
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 1

Service-Oriented Architecture for
High-Dimensional Private Data Mashup

Benjamin C. M. Fung, Member, IEEE, Thomas Trojer, Patrick C. K. Hung, Member, IEEE,
Li Xiong, Member, IEEE, Khalil Al-Hussaeni, and Rachida Dssouli, Member, IEEE

Abstract—Mashup is a web technology that allows different service providers to flexibly integrate their expertise and to deliver
highly customizable services to their customers. Data mashup is a special type of mashup application that aims at integrating
data from multiple data providers depending on the user’s request. However, integrating data from multiple sources brings about
three challenges: (1) Simply joining multiple private data sets together would reveal the sensitive information to the other data
providers. (2) The integrated (mashup) data could potentially sharpen the identification of individuals and, therefore, reveal their
person-specific sensitive information that was not available before the mashup. (3) The mashup data from multiple sources
often contain many data attributes. When enforcing a traditional privacy model, such as K-anonymity, the high-dimensional data
would suffer from the problem known as the curse of high dimensionality, resulting in useless data for further data analysis. In
this paper, we study and resolve a privacy problem in a real-life mashup application for the online advertising industry in social
networks, and propose a service-oriented architecture along with a privacy-preserving data mashup algorithm to address the
aforementioned challenges. Experiments on real-life data suggest that our proposed architecture and algorithm is effective for
simultaneously preserving both privacy and information utility on the mashup data. To the best of our knowledge, this is the first
work that integrates high-dimensional data for mashup service.

Index Terms—Privacy protection, anonymity, data mashup, data integration, service-oriented architecture, high dimensionality

F

1 INTRODUCTION

MASHUP service is a web technology that com-
bines information from multiple sources into a

single web application. An example of a successful
mashup application is the integration of real estate
information into Google Maps [1], which allows users
to browse on the map for properties that satisfy their
specified requirements. In this paper, we focus on
data mashup, a special type of mashup application that
aims at integrating data from multiple data providers
depending on the service request from a user (a
data recipient). An information service request could
be a general count statistic task or a sophisticated
data mining task such as classification analysis. Upon
receiving a service request, the data mashup web
application (mashup coordinator) dynamically deter-
mines the data providers, collects information from
them through their web service interface, and then in-

• B. C. M. Fung and K. Al-Hussaeni are with CIISE, Concordia
University, Canada. E-mail: {fung, k alhus}@ciise.concordia.ca

• T. Trojer is with the University of Innsbruck, Austria. E-mail:
thomas.trojer@uibk.ac.at

• P. C. K. Hung is with the University of Ontario Institute of Technology,
Canada. E-mail: Patrick.Hung@uoit.ca

• L. Xiong is with Emory University, USA. E-mail: lxiong@emory.edu

• R. Dssouli is with CIISE, Concordia University, Canada, and Re-
search Cluster Hire, FIT, United Arab Emirate University. E-mail:
dssouli@ciise.concordia.ca

tegrates the collected information to fulfill the service
request. Further computation and visualization can be
performed at the user’s site or on the web application
server. This is very different from a traditional web
portal that simply divides a web page or a website
into independent sections for displaying information
from different sources.

A data mashup application can help ordinary users
explore new knowledge; it could also be misused by
adversaries to reveal sensitive information that was
not available before the mashup. In this paper, we
study the privacy threats caused by data mashup and
propose a service-oriented architecture and a privacy-
preserving data mashup algorithm to securely inte-
grate person-specific sensitive data from different data
providers, wherein the integrated data still retains
the essential information for supporting general data
exploration or a specific data mining task.

1.1 The Challenges
The research problem presented in this paper was
discovered in a collaborative project with a social
network company, which focuses on the gay and les-
bian community in North America. The problem can
be generalized as follows: social network companies
A and B observe different sets of attributes about
the same set of individuals (members) identified by
the common User ID, e.g., TA(UID,Gender, Salary)
and TB(UID, Job,Age). Every time a social network
member visits another member’s webpage, an adver-
tisement is chosen to be displayed. Companies A and

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 2

TABLE 1
Raw data

Shared Data Provider A Data Provider B
UID Class Sensitive Gender Job Age

1 Y s1 M Janitor 34
2 N s2 M Doctor 58
3 Y s1 M Mover 34
4 N s2 M Lawyer 24
5 N s2 M Mover 58
6 Y s2 M Janitor 44
7 N s2 M Doctor 24
8 N s2 F Lawyer 58
9 N s2 F Doctor 44
10 Y s2 F Carpenter 63
11 Y s2 F Technician 63

B want to implement a data mashup application that
integrates their membership data, with the goal of
improving their advertisement selection strategy. The
analysis includes gathering general count statistics
and building classification models [2]. In addition
to companies A and B, other partnered advertising
companies need access to the final mashup data. The
solution presented in this paper is not limited only
to the social networks sector but is also applicable to
other similar data mashup scenarios. The challenges
of developing the data mashup application are sum-
marized as follows:

Challenge#1: Privacy concerns. The members are
willing to submit their personal data to a social net-
work company because they consider the company
and its developed system to be trustworthy. Yet, trust
to one party may not necessarily be transitive to a
third party. Many agencies and companies believe that
privacy protection means simply removing explicit
identifying information from the released data, such
as name, social security number, address, and tele-
phone number. However, many previous works [3],
[4] show that removing explicit identifying informa-
tion is insufficient. An individual can be re-identified
by matching other attributes called quasi-identifiers
(QID). The following example illustrates potential
privacy threats.

Example 1: Consider the membership data in Ta-
ble 1. Data Provider A and Data Provider B
own data tables TA(UID,Class, Sensitive,Gender)
and TB(UID,Class, Job,Age), respectively. Each row
(record) represents a member’s information. The two
parties want to develop a data mashup service to
integrate their membership data in order to perform
classification analysis on the shared Class attribute
with two class labels Y and N , representing whether
or not the member has previously bought any items
after following the advertisements on the social net-
work websites. Let QID = {Job,Gender,Age}. After
integrating the two tables (by matching the shared
UID field), there are two types of privacy threats:

Record linkage: If a record in the table is so specific
that not many members match it, releasing the data

TABLE 2
Anonymous mashup data (L = 2, K = 2, C = 0.5)

Shared Data Provider A Data Provider B
UID Class Sensitive Gender Job Age

1 Y s1 M Non-Technical [30− 60)
2 N s2 M Professional [30− 60)
3 Y s1 M Non-Technical [30− 60)
4 N s2 M Professional [1− 30)
5 N s2 M Non-Technical [30− 60)
6 Y s2 M Non-Technical [30− 60)
7 N s2 M Professional [1− 30)
8 N s2 F Professional [30− 60)
9 N s2 F Professional [30− 60)

10 Y s2 F Technical [60− 99)
11 Y s2 F Technical [60− 99)

may lead to linking the member’s record and his/her
sensitive value. Let s1 be a sensitive value in Table 1.
Suppose that the adversary knows the target member
is a Mover and his age is 34. Hence, record #3,
together with his sensitive value (s1 in this case), can
be uniquely identified since he is the only Mover who
is 34 years old.

Attribute linkage: If a sensitive value occurs fre-
quently along with some QID attributes, then the
sensitive information can be inferred from such at-
tributes, even though the exact record of the member
cannot be identified. Suppose the adversary knows
that the member is a male (M) of age 34. In such case,
even though there are two such records (#1 and #3),
the adversary can infer that the member has sensitive
value s1 with 100% confidence since both records
contain s1.

Many privacy models, such as K-anonymity [3],
[4], ℓ-diversity [5], and confidence bounding [6], have
been proposed to thwart privacy threats caused by
record and attribute linkages in the context of rela-
tional databases owned by a single data provider. The
traditional approach is to generalize the records into
equivalence groups so that each group contains at
least K records sharing the same qid value on the
QID, and so that each group contains sensitive values
that are diversified enough to disorient confident
inferences. The privacy models can be achieved by
generalizing domain values into higher level concepts
and, therefore, more abstract concepts.

The data mashup problem further complicates the
privacy issue because the data is owned by multi-
ple parties. In addition to satisfying a given privacy
requirement in the final mashup data, at any time
during the process of generalization no data provider
should learn more detailed information about any
other data provider other than the data in the final
mashup table. In other words, the generalization pro-
cess must not leak more specific information other
than the final mashup data. For example, if the fi-
nal table discloses that a member is a Professional,
then no other data providers should learn whether
she is a Lawyer or an Accountant. There are two

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 3

obvious yet incorrect approaches. The first one is
mashup-then-generalize: first integrate the two tables
and then generalize the mashup table using some
single table anonymization methods [7], [8], [9], [10].
This approach does not preserve privacy in the stud-
ied scenario because any data provider holding the
mashup table will immediately know all private infor-
mation of both data providers. The second approach
is generalize-then-mashup: first generalize each table
locally and then integrate the generalized tables. This
approach fails to guarantee the privacy for a quasi-
identifier that spans multiple tables. In the above
example, the K-anonymity on (Gender, Job) cannot
be achieved by the K-anonymity on each of Gender
and Job separately.

Challenge#2: High dimensionality. The mashup
data from multiple data providers usually contain
many attributes. Enforcing traditional privacy models
on high-dimensional data would result in signifi-
cant information loss. As the number of attributes
increases, more generalization is required in order
to achieve K-anonymity even if K is small, thereby
resulting in data useless for further analysis. This chal-
lenge, known as the curse of high dimensionality on K-
anonymity, is confirmed by [8], [11], [12]. To overcome
this bottleneck, we exploit one of the limitations of
the adversary: in real-life privacy attacks, it is very
difficult for an adversary to acquire all the information
of a target victim because it requires non-trivial effort
to gather each piece. Thus, it is reasonable to assume
that the adversary’s prior knowledge is bounded by
at most L values of the QID attributes. Based on
this assumption, in this paper we extend the privacy
model called LKC-privacy [13], originally proposed
for a single party scenario, to apply to a multiparty data
mashup scenario.

The general intuition of LKC-privacy is to ensure
that every combination of values in QIDj ⊆ QID
with maximum length L in the data table T is shared
by at least K records, and the confidence of inferring
any sensitive values in S is not greater than C, where
L, K, C are thresholds and S is a set of sensitive
values specified by the data provider. LKC-privacy
limits the probability of a successful record linkage to
be ≤ 1/K and the probability of a successful attribute
linkage to be ≤ C, provided that the adversary’s prior
knowledge does not exceed L.

Table 2 shows an example of an anonymous table
that satisfies (2, 2, 50%)-privacy by generalizing the
values from Table 1 according to the taxonomies
in Figure 1. (The dashed curve can be ignored for
now.) Every possible value of QIDj with maximum
length 2 in Table 2 (namely, QID1 = {Job,Gender},
QID2 = {Job,Age}, and QID3 = {Gender,Age}) is
shared by at least 2 records, and the confidence of
inferring the sensitive value s1 is not greater than
50%. In contrast, enforcing traditional 2-anonymity
with respect to QID = {Gender, Job,Age} will re-

quire further generalization. For example, in order
to make ⟨Professional,M, [30-60)⟩ satisfy traditional
2-anonymity, we may further generalize [1-30) and
[30-60) to [1-60), resulting in much higher information
utility loss.

Challenge#3: Information requirements. The data
recipients want to obtain general count statistics from
the mashup membership information. Also, they want
to use the mashup data as training data for building
a classification model on the Class attribute, with the
goal of predicting the behavior of future members.
One frequently raised question is: to avoid privacy
concerns, why doesn’t the data provider release the
statistical data or a classifier to the data recipients? In
many real-life scenarios, releasing data is preferable to
releasing statistics for several reasons. First, the data
providers may not have in-house experts to perform
data mining. They just want to share the data with
their partners. Second, having access to the data,
data recipients are flexible to perform the required
data analysis. It is impractical to continuously request
data providers to produce different types of statistical
information or to fine-tune the data mining results for
research purposes for the data recipients.

1.2 Contributions
This paper is the first work that addresses all the
aforementioned challenges in the context of mashup
service. The contributions are summarized as follows.

Contribution#1: We identify a new privacy prob-
lem through a collaboration with the social networks
industry and generalize the industry’s requirements
to formulate the privacy-preserving high-dimensional
data mashup problem (Section 3). The problem is to
dynamically integrate data from different sources for
joint data analysis in the presence of privacy concerns.

Contribution#2: We present a service-oriented ar-
chitecture (Section 4) for privacy-preserving data
mashup in order to securely integrate private data
from multiple parties. The generalized data has to
be as useful as possible to data analysis. Gener-
ally speaking, the privacy goal requires anonymiz-
ing identifying information that is specific enough
to pinpoint individuals, whereas the data analysis
goal requires extracting general trends and patterns. If
generalization is carefully performed, it is possible to
anonymize identifying information while preserving
useful patterns.

Contribution#3: Data mashup often involves a
large volume of data from multiple data sources.
Thus, scalability plays a key role in a data mashup
system. After receiving a request from a data re-
cipient, the system dynamically identifies the data
providers and performs the data mashup. Experimen-
tal results (Section 5) on real-life data suggest that our
method can effectively achieve a privacy requirement
without compromising the information utility, and the
proposed architecture is scalable to large data sets.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 4

Blue-collar White-collar

Non-Technical

Carpenter

Manager

ANY

Technical

Lawyer

Professional

Job

TechnicianMoverJanitor [1-30)

ANY

[1-99)

[1-60) [60-99)

[30-60)

Age

ANY

Male Female

Gender

Doctor

Fig. 1. Taxonomy trees and QIDs

2 RELATED WORK

Information integration has been an active area of
database research [15], [16]. This literature typically
assumes that all information in each database can
be freely shared [17]. Secure multiparty computation
(SMC) [18], [19], [20], on the other hand, allows shar-
ing of the computed result (e.g., a classifier), but com-
pletely prohibits sharing of data. An example is the
secure multiparty computation of classifiers [21], [22],
[23]. In contrast, the privacy-preserving data mashup
problem studied in this paper allows data providers to
share data, not only the data mining results. In many
applications, data sharing gives greater flexibility than
result sharing because the data recipients can perform
their required analysis and data exploration [8].

Samarati and Sweeney [24] propose the notion of
K-anonymity. Datafly system [4] and µ-Argus sys-
tem [25] use generalization to achieve K-anonymity.
Preserving classification information in K-anonymous
data is studied in [8], [10]. Mohammed et al. [13]
extend the work to address the problem of high-
dimensional anonymization for the healthcare sector
using LKC-privacy. All these works consider a single
data source; therefore, data mashup is not an issue.
Joining all private databases from multiple sources
and applying a single table anonymization method
fails to guarantee privacy if a QID spans across mul-
tiple private tables. Recently, Mohammed et al. [14]
propose an algorithm to address the horizontal in-
tegration problem, while our paper addresses the
vertical integration problem.

Jiang and Clifton [26], [27] propose a cryptographic
approach and Mohammed et al. [28] propose a top-
down specialization algorithm to securely integrate
two vertically-partitioned distributed data tables to a
K-anonymous table, and further consider the partic-
ipation of malicious parties in [29]. Trojer et al. [30]
present a service-oriented architecture for achieving
K-anonymity in the privacy-preserving data mashup
scenario. Our paper is different from these previous
works [26], [27], [28], [29], [30] in two aspects. First,
our LKC-privacy model provides a stronger privacy
guarantee than K-anonymity because K-anonymity
does not address the privacy attacks caused by at-
tribute linkages, as discussed in Section 1. Second,
our method can better preserve information utility in
high-dimensional mashup data. High dimensionality is

a critical obstacle for achieving effective data mashup
because the integrated data from multiple parties
usually contain many attributes. Enforcing traditional
K-anonymity on high-dimensional data will result
in significant information loss. Our privacy model
resolves the problem of high dimensionality. This
claim is also supported by our experimental results.

Yang et al. [23] develop a cryptographic approach to
learn classification rules from a large number of data
providers while sensitive attributes are protected. The
problem can be viewed as a horizontally partitioned
data table in which each transaction is owned by a
different data provider. The output of their method is
a classifier, but the output of our method is an anony-
mous mashup data that supports general data analy-
sis or classification analysis. Jurczyk and Xiong [31],
[32] present a privacy-preserving distributed data
publishing for horizontally partitioned databases. The
mashup model studied in this paper can be viewed
as a vertically partitioned data table, which is very
different from the model studied in [23], [31], [32].

Jackson and Wang [33] present a secure communi-
cation mechanism that enables cross-domain network
requests and client-side communication with the goal
of protecting the mashup controller from malicious
code through web services. In contrast, this paper
aims to preserve the privacy and information utility
of the mashup data.

3 PROBLEM DEFINITION

We first define the LKC-privacy model [13] and
the information utility measure on a single data
table, then extend it for privacy-preserving high-
dimensional data mashup from multiple parties.

3.1 Privacy Measure
Consider a relational data table
T (UID,D1, . . . , Dm, S1, . . . , Se, Class) (e.g., Table 1).
UID is an explicit identifier, such as User ID or
SSN. In practice, it should be replaced by a pseudo
identifier, such as a record ID, before publication. We
use UID to ease the discussion only. Each Di is either
a categorical or numerical attribute. Each Sj is a
categorical sensitive attribute. A record has the form
⟨v1, . . . , vm, s1, . . . , se, cls⟩, where vi is a domain value
in Di, sj is a sensitive value in Sj , and cls is a class

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 5

value in Class. The data provider wants to protect
against linking an individual to a record or some
sensitive value in T through some subset of attributes
called a quasi-identifier QID ⊆ {D1, . . . , Dm}.

One data recipient, who is an adversary, seeks to
identify the record or sensitive values of some target
victim V in T . As explained in Section 1, we assume
that the adversary knows at most L values of QID
attributes of the victim. We use qid to denote such
prior known values, where |qid| ≤ L. Based on the
prior knowledge qid, the adversary could identify a
group of records, denoted by T [qid], that contains qid.
|T [qid]| denotes the number of records in T [qid]. The
adversary could launch two types of privacy attacks
based on T [qid]:

• Record linkage: Given prior knowledge qid, T [qid]
is a set of candidate records that contains the vic-
tim V ’s record. If the group size of T [qid], denoted
by |T [qid]|, is small, then the adversary may
identify V ’s record from T [qid] and, therefore, V ’s
sensitive value. For example, if qid = ⟨Mover, 34⟩
in Table 1, T [qid] = {UID#3} and |T [qid]| = 1.
Thus, the adversary can easily infer that V has
sensitive value s1.

• Attribute linkage: Given prior knowledge qid, the
adversary can identify T [qid] and infer that V
has sensitive value s with confidence P (s|qid) =
|T [qid∧s]|
|T [qid]| , where T [qid ∧ s] denotes the set of

records containing both qid and s. P (s|qid) is the
percentage of the records in T [qid] containing s.
The privacy of V is at risk if P (s|qid) is high. For
example, given qid = ⟨M, 34⟩ in Table 1, T [qid ∧
s1] = {UID#1, 3} and T [qid] = {UID#1, 3},
hence P (s1|qid) = 2/2 = 100%.

To thwart the record and attribute linkages on any
individual in the table T , we require every qid with
a maximum length L in the anonymous table to be
shared by at least a certain number of records, and the
percentage of sensitive value(s) in every group cannot
be too high. The privacy model, LKC-privacy [13],
reflects this intuition.

Definition 3.1 (LKC-privacy): Let L be the maxi-
mum number of values of the adversary’s prior
knowledge. Let S ⊆ ∪Sj be a set of sensitive values.
A data table T satisfies LKC-privacy if and only if for
any qid with |qid| ≤ L,

1) |T [qid]| ≥ K, where K > 0 is an integer repre-
senting the anonymity threshold, and

2) P (s|qid) ≤ C for any s ∈ S, where 0 < C ≤
1 is a real number representing the confidence
threshold.

The data provider specifies the thresholds L, K, and
C. The maximum length L reflects the assumption of
the adversary’s power. LKC-privacy guarantees the
probability of a successful record linkage to be ≤ 1/K
and the probability of a successful attribute linkage to
be ≤ C. Sometimes, we write C in percentage. LKC-

privacy has several nice properties that make it suit-
able for anonymizing high-dimensional data. First, it
only requires a subset of QID attributes to be shared
by at least K records. This is a major relaxation from
traditional K-anonymity, based on a very reasonable
assumption that the adversary has limited power.
Second, LKC-privacy generalizes several traditional
privacy models. K-anonymity [3], [4] is a special case
of LKC-privacy with L = |QID| and C = 100%,
where |QID| is the number of QID attributes in the
data table. Confidence bounding [6] is also a special
case of LKC-privacy with L = |QID| and K = 1.
(α, k)-anonymity [34] is a special case of LKC-privacy
with L = |QID|, K = k, and C = α. One instantiation
of ℓ-diversity is also a special case of LKC-privacy
with L = |QID|, K = 1, and C = 1/ℓ. Thus, the data
provider can still achieve the traditional models.

3.2 Utility Measure

The measure of information utility varies depending
on the user’s specified information service request
and the data analysis task to be performed on the
mashup data. Based on the information requirements
specified by the social network data providers, we
define two utility measures. First, we aim at preserv-
ing the maximal information for classification analy-
sis. Second, we aim at minimizing the overall data
distortion when the data analysis task is unknown.

In this paper, the general idea in anonymizing
a table is to perform a sequence of specializations
starting from the topmost general state in which each
attribute has the topmost value of its taxonomy tree.
We assume that a taxonomy tree is specified for each
categorical attribute in QID. A leaf node represents
a domain value and a parent node represents a less
specific value. For numerical attributes in QID, taxon-
omy trees can be grown at runtime, where each node
represents an interval, and each non-leaf node has two
child nodes representing some optimal binary split of
the parent interval [2]. Figure 1 shows a dynamically
grown taxonomy tree for Age.

A specialization, written v → child(v), where child(v)
denotes the set of child values of v, replaces the parent
value v with the child value that generalizes the do-
main value in a record. A specialization is valid if the
resulting table still satisfies the specified LKC-privacy
requirement after the specialization. A specialization
is performed only if it is valid. The specialization
process can be viewed as pushing the ”cut” of each
taxonomy tree downwards. A cut of the taxonomy
tree for an attribute Di, denoted by Cuti, contains
exactly one value on each root-to-leaf path. Figure 1
shows a solution cut indicated by the dashed curve
representing the LKC-privacy preserved Table 2. The
specialization procedures start from the topmost cut
and iteratively pushes down the cut by specializing
some value in the current cut until violating the LKC-

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 6

privacy requirement. In other words, the specializa-
tion process pushes the cut downwards until no valid
specialization is possible. Each specialization tends
to increase information utility and decrease privacy
because records are more distinguishable by specific
values. We define two utility measures (scores) to
evaluate the ”goodness” of a specialization depending
on the information service request requirement.

3.2.1 Utility Measure for Classification Analysis
For the requirement of classification analysis, we use
information gain [2] to measure the goodness of a spe-
cialization. Let T [x] denote the set of records in table
T generalized to the value x. Let |T [x∧cls]| denote the
number of records in T [x] having the class cls. Note
that |T [v]| =

∑
c |T [c]|, where c ∈ child(v). Our selec-

tion criterion, Score(v), is to favor the specialization
v → child(v) that has the maximum information gain:

Score(v) = E(T [v])−
∑
c

|T [c]|
|T [v]|

E(T [c]). (1)

where E(T [x]) is the entropy [35] of T [x] and:

E(T [x]) = −
∑
cls

|T [x ∧ cls]|
|T [x]|

× log2
|T [x ∧ cls]|

|T [x]|
, (2)

Intuitively, E(T [x]) measures the mix of classes for
the records in T [x], and the information gain of v (or
Score(v) in this case) is the reduction of the mix by
specializing v into c ∈ child(v).

For a numerical attribute, the specialization of an
interval refers to the optimal binary split that maxi-
mizes information gain on the Class attribute. See [2]
for details.

3.2.2 Utility Measure for General Data Analysis
Sometimes, the mashup data is shared without a spe-
cific task. In this case of general data analysis, we use
discernibility cost [36] to measure the data distortion in
the anonymous data. The discernibility cost charges
a penalty to each record for being indistinguishable
from other records. For each record in an equivalence
group qid, the penalty is |T [qid]|. Thus, the penalty
on a group is |T [qid]|2. To minimize the discernibility
cost, we choose the specialization v → child(v) that
maximizes the value of

Score(v) =
∑
qidv

|T [qidv]|2 (3)

over all qid containing v. Example 5 shows the com-
putation of Score(v) in more details.

3.3 Privacy-Preserving High-Dimensional Data
Mashup
Consider n data providers {Provider 1,. . .,Provider
n}, where each Provider y owns a private ta-
ble Ty(UID,QIDy, Sy, Class) over the same set of

records. UID and Class are shared attributes among
all data providers. QIDy is a set of quasi-identifying
attributes and Sy is a set of sensitive values owned
by provider y. QIDy ∩QIDz = ∅ and Sy ∩ Sz = ∅ for
any 1 ≤ y, z ≤ n. These providers agree to release
”minimal information” to form a mashup table T
(by matching the UID) for conducting general data
analysis or a joint classification analysis. The notion of
minimal information is specified by an LKC-privacy
requirement on the mashup table. A QIDj is local if
all attributes in QIDj are owned by one provider;
otherwise, it is global.

Definition 3.2: (Privacy-Preserving High-Dimensional
Data Mashup): Given multiple private tables
T1, . . . , Tn, an LKC-privacy requirement,
QID = ∪QIDy , S ⊆ ∪Sy , and a taxonomy tree
for each categorical attribute in QID, the problem of
privacy-preserving high-dimensional data mashup is to
efficiently produce a generalized integrated (mashup)
table T such that (1) T satisfies the LKC-privacy
requirement, (2) T contains as much information as
possible for general data analysis or classification
analysis, (3) each data provider learns nothing about
the other providers’ data more specific than what is
in the final mashup table T . We assume that the data
providers are semi-honest [18], [19], [20], meaning
that they will follow the algorithm but may attempt
to derive sensitive information from the received
data.

We use an example to explain condition (3). If a
record in the final table T has values F and Professional
on Gender and Job, respectively. Condition (3) is
violated if Provider A can learn that Professional in
this record comes from Lawyer. Our privacy model
ensures the privacy protection in the final mashup
table as well as in any intermediate tables. To ease
the explanation, we present our solution in a scenario
of two parties (n = 2). A discussion is given in Sec-
tion 4.3 to describe the extension to multiple parties.

Given a QID, there are
(|QID|

L

)
combinations of

decomposed QIDj with maximum size L. For any
value of K and C, each combination of QIDj in
LKC-privacy is an instance of the (α, k)-anonymity
problem with α = C and k = K. Wong et al. [34] have
proven that computing the optimal (α, k)-anonymous
solution is NP-hard; therefore, computing the optimal
LKC-privacy solution is also NP-hard.

4 SOA FOR PRIVACY-PRESERVING DATA
MASHUP

We first present a service-oriented architecture (SOA)
that describes the communication paths of all partici-
pating parties, followed by a privacy-preserving high-
dimensional data mashup algorithm that can effi-
ciently identify a suboptimal solution for the problem
described in Definition 3.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 7

Browser View

Data Mining Module

Sessions

Mashup Coordinator

.

.

.

Data Provider N

Data Provider 1

Private

DB

Privacy-preserving High-

dimensional Data Mashup

(PHDMashup) algorithm
Web

Service
Web

Service

session link

session link

Web

Service

Data Provider 2

Private

DB
Web

Service

Data

Recipient

Fig. 2. Service-Oriented Architecture for Privacy-Preserving Data Mashup

SOA is an architectural paradigm for developing
and integrating heterogeneous information systems
with strict message-driven communication paradigm.
Following the SOA design principles, the result-
ing system has several desirable properties includ-
ing interoperability and loosely coupling. Interoperabil-
ity refers to the capability of allowing platform-
independent design of the system components based
on a common understanding of service component
interfaces. Loosely coupling refers to the capability of
minimizing dependencies among the system compo-
nents and, therefore, improving the overall flexibility,
scalability, and fault tolerance of a system [37]. In the
mashup system described in this paper, data sources
can be dynamically composed to serve new mashup
requests depending on the data analysis tasks and
privacy requirements. SOA with the capabilities of
interoperability and loosely coupling has become a
natural choice to tackle the heterogeneity of different
potential data providers.

Referring to the architecture shown in Figure 2,
the data mashup process can be divided into two
phases. In Phase I, the mashup coordinator receives
an information service request from the data recipient
and establishes connections with the data providers
who can contribute their data to fulfill the request.
In Phase II, the mashup coordinator executes the
privacy-preserving algorithm to integrate the private
data from multiple data providers and to deliver the
final mashup data to the data recipient. Note that
our proposed solution does not require the mashup
coordinator to be a trusted party. Though the mashup
coordinator manages the entire mashup service, our
solution guarantees that the mashup coordinator does
not gain more information than the final mashup data,
thereby protecting the data privacy of every partici-
pant. The mashup coordinator can be any one of the
data providers or an independent party. This makes
our architecture practical because a trusted party is
not always available in real-life mashup scenarios.

4.1 Phase I: Session Establishment

The objective of Phase I is to establish a common
session context between the data recipient and the
contributing data providers. An operational context
is successfully established by proceeding through the
steps of data recipient authentication, contributing
data providers identification, session context initial-
ization, and common requirements negotiation.

Authenticate data recipient: The mashup coordinator
first authenticates a data recipient to the requested
service, generates a session token for the current recip-
ient interaction, and then identifies the data providers
accessible by the data recipient. Some data providers
are public and are accessible by any data recipients.

Identify contributing data providers: Next, the mashup
coordinator queries the data schema of the accessible
data providers to identify the data providers that can
contribute data for the requested service. To facilitate
more efficient queries, the mashup coordinator could
pre-fetch data schema from the data providers (i.e.,
the pull model), or the data providers could update
their data schema periodically (i.e., the push model).

Initialize session context: Next, the mashup coordi-
nator notifies all contributing data providers with the
session identifier. All prospective data providers share
a common session context that represents a stateful
presentation of information related to a specific ex-
ecution of the privacy-preserving mashup algorithm
called PHDMashup. This algorithm will be discussed
in Section 4.2. An established session context con-
tains several attributes to identify a PHDMashup pro-
cess, including the data recipient’s address; the data
providers’ addresses and certificates; an authentica-
tion token that contains the data recipient’s certificate;
and a unique session identifier that uses an end-point
reference (EPR) composed of the service address, a
PHDMashup process identifier and runtime status in-
formation about the executed PHDMashup algorithm.

Negotiate privacy and information requirements: The
mashup coordinator is responsible to communicate
the negotiation of privacy and information require-
ments among the data providers and the data recip-

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 8

ient. Specifically, this step involves negotiating cost,
LKC-privacy requirement, sensitive information, and
expected information quality. For example, in the case
of classification analysis, information quality can be
estimated by classification error on some testing data.

4.2 Phase II: Privacy-Preserving High-
Dimensional Data Mashup

The objective of Phase II is to integrate the high-
dimensional data from multiple data providers such
that the final mashup data satisfies a given LKC-
privacy requirement and preserves as much infor-
mation as possible for the specified information re-
quirement. Recall that Definition 3.2 specifies three
requirements. Requirements (1) and (2) specify the
properties of the final mashup data. Requirement
(3) states that no data provider should learn more
detailed information than the final mashup data dur-
ing the process of integration. To satisfy requirement
(3), we propose a top-down specialization approach
called Privacy-preserving High-dimensional Data Mashup
(PHDMashup). We first present an overview of the
algorithm followed by the details of each step.

To ease the discussion, we present the algorithm
in a scenario of two data providers. An extension to
multiple (>2) data providers will be given in Sec-
tion 4.3. Consider two private tables TA and TB with
a common key UID, where Provider A holds TA and
Provider B holds TB . Initially, every data provider
generalizes all of its own attribute values to the
topmost value according to the taxonomy trees, and
maintains a cut Cuti that contains the topmost value
for each attribute Di in QID. The union cut ∪Cuti on
all attributes represents a generalized table T , denoted
by Tg . ∪Cuti also contains the set of candidates for
specialization. A specialization v → child(v) is valid,
written as IsV alid(v), if the table Tg still satisfies the
LKC-privacy requirement after the specialization on
v. At each iteration, PHDMashup identifies the winner
specialization, i.e., the valid candidate that has the
highest Score, among all the candidates, performs the
winner specialization, and updates the Score and the
IsV alid status of the new and existing candidates in
the cut. PHDMashup terminates when there are no
valid candidates in the cut.

Note, there is no need to further specialize a value
once it becomes invalid because any further special-
izations also must be invalid. This anti-monotonic [12]
property of LKC-privacy with respect to a specializa-
tion significantly reduces the search space and ensures
that the resulting solution is sub-optimal.

Algorithm 1 describes the procedure of Provider A
(same as Provider B). Provider A finds the local win-
ner specialization using the utility measure discussed
in Section 3.2, and communicates with Provider B to
identify the global winner candidate, denoted by w.
Suppose that w is local to Provider A (otherwise, the

Algorithm 1 PHDMashup for Provider A (same as
Provider B)

1: initialize Tg to include one record containing top-
most values;

2: initialize ∪Cuti to include only topmost values
and update IsV alid(v) for every v ∈ ∪Cuti;

3: while ∃v ∈ ∪Cuti s.t. IsV alid(v) do
4: find the local winner α that has the highest

Score(α);
5: communicate Score(α) with Provider B to de-

termine the global winner w;
6: if the winner w is local then
7: specialize w on Tg ;
8: instruct Provider B to specialize w;
9: else

10: wait for the instruction from Provider B;
11: specialize w on Tg using the instruction;
12: end if
13: replace w with child(w) in the local copy of

∪Cuti;
14: update Score(x) and IsV alid(x) for every can-

didate x ∈ ∪Cuti;
15: end while
16: return Tg and ∪Cuti;

discussion below applies to Provider B). Provider A
performs w → child(w) on its copy of ∪Cuti and Tg.
This means specializing each record t ∈ Tg contain-
ing w into those t′1, . . . , t

′
z containing child values in

child(w). Similarly, Provider B updates its ∪Cuti and
Tg , and partitions TB [t] into TB [t

′
1], . . . , TB [t

′
z]. Since

Provider B does not have the attribute for w, Provider
A needs to instruct Provider B how to partition these
records in terms of UIDs.

The nature of the top-down approach implies that
Tg is always more general than the final mashup table
and, therefore, does not violate requirement (3) in
Definition 3.2. At each iteration, the data providers co-
operate to perform the same identified specialization
by communicating some count statistics information
that satisfies requirement (3) in Definition 3.2. Below,
we describe the key steps: find the winner candidate
(Lines 4-5), perform the winner specialization (Lines
7-11), and update the score and status of candidates
(Line 14). For Provider A, a local attribute refers to an
attribute from TA.

Example 2: Consider Table 1 and the LKC-privacy
requirement with L = 2, K = 2, C = 50%, QID =
{Gender, Job,Age}, and S = {s1}. Initially,
Tg = ⟨ANY Gender,ANY Job, [1-99)⟩

and
∪Cuti = {ANY Gender,ANY Job, [1-99)},

and all specializations in ∪Cuti are candidates. To
find the winner candidate w, Provider A com-
putes Score(ANY Gender), and Provider B com-
putes Score(ANY Job) and Score([1-99)).

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 9

Link[1-60)

Head of Link[1-60)

Gender Job Age
ANY_Gender ANY_Job [1-99)

Head of Link[60-99)
[1-99) {[1-60), [60-99)}

11
of Recs.

ANY_Job { White-collar, Blue-collar }

2
of s1

ANY_Gender Blue-collar [1-99) 62

Provider BProvider A

ANY_Gender White-collar [1-99) 50

ANY_Gender Blue-collar [1-60) 42 ANY_Gender Blue-collar [60-99) 20 ANY_Gender White-collar [1-60) 50

Fig. 3. The TIPS data structure

4.2.1 Find the Winner Specialization
Provider A first finds a valid candidate α that has the
highest Score(α) among all the local attribute values
in ∪Cuti. Then, Provider A communicates Score(α)
with Provider B to determine the global winner
specialization, denoted by w, that has the highest
Score(w) among all candidates in ∪Cuti. Score(x) and
IsV alid(x) for every x ∈ ∪Cuti are updated from
Line 14 in the previous iteration or the initialization
prior to the first iteration. The updating procedure is
discussed in Section 4.2.3. In case all local candidates
are invalid, Provider A sends a default Score = −1 to
Provider B to indicate its status. To avoid sharing the
Score between the data providers, PHDMashup em-
ploys the secure multiparty maximum protocol [20] to
determine the highest Score among the participating
data providers.

4.2.2 Perform the Winner Specialization
Suppose that the winner specialization w is local
at Provider A (otherwise, replace Provider A with
Provider B in the procedure). For each record t in
Tg containing w, Provider A accesses the raw records
in TA[t] to tell how to specialize t. To facilitate this
operation, we represent Tg by the data structure
called Taxonomy Indexed PartitionS (TIPS). The idea is
to group the raw records in TA according to their
generalized records t in Tg.

Definition 4.1 (TIPS): TIPS is a tree structure. Each
node represents a generalized record over ∪QIDj .
Each child node represents a specialization of the
parent node on exactly one attribute. A leaf node
represents a generalized record t in Tg and the leaf
partition containing the raw records generalized to t,
i.e., TA[t]. For a candidate x in ∪Cuti, Px denotes a leaf
partition whose generalized record contains x, and
Linkx links up all partitions Px.

With TIPS, we can efficiently find all raw records
generalized to x by following Linkx for any candidate
x in ∪Cuti. To ensure that every data provider has
only access to its own raw records, a leaf partition
at Provider A contains only raw records from TA

and a leaf partition at Provider B contains only raw
records from TB . Each provider maintains a local

copy of TIPS, representing the current state of the
integrated table. Initially, the TIPS has only the root
node representing all data records with the most gen-
eral values. In each iteration, the two data providers
cooperate to perform the specialization w by refining
the leaf partitions Pw on Linkw in their own copy
of TIPS. As both providers perform exactly the same
specialization, both copies of TIPS are always identical
after every specialization.

Example 3: Continue with Example 2. Initially,
TIPS has only one partition containing all data
records and representing the generalized record
⟨ANY Gender,ANY Job, [1-99)⟩, TA[root] = TA and
TB [root] = TB . The root is on LinkANY Gender,
LinkANY Job, and Link[1-99). See Figure 3.
Suppose the first winner specialization is
ANY Job → {White-collar,Blue-collar}. We
create two new partitions under the root
partition as shown in the figure, and split data
records between them. Both partitions are on
LinkANY Gender and Link[1-99). ∪Cuti is updated
into {ANY Gender,White-collar,Blue-collar, [1-99)}.
Suppose that the second winner specialization is
[1-99) → {[1-60), [60-99)}, which specializes the
two partitions on Link[1-99), resulting in the leaf
partitions in Figure 3.

We summarize the operations at the two data
providers, assuming that the winner w is local at
Provider A.

Provider A. Provider A refines each leaf partition
Pw on Linkw into child partitions Pc. Linkc is created
to link up the new Pc’s for the same c. Add Pc to every
Linkx other than Linkw to which Pw was previously
linked. While scanning the records in Pw, Provider A
also collects the following information.

• uids for Provider B. If a record in Pw is specialized
to a child value c, collect the pair (uid, c), where
uid is the UID value of the record. Then, Provider
A sends these (uid, c) pairs to Provider B for spe-
cializing the corresponding leaf partitions there.

• Count statistics for updating Score. (1) For each c
in child(w): |TA[c]|, |TA[d]|, |TA[c ∧ cls]|, |TA[d ∧
cls]|, |TA[c∧ s]|, and |TA[d∧ s]| for every sensitive
value s ∈ S, where d ∈ child(c) and cls is a class

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 10

label. Refer to Section 3 for these notations. |TA[c]|
(similarly |TA[d]|) is computed by

∑
|Pc| for Pc on

Linkc. (2) For each Pc on Linkc: |Pd|, where Pd is
a child partition under Pc as if c is specialized.

Provider B. On receiving the instruction from
Provider A, Provider B creates child partitions Pc in
its own TIPS. At Provider B’s site, the child partitions
Pc contain raw records from TB . The child partitions
Pc are obtained by splitting Pw among Pc according
to the (uid, c) pairs received.

Example 4: Let us revisit the first specialization in
Example 3. Provider B performs the first special-
ization ANY Job → {White-collar,Blue-collar} on its
own TIPS and then sends the following instruction to
Provider A:
uid#1,3,5,6,10,11 go to the node with Blue-collar.
uid#2,4,7,8,9 go to the node with White-collar.

On receiving this instruction, Provider A creates the
two child nodes under the root in its copy of TIPS
and partitions TA[root]. In general, the data providers
update their own TIPS data structures either by spe-
cializing the winning candidate on their own local
attributes or by receiving specialization instructions
from the other data provider.

Updating TIPS is the only operation that accesses
raw records in our algorithm. Subsequently, updating
Score(x) (in Section 4.2.3) makes use of the count
statistics without further accessing raw records. The
overhead of maintaining Linkx is small. For each
attribute in ∪QIDj and each leaf partition on Linkw,
there are at most |child(w)| ”relinkings.” Therefore,
there are at most | ∪ QIDj | × |Linkw| × |child(w)|
”relinkings” for performing w.

4.2.3 Update the Score
The key to the scalability of our algorithm is updating
Score(x) and IsV alid(x) using the count statistics
maintained in Section 4.2.2 without accessing raw
records again. For any valid candidate x ∈ ∪Cuti,
its Score(x) and IsV alid(x) need to be updated if
some qidx containing x also contains the winner
candidate w in the current specialization. Updating
Score(x) depends on InfoGain(x) or |T [qidx]|. Up-
dating IsV alid(x) depends on |T [qidx]| and |T [qidx ∧
s]| for every sensitive value s ∈ S. We consider both
updates below.

Updating InfoGain(x): We need to compute
InfoGain(c) for the newly added c in child(w). The
owner provider of w can compute InfoGain(c) while
collecting the count statistics for c in Section 4.2.2.

Example 5: Let us revisit the first specialization
in Example 3. We show the computation of
Score(ANY Job) for the specialization ANY Job →
{Blue-collar,White-collar}. For general data analysis,
Score(ANY Job) = 62 + 52 = 61. For classification
analysis,
E(T [ANY Job]) = − 6

11 × log2
6
11 −

5
11 × log2

5
11 = 0.994

E(T [Blue-collar]) = −2
6 × log2

2
6 − 4

6 × log2
4
6 = 0.918

E(T [White-collar]) = − 5
5 × log2

5
5 − 0

5 × log2
0
5 = 0.0

InfoGain(ANY Job) = E(T [ANY Job])− (6
11×

E(T [Blue-collar]) + 5
11 × E(T [White-collar])) = 0.493

InfoGain(ANY Job) = 0.493.
Updating IsV alid(x) and |T [qidx]|: Given an LKC-

privacy requirement, a specialization on value x is
valid (i.e., IsV alid(x) = true) if |T [qidj]| ≥ K and
P (s|qidj) = |T [qidj∧s]|

|T [qidj]| ≤ C for any qidj with |qidj | ≤ L

containing x and for any s ∈ S. The following
data structure, called Quasi-Identifier Tree (QIT), can
efficiently maintain these counts.

Definition 4.2 (QIT): For each QIDj = {D1, . . . ,
Dq}, QITj is a tree of q levels, where level i > 0
represents generalized values for Di. A root-to-leaf
path represents an existing qidj on QIDj in the gen-
eralized data Tg. The leaf nodes store the |T [qidj]| and
|T [qidj ∧ s]| for every sensitive value s ∈ S. A branch
is trimmed if its |T [qidj]| = 0.
QITj is kept at a data provider if the data provider

owns some attributes in QIDj . On specializing the
winner w, a data provider updates its QITjs that
contain the attribute of w: creates the nodes for the
new qidjs and computes |T [qidj]| and |T [qidj ∧ s]|
for every sensitive value s ∈ S. We can obtain
|T [qidj]| and |T [qidj ∧ s]| from the local copy of TIPS:
|T [qidj]| =

∑
|Pc|, where Pc is on Linkc and qidj is

the generalized value on QIDj for Pc. |T [qidj∧s]| can
be computed similarly. Note that |Pc| is given by the
count statistics for w collected in Section 4.2.2.

4.3 Analysis

Our approach produces the same integrated table as
the single data provider anonymization algorithm [13]
on a joint table, and ensures that no data provider
learns more detailed information about any other
provider other than what they agreed to share. This
claim follows from the fact that PHDMashup per-
forms exactly the same sequence of specializations
as in [13] but in a distributed manner where TA

and TB are kept locally at the sources. The only
information revealed to each other is ∪Cutj and Tg

at each iteration. However, such information is more
general than the final mashup table that the two data
providers have agreed to share.

PHDMashup (Algorithm 1) is extendable for mul-
tiple (more than two) data providers with minor
changes: In Line 5, each data provider should commu-
nicate with all the other data providers for determin-
ing the winner. In Line 8, the data provider holding
the winner specialization should instruct all the other
data providers. In Line 10, a data provider should wait
for instruction from the winner data provider. Our
algorithm is based on the assumption that all the data
providers are semi-honest. An interesting extension
would be to consider the presence of malicious and
selfish data providers [29], [38], [39], [40]. In such

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 11

TABLE 3
Attributes for the Adult data set

Attribute Type Numerical Range
Leaves # Levels

Age (Ag) numerical 17 - 90
Education-num (En) numerical 1 - 16
Final-weight (Fw) numerical 13492 - 1490400
Relationship (Re) categorical 6 3
Race (Ra) categorical 5 3
Sex (Sx) categorical 2 2
Marital-status (Ms) categorical 7 4
Native-country (Nc) categorical 40 5
Education (Ed) categorical 16 5
Hours-per-week (Hr) numerical 1 - 99
Capital-gain (Cg) numerical 0 - 99999
Capital-loss (Cl) numerical 0 - 4356
Work-class (Wc) categorical 8 5
Occupation (Oc) categorical 14 3

a scenario, the algorithm has to be both secure and
incentive compatible.

The overhead cost of session establishment in Phase
I involves creating a session link between a mashup
coordinator and a data recipient, and a session link
between a mashup coordinator and each contributing
data provider. A session link is simply an integer
value (e.g., a Job ID) and is either used to actively
keep the data recipient connected or to allow for
asynchronous polling for the status of a current job.
The data structure size for maintaining a session of a
mashup request is linear to the number of contribut-
ing data providers; therefore, the overhead is limited.
In case the number of data recipients or the number
of mashup requests is large, the load of the mashup
coordinator can be balanced across multiple servers.

The computational cost of PHDMashup in Phase II
can be summarized as follows. Each iteration involves
the following work: (1) Scan the records in TA[w] and
TB [w] for updating TIPS and maintaining count statis-
tics (Section 4.2.2). (2) Update QITj , InfoGain(x), and
IsV alid(x) for affected candidates x (Section 4.2.3). (3)
Send ”instruction” to the remote data providers. The
instruction contains only uids of the records in TA[w]
or TB [w] and child values c in child(w), therefore, is
compact. Only the work in (1) involves accessing data
records; the work in (2) makes use of the count statis-
tics without accessing data records and is restricted
to only affected candidates. This feature makes our
approach scalable. We will evaluate the scalability of
the algorithm on real-life data in the next section.

For the communication cost (3), each data provider
communicates (Line 5 in Algorithm 1) with others to
determine the global winner candidate. Thus, each
data provider sends n − 1 messages, where n is the
number of data providers. Then, the data provider of
the winner specialization (Line 8) sends instruction
to other data providers. This communication process
continues for at most s times, where s is the number

10

12

14

16

18

20

20 40 60 80 100

MCE (L=2) MCE (L=4) MCE (L=6)

SE(A)=17.7% SE(B)=17.9%

Threshold K

C
la

ss
ifi

ca
"

o
n

 E
rr

o
r

(%
)

Fig. 4. Benefits of Mashup (C = 20%)

of valid specializations bounded by the number of
distinct values in ∪QIDj . Hence, for a given data
set, the total communication cost is s × [n(n − 1) +
(n − 1)] = s × (n2 − 1) ≈ O(n2). If n = 2, then
the total communication cost is 3s. In real-life data
mashup application, the number of contributing data
providers for an information request is usually small.

5 EMPIRICAL STUDY

We implement the proposed PHDMashup in a dis-
tributed web service environment. Each data provider
is running on an Intel Core2 Quad Q6600 2.4GHz PC
with 2GB RAM connected to a LAN. The objectives of
the empirical study are to evaluate the benefit of data
mashup for joint data analysis, and the impacts of
anonymization and dimensionality on the data quality
with respect to the information requirements. We first
describe the data set and the settings, followed by the
results.

Due to the privacy agreement, we cannot use the
raw data from the social network companies for
experiments, so we employ the de facto benchmark
census data set Adult [41], which is also a real-life
data set, to illustrate the performance of our proposed
architecture and algorithm. The Adult data set has 6
numerical attributes, 8 categorical attributes, and a
binary Class attribute representing two income levels
≤50K or >50K. Table 3 describes each attribute. It
contains 45,222 records after removing records with
missing values. We model a 2-data provider scenario
with two private tables TA and TB as follows: TA

contains the first 9 attributes, and TB contains the
remaining 5 attributes. We consider Divorced and Sep-
arated in the attribute Marital-status as sensitive, and
the remaining 13 attributes as QID. A common UID
is added to both tables for joining. The taxonomy trees
for all categorical attributes are from [8].

5.1 Benefits of Mashup
A trivial yet incorrect solution to avoid privacy con-
cerns is to not integrate the data; each data provider

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 12

14

18

22

26

20 40 60 80 100

MCE (L=2) MCE (L=4) MCE (L=6)

BE=14.7% UE=24.6%

Threshold K

C
la

ss
ifi

ca
!

o
n

 E
rr

o
r

(%
)

Fig. 5. Impacts on Classification Analysis (C = 20%)

14

18

22

26

5 10 15 20 25 30

MCE (L=2) MCE (L=4) MCE (L=6)

BE = 14.7% UE = 24.6%

Threshold C (%)

C
la

ss
ifi

ca
"

o
n

 E
rr

o
r

(%
)

Fig. 6. Impacts on Classification Analysis (K = 100)

simply performs the classification analysis on its own
attributes and releases the data mining result, such as
the classifier, to the data recipient. Our first goal is to
illustrate the benefit of data mashup over this trivial
solution with respect to the classification requirement.

To evaluate the impact on classification quality
(Case 1 in Section 3.2.1), we use all records for
anonymization, build a C4.5 classifier [2] on 2/3 of
the anonymized records as the training set (30,162
records), and measure the classification error on 1/3
of the anonymized records as the testing set (15,060
records). Both the training and testing steps use all 14
attributes. Lower classification error means better data
quality. We collect two types of classification errors
from the testing set: Mashup Classification Error (MCE)
is the error on the mashup data produced by our
PHDMashup algorithm. Source error (SE) is the error
on individual raw data table without generalization.
SE for TA, denoted by SE(A), is 17.7% and SE for
TB , denoted by SE(B), is 17.9%. SE−MCE measures
the benefit of data mashup over individual private
table.

Figure 4 depicts the MCE for the adversary’s prior
knowledge L = 2, L = 4, and L = 6 with confidence
threshold C = 20% and anonymity threshold K
ranging from 20 to 100. For example, MCE = 16.3%
for L = 4 and K = 60, suggesting that the benefit

0%

1%

2%

3%

4%

5%

6%

20 40 60 80 100

MDR (L=2) MDR (L=4) MDR (L=6)

Threshold K

D
is

ce
rn

ib
il

it
y

 R
a

!
o

 (
%

)

Fig. 7. Impacts on General Data Analysis (C = 20%)

0

2

4

6

8

10

12

4 7 10 13

DPR_Categorical DPR_Numerical

Number of QID A!ributes

D
is

to
r"

o
n

 p
e

r
R

e
co

rd

Fig. 8. Impacts of Dimensionality (L = 4, K = 60, and
C = 20%)

of mashup, SE −MCE, is approximately 1.5%. This
experiment demonstrates the benefit of data mashup
over a wide range of privacy requirements. The ben-
efit for all test cases illustrated in Figure 4 spans from
1.3% to 2.1%. The benefit decreases as L increases
because more generalization is required in order to
thwart the linkage attacks. In practice, the benefit is
more than the accuracy consideration because our
method allows the participating data providers to
share data for joint data analysis, rather than sharing
a classifier from each provider.

5.2 Impacts of Anonymization

Our second goal is to illustrate the impacts for achiev-
ing LKC-privacy with respect to classification analy-
sis and general data analysis.

To evaluate the impacts on classification quality
(Case 1 in Section 3.2.1), we collect several classifica-
tion errors, in addition to MCE, from the testing set:
Baseline Error (BE) is the error measured on all 14 raw
data attributes without generalization. BE − MCE
represents the cost in terms of classification quality
for achieving a given LKC-privacy requirement. A
naive method to avoid record and attributes linkages
is to simply remove all QID attributes. Thus, we also
measure Upper bound Error (UE), which is the error

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 13

on the raw data with all QID attributes removed.
UE−MCE represents the benefit of our method over
the naive approach. The experimental results below
suggest that our method PHDMashup can yield a
small MCE −BE (low cost) and a large UE −MCE
(high benefit).

Figure 5 depicts the MCE for the adversary’s prior
knowledge L = 2, L = 4, and L = 6 with confi-
dence threshold C = 20% and anonymity threshold
K ranging from 20 to 100. For example, at L = 4,
K = 60, and C = 20, MCE = 16.3%. The cost is
MCE − BE = 1.6%, where BE = 14.7%. The benefit
is UE − MCE = 8.3%, where UE = 24.6%. For all
test cases in Figure 5, the cost MCE−BE spans from
0.4% to 1.7% and the benefit UE −MCE spans from
8.2% to 9.5%. This result illustrates that the cost of
anonymization is low and the benefit of anonymiza-
tion is high, suggesting that accurate classification
and privacy protection can coexist even for a wide
range of anonymity threshold K. Typically, there are
redundant classification patterns in the data. Though
generalization may eliminate some useful patterns,
other patterns emerge to help the classification task.

Figure 6 depicts the MCE for the adversary’s prior
knowledge L = 2, L = 4, and L = 6 with K = 100
and confidence threshold C ranging from 5% to 30%.
MCE stays flat at 15.7% for L = 2, at 16.4% for L = 4
and L = 6. For all test cases in Figure 6, the cost
MCE − BE spans from 1% to 1.7% and the benefit
UE − MCE spans from 8.2% to 8.9%. This result
suggests that the MCE is insensitive to the change
of the confidence threshold C, implying that it does
not cost much to thwart attribute linkages.

To evaluate the costs on general analysis quality
(Case 2 in Section 3.2.2), we use all records for gen-
eralization and measure the mashup discernibility ratio
(MDR) on the final mashup data.

MDR(T) =

∑
qid |T [qid]|2

|T |2
. (4)

MDR is the normalized discernibility cost [36], with
0 ≤ MDR ≤ 1. The lower MDR indicates the higher
data quality.

Figure 7 depicts the MDR for the adversary’s prior
knowledge L = 2, L = 4, and L = 6 with confidence
threshold C = 20% and anonymity threshold K
ranging from 20 to 100. For all test cases in Figure 7,
MDR spans from 0.02% to 4.92%, suggesting that it
costs very little to achieve a given LKC-privacy re-
quirement even for a wide range of adversary’s prior
knowledge L and anonymity threshold K. Similar to
the measure on classification error, MDR is insensi-
tive to the change of the confidence threshold C.

The result in Figure 7 also shows that MDR does
not increase monotonically with respect to the in-
crease K because PHDMashup employs a greedy ap-
proach for selecting a specialization at each iteration.
The greedy approach can guarantee the identified

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Reading Anonymiza on

Wri ng Total

of Records (in thousands)

T
im

e
 (

se
co

n
d

s)

Fig. 9. Scalability (L = 4, K = 20, and C = 100%)

solution is sub-optimal but not necessarily global op-
timal. Although a global optimal solution is desirable,
finding the optimal solution significantly degrades the
efficiency and scalability of the method, which are also
important requirements for real-life data mashup.

5.3 Impacts of Dimensionality
Our third goal is to evaluate the impact of dimen-
sionality, i.e., the number of QID attributes, on the
data quality with respect to the distortion metric
proposed in [42]. Each time a categorical value is
generalized to the parent value in a record, there is
one unit of distortion. For a numerical attribute, if
a value v is generalized to an interval [a, b), there
is (b − a)/(f2 − f1) unit of distortion for a record
containing v, where [f1, f2) is the full range of the
numerical attribute. The distortion is normalized by
the number of records. The distortion per record (DPR)
is separately computed for categorical attributes and
numerical attributes, denoted by DPR Categorical
and DPR Numerical, respectively.

Figure 8 depicts the DPR Categorical and
DPR Numerical for the adversary’s prior knowledge
L = 4 with confidence threshold C = 20% and
anonymity threshold K = 60 for 4, 7, 10, and 13
QID attributes. DPR Categorical spans from 3.98
to 11.24 and DPR Numerical spans from 0.62 to
4.05. This result illustrates that the distortion per
record generally increases as the number of QID
attributes increases because more generalizations are
required in order to achieve the same LKC-privacy
requirement.

5.4 Efficiency and Scalability
Our method takes at most 20 seconds for every pre-
vious experiment. Out of the 20 seconds, approx-
imately 8 seconds is spent on initializing network
sockets, reading data records from disk, and writing
the generalized data to disk. The actual costs for
data anonymization and network communication are
relatively low.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 14

Our other claim is the scalability of handling large
data sets by maintaining count statistics instead of
scanning raw records. We evaluate this claim on an
enlarged version of the Adult data set. We combine
the training and testing sets, giving 45,222 records,
and for each original record r in the combined set,
we create α − 1 variations of r, where α > 1 is
the blowup scale. Together with original records, the
enlarged data set has α× 45, 222 records.

Figure 9 depicts the runtime from 200,000 to 1
million records for L = 4, K = 20, C = 100%. The
total runtime for anonymizing 1 million records is
132 seconds, where 50 seconds are spent on reading
raw data, 58 seconds are spent on anonymization, and
24 seconds are spent on writing the anonymous data.
Our algorithm is scalable due to the fact that we use
the count statistics to update the Score, and thus it
only takes one scan of data per iteration to anonymize
the data. As the number of records increases, the total
runtime increases linearly.

5.5 Summary
The experiments verified several claims about the
PHDMashup algorithm. First, data mashup leads to
improved information utility compared to the in-
formation utility separately available on each pri-
vate table. Second, PHDMashup achieves a broad
range of LKC-privacy requirements without signif-
icantly sacrificing the information utility. The cost for
anonymization is low, and the benefit is significant.
Third, our proposed architecture and method are scal-
able for large data sets. Our work provides a practical
solution to the problem of high-dimensional data
mashup with the dual goals of information sharing
and privacy protection.

6 CONCLUSION AND LESSON LEARNED

We implement a data mashup application for the
online advertising industry in social networks, and
generalize their privacy and information require-
ments to the problem of privacy-preserving data
mashup for the purpose of joint data analysis on
the high-dimensional data. We formalize this problem
as achieving the LKC-privacy on the mashup data
without revealing more detailed information in the
process. We present a solution and evaluate the bene-
fits of data mashup and the impacts of generalization.
Compared to classic secure multiparty computation, a
unique feature of our method is to allow data sharing
instead of only result sharing. This feature is espe-
cially important for data analysis that requires user
interaction. Being able to share data records would
permit such exploratory data analysis and explanation
of results.

Finally, we would like to share our experience of
collaboration with industrial practitioners. In general,
industrial practitioners prefer a simple privacy model

that is intuitive to understand and to explain to their
clients, such as LKC-privacy. Often, their primary
concern is whether or not the anonymous data is
still effective for data analysis; solutions that solely
satisfy some privacy requirement are insufficient. The
industry demands anonymization methods that can
preserve information for various data analysis tasks.

ACKNOWLEDGMENTS

The research is supported in part by the Discovery
Grant (356065-2008) and Strategic Project Grant from
the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), Établissement de nouveaux
chercheurs from Le Fonds québécois de la recherche
sur la nature et les technologies (FQRNT), and the
Cisco Research Award. We also thank Mr. Noman
Mohammed for his insight on the analysis of the
communication costs.

REFERENCES

[1] R. D. Hof, “Mix, match, and mutate,” Business Week, July 2005.
[2] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1993.
[3] P. Samarati, “Protecting respondents’ identities in microdata

release,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 13, no. 6, pp. 1010–1027, 2001.

[4] L. Sweeney, “Achieving k-anonymity privacy protection using
generalization and suppression,” International Journal on Un-
certainty, Fuzziness, and Knowledge-based Systems, vol. 10, no. 5,
pp. 571–588, 2002.

[5] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasub-
ramaniam, “ℓ-diversity: Privacy beyond k-anonymity,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 1,
no. 1, March 2007.

[6] K. Wang, B. C. M. Fung, and P. S. Yu, “Handicapping attacker’s
confidence: An alternative to k-anonymization,” Knowledge and
Information Systems (KAIS), vol. 11, no. 3, pp. 345–368, April
2007.

[7] R. J. Bayardo and R. Agrawal, “Data privacy through opti-
mal k-anonymization,” in Proc. of the 21st IEEE International
Conference on Data Engineering (ICDE), Tokyo, Japan, 2005, pp.
217–228.

[8] B. C. M. Fung, K. Wang, and P. S. Yu, “Anonymizing clas-
sification data for privacy preservation,” IEEE Transactions on
Knowledge and Data Engineering (TKDE), vol. 19, no. 5, pp. 711–
725, May 2007.

[9] V. S. Iyengar, “Transforming data to satisfy privacy con-
straints,” in Proc. of the 8th ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), Edmonton,
AB, Canada, July 2002, pp. 279–288.

[10] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Workload-
aware anonymization,” in Proc. of the 12th ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD),
Philadelphia, PA, August 2006.

[11] C. C. Aggarwal, “On k-anonymity and the curse of dimen-
sionality,” in Proc. of the 31st Very Large Data Bases (VLDB),
Trondheim, Norway, 2005, pp. 901–909.

[12] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-
preserving data publishing: A survey of recent developments,”
ACM Computing Surveys, vol. 42, no. 4, pp. 14:1–14:53, June
2010.

[13] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and C. Lee,
“Anonymizing healthcare data: A case study on the blood
transfusion service,” in Proc. of the 15th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining
(SIGKDD), Paris, France, June 2009, pp. 1285–1294.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 15

[14] N. Mohammed, B. C. M. Fung, P. C. K. Hung, and
C. Lee. “Centralized and distributed anonymization for high-
dimensional healthcare data,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 4, no. 4, pp. 18:1–18:33,
October 2010.

[15] A. Jhingran, “Enterprise information mashups: integrating
information, simply,” in Proc. of the 32nd international conference
on Very Large Data Bases (VLDB), 2006, pp. 3–4.

[16] G. Wiederhold, “Intelligent integration of information,” in
Proc. of ACM International Conference on Management of Data
(SIGMOD), 1993, pp. 434–437.

[17] R. Agrawal, A. Evfimievski, and R. Srikant, “Information
sharing across private databases,” in Proc. of ACM International
Conference on Management of Data (SIGMOD), San Diego, CA,
2003.

[18] O. Goldreich, Foundations of Cryptography: Volume II Basic
Applications. Cambridge University Press, 2004.

[19] Y. Lindell and B. Pinkas, “Secure multiparty computation
for privacy-preserving data mining,” Journal of Privacy and
Confidentiality, vol. 1, no. 1, 2009.

[20] A. C. Yao, “Protocols for secure computations,” in Proc. of the
23rd IEEE Symposium on Foundations of Computer Science, 1982,
pp. 160–164.

[21] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y.
Zhu, “Tools for privacy preserving distributed data mining,”
ACM SIGKDD Explorations Newsletter, vol. 4, no. 2, pp. 28–34,
December 2002.

[22] W. Du and Z. Zhan, “Building decision tree classifier on pri-
vate data,” in Workshop on Privacy, Security, and Data Mining at
the 2002 IEEE International Conference on Data Mining, Maebashi
City, Japan, December 2002.

[23] Z. Yang, S. Zhong, and R. N. Wright, “Privacy-preserving
classification of customer data without loss of accuracy,” in
Proc. of the 5th SIAM International Conference on Data Mining
(SDM), Newport Beach, CA, 2005, pp. 92–102.

[24] P. Samarati and L. Sweeney, “Generalizing data to provide
anonymity when disclosing information,” in Proc. of the 17th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), Seattle, WA, June 1998, p. 188.

[25] A. Hundepool and L. Willenborg, “µ- and τ -argus: Software
for statistical disclosure control,” in Proc. of the 3rd International
Seminar on Statistical Confidentiality, Bled, 1996.

[26] W. Jiang and C. Clifton, “Privacy-preserving distributed k-
anonymity,” in Proc. of the 19th Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, Storrs, CT, August
2005, pp. 166–177.

[27] ——, “A secure distributed framework for achieving k-
anonymity,” Very Large Data Bases Journal (VLDBJ), vol. 15,
no. 4, pp. 316–333, November 2006.

[28] N. Mohammed, B. C. M. Fung, K. Wang, and P. C. K. Hung,
“Privacy-preserving data mashup,” in Proc. of the 12th Inter-
national Conference on Extending Database Technology (EDBT),
Saint-Petersburg, Russia, March 2009, pp. 228–239.

[29] N. Mohammed, B. C. M. Fung, and M. Debbabi, “Anonymity
meets game theory: secure data integration with malicious
participants,” Very Large Data Bases Journal (VLDBJ), in press.

[30] T. Trojer, B. C. M. Fung, and P. C. K. Hung, “Service-oriented
architecture for privacy-preserving data mashup,” in Proc. of
the 7th IEEE International Conference on Web Services (ICWS),
Los Angeles, CA, July 2009, pp. 767–774.

[31] P. Jurczyk and L. Xiong, “Privacy-preserving data publishing
for horizontally partitioned databases,” in Proc. of the 17th
ACM Conference on Information and Knowledge Management
(CIKM), October 2008.

[32] ——, “Distributed anonymization: Achieving privacy for both
data subjects and data providers,” in Proc. of the 23rd Annual
IFIP WG 11.3 Working Conference on Data and Applications
Security (DBSec), 2009.

[33] C. Jackson and H. J. Wang, “Subspace: secure cross-domain
communication for web mashups,” in Proc. of the 16th interna-
tional conference on World Wide Web (WWW), Banff, AB, Canada,
2007, pp. 611–620.

[34] R. C. W. Wong, J. Li., A. W. C. Fu, and K. Wang, “(α,k)-
anonymity: An enhanced k-anonymity model for privacy pre-
serving data publishing,” in Proc. of the 12th ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD),
Philadelphia, PA, 2006, pp. 754–759.

[35] C. E. Shannon, “A mathematical theory of communication,”
The Bell System Technical Journal, vol. 27, p. 379 and 623, 1948.

[36] A. Skowron and C. Rauszer, Intelligent Decision Support: Hand-
book of Applications and Advances of the Rough Set Theory, 1992,
ch. The discernibility matrices and functions in information
systems.

[37] N. Josuttis, SOA in Practice: The Art of Distributed System
Design. O’Reilly Media, Inc., 2007.

[38] H. Kargupta, K. Das, and K. Liu, “Multi-party, privacy-
preserving distributed data mining using a game theoretic
framework,” in Proc. of the 11th European conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD), 2007,
pp. 523–531.

[39] N. Nisan, “Algorithms for selfish agents,” in Proc. of the 16th
Symposium on Theoretical Aspects of Computer Science, Trier,
Germany, March 1999.

[40] N. Zhang and W. Zhao, “Distributed privacy preserving in-
formation sharing,” in Proc. of the 31st International Conference
on Very Large Databases (VLDB), 2005, pp. 889–900.

[41] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, “UCI
repository of machine learning databases,” 1998. [Online].
Available: http://archive.ics.uci.edu/ml/

[42] P. Samarati and L. Sweeney, “Protecting privacy when dis-
closing information: k-anonymity and its enforcement through
generalization and suppression,” SRI International, Tech. Rep.,
March 1998.

Benjamin C. M. Fung is an Assistant Profes-
sor in the Concordia Institute for Information
Systems Engineering (CIISE) at Concordia
University in Montreal, and a research sci-
entist of the National Cyber-Forensics and
Training Alliance Canada (NCFTA Canada).
He received a Ph.D. degree in computing sci-
ence from Simon Fraser University in 2007.
His current research interests include data
mining, information security, and cyber foren-
sics, as well as their interdisciplinary applica-

tions on emerging technologies. He has over 40 publications that
span across the prestigious research forums of data mining, privacy
protection, cyber forensics, web services, and building engineering.
His research has been supported in part by the NSERC, FQRNT,
and DRDC.

Thomas Trojer received a B.Sc. and a M.Sc.
degree from the University of Innsbruck, Aus-
tria, in 2007 and 2010, respectively. He is
currently associated with the research group
Quality Engineering as part of the Institute of
Computer Science of the University of Inns-
bruck and was a visiting researcher at the
Faculty of Business and IT of the University
of Ontario Institute of Technology, Canada.
His research fields of interest are security in
services computing, data privacy and access

control, security in electronic health-care systems, model-driven
security engineering and recently issues regarding usability and
security. Thomas gathered project experience during his work on
several projects in the fields of, e.g., inter-organisational workflow
security, privacy-aware access control in health-care systems, and
mobile health-care applications.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. ?, NO. ?, MONTH YEAR 16

Patrick C. K. Hung is an Associate Pro-
fessor at the Faculty of Business and Infor-
mation Technology in University of Ontario
Institute of Technology and an Adjunct Fac-
ulty Member at the Department of Electri-
cal and Computer Engineering in University
of Waterloo, Canada. He is also a Guest
Professor at Institute of Computer Science
in University of Innsbruck, Austria. He is a
founding member of the IEEE International
Conference of Web Services (ICWS) and

IEEE International Conference on Services Computing (SCC). He is
an associate editor of the IEEE Transactions on Services Computing,
International Journal of Web Services Research and International
journal of Business Process and Integration Management.

Li Xiong is an Assistant Professor in the
Department of Mathematics and Computer
Science where she directs the Assured In-
formation Management and Sharing (AIMS)
research group. Her areas of research are
in data privacy and security, distributed infor-
mation management, and health informatics.
She holds a Ph.D. from Georgia Institute
of Technology, an M.S. from Johns Hopkins
University, and a B.S. from University of Sci-
ence and Technology in China, all in Com-

puter Science. She is a recipient of the Career Enhancement Fel-
lowship by Woodrow Wilson Foundation, a Cisco Research Award,
and an IBM industry skills faculty innovation award.

Khalil Al-Hussaeni is a Ph.D. student in
the Department of Electrical and Computer
Engineering in Concordia University, Mon-
treal, Canada. He is a research assistant
in the Computer Security Laboratory. His
research interests include privacy preser-
vation in services computing, data mining,
privacy-preserving data publishing, and com-
puter and network security. Khalil received
his Master’s degree in Information Systems
Security in 2009 from the Concordia Institute

for Information Systems Engineering, Concordia University, Canada.
He holds a Bachelor’s degree in Computer Engineering from the
University of Sharjah, U.A.E.

Rachida Dssouli is a Professor and the
founding Director of Concordia Institute for
Information Systems Engineering (CIISE),
Concordia University. She received the Doc-
torat d’Université degree in Computer Sci-
ence from the Université Paul-Sabatier of
Toulouse, France, in 1981, and the Ph.D.
degree in Computer Science in 1987, from
the University of Montréal, Canada. Her re-
search area is in communication software
engineering, requirements engineering, and

services computing. Ongoing projects include incremental specifica-
tion and analysis of reactive systems based on scenario language,
service computing, and service composition, multimedia applica-
tions, conformance testing, design for testability, conformance test-
ing based on FSM/EFSM and timed automata.

