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Abstract 

Failure Predicting Model for Oil Pipelines 

Bassem Abdrabou 

 

Oil and gas pipelines are considered the safest means to transport petroleum products 

comparing to railway and highway transportations. They transport millions of dollars’ worth 

of goods every day. However, accidents happen every year and some of these accidents 

inflict catastrophic impact on the environment and result in great economic loss. In order to 

maintain safety of the pipelines, several inspection techniques have been developed in the 

last decades. Despite the accuracy of these techniques, they are very costly and time 

consuming. Similarly, several failure predicting and condition assessment models have been 

developed in the last decade; however, most of these models are limited to one type of 

failure, such as corrosion failure, or mainly depend on expert opinion which makes their 

output seemingly subjective. 

The present research develops an objective model of failure prediction for oil pipelines 

depending on the available historical data on pipelines' accidents. Two approaches were used 

to fulfill this objective: the artificial neural network (ANN) and the Multi Nomial Logit 

(MNL). The ANN is used to develop a model to predict failure due to mechanical, corrosion 

or third party, which collectively account for 88% of oil pipeline accidents. This model had a 

prediction accuracy of 68.5%. Another ANN model is developed to predict only corrosion or 

third party failure with a prediction accuracy of 72.2%. The Average Validity Percentage 

(AVP) for the two models is 73.7 and 72.8, respectively. 

The MNL approach is used to develop a model that predicts failures caused by mechanical, 

corrosion or third party elements with a prediction accuracy of 68.4% and Pseudo R Squared 

of 0.42. The Average Validity Percentage (AVP) for this MNL approach is 73.7%. This 

model also generates a probability equation for each type of failure. 
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The three developed models show convincing results, since they are based on solid historical 

failure data for the last 38 years, with no subjectivity or ambiguity. These models could 

easily be used by oil pipeline operators to identify the type of failure threatening each 

pipeline so that appropriate preventive and corrective measures can be planned. The models 

also help to prioritize in-line inspection of different pipeline segments according to the 

predicted type of failure. 
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Chapter 1 

INTRODUCTION 

1.1 Overview 

Pipelines are the backbone of the oil industry; they transport millions of dollars’ worth of 

goods every day. While pipelines are considered to be the safest way to transport petroleum 

products, compared to rail and highway transportation, some pipeline accidents could have 

catastrophic environmental impact and severe economic lose (Dey, et al., 2004). According 

to the CONCAWE (a European associate of oil companies that investigates environmental, 

health and safety issues) pipeline failure occurs due to the following: mechanical, 

operational causes, corrosion, third-party activity and natural hazards. The CONCAWE 

organization was established in 1963 to carry out environmental research related to the oil 

industry. Most of the European oil companies are now members of CONCAWE 

(CONCAWE, 2010).  

Over the last 20 years, several new inspection techniques have been developed to detect 

pipeline anomalies or defects without stopping production (or flow), such as Magnetic Flux 

Leakage (MFL) or Ultrasonic testing (UT). While these techniques are effective, they are 

costly and time consuming. As an example, for the DOLPHIN PIPLINE in Qatar it costs 

260,000 dollars (US) and takes one week to inspect an 80 km pipeline using the MFL 

technique (Husein, 2011). The high costs in time and money for these techniques have 

encouraged researchers to develop condition assessment models (or failure prediction 

models) for oil pipelines to prioritize inspections and to identify the actions that need to be 

taken to prevent predicted threats.  

 



2 

 

1.2 Problem Statement and Research Objectives 

More than 60 countries have oil and gas pipeline networks exceeding 2000 km; the longest 

pipeline network is located in the United States of America followed by Russia (Goodland, 

2005). These huge networks transporting such a dangerous product must be in safe working 

condition to avoid catastrophic accidents. Mandatory frequent inspections are required to 

maintain these networks. While pipeline inspection techniques have developed to provide 

very accurate results, they are very expensive and time consuming. Therefore, most pipeline 

operators use condition assessment models to prioritize inspection, set a reasonably 

economical inspection interval and assure that they will take suitable precautions against 

failure. 

Most of the current models are either dependent on expert opinions, which makes them 

subjective, or they are limited to evaluating only one type of failure. Therefore, a more 

robust objective model is needed, one that can use historical data to predict the failure type 

menacing a section of oil pipeline. This model would help pipeline operators to take the 

necessary actions to mitigate the risk that threatens a pipeline. 

The main objective of the current research is to provide an impartial failure prediction model 

for oil pipelines that is capable of identifying the failure type menacing a pipeline by 

knowing some basic pipeline attributes. The developed model is able to predict the failure 

type threatening a pipeline from among the main three failure causes (mechanical, corrosion 

and third-party), which together cause 88% of oil pipeline accidents according to 

CONCAWE (Davis, et al., 2010). 

The sub-objectives of this research may be summarized as follows: 

 Identity and study the main failure causes of pipelines 

 Identify the pipeline factors that contribute to pipeline failure 

 Develop a failure prediction model for oil pipelines 
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1.3 Research Methodology  

This research aims at developing a failure prediction model for oil pipelines. This model will 

allow oil pipeline operators to take those actions required to protect pipelines against the 

threats predicted and to prioritize inspections. The following procedure was carried out to 

achieve this objective.  

1.3.1 Literature review  

A comprehensive literature review was prepared, which includes information on different 

types of oil and gas pipelines, types of pipeline failure, a review of the effect of pipeline 

attributes on types of failure, a review of the recent studies for oil and gas pipeline condition 

assessment, a review of the various inspection techniques and a presentation of the Artificial 

Neural Network ANN and the Multinomial Logit Model techniques. 

1.3.2 Data Collection 

Historical data were collected from the CONCAWE report published in 2010. That report 

contains summaries of all of the oil pipeline accidents in Europe over the last 38 years, 

including the causes of failure and some pipeline characteristics. The collected data were 

processed by the following steps. First, all the accidents that had missing data were 

eliminated.  Two data sets were then prepared. The first set includes all the accidents caused 

by mechanical, corrosion or third-party failure. The second data set contains the accidents 

caused by corrosion failure and third-party failure. These two sets were used two develop 

two different models. 

1.3.3 Development of Failure Prediction Model 

Three failure models are developed: 

 An Artificial Neural Network (ANN) model that predicts failure caused by 

mechanical failure, corrosion failure or third-party failure (3 outputs); 
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 An Artificial Neural Network (ANN) model to predict failure caused by corrosion 

failure or third party-failure (2 outputs);  

 A Multinomial Logit (MNL) model that can predict failure caused by mechanical 

failure, corrosion failure or third-party failure (3 outputs). 

1.4 Thesis Organization 

To accomplish the research objectives, a literature review illustrating condition rating 

models for oil and gas pipeline types is represented in chapter 2. The literature review covers 

the oil and gas pipeline types, the types of pipeline failures, factors contributing to pipeline 

failures, and inspection techniques. Chapter 2 also includes an overview of Artificial Neural 

Network techniques and presents the Multinomial Logit technique. 

Chapter 3 provides an overview of the research methodology including a layout for building 

the ANN and the MNL models. 

Chapter 4 contains the data collection and data preparation procedures, a description of the 

different data sets used for the different models and the exclusion method deployed for the 

random samples used for validation purposes are also presented. 

Chapter 5 describes the development of two ANN models; it identifies the inputs and the 

outputs of each model, explains the models’ development and presents the training and tests 

utilized for each model. It also shows the validation process and the sensitivity analysis for 

each model. 

Chapter 6 illustrates the development of the MNL failure prediction model, including the 

model evaluation and validation processes. This chapter also includes a sensitivity analysis 

for the developed model. 

Chapter 7 presents the conclusion, including the limitations of the developed models, the 

research contributions and recommendations for the future research. 
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Chapter 2 

2 LITERATURE REVIEW 

2.1 Overview 

This chapter consists of seven parts. Section 2.2 presents a literature review on the different 

types of petroleum pipelines and their characteristics.  Section 2.3 demonstrates the main 

causes of failure, such as mechanical failure, corrosion failure, operational failure, natural 

hazards, and third party failure. Section 2.4 illustrates the factors that contribute to 

petroleum pipeline deterioration. These factors are classified according to the failure 

category that they contribute to. Section 2.5 provides a literature review of current practices 

followed by pipeline line operators to assess the condition of existing pipelines. Section 2.6 

presents a literature review of the current practices for inspecting oil and gas pipelines. This 

includes direct inspection methods, which are divided into in-line inspection and external 

inspection. This subsection also shows how most pipeline operators manipulate with the 

inspection data to help them make maintenance decisions. Section 2.7 provides a literature 

review of the failure prediction and condition assessment models for oil and gas pipelines 

developed to date. Section 2.8 and 2.9 present an extensive literature review on logistic 

regression analysis modeling and artificial neural network (ANN) analysis respectively and 

their application. 

2.2 Petroleum Pipeline Material and Specifications 

Pipelines are the back bone of the petroleum industry. They can be classified by the type of 

product they transport: crude oil, natural gas and products pipelines (Canadian Energy 

Pipeline Association, 2007). Most major pipelines are made of steel with diameters that vary 

from 8 to 47 inches, while distributive pipelines are mostly made of plastic with small 
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diameters of up to only 2 inches. In this research we are concerned with main oil pipelines, 

which are made of steel that can be of  different steel grades (grade B to grade X90) and that 

operate at various pressures (10 to 220 bar) (Ali, 2011). 

2.2.1 Pipeline Types 

There are five major types of pipeline, classified according to their usage (Hopkins, 2002): 

Flow lines and gathering lines: are usually small and short pipelines that transport crude 

product to the processing facilities. Their diameter varies from 2" to 6" and they are made of 

carbon steel. 

Feeder lines: these transport oil or gas from a processing facility or storage to the main line. 

The diameter can be up to 20”, and they are composed of carbon steel. 

Transmission lines: these are the main conduits of transported oil and gas, and can reach a 

diameter of 56”. These lines are usually very long and are made of carbon steel. 

Product lines:  carry refined products from refineries to distribution centers. They are also 

made of carbon steel. 

Distribution lines:  are used for local distribution and function at low pressure. Their 

diameter can be up to 6 “, and they are made of cast iron or plastic. 

2.2.2 Pipeline Material 

As mentioned earlier, main pipelines are made of carbon steel. Carbon steel pipelines are 

manufactured according to the American Petroleum Institute (API 1994-2004), the 

American Society of Mechanical Engineer (ASME), the American National Standard 

Institute (ANSI) and the American Society of Testing Materials (ASTM) standards (Pharris, 

et al., 2007). There are two ways of manufacturing main pipelines; seamlessly, which means 

fabricated without longitudinal welds, or welded. Welded pipes can be spirally welded or 

longitudinally welded (Mikhail, 2011). The pipes are transported to the construction site 

certified by the manufacturer, and then they are welded together to form the pipeline 
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network (Hasan, 2011). The steel grade varies from grade A to grade X 80. The higher the 

grade, the higher the yield stresses as shown in figure 2.1. Usually higher grade steel is used 

for high-pressure pipeline and offshore pipeline. One problem with these pipelines is that 

pipelines made of high-grade steel require special welds. Also high steel grades are highly 

affected by the existence of impurities, especially H2S. Generally, oil and gas are mixed 

with some impurities when extracted from the field. These impurities increase the risk of 

internal corrosion. The most common impurities are cited below (Mikhail, 2011): 

H2S (sour gas): H2S forms sulphuric acid in the presence of water, which then causes 

pitting, lamination and corrosion. 

CO2:  When exposed to water, CO2 forms carbonic acid, a highly corrosive acid. 

Chlorides: chlorides are highly corrosive substances. 

 

Figure 2-1 Overview of the Yield Stress and the Impact Toughness for Oil and Gas Pipeline 

(Hopkins, 2002) 

2.3 Types of Oil Pipeline Failure 

The Oil Companies' European Association for Environmental, Health and Safety issues in 

Refining and Distribution, CONCOWE, lists several types of failure for oil pipeline. The 

CONCAWE was established in 1963 by a group of leading oil companies to carry out 

research on environmental issues related to the oil industry. The CONCAWE publishes 

reports and collects and analyses pipeline accidents in Europe. The following section shows 

the main types of pipeline failure according to the CONCAWE (Davis, et al., 2010) . 
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2.3.1 Mechanical Failure 

Mechanical failure includes all failure due to poor construction or the usage of low quality 

materials (Dey, 2004). Mechanical failure may be divided into two categories, dents and 

gouges, that appear as deformation in the pipe wall and which are sites where cracks 

develop. Dents are radial deformations, while a gouge follows along surface deformation. 

These defects usually occur during the construction phase. Mechanical damage can cause 

immediate failure, delayed failure or no failure, depending on the severity of damages. 

Presently the most common way to detect mechanical damage is by performing In-line 

Inspection (ILI), such as Ultrasound Pig or Magnetic Flux Pig (Panetta , et al., 2001).  

2.3.2 Corrosion Failure 

Corrosion is formed because of the tendency of manufactured metals to revert to their 

original mineral form; this process is usually very slow. Corrosion causes a loss of pipeline 

wall metal that could lead to failure. Corrosion failure is considered the second-most 

common cause of pipeline failure after third-party interference. To evaluate the change 

potential of corrosion, the type of corrosion should be clearly identified. There are three 

main types of corrosion, as presented below (Muhlbauer, 2004).  

a. External Corrosion 

External corrosion could be an atmospheric corrosion for above-ground pipeline 

components exposed to the atmosphere.  This is a rare failure mechanism due to the slow 

rate of the atmospheric mechanism. External corrosion can also occur because of subsurface 

corrosion in buried pipelines. Subsurface corrosion is more dangerous than atmospheric 

corrosion due to the complicated mechanism underlying this corrosion. Subsurface 

corrosion can be minimized by using cathodic protection and pipeline coating (Muhlbauer, 

2004). 
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b. Internal Corrosion 

This type of corrosion attacks the inner surface of a pipeline. It is less severe than subsurface 

corrosion but more dangerous than atmospheric corrosion. It is typically a function of the 

product being transported by the pipeline (Ali, 2011). 

c. Stress Crack Corrosion. 

Stress crack corrosion is a type of corrosion induced from the combined influence of the 

tensile stress and the corrosive environment (Cotis, 2011). 

2.3.3 Third-Party Activity and External Interference 

Third party failure is a result of any damage caused by people who are not associated with a 

pipeline. This includes undetected accidents, and can result in a failure at any later point 

(Davis, et al., 2010). The US Department of Transportation (DOT) pipeline statistics show 

that third-party activities are the major cause of pipeline failure. 20 to 40 percent of all 

pipeline failures are caused by third-party damages.  Despite this reality, third-party damage 

is the least-considered factor in pipeline hazard assessment (Muhlbauer, 2004). There are 

many factors that can affect the occurrence of third-party damage, such as the type of land 

use, pipeline location, political instability and its accessibility. These factors are discussed 

later in this chapter. 

2.3.4 Operational Failure 

Operational failure results from operational upsets: the malfunction or inadequacy of one or 

more safeguarding systems or operators’ error (Bersani, et al., 2010). Operational failure is 

considered to be one of the more rare causes of pipeline failure, although it can cause 

catastrophic consequences. Eighty percent of operational failure is caused by human error. 

This type of failure could be significantly reduced by regularly performing safety programs 

and providing extensive training as well as drug testing of pipeline operators. Up-to-date 

safety devices and pressure monitoring could also reduce the risk of this failure (Muhlbauer, 
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2004). 

2.3.5 Natural hazards 

Natural hazards rarely cause pipeline failure, but they still should be considered in failure 

assessment because of their implications on public safety. Natural hazards include flooding, 

land movement, volcanic activity and earthquakes, all of which can severely damage a 

pipeline and the environment in most cases, geotechnical and hydro-technical studies are 

performed prior to pipeline construction.   

The list above includes all the types of failure that could happen to a steel oil pipeline. 

Figure 2.2 represents the percentage of occurrence of each type of these failures for the last 

38 years in the European pipeline system according to CONCAWE’s data. The chart shows 

that 88% of accidents were caused either by mechanical failure, corrosion failure or third-

party failure. Each of these types of failure could be affected by a number of factors, which 

means that researchers must investigate all the available pipeline parameters that could 

contribute to failure. The following section presents the pipeline parameters that contribute 

to the afore-mentioned types of failures.  

 

Figure 2-2  Percentages of  Oïl Pipeline Failure Causes (Davis, et al., 2010) 

2.4 Factors Contributing to Oil and Gas Pipeline Failure 

The factors that affect pipeline failure are complicated, they in turn depend on several sub-
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factors, and all these factors should be taken into account in order to know the weight of 

their individual contribution to the pipeline deterioration. These factors are the pillars of any 

prediction model or risk-based inspection model. The model illustrated by (Muhlbauer, 

2004) classifies factors contributing to oil pipeline failure according to the type of failure 

they may cause.  In this section we will present these factors according to Muhlbauer’s 

classification system which is shown in figure 2.3. 

Factors Contributing 
to Oil and Gas 

Pipeline Failure

Factors Contributing 
to Third Party 

Failure

Factors contributing 
to Mechanical 

Failure

Factors Contributing 
to Corrosion

Factors Contributing 
to Operational 

Failure 

Atmospheric

Internal

Subsurface

 

Figure 2-3 Types of factors Contributing to Pipeline Failure (Muhlbauer, 2004) 

2.4.1 Factors Contributing to Third-Party Damages 

a. Minimum Depth of Cover 

The minimum cover depth highly affects the risk of third-party damage. Shallow buried 

pipeline is vulnerable to damage due to contractor excavation. The type of soil above the 

pipeline (sand, rock, etc.) and the type of pavement (if any) above (or close to) it could also 

affect the risk of third-party damage. The presence of burial warning tape, concrete coating 

or concrete slabs decreases the risk of third-party damage. In case of submerged pipeline, the 

depth of water affects the risk of third-party damage caused by anchoring (Muhlbauer, 

2004). 
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b. Activity Level 

The activity level, in terms of its effect on a pipeline, may be represented by population 

density. The presence of highways with heavy trucks or railways could apply an excessive 

load on buried pipelines. Other buried infrastructures could also cause threats because of 

their own need for excavations and maintenance. With submerged pipelines, the presence of 

ships and submarines could be a threat. 

c. Line Locating 

Line locating is a program that specifies the exact location of buried pipelines, thereby 

allowing third-party excavation to be conducted safely without risk of pipeline damage. The 

One Call System is a service that receives information about any digging activity and in turn 

notifies all owners of the affected underground facilities. These services decrease the risk of 

third-party failure. (Muhlbauer, 2004) 

d. Public Education Program 

A good public education program decreases the chance of third-party failure. This could be 

achieved by mailings and/or meetings with local contractors, as well as media publicity, 

(Public Service Announcements PSAs, billboards, etc.)  (Muhlbauer, 2004). 

e. Right-Of-Way Condition 

This parameter measures the recognisability of a pipeline corridor.  Pipeline corridors should 

be clearly indicated by appropriate clear signs to reduce third-party interruption. 

f. Patrol Frequency 

The frequency and the effectiveness of patrols should be considered in certain locations, as it 

can play an important role in reducing the risk of third-party damage and vandalism.  

g. Pipeline Diameter 

Pipeline diameter can contribute to third-party failure (Bersani, 2010), as small-diameter 
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pipelines are more vulnerable to damage than larger ones (Ali, 2011). 

2.4.2 Factors Contributing to Corrosion Failure 

Corrosion failure could be caused by three different types of corrosion: atmospheric 

corrosion, internal corrosion and subsurface corrosion. Each types of corrosion are affected 

by several factors. In the factors contributing to each type of corrosion is cited showing how 

it could affect corrosion failure. 

2.4.2.1 Factors Affecting Atmospheric Corrosion 

a. Atmospheric Exposure 

Specific atmospheric characteristics affect atmospheric corrosion. Chemical composition 

could be air-borne naturally, such as salt and CO2, or manmade, as are chlorine and SO2. 

High temperatures and especially high humidity increase the chance and the rate of 

corrosion. 

b. Atmospheric Coating 

This factor describes the preventive precautions taken to minimise the chance of 

atmospheric corrosion. The age and condition of a coating have a great impact on corrosion 

prevention (Muhlbauer, 2004).  

2.4.2.2 Factors Affecting Internal Corrosion 

a. Product Corrodibility 

This factor presents the relative corrosiveness of the pipeline content. Threats may be posed 

by product incompatibility with the pipeline material or the existence of corrosive impurities 

that migrate into the product. The corrodibility of a product may be categorized by the level 

of corrosiveness, as shown by  Muhlbauer (2004): 

Strongly corrosive:  product that contains water, H2S etc. 

Mildly corrosive:  corrosion exists, but proceeds at a slow rate. 
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Corrosive in some conditions:  product is normally benign but could become corrosive in 

the presence of other factors. 

Never corrosive: a product that is always compatible with its pipeline material. 

b. Internal Corrosion Prevention 

In order to transport a corrosive product in a pipe susceptible to corrosion, some actions may 

be taken to reduce corrosion risk. These procedures are indicated in the following 

paragraphs (Salah, 2011). 

Internal monitoring: can be conducted by an electronic probe that measures the corrosion, 

or with tabs coupon that corrode in the presence of a corrosive substance and thus give an 

indication of the probable corrosion rate. 

Inhibitor injection: certain chemical products could be injected into a pipeline to reduce the 

reaction that causes corrosion. 

Internal coating: an internal coating can be applied, including spray-on plastic, mortar or 

concrete. There is a broad assortment of internal coatings for pipelines. 

Operational measures: maintaining certain temperatures and separating impurities from the 

products are the most effective operational measures for reducing corrosion risk. 

Piging : involves a cylindrical instrument that is used to clean the inside walls of pipelines, 

removing residues (and corrosion). 

2.4.2.3 Factors Affecting Subsurface Corrosion 

a. Soil Corrosivity /Pipe Corrodibility 

If there are any imperfections in a pipeline’s external coating, the soil could be in contact 

with the pipeline. Soil works as an electrolyte, promoting the galvanic corrosion of a 

pipeline’s metal. A soil’s corrosivity is related to its resistivity, as shown in table 2.1. High 

moisture content and low PH increase soil corrosivity (Muhlbauer, 2004). 
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b. Cathodic Protection 

Cathodic protection effectiveness: cathodic protection is the application of an electric 

current to a metal to offset the electromotive force of corrosion. The effectiveness of 

cathodic protection can be measured by different methods, and are described in appendix A. 

Inference potential: because corrosion is an electrochemical process, cathodic protection 

works to prevent this process, the presence of other electric interference could defeat the 

cathodic protection effect (Muhlbauer, 2004). 

c. Pipeline Age 

The age of a pipeline is a main factor of pipeline deterioration, and the main sign of aging is 

corrosion. Since corrosion is a slow process, it becomes   more severe for older pipelines ( 

Henderson, et al., 2001). Figure 2.4 shows the oil spills recorded in an onshore pipeline in 

Western Europe. The figure shows how proper inspection and maintenance could decrease 

the effect of age on failure. 

 

Table 2-1  Relation between Soil Resistivity and Corrosivity (Muhlbauer, 2004) 

Soil resistivity Soil corrosively 

1.000 ohm – cm High 

Medium 1.000-15.000 

Ohm – cm or moderately active 

corrosion indicated 

Medium 

High resistivity ( low corrosion 

potential) 15.000 ohm – cm and  no 

active corrosion indicated 

Low 
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Figure 2-4 Age of Pipeline at Time of Spill ( Henderson, et al., 2001) 

2.4.3 Factors Contributing to Operational Failure 

Operational failure can be caused by human error or by system error (Dey, 2004). The 

following factors must be considered to assess the risk of operational failure (Muhlbauer, 

2004). 

 Operational procedures; 

 Supervisory Control and Data Acquisition SCADA communication; 

 Drug testing; 

 Safety programs; 

 Surveys, maps and records; 

 Training level of the operators; and 

 Mechanical error preventers (e.g. safety and relief valves). 

2.4.4 Factors Contributing to Mechanical Failure 

Mechanical failure could be a result of design error, of the use of inappropriate materials 

and/or due to faulty construction (Davis, et al., 2010). A list of the  factors contributing to 

faulty construction and contributing to desiegn errors is presented next.  
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2.4.4.1 Factors Related to Materials Failure and Construction Fault 

The American Society of Mechanical Engineers (ASME) defines some regulations and 

recommendations to reduce the risk of mechanical failure. These factors can be summarised 

as follows (The Hartford Steam Boiler Inspection and Insurance Company, 2000): 

 Material selection; 

 The appropriate installation procedure; 

 Leak inspection; 

 The application of QA, QC to the installation and fabrication processes; and 

 The proper construction method. 

2.4.4.2 Factors Related to Failure Caused by Design Error 

One of the main causes of mechanical failure is design error; some important subjects that 

could lead to design error as described by (Muhlbauer, 2004) include: 

a. Safety 

The safety factor is calculated by comparing the designed load of a pipeline with the actual 

load. This load could be an external load, the internal pressure in case of gas pipeline or a 

special load. 

b. Fatigue 

Fatigue failure mainly depends on the repetition of load cycles. For pipelines, the most 

important factor that affects the fatigue is the frequency of internal pressure cycles. 

c. Surge Potential 

Surge pressure or ‘water hammer’ occurs when there is a sudden change in a fluid’s 

velocity, which could be caused by a closed valve, a tripped pump trip, or other situations 

(EMERSSON Prosess Management, 2012). The power of a surge depends on a fluid’s 

density, elasticity and velocity, as well as the stoppage speed. Surge protection devices are 
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used to reduce any mechanical failure risk caused by a surge. 

d. Integrity Verification 

The existence of an integrity system could decrease the risk of mechanical failure by 

detecting any threats or anomalies. The performance of the following actions has a direct 

effect on a pipeline’s integrity: 

 Verification dates; 

 Pressure tests; 

 In-line inspection techniques and schedule; and. 

 In-line inspection accuracy. 

2.5 Pipeline Condition Rating 

Condition rating is vital to define inspection frequency and to extend service for aging 

pipelines. An inspection interval varies from six months, for some aging pipelines, to 10 

years. These intervals are set after performing a risk-based analysis (Ali, 2011). Some 

software systems have been developed to optimally set inspection frequency, such as 

ORBIT+ developed by Det Norsik Veritas (DNV) and PIPEVIEWER developed by General 

Electric (GE). These software systems mainly depend on expert opinions (Mikhail, 2011). 

Usually, condition rating is used for assessing an aging pipeline to have a better idea about 

the possibilities for service extension. The main challenges facing oil pipeline condition 

assessment are (Ali, 2011): 

1. A significant percentage of the pipelines  are unpigable (not suitable for in-line 

inspection); and 

2. A lack of data and the absence of data management. 

2.5.1 Overview of the Condition Assessment Procedure for Petroleum Pipelines 

The pipeline condition assessment process is generally used by pipeline operators to ensure 
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that a pipeline is in safe operational condition. Condition assessment is used to identify the 

life extension capacity of aged pipelines, to prioritize inspections and/or to pinpoint when 

and where to perform necessary maintenance. The following section illustrates the processes 

of identifying the pipeline condition in order to set the inspection frequency or to keep an 

aging pipeline in service. 

2.5.2 Calculation of the Remaining Strength 

In-line Inspection (ILI) reports contain thousands of anomalies and pipeline defects. Pipeline 

operators need a safe and cost-effective solution to deal with this huge amount of data 

(General Electric, 2010). To meet this challenge, the spots that have been identified by the 

ILI as having the highest metal loss should be compared to the allowable metal loss 

identified by the codes and the design criteria. The most commonly-used methods to assess 

the remaining strength of corroded pipeline are the ASME 31.G and the DNV RP 101 

(Hopkins, 2002). After calculating the remaining strength, a new Maximum Allowable 

Operating Pressure (MAOP) should be calculated. 

Case 1: If the operating pressure is below the calculated new maximum allowable pressure 

then no maintenance is needed. The next inspection will be scheduled based on the corrosion 

growth and the risk analysis. 

Case 2: If the operating pressure is higher than the newly-calculated maximum allowable 

pressure, the operator must repair the affected areas or reduce the operating pressure 

(Mikhail, 2011). 

2.5.3 Calculation of Corrosion Growth 

Different models have been developed by researchers and organisations to predict corrosion 

growth. The ASME 31.8S gives a prediction for external corrosion growth depending on 

environmental factors such as soil resistivity, as shown in table 2-2 (Morbier, 2009). Others 

models involve several factors (e.g. type of product, existence of impurities, water content 
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…etc.). Most pipeline operators utilise in-line inspection comparison to calculate the 

corrosion rate. By analysing multiyear ILI data for pipelines, all of a pipeline’s corrosion 

activities can be identified and the corrosion rate can be accurately calculated (Hashisha, 

2011). General Electric developed the RUNCOM software to calculate the corrosion growth 

for pipelines based on multiyear ILI comparison (General Electric, 2010). 

Table 2-2 External Corrosion Growth (Morbier, 2009) 

Corrosion Rate (MILS/YEAR) Soil Resistivity (OHM-CM) 

3 More than 15,000 No Active Corrosion 

6 1,000-15,000 

12 Less than 1000 

 

2.5.4 Risk-Based Inspection and Maintenance (RBIM) 

For the past 10 years, the pipeline industry has relied on risk analysis to prioritise inspection 

and maintenance. Before then, inspection intervals were defined according to pipeline 

operators’ experience and knowledge (Mikhail, 2011). Most regulatory bodies, such as the 

ASME and the American Petroleum Institute (API) have approved risk-based inspections for 

pipelines and have outlined some guidelines for its implementation (Ali 2011). Risk analysis 

is usually done by consultants, such as DNV or GE, but some companies have their own 

research departments that perform these studies by identifying the risk by performing ILI 

then studying the failure consequences. The final step is to quantify the risk and to 

recommend inspection and maintenance plan according to the risk analysis (Salah, 2011). 

General Electric implements a post-inspection program, which involves the following steps 

(Hashisha, 2011): 

 Collecting In-Line Inspection (ILI) data; 

 Identifying the spot(s) with high metal loss; 

 Identifying corrosion growth using RUNCOM software; 
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 Defining and recommending the new  maximum allowable pressure (MAOP); 

 Identifying the factors causing defects, for example; soil type, incomplete cathodic 

protection, the coating condition, etc. as well as other factors that cause defects such 

as third-party damages or internal corrosion. 

 Identifying the risk of failure and the likely consequences of failure using the 

PIPEVIEWER software, a system based on expert experience. 

 Finally, recommending the most suitable maintenance program and the date of the 

next inspection. 

As previously mentioned, most pipeline operators depend mainly on risk-based inspection 

which is based on expert opinion to set inspection frequency and/or to identify the condition 

of pipelines; in other words, there is no robust objective model capable of assessing 

petroleum pipeline condition or of predicting the failure type that threatens a pipeline. 

2.6 Current Practices for Inspection Techniques and their Appropriate 

Use 

Due to large the number of pipeline networks and their positioning (buried, above ground, 

onshore and offshore), various operating pressures (10 bar to 220 bar) and different steel 

grades (grade B to grade X80), inspection is the most important practice to ensure pipeline 

integrity.  An inspection interval varies from six months, for some aging pipelines, to 10 

years. These intervals are set after performing a risk-based analysis (Ali, 2011).     

 A set of new technologies have been developed in the last 20 years to overcome this 

challenging issue and to provide an effective, accurate and economical solution for pipeline 

operators. An inspection gives operators a view of several parameters that could cause 

pipeline failure. The most important parameters measured by inspection are (Ali, 2011): 

 Free span (for offshore pipeline); 

 Coating condition; 
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 Cathodic protection condition; 

 Existence of dents or cracks; 

 Calculating the metal loss caused by internal or external corrosion; 

 Wall thickness measurement; and 

 Geometric measurement. 

Pipeline inspection can be categorized as external inspection and internal inspection. For 

external inspection techniques, offshore techniques are different than onshore techniques due 

to the very different types of insulation and environment. In-line inspection techniques are 

the same in onshore and offshore pipelines. 

2.6.1 Onshore Pipeline Inspection 

Since in-line inspection is expensive and time consuming, onshore pipelines are usually 

inspected externally, according the National Association of Corrosion Engineers (NACE). 

In-line inspection is performed at long intervals compared to offshore pipeline because of 

the particular challenges of carrying out external inspection of offshore pipelines. The 

External Corrosion Direct Assessment (ECDA) procedure is shown below (Mikhail, 2011):   

 Perform DCVG tests and CIPS tests to assess the coating condition and the cathodic 

protection effectiveness, respectively; 

 Perform a soil resistivity test to identify the level of corrosivity; 

 Analyze the data from the above tests in order to select the critical points to use for 

verifying it with Ultrasonic testing (UT) devices to assess the metal loss; and 

 Perform UT tests at the selected points and do suitable repairs if needed. 

2.6.2 Offshore Pipeline Inspection 

Offshore pipeline inspection is very dependent upon in-line inspection due to the physical 

difficulties involved with external inspection. The common techniques used by pipeline 

operators are MFL and UT.  Most pipeline operators prefer MFL over UT, for the following 
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reasons (Mikhail, 2011): 

 MFL can be used for pipelines that carry gas or oil, while UT requires a liquid 

environment. UT is thus not convenient (or even possible sometimes) for gas 

pipelines. 

 UT requires extensive cleaning of the pipeline inner surface. 

 An MFL tool usually runs at a speed of 4m/sec, while a UT tool runs at a speed of 

1m/sec, so the MFL process takes much less time than UT. 

 MFL is less expensive than UT (in part because of the above two aspects). 

2.7 Previous Studies on Oil and Gas Pipeline Condition Assessment 

Some significant efforts in pipeline condition assessment have been made in the last decade. 

A Fuzzy Neural Network (FNN) model was developed in 2008 to calculate the rate of failure 

for oil and gas pipelines (Yu Peng, et al., 2008).The main goal of this research was to 

calculate the rate of failure of pipelines. Since corresponding pipeline history failure data is 

difficult to collect, a fault tree fuzzy analysis method was applied and a fault tree for external 

corrosion constructed. Experts evaluated the probability of events using natural language 

and then these linguistic variables were transformed into fuzzy numbers. All the incidents 

identified by the fault tree can be fed to the neural network model which then calculates the 

probability of pipeline failure as an output. It is obvious that this study does not eliminate 

subjectivity because of its dependence on expert opinion to evaluate the probability of 

events. Moreover, the model only predicts the probability of failure caused by corrosion. 

A risk assessment model created in 2010 takes historical data from the US Department of 

Transportation (DOT) and treats it with artificial neural network techniques to predict third-

party failure (Bersani, et al., 2010).The main data factors that were considered in this study 

are: 

 Average population density per square km; 
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 Land use (forests, grassland, farmland (including crops)… etc); 

 Number and types of road crossings; 

 Number and type of river/stream crossings; and 

 Number of railway crossings. 

The neural network was trained with 128 positive results (failures) and 128 negative results 

(non-failure). Bersani et al. presented a prediction model that can calculate the probability of 

failure due to third-party causes by knowing the site boundaries. This model depends mainly 

on historical data, but it is limited to third-party failure. Historical failure data have also been 

used to develop a tool that predicts the class of each spillage, using statistical analysis 

Classification and a Regression Tree (C&RT) (Bertolini, et al., 2006) 

The Analytical Hierarchy Process AHP was used  develop a model that will help decision 

makers to select the most suitable types of inspecting or monitoring techniques for  pipeline 

segments that need to be evaluated (Dey, 2004). The AHP model was developed by 

predicting the risk factor and analyzing the effect of risk on pipelines. The result makes it 

possible to identify the appropriate inspection and maintenance programme, analyze the cost 

and benefits to justify the investments required, and finally suggests improvement in 

pipeline design, construction and operation. The methodology adopted in this study involves 

(Dey, 2001): 

 Classifying the pipeline into segments and collecting all the data about each segment; 

 Identifying the risk factors that can cause failure (corrosion, third party, acts of god, 

…etc.); 

 Constructing the AHP and then performing a pair-wise comparison between factors 

and sub-factors in order to determine the likelihood of pipeline failure  due to factors 

and sub-factors; and 

 Finally, the most-suitable inspection/repair method for each segment can be selected 

and a cost of failure calculated. 
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This model was applied in a case study for a 1500 km length pipeline located in Western 

India. The data was collected during a workshop with executives who operate various 

pipelines. About 30 executives participated. The case study divides the pipeline into five 

segments and the model was applied to determine the likelihood of risk menacing each 

segment. While this model covers all types of failure, it is mainly depending on expert 

opinion. 

Dawotola proposed a combined Analytical Hierarchy Process and fault tree analysis to 

support the design, construction and inspection of oil and gas pipeline. The model chooses 

an optimal selection strategy based on probability and failure consequences (Dawotola, et 

al., 2009).  

An earlier study developed a simulation-based probabilistic neural network model to 

estimate the probability of failure of aging pipelines vulnerable to corrosion (Sinha, et al., 

2002). That paper used the Probabilistic Neural Network technique (PNN) to calculate the 

probability of failure in oil pipelines due to corrosion, using magnetic flux MFL data.  

In conclusion, all of the models developed to date are either subjective or do not cover all of 

the oil and gas pipeline failure causes. In other words, there is no objective model available 

that can predict different pipeline failure types. 

2.8 Artificial neural network (ANN) technique 

2.8.1 Overview 

The human brain is living proof of the existence of massive neural networks. The human 

brain is capable of performing different complex actions (identifying faces, language, 

movement, etc.) because it contains a collection of 10 billion connected neurons. Artificial 

neural networks have been developed which are capable of generalizing a mathematical 

model of a biological nervous system. (Abraham, 2005). The ANN technique mimics the 

human brain’s techniques for learning and recalling patterns. An ANN technique is useful in 
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problems where a solution is not clearly identified, and where the relations among inputs and 

outputs are not adequately defined. (Barqawi, 2006). Neurons are randomly connected in 

three different layers (input layer, hidden layers and output layer) to form the artificial neural 

network. The hidden layers are connected to the input layer and the output layer; therefore 

they are not connected to the external world (black box) (Zayed, et al., 2005) 

Artificial Neural Networks are used in this research because of their ability to deal with the 

complex relationship between predictors and output. ANNs can also deal with categorical 

outputs and categorical predictors, which makes this technique suitable when the available 

data contains categorical variables.  

2.8.2 Artificial neural network application 

Artificial neural networks have been widely used in computer science fields and in image 

processing. In the past ten years, many engineering disciplines have used ANNs because of 

their ability to solve complex problem. The ANN technique is used to assess the condition of 

buried pipeline. It is widely used to assess the condition of water pipelines and sewer 

pipelines. A condition rating model for water mains has been developed using the back 

propagation neural network (Barqawi, 2006). 

For oil and gas pipeline, several ANN models have been developed. Sadr et al. developed a 

model to identify erosion defects detected by magnetic flux inspection (Sadr, et al., 2006). 

Another failure prediction model using ANN was created to predict third-party failure. This 

model uses the site boundary as the input and predicts the output, which is the probability of 

failure due to third-party interference (Bersani, et al., 2010). 

The models mentioned above are just a few of the examples of the application of neural 

networks in the field of pipeline condition assessment. Artificial neural networks are now 

used in many engineering domains (e.g. construction, foundations, transportation, planning 

and scheduling …etc) 
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2.8.3 Types of Artificial Neural Networks 

There are three types of neural networks, classified according to their learning paradigms; 

unsupervised, hybrid and supervised. In a supervised neural network the network is provided 

with a correct answer (output) for each pattern, then weights are generated to allow the 

network to produce output as close as possible to the real output. Unsupervised learning does 

not require providing an output to the network; instead, it perceives the underlying 

correlations of data patterns and organizes these patterns into categories. Hybrid NNs 

combine the supervised and unsupervised learning processes to provide part of the weights 

using supervised learning while the remaining weights are provided through unsupervised 

learning (Anil, et al., 1996). 

2.8.4 Multi-Layer Feed Forward (MLF) and Back Propagation (BPN) Learning  

The most popular neural network is the Multi-Layer Feed Forward trained with Back 

Propagation learning algorithm (Daniel, et al., 1997). Back propagation neural networks are 

one of the most common neural network structures; they are simple and effective. BPNNs 

learn by example, which makes them very effective at prediction (Barqawi, 2006). An MLF 

forward network consists of at least three layers: an input layer, a hidden layer and an output 

layer. Units are connected in feed forward fashion. Input neurons are connected to a hidden 

layer and then to output layers. In other words, each neuron is connected to all the neurons in 

the next layer. The connection between the ith and the jth neuron is the weight coefficient 

wij. The ith neuron has a threshold (activation function) of vi , as shown in figure 2-5 

(Daniel, et al., 1997). 
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Figure 2-5 Connection Between Two Neuron (Daniel, et al., 1997) 

The composition of a common MLF network is elaborated below, as shown in figure 2.6: 

Input layer: This layer receives all the information from the input pattern. 

Hidden layer: Neural networks can have more than one hidden layer, but should contain at 

least one. This layer is connected to the input layer and to the output layer by an activation 

function.  The hidden layer is formed by receiving values from the input layer and then 

computing a value to send to an output neuron. This layer is totally formed by the neural 

network. 

Output layer: this layer contains the weighted output received from the hidden neurons and 

compares it with the real output to adjust the weight. 

 

Figure 2-6 BPNN Architecture With one Hidden Layer (Barqawi, 2006) 

A BPNN training algorithm is commonly used to supervise neural networks where the 

output is provided to instruct the ANN. The network learns by taking the partial derivative 

of the error of the network with respect to each weight. If we take the negative of this 

derivative and add it to the weight, the error will decrease until it reaches the local minima. 
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This process is called back propagation because it involves taking this derivative and adding 

them both to the weight starts from the output layer back to the input layer. (Abraham, 2005) 

2.8.5 Learning and Recalling Process 

The learning process of supervised ANNs using a BPNN learning algorithm is accomplished 

by providing the network with data sets that include inputs and outputs so that it can be 

trained. The network pattern is introduced and then the output pattern is estimated using 

random weights. The generated output is compared to the actual output, and then the error 

value between the 2 outputs is backward propagated into the network to adjust the 

connections weights. This procedure is repeated until an allowable error is reached, or a 

maximum number of epochs is reached, or any other stopping condition is satisfied 

(Barqawi, 2006). Once the neural network is trained it may be recalled to predict the output 

for any input pattern using the connections weights calculated during the learning process. 

2.8.6 Neural Network Validation Process 

One of the advantages of neural network models is that they can be used with continuous 

data or with categorical data. Common error metrics can be used to validate an ANN model 

for continuous output, such as the Mean Absolute Error (MAE) or the Root of Mean Square 

Error (RMSE) (Dikmen , et al., 2005) methods, or by using the Average Validity Percentage 

(AVP) and the  Average Invalidity Percentage (AIP) (Zayed, et al., 2005). For categorical 

modeling the model is validated by introducing a new set of data to it and then calculating 

the percentage of correct predictions. 

2.9 Statistical models 

A statistical model is a probability distribution constructed to enable inferences to be drawn 

or decisions made from data (Davison, 2003). In other words, a statistical model is a 

formalization of relations between a set of independent and dependent variables. Many 

statistical models have been developed in the last few decades. The most important criterion 
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to use to choose a suitable model is the type of data subjected to modeling. The different 

types of dependant and independent variables are listed and compared below.  

2.9.1 Continuous vs. Discreet Variables 

Variables can be categorised as continuous or discreet according to the number of values 

they can take. Continuous variables are those variables that take a large number of values, 

such as Pipeline Diameter, while discreet variables take only a few values, such as course 

grade (Agresti, 2002). 

2.9.2 Nominal vs. Ordinal Variables 

Categorical variables can be ordinal or nominal. Ordinal variables have an order relationship 

between the values. as in ‘course grade A is better than course grade B’, while with nominal 

variables there is no value relation (as can be the case with colors, for example). 

2.9.3 Logistic Regression 

In our case, the dependent variables are nominal (type of failure) and all the independent 

variables are discrete except for pipeline age and diameter, which are continuous. Since the 

output (dependent variables) is nominal and discreet, we are obligated to choose a discreet 

choice model. The basic form of logistic regression is used for the binary response and the 

Multinomial Logit (MNL) model uses the same methodology to deal with multiple outputs. 

For binary categorical variables using the usual least squares deviation criteria, the best-fit 

approach of minimizing error around the line of best fit is inappropriate. Instead, logistic 

regression applies the binomial probability theory, which has only two values to predict: 

probability is 1 or 0. The logistic regression develops a best-fitting function (logistic 

function) using the maximum likelihood method, which is based on computing several 

iteration to maximize the probability of the observed data to be part of the appropriate 

category given the regression coefficient (Burns, et al 2009) 

For a binary output Y=0 or Y=1 and multiple independent variable X, logistic regression 
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does not calculate the value of X like linear regression does, but  calculates the probability of 

Y being 1. The linear regression equation of Y is (Agresti, 2002): 

                   ……………………………………………….Equation 2-1  

Where y is the dependent variable, w1 to Wn are the estimators and x1 to Xn are the 

independent variables. The logistic regression of Y is (Agresti, 2002): 

 (   )  
 

     
   …………………………………………………………….Equation 2-2 

Where e is the natural logarithm number and Z is the logit (Agresti, 2002) 

Z = (Logit) =                  ……………………………………..Equation 2-3  

From equations 2 and 3 we can conclude that the Logit is the log of odds, as shown in 

equation 2-4 (Agresti, 2002) 

        (
 (   )

   (   )
)                   ………………………...Equation 2-4  

Figure 2.7 shows a set of data classified into categories 0 and 1. The continuous line 

represents the linear regression and the solid S curve represents the logistic function for the 

logistic regression, in which the vertical value of each point on the curve represents the 

probability of the Dependant Variable (DV) being equal to 1. 

 

 

Figure 2-7 Comparison between Linear Regression and Logistic Regression 
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Assumption and Limitation for Logistic Regression 

According to Burns the assumptions and limitations are as follows:  

 Logistic regression does not assume a linear relationship between the dependent and 

the independent variables; 

 There must be dichotomy (2 categories) among the dependent variables; 

 The categories must be mutually exclusive; 

 Large samples are required -- larger than for linear regression; 

 The independent variables should not be intervals, nor normally or linearly 

distributed; and 

 related, nor of equal variance within each group 

2.9.4 Multinomial Logit (MNL) Model 

MNL is a straight forward extension of logistic regression. For a dependent variable (DV) 

that has M categories, one value the first, the last, or the one that has the highest frequency 

of the DV is chosen to be the reference category. The probability memberships of each of 

the other dependent variables are compared to the probability membership in the reference 

category. For a DV with M categories, M - 1 equations are required to describe the relation 

between the dependent variables and the independent variables (Williams, R, 2011). When 

there are more than two categories, the equations used to calculate the probability for the 

outcome from m=2 to M are: (Agresti, 2002) . 

 (   )  
   

(  ∑      
   

   ………………………………………………………Equation 2-5 

The probability for the reference category is (Agresti, 2002) 

 (   )  
 

(  ∑      
   

   ………………………………………………………..Equation 2-6  

Where Z is the Logit defined in equation 2.3. 
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The MNL model was used because it can deal with categorical variables. Moreover, the 

MNL model generates probability equations for each output category, which gives a clear 

view of the failure that menaces a pipeline, thereby helping pipeline operators to make 

decisions about the actions required. 

 

2.9.5 Goodness of Fit and Validation 

The Log Likelihood (LL) is the criterion for selecting parameters in logistic regression. 

However, it is always used by multiplying by -2 and is thus called -2LL. The highest 

positive value of -2LL indicates the worst prediction. In order to identify the significant 

predictor, -2LL is calculated for a model with only an intercept and compared with the -2LL 

of the full model with all predictors. The difference between the -2LL for the full model and 

the model with only intercept is the CHI SQUARE for the model. Moreover, a model is 

considered significant if the statistical significance for the full model is less than 0.05. 

Models are also validated by comparing predicted values to the actual values for new data 

sets (Menard, 2002).    

2.10 Summary 

Oil pipeline’s attributes have significant effect on the likely types of pipeline failure. This 

effect could be direct or indirect. As mentioned, all the condition assessment models and 

failure predicting models developed to date depend on expert opinions which makes them 

subjective, or they are limited to predicting only one type of failure. This research proposes a 

failure prediction model that employs five pipeline attributes to objectively predict the 

failure that threatens a pipeline, based on historical data, from among the three major causes 

of failure (mechanical, corrosion and third-party). The MNL and ANN techniques are used 

to develop this model because of their capability to analyse categorical variables. 
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Chapter 3 

3 METHODOLOGY 

3.1 Overview 

The main objective of this research is to identify the type of failure that menaces an oil 

pipeline by knowing some basic pipeline features. All of the failure modes threatening oil 

pipelines are studied as a perquisite to this identification process. Moreover, an extensive 

study of pipeline attributes and their influence on each type of failure cause is performed. 

The model’s development is based mainly on historical data presented in the CONCAWE 

report for 2010, which displays all of the accidents that transpired in the European pipeline 

system over the last 38 years. The report cites the cause of each accident, which is the 

model’s output, as well as some pipeline attributes, which are the model’s inputs. The 

methodology followed to achieve this goal consists of five main stages, as presented in 

figure 3.1: 

1. A literature review which presents the main causes of pipeline failures, the current 

practices of oil and gas pipeline inspection techniques and a review of factors those 

contribute to pipeline failure. 

2. Data collection and data preparation. 

3. Development of a failure prediction model using Artificial Neural Networks. 

4. Development of a failure prediction model using the Multi-Nomial Logit (MNL) 

technique. 

5.  Sensitivity analysis and validation of the developed models. 
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Figure 3-1 Research Methodology  

3.2 Literature Review 

The literature review consists of 8 sections. Section 2.2 in chapter 2 shows the different 

types of pipelines, identifying the different materials and specifications used for oil and gas 

pipelines.  

Section 2.3 represents the different types of failure for oil pipelines (mechanical, operational, 
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corrosion, third party and natural). This section also clarifies the cause of each failure type 

and the percentage of occurrence of each failure cause according to historical failure data for 

the last 38 years in Europe according to CONCAWE. 

In section 2.4 we illustrate the pipeline factors and parameters that contribute to each failure 

type. Each failure’s cause(s) are identified and explained, along with the pipeline attributes 

that led to each type of failure and how it (they) contributes to that failure. 

An overview of the current condition rating procedures used by the oil industry is presented 

in section 2.5. This section also shows the usage and limitation of these condition rating 

procedures. 

A literature review for the current practices of pipeline inspection techniques is presented in 

section 2.6. This section illustrates the different types of inspection (internal and external) 

and their appropriate uses. 

Finally, a review of the recent studies and research developed for oil and gas condition 

assessment and failure prediction models is presented in section 2.7, followed by a detailed 

literature review of the Artificial Neural Network ANN techniques and an analysis of the 

Multi-Nomial Logit (MNL) model in sections 2.8 and 2.9, respectively. 

3.3 Data Collection  

The data used in this research was collected from the CONCAWE report issued in 2010, 

which lists all of the spillage accidents that occurred in the European oil pipeline system in 

the last 38 years. The report lists 467 accidents showing the cause of spillage and some 

pipeline attributes of the damaged pipeline. These lists of accidents were used to develop a 

model that is capable of predicting the cause of failure that could menace a pipeline given 

certain pipeline attributes, based on historical data. Table 3.1 represents the five factors 

considered in the failure prediction models and their descriptions. 
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Table 3-1 Description of the Factors Used in the Failure Predicting Models 

No Factor Description of Factor 

1 Pipeline Age The age of pipeline (Year) 

2 Pipeline Diameter The diameter of the pipeline (Inch) 

3 Pipeline Location The position of pipeline, either buried or above ground 

4 Land Use 
The area where the pipeline is located (residential, 

industrial,… etc.) 

5 Service The type of product transported (Crude oil, Product,… etc.) 

 

3.4 Data Processing 

In this section, the data collected from the CONCAWE report were refined to exclude any 

accidents with missing data. Moreover, all accidents caused by operational failure and 

natural hazards were excluded due to the impossibility of their prediction using the given 

pipeline parameters provided in the report. The remaining data, which consists of 289 

accidents caused by mechanical, corrosion or third-party factors (Data set 1), are used to 

develop a model that predicts the three stated failure causes, which represents 88% of the 

total accidents. In addition, the previous list of accidents (Data set 1) was further refined by 

excluding accidents caused by mechanical failure to form Data Set 2, comprised of  that 225 

accidents, in order to develop another model that predicts failure caused by corrosion and by 

third-party interference, which represents 63% of the total accidents. This step is done to 

achieve higher accuracy by decreasing the number of output to reduce the complexity of 

prediction. 

For validation purposes, 20% of accidents are randomly extracted from Data Set 1 and called 

Data Set 1 (Test) while the remaining 80% are enclosed in Data Set 1 (Training) which is 

used for model training. The same procedure is applied on Data Set 2 to form Data Set2 

(Test) that contains 20% of the total accidents with the remaining 80% comprising Data Set 

2 (Training).  
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Table 3-2 Data Sets Used for Modeling 

Name Number of Accidents Types of Failures 

Data Set 1 289 Accidents 
Mechanical, Corrosion and 

Third-Party 

Data Set 2 225 Accidents Corrosion and Third-Party 

 

3.5 ANN Failure Prediction Models 

A supervised neural network developed with the Back Propagation algorithm is used to 

develop two failure prediction models for oil pipelines. The ANN technique was used 

because of its capability to analyze complex relationships between predictors and output and 

its ability to treat categorical variables. The models development procedure is represented in 

figure 3.2, which represents the two main phases. The training phase employs the Data Set 

(Training) that includes 80% of the total accidents to train the ANN models. If the model 

shows satisfactory results, we go through the test phase where the developed model is 

applied to the Data Set (Test) to compare the predicted outputs with the real outputs. Based 

on this comparison, the accuracy of the model will be calculated and the model will be 

accepted if its outcomes achieve a satisfactory percentage. 

3.5.1 ANN Model 1-A (3 failure causes) 

This model is designed to predict oil pipeline failure caused by mechanical, corrosion or 

third-party failure, employing the following five pipelines attributes as input: 

1. Pipeline Diameter (in inches); 

2. Pipeline age (year) which reflect the deterioration state of the pipeline; 

3. Pipeline position, which indicate the position of pipeline as either buried or 

above-ground; 

4. Land use, which describes the  land usage where the pipeline failure occurred; 

industrial, agricultural or residential; and 
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5. Type of transported product, which could be crude oil, hot product or white 

product. 

In the refined accident list, which contains 289 accidents (Data Set 1), each accident 

contains the pre-mentioned pipeline factors and the failure type that caused the failure. A 

spreadsheet containing 80% of these accidents was introduced to the SPSS platform to train 

the ANN model using the back propagation learning algorithm, and then the preliminary 

result was verified. The next phase is to test the model using the randomly excluded 20% of 

the data by providing the developed model with the inputs only and then comparing the 

output predicted by the model with the actual output. Moreover, a mathematical validation is 

performed on the developed model, such as the Average Validity Percentage.  

This model is able to predict the failure cause that could menace the pipeline given the 

above-mentioned five pipelines attributes. The failure causes considered in this model 

represent 88% of the oil pipeline accidents according to CONCAWE (Davis, et al., 2010). 

By using this model pipeline operators will be able to identify the risk threating the pipeline 

among corrosion, mechanical failure or third-party interference. Identifying this risk will 

allow pipelines operators to take suitable actions to prevent it. 

3.5.2 ANN Model 1-B (2 Failure Causes) 

Another model was developed to predict failures caused by corrosion and by third parties in 

order to achieve prediction accuracy higher than was possible with the previous model by 

decreasing the number of output that could add some complexity. A new data set was 

prepared by excluding all the accidents caused by mechanical failure; the new data set 

contains 225 accidents (Data Set 2). The data set was treated in the same fashion as the 

previous model by excluding twenty percent of the accidents for validation purposes and 

using the remaining eighty percent for training the artificial neural network. The failure 

causes considered in this model, corrosion failure and third-party failure are responsible for 

63% of all oil pipeline accidents according to CONCAWE. 
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3.6 MNL Failure Prediction Model 

The Multi-Nomial Logit (MNL) technique is usually used to analyse nominal (categorical) 

data with nominal output, which would be challenging to analyse using ordinary linear 

regression. The advantage of using MNL over using ANN is that the MNL gives failure 

prediction equations as an output. This equation can then be used to predict the failure mode 

that threats the pipeline. The model development procedure is represented in figure 3.3. The 

figure shows that Data Set (Training) that contains 80% of the total accidents data will be 

introduced to the SPSS software to be modeled using the MNL technique. If the analysis 

results are satisfactory we proceed to the testing phase where the generated equations will be 

applied to the Data Set (Test) which contains the randomly excluded 20% of accidents. Then 

the predicted outputs will be compared with the actual outputs and the accuracy percentage 

is calculated accordingly. The model will be accepted if the percentage of correct predictions 

is satisfactory. 

3.7  MNL Model 2 (3 Failure Causes) 

This model is also designed to predict the type of failure threating a pipeline, corrosion, 

mechanical or third-party failure, using the same five pipeline attributes mentioned in the 

previous models. The model uses Data Set 1 which consists of 289 accidents, the same as for 

Model 1-A. The model development procedure has two main phases; the modeling phase 

and the testing phase. In the modeling phase 80% of the data was introduced to the SPSS 

software in a spreadsheet.  Next, the inputs and the outputs were defined to the software. The 

model then produces equations that calculate the probability of occurrence of each failure 

type and some basic diagnostics such as the Chi square and the Pseudo R square. The next 

phase is to validate the model by applying the generated equations to the randomly excluded 

data which contains 20% of the total number of accidents. This is to compare the actual 

output with the predicted output and produce useful statistics such as the average validity 
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percentage and the percentage of right prediction. The model is accepted if it shows 

satisfactory validation results. 
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Figure 3-2 ANN Models Development  
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Figure 3-3 MNL Models Development 

3.8 Validation and Sensitivity Analysis 

The goal of validation is to check the developed model’s effectiveness. This is done by 

applying the developed models to the validation data set to compare the predicted versus 

actual values, and then calculate the percentage of correct predictions, the average validity 

percentage and the average invalidity percentage. In addition, a sensitivity analysis was 

performed for each predictor to recognise the influence of variations in the input on the 

model’s outputs. This is done by changing each predictor under study between its maximum 

value and its minimum value while keeping other predictors constant.  
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3.9 Summary 

The methodology of the current research includes an extensive literature review, data 

collection and data preparation, development of oil pipeline failure prediction models using 

ANN and MNL techniques. Moreover, it details the procedure followed in this research to 

develop failure predicting models for oil pipelines by demonstrating each step, from data 

collection to model validation.  
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Chapter 4 

4 DATA COLLECTION 

4.1 Introduction 

The data used in this research are collected from the report published on 2010 by 

CONCAWE, an association of European oil companies established to address 

environmental, health and safety issues related to refining and distribution. The CONCAWE 

was founded in 1963 by a small group of oil companies to carry out research on 

environmental issues related to the oil industry. Most of the oil companies operating in 

Europe are now members of CONCAWE. Its research efforts cover a range of 

environmental field such as fuel emissions, soil contamination and cross-county pipeline 

performance (CONCAWE, 2010). 

The report prepared by the CONCAWE Oil Pipelines Management Group (OPMG) in 2010 

recorded 38 years of spillage data for 35000 km of oil pipelines that transport 780 million m
3 

of crude oil and petroleum products across Europe. The spillage causes are grouped into five 

main categories: mechanical failure, operational failure, corrosion, natural hazards and third-

party failure. The report indicates all the accidents that occurred since 1971, showing their 

failure cause and some of the respective pipeline attributes (Davis, et al., 2010). 

4.2 Data Organization  

The collected data, which consists of 467 spillage accidents in cross-country oil pipeline, is 

composed of a set of oil pipeline characteristics, the cause of failure and the spillage 

consequences, as shown in figure 4.1. The following represent the pipeline criteria for 

inclusion in the accident inventory (Davis, et al., 2010) 

 Pipelines that transport crude oil or petroleum product. 
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 Minimum length of 2 kilometers in the public domain. 

 Running cross country, including short estuary or river crossings but excluding lines 

serving offshore production facilities and offshore tanker loading/discharge 

facilities. 

  Including pump stations and intermediate storage facilities but excluding origin and 

destination terminal facilities and tank farms. 

 Minimum spillage size of 1 m
3
, unless there are exceptional safety or environmental 

consequences reported for spillage less than 1 m
3.
 

Spillage 

ID 
Year Pipe dia 
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Figure 4-1 Sample of the List of Accidents as Stated in the CONCAWE Report 2010 (Davis, 

et al., 2010) 

4.3 Model Inputs 

4.3.1 Pipeline age 

Pipeline age is one of the main factors that have a direct influence on corrosion failure, as 

mentioned in the literature review. Since corrosion is a slow process, an aging pipeline is 

usually more vulnerable to corrosion failure ( Henderson, et al., 2001). It also reflects the 

deterioration state of a pipeline. The age of pipelines cited in this study varies from one year 

old to 40 years old. 

4.3.2 Pipeline diameter 

Pipeline diameter is one of the physical factors that has a direct influence on third-party 

failure, as elaborated in chapter 2. Pipelines with a relatively small diameter are more 
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vulnerable to third-party damage caused by activities such as excavation. Moreover, smaller 

pipelines can be mechanically damaged during construction (Ali, 2011). The pipeline 

diameter is measured by inch and varies from 1 inch to 60 inch.  

4.3.3 Service 

This factor shows the type of product transported in pipelines, as it has a direct influence on 

corrosion failure. The types of product considered are shown in table 4.1. Since service types 

4 and 5 contributed to only 8 accidents there were excluded to simplify the analysis. Table 

4.2 shows the service types considered in this research. The crude oil represents the crude 

product extracted from a well without any refining process. White products include 

Naphthas, gasoline, gas oils (diesel) and Kerosenes. Finally fuel/hot oil is considered heavy 

fuel oils and lubricating oils and in some cases very heavy crude oils are part of this type. 

The product is heated before entering the system, to assure it has adequate flow 

characteristics (Haan, 2012). 

Table 4-1 types of product (Davis, et al., 2010) 

Service Type of Product 

1 Crude Oil 

2 White Product 

3 Fuel Oil (HOT) 

4 Crude Oil or Product 

5 Lubes Hot 

 

Table 4-2 Types of Transported Product Considered in this research 

Service Code Type of Product 

1 Crude Oil 

2 White Product 

3 Fuel Oil (HOT) 

4.3.4 Facility 

This factor describes the location of a pipeline. In this research we considered only 
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underground and above-ground pipeline as shown in table 4.3. All the pump station 

accidents (31) were excluded. This factor has a great influence on both corrosion failure and 

third-party failure, as described in detail in chapter 2. 

Table 4-3 Location of Pipeline Considered in this Research 

Facility Location of Pipeline 

1 Underground Pipe 

2 Above-round Pipe 

4.3.5 Land Use 

This factor describes where the failure occurred. To simplify the analysis we merged the 

land uses of residential high-density and residential low-density into one factor, named as 

residential. Moreover, we excluded all those accidents that occurred in forested hills, the 

Barren Lands, and in water bodies because of their small numbers (only 7 accidents). Table 

4.4 shows the types of land use reported in the CONCAWE report while table 4.5 shows the 

types of land use considered in this research. 

Table 4-4 land use reported in the CONCAWE Report (Davis, et al., 2010) 

Land Use Location of Pipeline 

1 Residential High Density 

2 Residential Low Density 

3 Agricultural 

4 Industrial or Commercial 

5 Forested hills 

6 Barren Lands 

7 Water Body 

 

Table 4-5 Land Use considered in this Research 

Land Use Location of Pipeline 

1 Residential 

2 Agricultural 

3 Industrial or Commercial 
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4.4 Model Outputs 

This section describes the failure causes reported in the CONCAWE report and their sub-

factors as shown in table 4.6. Also the percentage of accidents related to each failure cause is 

represented in figure 4.2. 

1- Mechanical Failure (Considered): Includes failure resulting from either a design or 

material fault (e.g. metallurgical defect, inappropriate material specification) or construction 

fault (e.g. defective weld, inadequate support,…etc.). This also includes the failure of 

sealing devices. 

2- Operational Failure (Not Considered): This means a failure resulted from operational 

upsets, malfunction or inadequacy of safeguarding systems (e.g. instrumentations, 

mechanical pressure relief system) or from operator error. 

3- Corrosion Failure (Considered): Failure as a result of external and/or internal corrosion 

or stress crack corrosion.  

4- Natural Hazard (Not Considered):  Includes failure resulting from a natural occurrence 

such as land movement, flooding …etc. 

5- Third-Party Failure (Considered): Includes all failure resulting from third-party 

actions, accidental or intentional. Also includes incidental third-party damage that was 

undetected and resulted in a failure at some later time. 

Table 4-6   Accident Failure Causes (Davis, et al., 2010) 

Failure Cause A B C 

A. Mechanical Failure Design & Material Construction  

B. Operational System Human  

C. Corrosion External Internal Stress Corrosion 

D. Natural Hazard Ground Movement Other  

E. Third Party Accidental Intentional Incidental 
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Figure 4-2 Percentage of Accidents Related to Failure Types 

4.5 Data preparation  

The data gathered consists of 467 accidents caused by five failure causes. Since the report 

only provides five pipeline characteristics, as discussed earlier, it is challenging to develop a 

model that can predict the five failure causes only from these five parameters. According to 

the literature, these five parameters are only related to mechanical failure, corrosion failure 

and third-party failure. There is no significant relation between these parameters and the 

other failure causes (operational and natural). Based on this assessment, two models were 

developed. 

 Model A: predicts failure caused by mechanical failure, corrosion failure and third-party 

failure.  

Model B: predicts failure caused by only corrosion and third-party failure. 

4.5.1 Data Set 1  

The first step of the data preparation is to exclude the accidents with missing data; next all of 

the accidents caused by operational failure and natural failure are also excluded. Moreover, 

some other accidents related to the eliminated input categories are excluded. Finally, we 
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were left with 289 accidents due to mechanical, third-party or corrosion failures. This set of 

accident data were organized into EXCEL spreadsheets with six columns. The first five 

columns represent the pipeline attributes, some of which are continuous variables and some 

are nominal variables, as shown in table 4.7. The last column represents the output, which is 

the failure cause as shown in table 4.8. For validation purposes twenty percent of Data Set 1 

were randomly excluded and named as Data Set 1 (Test). The remaining 80 % were used for 

the model training and called Data Set 1 (Training).Figure 4.3 represent a sample of the 

Spread sheet for Data Set 1. 

Table 4-7 Models predictors 

Predictor Unit Form 

Pipeline age Year Continuous 

Pipeline diameter Inch Continuous 

Land use Category Nominal 

Facility Category Nominal 

Service Category Nominal 

 

Table 4-8 Models output 

Failure Cause (output) Code 

Mechanical Failure 1 

Corrosion Failure 2 

Third Party Failure 3 

4.5.2 Data Set 2 

Data set 2 was prepared for the failure prediction model to predict only corrosion failure and 

third-party failure. Therefore, all the accidents caused by mechanical failure were removed 

from Data set 1.  Data set 2 contains 225 accidents caused by either corrosion failure or 

third-party failure. As with Data Set 1, twenty percent of Data Set 2’s items were randomly 

excluded for validation and named as Data Set 2 (Test). The remaining 80% were used for 

training and called Data Set 2 (Training). 
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Dia/inch Service Facility  Age/year 
Land 
use Output 

22 1 1 18 1 2 

9 1 1 46 1 2 

16 1 1 23 1 3 

12 2 1 30 1 1 

 

Figure 4-3 Sample of Spread Sheet for Data Set 1 

4.6 Summary  

This chapter presented the data collection and preparation of two sets of data required to 

develop two failure prediction models. It also identifies and explains the inputs reported on 

the original data and the inputs considered in these models showing the reason behind this 

selection. More over the original data outputs were illustrated in this chapter and the outputs 

considered in theses model were identified. 
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Chapter 5 

5 ARTIFICIAL NEURAL NETWORKS’ APPLICATION TO 

FAILURE PREDICTION MODELING 

5.1 Introduction  

In the real world, historical data is usually very noisy. It is challenging to create a robust 

prediction model using historical data. One of the main advantages of using Artificial Neural 

Networks is their ability to deal with historical data because they mimic the human brain in 

its capacity to predict patterns based on learning and recalling processes. In other words, the 

ANN technique is applicable when the causal relationships among predictors are unknown 

(Sadik, et al., 2004). 

This section presents the development of two failure prediction models for oil pipelines 

using the artificial neural network technique. These two models consider as inputs five 

pipelines attributes: diameter, age, pipeline positioning, the area where the failure occurred, 

and the type of product transported. The first model predicts the type of failure from among 

three failure types, mechanical, corrosion and third-party, as those three types of failure are 

the main cause of 88% of all oil pipeline spillage according to the CONCAWE. The second 

model is developed in order to achieve a high accuracy of prediction, but it only predicts 

failure caused by corrosion or third-party interference, which together represent 63% of 

pipeline failures according to the CONCAWE. 

5.2 Factors Included in the ANN Models  

Various physical, environmental and operational factors contribute to pipeline failure, as 

discussed in chapter 2. The factors considered in this research are selected based on the 

availability of historical data provided in the CONCAWE report, as shown in table 5.1. 

However, some of the other factors presented in chapter 2 could be considered in future 
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studies. The physical factors include pipeline diameter and pipeline age, and are considered 

as continuous variables. The facility and land use are considered environmental factors and 

both are nominal variables. Finally, the only operational factor considered in this research is 

that of service type, which is also considered as nominal. The description of these factors 

and their effect on pipeline failure was presented in detail in chapter 2. 

Table 5-1 Factors Included in the Failure Prediction Model 

Factor Type Variable Categories Scale 

Physical 

Factors 

Pipeline Diameter Continuous Inch 

Pipeline Age Continuous Year 

Environmental 

Factors 

Facility 

 

Under ground 

Above ground 

1 

2 

Land use 

Residential 

Agricultural 

Industrial or commercial 

1 

2 

3 

Operational 

Factor 
Service 

Crude Oil 

White Product 

Hot Oil 

1 

2 

3 

 

5.3 Model 1-A: Pipeline Failure Prediction Model for Three Failure 

Types 

This model is designed to objectively predict the type of failure that could menace a pipeline 

among mechanical failure, corrosion failure and third-party failure based on historical data. 

Five factors are selected as the model’s inputs based on the availability of the historical data, 

as represented in table 5.1. Since three of these factors are nominal, each category of 

nominal factors is represented by one neuron at the input layer; for the other two continuous 

factors, each is represented by one neuron.  The input layer thus consists of 10 neurons. The 

output layer consists of 3 neurons, each neuron representing a type of failure (mechanical, 

corrosion and third party). The SPSS 19 software is used for the ANN model development 
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because of its following qualities: 

1. Ease of use; 

2. Short training time; 

3. Its flexibility in  modifying the training parameters; and 

4. Its ability to deal with nominal variables and output.  

Data Set 1, which includes 289 accidents, was used for this model. Data Set 1 (Training), 

containing 80% of the Data Set 1 accidents,  was fed to the SPSS software via Excel and 

used to train the model, while the remaining twenty percent were used to test the model. 

The network architecture consists of one input layer with 10 neurons, one hidden layer 

containing 35 neurons and an output layer that contains 3 neurons.  The gradient decent was 

used as an optimization algorithm. The training process uses the Back Propagation 

algorithm.  The learning rate is 0.05 and the momentum is 0.9. The Tanh activation function 

was used between the input layer and the hidden layer. The stopping rule is 10 steps without 

any error decrease. Figure 5.1 shows the network information, while figure 5.2 represents 

the model summary. 

Twenty percent of the accidents in Data Set 1 (Training) were used by the SPSS software to 

test the model accuracy of prediction for predicting each output of the three outputs. The 

percentage of correct prediction for the test sample shows that 73.8% of the data are 

correctly classified. The SPSS package also displays the Receiver Operating Characteristic 

(ROC) curve for each output. Each curve treats the category at issue as the positive state 

versus the aggregate of all other categories. Basically, the Y axis is the (sensitivity), which is 

the true positive rate, and the X axis is the (1-specificity (true negative rate)), or the false 

positive rate. The area under the ROC curve measures the prediction accuracy  (1 is the best 

and 0.5 is the worst. .Figure 5.3 represents the ROC curve for the Dependent Output, while 

table 5.2 represent the area under the ROC curve for each output (Hanley, et al., 1982). The 

results show that the area under the ROC curve for each output is generally more than 0.75, 
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which indicates good prediction accuracy. For further details, please see (Fawccet, 2004).  

 

 

Figure 5-1 Network Information Model 1-A 

 

 

Figure 5-2 Summary for Model 1-A 
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Figure 5-3 ROC Curve for 3 Outputs for Model 1-A 

 

Table 5-2 Area under the ROC Curves Model 1-a 

Output Area 

1 Mechanical Failure 0.746 

2 Corrosion Failure 0.792 

3 Third-Party Failure 0.776 

5.3.1 Factors’ Importance 

The SPSS software can determine the importance of each predictor contributing in the neural 

network. Table 5.3 represents the importance of each predictor, while figure 5.4 displays a 

chart of the normalized importance of each predictor. It is clear that the most important 

factor is the type of service (type of transported oil), while the least important predictor is 

the pipeline’s age. 
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Table 5-3 Predictor Importance 

Model Inputs Importance Normalized Importance 

Service 0.270 100% 

Facility 0.193 71.7% 

Land use 0.142 52.8% 

Diameter 0.263 97.4% 

Age 0.132 48.9% 

 

 

Figure 5-4 Normalized Importance Chart 

5.3.2 Model Validation 

As mentioned above, twenty percent of Data Set 1’s accidents were kept aside for validation 

and called Data Set 1 (Test). Since the data is nominal, the main validating test is to 

determine the percentage of correct predictions for the developed model. In order to identify 

this percentage the ANN model is recalled and applied to the records in Data Set 1 (Test) 

without introducing the failure cause to the software. The output obtained by the developed 

model is compared to the actual cause of failure, and the percentage of correct predictions is 

calculated. It was found that the prediction percentage was 68.5%, which is fairly good. A 

plot was prepared (figure 5.5) to display the failure cause predicted by the developed model 
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versus the actual failure cause for the validation data set (here consisting of 57 accidents). 

In accordance with Zayed and Halpin’s (2005), the Average Validity Percentage (AVP), 

which shows the validity percentage out of 100 and the Average Invalidity Percentage 

(AIP), which shows the prediction errors, were applied to validate the ANN model using the 

following equations. 

    (∑     (
  

  
)  )   

      …………………………………………………Equation 5-1  

           ………………………………………………………………..Equation 5-2  

Where: 

AIP = Average Invalidity Percentage; 

AVP = Average Validity Percentage; 

Ei = Predicted Value; and 

Ci = Actual Value. 

After applying the previous equations on the test sample the results indicate that: 

AIP =26.3% 

AVP =73.7%. 

 

Figure 5-5 Actual Vs Predicted Failure Cause 
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5.3.3 Sensitivity Analysis  

A sensitivity analysis is carried out on the developed model in order to identify the effect of 

the variation of predictor values on the failure type. An accident was randomly chosen 

(where the diameter was 11, service was type 2, facility was type 1, age was 40 and the land 

use was type 1), and then each predictor under study was changed between its maximum 

value and its minimum value while keeping the other predictors constant. The procedure was 

repeated for each input. In those cases where there was no change in output related to a 

particular input we maintained other inputs at a different value, one at time, to study the co-

relation between inputs. The sensitivity analysis almost completely confirms the inputs’ 

importance that was previously determined by the SPSS software in the predictor 

importance table, which shows that ‘service’ is the most sensitive predictor while ‘age’ has 

the smallest affect. The following subsection shows the sensitivity analysis chart for each 

predictor. 

a. Effect of Service Variation 

The following chart shows the effect of changing the type of transported oil on the failure 

cause. Figure 5.6 also shows that for this particular case, when the type of oil is white 

products, the failure that occurs is due to a  third-party cause, while when the transported 

product was crude oil or hot products the failure cause changes to corrosion  because of the 

impurities and heat of these types of product that induce corrosion. 

 

Figure 5-6 Failure Cause versus Service  
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b. Effect of Facility Variation 

The change in failure cause due to pipeline location is presented in figure 5.7. With buried 

pipeline, the predicted failure cause was third-party failure, while with above-ground 

pipeline the failure causes become mechanical-based.  

 

Figure 5-7 Failure Cause versus Facility  

 

c. Effect of Land Use Variation  

We found that there is no variation in the type of failure due to the change of the land use for 

the chosen accident. We then changed the other inputs once at a time to identify any co-

relation between the inputs, as presented in figure 5.8. The figure indicates a significant 

correlation between land use and age, diameter and service. 

 

Figure 5-8 Failure Cause versus Land Use Variations 
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d. Effect of Diameter Variation 

Figure 5.9 represents the failure cause change due to diameter variation. It shows that 

pipelines with small diameters are vulnerable to third-party failure, as mentioned previously 

in the literature, while the failure cause changes when pipe diameter is larger. 

 

Figure 5-9 Failure Cause versus Diameter 

e. Effect of Age Variation 

As mentioned earlier, pipeline age has the lowest importance weight. Figure 5.10 shows that 

there is no effect from age variation on the type of failure, but when the diameter is changed 

to a larger diameter of 30 inches the effect of age became stronger, as indicated in figure 

5.11. 

 

Figure 5-10 Failure Cause versus Age 

 

Figure 5-11 Failure Cause versus Age (30 inch Diameter) 

0

1

2

3

0 10 20 30 40 50

Fa
ilu

re
 C

au
se

 

Diameter (inch) 

Diameter Variation vs Failure
Cause

0

1

2

3

0 20 40 60 80

Fa
ilu

re
 C

au
se

 

Age (year) 

Failure Cause Variartion vs
Age

0

1

2

3

0 20 40 60 80

Fa
ilu

re
 C

au
se

 

Age (year) 

Failure Cause Variartion vs
Age at Diameter 30 inch



62 

 

5.4 Model 1-B: Failure Prediction Model for Oil Pipeline for Two Failure 

Types 

As mentioned previously, this model is able to predict oil pipeline failure caused by 

corrosion failure and by third-party failure, which together cause 63% of oil pipeline failure 

according to CONCAWE. The model uses Data set 2, which contains 225 accidents caused 

only by corrosion or third-party failure. This model follow the same procedure presented 

earlier, by using Data Set 2 (training) which contains 80% of the total accidents for training, 

while Data Set 2 (Test) containing the remaining 20%, are used for validation. 

The network architecture is comprised of one input layer with 10 neurons, one hidden layer 

containing 26 neurons, and the output layer with 2 neurons.  The gradient decent was used as 

an optimization algorithm. The training uses the Back Propagation algorithm.  The learning 

rate is 0.05 and the momentum is 0.9. The Tanh activation function was used between the 

input layer and the hidden layer. The stopping rule is 20 steps with no error decrease. Figure 

5.12  shows the network information, and figure 5.13 represents the model summary. The 

percentage of correct predictions shows that 73.3% of the data were classified correctly. The 

Receiver Operating Characteristic (ROC) curve for each output is represented in Figure 5.14 

while the area under the ROC curve measures the accuracy of prediction and is represented 

in table 5.4. The calculated area is close to 0.85, which is better than the three-output model. 

 
Figure 5-12 Network Information Model 1-B 
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Figure 5-13 Model 1-B summary 

 

Figure 5-14 ROC Curve for 2 Outputs for Model 1-B 

 

Table 5-4 Area under the ROC Curve for Model 1-B 

Output Area Under The R.O.C Curve 

1.Corrosion Failure 0.842 

2.Third Party Failure 0.842 
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5.4.1 Factors’ Importance  

As represented in the previous model, the SPSS software has the ability to determine the 

importance of each predictor contributing in the neural network. Table 5.5 represents the 

importance of each predictor while figure 5.15 displays a chart of the normalized importance 

of each predictor. It can be seen that the most important factor is the service (type of 

transported oil), while the least important predictor is the facility. 

Table 5-5 Factors Importance for Model 1-B 

Predictor Importance Normalized Importance 

Service 0.418 100% 

Land Use 0.166 39.8% 

Facility 0.93 22.2% 

Age 0.174 41.8% 

Diameter 0.149 35.7% 

 

 

Figure 5-15 Normalized Factors Importance Chart for Model 1-B 
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5.4.2 Model 1-B Validation 

As described previously, twenty percent of Data Set 2 were kept aside for validation and 

called Data Set 2 (Test). We found the percentage of correct prediction to be 72.2%, which 

is better than with the previous model. A graphic Figure 5.16 displays the failure causes 

predicted by the developed model versus the actual failure cause for the validation data set, 

consisting of 43 accidents. The model produces an AVP of 72.8% and an AIP of 27.2%. 

 

Figure 5-16 Actual versus Predicted Failure types, Model 1-B 

5.4.3 Sensitivity Analysis for Model 1-B 

A sensitivity analysis was carried out for the developed model to identify the effect of 

varying predictor values on the failure type. The sensitivity analysis follows the same 

procedure as in the previous model.  

a. Effect of service variation 

The following chart (figure 5.17) presents the effect of service variation on the type of 

failure. The chart also shows that for this particular case, when the type of oil was white 

products the failure occurs due to third-party causes, while when the transported product was 

crude oil or hot products the failure cause changes to corrosion because of the impurities and 

heat of these types of product which induce corrosion. 
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Figure 5-17 Failure Cause versus Service Variation 

b. Effect of Facility Variation 

The following figure 5.18 shows that the facility variation does not affect the failure cause in 

the case of the randomly-chosen accident, but that facility does become a factor when the 

diameter is changed from 9 to 30 inches.  

 

 

 

 

 

 

Figure 5-18 Failure Cause versus Facility Variation for Model 1-B 

c. Effect of Land Use Variation 

The land use did not have an effect in this particular accident, but it shows some significant 

effect when the diameter is 30 inches and when the type of transported oil changes from 

white product to crude oil. The land use variation effect is presented in figure 5.19. 

 

Figure 5-19 Failure Cause Variation versus Land Use for Model 1-B 
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d. Effect of Diameter Variation 

The following figure 5.20 represents the effect of diameter variation on the failure type. It 

shows that small diameter pipelines are more vulnerable to third-party failure, which has 

been noted in the literature and summarized in chapter 2. 

 

Figure 5-20 Failure Cause versus Diameter Variation for Model 1-B 

 

e. Effect of Age Variation 

The study of age variation shows that there is no effect of age variation on the failure type 

for the accident selected, as presented in figure 5.21. However, when the diameter is 

changed from 9 to 30 inches, pipeline age starts to have an effect on the failure type, as 

shown in figure 5.22. 

 

Figure 5-21 Failure Cause versus Age Variation for Model 1-B 
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Figure 5-22 Failure Cause versus Age Variation at a 30-inch Diameter for Model 1-B 

5.5 Summary  

Two ANN models were developed to predict the type of failure that would most likely 

menace an oil pipeline, with five pipeline parameters known: diameter, age, type of 

transported product, land usage and position. The first model is designed to predict failure 

caused by mechanical failure, corrosion failure or third-party failure. The model validation 

showed that it has the ability to identify the failure cause with an accuracy percentage of 

68.5%.The second model is designed to predict the failure caused by corrosion failure or by 

third-party failure and has the ability to identify the failure cause with an accuracy 

percentage of 72.2%. 
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Chapter 6 

6 MULTINOMIAL LOGIT MODEL APPLICATION TO OIL 

PIPELINE FAILURE PREDICTION MODEL 

6.1 Introduction  

Logistic regression is a prediction approach, similar to an ordinary least square regression 

(OLS). The multinomial logit model is used when categories are unordered or nominal data 

exists (Burns, et al 2009). In our case, three of our predictors and the output are nominal 

unordered categories. In this section we show the development of our failure prediction 

model using the multinomial logit technique. This model is designed to predict the failure 

type among Mechanical failure, corrosion failure and third-party failure. The developed 

model is validated and a sensitivity analysis performed for each predictor. 

6.2 Model 2: Failure Prediction Model for Oil Pipeline for Three Outputs  

This model uses the same data set as model 1-A (see section 5.3). SPSS software is also used 

to develop the MNL model because of its ease of use and its detailed results. Data Set 1 

(training), was introduced via an EXCEL spreadsheet to the SPSS software to perform the 

MNL analysis, while Data Set 2 (Test) was kept aside for validation. As mentioned in 

chapter five, the model has two continuous inputs (age and diameter), three nominal inputs 

(service, facility and land use) and three nominal outputs representing the failure cause 

(mechanical, corrosion, and third-party). 

The multinomial regression performs the analysis by computing the probability of 

occurrence of each failure type, where the highest probability is set as a predicted value. The 

logit model pairs each category to a base line category, in our case the last output category 

(third-party failure) is the baseline category. For more details, please refer to Agresti 2002. 

Since the Ordinary Least Square Method (OLS) is inapplicable for the MNL model because 



70 

 

MNL models compute the probability of occurrence for the dependent variable and not its 

value, the Maximum Likelihood Estimate (MLE) method is used to measure the MNL 

model’s performance. The MLE is the value of the parameter that makes the observed data 

most likely. Since the value of the likelihood is very small it is usually reported as the log 

likelihood or the initial log likelihood function that is equal to -2 Log Likelihood (-2LL) 

(Williams, 2011). The initial likelihood function (-2 Log Likelihood) is a statistical measure 

similar to the total sum square in linear regression. Table 6.1 shows the initial likelihood 

function value (498.091) for the model with no independent variable (constant only) and the 

initial likelihood value (387.59) for the model with all the variables independent in its first 

column of values. The decrease of the value indicates the improvement in the model’s 

prediction because of the addition of independent variables. The difference between the two 

values is the Chi Squared (101.49) and has a significant that is less than 0.0001. Based on 

the results it can be concluded that there is a significant relationship between the 

independent variables and the dependent variable (Menard, 2002). 

Table 6-1 Model Fitting Information 

Model -2 Log Likelihood Chi-Square Sig. 

Intercept Only 489.091 N/A N/A 

Final 387.592 101.499 0.000 

 

Since an ordinary R square does not exist in logistic regression, several pseudo R squares 

have been developed in order to evaluate the logistic models’ goodness of fit. These pseudo 

R-squares have a scale similar to that of R-squares that varies from 0 to 1 with a higher 

value indicating a better model fit. The pseudo R squares calculations are shown in 

equations 6.1 to 6.3 (Menard, 2002). While table 5.2 represent the pseudo R Square value 

for our model. 
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a. Cox and Snell Pseudo R-Square 

    𝑹    (
 (     )

 (          )
)

 

 
    …………………………………………………..Equation 6-1  

Where: 

 Mfull = the model with a predictor 

 Mintercept=  the model with all predictors, 

 L= the estimated likelihood 

N= the number of observation.  

Note: Cox and Snell R-squared cannot reach 1. 

b. Nagelkerke Pseudo R-Square 
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        ……………………………………………………..Equation 6-2  

This is an adjustment for Cox and Snell R-Square to reach the 1. 

c. McFadden Pseudo R-Square 

𝑹    
   (     )

    (          )
   ………………………………………………………Equation 6-3  

Table 6-2 Three Pseudo R-Square Values 

Pseudo R-Square Values 

Cox and Snell 0.354 

Nagelkerke 0.42 

McFadden 0.205 

 

In order to identify the importance of each predictor the SPSS software calculates the initial 

likelihood value for the reduced model. The reduced model is formed by omitting one effect 

from the final model, in other words, it is the likelihood of the model that includes all 

predictors except the predictor under study. This likelihood is compared with the likelihood 

achieved by the model when all predictors are included (full model). The Chi Square is then 
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calculated for each model by subtracting the full model value from the reduced model value. 

The predictor with a high Chi Square and a low significant is considered to be an important 

variable. The results generated by the SPSS process are presented in table 6.3, indicating that 

the type of service is the most important variable while pipeline age is the lowest. 

Table 6-3 Likelihood Ratio Test for Model 2 

Effect 
-2 LL of Reduced 

Model 
Chi Square Significance 

Intercept 387.592 0 . 

Diameter 399.623 12.031 0.02 

Age 389.872 2.279 0.320 

Service 436.608 49.016 0.000 

Facility 404.405 16.813 0.000 

Land Use 398.546 10.954 0.027 

 

6.2.1 Model Equation 

As discussed earlier, the concept driving the logistic regression is to calculate the probability 

of occurrence of each failure type. In order to calculate the probability of each dependant 

variable we must first calculate the Logit of each dependant variable. The Logit is similar to 

the linear regression equation, as shown in the following equation (Menard, 2002). 

                                  ………………………………………Equation 6-4 

Where; B are the variable coefficients (see table 6.4) and X are the predictor values. The 

SPSS program generates the coefficient for outputs one and two, but output three (the 

reference category) could be calculated by subtracting the probability of output one and the 

probability of output 2 from one (P3 = 1 - (P1+P2)). 
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Table 6-4 Variable Coefficients 

Variables Coefficients (Output1) Coefficients (Output2) 

Intercept 2.005 3.949 

Diameter 0.097 0.008 

Age -0.008 0.016 

Service 1 -1.453 -3.358 

Service 2 -1.493 -4.5 

Facility 1 -2.351 -0.307 

Land Use 1 -0.193 -1.213 

Land Use 2 0.044 -1.823 

  

The following equations show the Logit equations for each output. 

Z1 = 2.005 + 0.0097*D - 0.008*A – 1.453*S1 - 1.493*S2 – 2.351* F1 – 0.193*L1 + 0.044*L2 

………………………………………………………………………………Equation 6-5  

Z2 = 3.949 + 0.008*D + 0.016*A – 3.358*S1– 4.5*S2 – 0.307* F1 – 1.213*L1 + 1.823*L2       

………………………………………………………………………………Equation 6-6 

Z3 = 0 (Reference Category) ……………………………………………….Equation 6-7 

Where; D is the pipeline diameter in inches, A is the pipeline age by year, S is the service 

type, F is the facility and L is the land use. The probability of each output is calculated by 

the following equations (Agresti, 2002). 

  (                  )  
   

           
     …………………………...……..Equation 6-8 

  (                 )  
   

           
        ………………………………….Equation 6-9 

  (                    )  
   

           
      ………………………………Equation 6-10 

Where; e = the natural logarithm. The previous equations can be used to determine the 

probability of which failure type menaces an oil pipeline when certain pipeline attributes are 

known.  
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6.2.2 Model Validation  

To measure the accuracy of the predictions provided by the developed Multinomial Logit 

Model, we applied the generated equations to Data Set 1 (Test). The outputs from the 

equations are compared to the actual failure cause, thereby calculating the percentage of 

correct predictions. We found that 39 out of 57 accidents were correctly identified, or correct 

predictions 68.5% of the time. The model also shows an Average Validity Percentage of 

73.69% and an Average of Invalidity Percentage of 26.31%. The actual outputs versus the 

predicted outputs are represented in figure 6.1. 

 

Figure 6-1 Actual versus Predicted Outputs 

6.2.3 Sensitivity Analysis 

A sensitivity analysis was performed, similar to that done for the artificial neural network 

models, to identify the effect of varying each predictor on the failure cause. The following 

shows the effect of varying each predictor of the MNL model. 

a. Effect of Service Variation 

As shown in figure 6.2, changing the type of transported product has a direct effect on the 

failure type. Figure 6.2 shows that, when the type of oil is white products, the failure 
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happens due to third-party causes, while when the transported product was crude oil or hot 

products, the failure cause changes to corrosion because  the impurities and heat of these 

types of product induce corrosion. This aspect also follows the same trend as the ANN 

model. 

 

Figure 6-2 Failure Cause versus Service Type 

b. Effect of Facility Variation 

Figure 6.3 indicates that the position of a pipeline, either aboveground or buried, affects the 

failure type that could menace it, buried pipelines are more vulnerable to third-party failure 

and above-ground pipelines are more vulnerable to mechanical failure. 

 

Figure 6-3 Failure Cause versus Facility Type 

c. Effect of Land Use Variation 

The change of land use did not display any effect on the output in our evaluation, but when 

the service type changed from white product to crude oil a significant effect appeared, as 

shown in figure 6.4. 
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Figure 6-4 Failure Cause versus Land Use Variation 

d. Effect of Diameter Variation 

Examining the effect of pipe diameters indicated that it has an effect on the failure cause; 

small diameter pipelines are more susceptible to third-party failure while when larger 

diameter pipelines are more likely to experience mechanical failure, as shown in figure 6.5. 

 

Figure 6-5 Failure Cause versus Diameter Size 

e. Effect of Age Variation  

Figure 6.6 shows the effect of the age variation on the failure cause. The figure shows that 

for newer pipelines, mechanical failure has the highest probability, while for older pipelines 

third-party failure has the highest probability. 

 

Figure 6-6 Failure Cause versus Age Variation, pipe diameter of 30 inches 
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6.3 Models’ Summary 

The different approaches used in this research (ANN and MNL) had similar results, as 

displayed in table 6.5. The multinomial logit model developed for this study was used to 

calculate the probability of each major type of failure that threatens pipelines, given five 

pipeline attributes. By knowing the probability of each failure type, we could identify the 

failure cause that would be most likely to threat a pipeline; the failure cause with the highest 

probability. The results show the the model has an accuracy of 68.5% --  which is fairly 

good for a model developed from pure historical data. This model has two obvious 

advantages over the ANN model: 

 The MNL  model utilizes  an equation, which makes it easy to use for pipeline 

operators. 

 The MNL model gives the probability of each failure cause, which can help 

operators to have a better idea about a pipeline’s condition. 

 

Table 6-5 Models Summary 

Model Approach Accuracy AIP 
Pseudo R 

Squared 

Factors with 

high 

Sensitivity 

1-A(3 

Outputs) 
ANN 68.5% 73.7%  

Service, 

Facility and 

Diameter 

1-B(2 

Outputs) 
ANN 72.2% 72.8%  

Service and 

Diameter 

2   (3 

Outputs) 
MNL 68.4% 73.69% 0.42 

Service, 

Facility, 

Diameter and 

Age 

 

The true capacity of the developed models can be revealed by considering how they are 
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neatly fitted at the very beginning of the costly and time consuming inspection process. An 

example of these models usage is when an oil company intends to inspect one of the lines, 

through knowing the age, diameter, product type, land use and location, the company would 

use the model to pin point expected failures in the line, and consecutively plan their course 

of action. For example by knowing that a 10 years old pipe with a diameter of 40 inch above 

ground carrying fuel oil (Hot) in industrial area, the model would indicate that this pipe is 

likely to fail due to corrosion. This would dictate a course of action that examines the degree 

corrosion using ILI and accordingly plan the suitable corrective actions. In a different case, 

the input might result in predicting a third party failure, which would direct the company 

towards a different course of action. These cases reveal the importance of using this model, 

instead of inspecting the whole pipeline and not knowing what type of failure to watch for. 
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CHAPTER 7 

7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions  

The present research proposes an objective failure prediction model for oil pipelines built on 

historical data from real failure incidents. This model will help decision makers and oil 

pipeline operators to plan the strategies and actions required to maintain a pipeline in safe 

operating condition by knowing the threats that any particular pipeline would be faced with. 

This research implemented three different failure prediction models using two different 

approaches (ANN and MNL) to predict the types of failure menacing a pipeline based on 

specific physical, operational and environmental factors. The first two models (1-A and 1-B) 

were developed using the ANN technique. Model 1-A is able to predict a failure type among 

three different types of failure (mechanical, corrosion, third party failure) with an accuracy 

of 68.5%, which is fairly good and acceptable for such a model based exclusively on 

historical data. While model 1-B is designed to predict failure caused by either corrosion or 

third-party damage, and does so with an accuracy of 72.2%. This small increase in accuracy 

is not high enough to exclude mechanical failure, and therefore Model 1-A is more 

advantageous, as it can predict failure among the three failure types that are the main cause 

of 88% of oil pipeline accidents. 

The MNL approach was used to develop the third model (model 2), whose results are very 

similar to those of model (1-A) in predicting three types of failure, with a prediction 

accuracy of 68.4%. The MNL model generates equations that calculate the probability of 

each type of failure, which is very helpful for decision makers.  

This study also determined that the type of transported product has the highest impact on the 

failure types, while pipeline age has no significant effect on the type of failure. All three 

models supported this conclusion. The models developed here can help to reduce 
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unnecessary inspections, as they can be prioritised. These models provide a clear view of the 

risks that threaten a pipeline, allowing decision makers to take some actions to reduce those 

risks and keep the pipeline in safe condition.  

7.2 Research Contributions 

The contributions of this research to the current oil pipeline condition assessments process 

are that it: 

 Develops an ANN failure prediction model for oil pipelines that helps to forecast 

mechanical, corrosion or third-party failure; 

 Develops an ANN prediction model for oil pipelines that anticipates either corrosion 

or third-party failure; and 

 Develops an MNL model to predict for oil pipeline mechanical, corrosion or third 

party-failure. 

The added value of this research is the development of an objective failure prediction 

model capable of predicting different types of failure from some basic pipeline 

attributes. This is the only model that can predict different types of oil pipeline failure 

objectively, based only on historical data.  

7.3 Models’ Limitations 

The developed models still have some limitations which are described below: 

 The developed models are only for oil pipelines;  

 The models are only valid for main oil pipelines, which are made of carbon 

steel; 

 These models are not suitable for offshore pipelines; and 

 All the model inputs need to be available in order for these models to be 

utilised. 
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7.4 Recommendations and Future Works 

Recommendations for the extension of this research can be summarized as follows: 

Current research enhancement areas: 

 To enhance the model accuracy more predictors could be added, such as steel grade, 

type of soil and effectiveness of cathodic protection, which have a direct effect on 

corrosion failure. Adding the area population and proximity of highways could 

improve the prediction of third-party failure. In general, adding more predictors will 

improve the models’ accuracy.  

 More historical data would also enhance the developed model. This could be done by 

gathering more data from additional pipeline operators in different regions.  

 The ANN models could be integrated with Fuzzy Theory (NeuroFuzzy). This 

approach will allow expert evaluations to be used for some predictors that do not 

exist in historical data; thereby enriching the models’ accuracy. 

Current study extension: 

 Develop a failure prediction model that can predict all of the failure causes listed by 

CONCAWE by adding more predictors related to operational failure and natural 

failure. 

 Develop an integrated model for oil and gas pipelines. This could be achieved by 

adding the capacity for historical data for gas pipelines. The type of transported 

product would then include gas and predictors relevant to gas pipelines added;  their 

values could simply be set to zero if an oil pipeline is being evaluated. 

 Design a condition scale for oil and gas pipelines, which reflects the state of 

deterioration of a pipeline using a scale from 0 to 10 where 0 is the worst condition 

and 10 is the best state. This scale could be developed using expert opinions to 

evaluate pipeline condition. 
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 Develop a condition assessment model for oil and gas pipelines. This model would 

give the condition of a pipeline as the output which would help decision makers to 

assess the state of a pipeline and take the appropriate maintenance action(s). 
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APPENDIX A 

LIST OF ACCIDENTS HAPPENED TO OIL 

PIPELINE IN THE LAST 38 YEARS REPORTED IN 

THE CONCAWE REPORT 2010 
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Service  Facility 

1 Crude oil                                                               1           Underground pipe 

2 White product  2  Above ground pipe 

3 Fuel oil (hot)                                                         3      Pump station 

4 Crude oil or product 

5 Lubes (hot) Facility part 

                                                                                            1 Bend 
Leak first  detected  by  2   Joint 

1 R/W surveillance by pipeline staff       3           Pipe run 

2 Routine monitoring P/L operator 4  Valve 

3 Automatic detection system 5  Pump 

4 Pressure testing  6  Pig trap 

5 Outside party 7  Small bore 

6 Internal Inspection 8  unknown 

 
Land use  Reason 

1 Residential high density 1  Incorrect design 

2 Residential low density 2  Faulty material 

3 Agricultural 3  Incorrect material specification 

4 Industrial or commercial 4  Age or fatigue 

5 Forest Hills 5  Faulty weld 

6 Barren 6  Construction damage 
7 Water body  7  Incorrect installation 

                                                                                               8 Equipment 

                                                                                               9 Instrument & control systems 

 10 Not depressurised or drained 

 11 Incorrect operation 

                                                                                               12 Incorrect maintenance or construction 

                                                                                               13 Incorrect procedure 

                                                                                               14 Coating failure 

                                                                                               15 Cathodic protection failure 

                                                                                               16 Inhibitor failure 

                                                                                               17 Construction 

                                                                                               18 Agricultural 

                                                                                               19 Underground infrastructure 

                                                                                               20 Landslide 

                                                                                               21 Subsidence 

                                                                                               22 Earthquake 

                                                                                               23 Flooding 

   24 Terrorist activity 

                                                                                               25 Vandalism 

 26 Theft (incl. attempted) 

 

               Categories of spillage causes 
 

Main Secondary 
A b c 

A Mechanical Failure Design & Materials Construction  
B Operational System Human  
C Corrosion External Internal Stress Corrosion 
D Natural Hazard Ground movement Other  
E Third Party Activity Accidental Intentional Incidental 
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Spillage ID Year Pipe dia 

(") 
Service Fatalities Injuries Spillage volume 

(m3) 
Leak first 

detected by 
Facility Facility 

part 
Age 

 
Years 

Land use Cause Impact 

Gross Net loss Category Reason Water 

bodies 
Contaminated land 

area (m
2
) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1971 11 

 
11 

20 

 
5 

8 

20 

34 

8 

2 

1 

2 

1 

1 

1 

3 

2 

1 

1 

2 

  
1 

4 

0 

40 

350 

25 

3 

6 

300 

2000 

2 

1 

 
5 

 

 
6 

50 

 
2 

2 

2 

5 

3 

2 

2 

5 

2 

5 

5 

5 

1 

3 

1 

3 

3 

3 

1 

1 

1 

1 

1 

2 

2 

3 

2 

8 

7 

3 

3 

3 

3 

3 

3 

 
6 

5 

9 

 
8 

20 

5 

9 

20 

2 

 

 
4 

Aa 

Aa Aa 

Ab Ba 

Bb Ca 

Ca Ea 

Ea Eb 

7 

 
5 

 
9 

11 

 
19 

19 

25 

  
 

60,000 

 

 
 

1,000 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

1972 16 

28 

12 

9 

9 

10 

10 

12 

12 

10 

4 

6 

20 

20 

28 

10 

8 

10 

8 

10 

12 

2 

1 

2 

1 

1 

1 

1 

3 

3 

2 

3 

3 

1 

1 

1 

1 

1 

2 

2 

2 

3 

  
5 

800 

70 

10 

40 

1 

1 

500 

5 

150 

0 

1 

200 

250 

60 

90 

7 

30 

400 

99 

0 

 
150 

39 

5 

35 

1 

1 

 
1 

50 

 
0 

60 

100 

12 

 

 
350 

96 

2 

2 

5 

5 

5 

2 

2 

5 

5 

2 

5 

5 

2 

2 

5 

5 

5 

5 

2 

5 

5 

1 

3 

1 

1 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

4 

1 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

4 

12 

5 

29 

29 

39 

39 

12 

12 

7 

15 

15 

8 

8 

16 

6 

8 

9 

2 

6 

5 

 
4 

2 

 
4 

4 

4 

4 

 
4 

 
4 

 

 
2 

 
2 

2 

Ab Ab 

Ab Ca 

Ca Ca 

Ca Ca 

Ca Ca 

Ca Ca 

Ea Ea 

Ea Ea 

Ea Ea 

Ea Ea 

Ec 

12 

5 

 
 
 
 
 
 
 

17 

17 

17 

 
17 

17 

18 

  

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

1973 5 

20 

16 

 
24 

18 

6 

9 

5 

5 

12 

12 

12 

12 

12 

28 

10 

12 

12 

12 

3 

1 

1 

1 

2 

1 

2 

1 

3 

3 

3 

3 

3 

3 

3 

1 

3 

3 

3 

3 

  
4 

25 

0 

4 

25 

11 

12 

12 

15 

15 

200 

12 

250 

150 

310 

100 

8 

0 

1 

0 

 
3 

 

 
1 

6 

12 

 
2 

2 

5 

2 

10 

40 

1 

5 

2 

2 

2 

2 

5 

1 

1 

1 

5 

2 

5 

1 

5 

5 

5 

5 

5 

1 

1 

3 

3 

3 

3 

3 

1 

1 

1 

1 

1 

2 

2 

2 

1 

1 

1 

1 

1 

1 

3 

2 

4 

7 

2 

5 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

8 

1 

3 

11 

2 

13 

1 

32 

8 

8 

13 

13 

13 

13 

13 

16 

9 

6 

6 

6 

 
4 

4 

4 

4 

4 

4 

 
 
 
 
 

4 

 
2 

Aa Aa 

Ab Ab 

Ab Ab 

Ab Ca 

Ca Ca 

Ca Ca 

Ca Ca 

Ca Da 

Ea Ec 

Ec Ec 

4 

 
4 

 
4 

 
 
 
 
 

14 

 
18 

  

 
 
 
 
 
 
 
 
 
30,000 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

1974  
6 

9 

 
10 

12 

13 

4 

6 

16 

7 

16 

5 

8 

8 

10 

10 

1 

1 

1 

1 

2 

3 

3 

3 

3 

3 

3 

1 

1 

2 

2 

2 

2 

2 

  
1 

3 

20 

10 

2 

1 

5 

5 

1 

0 

1 

1 

500 

1 

30 

200 

668 

489 

0 

2 

 
2 

 

 
 
 
 
 

0 

4 

2 

668 

405 

2 

2 

5 

1 

2 

2 

5 

5 

5 

5 

5 

5 

5 

5 

2 

5 

2 

2 

3 

3 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

7 

7 

1 

3 

7 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

4 

5 

15 

33 

6 

9 

8 

8 

17 

16 

9 

8 

10 

21 

22 

22 

18 

18 

4 

4 

 

 
4 

 
4 

 
2 

2 
 

 
 
 

2 

Aa Aa 

Aa Ca 

Ca Ca 

Ca Ca 

Ca Ca 

Cb Cb 

Ea Ea 

Ea Ea 

Ea Ea 

7 

4 

4 

 
14 

14 

14 

14 

14 

 
17 

19 

19 

17 

18 

17 

 
 
 
 
 
 
 
P 

 
1,000 
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Spillage ID Year Pipe dia 

(") 
Service Fatalities Injuries Spillage volume 

(m3) 
Leak first 

detected by 
Facility Facility 

part 
Age 

 
Years 

Land use Cause Impact 

Gross Net loss Category Reason Water 

bodies 
Contaminated land 

area (m
2
) 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

1975 20 

34 

10 

 
8 

 
10 

12 

6 

10 

4 

8 

8 

12 

6 

18 

8 

8 

6 

2 

1 

3 

1 

2 

2 

1 

3 

3 

3 

3 

3 

3 

3 

3 

1 

1 

1 

2 

1 

 
4  

30 

30 

3 

10 

4 

20 

5 

50 

3 

25 

1 

1 

0 

0 

0 

15 

5 

120 

60 

15 

10 

2 

 
2 

 
10 

 

 
 

0 

 

 
 

0 

0 

3 

60 

6 

4 

5 

2 

2 

3 

2 

2 

2 

5 

1 

2 

5 

6 

1 

2 

5 

2 

2 

2 

5 

2 

1 

2 

3 

3 

3 

3 

1 

1 

1 

3 

1 

1 

1 

3 

1 

1 

1 

1 

1 

7 

2 

2 

8 

7 

7 

7 

3 

3 

3 

6 

3 

3 

3 

3 

3 

3 

3 

3 

3 

11 

12 

5 

 
4 

 
11 

9 

9 

6 

18 

6 

6 

6 

23 

12 

9 

23 

2 

 
1 

4 

4 

4 

4 

 

 
4 

 
2 

4 

2 

 

 
2 

Ab 

Ab Ab 

Ba Ba 

Bb Bb 

Ca Ca 

Ca Ca 

Ca Ca 

Ca Ca 

Ea Ea 

Ea Ea 

Ea 

5 

5 

 
11 

9 

11 

11 

15 

14 

14 
 

 
 
 

18 

19 

17 

19 

18 

  

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

1976 8 

8 

 
24 

16 

10 

4 

24 

10 

10 

8 

18 

8 

14 

2 

3 

1 

2 

1 

3 

2 

1 

3 

1 

2 

1 

2 

2 

   
9 

17 

1322 

80 

90 

200 

50 

40 

44 

802 

153 

358 

 
 

1 

433 

 
90 

 
25 

2 

14 

606 

153 

358 

5 

5 

2 

5 

2 

2 

5 

2 

2 

5 

2 

5 

2 

5 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

7 

4 

4 

2 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

9 

13 

13 

17 

13 

11 

16 

10 

 
13 

24 

7 

 
23 

 
2 

4 

4 
 

 
 
 

2 

2 

2 

2 

2 

Aa Aa 

Ab Ab 

Ab Ca 

Ca Da 

Da Ea 

Ea Ea 

Ea Ec 

5 

2 

2 

1 

1 

14 

15 

21 

21 

18 

18 

18 

18 

  

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

1977  
20 

36 

 
12 

10 

 
12 

20 

24 

10 

18 

8 

8 

12 

8 

20 

2 

2 

2 

1 

1 

1 

2 

3 

1 

2 

1 

1 

1 

1 

2 

2 

2 

2 

2 

  
32 

28 

2 

 
50 

1 

350 

315 

6 

103 

550 

600 

160 

80 

3 

3 

191 

269 

2530 

 
 
 

 
220 

90 

 
500 

25 

 
3 

1 

 
2500 

2 

2 

5 

2 

2 

2 

4 

2 

2 

5 

1 

3 

2 

2 

2 

2 

2 

5 

2 

3 

3 

1 

1 

3 

3 

1 

1 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

4 

2 

2 

4 

4 

4 

3 

3 

7 

3 

3 

3 

3 

3 

3 

3 

3 

3 

2 

9 

9 

8 

3 

19 

7 

10 

8 

9 

19 

13 

11 

12 

5 

25 

13 

19 

19 

9 

4 

4 

2 

4 

4 

4 

2 

1 

4 

 
2 

2 

2 

2 

2 

2 

2 

2 

2 

Ab Ab 

Ab Ab 

Bb Bb 

Ca Ca 

Cb Da 

Da Db 

Ea Ea 

Ea Ea 

Ea Ea 

Ec 

 
2 

1 

11 

11 

15 

 
20 

23 

 
17 

18 

18 

17 

17 

17 

 
150 

140 

 
 
 
 
 
 
 

1,500 

400 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

1978 34 

8 

22 

6 

10 

12 

8 

8 

12 

18 

16 

11 

12 

24 

16 

1 

2 

1 

2 

2 

3 

3 

3 

3 

3 

4 

2 

2 

1 

1 

  
2000 

235 

19 

12 

100 

2 

120 

80 

2 

4 

400 

3 

58 

1 

255 

300 

205 

 
6 

10 

 
60 

40 

 
1 

250 

0 

40 

 
245 

5 

2 

5 

5 

2 

5 

4 

4 

1 

5 

2 

5 

4 

5 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

4 

3 

3 

3 

3 

2 

3 

3 

3 

3 

3 

8 

7 

3 

16 

16 

7 

18 

14 

14 

7 

7 

12 

6 

14 

10 

10 

4 

15 

2 

2 

2 

4 

2 

2 

2 

2 

4 

4 

2 

2 

2 

 
2 

Ab Ab 

Ab Ca 

Ca Ca 

Ca Ca 

Ca Ca 

Da Ea 

Ea Ea 

Ea 

2 

2 

2 

15 

15 

15 

15 

15 

 
15 

23 

17 

19 

19 

18 

  
1,800 

 

 
 
 
 
 
 
 

5,865 
139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

1979 22 

24 

9 

12 

18 

18 

18 

12 

8 

11 

1 

1 

2 

2 

3 

3 

1 

2 

1 

2 

 
 
 

 
5 

 
100 

100 

50 

300 

20 

5 

50 

90 

245 

950 

40 

1 

 
200 

 
1 

50 

150 

380 

4 

5 

5 

1 

1 

1 

5 

5 

5 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

8 

5 

17 

23 

12 

12 

16 

23 

23 

15 

2 

 
2 

2 

4 

4 

2 

2 

2 

4 

Aa Aa 

Ca Ca 

Ca Ca 

Ea Ea 

Ea Eb 

6 

6 

14 

15 

15 

15 

17 

18 

18 

26 

 
 
 
 
 

 
P 

16,000 

2,700 

350 

 
500 

100 

2,500 

 
6,400 
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Spillage ID Year Pipe dia 

(") 
Service Fatalities Injuries Spillage volume 

(m3) 
Leak first 

detected by 
Facility Facility 

part 
Age 

 
Years 

Land use Cause Impact 

Gross Net loss Category Reason Water 

bodies 
Contaminated land 

area (m
2
) 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

1980 13 

40 

10 

10 

7 

12 

10 

12 

8 

2 

1 

3 

3 

3 

3 

4 

2 

2 

1 

  
8 

4800 

80 

10 

1 

111 

762 

270 

313 

30 

1 

400 

 

 
12 

135 

2 

5 

5 

1 

1 

5 

2 

5 

2 

5 

3 

1 

1 

1 

1 

1 

1 

1 

1 

3 

2 

3 

3 

3 

3 

3 

3 

3 

3 

4 

12 

9 

10 

10 

15 

15 

15 

4 

2 

2 

2 

2 

2 

2 

 
4 

Ab 

Ab Ca 

Ca Ca 

Da Ea 

Ea Ea 

Eb 

7 

2 

14 

14 

15 

21 

18 

19 

17 

25 

 
 

 
P 

 
10,000 

 
10 

10,000 

10,000 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

1981 34 

40 

10 

20 

8 

8 

12 

10 

20 

10 

26 

24 

7 

8 

5 

28 

4 

1 

2 

1 

3 

3 

3 

2 

1 

2 

2 

3 

1 

2 

1 

1 

  
10 

10 

600 

19 

5 

19 

5 

92 

5 

10 

125 

30 

132 

322 

96 

5 

2 

 
150 

1 

 
2 

58 

3 

 
45 

10 

132 

317 

 
0 

5 

5 

2 

5 

4 

4 

5 

2 

5 

5 

5 

4 

2 

2 

5 

1 

1 

2 

1 

1 

3 

3 

1 

1 

1 

1 

1 

3 

1 

1 

1 

1 

4 

2 

3 

3 

2 

2 

3 

3 

7 

3 

2 

7 

3 

3 

3 

3 

6 

5 

 
17 

12 

12 

15 

25 

15 

 
18 

14 

15 

24 

 
16 

 
4 

 
2 

2 

2 

4 

2 

4 

 
2 

4 

2 

2 

 
4 

Ab Ab 

Ab Ca 

Ca Ca 

Ca Ca 

Ca Ca 

Da Db 

Ea Ea 

Ea Ec 

 
2 

14 

14 

14 

14 

15 

14 

14 

20 

 
18 

17 

19 

  
80 

 

 
 

50 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

1982 8 

24 

8 

12 

10 

5 

7 

22 

6 

8 

2 

1 

1 

3 

3 

1 

1 

1 

1 

2 

  
12 

9 

2 

8 

400 

20 

140 

15 

31 

7 

12 

 

 
16 

 
140 

5 

 
1 

5 

5 

1 

5 

5 

5 

5 

5 

5 

2 

2 

1 

1 

1 

1 

3 

1 

1 

1 

1 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

20 

18 

20 

16 

19 

10 

16 

18 

20 

30 

2 

2 

2 

4 

2 

4 

2 

1 

2 

4 

Aa Ab 

Ca Ca 

Ca Cb 

Cb Cb 

Ea Ec 

6 

2 

 
15 

15 

 

 
18 

P  
1,000 

 
30 

 
3,000 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

1983 4 

4 

4 

16 

6 

7 

7 

10 

14 

12 

5 

5 

5 

4 

2 

1 

1 

2 

2 

1 

  
10 

1 

4 

442 

12 

182 

148 

213 

675 

1 

 
 

111 

 
120 

110 

171 

470 

0 

2 

3 

5 

4 

4 

2 

5 

5 

5 

5 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

3 

3 

3 

3 

3 

4 

3 

22 

22 

22 

18 

15 

17 

17 

29 

3 

20 

2 

2 

2 

2 

4 

2 

2 

2 

2 

4 

Aa Aa 

Ab Bb 

Ca Cb 

Ea Ea 

Eb Ec 

1 

1 

1 

11 

15 

 
17 

17 

24 

 
100 

9 

80 

 
3,600 

20,000 

18,000 

 
15 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

1984 28 

24 

28 

8 

34 

16 

 
12 

6 

16 

9 

10 

11 

1 

1 

1 

2 

1 

1 

1 

3 

1 

2 

2 

1 

2 

  
4363 

141 

3 

16 

5 

10 

10 

2 

20 

5 

236 

150 

244 

3928 

 
3 

2 

 
10 

 
16 

1 

236 

1 

240 

1 

5 

3 

5 

2 

2 

2 

1 

5 

5 

5 

5 

3 

1 

1 

2 

2 

3 

3 

1 

1 

1 

3 

1 

1 

1 

3 

1 

4 

2 

4 

6 

3 

3 

3 

3 

3 

3 

4 

10 

18 

11 

17 

13 

18 

21 

17 

24 

11 

11 

23 

21 

2 

2 

2 

2 

4 

2 

2 

4 

4 

4 

2 

5 

Aa Aa 

Ab Ab 

Ba Ba 

Bb Ca 

Ca Ca 

Cb Ea 

Eb 

6 

6 

2 

2 

8 

8 

10 

 
15 

14 

 
17 

24 

 
6,500 

4,500 

120 

720 

1,000 

50 

50 

 
250 

10 

200 

100 

208 

209 

210 

211 

212 

213 

214 

1985 24 

20 

10 

10 

6 

16 

8 

1 

1 

2 

2 

2 

1 

2 

  
1 

25 

16 

7 

4 

1100 

211 

1 

4 

 

 
756 

195 

1 

5 

3 

3 

3 

2 

2 

1 

3 

3 

3 

3 

1 

1 

8 

5 

4 

2 

4 

3 

3 

14 

9 

17 

17 

17 

9 

33 

2 

4 

4 

4 

4 

2 

2 

Aa Ba 

Ba Ba 

Ba Cc 

Ec 

7 
 

 
 
 

18 

 
18 

 

 
 

13,000 

1,000 
215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

1986 16 

20 

24 

16 

20 

8 

9 

34 

8 

14 

6 

8 

2 

1 

2 

3 

2 

3 

1 

1 

2 

2 

2 

2 

  
160 

53 

292 

20 

2 

10 

10 

7 

192 

280 

52 

11 

6 

6 

4 

5 

2 

 
10 

7 

95 

56 

41 

6 

3 

2 

2 

5 

5 

4 

5 

1 

5 

3 

3 

3 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

2 

3 

3 

3 

3 

2 

3 

3 

3 

2 

17 

12 

26 

38 

22 

25 

45 

14 

15 

18 

13 

19 

2 

2 

2 

1 

1 

2 

2 

4 

2 

2 

2 

2 

Ab Ab 

Ab Ca 

Ca Ca 

Cb Cb 

Ea Ea 

Ea Eb 

 
2 

7 

14 

15 

 

 
19 

17 

17 

25 

 
200 

3,000 

3,000 

 
20 

180 

84 

1,500 

100 

10 

3 
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Spillage ID Year Pipe dia 

(") 
Service Fatalities Injuries Spillage volume 

(m
3) 

Leak first 

detected by 
Facility Facility 

part 
Age 

 
Years 

Land use Cause Impact 

Gross Net loss Category Reason Water 

bodies 
Contaminated land 

area (m
2
) 

227 

228 

229 

230 

231 

232 

233 

234 

1987 20 

26 

9 

16 

9 

12 

22 

16 

2 

4 

1 

3 

1 

2 

2 

2 

  
1000 

2 

25 

550 

8 

12 

3 

300 

120 

1 

2 

150 

1 

10 

1 

115 

4 

5 

5 

2 

5 

5 

5 

5 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

1 

3 

3 

3 

7 

8 

20 

25 

46 

39 

46 

21 

20 

18 

4 

2 

2 

2 

1 

2 

4 

4 

Aa 

Aa Ab 

Ca Cb 

Da Ea 

Ec 

5 

7 

2 

15 

 
20 

19 

 

 
 

P 

P 

 
1,000 

200 

200 

280 

2,000 

10 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

1988 34 

12 

8 

34 

11 

28 

10 

20 

3 

10 

8 

16 

16 

4 

6 

6 

1 

2 

2 

1 

2 

1 

2 

2 

1 

1 

2 

2 

1 

2 

2 

2 

  
 
 
 
 
 
 

 
1 

10 

90 

97 

81 

80 

5 

305 

40 

2 

14 

3 

3 

650 

2 

63 

18 

1 

42 

21 

1 

80 

1 

5 

10 

1 

1 

1 

1 

650 

1 

56 

1 

5 

5 

2 

5 

2 

5 

2 

5 

5 

5 

5 

5 

3 

5 

5 

5 

1 

1 

3 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

2 

3 

3 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

26 

30 

28 

17 

35 

31 

23 

24 

28 

23 

35 

16 

23 

26 

33 

33 

4 

1 

2 

4 

1 

1 

2 

4 

2 

2 

1 

2 

1 

2 

2 

2 

Ab Ab 

Ab Ca 

Ca Ca 

Da Ea 

Ea Ea 

Ea Ea 

Ea Ea 

Ea Ea 

 
2 

4 

15 

15 

15 

20 

17 

17 

18 

17 

19 

17 

19 

17 

18 

 
P 

200 

1,500 

500 

5,000 

 
400 

5,000 

30 

100 

100 

20 

150 

550 

9 

1,200 

1,800 
251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

1989 26 

12 

1 

26 

10 

9 

12 

10 

16 

16 

10 

12 

6 

8 

8 

40 

11 

1 

3 

2 

1 

2 

1 

3 

2 

2 

2 

2 

2 

2 

2 

2 

1 

1 

 

 
 
 
 
 

3 

 

 
 

1 

3 

1 

25 

155 

66 

25 

240 

400 

253 

660 

82 

298 

52 

3 

186 

40 

2 

2 

 
7 

5 

16 

5 

150 

90 

253 

472 

4 

298 

27 

 
126 

5 

5 

5 

5 

5 

2 

4 

2 

3 

5 

3 

3 

2 

5 

5 

5 

5 

5 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

2 

2 

7 

3 

2 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

26 

 
1 

26 

27 

48 

17 

24 

22 

20 

24 

32 

33 

32 

29 

17 

26 

2 

4 

2 

2 

2 

2 

4 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Aa Aa 

Aa Ab 

Bb Ca 

Ca Cb 

Ea Ea 

Ea Ea 

Ea Ea 

Ea Ec 

Ec 

5 

5 

7 

5 

11 

14 

15 

 
19 

18 

17 

18 

18 

19 

18 

 
18 

 
 
P 
 

 
 
 
P 

100 

6 

10,000 

2,000 

 
50 

 
2,000 

500 

 
200 

6,000 

2,000 

66 

 
4,000 

268 

269 

270 

271 

272 

273 

274 

1990 13 

10 

8 

11 

11 

6 

10 

2 

2 

2 

3 

2 

2 

2 

  
105 

252 

9 

325 

225 

3 

189 

105 

221 

 
11 

194 

1 

34 

5 

5 

2 

2 

5 

5 

5 

1 

3 

2 

1 

1 

1 

1 

4 

6 

4 

3 

3 

3 

3 

 
33 

48 

22 

11 

34 

24 

2 

2 

2 

4 

2 

2 

2 

Bb Bb 

Bb Ca 

Ea Ea 

Ea 

12 

11 

12 

15 

17 

18 

18 

 
30 

1,500 

10 

 
3 

324 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

1991 20 

 
20 

12 

12 

12 

 

 
10 

7 

8 

8 

8 

6 

6 

 
13 

8 

2 

2 

1 

2 

2 

2 

2 

2 

2 

2 

1 

2 

2 

2 

2 

2 

2 

2 

2 

  
275 

50 

20 

25 

5 

29 

4 

172 

2 

80 

20 

100 

15 

4 

21 

1 

84 

485 

10 

118 

38 

13 

7 

2 

29 

1 

68 

 
4 

 
60 

10 

 
13 

 
75 

485 

1 

3 

5 

5 

2 

5 

5 

3 

3 

5 

5 

5 

4 

4 

5 

5 

5 

3 

2 

5 

1 

1 

1 

3 

1 

1 

3 

3 

2 

1 

1 

1 

1 

1 

1 

1 

3 

3 

1 

3 

7 

3 

7 

7 

3 

7 

4 

2 

3 

2 

3 

3 

3 

3 

3 

4 

3 

3 

24 

10 

24 

20 

21 

38 

31 

11 

 
26 

30 

17 

17 

49 

34 

37 

1 

24 

24 

2 

2 

2 

4 

2 

2 

4 

4 

2 

2 

2 

2 

4 

2 

2 

2 

2 

2 

2 

Aa Aa 

Aa Aa 

Aa Ab 

Ab Ab 

Ab Ca 

Cb Cb 

Cb Ea 

Ea Ea 

Eb Eb 

Ec 

1 

1 

7 

6 

7 

2 

4 

2 

 
15 

 

 
19 

18 

19 

25 

25 

 
14,000 

1,200 

4,500 

150 

320 

600 

250 

100,000 

 
1,500 

300 

10,000 

25 

6 

500 

2 

 
7,000 

30 
294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

1992 8 

 
8 

8 

 
10 

8 

24 

6 

12 

8 

8 

2 

2 

2 

2 

2 

2 

2 

2 

3 

2 

2 

2 

2 

2 

  
1000 

128 

113 

30 

5 

275 

5 

2 

200 

13 

3 

75 

50 

25 

400 

98 

8 

15 

5 

248 

1 

 
1 

3 

75 

50 

25 

2 

2 

2 

2 

6 

2 

2 

2 

5 

5 

4 

5 

4 

4 

1 

1 

3 

2 

1 

3 

2 

1 

1 

1 

1 

1 

1 

1 

3 

2 

4 

2 

3 

4 

8 

4 

3 

2 

3 

3 

3 

3 

34 

 
12 

33 

13 

 
22 

30 

25 

27 

49 

28 

25 

25 

4 

2 

4 

4 

5 

4 

4 

 
2 

4 

2 

2 

2 

2 

Aa Ab 

Ab Ab 

Ab Bb 

Bb Bb 

Ca Ca 

Ca Da 

Ec Ec 

2 

 
2 

5 

2 

11 

10 

 

 
15 

23 

  
5,400 

 
10 

1,100 

1,350 

 
300 

250 

2 

 
20 

60 
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Spillage ID Year Pipe dia 

(") 
Service Fatalities Injuries Spillage volume 

(m3) 
Leak first 

detected by 
Facility Facility 

part 
Age 

 
Years 

Land use Cause Impact 

Gross Net loss Category Reason Water 

bodies 
Contaminated land 

area (m
2
) 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

1993 34 

 
12 

18 

13 

20 

26 

9 

24 

8 

12 

20 

7 

1 

2 

2 

2 

2 

1 

2 

2 

2 

2 

2 

2 

2 

  
248 

3 

2 

14 

580 

2000 

10 

8 

49 

3 

101 

3050 

3 

18 

 
1 

13 

500 

500 

7 

6 

39 

1 

19 

1450 

3 

4 

5 

1 

6 

2 

2 

5 

5 

5 

5 

5 

2 

5 

1 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

3 

2 

4 

3 

8 

3 

3 

3 

3 

3 

3 

3 

3 

31 

2 

23 

27 

26 

19 

31 

30 

33 

37 

31 

29 

13 

2 

4 

4 

4 

2 

2 

5 

2 

2 

2 

2 

4 

1 

Aa 

Ab Ab 

Ca Cb 

Cb Da 

Ea Ea 

Ea Ea 

Ec Ec 

2 
 

 
 
 

20 

 
18 

19 

19 

 
 
 

 
P 

45,000 

80 

400 

400 

800 

25,000 

 
50 

40,000 

100 

 
6 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

1994 16 

16 

6 

6 

11 

 
12 

32 

10 

9 

8 

1 

1 

2 

2 

2 

1 

3 

1 

2 

2 

2 

  
200 

1350 

250 

1 

5 

2 

90 

10 

285 

195 

46 

160 

1295 

14 

1 

5 

2 

60 

5 

285 

170 

3 

2 

2 

1 

5 

5 

5 

2 

5 

3 

5 

1 

1 

3 

1 

2 

3 

1 

2 

1 

1 

1 

3 

3 

2 

3 

2 

8 

3 

3 

3 

3 

3 

31 

31 

16 

16 

9 

 
24 

21 

26 

37 

36 

2 

2 

4 

4 

2 

4 

2 

4 

2 

2 

2 

Ab Ab 

Ab Ab 

Ab Ba 

Ca Cb 

Ea Ea 

Ea 

2 

2 

 
2 

 
9 

14 

 
17 

18 

17 

 
 
 
 
 

 
P 

6,000 

25,000 

50 

25 

100 

100 

 
500 

 
8,000 

1,150 
332 

333 

334 

335 

336 

337 

338 

339 

340 

341 

1995  
10 

 
6 

16 

10 

9 

9 

13 

6 

2 

2 

2 

2 

1 

2 

2 

2 

2 

2 

  
280 

30 

53 

115 

132 

1000 

48 

20 

139 

12 

80 

30 

41 

 
82 

270 

18 

20 

113 

2 

5 

5 

1 

3 

1 

3 

3 

5 

3 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

6 

2 

7 

3 

3 

3 

3 

3 

3 

3 

22 

35 

5 

36 

30 

31 

28 

39 

5 

37 

4 

2 

2 

2 

2 

4 

2 

4 

2 

2 

Aa Aa 

Ab Ab 

Bb Ca 

Ea Ea 

Ea Ea 

7 

5 

2 

2 

11 

15 

17 

17 

17 

17 

 
10,000 

750 

 
500 

6,500 

55,000 

1,500 

100 

300 

30 
342 

343 

344 

345 

346 

347 

1996 9 

14 

12 

9 

7 

10 

2 

2 

3 

2 

2 

2 

 
 

1 

 
165 

292 

1 

437 

19 

500 

99 

209 

 
343 

19 

62 

2 

5 

5 

2 

5 

5 

3 

1 

1 

1 

1 

1 

2 

3 

3 

3 

3 

3 

5 

40 

30 

40 

40 

64 

4 

1 

4 

4 

2 

4 

Ab Bb 

Ca Ea 

Ea Ec 
 

10 

 
19 

17 

 
40 

300 

16 

20 

350 

23,000 
348 

349 

350 

351 

352 

353 

1997 12 

10 

12 

12 

8 

12 

2 

1 

2 

2 

2 

2 

  
19 

2 

422 

435 

13 

40 

3 

0 

341 

267 

2 

1 

1 

1 

2 

2 

2 

5 

1 

1 

1 

1 

1 

1 

3 

2 

3 

3 

4 

3 

27 

7 

30 

30 

33 

24 

2 

4 

2 

1 

2 

4 

Ca Cb 

Cc Cc 

Ea Ec 

14 

 

 
19 

17 

 
 
P 

2,800 

20 

 
150 

354 

355 

356 

357 

358 

359 

360 

361 

362 

1998  
6 

13 

16 

10 

10 

9 

 
8 

1 

3 

2 

2 

2 

2 

2 

2 

2 

  
30 

0 

486 

250 

340 

15 

176 

30 

0 

4 

0 

247 

20 

313 

14 

67 

2 

2 

5 

2 

5 

3 

1 

3 

3 

5 

3 

1 

1 

1 

1 

1 

1 

1 

1 

5 

3 

3 

3 

3 

3 

3 

7 

3 

30 

34 

42 

30 

6 

4 

42 

 
25 

4 

2 

2 

4 

1 

2 

2 

2 

2 

Ab Bb 

Bb Ca 

Ea Ea 

Ea Ea 

Ea 

1 

11 

11 

14 

17 

19 

18 

19 

19 

 
400 

 
100 

 
500 

600 

160 

650 

4 
363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

1999  
1 

11 

6 

4 

8 

13 

6 

8 

11 

12 

1 

3 

2 

2 

1 

2 

2 

2 

2 

2 

2 

 

 
 
 
 
 

1 

 
7 

30 

167 

1 

1 

80 

84 

29 

80 

36 

1 

 
64 

1 

1 

20 

13 

14 

30 

28 

2 

2 

2 

3 

5 

5 

3 

5 

5 

3 

2 

3 

1 

1 

1 

3 

1 

1 

1 

1 

1 

1 

6 

3 

3 

3 

8 

3 

3 

3 

3 

7 

3 

 
32 

32 

25 

35 

48 

10 

40 

35 

5 

36 

4 

4 

2 

2 

4 

2 

4 

2 

2 

2 

4 

Bb Ca 

Ca Ca 

Ca Ea 

Ea Ea 

Eb Eb 

Ec 

11 

14 

14 

14 

14 

17 

17 

18 

26 

26 

 
200 

300 

60 

5 

 
500 

 
1,000 

100 

374 

375 

376 

377 

378 

379 

2000  
12 

12 

11 

12 

24 

2 

1 

2 

2 

2 

2 

  
175 

10 

8 

159 

7 

1 

3 

7 

8 

64 

1 

1 

5 

5 

5 

3 

5 

5 

2 

1 

1 

1 

1 

1 

4 

3 

3 

3 

3 

3 

24 

30 

31 

8 

26 

41 

4 

4 

2 

2 

1 

2 

Ab Cb 

Ea Ea 

Ea Ec 
 

17 

17 

19 

19 

 
60 

150 

 
5,000 

 
150 
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Spillage ID Year Pipe dia 

(") 
Service Fatalities Injuries Spillage volume 

(m
3) 

Leak first 

detected by 
Facility Facility 

part 
Age 

 
Years 

Land use Cause Impact 

Gross Net loss Category Reason Water 

bodies 
Contaminated land 

area (m
2
) 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

2001 20 

10 

10 

6 

12 

34 

12 

13 

11 

10 

6 

12 

12 

16 

8 

1 

2 

2 

2 

2 

1 

2 

1 

2 

2 

2 

1 

1 

2 

2 

  
800 

1 

5 

37 

10 

6 

4 

103 

55 

10 

5 

10 

17 

2 

85 

8 

1 

5 

7 

2 

1 

4 

50 

51 

1 

5 

7 

12 

2 

24 

5 

5 

5 

4 

5 

3 

5 

2 

5 

5 

5 

5 

5 

5 

2 

2 

1 

1 

1 

1 

1 

1 

3 

1 

1 

1 

1 

1 

1 

1 

8 

2 

3 

1 

1 

3 

3 

8 

3 

3 

3 

3 

3 

3 

3 

35 

39 

38 

27 

15 

29 

26 

23 

9 

11 

47 

30 

30 

18 

47 

2 

2 

2 

2 

4 

4 

2 

4 

2 

2 

1 

2 

2 

2 

2 

Aa 

Aa Ab 

Ab Ab 

Ca Ca 

Cb Ea 

Ea Ea 

Eb Eb 

Eb Eb 

5 

5 

2 

2 

2 

14 

14 

 
17 

17 

18 

26 

26 

26 

26 

 

 
 
 
 
 
 
 
 
 
P 

10,000 

10 

500 

900 

120 

500 

1,000 

225 

 
400 

250 

400 

350 

404 
395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

407 

408 

2002 8 

20 

10 

10 

6 

8 

13 

24 

30 

8 

16 

20 

12 

8 

2 

1 

2 

3 

2 

2 

2 

2 

1 

2 

1 

1 

1 

2 

  
10 

100 

80 

1 

17 

70 

225 

250 

2 

170 

750 

280 

40 

190 

10 

 
20 

 

 
58 

20 

 
120 

45 

30 

15 

5 

2 

5 

5 

2 

2 

3 

5 

5 

4 

1 

5 

5 

3 

1 

1 

1 

1 

2 

1 

1 

1 

2 

1 

1 

1 

1 

1 

3 

3 

3 

3 

3 

2 

3 

7 

2 

3 

3 

3 

3 

3 

47 

36 

38 

28 

33 

? 

46 

39 

40 

57 

39 

40 

33 

2 

4 

4 

2 

4 

4 

2 

4 

4 

2 

2 

2 

2 

4 

Ab Ca 

Ca Ca 

Ca Ca 

Cc Da 

Ea Ea 

Ea Ea 

Eb Ec 

 
15 

14 

15 

 

 
22 

19 

18 

17 

17 

26 

19 

 
325 

500 

10,000 

14,000 

400 

 
400 

5,000 

40 

 
20,000 

12,000 

6,000 

409 

410 

411 

412 

413 

414 
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1 Inspection Techniques 

In the last decade a variety of technologies have been developed; to assess pipeline 

conditions and to accurately detect any metal loss. Most of the new developed 

technologies are for inline inspection. Pipeline inspection categories are illustrated in 

figure 2.4. 

 

Oil and Gas Pipeline 
Inspection 
Techniques

External Internal

Offshore Onshore

 

Figure 0-1 Oil and Gas Pipeline Inspection Techniques 

 

External Inspection for Pipeline 

The majority of aging pipelines cannot be internally inspected ( unpiggable) due to the 

absence of pig launcher or receiver. That makes external inspection the only way to 

assess these pipelines (Ali, 2011). External inspection is also used for offshore pipelines 

to observe external data such as sea bed activity. 



101 

 

External Inspection for Offshore Pipeline 

Remote Operated Vehicle R.O.V. 

ROV is an underwater robot that allows vehicle operators to remain a safe place while the 

vehicle works in the hazardous environment below. ROV is a vehicle connected to the 

control van and the operator on the surface by an umbilical cable which carries the power 

and control signals to the vehicle. This cable also conveys the sensory data back to the 

operator topside. ROV system is also comprised of; a handling system to control dynamic 

cables, a launch system and associated power supplies (Remotely Operated Vehicle 

Comittee of the Marine Technologie Socitey, 2011). The cost of ROV per hour including 

the operation ship is 80$ (Husein, 2011). 

ROV can detect several types of defects for pipelines such as (Ali, 2011): 

 Cathodic protection. 

 Visual external condition. 

 Free span existence. 

 Dents existence. 

 Detect leak. 

 Sea bed profile. 

ROV is a non-expensive and safe inspection techniques but it does not give any 

information about corrosion or remaining wall thickness.  
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Figure 0-2 ROV (Remotely Operated Vehicle Comittee of the Marine Technologie Socitey, 2011) 

 

The Autonomous Underwater Vehicle AUV 

AUV is similar to ROV but it not attached with cable to the vessel, which gives AUV the 

advantage to run freely around the pipeline guided with integrated GPS. It is comprised 

of a battery and it is usually equipped with a sonar camera and a data storage system. It is 

a safe inspection technique it does not require system shut down (Teledyne Gavia). 

AUV can detect the following pipeline conditions: 

 Cathodic protection. 

 Visual external condition. 

 Free span existence. 

 Dents existence. 

 Leak detection. 

 Sea bed profile 
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Figure 0-3  shows the composition of an AUV (Teledyne Gavia) 

 

Divers 

Divers are the oldest inspection method for pipelines, they are the best way to inspect 

pipeline externally. Divers are a very expensive. There is a need to perform a number of 

safety procedures to ensure the safety of the diver. Temporary shutdown is mandatory 

before using divers (Ali, 2011). Divers use two underwater inspection techniques, as 

follow: 

General Visual Inspection (GVI) 

This is the most common inspection technique and gives a general impression about the 

pipeline, then a set of important points are chosen to do detailed inspection. 

Close View Inspection (CVI) 

Which is a detailed inspection done for the chosen points selected on the GVI. Divers use 

equipment such as UT to measure the remaining wall thickness of the pipeline or CP 

meter to measure Cathodic protection (Dale, 2002). 

Divers are an expensive inspection solution. A diver cost 200 $ per hour and more for 

deep water. Also diver productivity is low because of frequent breaks needed (Husein, 

2011). 
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Divers can detect and measure all of the following characteristics:  

 Cathodic protection 

 Visual external condition. 

 Free span existence. 

 Dents existence. 

 Leak detection. 

 Remaining Wall thickness using UT. 

 Geometrical measurements and ovality  

External Inspection for Onshore Pipeline 

External inspection for onshore pipelines is usually used for unpigable and above ground 

pipeline. It also used to verify anomalies detected by in line inspection. We will discuss 

in this section the different types of external inspection methods for onshore pipelines. 

Direct Current Voltage Gradient (DCVG)  

DCVG is used mainly for detecting pipeline coating defects that cause external corrosion. 

The technique is based on measuring the voltage gradients in the soil above a 

cathodically protected pipeline. It is suitable for buried pipelines. It can be used across 

asphalt, concrete, desert and rocky terrain. It is also unaffected by stray currents, 

induction and static. DCVG is used for (Southern Cathodic Protection Company, 2007): 

                                                                                                                            

 Accurately locates coating defects. 
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 Estimates defects sizes. 

 Identifies priorities for excavation. 

 Provides data for CP adjustment/upgrading. 

 Enables coating deterioration to be monitored. 

 Confirms electrical continuity and can locate shorts. 

 

Figure 0-4 DCVG inspection and tool (Southern Cathodic Protection Company, 2007) 

 

Close Interval Pipe to Soil Potential CIPS 

CIPS is a technique used for the detailed analysis of cathodic protection systems in 

underground pipelines. A continuous measurement of pipeline potentials is done 

regarding the copper/copper sulphate reference anode. The pipeline potentials are 

recorded with switched on and off potentials to eliminate IR errors in measurements 

caused by current flow (PROTAN, 2007). 

Usually CIPS is done with DCVG by the same inspector who caries both equipment for 

the two tests because usually CP failure exists with coating failure .CIPS is used for 

(PROTAN, 2007): 

 Identification of zones with inadequate cathodic protection levels     

 Identification of zones with excessive cathodic protection levels   
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 Identification of zones with possible defects in coating quality   

 Identification of zones affected by possible electrical interference  

 

       

 

Figure 0-5 CIPS Performance and Results (PROTAN, 2007) 

 

 

Soil Resistivity Test 

 The resistance to the earth of any earth electrode is influenced by the resistivity of the 

surrounding soil. Resistivity of soil depends mainly on the nature of soil and the moisture 

content. Soil resistivity may change with depth, temperature and also vary from place to 

place depending on the strata of soil and rock formation (Johnson, 2006) . Soil resistivity 

is one of the main factors that could cause external corrosion because the lower soil 

resistivity; the higher will be the corrosion. Low soil resistivity is a challenging problem 

for pipeline operators in the gulf especially Saudi Arabia because of the high corrosivety 

of soil at AlSabgha zone (Salah, 2011). 

Wenner four pin method is the most widely used test to determine soil resistivity 
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(Farwest Corrosion Company, 2011). The test is performed by driving four electrodes 

into the ground along a straight line separated with equal distance as shown in figure 2.9. 

Soil resistivity can be calculated as a function from the voltage drop between the center 

pair of pins, with the current flowing between the two outside pins (Lightning and Surge 

Technologies). 

 

Figure 0-6  Wenner 4 Pin Test test (Lightning and Surge Technologies) 

  

Ultrasound Inspection UT. 

Ultra sound is the most common and reliable technique for detecting cracks and metal 

loss in pipeline because it is a direct measurement for wall thickness. UT is not 

interpretation of magnetic field distortion as in MFL. UT uses high frequency sound 

energy to do measurement. A UT inspection system consists of several units, such as 

pulsar /receiver which is an electronic unit that produce high voltage electrical pulses. 

The transducer generates high frequency ultrasonic energy; this sound energy propagates 

through in the form of waves. A discontinuity (such as a crack) in the wave path cause 

that a part of the energy will be reflected back from the flaw surface. The reflected wave 

signal is transformed into an electrical signal by the transducer and is displayed on the 

screen. This also indicates any metal loss due to corrosion (NDT Resource Center). 
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Figure 0-7 The Ultrasonic Technique (Komura, et al., 2009) 

 

There are several forms of ultrasound devices depending on the position of transmitted 

waves. 

Ultra sound inspection is used for: 

 Measuring the remaining wall thickness 

 Detecting corrosion 

 Detecting cracks 

Eddie Current Test. 

 Eddie current test (ET) is a Non Destructive Test (NDT) with electromagnetic 

technology. It can be used only on conducting materials. An energized coil is brought 

near the surface of steel pipeline that induce the eddy current in the specimen .The 

induced eddy current sets up a magnetic field in the specimen that tend to oppose the 

original magnetic field .The impedance in the coil is alerted when the eddy current is 

distorted by flaws or any material variation. Eddy current test is an external inspection 
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method which makes it suitable for unpiggable pipeline (Bickerstaff, et al.). 

Eddie current is used for the following: 

 Cracks 

 Laminar defects 

 Assessing wall thicknesses 

 

Figure 0-8 Eddy Current Technique (Efunda, 2011) 

 

Acoustic Emission AE 

In this technique one or more ultrasonic transducers are attached to the pipeline 

permanently. Then the sounds generated into the system using computer-based 

instruments are analyzed. There is no pigging needed in that method and the pipeline can 

be tested without taking it out of service or interrupting the product flow. It can be used 

in continuous monitoring with alarm systems . 

AE is used for the following purposes (Bickerstaff, et al.): 

 Crack growth 

  Turbulence (including leakage) 
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 Material changes such as corrosion 

In Line Inspection (ILI) 

Inline inspection contains very accurate techniques for pipeline inspection but it is very 

expensive. In this section we will show the various In line Inspection ILI techniques. 

Gauging Pig 

Intelligent pigs such as ultrasonic pigs or MFL pigs are very expensive and they could be 

damaged or stuck if the internal condition of pipeline is not suitable. Gauging pig is 

usually used for pipelines with no previous pigging history or when there are doubts as to 

the internal pipeline condition. Gauging pig runs into the pipeline to ensure that other 

pigs can traverse the pipeline from the launcher to the receiver. Pipeline gauging detects 

any internal restriction and indicates if a pipeline needs more extensive cleaning pigs. 

Gauging is performed by fitting a pig with aluminum plate, sized to approximately 90% 

of internal pipeline diameter (Pig Tek Limited, 2010) . 

The figure below shows gauging pig with damaged aluminum plate due to debris found 

in the pipeline. 

 

Figure 0-9 A Gauging Pig After An Internal Run (Pig Tek Limited, 2010) 
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Calliper Pig 

Calliper pigs are used to determine the geometric properties prior of using intelligent 

inspection pigs. Calliper pigs have an array of levers mounted on one of the pig cups. 

Levers are connected to recording device located on the pig body. The body is usually 

60% of the pipeline diameter. The body is combined of flexible cups that allow the pig to 

pass constriction up to 15% of bore. Calliper pigs are very important to use in offshore 

pipeline (Guo, et al., 2005). 

 Cleaning Pig 

A cleaning pig is used for cleaning the pipeline from solid and accumulated debris to 

increase the efficiency of operation they are also commonly used before intelligent piging 

in order to prevent other pig from being stuck. They use rotary wire wheel brushes (Guo, 

et al., 2005) 

Magnetic Flux Leakage MFL 

MFL could be used for oil and gas pipeline. The technology is based on creating a 

magnetic field between the tool (pig) and the pipe wall. Magnetic flux will leak out the 

pipe wall if there is any defect. The relative magnitude of the signal depends on the 

strength of permanent magnet, the wall thickness and the proximity of sensor device 

(Russell, et al.). MFL is used to detect internal and external corrosions. It works by 

magnetizing the pipe wall near saturation flux density that generates a steady magnetic 

field. If there are any corrosions, pits or cracks the field that will come out will indicate 

the amount of leakage of field and will be measured by sensors.   The output data from 

the sensors is analysed by experts to calculate the amount of metal loss. 
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Pipelines should be cleaned before using the MFL because sensors should be very close 

to the wall thickness and sensors could be damaged if pipeline is not cleaned. Calibre pig 

should also be used to check pipeline pigability and valves prior to MFL (Russell, et al.). 

MFL is influenced by tool and sensor lift off, tool speed, line pressures, corrosion pits, 

and welds. In general the MFL has low sensitivity to external defects and poor sensitivity 

to cracks (Mergelas, et al., 2007) 

Despite the fact that magnetic flux is less accurate than the Ultrasound pig, it is preferable 

to use in oil pipeline because of the simplicity of the interpretation of its result (Ali, 

2011). 

 

 

Figure 0-10 MFL Composition ( (Pacicif L.A Marine Terminal, 2011) 

 

MFL is used for the following (Bickerstaff, et al.): 

 Detecting missing material, whether iron that has actually been removed or 

corrosion that - turns steel into non-ferromagnetic iron oxide. 
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 Detecting anomaly geometry or mechanical damage. 

Ultrasonic Pig  (U.T.) 

Ultrasonic technology is used sometimes because MFL is not accurate enough to 

calculate the remaining the strength well enough, although Ultrasonic technology is more 

expensive and need liquid filled pipeline (Teitsma, 2004). Ultrasonic technology uses 

sound waves of short wave length with high frequency to detect flaws or measure wall 

thickness (Bickerstaff, et al.).  

Ultrasonic technology can detect and measure stress corrosion cracking (SCC). As we 

mentioned before conventional Ultrasonic pig cannot inspect gas pipeline because it 

needs liquid coupling to get signal in and out the wall. To overcome this problem 

ultrasound pig could be injected into pipeline in a liquid slug (Teitsma, 2004). 

UT is used for the following (Bickerstaff, et al.): 

 Internal/External metal loss 

 Longitudinal channelling 

 Blisters/Inclusions 

 Deformations 

 Flanges 

 Laminations (sloping & hydrogen induced) 

 Cracking 

 Weld characteristics 

 Wall thickness variations 
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 Usable on bends, tees, and valves 

 Invista Inspection 

This is an ultra sound in line inspection tool designed for unpiggable pipeline. It is used 

now by several pipeline operators in gulf such as ARAMCO and Qatar Petroleum (Ali, 

2011). Usually unpigable pipelines have small diameters, sharp elbows and reduced port 

valves. To overcome this problem Quest Company has designed InVista pig with small 

diameter (3 inches) and high flexibility. InVista uses ultrasonic sensors to detect wall 

thickness loss and cracking with high accuracy (Quest Integrity Group, 2011). 

 

Figure 0-11 Invista Tool Dealing With Sharp Elbow (Quest Integrity Group, 2011) 

 

Electromagnetic Acoustic Transducer EMAT  

EMAT pigs were developed to detect and measure cracks specially Stress Corrosion 

Cracking SCC. EMATS pigs generates Ultrasound waves but without contacting the 

pipeline surface to do so. EMAT consists of a coil in a magnetic field placed at the 

internal surface of the pipe wall. This coil induces alternating current in the pipeline wall, 

causing Lorentz forces (forces acting on moving charges in magnetic fields), which 

generate ultrasound. It works by the same technique of ultrasonic except the way of 

generating ultrasound waves. One of the main advantages of this technique that it does 

not need a gas coupling to inspect gas pipelines and it gives results more accurate than 
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MFL results. That makes it usable at gas pipeline (Teitsma, 2004). 

EMAT is used for the following:. 

 Internal/External metal loss 

 Longitudinal channelling 

 Blisters/Inclusions 

 Deformations 

 Laminations (sloping & hydrogen induced) Cracking  

 Weld characteristics 

 Wall thickness variations 

Elastic Wave Vehicle  

Elastic wave vehicle was developed in 1993. It uses liquid filled wheel to inject 

ultrasound into the pipeline wall in the circumferential direction. EWV can detect cracks 

larger than 25% of the pipeline wall thickness and greater than 2” long. It also has good 

results in detecting coating disbondment. It is also effective in detecting stress corrosion 

cracking. However it generates many false positives that need too much verification digs 

(Teitsma, 2004). 

EWV is used for the following : 

 Stress corrosion cracks SCC. 

 coating disbandment. 
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Remote Field Eddy Current REFC 

This technique is suitable for unpiggable pipeline because its entire component can be 

made much smaller than the pipeline to be inspected. In this technique the current 

transmitted by the exciter coil is received by the sensor coil which can determine any 

defect represented by any change in the field propagation.  The main disadvantages of the 

REFC are; the high power consumptions and the low speed of inspection (2 Mph or less. 

(Teitsma, 2004) 
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APPENDIX C 

SPSS RESULT FOR ANN MODELS 
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ANN MODEL FOR 2 OUTPUTS 
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ANN MODEL FOR 3 OUTPUTS 
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APPENDIX D 

SPSS RESULT FOR MNL MODEL 
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Case Processing Summary 

 
N 

Marginal 

Percentage 

output 1 58 25.0% 

2 69 29.7% 

3 105 45.3% 

service 1 64 27.6% 

2 142 61.2% 

3 26 11.2% 

facility  1 213 91.8% 

2 19 8.2% 

land use 1 153 65.9% 

2 12 5.2% 

3 67 28.9% 

Valid 232 100.0% 

Missing 0  

Total 232  

Subpopulation 210
a
  

a. The dependent variable has only one value observed in 

207 (98.6%) subpopulations. 

 

 

 

Model Fitting Information 

Model 

Model 

Fitting 

Criteria Likelihood Ratio Tests 

-2 Log 

Likelihood 

Chi-

Square Df Sig. 

Intercept Only 489.091    

Final 387.592 101.499 14 .000 
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Pseudo R-Square 

Cox and Snell .354 

Nagelkerke .402 

McFadden .205 

 

 

Likelihood Ratio Tests 

Effect 

Model 

Fitting 

Criteria Likelihood Ratio Tests 

-2 Log 

Likelihood 

of 

Reduced 

Model 

Chi-

Square df Sig. 

Intercept 387.592
a
 .000 0 . 

age 389.872 2.279 2 .320 

diainch 399.623 12.031 2 .002 

service 436.608 49.016 4 .000 

facility 404.405 16.813 2 .000 

landuse 398.546 10.954 4 .027 

The chi-square statistic is the difference in -2 log-likelihoods 

between the final model and a reduced model. The reduced 

model is formed by omitting an effect from the final model. 

The null hypothesis is that all parameters of that effect are 0. 

a. This reduced model is equivalent to the final model 

because omitting the effect does not increase the degrees of 

freedom. 
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Parameter Estimates 

output
a
 B Std. Error Wald df Sig. Exp(B) 

95% Confidence Interval for 

Exp(B) 

Lower Bound Upper Bound 

1 Intercept 2.005 1.495 1.798 1 .180    

Age -.008 .015 .313 1 .576 .992 .963 1.021 

diainch .097 .032 9.249 1 .002 1.102 1.035 1.173 

[service=1] -1.453 1.326 1.201 1 .273 .234 .017 3.144 

[service=2] -1.493 1.277 1.366 1 .242 .225 .018 2.746 

[service=3] 0
b
 . . 0 . . . . 

[facility=1] -2.351 .703 11.169 1 .001 .095 .024 .378 

[facility=2] 0
b
 . . 0 . . . . 

[landuse=1] -.193 .444 .190 1 .663 .824 .345 1.968 

[landuse=2] .044 .798 .003 1 .956 1.045 .219 4.993 

[landuse=3] 0
b
 . . 0 . . . . 

2 Intercept 3.949 1.438 7.543 1 .006    

Age .016 .014 1.292 1 .256 1.016 .988 1.046 

diainch .008 .033 .057 1 .812 1.008 .944 1.076 

[service=1] -3.358 1.103 9.263 1 .002 .035 .004 .303 

[service=2] -4.500 1.076 17.485 1 .000 .011 .001 .092 

[service=3] 0
b
 . . 0 . . . . 

[facility=1] -.307 .908 .115 1 .735 .735 .124 4.359 

[facility=2] 0
b
 . . 0 . . . . 

[landuse=1] -1.213 .411 8.717 1 .003 .297 .133 .665 

[landuse=2] -1.823 1.122 2.637 1 .104 .162 .018 1.458 

[landuse=3] 0
b
 . . 0 . . . . 
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Parameter Estimates 

output
a
 B Std. Error Wald df Sig. Exp(B) 

95% Confidence Interval for 

Exp(B) 

Lower Bound Upper Bound 

1 Intercept 2.005 1.495 1.798 1 .180    

Age -.008 .015 .313 1 .576 .992 .963 1.021 

diainch .097 .032 9.249 1 .002 1.102 1.035 1.173 

[service=1] -1.453 1.326 1.201 1 .273 .234 .017 3.144 

[service=2] -1.493 1.277 1.366 1 .242 .225 .018 2.746 

[service=3] 0
b
 . . 0 . . . . 

[facility=1] -2.351 .703 11.169 1 .001 .095 .024 .378 

[facility=2] 0
b
 . . 0 . . . . 

[landuse=1] -.193 .444 .190 1 .663 .824 .345 1.968 

[landuse=2] .044 .798 .003 1 .956 1.045 .219 4.993 

[landuse=3] 0
b
 . . 0 . . . . 

2 Intercept 3.949 1.438 7.543 1 .006    

Age .016 .014 1.292 1 .256 1.016 .988 1.046 

diainch .008 .033 .057 1 .812 1.008 .944 1.076 

[service=1] -3.358 1.103 9.263 1 .002 .035 .004 .303 

[service=2] -4.500 1.076 17.485 1 .000 .011 .001 .092 

[service=3] 0
b
 . . 0 . . . . 

[facility=1] -.307 .908 .115 1 .735 .735 .124 4.359 

[facility=2] 0
b
 . . 0 . . . . 

[landuse=1] -1.213 .411 8.717 1 .003 .297 .133 .665 

[landuse=2] -1.823 1.122 2.637 1 .104 .162 .018 1.458 

[landuse=3] 0
b
 . . 0 . . . . 

a. The reference category is: 3. 

b. This parameter is set to zero because it is redundant. 

 

Classification 

Observed 

Predicted 

1 2 3 Percent Correct 

1 25 4 29 43.1% 

2 5 33 31 47.8% 

3 6 6 93 88.6% 

Overall Percentage 15.5% 18.5% 65.9% 65.1% 
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