompson, 2000). We did not contrast any of the approaches with some prefabricated 

teaching/learning ideal: we did not, for instance, consider the group treated with the “Procedural 

Approach” (PA) as our control group, although this approach was the closest to the teaching of 

absolute value common in college algebra courses, which we criticize. In fact, we do not a priori 

reject procedural knowledge as not worth having or developing in students. For us, procedural 

understanding is still an understanding
iii

, and not “memorizing” and “performing pointless 

operations on meaningless symbols” [(Porter & Masingila, 2000), p. 165].  

THEORETICAL FRAMEWORK 

Our theoretical framework is grounded in Anthropological Theory of the Didactic (ATD) 

[(Chevallard, 1999); (Chevallard, 2002); (Hardy, 2009), (Sierpinska, Bobos, & Knipping, 2008)], 

and a model of theoretical thinking in mathematics [(Sierpinska, Nnadozie, & Oktaç, 2002); 

(Sierpinska, 2005)].  

 ATD was helpful in taking account of institutional aspects of teaching prerequisite 

mathematics courses in North America, and in systematizing our epistemological and didactic 

analyses of the mathematical topic of our experiment. We framed these analyses in terms of 

mathematical and didactic praxeologies, that is, different tasks, techniques, technologies and 

theories constituting the mathematical and didactic organizations surrounding the notion of 

absolute value and absolute value inequalities.  

The theoretical thinking (TT) model was behind both the conception of our research and 

the interpretation of the results. Three main features of TT are postulated: TT is “reflective”, 



6 

 

“systemic” and “analytic”. Reflective thinking is expressed by an investigative attitude towards 

mathematical problems: reflecting back on one’s solution; seeking a different, e.g. more 

economical approach; noticing relations with previously solved problems. It is the opposite of 

just applying a learned procedure and forgetting about the problem when solved.  Reflective 

thinkers are more likely to hold the epistemological position of “constructed knowers” than 

“procedural knowers” (ibid., p. 85), a distinction borrowed from (Belenky, Clinchy, Goldberger, 

& Tarule, 1997).  

 Theoretical thinking is “systemic” in the sense of thinking about systems of concepts. It 

is definitional, based on proofs, and hypothetical. Definitional means that concepts are defined 

by reference to other concepts within the system. Decisions about the truth of a statement are 

made by means of proofs which rely on accepted definitions, conceptual and logical relations 

within a system and not on images evoked by terms, common beliefs or “gut feeling”. 

Hypothetical refers to being aware of the conditional character of mathematical statements 

[(Sierpinska, Nnadozie, & Oktaç, 2002), p. 35- 37].  

 Analytic thinking refers to sensitivities to formal symbolic notations and specialized 

terminology (“linguistic sensitivity”), and to the structure and logic of mathematical language 

(“meta-linguistic sensitivity”) (ibid.).   

 Engaging with theoretical thinking may help avoid both “conceptual” and “procedural” 

errors in the sense of Porter & Masingila (2000, p. 172): 

Procedural errors were comprised of syntax errors and errors in carrying out procedures, while 

conceptual errors included such things as the selection of inappropriate procedures, 

misinterpretation of mathematical terms, and errors in logic. [(Porter & Masingila, 2000), p. 

172]   

 In particular, analytic sensitivity helps avoid syntax and logical errors, and sharpens 

attention to the technical meaning of mathematical terms. On the other hand, selecting 

appropriate procedures and carrying them out is certainly enhanced by systemic thinking. This is 

why our model of theoretical thinking is not based on a distinction between “procedural” and 

“conceptual” knowing in the sense of the above-mentioned article.   

EPISTEMOLOGICAL ANALYSIS  

In mathematical praxeology, absolute value is engaged in at least two types of tasks. One is the 

“epistemic” task of re-conceptualizing the notion of number as absolute measure within the 
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realm of the notion of number as representing directed change. The other is the “pragmatic” task 

of processing analytical expressions of mathematical relationships.
iv

 We start with a discussion 

of the pragmatic task. 

The pragmatic task 

Absolute value function serves to process analytic expressions of relationships between the 

magnitudes of certain variable quantities. The task includes transformations both ways: longer 

expressions are “compactified”, and – as in solving absolute value inequalities – absolute value 

notation is undone. Techniques of this processing of expressions use one of the several 

equivalent characterizations of absolute value, their logical consequences such as, | |     

       , for    , properties such as the triangle inequality, and rules of algebra and logic 

underlying, in particular, the technique of reasoning by cases. These characterizations, properties 

and techniques of reasoning play the role of “technology” in the mathematical praxeology 

associated with processing absolute value expressions, whereas the logical and algebraic laws 

underlying the reasoning and proofs belong to the “theory” part.  

 There are several characterizations of absolute value, each with its merits as a definition 

in some context (Wilhelmi, Godino, & Lacasta, 2007). It is this idea that, over thirty years ago, 

led Brumfiel (1980) to highlighting the benefits of discussing several definitions of absolute 

value (he listed five
v
) with students. Time constraints prevented us from following this advice in 

our lectures. Brumfiel’s discussion of the value of the definitions for solving particular kinds of 

problems included considerations of what Wilhelmi et al. much later (2007) called epistemic, 

cognitive and instructional dimensions of the didactic effectiveness of a definition. One of the 

five definitions was the piecewise-linear function definition:  

| |  {
        
         

 

The other four were the square root definition ( | |   √   
vi

 ), the maximum function definition 

(| |           ) and two definitions based on the notion of distance. Definitions based on 

the notion of distance are important in applications and in mathematical theory, in particular in 

generalizations of absolute value to norms in higher dimensions and general vector spaces, and 

in generalizations of limits and continuity in topology.  In our lectures, we used the distance 

intuition of absolute value in the introduction. We formalized the notion, however, in the form of 
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the piecewise-linear function definition, because it was useful as a basis of the reasoning by 

cases technique we wanted to teach. Some authors criticized this definition as hard to understand 

for students who have trouble with piecewise defined functions in general (Gagatsis & 

Thomaidis, 1994). The square root function definition avoids these difficulties but requires 

teaching quadratic inequalities leading to higher instructional and cognitive costs.  

 The piecewise-linear function definition suggests a technique for processing absolute 

value expressions based on “reasoning by cases” (RBC). For example, reasoning directly from 

this definition, an inequality such as |   |  |   | can be seen as a disjunction of four cases:  

1.                             

2.                                

3.                               

4.                                  

 Each case is a conjunction of three conditions. Two of these are “interval conditions”, 

resulting from the application of the definition to the absolute value expressions in the inequality. 

The third inequality is the form that the given inequality takes in the intervals defined in the 

interval conditions. We call this the complete RBC technique
vii

.   

 This reasoning can be simplified to avoid considering the case where the interval 

conditions are contradictory (case 2 in the example above).  If the inequality contains only two 

absolute value expressions, say, |    | and |    |, both linear, and a and b (with    ) are the 

zeros of f and g then it is enough to consider three cases, corresponding to the form of the 

inequality in the intervals    ,       and    .  The first interval corresponds to the 

conjunction of interval conditions            ; the second interval – to the conjunction of 

           , and the third – to            . We call this the simplified RBC 

technique.  

 Teaching students the complete RBC technique (with the simplified technique being 

taught or discovered by the students later, and justified using a proof) has the potential of 

engaging them in theoretical thinking. The technique is completely transparent; no element of the 

reasoning is hidden from the students. Hence, students have, in principle, all they need to 

maintain full control over the technique and thus study the topic from the position of constructed 

knowers. Since all meanings in the technique are derived from the definition, “definitional” 

thinking is highlighted. The definition is a disjunction of two conditional statements – an 
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embodiment of hypothetical thinking. All steps of the technique are logically justified; they are 

deduced from the definition, and refer to known algebraic rules. Therefore, the technique is 

based on systemic thinking. Moreover, the subtle interplay of logical connectives – conjunction 

within the cases; disjunction of the cases – and the technical meanings of “and” and “or”, call for 

linguistic and logical sensitivities – that is, analytical thinking.    

The epistemic task: re-conceptualization of the notion of number within a larger domain  

In individual cognitive development (as in history of mathematics), number is first understood as 

a measure of the magnitude of something, relative to a conventional unit. This “something” can 

represent a change of the magnitude, such as increase or decrease, without, however, taking into 

account the direction of change. It represents an “absolute” measure of the change, which is all 

we are interested in in Arithmetic, the mathematics of states. The development of Analysis – the 

mathematics of motion – required, however, that not only the magnitude but also the direction of 

change be taken into account.  

Taking into account the direction of change resulted in a new concept of number, 

sometimes called “directed number”. For the sake of economy of mathematical thought, 

mathematicians were interested in embedding the previous notion of number into the new one, so 

that directed numbers could contain an isomorphic image of the measuring number, with its 

properties intact. Absolute value is a notion that allowed mathematicians to construct the 

isomorphic image of the old notion of number within the new one.   

 Here is a description of the construction. Let “AMN” represent the absolute measure 

numbers, and “DN” – directed numbers. Thinking of AMN as isomorphic with a part of DN can 

be modeled by two functions, f and g (Figure 1). The function f maps absolute measure numbers 

into directed numbers: in DN an absolute measure is treated as a positive number. By way of the 

function g, the absolute measure number appears as a particular aspect of the directed number, 

namely – its absolute value. The two functions account for an isomorphism between AMN and a 

part of DN:  (    )         because, in DN, x is treated as a positive directed number; 

 (    )    | |  | |   , because, in AMN, there is no distinction between a number and its 

absolute value, so |x| is identical with x. 
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→   

    
  

   
 
→    

   | |
 

 Figure 1. Construction of an isomorphism between AMN and a part of DN  

 This isomorphism – as any isomorphism in mathematics – points, simultaneously, to a 

structural similarity between AMN and part of DN, and a difference in the nature of these 

objects. From the perspective of DN, a symbol like, for example, “+3” represents one single 

whole, a number in itself. From the perspective of AMN, this symbol represents two objects: a 

number (3) and a sign (+).   

Cauchy (1821/1968) understood well the cognitive challenge that this extension of the 

notion of number represents. His remarks about the difference between “nombres” and 

“quantités” in his Cours d’Analyse (extensively quoted by Duroux (1983)) are evidence for this 

understanding. In Cauchy’s text, the word “nombres” is reserved for what we have denoted here 

by AMN, while the name for our DN is “quantités”.  

In this conceptualization of the notion of number, absolute value makes sense only when 

a number’s relative value is simultaneously considered. That is, when the value of the number 

depends on certain conditions. Therefore, the concept of absolute value is meaningful in the 

context of conditional or hypothetical reasoning on expressions containing letters used as 

variables, and not only constants, or letters used as placeholders or unknowns. When, however, 

students are first introduced to directed numbers, tasks they are given allow them to continue 

thinking of number as absolute measure, and conceive of the new “directed number” not as an 

entity in itself, but as a compound object, made of number in the old sense and a sign 

(“Sign+AMN” conception of number). For example, students would be given a rule such as, 

“when adding two directed numbers with different signs, subtract the one with smaller absolute 

value from the one with larger absolute value and supply the result with the sign of the number 

with larger absolute value”. This rule applies only to processing expressions with constants, and 

not variables whose value is relative. In algebra, students may continue thinking this way, 

because the presentation of techniques by means of “worked out examples” and step-by-step 

procedures allows them to avoid using letters as variables and engaging in conditional reasoning. 

Using letters as variables is known to be difficult (Küchemann, 1981), and teachers and textbook 
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authors try to facilitate students’ learning. This way, however, they induce obstacles. Thinking of 

number as a compound object underlies common students’ mistakes such as interpreting a letter 

in an algebraic expression as representing a non-negative number [(Duroux, 1983); (Chiarugi, 

Fracassina, & Furinghetti, 1990); (Gagatsis & Thomaidis, 1994)]. Number as absolute measure 

has no sign since it ignores direction. Thus, the letter variable x, which appears to represent a 

single entity, must refer to absolute measure, a number without a sign. The symbol “ x ” then 

necessarily refers to a “negative number”, and the statement “|x| = –x, if x < 0” could be 

understood as allowing the absolute value to be negative sometimes.  

DIDACTIC ANALYSIS  

Prerequisite College Algebra courses focus almost entirely on the pragmatic tasks of processing 

algebraic expressions, whose types are distinguished only by the kind of algebraic expressions to 

be transformed (expanded, or simplified). Absolute value inequalities appear as just one type of 

expressions to be processed.  

In textbooks used in College Algebra courses, the topic of absolute value inequalities is 

usually divided into two types of tasks: solving inequalities  |    |    and |    |    

[e.g., (Martin-Gay, 2005)]. The technique for solving these inequalities is usually one we call 

“PROP”, because it is based on certain “properties” that play the role of a technology in this 

praxeology. Theory is absent, which is common in many if not all North American college level 

mathematics courses [(Hardy, 2009), (Sierpinska & Hardy, 2010)]. Another technique exists in 

the less official praxeology of teaching the subject in North America, and whose traces we have 

found in students’ work; we call it “Systematic Numerical Testing” (SNT). In this praxeology, 

the “theoretical block” (technology and theory) is absent altogether. We describe both techniques 

below.  

The PROP technique 

In (Martin-Gay, 2005), the notion of absolute value is introduced informally using the metaphor 

of distance and supplemented with the “property”, “If a is a positive number, then | |    is 

equivalent to            ” (Property 0). There is no formal definition. Only the above 

mentioned two types of absolute value inequalities are considered. The PROP technique is based 

on two “properties”: | |              (where    ), (Property 1) and | |     
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            (Property 2), that are not proved: they cannot be, because there is no 

definition to found the proof on. The technique is demonstrated on “worked out examples” for 

each type of inequality.  

One of the examples is titled “Solve |   |   ”:  

Solve |   |    

Replace X with m – 6 and a with 2 in the preceding property, and we see that  

|   |    is equivalent to         .  

Solve this compound inequality for m by adding 6 to all three parts. 

          

               Add 6 to all three parts 

      Simplify 

   

The solution set is       and its graph is shown [a representation of the interval on a number 

line follows] (Martin-Gay, 2005: 536) 

 

 In this solution, the notion of number as a measure endowed with a sign is sufficient and 

conditional reasoning is evacuated. Solving inequalities of the form |    |    is taught 

similarly. 

The technique conceals the logical symmetry of the two types of inequalities: there is 

conjunction of conditions in one inequality and disjunction in the other. If the “properties” on 

which the techniques are based were proved, or if the inequalities were solved using a definition 

of absolute value and Reasoning by Cases, a common pattern of reasoning would be revealed, 

using disjunction in both inequalities
viii

, and this would open the way to generalization.   

The SNT technique  

Property 0 suggests solving inequalities |X| < a and |X| > a by first solving the equations X = a 

and X = – a, obtaining two numbers and then deciding whether the solution of the inequality lies 

between these numbers or on either side of them. Without a definition of absolute value spelling 

out the conditions under which each of the possibilities X = a and X = – a occur, the decision is 

usually based on numerical testing. We called this technique, the Systematic Numerical Testing 

technique.
ix

  

 The technique “works well” in the sense of producing correct answers to the kinds of 

inequalities students are usually confronted with but it does not require students to engage in 

theoretical thinking. Students do not learn why this technique works and what assumptions about 

the functions involved in the inequality make it work. The technique does not apply to 
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inequalities           where the functions f and g do not intersect, which is the case, for 

example, of the inequality |   |    |   |x
, or in situations where the functions are not 

continuous
xi

 or not defined everywhere on the real numbers
xii

. The technique is also useless for 

inequalities involving parameters. 

DESIGN OF THREE LECTURES ON INEQUALITIES WITH ABSOLUTE VALUE  

In our design of a lesson on absolute value inequalities, we tried to satisfy institutional 

constraints such as: (a) short lecture time allotted to the topic in the course (40-50 minutes); (b) 

lecture-and-assess format of interaction, and (c) showing the solution technique on an example. 

Some of the choices underlying the mathematical organization of the lectures have already been 

presented and justified above. In this section, we describe some more details of the three 

lectures
xiii

.  

For reasons presented in our analysis of the technique based on a certain property of 

absolute value (PROP) and the systematic numerical testing (SNT), neither was used as a 

condition in our experiment. We were aware, however, that the participating students’ previous 

exposure to these techniques could influence their perception of the lectures in our study and 

understanding of the reasoning by cases techniques presented in them.   

Overview of the PA, TA and VA approaches 

Originally, we planned to design only two lectures. In one (“Theoretical approach”, TA), the 

solution technique would be logically derived from the definition of absolute value: the complete 

RBC. In the other (“Procedural approach”, PA) – the formal definition would still be given, but 

the solution technique – simplified RBC – would be presented as a sequence of steps to follow, 

like in the usual approach in prerequisite courses. In the design process, however, it occurred to 

us that the TA lecture was very artificial. It did satisfy the conditions of theoretical thinking, but 

it did not reflect the actual mathematical behavior of experts. Theoretical thinking is not the only 

kind of thinking involved in ordinary mathematical activity (Sierpinska, 2005). Therefore, we 

designed a third lecture, where the analytical technique of the TA was supplemented with a 

graphical technique (“Visual approach”, VA). The VA lecture was faithful to the spirit of 

“economy of mathematical thought” (Castela, 2004). A mathematician usually has more than one 

technique to solve a class of problems and uses the least laborious one in a given situation. Using 
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a different technique to solve the same problem may also serve as means to verifying the 

solution, supporting reflecting and proving.  

The main difference between PA and the other two lectures was that PA made no explicit 

logical link between the definition of absolute value and the technique of solution. The main 

difference between TA and VA was that, in TA, logical analysis was presented as a means to 

getting an answer in an exercise, whereas in VA, logical analysis served to validate a result 

obtained in a visual way.   

Outline of the lectures  

All lectures introduced the notion of absolute value through a situation of evaluating the error of 

a measurement, leading to the idea of “magnitude of the difference between two numbers”, and 

its generalization to the idea of “magnitude of a number”, called its “absolute value”. Beyond 

elementary school, “number” in mathematics courses usually refers to directed numbers, but 

even at the university level not all students may be aware of the distinction between this meaning 

and the everyday use of number as absolute measure. The aim therefore of the first part of the 

lecture was to bring about this awareness, by presenting students with the absurdity of speaking 

of measurement error in terms of directed numbers. In the introductory situation, two people, 

Jane and Joe, measure the length of an object. Jane’s result is 55 mm and Joe’s result is 58 mm. 

Another character, Tom, knows the true length of the object: 56 mm. He calculates the difference 

between the true length and the results of the measurement. He gets   for Jane and    for Joe, 

and claims that, since     , Jane made a bigger mistake than Joe. The lecturer ends the story 

with the question, “Do you agree with Tom?” Thus Tom stretches the notion of directed number 

to absurdity by calculating the error of a measurement as a directed difference between the exact 

value and the result of the measurement, and not as the magnitude of this difference. This 

reasoning makes the notion of magnitude of the difference between quantities – its “absolute 

value” in technical terms – sound like common sense. This was the intuitive basis of the notion 

of absolute value in the lectures.  

 This was followed by the piecewise linear function definition of absolute value. To avoid 

association between “–a” and negative numbers, the expression “opposite of the number” in 

reference to pairs such as “–2” and “–(–2)”, or “2” and “–2” was used, instead of “negative two”, 

commonly used by teachers and students.  
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 Next we presented an illustration of an application of the formal definition: “We apply 

this definition to calculate absolute values of concrete numbers and to simplify expressions with 

letters involving absolute values”. There were two “examples”:  

Example 1. To calculate the value of the expression ||    |  |      ||. 

Example 2. To find all numbers x such that |   |  |   |. 

 The solution of Example 1 was the same in all three lectures. The discussion of Example 

2 in all lectures started by numerical testing of the inequality for     and     .  The 

motivation given for proceeding to another way of solving the inequality was the impossibility of 

numerically checking it for all real numbers.  

 Lectures differed in the proposed solutions of Example 2. In TA, complete RBC 

(reasoning by cases) was presented as a direct application of the definition of absolute value to 

the expressions in the inequality, resulting in logical analysis of four possible cases. PA lecture 

used the simplified RBC technique, and the shortcut was not theoretically justified; the technique 

was presented as a sequence of steps to follow. VA presented the graphical and the complete 

RBC techniques. All lectures ended with the same set of exercises (Figure 2).  

1. Calculate:       ||     |  |    || 
In exercises 2- 6, solve the given inequality 

2. |   |  |   | 
3. |   |    |   | 
4. |    |    

5. |    |    

6. |     |  |     | 
Figure 2. List of exercises at the end of the lectures  

Justification of the choice of exercises 

Our general purpose in the exercises was to see if students engage in theoretical thinking when 

dealing with the pragmatic task of processing expressions with absolute value that would not be 

all of the same type as the worked out example in the lecture. We chose the worked out example 

in the lectures and the exercises so that PROP (technique based on a property of absolute value) 

or SNT (systematic numerical testing) would not be directly applicable and students who learned 

them before would not be able to ignore the lectures.  PROP applies directly only to exercises 4 

and 5. SNT could be successfully applied to solving exercises 2, 4, 5 and 6 in our experiment, but 

applying it mechanically to exercise 3 was risky. Applying SNT a student would solve the 

equation |   |    |   |. Using Property 0 but forgetting about the assumption    , the 
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student would solve             and           , obtaining two “critical 

numbers”, namely 0 and 
 

 
, although, in fact, the functions on the left and right-hand side of the 

inequality do not intersect.  

Exercise 1 was easy and we believed all will be able to do it; it was meant to appease any 

“test anxiety” that a participant may feel. A student unable to deal with this exercise would not 

possess even the Sign+AMN conception of number (measuring number endowed with a sign) and 

would thus not be fit to study absolute value inequalities. The second exercise was like Example 

2 in the lecture. It was meant to help students understand the lectured technique better and learn 

it. It was also a test of the students’ interpretation of the lecture.  

 The inequality in Exercise 3 was an obvious contradiction for anybody with an 

understanding that absolute value is a non-negative number, and able of grasping the structure of 

the inequality. Solving this exercise by mechanical application of the steps of the general 

technique could be a symptom of unreflective thinking.  

Exercises 4 and 5 also addressed reflective thinking. The structure of the inequalities in 

these exercises was different from the inequality in Example 2 in the lecture and the method 

could not be applied without some adaptation, just by “following the steps”. Moreover, these 

exercises were similar to those that participants could have learned to solve in their previous 

studies; therefore, students would have to deal with possible interference of previous knowledge. 

Lastly, in inequalities in exercises 4 and 5 only the direction of the inequality was different. It 

was possible to use the results of exercise 4 to solve exercise 5, if only the solver reflected back 

on the structures of the two inequalities.   

 The structure of the inequality in exercise 6 was similar to Example 2, but it was 

numerically more complicated, and not easy to solve using the graphical method. If solving all 

the previous inequalities was a process of learning the lectured techniques, students could test 

their understanding on this more challenging version of Example 2. For us, this inequality was 

mainly putting to the test students’ analytic thinking. In VA, especially, students could avoid 

using analytic thinking until exercise 6.  

Justification of the choice of presenting the solution technique on an example 

All lectures demonstrated a solution technique on an example, which is usual in prerequisite 

mathematics courses. However, our lectures did not contain examples of all types of exercises 
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students were then asked to solve.  Only one example of inequality was solved, and students 

were expected to abstract the essential, generalizable elements of the example and then figure out 

solutions to other types of inequalities, using not only the solved example but also the definition. 

We made an effort to choose an “inductive example” [(Warnick, 2008), p. 34]. The process of 

abstraction that we hoped students would engage in was to consist in going back and forth 

between the practical activity of solving the exercises and the more theoretical reflection on the 

technique used, somewhat in the manner described in [(Ozmantar & Monaghan, 2007) (p. 93); 

see also  (Monaghan & Ozmantar, 2006)].   

 Another reason for choosing to present the technique on an example was this: had we 

presented the method for solving an inequality of the type |   |  |   | in general terms 

rather than on an example, we would have derived a formula for the solution  (  
   

 
 in case 

    and   
   

 
 in case    ; no solution in case    ). This formula would be good only 

to solve exercise 2. Students could be frustrated when seeing that they had not been given 

formulas for solving other exercises. Derivation of a formula could obliterate the students’ 

interest in the process by which it was derived. By attending to the process, we thought, the 

students were better equipped to deal with inequalities not being of exactly the same type as the 

example in the lecture. We were leaving the responsibility of generalizing or adapting it to other 

types of inequalities to the students. The problem of solution of inequalities was thus left open to 

further investigation, inviting students to engage in reflective thinking.  

RESEARCH PROCEDURES 

We distributed about 600 invitations to participate in our research in classes of the prerequisite 

college-level mathematics courses in one university. We obtained an opportunistic sample of this 

population, as eighteen volunteers responded to our call. The volunteers were assigned to the 

approaches in a cyclic fashion: the first volunteer who responded was assigned to PA, the second 

to TA, the third to VA, the fourth to PA again, etc. This way, we could ensure that we have the 

same number of participants in each approach.  

 We had no control over the representativeness of our sample in terms of aspects such as 

age and gender distribution or the range of the prerequisite mathematics courses they were taking 

at the time of the experiment. Half of the participants were 21 years old or younger and 28% (5) 
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were between 22 and 25. The proportion is normally reversed in the prerequisite courses. Only 

four of the participants were female. At the time of the interviews, students were enrolled in 

elementary linear algebra and single-variable calculus courses, and all except four were taking 

these courses for admission into Computer Science or Engineering. The remaining four were 

applying for admission into a Business School.   

 In view of these methodological limitations, the strength of our study must be sought 

mainly in the qualitative analyses of the experiment, and not in the quantitative results. The 

quantitative results may serve, however, as a basis for useful conjectures.  

Students were interviewed individually. After signing a consent form and responding to a 

short personal questionnaire, the student was asked to listen to and watch a prerecorded lecture 

(20-30 minutes) and mark, on paper copies of the slides, spots that were unclear or frustrating. 

Participants were told they will be able to ask for clarifications or share their comments after the 

lecture. Students could not interrupt the lecture. After the lecture, the interviewers (one or two of 

the authors) would ask the student to explain the marks. The interviewer could not use 

explanations borrowed from a different approach than the one experimented. Next, the student 

was given about 40 minutes to solve the exercises.  The last part of the session (about 20-30 

minutes) was an interview with the student mainly about the solutions. All conversations 

between the interviewers and the students were audio-recorded and then transcribed
xiv

.    

Analysis of data in this research was based on interpretation of students’ written work 

and interviews with them. The interpretation was disciplined by (a) the adopted model of 

theoretical thinking, and (b) a triangulation procedure. We first tried to understand individual 

students’ solutions of the exercises, based on their written work and interview transcripts. We 

would work independently first, and then meet to compare our interpretations and conjectures 

about how a given student might have been thinking, and to decide which behavior could count 

as symptom of a given aspect of theoretical thinking.  

RESULTS 

For the purpose of the presentation of the results, we have coded the participants using the 

acronym of the lecture they were given to listen (PA, TA or VA) and numbers 1 to 6, since, for 

each lecture, there were six students: PA-1,…PA-6, TA-1,…,TA-6, and VA-1,…,VA-6.   
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PARTICIPANTS’ BACKGROUND 

Participants’ prior education regarding absolute value inequalities (AVI) and reasoning by cases 

(RBC), and knowledge of number and algebra could play a role in their performance. We did not 

pre-test the participants, but were able to obtain some information based on interviews and 

written solutions. We took into account also participants’ grades in the mathematics courses they 

were taking at the time of the experiment.  

 Most students behaved as if their notion of number was directed number (DN), but one 

student in each group (PA-1, TA-3 and VA-1) appeared to believe that “–x” represents a negative 

number, suggesting they held the “absolute measure number endowed with a sign” (Sign+AMN) 

conception. The background notion of number therefore does not give any of the groups any 

advantage over the others.  

Regarding basic algebraic skills, if we give 3 points to a student who is confident in his or 

her algebraic skills and makes no systematic mistakes in processing inequalities such as not 

changing the direction of the inequality when multiplying by a negative number (“Good” 

algebraic skills), 2 points to a confident student who does make such mistakes (“Medium”) and 1 

point to a student who lacks confidence and avoids doing algebra as much as possible (“Low”), 

then the sums of points for PA, TA and VA students are 14, 11 and 13 respectively. This puts the 

TA group at a disadvantage. VA students had lower algebraic skills than PA, but they could 

compensate by graphing.  

A group with many students with low level understanding of variable – e.g. as a 

placeholder only (Küchemann, 1981) – would put the group at a disadvantage. Most students, 

however, used letters as variables in the sense of arbitrary element of a set when thinking about 

the relative values of two algebraic expressions in an interval, and as elements of a formal 

language (with no reference to anything outside the formal system) when they were processing 

the inequalities. Only one student (TA-5) used letters exclusively as placeholders. TA-5’s 

solutions consisted in substituting some numbers into the inequalities and stating if the statement 

is true or false for that particular number. Sometimes she generalized from there, saying, e.g. 

“true for 1, 2 and all positive numbers”, but not always. One student (VA-1) used letters 

exclusively as elements of a formal language. His solutions consisted in re-writing the 

inequalities without the absolute value brackets, and processing them until he obtained an 
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expression with x on one side and a number on the other. In exercise 2, he left his solution at  

       , saying he did not know what to do with it. Further simplification would lead to 

an expression without the letter x and this would not look like a solution to him. The notion of 

variable, therefore, gives the PA group an advantage over the other two, but it does not 

discriminate between VA and TA.  

Another aspect of algebraic skills is the notion of inequality as a propositional function, 

whose truth value is conditional upon the values of the variable(s). This understanding is 

necessary to conceive of the solution of an inequality as the set of all values of the variable(s) for 

which the expression becomes a true statement. This understanding was implicit in all students 

except for TA-1, who could not understand why the lecturer was testing an inequality for various 

values of the variable. He was saying, “[this inequality] is a mathematical fact… so it must be 

true”. He seemed to understand inequalities as formulas such as, e.g. a formula for the area of a 

triangle, or laws in physics. Again, the fact that there was a student with this kind of conception 

in TA puts this group at a disadvantage.      

Four PA students remembered having studied absolute value inequalities (AVI) before; 

one, PA-2, remembered it well, three, PA-3, 4, 6, only very vaguely. All recalled being taught 

“solving by cases”. In TA, three students (TA-2, 4 and 6) recalled having been taught AVI, but 

not with the technique presented in the lecture. All VA students remembered being taught AVI, 

but only one remembered it well and remembered he was taught the RBC technique presented in 

the lecture. Having seen AVI before gives some advantage to VA over PA, but this advantage is 

moderated by the fact that five VA students have never seen RBC before, while three PA 

students did. Moreover, only one student in each group remembered this knowledge well enough 

to use it in solving the exercises. TA group appeared disadvantaged in this respect as well, 

relative to both PA and VA.  

The averages of students’ average grades in mathematics courses taken at the time of the 

experiments in groups PA, TA and VA were, respectively, about 80%, 68% and 72% (more 

details in the next section). In principle, therefore, the PA group was mathematically the “best” 

to start with, while VA was medium. TA, again, was disadvantaged. As we will see in the next 

section, average grades in mathematics courses were not a good predictor of the “winner in the 

competition” between PA and VA. TA’s performance was the lowest, but this could be predicted 

not only based on the grades, but also on all the other factors mentioned above.   
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On the seven factors we took into account in students’ backgrounds, the PA group had 

strict advantage over the other two on four factors, and was better or equal to both or VA in the 

other three cases. TA was disadvantaged relative to both PA and VA in 5 cases. In general, 

therefore, we could say that, relative to their background, PA had advantage over the other 

groups, TA was disadvantaged and VA was in the middle.   

PARTICIPANTS’ PERFORMANCE ON THE EXERCISES 

Participants’ overall performance on exercises is presented in Table 1
xv

. The VA group produced 

more correct solutions than the other groups, and PA did better than TA. Table 1 also contains 

information about students’ performance in mathematics courses they were taking at the time of 

the interviews.  

Only three out of the eighteen participants obtained correct answers in all exercises: PA-

6, VA-4 and VA-5. All three used techniques presented in the lectures. PA-6 used the simplified 

RBC technique. VA-4 used the complete RBC technique in exercises 2, 3 and 6, and PROP in 

exercise 4 and 5. VA-5 used RBC in exercises 2 and 6, PROP in 4 and 5, started exercise 3 with 

RBC but interrupted the process and wrote a structural proof. He supported and controlled his 

thinking with rough graphical sketches.  

The VA group did not perform better because they were “better students”, based on their 

achievement in the mathematics courses they were taking at the time of the interviews (Table 1). 

VA also did not perform better because more VA than PA participants have already studied 

absolute value inequalities, or even RBC, and used it to solve at least exercises 2 and 6. In fact, 

more PA students than VA students have seen RBC before and tried to use it in their solutions. 

Only one TA student has already seen RBC before, but this did not help him to solve exercises 2 

and 6 correctly.  
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Table 1. Participants’ performance on the exercises and in mathematics courses 

Student Ex.1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Sum Average 

(in %) 

on 

exercises 

Average 

grade 

(in %) 

in Math 

courses  

PA-1 1
(1) 

1 0
(2) 

1 1 0 4 67 70 

PA-2 1 0 1 0 1 1 4 67 95 

PA-3 1 0 0 0 0 0 1 17 66 

PA-4 1 0 1 0 0 0 2 33 73 

PA-5 1 1 0 1 1 0 4 67 79 

PA-6 1 1 1 1 1 1 6 100 95 

PA 

group  

6 3 3 3 4 2 21 58.5 79.7 

TA-1 1 1 0 0 0 0 2 33 87 

TA-2 1 0 1 1 1 0 4 67 48 

TA-3 1 0 0 1 0 0 2 33 62 

TA-4 1 1 1 1 1 0 5 83 85 

TA-5 1 0 0 0 0 0 1 17 47 

TA-6 1 0 1 1 0 0 3 50 80 

TA 

group  

6 2 3 4 2 0 17 47.2 68.2 

VA-1 0 0 0 0 0 0 0 0 No rec. 

VA-2 0 1 1 1 1 0 4 67 30 

VA-3 1 1 1 1 1 0 5 83 82 

VA-4 1 1 1 1 1 1 6 100 89 

VA-5 1 1 1 1 1 1 6 100 No rec. 

VA-6 1 1 0 1 1 1 5 83 95 

VA 

group  

4 5 4 5 5 3 26 72.2 See Note 

(3) 

   

Notes: (1) “1” stands for correct answer. (2) “0” stands for incorrect answer. (3) We had no record for VA-

1 and VA-5. But it was clear from the interview that VA-1 was a rather poor student, and VA-5 appeared to 

be good. Assuming a generous 60% average for VA-1 and a modest 75% for VA-5, the average grade for 

the VA group would be 71.8%.  

 

Familiarity with reasoning by cases, as in general, having seen a technique before, does 

not necessarily make it easier to re-learn it, as is well known. PA-3 and 4, for example, had very 

vague memories of the RBC technique. Both must have studied the complete technique, since 

they distinguished four cases and not three as in the PA lecture. Their “cases” made little sense, 

however, from the point of the given definition of absolute value
xvi

. VA students who had 

studied RBC before appeared to make better use of their previous experience. We could 

conjecture that if students re-learn a technique within a praxeology with explicit theoretical block 

(as in VA) then the recall of that technique is more accurate, and leads to a consolidation and 

refinement of previous knowledge.   



23 

 

THEORETICAL THINKING IN PARTICIPANTS’ SOLUTIONS  

In analyzing students’ solutions and interviews, we identified behaviors that could be interpreted 

as symptoms of theoretical thinking (“positive behaviors”) or of deficiency in theoretical 

thinking (“negative behaviors”). We describe the behaviors in the following sections.  

 A rough measure of theoretical thinking performance was obtained by assigning numbers 

to the behaviors. If a positive behavior appeared in a participant, the participant was assigned 1; 

if a negative behavior appeared, the participant was assigned   ; if the behavior did not occur, 

the participant was assigned 0. The totals for each group represented a rough measure of the 

group’s overall theoretical thinking performance. It was not necessary to divide the total by the 

number of participants in each group for comparison, because the numbers of participants in the 

groups were the same. The totals obtained were: –7 for the PA group, 7 for TA, and 15 for VA.  

Reflective thinking 

We evaluated students’ “reflective thinking” by distinguishing between behaviors that we called, 

in reference to (Belenky, Clinchy, Goldberger, & Tarule, 1997), procedural (PB) and constructed 

(CB).  We define the behaviors in Table 2. 

 

Table 2. Procedural and constructed knowing behaviors 

Procedural behaviors Constructed behaviors 

[PB1] Solving exercise 3 by following the same 

technique as in exercise 2, without noticing that it could 

be solved faster in a different way. 

[CB1] Noticing that it was not necessary to solve 

exercise 3 using the same technique as in exercise 2, and 

finding a faster way.     

[PB2] In solving exercise 5, repeating actions already 

performed in exercise 4, e.g. the solution of the equation 

       or of the equation        , after having 

already done it in exercise 4. 

[CB2] Noticing a relationship between ex. 4 and 5 and 

using elements of the solution of exercise 4 to solve 

exercise 5 in writing or mentioning the possibility orally 

in the interview.  

[PB3] Including certain elements of the lecture in a 

solution (e.g. a definition of absolute value applied to the 

expressions in the given inequality; a number line 

diagram such as in PA; a graph of the absolute value 

functions as in VA; an interval condition) but then not 

using these elements in finding the answer; the elements 

appear to play a “ceremonial” or “ritualistic” role only.   

[CB3] All elements included in the written solution are 

used in the solution.  

 

 Table 3 presents individual and group measures of students’ reflective thinking based on 

PB and CB. Some students displayed both procedural and constructed behaviors in the same 

exercise: written solution was procedural, but an alternative structural solution was presented in 
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the interview. For example, PA-2 used RBC to solve exercise 3 in writing, but when discussing 

exercise 3, he said, “while I checked it, I [thought], maybe to calculate it is a waste of time…. 

We can see this is a false condition; absolute value is always greater or equal zero but this 

number [–3] is always less than zero, so this is false”.  

In the interviews, students displayed additional positive or negative symptoms of 

reflective thinking, but this depended on individual characteristics of the interviewer-student 

interactions, and could not be used as part of a common measure. In most cases those additional 

symptoms only confirmed the profile already inferred from the PB and CB analysis of their 

solutions.  

In total, PA students were more likely to display procedural than constructed behaviors. 

In the TA group, procedural and constructed behaviors almost balanced each other, and VA 

students were more than twice as inclined to engage in constructed than in procedural behaviors.  

 

Table 3. Procedural and constructed behaviors in PA, TA and VA groups. 

Student PK1 PK2 PK3 PK-total CK1 CK2 CK3 CK-total PK+CK 

PA-1 –1
1 

–1 –1 –3 0 0 0 0 –3 

PA-2 –1 –1 0
2 

–2 1
3 

0 1 2 0 

PA-3 –1 0 –1 –2 0 0 0 0 –2 

PA-4 –1 –1 –1 –3 1 0 0 1 –2 

PA-5 –1 –1 –1 –3 0 1 0 1 –2 

PA-6 –1 –1 0 –2 1 1 1 3 1 

Total PA –6 –5 –4 –15
 

3 2 2 7 –8 

TA-1 –1 –1 0 –2 0 0 1 1 –1 

TA-2 0 0 0 0 1 1 1 3 3 

TA-3 –1 –1 –1 –3 0 0 0 0 –3 

TA-4 0 0 0 0 1 1 1 3 3 

TA-5 –1 0 0 –1 0 0 1 1 0 

TA-6 –1 –1 0 –2 0 0 1 1 –1 

Total TA –4 –3 –1 –8 2 2 5 9 1 

VA-1 –1 –1 –1 –3 0 0 0 0 –3 

VA-2 0 0 0 0 1 1 1 3 3 

VA-3 0 0 0 0 1 1 1 3 3 

VA-4 –1 0 0 –1 0 0 1 1 0 

VA-5 0 0 0 0 1 0 1 2 2 

VA-6 –1 0 0 –1 0 1 1 2 1 

Total VA –3 –1 –1 –5 3 3 5 11 6 
 

Note 1: “–1” = student displayed a PB. Note 2: “0” = student did not display the behavior.  Note 3: “1” = 

student displayed a CB. 

 

 These results led us to the following conjectures: no explicit logical links between 

definitions and techniques (as in PA) encourages PB rather than CB. Making the logical links 
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carefully and precisely in a lecture (as in TA) may raise students’ awareness of the logical 

structure of mathematics, but students may still feel restrained in their thinking: knowing there is 

a logic behind the techniques, but lacking the confidence to adapt it to one’s needs. Using logical 

analysis as a tool in validating a result obtained by graphical means (as in VA) may encourage 

CB more effectively, but the development and consolidation of confidence in using analytic tools 

for validation purposes requires engaging students in more tasks where the graphical means 

alone are not sufficiently reliable (as was the case of exercise 6).  

Systemic thinking 

In this section, we report on students’ defining, proving and hypothetical thinking behaviors.  

 We treated as positive symptoms of definitional thinking the following behaviors:  

DT-w: Student’s written solution of at least one inequality contains an explicit application of 

the formal definition to the absolute value expressions  

DT-o: Student refers to formal definition in oral reasoning. 

 Our main concern about students in prerequisite mathematics courses was that many of 

them “need the teacher to tell them if they are right or wrong” (Sierpinska, Bobos, & Knipping, 

2007). Therefore, we focused on behaviors suggesting students’ autonomy with respect to the 

correctness of their solutions, and treated them as positive symptom of proving. We 

distinguished these behaviors by the mathematical means students used to reduce their 

uncertainty with respect to their solutions, obtained otherwise than by these means: 

P-numerical testing: plugging numbers into the initial inequality;  

P-graphing-physical: graphing on paper  

P-graphing-mental: mentally visualizing a graph  

P-structural: reasoning focused on structural properties of the inequality, and the functions 

involved in it  

P-RBC: using RBC  

 We characterized hypothetical thinking by one negative and one positive behavior: 

HT-interval-conditions-not-taken: Written solution shows intention to use RBC but does not 

take into account the interval conditions when analyzing cases 

HT-conditional-statements: Uses conditional statements (some form of “if… then” 

statements) in discussing his/her solutions 



26 

 

Students’ systemic behaviors are represented in Table 4.  

 

Table 4. Systemic behaviors 

Student Definitional 

Thinking 

Proving HT  TOTAL 

 DT-w DT-o P-num P-gr-

physical 

P-gr-

mental 

P-struc P-RBC HT-ic-

not 

HT-

condit. 
 

PA-1 0 0 0 0 0 0 0 –1 1 0 

PA-2 1 0 0 1 0 1 0 0 0 3 

PA-3 0 0 0 0 0 0 0 –1 0 –1 

PA-4 0 0 0 0 0 1 0 –1 0 0 

PA-5 0 0 0 0 0 0 0 –1 1 0 

PA-6 0 1 1 0 0 1 0 0 0 3 

PA-

total 

1 1 1 1 0 3 0 –4 2 5 

TA-1 1 0 0 0 0 0 0 0 0 1 

TA-2 1 0 1 0 0 0 0 0 1 3 

TA-3 1 0 1 0 0 0 0 –1 1 2 

TA-4 0 1 0 0 0 1 0 0 1 3 

TA-5 0 0 0 0 0 0 0 0 0 0 

TA-6 1 0 0 0 0 0 0 0 0 1 

TA-

total 

4 1 2 0 0 1 0 –1 3 10 

VA-1 0 0 0 0 0 0 0 0 0 0 

VA-2 0 0 0 0 1 1 0 0 0 2 

VA-3 1 1 1 1 0 1 0 0 0 5 

VA-4 0 0 1 0 0 0 0 0 0 1 

VA-5 0 0 1 1 0 0 0 0 0 2 

VA-6 0 0 0 0 0 0 1 0 0 1 

VA-

total 

1 1 3 2 1 2 1 0 0 11 

 

 We give details of students’ definitional, proving and hypothetical thinking behaviors in 

the sections below.  

Definitional thinking 

In all but three cases of DT-w, applications of the definition had the standard form. The 

exceptions were TA-2, TA-3 and VA-3
xvii

.  

VA-3 said he did not understand the analytical technique in the lecture. He used graphing 

in exercises 2 and 3, and systematic numerical testing to solve 4 and 5. He tried RBC in exercise 

6. In applying the definition, he wrote:  

|     |                    

|     |                     
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This shows he understood the definition correctly (although he missed the value for x  
 

  
 ).  

 TA-2 and TA-3 also struggled with RBC but ended up showing an understanding of the 

definition. For example, TA-3 was writing expressions such as 

                             

in exercise 4. This is clearly intended as an application of the definition, but the syntax is 

inaccurate, and the statements would be incomprehensible if we did not know the context. This 

student achieved an understanding of the definition after an initial struggle with his association 

of the negative sign with negative numbers: 

… here it says ‘in general the absolute value of a number x is equal to x for x greater than zero, 

and negative x for x less than zero’…. You see that’s a little hard to understand, you know, like 

if it was negative x. [You’d think that –   ] it’s going to get a negative value. OK, now if you 

just take the place of that [position on the number line] it makes sense but just after [seeing it 

for] the first time… (TA-3, interview after viewing the lecture). 

 In TA and VA lectures, the model solution of Example 2 based on the complete RBC 

technique contained an explicit application of the formal definition to the absolute value 

expressions. A TA or VA student who tried to apply this technique in an exercise and included 

explicit application of the definition in the written solution might have been merely following the 

model solution rather than engaging in definitional thinking. However, TA-2’s, TA-3’, and VA-

3’s struggles with the definition (crowned with success), removed our doubts about their 

definitional thinking. We were less sure about TA-1 and TA-6, because both displayed two 

procedural and no constructed behaviors. We were especially doubtful about definitional 

thinking in TA-1, because he also seemed to treat RBC as an exercise in processing expressions 

of a formal language. He had trouble understanding expressions with variables, without plugging 

in some concrete numbers into them and seeing what they mean this way. He seemed to be 

saying that numbers can be positive or negative, but for letters it doesn’t even make sense to talk 

about being positive or negative in conditional terms
xviii

. This could have made the formal 

definition meaningless for him. Numerical testing would be more suitable to his way of thinking 

than reasoning by definition on which RBC was based. Indeed, starting from exercise 3, he 

would begin with RBC, writing and simplifying the “cases” but falling short of later combining 

them by disjunction, and replacing this step by numerical testing of the results of simplification 

of cases. The last step of the RBC technique appears natural if the formal definition is understood 

as a disjunction of two possibilities. For TA-1, however, this step was meaningless and he 
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reverted to what was natural for him, namely numerical testing. His technique was a combination 

of SNT and RBC, consisting in “testing” the cases somewhat like the intervals marked by the 

critical numbers in SNT. The cases were tested, first, for internal consistency (if there was an 

inconsistency, the case was rejected), and, if the case was internally consistent, it was tested 

numerically (a number satisfying the condition was plugged into the given inequality; if the 

result was true, the case was kept; if not – it was rejected). If only one case was left, its result 

was stated as the answer. Accidentally, TA-1’s solutions always ended with only one consistent 

case that also satisfied the inequality (because of algebraic mistakes).  

In spite of these doubts, we decided to keep TA-1 in our list of students who displayed 

the DT-w behavior (definitional thinking expressed in writing), because he did display this 

behavior. To remove just this one student from the list, we would have to make our 

operationalization of Definitional Thinking much more complicated.   

The cases of DT-o (definitional thinking expressed orally) were less doubtful as 

symptoms of definitional thinking. References to the definition obviously occurred as parts of 

mathematical reasoning. The deepest reflection on the definition was found in TA-4. When 

listening to the lecture, the student “found [the definition] a bit annoying”. He said he was 

thinking, “when I see absolute value, I say, oh yeah, sure, I know that! So, why all this! This 

looks complicated, why get so nasty on absolute value?” Later on, however, when solving 

exercise 4 (using systematic numerical testing), he said he recalled the definition, and solved not 

only the equation        but also –         :     

Interviewer: In Exercise 4, you not only solve the equation       , but also the equation 

–         . Why?  

TA-4. Well, when I checked that, as I said, I found it [the definition] a bit annoying, but, I 

observed that, OK, here we negate, and quickly reminded, when studying the absolute value 

function and its notation, that (pause), because it’s tricky, when we have the positive and the 

negative, because the negative somehow becomes positive and I wanted to check here my  , if I 

put here   , what’s going on (pause)…. Because here, well, in fact, it’s like an equivalent of 

the absolute value, because if I have    , here it will give me   ,   ;    is not equal to   , but 

with the addition of the negative sign, the result will become positive. 

 TA-4 shows here an understanding of the role that the minus sign plays in the second part 

of the definition: turning the negative into the positive.    

Students who did not display DT-w or DT-o also sometimes mentioned the definition but 

not as part of a reasoning. Rather, they would speak about their difficulty understanding it, 

without efforts of overcoming the difficulty. For example, PA-5 complained about the lecture not 
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giving enough explanation of the definition: “It says it’s negative   but there is no explanation 

for it”. She did not apply the definition in her solutions. Rather, she was processing the 

inequalities formally, “putting pluses and minuses in front” of the expressions within absolute 

value brackets.  

Proving 

Altogether three PA (PA-2, 4, 6), three TA (TA 2, 3, 4) and five VA (all except VA-1) students 

engaged in one or more of the “proving behaviors” used to characterize this aspect of their 

thinking. Numerical testing and structural reasoning were the most popular behaviors: six 

students used each. Graphing was next, with four students: one PA student (PA-2 who learned 

the graphing method in previous studies, not in the lecture) and three VA students (VA-2, VA-3, 

VA-5). Only one student used RBC to check his answer: VA-6 first solved exercise 2 by 

graphing and then checked his solution by RBC.   

Of the three VA students who used graphing as means of checking their solutions, VA-2 

only imagined the graph in exercise 4 to make sure his solution (obtained by numerical testing) 

was correct. He used actual graphing as solution technique in exercises 2 and 3. In exercise 4, he 

found, by numerical testing, that –2 and 3 “evaluate 5” (make the function |    | equal to 5) 

and, by imagining the graph of the function and of the constant 5, he assured himself that the 

solution set will be between these two numbers.  

Many students were using numerical testing in the experiment, but not always for the 

purpose of verifying their answers. It was used for obtaining a solution in all or some exercises 

by seven students (PA-3, PA-4, PA-5, TA-1, TA-4, TA-5, and VA-2). In PA-4, PA-5, and TA-1 

numerical testing was part of a combination of RBC with SNT.  

Structural reasoning as means of control was used mainly in exercise 3 (PA-2, 4, 6; VA-

2, 3). Only one student – TA-4 – used this type of reasoning extensively in other exercises as 

well. This proving behavior pervaded all TA-4’s thinking as he explained his solutions to us in 

the interview, which surprised us because his written solutions, based on numerical testing, 

appeared unsophisticated. The interview revealed that he was very concerned about the validity 

of his solutions, and, since he used numerical testing as a solution method, he needed other 

means to reduce his uncertainty. He used reasoning that took into account the structural 
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characteristics of the given inequality and the functions involved in it. For example, he said, 

about his solving of exercise 6: 

So here I tried a method similar to number 2, trial and error. So if it’s  , it doesn’t tell us much 

because   , yeah,    is smaller than    , but here, if we look quickly,     here, so how do we 

get      there? So, it’s using 2. OK, so we might look at 2, what, what’s happening, so      
     ; and here,          . OK. But if I use something bigger, because this here 

[     ], if we write it as a function, it’s evolving slowly because of 1, each time we have one 

to the  , but here [     ],… we have   , so we must be careful, because it gets quickly 

bigger.(TA-4, interview) 

Reasoning focused on the structure of the inequality as a means of control of his solutions 

led him also to find a structural proof of exercise 3: 

And here [in exercise 3] I was quite puzzled, because I tested. I tested for  , for a negative and 

for a positive and I observed, well, this, because this will be positive because it is absolute 

value, multiplied by a negative, it gives only a negative, and here it gives only a positive. So it 

is impossible that this is smaller than… (TA-4, interview) 

 We decided that structural reasoning was used in the service of verification of solution 

and not as a solution method also for five other students (PA-2, 4 and 6; VA-2, 3), although it 

was not always obvious. For example, PA-2 and PA-6 presented the argument more as a 

procedural shortcut than a verification tool, although this argument certainly reassured them 

about the validity of the solution they obtained by RBC (which was correct in both cases).   

Only two students used structural reasoning as a solution method in exercise 3, and not as 

a verification tool: TA-2 and VA-5. They both struggled with understanding RBC, confused with 

the logical connectives involved in combining the cases. The structural argument appeared to 

liberate them from the complications of the RBC procedure; mid-way through their RBC 

solutions, they noticed that there exists a theoretical shortcut and interrupted the tedious method.  

We found one borderline behavior which we did not count as a symptom of proving but 

which was quite interesting. PA-5 solved the exercises by following the demonstrated procedure 

and she was not checking her solutions in any of the ways we took into account, but she had the 

habit of justifying her particular actions by reference to algebraic rules.  

I had to get x alone, divide by –2 and every time you divide by negative you switch the sign 

around. And because anything with numerator 0 ends up being 0, you get      . (PA-5, 

interview)  

This may not qualify as proving or theoretical thinking yet, but, her personal praxeology 

contains a partial theoretical block: there is a “technology” in her praxeology. 
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Hypothetical thinking 

The piecewise linear function definition of absolute value implies two conditional statements: if 

    then | |   , and, if     then | |     . Understanding this definition, as well as 

understanding the RBC technique which is based on it, involves therefore an awareness of the 

conditional character of mathematical statements, which is an essential characteristic of what we 

have called “hypothetical thinking”. Ignoring the assumptions about the positive or negative 

values of expressions within the absolute value brackets (the “interval conditions”) in processing 

the cases were, therefore, negative symptoms of hypothetical thinking. We found this behavior in 

four PA students and one TA student. VA students did not make this mistake, but they could 

avoid making the mistake by choosing the graphical method. Therefore the ratio of those who 

did not take into account the interval conditions to those who used RBC could be a better 

indicator of negative hypothetical thinking behavior in groups.  The ratios were, 4 : 6 in PA, 1 : 4 

in TA and 0 : 4 in VA. Even with this more careful indicator, the VA group did better than the 

other two, and TA did better than PA. The gap between TA and PA only appears smaller than 

with just the count of number of students who made the mistake in each group. 

 We looked for positive symptoms of hypothetical thinking in the interviews, and it 

appeared that using conditional statements in mathematical reasonings, or discussing the 

conditions for something to be true, not just once, but repeatedly, say, at least three times, could 

be a good indicator of hypothetical thinking. We took the threshold of three times, because this 

would account for making conditional statements systematically in solving at least one of the 

exercises 2 and 6, where using RBC was most likely.  

 We found traces of this positive behavior in the discourses of two PA students, three TA 

students and no VA students.  The PA students and one of the TA students used such statements 

only a minimal number of times. In particular, PA-1 made conditional statements only in 

explaining her reasoning in exercise 2, and even here they were not exactly explicit and 

consciously used qua conditional statements. She may have been using the interval conditions as 

mere labels for the cases, formally, just as she was formally “putting negative in front” rather 

than taking the opposite of an expression in intervals where it had negative value: 
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I put x – 1 = 0, x + 1= 0, so x = 1, x = –1, and then I put it in a chart and I solved if x is smaller 

than –1, if it’s in between and [if it’s] greater than 1. And I solved it in these three cases. In the 

first case, [then] both are negative, which means I put negative in front, before the bracket and I 

came out with that. (PA-interview about exercise 2) 

 The most frequent use of conditional statements was found in TA-4’s discourse. 

Hypothetical thinking seemed to go hand in hand with his pervasive proving behavior in the 

interview.  

Here, I found it a bit easier, because you don’t have, like, a variable with a constant term, and 

then a variable and another constant term, so here I solve it as an equation, as if it were 

[hypothetically], an equality and I observe, if we have three, so   –   ,  , so it’s equal, so it’s not 

what we are searching. Or, if this is set up as a negative, it’s   , so it’s           so   and 

it’s also equal. And if we try something between these    and  , but excluding the specific 

value of    and  , like  ,  , and   is smaller than  . But anything below or above, it will make 

something that will be bigger than  . (TA-4, explaining his thinking in exercise 4) 

 His hypothetical thinking went beyond the technical use of if… then clauses, as it could 

be in an application of the RBC technique; he was obviously thinking in terms of what happens if 

we assume this or that, or if we proceed as if the object we are dealing with had this or that 

characteristic.    

 To conclude, we can say that PA did not perform well on systemic thinking compared 

with the other two groups, but also notice that VA did not score much better than TA on this 

aspect of theoretical thinking.   

Analytical thinking 

The context of inequalities with absolute value certainly puts to the test students’ linguistic and 

logical sensitivities. RBC is based on a disjunction of several sets of conjunctions. Combining 

results of analysis of cases by disjunction follows from the fact that the definition of absolute 

value is logically equivalent to          | |                 | |      .  This can be 

proved formally, but we rarely do that in teaching, hoping that students’ logical sensitivity will 

be enough for them to grasp this equivalence intuitively and use conjunctions and disjunctions 

correctly when applying RBC. This is not what happened in the experiment.  

 Students’ weakness in analytical thinking related with using RBC was revealed in 

behaviors such as: 

A-cases-listed: Not knowing how to combine the cases in at least one exercise and leaving the 

cases uncombined (PA-3, TA-2; 3, VA-5) 
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A-combining-replaced: Replacing the step of combining the cases by another operation, e.g. 

numerical testing of the cases, in some exercises (PA-4; 5, TA-1: the already 

mentioned students who appeared to confuse RBC with SNT and their techniques 

were a combination of the two) 

A-combining-by-conjunction: Combining the cases by conjunction in some exercises (PA-1, 

TA-2; 3, TA-6) 

A-combining-inconsistent: Inconsistent use of logical connectives within a single exercise 

(TA-2; 3, VA-6) 

  Thus four PA students, four TA students and two VA students displayed at least one of 

the above-listed behaviors. The ratio of students showing these weaknesses to those that used 

RBC in their solutions were, therefore, 4 : 6 in PA, 4 : 4 in TA and 2 : 4 in VA. The worst 

performance was thus in the TA group and the best in VA, although the difference between VA 

and PA is not big.  In our global evaluation of students’ theoretical thinking behaviors, we will 

not use the relative indicators, but the straightforward count of negative analytical thinking 

behaviors in each group, that is, –4 in PA, –4 in TA, and –2 in VA.  

 TA students were aware of the technical character of the words “and” and “or” but did 

not help them in understanding their correct use in solving the inequalities. They appeared to 

have lost faith in their intuitive thinking and became confused about the formal one. Unaware of 

the technical character of the two logical connectives, PA students used what they thought made 

sense in each case. VA students were aware of the special status of the words, and did experience 

confusion but dealt more successfully with it than TA students. When unsure which logical 

operation to use, they would use numerical testing, or visualizing the graphs (VA-5). VA-6, 

whose use of logical connectives was quite erratic in exercise 3, managed to figure out their 

proper use by exercise 6.    

Summary table: Overall group theoretical thinking performance 

By adding up the measures obtained in analyzing symptoms of students’ reflective, systemic and 

analytic thinking, we obtained a rough measure of the “overall group theoretical thinking 

performance” in our experiment. (Table 5). 
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Table 5. Overall group theoretical thinking performance 

Aspects of Theoretical Thinking PA TA VA 

REFLECTIVE  –8 1 6 

SYSTEMIC 5 10 11 

ANALYTIC –4 –4 –2 

Totals –7 7 15 

 

We note VA’s higher theoretical thinking performance overall than the other groups, and 

TA’s higher performance than PA, in spite of PA’s background advantage, and TA’s 

disadvantage at the start.  

CONCLUSIONS  

In our research we were looking for characteristics of teaching absolute value inequalities that 

would promote students’ theoretical thinking about the topic. Keeping in mind the fact that the 

experiment was conducted on only 18 students, we can offer only a few cautious conjectures. 

The VA approach, which contained not only a theoretical justification of the technique it 

presented (as TA), but also met “the current standards of mathematical practice” (Balacheff, 

2010, pp. 129-130) by offering an economical alternative technique for solving simpler 

inequalities, emerged victorious among the three groups of six students. Compared with other 

groups, VA students averaged better in obtaining correct answers; were more likely to reflect on 

a problem, noticing relationships with other problems and possibilities of reasoning out the 

solution conceptually without applying a general procedural technique; less likely than PA to 

engage in “ritualistic” behaviors. They were more likely to verify their answers and did so in a 

larger variety of ways; only in VA did a student use an analytical technique (RBC) to check a 

result. They were less likely to forget or remain unaware of the conditional character of the 

absolute value definition and the implications it has for reasoning about absolute value 

inequalities. The support of graphical visualization, whether physical or mental, allowed some of 

them to grasp the relationship represented in an inequality more globally, without having to rely 

on accurate application of a formal processing of algebraic expressions, which appeared to be the 

sole support for some PA and TA students. TA students often controlled their formal processing 

by the logical links between the RBC technique and the definition. PA students appeared to rely 



35 

 

on their memory or tried to follow the example in the lecture as best they could. While linguistic 

and logical sensitivity was raised in both TA and VA students, and made them confused about 

the correct use of “and” and “or” in reasoning, VA students were more successful in dealing with 

the uncertainty.  

 What relevance for a better performance of VA students could there be in the fact that 

one of the two techniques in the lecture was graphical? In a research on absolute value equations 

and inequalities reported in (Chiarugi, Fracassina, & Furinghetti, 1990), students performed best 

on tasks set in a geometric context. Educators seem to believe in the appeal of the geometric 

context even without any systematic research and this is perhaps what motivates the introduction 

of absolute value visually through the metaphor of distance. This approach was highly advocated 

in the 1989 reforms of mathematics teaching in France. Perrin-Glorian (1995) reported, however, 

that while students following the reformed program did very well (80% success rate) on 

inequalities of the type |    |    and |    |   , they did not do so well on more complex 

tasks. Perrin-Glorian conjectured that the geometric introduction made students rely too much on 

visualization which is not operational when the problem is numerically or algebraically more 

complicated. The behavior of VA students in our research corroborates this conjecture; without 

exercise 6, several VA students would not have taken up the challenges of systemic and analytic 

thinking.   

A priori, PA did not deprive students of a chance to engage with theoretical thinking. The 

lecture contained a definition of absolute value and the given technique was only a small shortcut 

away from direct application of the definition. No one in the PA group, however, asked why the 

technique required finding the zeros of the absolute value expressions, and analyzing the 

inequality within the intervals determined by these numbers. They were interested in knowing 

precisely what to do in each step, and not in knowing why the step was there. This attitude could 

not lead to systemic thinking.  

Several students in the PA group have already seen absolute value inequalities before and 

some have even seen reasoning by cases techniques. Those, however, who displayed few aspects 

of theoretical thinking, were not successful on the exercises. They could not reconstruct their 

previous knowledge; they remembered only scraps of it and these scraps interfered with their 

understanding of the technique presented in the lecture. In general, students enrolled in 

prerequisite mathematics courses rarely see absolute value and absolute value inequalities for the 
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first time. They may only not have been successful the first time around. They may have 

developed habits of thought and conceptions that were responsible for their failure. We 

conjecture that if the topic is taught the same way they learned it before, with the same type of 

tasks, same techniques and no theory, their mathematical behavior will fall into the same routine 

and they will repeat their mistakes. It seems that expanding both the range of inequalities and of 

the techniques to deal with them, and including a theoretical justification of these techniques 

gives these students a chance to become aware of the shortcomings of their previous ways of 

thinking and overcome some of the causes of their previous lack of success in mathematics.    

 The main difference between VA and the other two approaches was that VA students had 

been shown two techniques of solving absolute value inequalities. This might have encouraged 

them to reflect on the most appropriate technique to use when starting an exercise – an activity 

that already belongs to theoretical thinking. With one technique only shown in both PA and TA, 

this reflection moment was not suggested. Based on their experience in prerequisite mathematics 

courses, students could think that the exercises are meant for practicing just this one 

demonstrated technique. In TA, the technique was logically derived from the definition of 

absolute value. TA students who decided to use reasoning by cases appeared to mind this link the 

first time they tried to apply it, but we noticed that repetition of the technique in five exercises 

led to gradual detachment from it. Theoretical thinking can only occur as a result of choice 

among several possible ways of thinking; if there is no choice, thinking becomes procedural or 

unreflective. Thus, eventually, TA students could start behaving like PA students, omitting 

certain essential elements of the technique in their solutions (e.g. initial assumptions, such as the 

interval conditions), confusing reasoning by cases with other techniques, and, by not resolving 

their uncertainty about conjunctions and disjunctions, start using them erratically, and perhaps 

even stop perceiving their use as an issue. The VA student who decided to completely ignore the 

graphical method and used only the complete reasoning by cases technique in all inequalities 

(VA-4) also displayed signs of unreflective behavior. Although he was quite sure of his mastery 

of the technique, he did not stop to see if he could use a shortcut in a particular task, or if the 

technique could be simplified somehow. The case of student TA-4, on the other hand, shows the 

power of theoretical thinking; a deep reflection on the definition of absolute value given in the 

lecture, together with the proving and hypothesizing activity which pervaded all of his thinking, 

compensated for his lack of algebraic skills and allowed him to solve four inequalities accurately 
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and find a good approximation in the fifth one. TA-4’s theoretical thinking activity could 

perhaps be partly attributed to the theoretical flavor of the TA lecture, but probably in the sense 

that it triggered into action a habit developed in his Human Sciences program in college where, 

he recalled, the meaning of concepts was constantly debated and the validity of arguments had to 

be defended against opposite views.  

  Discussions over the meaning of a concept or the choice of a technique are rare in the 

prerequisite mathematics courses, where students are usually presented with a single technique to 

solve a type of exercises. TA-4 complained about it in the interview: 

Interviewer: About the courses you are taking, you said [your experience is] “mildly 

enjoyable”. Why not “very”?  

TA-4: Well, I’ve never seen a course in math… where you would have passions and hot debates 

of issues and things. It’s just, ‘sit down, this is the way it works’. OK, perhaps in some six 

hundred level courses of math [master’s level], in seminars, but no, not in the two hundred 

[prerequisite courses]
1
, no, no, you have the textbook, you have the teacher, there might be an 

error, but still, there is no point in debating the theory. Of course, you can debate with yourself, 

to understand, yeah, but… 

 This research might encourage instructors of prerequisite mathematics courses to adopt 

approaches where solution techniques are conceptually connected with their theoretical 

underpinnings and merits of alternative techniques are discussed. Just changing the mathematical 

organization of the lectures, however, might not be enough. Some theoretical thinking behaviors 

were revealed in our research because students were invited to explain their thinking in the 

interviews and this forced them to reflect on their solutions and rationalize their actions. It seems 

reasonable to assume that, to consolidate as a habit, a way of thinking must be exteriorized and 

made accessible to others for interpretation and constructive criticism. Therefore, an 

implementation of a VA approach may require changing also the exclusively lecture-and-assess 

format of prerequisite courses.     

 Instructors of prerequisite mathematics courses might also remain unmoved by this 

research, saying that they are not interested in developing theoretical mathematical thinking in 

the context of absolute value inequalities because – and we have heard this argument quite often 

– these students will generally not go on to study mathematics at any higher level and will be at 

most passive users of ready-made formulas, most of them already pre-programmed in computer 

systems. In particular, most will not engage in processing complex analytic expressions 

                                                 
1
 The prerequisite mathematics courses at the university were numbered 200-209. 
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involving the “pragmatic task” of compactifying and expanding absolute value expressions. They 

will not study Real, Complex, and Functional Analyses or Topology where absolute value is both 

a foundation of the notion of number, a technical tool, and a basis of generalization of the 

notions of length and distance. For us, however, this argument is all the more reason to teach 

students this topic (and any other) so that they have a chance to develop theoretical thinking 

habits in the process. Because this is what they will need in any profession, and not the non-

transferable skill of solving two types of absolute value inequalities using certain very limited 

techniques. Theoretical thinking, as we have seen on the example of TA-4, may allow them to 

successfully deal with novel situations, even when lacking certain technical knowledge and 

skills. It may push them to seek knowledge and understanding of this technical knowledge and 

skills on their own, as it did for TA-4, who told us how he found an interest in mathematics after 

having been thoroughly disenchanted with it in high school:       

I had bad experience with mathematics [in high school] and so I said, oh no, math it’s out of my 

life. And then I observed in Political Science Review – because I am more interested in political 

science – that, yes, you can have very interesting mathematical applications and then if you 

completely avoid math then, well, you’ve got philosophy, with its pompous blah-blah, Plato 

revisited, so, OK, what kind of job you get after studying that? Teaching? I’m sorry, but the 

answer is, No. And if you make some policy analysis for efficiency, and efficiency is a more 

economics concept, so in economics you got more math. But the problem is that, in high school, 

it won’t really interest you, the math, because math teachers are more with the natural sciences 

teachers, and so the applications of math in high school are not in economics… so [that you 

think] for social science, math is absolutely irrelevant... It’s only later on that I observed that it’s 

a very important methodological thing. (TA-4, interview) 

On this we end our paper. The last word in this research should belong to a student.   
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i
 Students applying for certain university programs (science, engineering, business school, psychology, nursing, and 

others) are required to take secondary school or college level mathematics courses such as College Algebra, Vectors 

and Matrices, Pre-calculus and Calculus of one variable if they had not taken them before or obtained low grades in 

them.  

ii
 Supporting documentation for the research can be viewed using links on A. Sierpinska’s web page at 

http://www.annasierpinska.wkrib.com, under the rubric “Research” 

(http://www.annasierpinska.wkrib.com/index.php?page=research), in the section “2006-10 Experimenting with 

approaches to teaching inequalities with absolute value”: 

Lecture slides: http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Lecture-Slides.pdf  

Student’ solutions (raw data): 

Procedural Approach (PA) students’ solutions: 

http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Solutions-PA.pdf 

Theoretical Approach (TA) students’ solutions: 

http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Solutions-TA.pdf  

Visual Approach (VA) students’ solutions: 

http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Solutions-VA.pdf  

Transcripts: 

Transcripts of interviews with students in the PA group: 

http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Transcripts-PA.pdf  

Transcripts of interviews with students in the TA group: 

http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Transcripts-TA.pdf  

Transcripts of interviews with students in the VA group: 

http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Transcripts-VA.pdf  

iii
 It is the realization – thanks to Stieg Mellin-Olsen – that “instrumental knowing” is an understanding and not a 

“non-understanding” that led Skemp to his well-known distinction between “instrumental” and “relational” 

understanding: “Instrumental understanding I would until recently not have regarded as understanding at all. It is 

what I have in the past described as ‘rules without reasons’, without realizing that for many pupils and their teachers 

the possession of such a rule, and the ability to use it, was what they meant by ‘understanding’.” (Skemp, 1978) 

iv
 The distinction between “epistemic” and “pragmatic” tasks was inspired by a terminology introduced by Inhelder 

et al. (Inhelder, Cellerier, & Ackermann, 1992) and then used by Vérillon (Vérillon, 2000) in reference to two types 

of aims of task-situated instrumented actions: the pragmatic actions aim (mainly) at “transform[ing]… a part of the 

environment”, while the epistemic actions aim at “affording knowledge”. 

v
 There are other characterizations of the absolute value function, for example, as solutions of certain functional 

equations, see (Major, 2008); (Major & Powązka, 2007). These characterizations are interesting in the context of 

proving their equivalence with other definitions of absolute value but are not useful for solving inequalities with 

absolute value. They also require an advanced understanding of functions which is not the case for most students in 

the prerequisite mathematics courses. 

http://www.annasierpinska.wkrib.com/
http://www.annasierpinska.wkrib.com/index.php?page=research
http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Lecture-Slides.pdf
http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Solutions-PA.pdf
http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Solutions-TA.pdf
http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Solutions-VA.pdf
http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Transcripts-PA.pdf
http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Transcripts-TA.pdf
http://www.annasierpinska.wkrib.com/pdf/Sierpinska.et.al-Abs-Val-Transcripts-VA.pdf
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vi
 This view of absolute value seems, in fact, more susceptible than the first one to be used spontaneously in making 

a complex conditional statement more concise. For example, in a task such as, “In a right-angled triangle with one 

side equal to  √   and hypotenuse equal to    ,    , find the length of the other side” (Chiarugi, Fracassina, & 

Furinghetti, 1990), students are not told to use absolute value, yet if they make the common mistake of omitting 

absolute value and writing their answer as     instead of |   |, the teacher has an opportunity to discuss the 

“epistemic value” of absolute value with them. The square root definition does not solve, however, the problem of 

mistakes such as deducing     from      [ (Gagatsis & Thomaidis, 1994); (Biza, Nardi, & Zachariades, 

2007)]. 

vii
 More generally, in RBC, an absolute value inequality involving n absolute value expressions |     |, where the 

functions    are linear, is seen as equivalent to a disjunction of    cases, each being a conjunction of interval 

conditions and the form the inequality takes under these interval conditions, as prescribed by the definition of 

absolute value applied to the expressions |     |.   

viii
 Using the mentioned definition, the proofs of Properties 1 and 2 would exhibit reasoning by cases, which always 

involves disjunction of the conditions describing the cases: 

| |                                     [                      

| |                                                   

ix
 From http://www.mathmotivation.com/lectures/Absolute-Value-Inequalities.pdf (downloaded December 9, 2009):  

[Y]ou replace the inequality symbol with =, solve this equation to find the critical numbers, plot the critical 

numbers, and test the intervals. For example, the inequality |x – 2| < 3   may be solved by first solving |x – 2| = 3  to 

get x = 5  and x = –1 . Then plot the critical numbers x = 5   and x= –1 on the number line and check the intervals. 

[Here, a diagram is plotted, with interval (–infinity, –1)   labeled “Interval One”, interval (–1, 5)   labeled “Interval 

Two”, and interval (5, infinity) labeled “Interval Three”] The test value of Interval Two, x = 0   results in a true 

statement when substituted into |x – 2| < 3   whereas the test values of Interval One and Interval Three, x = –2  and x 

= –1   result in false statements. So Interval Two makes up the solution, i.e. –1 < x < 5. 

x
 See also the inequality √    < √    , where the two functions do not intersect and therefore “critical 

numbers” cannot be found, but the inequality has a not-empty solution set, namely       .   

xi
 Consider, for example, the inequality  |   |    

       

   
. 

xii
 Consider the inequality      

 

 
, where f is a function defined, on the domain               , by the rule 

     |   
 

 
|.   

xiii
 Links to the slides of the lectures are given in Note (ii).  

xiv
 Links to the transcripts of interviews with students are given in Note (ii). 

xv
 Students’ written solutions are available through links given in Note (ii) 

xvi
 See the supporting documentation files with students’ written solutions and subsequent interviews.  

xvii
 These students have not seen RBC before. 

xviii
 Commenting, after the lecture, about the slide with the analytic solution of Example 2, he said, after complaining 

that the lecture was going too fast for him: “According to me, I usually put values, like… 2-1…, to digest and then I 

come here, I say, less than 0, it will have to be something like –3, -4, but with x you don’t see the point. It’s just like 

you just have been given a bunch of mathematical things and you just, OK, whatever. (TA-1, commenting on slide 7 

of the lecture).”  

http://www.mathmotivation.com/lectures/Absolute-Value-Inequalities.pdf

