
ASSESSING THE QUALITY FACTORS FOUND IN

IN-LINE DOCUMENTATION WRITTEN IN NATURAL

LANGUAGE:

THE JAVADOCMINER

Ninus Khamis

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science (Software

Engineering)

Concordia University

Montréal, Québec, Canada

April 2011

c⃝ Ninus Khamis, 2011

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Ninus Khamis

Entitled: Assessing the Quality Factors found in

In-line Documentation Written in Natural Language:

The JavadocMiner

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair
Dr. Hovhannes A. Harutyunyan

Examiner
Dr. Benjamin C. M. Fung

Examiner
Dr. Peter Grogono

Supervisor
Dr. Juergen Rilling

Supervisor
Dr. René Witte

Approved
Chair of Department or Graduate Program Director

20
Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Assessing the Quality Factors found in

In-line Documentation Written in Natural Language:

The JavadocMiner

Ninus Khamis

An important software engineering artifact used by developers and maintainers to

assist in software comprehension and maintenance is source code documentation. It

provides the insight needed by software engineers when performing a task, and there-

fore ensuring the quality of documentation is extremely important. In-line documen-

tation is at the forefront of explaining a programmer’s original intentions for a given

implementation. Since this documentation is written in informal natural language,

ensuring its quality needs to be performed manually. In this works, we present an

effective and automated approach for assessing the quality of in-line documentation

using a set of heuristics, targeting both the quality of language and consistency be-

tween source code and its comments. Our evaluation is made up of three parts: We

first apply the JavadocMiner tool to the different modules of two open source applica-

tions (ArgoUML and Eclipse) in order to automatically assess their intrinsic comment

quality. In the second part of our evaluation, we correlate the results returned by the

analysis with bug defects reported for the individual modules in order to examine

connections between natural language documentation and source code quality. And

finally, we compare the comment quality results generated using our JavadocMiner

with the quality assessments performed manually by undergraduate and graduate

computer science students.

iii

Acknowledgments

With the utmost gratitude, I acknowledge the guidance, enthusiasm, and inspiration

I received from my supervisors, Dr. Juergen Rilling and Dr. René Witte. Their

patience and persistence has made it possible for me to excel as a research student,

and more importantly, as an individual. I would have been lost without them.

Equal thanks go to the many people who have taught me over the years: my high

school teachers (especially Mr. Wagner), my undergraduate teachers at Toronto (es-

pecially Ravinder Singh, Kanti Akhtar, Dr. Pajkowski, and Denise Simanic), and my

graduate teachers (especially Dr. Haarslev).

I also take with me many cherished moments and good memories from my colleagues

at the Ambient Software Evolution Group (ASEG), as well as the Semantic Software

Lab (SSL). Together we created a stimulating and fun environment to work in.

Lastly, I would like to express my deepest appreciation to my parent’s Shelmon and Vi-

vian, and siblings Raymond and Jessica for their enormous support, infinite patience,

and unwavering belief in me. To them I dedicate this thesis.

iv

Contents

List of Figures viii

List of Tables x

List of Accronyms xi

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Structure of the Thesis . 3

2 Background 6

2.1 Source Code Comments and Impact on Software Maintenance 6

2.1.1 In-line Documentation and Javadoc 8

2.1.2 Javadoc Writing Guidelines 10

2.2 Foundations of Natural Language Processing 12

2.3 Readability Measures . 14

2.4 Knowledge Representation using Ontologies 17

2.5 Summary . 19

3 Related Work 20

3.1 Corpus Generation from Source Code 20

3.2 Quality Analysis of Source Code and Source Code Comments 22

3.2.1 Internal Analysis of Source Code Comments 22

3.2.2 Code/Comment Consistency Analysis 24

3.2.3 External Analysis of Source Code Comments 26

3.3 Summary . 26

v

4 Requirements Analysis 29

4.1 Generating a Corpus from Source Code 29

4.2 Comment Syntax Analysis . 29

4.3 Internal Comment Quality Assessment 30

4.4 Code/Comment Consistency Analysis 33

4.5 Representing the JavadocMiner Results 36

4.6 Tool Integration . 37

4.7 Summary . 37

5 Design 40

5.1 System Components . 40

5.2 Corpus Generation from Source Code:

The SSL Javadoc Doclet . 41

5.2.1 Marking Up Source Code . 44

5.2.2 Marking Up Source Code Comments 45

5.3 Preprocessing Phase . 46

5.4 JavadocMiner Quality Assessments 47

5.4.1 Comment Syntax . 48

5.4.2 Internal NL Comment Analysis 49

5.4.3 Code/Comment Consistency Analysis 50

5.5 The Javadoc Output Ontology . 53

5.5.1 External Traceability Links Generation 55

5.6 Summary . 57

6 Implementation 58

6.1 System Overview . 58

6.2 The SSL Javadoc Doclet . 59

6.3 GATE Environment . 60

6.4 The JavadocMiner NLP Application 61

6.5 Javadoc Ontology . 64

6.5.1 Ontology Population Using the OwlExporter 64

6.5.2 Linking Software Engineering Data 66

6.6 Summary . 68

vi

7 Evaluation 70

7.1 Data . 70

7.2 Generating a Corpus using Open Source Software 72

7.3 Assessing the Quality of In-Line Documentation found in Open Source

Software . 72

7.4 Quality Analysis . 73

7.5 Summary . 79

8 Conclusions and Future Work 81

8.1 Future Work . 81

9 Publications 85

9.1 Accepted / Published . 85

Bibliography 85

A JavadocMiner Pipeline 95

B Components Developed for the JavadocMiner 98

B.1 SSLDoclet Parameters . 98

B.2 JavadocMiner Parameters . 99

B.3 ReadabilityMetrics Parameters . 99

C Generic GATE Components used for the JavadocMiner 102

C.1 JAPE Transducer. 102

C.2 Tokenizer . 102

C.3 Sentence Splitter . 102

C.4 Part-Of-Speech Tagger . 103

C.5 Gazetteer . 103

C.6 Stemmer . 103

C.7 Multi-lingual Noun Phrase Extractor 104

C.8 Verb Group Chunker . 104

vii

List of Figures

1 A Javadoc Comment for an ArgoUML Constructor 8

2 Documentation Generated using Javadoc for an ArgoUML Constructor 9

3 A Javadoc Comment for an ArgoUML Constructor 33

4 A Completely Documented ArgoUML Class 34

5 An Incomplete ArgoUML Method Comment 35

6 A Method Comment with no Added Value 36

7 JavadocMiner Overview . 41

8 Documentation Generated Using Javadoc for an ArgoUML Package . 41

9 HTML Generated Documentation Loaded within an NLP Framework 42

10 XML Generated Documentation Loaded within an NLP Framework . 43

11 SSLDoclet Schema . 44

12 An Abstract Class Declaration taken from ArgoUML’s Source Code . 45

13 A Section of a Corpus Generated Using ArgoUML Source Code . . . 46

14 A Section of a Corpus Generated Using an ArgoUML Method 47

15 An Example of a Javadoc Method Comment 52

16 Annotations Created by the JavadocMiner 53

17 Ontology Showing Relationships found in JavadocComments 54

18 Ontology Showing Relationships found in Source Code 54

19 Traceability Links Create Between Different Software Engineering Ar-

tifacts . 56

20 Overview of the JavadocMiner System Components 59

21 Javadoc Ant Task that accepts the SSLDoclet as a Parameter 60

22 A Method taken from the ArgoUML OSS assessed using the JavadocMiner 63

23 Ontology Population from Text . 64

24 An Excerpt from the Javadoc Ontology 65

viii

25 Results of a SPARQL Query on the NLP-Populated Source Code Com-

ment Ontology . 66

26 Ontologies Linked Using the hasCrossLink relationship 67

27 Cross Artifact SPARQL Query . 68

28 Screenshot of the JavadocMiner system running in GATE Developer . 69

29 Reported Bugs for ArgoUML and Eclipse OSS 71

30 Reported Bugs for ArgoUML and Eclipse OSS 73

31 ArgoUML Charts for Code/Comment and Internal (NL Quality) Metrics 74

32 Eclipse Charts Code/Comment and Internal (NL Quality) Metrics . . 75

33 Code/Comment Consistency and NL Quality Metrics vs. \Bugs – Ar-

goUML . 76

34 Code/Comment Consistency and NL Quality Metrics vs. \Bugs – Eclipse 77

35 A Sample Question from the Survey 78

36 A Sample Answer from the Survey 79

37 The JavadocMiner Output Included in Hudson 83

ix

List of Tables

1 Block Tags Commonly Used in a Javadoc Comment 10

2 Inline Tags Commonly Used in a Javadoc Comment 10

3 JavadocMiner Comment Readability Criterion 31

4 A Comparison between Different Javadoc Analysis Tools 39

5 Relationships and Concepts found in the Javadoc Ontology 55

6 Relationships and Concepts found in the NLP Ontology 55

7 Assessed Open Source Project Versions, Release Dates, Number of

Reported Bugs . 71

8 Open Source Project Versions, Lines of Code (LOC), Number of Com-

ments and Identifiers, and Process Duration for ArgoUML and Eclipse 72

9 Pearson Correlation Coefficient Results for ArgoUML and Eclipse . . 75

10 Years of General and Java Programming Experience of Students . . . 77

11 Method Comments Evaluated by Students and the JavadocMiner . . 78

12 Processing resources of the JavadocMiner pipeline 95

13 Default parameter settings for the SSLDoclet component 98

14 Default parameter settings for the JavadocMiner component 99

15 Default parameter settings for the ReadabilityMetrics component . . 100

x

List of Accronyms

SSL Semantic Software Lab

ANNIE A Nearly New Information Extraction

API Application Programming Interface

AST Abstract Syntax Tree

DL Description Logic

GATE General Architecture for Text Engineering

GIF Graphics Interchange Format

IDE Integrated Development Environemnt

IE Information Extraction

HLT Human Language Technologies

HTML HyperText Markup Language

JAPE Java Annotation Pattern Language

JAR JAVA Archive

JPEG Joint Photographic Experts Group

MCC McCabe’s Cyclomatic Complexity

OSS Open Source Project

OWL Web Ontology Language

POS Part of Speech

PR Processing Resource

SLOC Source Lines of Code

NLP Natural Language Processing

W3C World Wide Web Consortium

XML eXtensible Markup Language

xi

Chapter 1

Introduction

This thesis is concerned with generating a corpus from source code and source code

comments, using linguistic analysis to assess the quality of in-line documentation

based on a set of heuristics, and providing users with instant results of the analysis.

Within this chapter we discuss the motivation behind our efforts and give an overview

of the structure of this thesis.

1.1 Motivation

Over the last decade, software engineering processes have constantly evolved to reflect

cultural, social, technological, and organizational changes. Among these changes is a

shift in the development processes from document-driven to agile development, which

focuses mainly on software development rather than documentation. This ongoing

paradigm shift leads to situations where source code and its comments often become

the only available system documentation capturing program design and implementa-

tion decisions. Software maintenance and evolution (SME) is an important sub-field

of software engineering. For software systems with a long lifetime, SME-activities ac-

count for 50-70% of the total software life-cycle costs [Kos10]. As stated in Lehman’s

first law [LPR98], a software application must continually evolve to reflect different

requirements as they emerge; otherwise, the application eventually becomes unusable.

An important aspect of software engineering is the process of reading and trying

to understand source code in order to perform software maintenance tasks [dSM09].

When developers and maintainers find it difficult to comprehend source code, SME

1

tasks become increasingly prone to error [dSM09].

A significant amount of software engineering artifacts contain information writ-

ten in informal natural language, i.e., version control commit messages or bug re-

ports. Source code comments are essential when trying to perform software com-

prehension and maintenance tasks. Studies have shown that the effective use of

comments “can significantly increase a program’s comprehension” [NLC03], yet the

amount of research focused towards the quality assessment of in-line documentation

is limited [PTZ09].

Traditional software engineering metrics, such as Source Lines of Code (SLOC) or

McCabe’s Cyclomatic Complexity (MCC), are of little or no use when attempting to

measure the quality of source code comments. Since in-line documentation is written

using informal natural language, the only means of assessing the quality of in-line

documentation is by performing time-consuming manual code checks.

Another motivation for our focus on in-line documentation is its close proximity

to source code. This enables us to perform additional analysis that focus on the

consistency between code and documentation, which is known to often degrade due

to changes in source code not being reflected in their comments.

1.2 Contribution

The challenging nature of SME has driven researchers to seek solutions that facili-

tate software maintenance by (1) examining new ways to analyze and interpret soft-

ware engineering data and (2) transferring the results achieved to future profession-

als [Kos10]. Creating solutions that assist in software maintenance and evolution

tasks by studying the software’s readability has been the effort of researchers in the

past [EM82, BWKG05, YWA05, JH06, dSM09]. Within this work, we assess the qual-

ity of in-line documentation found in source code based on a number of quality factors.

To evaluate our approach, we apply our analysis on multiple versions of a software

project, to analyze how the quality of the documentation increases or decreases over

time. We also attempt to correlate the different measures with reported bug defects,

in order to determine which of the measures can be used to identify potential problem

areas of a software project. Finally, we re-establish traceability links between differ-

ent software engineering artifacts, a task manually performed by developers when

2

trying to understand unfamiliar code. We also show how existing software engineer-

ing tools can be enriched using results obtained from Natural Language Processing

(NLP) analysis.

Throughout this writing, the major aspects of our work is divided into two major

categories: (1) Generating a corpus from source code and and source code comments

to be used as input for NLP systems and (2) analyzing the quality of source code

comments in relation to the different quality factors. The section concerned with

source code comment analysis is further split into three subsections: (1) the internal

(natural language (NL)) quality analysis of source code comments, (2) code/comment

consistency (i.e., how well the comments match the described source code segments),

and finally (3) the generation of traceability links between the different parts of a

Javadoc comment and other software engineering artifacts, such as version control

and issue tracking systems.

Research Observations: In recent years, the field of Natural Language Processing

(NLP) has enabled the implementation of a number of robust analysis techniques that

can assist users in content analysis [PL08]. While other domains already benefit from

NLP applications, the analysis of software engineering artifacts written in natural

language continues to be undersold.

Our work demonstrates how NLP techniques can be used to automate the quality

assessment of in-line documentation. We also illustrate how potential problem areas

of a source code implementation can be identified by assessing the quality of the code’s

documentation. We also use ontology models to automatically establish traceability

links between the different software engineering artifacts. A task manually performed

by developers and maintainers when attempting to modify unfamiliar source code.

1.3 Structure of the Thesis

This thesis is divided into nine chapters. In this chapter we discussed the motivation

behind our efforts and we also described how NLP can be used to assist in evaluating

the quality of in-line documentation.

In Chapter 2 we cover the background material related to our work. Namely, the

importance of in-line documentation quality on software comprehension and mainte-

nance. We also discuss the fundamentals of NLP, and how they are used to perform

3

linguistic analysis. We present an application of NLP that uses algebraic expression

to generate a readability index capable of measuring the complexity of text written in

natural language. Finally, we end the chapter with a discussion on the use of ontology

models to represent information.

Chapter 3 covers the related work, where we compare similar systems focused on

analyzing source code comments. We begin by evaluating the different applications

concerned with building a corpus from source code and source code comments, by

comparing the output generated by each tool. The evaluation of past efforts concerned

with the analysis of source code and source code comments is categorized into three

major sections: (1) the quality analysis of source code comments, (2) the consistency

analysis between source code and source code comments, and finally (3) the elici-

tation of traceability links between source code comments and the various software

engineering artifacts such as version control and issue tracking systems.

In Chapter 4, we discuss the requirements analysis of the different components

that make up our system. Based on the quality assessments provided by previous

work, we define and detail the set of quality factors that will be used in our quality

assessment of in-line documentation written in natural language.

The principal approach used to create our JavadocMiner application is discussed

in Chapter 5. We begin by explaining the process of building a corpus from source

code and source code comments, followed by a discussion on how we plan to satisfy the

set of comment quality assessment requirements. We end the chapter by explaining

the design of the source code comment ontology used to model the set of concepts and

relations found in Javadoc, and how the ontology can be linked with other software

engineering artifacts.

The implementation of the various components that make up the JavadocMiner

system is discussed in Chapter 6. The chapter begins with an overview of the entire

system; we then describe the implementation of our Semantic Software Lab Javadoc

Doclet, which we use to generate the input documents needed for our analysis. We also

discuss the NLP framework that was used to implement the core of our JavadocMiner

system. We later cover the process of exporting the annotations created by our

JavadocMiner NLP pipeline to an OWL model using a component developed by us

called the OwlExporter [WKR11].

The evaluation of our system is covered in Chapter 7. We begin the chapter by

4

discussing the means of generating a corpus using two open source projects. We then

discuss how the JavadocMiner was used to analyze the quality of in-line documen-

tation found in different versions of the two open source projects. Further experi-

ments discussed in the chapter also include correlating the results returned by the

JavadocMiner with bug defects reported using the project’s issue tracker system, and

comparing the results generated by the JavadocMiner with the manual assessment

conducted by under and graduate students.

Chapter 8 is dedicated to a summary of the work discussed herein, and a preview

of future work. Chapter 9 lists accepted and currently being reviewed publications

pertaining to our work.

5

Chapter 2

Background

In this chapter, we discuss the background material related to our work, in particular

the impact of in-line documentation quality on software maintenance, followed by an

overview and definition of the field of NLP, and finally, the use of ontology models to

represent knowledge.

2.1 Source Code Comments and Impact on Soft-

ware Maintenance

With millions of lines of code written every day, the importance of good documenta-

tion cannot be overstated. Well-documented software components are easily compre-

hensible and therefore, maintainable and reusable. This becomes especially important

in large software systems [LB85]. Since in-line documentation comes in contact with

the various stakeholders of a software project, it needs to effectively communicate the

purpose of a given implementation to the reader. However, the only means of assessing

the quality of in-line documentation currently is through performing time-consuming

manual code reviews.

The efforts of developers and maintainers are constantly being shifted to other

software projects, and as a result, documentation becomes the only means of commu-

nicating a developer’s original intentions. Without documentation, future developers

and maintainers run the risk of making dangerous assumptions about the source code,

scrutinizing the implementation, or even interrogating the original developer if possi-

ble [Kot00]. Developers should prepare these comments when they are coding, and

6

update them as the programs change. There exist different types of guidelines for

in-line documentation, often in the form of programming standards such as GNU1,

and GDSG2. In general, each program module should contain detailed descriptions,

purpose, and rationale for the module [Kot00]. Such comments may also include

references to subroutines and descriptions of conditional processing. Comments for

specific lines of code may also be necessary for unusual coding. For example, an

algorithm (formula) for a calculation may be preceded by a comment explaining the

source of the formula, the data required, the result of the calculation, and how the

result is used by the program.

Writing in-line documentation is a painful and time-consuming task [Kot00], which

often gets neglected due to release or launch deadlines. With such deadlines pressur-

ing the development team, it becomes increasingly important to prioritize their tasks.

Since customers are mostly concerned with the functionality of an application, imple-

mentation and bug fixing tasks receive a higher priority compared to documentation

tasks. Furthermore, finding a balance, describing all salient program features compre-

hensively and concisely is another challenge programmers face while writing in-line

documentation [Zok02]. Ensuring development programmers use the facilities of the

programming language to integrate comments into the code, and to update those

comments, is an important aspect of software quality. Even though the impact of

poor quality documentation is widely known, there are few research efforts focused

towards the automatic assessment of in-line documentation quality [SDZ07].

A survey conducted in [FL02] aimed at determining the reasons for documentation

not being maintained at the same rate as changes to the source code. The participants

of the survey “agree that documentation tools should seek to better extract knowledge

from core resources”, such as the system’s source code. The study found that the

developers preferred documentation generating tools that are closely integrated with

source code, thereby reducing the amount of effort needed to document the software

system.

1GNU Coding Standard, http://www.gnu.org/prep/standards/standards.html
2GDSG Coding Standard, http://library.gnome.org/devel/gdp-style-guide/stable/

7

http://www.gnu.org/prep/standards/standards.html
http://library.gnome.org/devel/gdp-style-guide/stable/

2.1.1 In-line Documentation and Javadoc

Literate programming was suggested in the early 1980’s by Donald Knuth [Knu84] in

order to combine the process of software documentation with software programming.

Its basic principle is the definition of program fragments directly within software

documentation. Literate programming tools can further extract and assemble the

program fragments as well as format the documentation. The extraction tool is

referred to as tangle while the documentation tool is called weave [Knu84].

Single-source documentation, like Javadoc [Kra99], also fall into the category of

documents with inter-weaved representation. Contrary to the literate approach, docu-

mentation is added to source code in form of comments that are ignored by compilers.

Given that programmers typically lack the appropriate tools and processes to create

and maintain documentation, it has been widely considered as an unfavourable and

labour-intensive task within software projects [Bro83]. Documentation generators

currently developed are designed to lessen the efforts needed by developers when doc-

umenting software, and have therefore become widely accepted and used. In Figure 1,

we show an example of a constructor documented using Javadoc.

/∗∗
∗ Manages the event changes of elements within a UML model,
∗ and uses the {@link ActivityGraphsHelper } helper .
∗ @author Bob Tarling
∗ @param source The bean that fired the event .
∗ @param propertyName The programmatic name of the property
∗ that was changed.
∗ @param oldValue The old value of the property .
∗ @param newValue The new value of the property .
∗ @param originalEvent The event that was fired internally
∗ in the Model subsystem that caused this .
∗/
public AttributeChangeEvent(Object source , String propertyName,

Object oldValue , Object newValue, EventObject originalEvent)

Figure 1: A Javadoc Comment for an ArgoUML Constructor

In order for humans and compilers to differentiate between source code and docu-

mentation, a specific documentation or programming syntax has to be used. Javadoc

comments added to source code are distinguishable from normal comments by a spe-

cial comment syntax (/**) as shown in Figure 1. The Javadoc tool also provides an

8

API to implement custom extraction and transformation routines [Kra99]. A genera-

tor (similar to the weave tool within literate programming) extracts these comments

and transform the corresponding documentation into a variety of output formats,

such as HTML, LATEX, or PDF. The description immediately following the special

comment syntax is known as a doc comment.

Using the Java source code and source code comments, the Javadoc tool gener-

ates API documentation in HTML. In Figure 2, we show a small section of an API

document generated using the Javadoc tool.

Figure 2: Documentation Generated using Javadoc for an ArgoUML Constructor

Most tools also provide specific tags within comments that influence the format

of the documentation produced or the way documentation pages are linked. In terms

of Javadoc comments, there are two types of tags used for formatting:

Block Tags: These are placed only in the tag section that follows the doc comment.

Block tags are denoted using the annotation “@tag-name”.

In-line Tags: These can be placed anywhere in the doc comment and in the com-

ments of the block tags. In-line tags are denoted using the “@tag-name” anno-

tation.

In Tables 1 and 2 we list and describe the most commonly used block and in-line

tags found within a Javadoc comment.

Even during early stages of implementation, the Javadoc tool can be used to

process pure stubs (classes with no method bodies), enabling the comment within

the stub to explain what future plans hold for the created identifiers.

9

Table 1: Block Tags Commonly Used in a Javadoc Comment

Tag Description

@author <value> Used to specify the main contributor of the design or im-

plementation of the system.

@version <value> Specifies the version of the implementation using the

Source Code Control System (SCCS). This feature how-

ever is not supported by current versioning systems such

as Concurrent Version Systems (CVS) or Apache Subver-

sion (SVN).

@param <value> <description> Specifies the parameter name, and describes the purpose of

a parameter included in the parameter list of a constructor

or method. The Java convention calls for the “first noun

in the description to be the data type of the parameter.”

@return <type> <description> Specifies the return type and gives a description on what

the constructor or method is returning.

@throws <type> <description> Specifies the thrown type and description for methods that

contain any checked exceptions.

@see <value> Directs the reader to a different part of the application that

contains the local declaration of an identifier.

Table 2: Inline Tags Commonly Used in a Javadoc Comment

Tag Description

{@link <url>} Converts the text to an HTML hyperlink pointing to the

documentation of a given class.

Different types of comments are used to document the various types of identifiers.

A class comment should provide insight on the high-level knowledge of a program, for

example, which services are provided by the class, and which other classes make use

of these services [NLC03]. A method comment, on the other hand, should provide a

low-level understanding of its implementation [NLC03].

2.1.2 Javadoc Writing Guidelines

When writing comments with the Javadoc tool, there are a number of quality guide-

lines described in the Java3 specification that need to be followed to ensure the tool

3Java, http://www.java.com/en/

10

http://www.java.com/en/

is being used effectively4. The specifications include syntactic details, such as:

1. A Javadoc comment must appear directly before a class, field, method or con-

structor declaration.

2. Each method parameter must be documented using the “@param” tag. The

tag is followed by the name (not data type) of the parameter, followed by a

description of the parameter.

3. Having an explicit “@return” tag documenting the return type of a method

makes it easier for someone to find the return value quickly.

4. The checked exceptions of a method must be documented using the “@throws”

tag. The tag is followed by the data type of the exception.

Internal NL quality details are also described in the specifications such as:

1. When documenting a certain method using Javadoc comments, the descriptions

need to begin with verb phrases. For example, “Gets the label of this button.”

(preferred) “This method gets the label of this button.” (avoid).

2. Avoid the use of abbreviations when writing source code comments.

3. Add description beyond the API name. If the in-line documentation merely

repeats the identifier’s name in sentence form, the reader will not be able to

gain any useful information. For example, the comment “Sets the tool tip text.”

for the method “setToolTipText(String text)” adds no additional information

that the reader could not have gathered by looking at the method’s identifier.

4. Use a third person (declarative) rather than second person (prescriptive) writ-

ing style when creating in-line documentation. for example, “Gets the label.”

(preferred) “Get the label.” (avoid).

5. Class/interface/field descriptions can omit the subject and simply state the ob-

ject. E.g., “A button label.” (preferred) “This field is a button label.” (avoid).

4How to Write Doc Comments for the Javadoc Tool, http://www.oracle.com/technetwork/

java/javase/documentation/index-137868.html

11

http://www.oracle.com/ technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/ technetwork/java/javase/documentation/index-137868.html

6. Use “this” instead of “the” when referring to an object created from the current

class. For example: “Gets the toolkit for this component.” (preferred) “Gets

the toolkit for the component.” (avoid).

Considering the entire set of guidelines included in this specification, it becomes

often difficult for a developer, documentation writer and even conformance tester who

are manually checking the Javadoc comment quality, to recall all guidelines while writ-

ing/assessing Javadoc comments. Existing Javadoc comment quality analysis tools

such as the Doc Check Doclet5, and Checkstyle6 provide a quality assessment based

on the syntactic guidelines. However, more analysis can potentially be applied on

Javadoc comments, measuring factors such as comprehension, efficiency, and useful-

ness.

2.2 Foundations of Natural Language Processing

Naturally occurring text, either spoken or written, can be of any language, mode,

genre, etc. The text is used by humans to communicate with one another [Lid01].

Natural Language Processing (NLP), a sub field of Artificial Intelligence (AI) and

Computational Linguistics (CL), aims to accomplish human like language processing

using computations. When trying to understand text, humans apply a number of

language analyzing processes. NLP attempt to represents those processes using a

range of computational techniques [Lid01]. Chronological levels of linguistic analysis

are needed when performing NLP. The multiple levels are executed in sequence to

process language. Each level generates additional information that succeeding levels

may or may not use. What differentiates one NLP service from another is the combi-

nation of levels the system uses, which depends on the type of linguistic analysis the

language engineer is interested in performing. When stating that the goal of NLP is

to accomplish human-like language processing, the word “processing” is not to be con-

fused with “understanding”. The field of NLP was originally referred to as Natural

Language Understanding (NLU) in the early days of AI. It is well agreed today that

while the goal of NLP is true NLU, that goal has not yet been accomplished [Lid01].

5Doc Check, http://www.oracle.com/technetwork/java/javase/documentation/

index-141437.html
6Checktyle, http://checkstyle.sourceforge.net/

12

http://www.oracle.com/technetwork/java/javase/documentation/index-141437.html
http://www.oracle.com/technetwork/java/javase/documentation/index-141437.html
http://checkstyle.sourceforge.net/

A full NLU System would be able to:

1. Paraphrase an input text

2. Translate the text into another language

3. Answer questions about the contents of the text

4. Draw inferences from the text

While NLP has made serious strides over the years to accomplish goals 1 to 3, the

fact that NLP systems cannot, draw inferences from text without the help of humans,

NLU still remains the goal of NLP [Cho03].

Natural Language Processing Application: As mentioned earlier, most NLP

applications are assembled using levels of linguistic analysis. Due to their complexity,

NLP systems require the use of many different subsystems, therefore nearly all NLP

systems are built in a modular fashion. Each of the subsystems or modules concen-

trate on one specific task. Modules that perform common linguistic analysis tasks

often re-emerge in different NLP system. New modules need to be implemented to

perform a specific type of NLP analysis. Some common linguistic analysis tasks that

are found in many different NLP systems are:

Tokenizing: Annotating tokens of a text according to their symbolic structure (see

Appendix C.2).

Sentence Splitting: Segmenting the tokens (or “annotates” above) of a text into

sentences based on their boundaries (see Appendix C.3).

Part-of-Speech Tagging: Tags tokens of a text with corresponding parts of speech

(e.g., Hepple Tagger C.4).

Named Entity Recognition: Detecting elements within text such as, for example,

persons, organizations, and locations using Gazetteer lists, rule-based, or

machine learning based, extraction techniques (see Appendix C.5).

Noun and Verb Phrase Chunking: Tagging noun (see Appendix C.7) and verb

(see Appendix C.8) phrases found within a sentence using sentence parse trees

and regular expressions.

13

Coreference Resolution: Identifying the entities that re-appear in different parts

of a text and linking them together using coreference chains.

2.3 Readability Measures

The term “readability” is described as the ability to determine the level of education

needed by an individual to understand a given block of text using a set of compu-

tations [dSM09]. In the early twentieth century, linguists conducted a number of

studies that used people to rank the readability of text [SDZ07]. Such studies require

significant resources and therefore, can often not be applied in the context of source

code comments.

Extensive work was then put towards mapping a block of text to an algebraic

value that corresponds to its readability. In the 1980s, the number of readability

formulas was around 200 [DuB06]; however, amongst the the widely used measures

were the “Flesch Reading Ease Formula” (1943), Gunning’s “Fog Index” (1952), and

“Flesch-Kincaid” (1975) [dSM09].

Originally used by a number of U.S. government agencies such as the DoD and

IRS to analyze the readability of their technical documents [SDZ07], some of the read-

ability formulas are currently integrated into coding standards such as the GNOME

Documentation Library7.

Some of the major factors that affect the quality of text, and it’s readability are:

Legibility: At the surface level, readability is concerned with the visual perception

of the typeface and layout [DuB06, Har00].

Comprehension and Retention: This was the focus of “classic readability stud-

ies”, aiming at matching the knowledge of vocabulary an individual requires

to understand and quickly memorize a block of text. Factors within this cate-

gory include sentence structure, technical knowledge, and the level of reasoning

needed to understand the text [DuB06].

Persistence and Efficiency: The 1950s were a time when older manufacturing in-

dustries had little demand for advanced readers, and new technologies required

7GNOME, http://library.gnome.org/devel/gdp-style-guide/stable/

14

http://library.gnome.org/devel/gdp-style-guide/stable/

workers with higher reading proficiency. As a result, the focus of “the new read-

ability” studies were concerned with reading persistence and speed [DuB06].

Common to these readability formulas is that they use various lexical and gram-

matical features as input, and the output, or readability index, can be described as a

value that corresponds to a text’s reading difficulty or the grade level [HCTE08]. Fur-

thermore, all readability measures use “the sum total (including all the interactions)

of all elements within a given piece of printed material that affect the success a group

of readers have with it. The success is the extent to which they understand it, read

it at an optimal speed, and find it interesting.” [EC49].

Some of the most commonly used readability measure used today are:

Flesch Reading Ease Score: Integrated in word processors such as Microsoft Word,

Lotus WordPro, and Google Docs [dSM09], the Flesch Reading Ease Score rates

text on a 100 point scale. The higher the value, the easier a text is to read. The

formula correlates 0.70 with the 1925 McCall-Crabbs reading tests [MP82], and

0.64 with the 1950 version of the same tests [DuB06]. A ”standard” and optimal

score for the Flesch measure would range from 60–70 [DuB06]. A score between

90–100 would indicate that the block of text could be understood by an 11 year

old and would therefore be overly simplified [DuB06]. A 100 word sample is

required to accurately compute a score using the Flesch metric. As we observe

in Chapter 7, most comments do not exceed an average of 25 words. Making

this readability measure unsuitable for analyzing source code comments.

Fog Index: Robert Gunning had found that magazines, newspapers and business pa-

pers used writing styles that were not direct and straight forward, but rather

were full of ”fog” and included unnecessary complexity. He realized that much

of the reading problem was actually attributed to a writing problem [DuB06].

As a result, he developed the Fog Index, which indicates the number of years of

formal education a reader would need to understand a block of text. The mea-

sure uses the average sentence length as a grammatical feature and the number

of words with more than two syllables. Gunning developed his formula using a

90% correct-score with the McCall-Crabbs reading tests [DuB06]. An optimal

score for the Fog Index would be between 8–11. A score above 17 would indicate

a block of text that is understandable by graduate level individuals [DuB06].

15

Flesch-Kincaid Readability Formula: This metric was developed in 1975 by Kin-

caid, Fishburne, Rogers and Chissom to be used by the U.S. navy to improve

the readability of their technical documents [SDZ07]. The measure was cre-

ated to translate the 0–100 Flesch Reading Ease score into a U.S. grade level.

However, the Flesch-Kincaid grade level score is not a simple conversion of the

Flesch score, but rather was re-designed to analyze the readability based on

persistence and efficiency readability factors [DuB06]. The measure uses a lin-

ear combination of mean number of syllables per word and the mean number

of words per sentence. It is similar to the Fog Index; however, it calculates a

finer grain measure of word length [dSM09]. Based on the observations made

by linguists in the past, an optimal score for the Flesch-Kincaid readability in-

dex would range from 8–10 [DuB06]. The Flesch-Kincaid Grade Level measure

is also widely used, and is implemented in word processors such as Microsoft

Word.

Some important factors to remember when mechanically applying formulas to

predict the level of complexity of text are:

• The widespread availability of computational power and of readability formu-

las have contributed to the misapplication and misinterpretation of readability

measures [Kla00].

• Scores produced by readability measures are not meant to be interpreted as

highly accurate values of the text that they measure, but rather as guides that

provide ”quick, easy help in the analysis and placement” of text [DuB06].

• Readability formulas can be considered as “screening devices that provide prob-

ability scores” for text that is otherwise not easily represented [Kla00].

Put into context of our work, the term readability refers to software readabil-

ity, which can be described as a programmers ability to “understand the utilization,

control flow and procedures written in source code” using the in-line documenta-

tion [dSM09]. When creating in-line documentation such as Javadoc comments, writ-

ers need to be direct and straight forward, excluding any pointless complexity in the

writing.

The open source project GNOME8 uses the Flesch, Fog, and Kinciad readability

8GNOME, http://www.gnome.org/

16

http://www.gnome.org/

measures as part of their documentation guide. The readability metrics are used

as a “quick assessment of the density of the technical documents”. The goal of the

GNOME Documentation Standard Guideline (GDSG)9, is to provide the project’s

contributors with a framework to write good and consistent documentation, so that

users “can expect certain structures and conventions” in the documentation.

2.4 Knowledge Representation using Ontologies

Ontologies offer the formal, and explicit representation of a shared conceptualization

needed to model a domain of discourse [Gru93]. As a result, ontologies have recently

become the focus of many researchers attempting to model a large amount of infor-

mation using a formal representation [Bei10].

Using concepts and relationships, ontologies provide the machine translatable con-

structs needed to represent knowledge. A key benefit to creating ontology models

is that they provide a non-proprietary formal language that facilitates knowledge

sharing [MCHS09]. An ontology model is effective in representing a large amount

of information using a small number of axioms (individuals and relationships). The

semantically rich model provides users with a high-level conceptualization of the in-

formation, while at the same time allowing them to focus on specific parts of the

model. A semantically rich ontology model also provides the formal language capable

of linking related information spanning across boundaries. The process of linking

ontologies using concept, instance and relationship assertions is called ontology align-

ment [Bei10].

Revision control and issue tracking systems are some of the many tools that are

currently being used to perform software development and maintenance tasks. Soft-

ware engineering repositories can be either hosted on individual computers or dis-

tributed across multiple locations shared using a network. Because of the important

and often large amount of information stored in these repositories, researchers are

constantly looking for ways to analyze this data to determine a project’s maturity,

recover architectural thoughts, perform impact analysis, and re-establish traceability

links [MRBW10, KBT07, HKST06, ZWRH06]. One of the key challenges when trying

to analyze software repositories is the lack of a common representation. Modelling,

9GDSG, http://library.gnome.org/devel/gdp-style-guide/stable/

17

http://library.gnome.org/devel/gdp-style-guide/stable/

and linking the different artifacts using ontologies is a “prerequisite for interoperabil-

ity, and unhampered semantic navigation and search” [Bei10].

Ontology population from text is also becoming increasingly important for NLP

applications. As a majority of the world’s knowledge is encoded in natural language

text, automating the population of these ontologies using results obtained from NLP

analysis of documents [Cim06] has recently become a major challenge for NLP ap-

plications. In the biomedical NLP (bio-NLP) domain, ontologies are being used to

support information extraction and semantic search applications [Bei10]. Populated

from natural language texts, they offer significant advantages over traditional export

formats, such as plain XML. The development of text analysis systems have been

greatly facilitated by modern NLP frameworks (e.g., The General Architecture for

Text Engineering (GATE)).

Using an OWL model enables us to reuse existing ontologies. OWL models also

support importing and extend other ontologies. This feature also makes OWL scalable,

because it enables the construction and maintenance of distributed knowledge bases.

Past research on the use of ontologies focus mostly on the conceptualization of

the domain, and less about providing an automated means of ontology population.

Web Ontology Language (OWL): The Web Ontology Language (OWL) became

a World Wide Web Consortium (W3C) standard in 2004, as a successor to earlier on-

tology languages, such as DAML+OIL. The aforementioned formal language used by

OWL ontologies is called Description Logic, or DL. Though more expressive than

propositional logic, DL concentrates on the decidable fragment of First Order Logic

(FOL). The DL language defines the set of concepts, as well as object and datatype

properties needed to build an OWL model [FBMNPS07]. An ontology that only

contains concepts and relationships is known as a taxonomic representation of the

domain of discourse, or T-Box. For example, Wine, WineColour, and Region might

be concepts that appear in a Wine Ontology10. Here, hasColour might be an object

property relation [FBMNPS07] linking Wine and WineColour together, and locatedIn

would be a relationship between Wine and Region. The concepts and relations dis-

cussed thus far would make up the T-Box of the ontology. Apart from the T-Box, DL

based languages also use a set of assertions, or A-Box, to create statements reflecting

10Wine Ontology, http://oaei.ontologymatching.org/tests/102/onto.html

18

http://oaei.ontologymatching.org/tests/102/onto.html

the domain of discourse. Instance assertions make it possible for statements, such as:

“Porto” is a type of wine, “Red” is a type of colour and “Portugal” is an instance

of the Region concept. Furthermore, relationship assertions make it possible to have

statements such as “Porto” has the wine colour “Red” and “Porto” is located in the

“Portugal” region.

Ontologies modelled using DL can also take advantage of the reasoning services

provided by a DL reasoner such as Racer [HM01], Pellet [SPG+07], or FaCT++ [TH06].

Visualizations and queries using SPARQL [PS08] can also be applied on a given knowl-

edge base.

2.5 Summary

In this chapter, we provided the background information related to our work. In

Chapter 3, we compare similar efforts related to the different parts of this thesis,

namely generating a corpus using source code and source code comments and the

analysis of source code comments using different quality factors.

19

Chapter 3

Related Work

In this chapter, we discuss related work separately for the two major aspects of

our work: (1) Generating a corpus from source code and source code comments to

be used as input for NLP systems, and (2) analyzing the quality of source code

comments in relation to the different quality factors. The section concerned with

source code comment analysis is further split into three subsections: (1) the internal

quality analysis of source code comments, (2) consistency analysis between code and

its natural language comment, and finally (3) the elicitation of traceability links

between source code and the various software engineering artifacts, such as version

control and issue tracking systems.

3.1 Corpus Generation from Source Code

The fact extraction and transformation tool JavaML is capable of representing Java

source code using an XML representation to support “powerful querying” capabili-

ties [Bad00]. Including Javadoc comments as part of the source code analysis was not

included until JavaML 2.0 [ADB04]. However, when looking at the generated XML

documents, we found that the main focus of JavaML 2.0 was associating docComments

with related code structures (i.e., Class, Field and Method), and less about repre-

senting the different parts of a Javadoc comment. Along with providing insufficient

information, we also found that JavaML included redundant information as part of

their analysis. Services such as tokenizing the content found in in-line documentation

were included, a feature that can easily be added in our quality assessment of Javadoc

20

comments. Similar tools, such as JavaCC [Kod04] or Japa1, also provided little or no

support for Javadoc comments.

After determining that current fact extraction and transformation tools were un-

able to assist in the analysis of Javadoc comment, we quickly turned our attention

to transformation tools that make use of the Javadoc extraction tool2, known as

doclets [Kra99]. A number of Javadoc doclets exist that can generate XML files

using source code and Javadoc information, such as the xml-doclet,3 Mavens’s

XMLDoclet,4 and finally the jeldoclet5. However, when looking at the schema gen-

erated by these doclets, we observed that they were not necessarily designed for

generating a corpus to be used within NLP applications.

For example, the xml-doclet marks up information using only XML tags and

elements and does not make use of XML attributes to represent information. As

mentioned earlier, XML attributes are interpreted by NLP frameworks as features of

an annotation.

The doclet that generates a schema that best satisfies our requirements is the

jeldoclet. The jeldoclet however does not attempt to differentiate between the

different types of comments (i.e., Calss, Field, and Method), which could minimize the

descriptiveness of the corpus. The jeldoclet also does not capture the information

provided by Javadoc when a certain class implements or extends another class, as

shown in Figure 13 on page 46. The source data being represented and the output

format is the same for all XML generating doclets, and the XML documents generated

using the doclets mentioned herein can be loaded within an NLP framework. However,

how the information is marked-up can drastically change the number of annotations,

features and entities that are created, which can have a cascading effect on the rest

of processing resource within the NLP application.

Having the most number of annotations, features or entities as a result of how

the information is marked up within an XML document is not necessarily beneficial.

Providing a schema that enables NLP frameworks to differentiate between what is an

annotation, feature, and entity is important when generating an XML document that

1Japa, http://www.java2s.com/Open-Source/Java-Document/IDE/tIDE/japa.parser.htm/
2Javadoc, http://www.oracle.com/technetwork/java/javase/documentation/

index-jsp-135444.html
3XML-Doclet,http://code.google.com/p/xml-doclet/
4Maven Doclet,http://maven.apache.org/maven-1.x/
5jeldoclet,http://jeldoclet.sourceforge.net/

21

http://www.java2s.com/Open-Source/Java-Document/IDE/tIDE/japa.parser.htm/
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://code.google.com/p/xml-doclet/
http://maven.apache.org/maven-1.x/
http://jeldoclet.sourceforge.net/

is to be used as a corpus. None of the existing doclets that we examined were capable

of doing so. For example, since the xml-doclet marks up all the information using

XML tags only, no features are created when the document is loaded within an NLP

framework, and the increased number of annotations would actually have a negative

impact on the amount of work needed by the language engineers to make use of the

generated corpus.

3.2 Quality Analysis of Source Code and Source

Code Comments

In this section, we discuss past efforts interested in the analysis of source code and

source code comments based on three categories defined throughout this thesis.

3.2.1 Internal Analysis of Source Code Comments

There has been effort in the past that focused on analyzing source code comments,

for example, in [BW08] human annotators were used to rate excerpts from Jasper

Reports, Hibernate, and jFreeChart as being either “More Readable”, “Neutral” or

“Less Readable”. The authors developed a “Readability Model” that consists of a

set of features, such as the average and/or the maximum 1) line length in characters;

2) identifier length; 3) identifiers; and 4) comments, represented using vectors. The

heuristics used in the study were mostly quantitative in nature and based their read-

ability scale on the length of the terms used, and not necessarily the complexity of

the text as a whole. The authors also made no attempt to measure how up-to-date

the comments were with the source code they were explaining.

The authors of [PTZ09] manually studied approximately 1000 comments from the

latest versions of Linux, FreeBSD and OpenSolaris. Part of their study was to see how

comments can be used in developing a new breed of bug detecting tool, and how com-

ments that use cross-referencing can be used by editors to increase a programmer’s

productivity by decreasing navigation time. The work attempts to answer questions

such as: (1) what is written in comments; (2) whom are the comments written for or

written by; (3) where are the comments located; and (4) when were the comments

written. Results from the study showed that 22.1% of the analyzed comments clarify

22

the usage and meaning of integers, 16.8% of the examined comments explain imple-

mentation, for example, which function is responsible for filling a specific variable

and, 5.6% of source code comments describe code evolution such as cloned code, dep-

recated code and TODOs. The purpose of the study was to classify the different types

of in-line documentation found in software and not necessarily assess their quality.

An empirical study of the usefulness of Class and Method comments on program

understanding was investigated in [NLC03]. Part of the effort was also concerned

with “what recommendations and guidelines for commenting should be taught and

used in beginning Java programming courses” [NLC03]. The authors prepared a

questionnaire consisting of 10 questions: 5 focusing on high-level questions, such as

what the program does or how one class relates to another, and 5 low-level questions,

such as how a certain method is suppose to behave. The answers to the questions

were given in the Class and Method comments. The questionnaire was given to a

total of 103 students with varying GPAs and Java experience. Based on the results

of the questionnaire, the authors were able to conclude that Method comments had

more of an impact on program comprehension compared to Class comments. Both

the authors of [PTZ09] and [NLC03] made no attempt of providing an automated

quality assessment, nor was there any major correlations made with other software

engineering artifacts.

The authors of [FSH+08] introduce an algorithm that extracts verb information

from comments and verb direct object pairs from method identifiers (e.g., open →
File). The authors state that the “particularities of source code structure” hinder

a search engine’s ability to return relevant information. For example, a search for

“add auction” will not find the related method “addEntry” that “adds auctions to a

list”. The implemented algorithm is able to elicit related information by analyzing the

method’s parameter type, which in the case of “addEntry” is “AuctionInfo”. While

the efforts of the authors were mostly focused towards enhancing search capabilities,

as we explain in Chapter 4, we are more concerned with identifying method comments

that do not add additional value over what could be comprehended using the method

identifier.

The only work that we know of that focuses on automatically analyzing quality of

API documentation generated by Javadoc was done by the authors of [SDZ07]. The

23

authors implemented a tool called Quasoledo that measures the quality of documen-

tation with respect to its completeness, quantity and readability. Here, we extend

the works of [SDZ07] by introducing new quality assessment metrics. We also ana-

lyze each module of a software project separately, allowing us to observe correlations

between the quality of in-line documentation and bug defects. Both of the efforts

mentioned above focus mostly on the evolution of in-line documentation and whether

they co-change with source code, and not necessarily on the quality assessment of

in-line documentation. None of the efforts mentioned in this section put nearly as

much emphasis on correlating the quality of in-line documentation with reported bug

defects as we do in this thesis.

3.2.2 Code/Comment Consistency Analysis

Automatically analyzing comments written in natural language to detect code-comment

inconsistencies was the focus of [TYKZ07]. The authors explain that such inconsis-

tencies may be viewed as an indication of either bugs or bad comments. The authors

present a tool called iComment that 1) applies Part of Speech Tagging (POS) on com-

ments, 2) uses statistics to determine the most predominant terms of a comment, 3)

uses Decision Tree Learning to generate models from a small set of manually anno-

tated comments, and 4) uses program analysis techniques to detect inconsistencies

between code and comments. The tool was applied on 4 large Open Source Soft-

ware projects: Linux, Mozilla, Wine and Apache, and it detected 60 comment-code

inconsistencies, 33 new bugs and 27 bad comments.

Finding regularities in source code and source code comments using Zipf’s Law [Zip32]

was the focus of [Zha08] and [PP09]. A “lexical analyzer” used to estimate the length

of software was implemented in [Zha08]. The analyzer applies “Software Science

Estimation”, “Magnitude of Relative Error” and Zipf’s Law on source code and com-

ments. The authors applied the tool on Jena, Protégé, Ant and nine other software

systems. Some of the results of the study found are the most frequently occurring

keyword used in Jakarta Tomcat is “Public”. The authors also argue that because

“String” was the most frequent identifier for JENA, could act as an indication for

needed optimizations. The authors also found that the identifiers commonly used by

the different developers were “org”, “i”, “e”, “name”, etc. In order to observe the

evolution of a single software project, the “lexical analyzer” was applied to multiple

24

versions of Tomcat. The authors observed that Zipf’s Law also held for the multiple

versions with no major differences in the rank of words used in the lexicon.

The work described in [AHM+09] defines a Source Code Vocabulary (SV) as being

the union of Class Name, Attribute Name, Function Name, Parameter Name and

Comment Vocabularies. The work uses a combination of existing tools like diff

to answer questions; such as how the vocabularies evolve over time, what type of

relationships exist between the individual vocabularies, are new identifiers introducing

new terms, and finally what do the most frequent terms refer to.

An automated approach in mining abbreviation and acronym expansions from

source code and source code comments to enhance software maintenance was the

focus of [HFB+08]. Domain specific terms used in comments are often abbreviated in

the identifiers. The authors used the example of the word “number”, which appeared

4,314 times in the Java 2 Platform, while its abbreviation “num” occurred 5,226

times. The authors argue that “concern location” and source code traceability using

software tools could be improved by integrating abbreviation expansion techniques.

An algorithm was proposed that (1) identifies if a token is a non-dictionary word

and (2) search as for a potential long form for the given short form using the set

of mined words. Fifteen open source projects were manually inspected; some of

the observations made by the authors are that dictionaries that include terms from

the software engineering domain were hard to find and that some abbreviations also

had multiple potential long form candidates. Given such challenges, the authors

developed a set of algorithms capable of identifying the short form abbreviations

and use regular expressions to determine the potential long form. Although certain

aspects of this work might resemble some of the heuristics which we propose herein;

however, our work differs in the application of the tools. More specifically, the analysis

conducted by the authors of [HFB+08] aims at providing users with more precise

search tools capable of including abbreviations, whereas we are more interested in

detecting abbreviations as a deterrent of good comment quality.

None of the works mentioned in this section attempted to analyze the quality of

Javadoc comments used to generate API documentation. Unlike source code com-

ments that describe a given implementation within a method body, and are used by

developers and maintainers, Javadoc API documentation is used by other stakehold-

ers, such as projects managers and conformance testers. Other tools that fall under

25

the code/comment consistency analysis of in-line documentation are the Doc Check

Doclet, and Checkstyle discussed in Chapter 3. Both tools provide quality analysis

that are purely syntactic in nature, which can be easily manipulated to give incorrect

results (e.g., copying and pasting comments).

3.2.3 External Analysis of Source Code Comments

One of the first research efforts concentrated on creating a “software repository data

exchange format” using OWL was [KBT07]. Due to the groups interest in software

evolution, the EvoOnt knowledgebase modelled information from the version control

and issue tracker repositories. The same group created an extension of SPARQL called

iSparql, which they use to query their knowledge base. iSparql does not introduce

any additional syntax, but rather considers the notion of “virtual triples” that are not

matched in the ontology graph, but are bound to a resource using SPARQL and joined

by iSparql using the different similarity measures. EvoOnt along with iSparql were

then used to conduct common software engineering tasks, such as: code evolution

visualization, analyzing commit messages and bug reports, and clone detection.

The authors of [HKST06] link data from the different software engineering repos-

itories to identify the components of a software system that can be reused in other

projects based on details such as applicability and licensing. Using their approach,

the authors are also able to identify developers that have expertise in building sys-

tems from a given domain. We are unaware of similar work attempting to link in-line

documentation for the purpose of enriching a software engineering knowledge base,

built using ontologies.

3.3 Summary

Common to all Java fact extraction and transformation tools that we analyzed is that

they provide an Abstract Syntax Tree (AST) representation of the source code. How-

ever, most of these parsers either (i) did not include sufficient information regarding

Javadoc comments, or (ii) produced an output that was not designed to be used as

input for NLP applications, and therefore could not assist in the analysis of Javadoc

comments.

Efforts interested in analyzing source code comments in the past [PTZ09, AHM+09,

26

TYKZ07, BW08, PTZ09] focused mostly on implementation level documentation de-

scribing an algorithm, rather than API level documentation discussing the overall

responsibility of a Class or Method. In cases where the source code is not made avail-

able (i.e., closed source software), implementation level documentation may only be

available to internal stakeholders of the software project. Individuals outside of the

organization attempting to re-use some of the services provided by the source code

binaries would therefore need to use the API level documentation generated using

tools such as Javadoc. Another common application of source code comment analysis

researchers were interested in was geared more towards the enhancement of results

returned by search engines [HFB+08, FSH+08], and less about measuring the quality

of source code comments using different quality factors. Part of the focus for our

study attempts to observe the adverse effects of comment quality on source code qual-

ity, using factors such as reported bug defects. Evaluating the quality of comments

found in different versions of a software system also allow us to also observe if the

quality of source code comments increase or decrease over time. Existing comment

analysis tools [BW08, SDZ07] also based their assessments on mostly quantitative

and syntactic quality factors. Features such as identifier and comment length, as well

as the ratio between undocumented and documented identifiers were used as a mea-

sure for comment quality. For our application, we are also concerned with measuring

the internal NL quality of source code comments. Using NLP services such as POS

tagging, noun and verb group chunking, we can analyze the semantic structure of

source code comments. This will us to measure quality factors such as writing style

and the usefulness of the source code comment. The internal NL quality analysis of

Javadoc comments conducted by [SDZ07] relied mainly on the Flesch-Kincaid read-

ability index to measure comment quality. However, as discussed in Chapter 2, the

Flesch-Kincaid readability formula was designed to measure the readability of text

based on persistence and efficiency; although these are important for in-line documen-

tation, the readability formula is unable to measure equally important factors such

as comprehension and retention. Moreover, there are other aspects of comment qual-

ity such formulas are incapable of analyzing, such as active vs. \passive voice, and

descriptive vs. \prescriptive writing style, as discussed in greater detail in Chapter 4.

Due to their limitations, analyzing texts using readability measures alone can be seen

as a misuse of the formulas [Kla00, DuB06].

27

There have been previous attempts to link source code documentation with either

bug defects [TYKZ07] or version control systems [SDZ07, AHM+09]. However, we are

unaware of efforts attempting to establish traceability links between source code com-

ments and other software engineering artifacts to facilitate the software development

and maintenance process.

28

Chapter 4

Requirements Analysis

Having discussed and summarized the related work material in Chapter 2, we now

consider the requirements of our system. More specifically, we define and detail the

list of quality factors that we use to analyze the qaulity of Javadoc comments written

in natural language.

4.1 Generating a Corpus from Source Code

Requirement#1.1: Generating Input Documents. Before being able to process source

code documents, the code has to be transformed into a more abstract representation.

The format of the input documents used for NLP analysis has a large impact on the

whole application, and is therefore addressed early on [KWR10]. In some cases an

NLP application may, for example, benefit more from the rigid representation of an

XML format, versus an application used to process Internet content and designed

to analyze HTML documents. Given the large amount of information that exists

in source code documents, the JavadocMiner requires a representation capable of

modelling the entire information found in source code and source code comments

using a format that will facilitate NLP analysis.

4.2 Comment Syntax Analysis

Prior to applying semantic quality assessments on Javadoc comments, we begin our

internal NL quality analysis using simple NLP services such as creating tokens, as

29

well as detecting the use of noun phrases and verb groups within Javadoc comments.

Requirement#2.1: Detecting Number of Words within a JavadocComment. The

amount of words contained within a comment can act as an indicator of how much

information was provided to document the source code [SDZ07]. As a preliminary

means of analyzing the internal quality of comments, the JavadocMiner must com-

pare the amount of information included in similar types of comments, i.e., Class,

Method or Field. If a class was assessed as containing a large amount of documenta-

tion in comparison to other classes, it could be an indicator for a class with too much

responsibility, and a candidate for potential refactoring.

Requirement#2.2: Detecting Use of Abbreviations. Abbreviations such as “GIF” and

“JPEG” are easily forgotten after their introduction; however, they are crucial to the

understanding of in-line documentation. Included in this analysis are hard to read

abbreviations, such as “WYSIWYG”, which “can make a reader feel dyslexic” [Kla00].

Abbreviations can reflect the domain specific understanding of a certain community,

making it difficult for others to understand. Including abbreviations in technical

documentation can hinder a person’s ability to comprehend the content. According

to the Javadoc guidelines discussed in Chapter 2, the use of abbreviations in comments

should be avoided [Kra99]. As a means of monitoring the amount of abbreviations

included within a Javadoc comment, the JavadocMiner shall identify and count the

abbreviations being used within source code comments.

Requirement#2.3: Detecting Noun and Verb Phrase Usage. Detecting the use of noun

and verb phrases provides a basic assessment of the use of well-formed sentences within

in-line documentation.

4.3 Internal Comment Quality Assessment

Traditional software engineering metrics such as Source Lines of Code (SLOC) or

McCabe’s Cyclomatic Complexity (MCC) are of little or no use when attempting to

measure the semantic quality of source code comments [SDZ07]. Without adequate

measures for comment quality, developers and documentation writers can freely create

in-line documentation with the possibility of scrutinizing the readability of the source

code implementation due to bad or insufficient documentation quality.

30

Important quality factors of readability are the comprehension, retention, effi-

ciency, and persistence of text [DuB06]. Such characteristics of text also need to be

applied to in-line documentation, which needs to effectively and efficiently explain

the motivation for a given source code implementation to future developers and main-

tainers.

The JavadocMiner shall also be able to measure the readability of in-line docu-

mentation based on the different factors that impacts a developer’s and maintainer’s

ability to comprehend and retain the in-line documentation. Along with analyzing the

readability of text using readability measures such as the FOG and Kincaid readabil-

ity index, our JavadocMiner system shall also assess source code comments based on

quality factors such as writing style, and voice. An evaluation of text other readability

measures are incapable of performing [Kla00, DuB06].

To ensure the proper application and coverage of readability measures, we list and

define the set of features used to measure the readability of source code comments

(Table 3).

Table 3: JavadocMiner Comment Readability Criterion
Feature Requirement FOG KINCAID SPW PWS

Calculate Comprehension and Retention 3.1 ✓

Calculate Efficiency and Perseverance 3.2 ✓

Detect Second Person Writing Style 3.3 ✓

Detect Passive Writing Style 3.4 ✓

Requirement#3.1: Calculating Comprehension and Retention. Text with optimal

readability levels results in greater and more complete retention, as well as greater

acceptability (attractiveness) [DuB06]. Simplifying documentation also allows indi-

viduals to focus more on the newly introduced technical terms, and less on trying to

understand complicated writing [DuB06]. The source code vocabulary consists of class

names, attribute names, function name, parameter names and comments [AHM+09],

which contain many technical terms from the application domain. To assist in soft-

ware comprehension and maintenance tasks, it is important for Javadoc comments

to be easily understood by developers and maintainers. The ability to quickly recall

the different components of an application is an equally important software engineer-

ing task [Pfl98]. The JavadocMiner shall provide users with a quality assessment of

source code comments based on the comprehension and retention of text found in the

Javadoc comments.

31

Requirement#3.2: Calculating Efficiency and Perseverance. “New readability stud-

ies” [DuB06] were more concerned with reading efficiency and persistence (or perse-

verance), and less about comprehension. Studies have shown that better readability

increases reading efficiency and perseverance by more than 80% [DuB06]. With more

important tasks at hand, developers and maintainers require Javadoc comments that

are efficient in explaining the implementation of an application. Maintaining optimal

and consistent levels of comment quality based on the efficiency and perseverance

quality factors may result in the added productivity of developers and maintainers.

To ensure Javadoc comments maintain satisfactory quality levels based on the fol-

lowing readability factors, the JavadocMiner shall assess the quality of source code

comments using readability formulas designed to measure the efficiency of text.

Requirement#3.3: Detecting Prescriptive Writing Style. Often found in documents

from the legal or medical domain, prescriptive language is used by authors attempt-

ing to share a personal opinion or belief. Prescriptivists explain how you ought to do

something, where descriptivists explain how to actually do it [HP02]. A third person

descriptive writing style is much more formal than first or second person, and should

therefore be used when writing technical documentation [Kra99]. To ensure devel-

opers and documentation writers use an acceptable writing style when documenting

their software [Kra99], the JavadocMiner shall detect sentences within source code

comments that use a second person prescriptive writing style.

Requirement#3.4: Detecting Passive Voice Writing Style. In-line documentation is

meant to be clear, short and to the point; therefore, passive writing should generally

be avoided in Javadoc comments. An active voice writing style is more “direct and

vigorous” compared to a passive voice [JW00]: “Formats the passed string” is, for

example, much more direct than “In charge of formatting the string passed to it”.

Both examples are equally understandable; however, the former achieves the same

goal with less written content. Measures discussed this far are incapable of detecting

the writing style of text. The JavadocMiner shall detect comments that use a passive

writing style, and provide the users with recommendations on how the comments may

be improved.

32

4.4 Code/Comment Consistency Analysis

Over time the quality of source code comments can degrade, due to continuous

changes to the source code not being reflected in the comments. Existing Javadoc

analysis tools such as DocCheck and Checkstyle focus mostly on code/comment type

of analysis. We chose to include syntactic analysis in our JavadocMiner system to

provide users with full coverage of Javadoc comment analysis as shown in Table 4,

eliminating the need to use additional tools offering similar quality assessments.

/∗∗
∗ Manages the event changes of elements within a UML model,
∗ and uses the {@link ActivityGraphsHelper } helper .
∗ @author Bob Tarling
∗ @param source The bean that fired the event .
∗ @param propertyName The programmatic name of the property
∗ that was changed.
∗ @param oldValue The old value of the property .
∗ @param newValue The new value of the property .
∗ @param originalEvent The event that was fired internally
∗ in the Model subsystem that caused this .
∗/
public AttributeChangeEvent(Object source , String propertyName,

Object oldValue , Object newValue, EventObject originalEvent)

Figure 3: A Javadoc Comment for an ArgoUML Constructor

Requirement#4.1 Detecting Undocumented Identifiers. Without sufficient documenta-

tion, developers modifying unfamiliar source code run the risk of introducing a fault.

The JavadocMiner shall measure the completeness of a class in terms of documented

identifiers. In order for a Javadoc comment to be properly associated with an identifier

and therefore included in the generated API documentation, it must appear directly

before the class, field, method or constructor declaration. In the initial phase of our

code/comment quality assessment, the JavadocMiner will identify source code that do

not have Javadoc comments associated with them. In Figure 3, we show an example

of a constructor taken from ArgoUML, documented using a Javadoc comment. The

comment includes the docComment explaining the responsibility of the constructor.

Also included are the author’s name, and parameter comments describing what each

parameter is being used for.

33

package org.argouml.model;

import java . util .EventObject;

/∗∗
∗ A change event due to change in an attribute of a model element
∗ (eg the name of a model element has changed).
∗
∗ @author Bob Tarling
∗/
public class AttributeChangeEvent extends UmlChangeEvent {

/∗∗
∗ Constructor .
∗
∗ @param source The bean that fired the event .
∗ @param propertyName The programmatic name of the property
∗ that was changed.
∗ @param oldValue The old value of the property .
∗ @param newValue The new value of the property .
∗ @param originalEvent The event that was fired internally
∗ in the Model subsystem that caused this .
∗/
public AttributeChangeEvent(Object source , String propertyName,

Object oldValue , Object newValue, EventObject originalEvent) {
super(source , propertyName, oldValue , newValue, originalEvent);

}

/∗∗
∗ The UID.
∗/
private static final long serialVersionUID = 1573202490278617016L;

}

Figure 4: A Completely Documented ArgoUML Class

Requirement#4.2: Detecting Classes With Insufficient Documentation. Another im-

portant task of our syntactic analysis of Javadoc comments is detecting classes that

are under-documented. The JavadocMiner must process each class separately in order

to identify the ratio between documented identifiers vs. \undocumented identifiers

within a class. For the ArgoUML class shown in Figure 4, the JavdocMiner will assign

a value of 1, indicating that all three of the identifiers (class, constructor, and field)

are documented using Javadoc comments.

Requirement#4.3: Detecting Undocumented Method Return Types. When document-

ing the return type of a method, the @return block tag must begin with the correct

type being returned (e.g., String), followed by the doc comment discussing what is be-

ing returned. The JavadocMiner system must detect methods that have return types

34

/∗∗
∗ A sequence diagram can accept all classifiers . It will add them as a new
∗ Classifier Role with that classifier as a base. All other accepted figs
∗ are added as is .
∗ @param object The object to accept
∗ @return true if the diagram can accept the object , else false
∗ @see org.argouml.uml.diagram.ui .UMLDiagram#doesAccept(java.lang.Object)
∗/
@Override
public boolean doesAccept(Object objectToAccept) throws ObjectAcceptException

Figure 5: An Incomplete ArgoUML Method Comment

that are not being documented. In Figure 5, we show an example of an ArgoUML

method that returns the type “boolean”, which is incorrectly documented using a

Javadoc comment that begins with the value of “true”, rather than the actual return

type.

Requirement#4.4: Detecting Undocumented Method Parameters. When documenting

the parameter list of a method, the @param block-tag should begin with the correct

name of the parameter being documented, followed by the doc comment discussing the

parameter. The JavadocMiner must detect parameters that do not have a parameter

comment associated with them. Either because (i) documentation for the parameter

was not included, or (ii) a change to the name of the parameter in the parameter list

does not reflect that of the associated comment. In Figure 5, we show an example of

an ArgoUML method that contains a parameter called “objectToAccept”, which is

out of sync with the Javadoc parameter comment explaining it.

Requirement#4.5: Detecting Undocumented Thrown Exceptions. When documenting

the exceptions thrown by a method, the @throws or @exception block tags must begin

with the correct type of the exception being thrown (e.g., IOExcpetion) followed by

the doc comment explaining the exception itself. The JavadocMiner system must

detect methods that throw exceptions that are not being documented. In Figure 5

we show an example of an ArgoUML method that throws an exception of the type

“ObjectAcceptException” but does not have a Javadoc comment associated with it.

Requirement#4.6: Detecting Methods With Insufficient Documentation. Studies have

shown that due to developers and maintainers constantly modifying a computer pro-

gram, modifications to the source code often don’t reflect their comments [FWGG09].

For in-line documentation describing a method to be considered complete, it should

document all aspects of the method. Similar to the ratio between undocumented vs.

35

\documented identifiers within a class, the JavadocMiner will provide users with a

ratio between the number of items within a method that should be documented using

the method block tags discussed in Requirements #3.3–3.5, identifying the different

parts of a method that are out of sync with the comment(s) discussing it. For the

method comment example in Figure 5, the JavadocMiner will generate a value of

0.25, indicating a method that contains a method comment but is out of sync with

the return type, parameter list, and exception it throws.

/∗∗
∗ Gets popup menu
∗
∗ @return Popup menu
∗/
private JPopupMenu getPopupMenu()

Figure 6: A Method Comment with no Added Value

Requirement#4.7: Detecting Under-Documented Method Comments. Developers mostly

interested in writing source code find creating and reading source code comments a

highly unfavourable task [FWG07]. Therefore, to help software engineers realize the

importance of source code comments, in-line documentation must add value to the

readability of the source code implementation. The purpose of writing in-line docu-

mentation is to add value beyond what an individual is able to gather from looking

at just the declaration names. In Figure 6, we show an example of an ArgoUML

method called “getPopUpMenu”, which is described using a comment that adds no

value beyond the API name. As part of the syntactic analysis, the JavadocMiner will

detect comments that provide insufficient documentation compared to what could be

gathered using the API name.

4.5 Representing the JavadocMiner Results

Requirement#5.1: Ontology Representation. The final step of the JavadocMiner must

export the results of the language service to a repository that enables users to view,

analyze, and query the data. When attempting to provide users with information

from an analysis, we need to consider how to model the information using a robust

and scalable representation.

36

Requirement#5.2: Traceability Links. Most software projects undergo a brief develop-

ment period, followed by a much longer maintenance period, where efforts are focused

towards adopting new contexts and requirements [KCA06]. During this maintenance

period, software developers spend a considerable amount of time searching and explor-

ing the different software engineering artifacts in an attempt to understand the unfa-

miliar code. Software engineering knowledge is typically distributed across multiple

artifacts and repositories. Automatically linking the different artifacts using common

software engineering concepts eliminates the need for developers and maintainers to

manually search for specific information from the different SE repositories. A process

that interrupts developers from more important tasks such as writing code [KCA06].

Along with modelling the results of the analysis, the JavadocMiner will also establish

traceability links between Javadoc comments and other software engineering artifacts,

such as version control and issue tracking systems.

4.6 Tool Integration

Requirement#6.1: Embedding the Results. For the results generated by the analysis of

our tool to be of use to end users, there needs to be a separation of concern where the

language service provided by our JavadocMiner runs in the background of existing

software engineering tools. Extending existing tools lessens the impact of having

to learn new technologies, thus increasing the possibility of the JavadocMiner being

accepted and used. Integrated Development Environments (IDEs), build servers and

version control systems are just a few of the many tools used to perform software

engineering tasks that can be enriched using results produced by the JavadocMiner

analysis.

4.7 Summary

Existing Javadoc quality assessment tools provide an analysis that are purely syntactic

in nature with minimal regard to analyzing the semantic quality of the documentation.

In Table 4 we provide a comparison using the different categories of analysis provided

by the JavdocMiner with the similar tools such as Quasoledo [SDZ07], Doc Check

Doclet, and Checkstyle.

37

According to Oracle’s website1, future error checks using their Doc Check Doclet

will include identifying comments that do not add any value e.g. “Returns the com-

ponent name” for a method called “getComponentName”–this is a feature already

included in our JavadocMiner system (Requirement #3.7).

1Errors Identified by the Sun Doc Check Utility, http://java.sun.com/j2se/javadoc/

doccheck/docs/DocCheckErrors.html

38

http://java.sun.com/j2se/javadoc/doccheck/docs/DocCheckErrors.html
http://java.sun.com/j2se/javadoc/doccheck/docs/DocCheckErrors.html

T
ab

le
4:

A
C

om
p
ar

is
on

b
et

w
ee

n
D

iff
er

en
t

J
av

ad
o
c

A
n
al

y
si

s
T
o
ol

s
T
yp

e
F
ea

tu
re

R
E
Q

.
J
a
va

d
o
cM

in
er

Q
u
a
so

le
d
o

D
o
c

C
h
ec

k
D

o
cl

et
C
h
ec

k
st

yl
e

C
o
m

m
en

t
S
yn

ta
x

W
or

d
s

P
er

Ja
va

d
o
c

C
o
m

m
en

t
2
.1

✓
✓

R
ef

ra
in

fr
o
m

u
si
n
g

a
b
b
re

vi
a
ti
o
n
s

in
co

m
m

en
ts

2
.2

✓

N
u
m

b
er

o
f
N

o
u
n

P
h
ra

se
s

a
n
d

V
er

b
G

ro
u
p
s

2
.3

✓

In
te

rn
a
l
N

L

C
a
lc

u
la

te
C
o
m

p
re

h
en

si
o
n

a
n
d

R
et

en
ti
o
n

3
.1

✓
✓

C
a
lc

u
la

te
E
ffi

ci
en

cy
a
n
d

P
er

se
ve

ra
n
ce

3
.2

✓

D
et

ec
t

P
re

sc
ri
p
ti
ve

w
ri
ti
n
g

st
yl

e
3
.3

✓

D
et

ec
t

P
a
ss

iv
e

vo
ic

e
w

ri
ti
n
g

st
yl

e
3
.4

✓

C
o
d
e/

C
o
m

m
en

t

M
is
si
n
g

C
o
m

m
en

ts
4
.1

✓
✓

✓
✓

A
n
y

Ja
va

d
o
c

C
o
m

m
en

t
4
.2

✓
✓

✓
✓

M
et

h
o
d

m
is
si
n
g

“
@

re
tu

rn
”

ta
g

4
.3

✓
✓

✓
✓

M
et

h
o
d

m
is
si
n
g

“
@

p
ar

a
m

”
ta

g
4
.4

✓
✓

✓
✓

M
et

h
o
d

m
is
si
n
g

“
@

th
ro

w
s”

ta
g

4
.5

✓
✓

✓
✓

D
o
cu

m
en

ta
b
le

It
em

R
a
ti
o

4
.6

✓
✓

C
o
m

m
en

t
m

u
st

a
d
d

va
lu

e
b
ey

o
n
d

A
P
I
N

a
m

e
4
.7

✓

E
xt

er
n
a
l

O
n
to

lo
g
y

R
ep

re
se

n
ta

ti
o
n

5
.1

✓

T
ra

ce
a
b
il
it
y

L
in

k
s

5
.2

✓

E
m

b
ed

d
ed

T
o
o
l
In

te
g
ra

ti
o
n

6
.1

✓
✓

39

Chapter 5

Design

In this chapter, we cover the design decisions taken when developing the JavadocMiner.

We start by identifying the different system components, discuss the process of mark-

ing up source code to be used as input for our quality assessment, followed by a

description of the metrics that were used to analyze the quality of in-line documen-

tation. We then give an example of the type of results produced by our analysis and

finally discuss the design of the ontology that is used to store the results.

5.1 System Components

The first component of our JavadocMiner system is in charge of generating a corpus

from Javadoc information. For reasons discussed in the following section, we decided

on using an XML representation for the input documents of our NLP application.

The first component of our JavadocMiner system is in charge of generating XML

documents using information found in Javadoc. Once the set of documents (corpus)

has been generated, it can be used as input for our NLP application, as shown in

Figure 7.

As mentioned in Chapter 2, NLP application pipelines are assembled using levels

of linguistic analysis, with each level adding information to the document. An NLP

application will typically (1) reuse resources that perform common linguistic tasks,

and (2) design specialized resources specific to an application. The results of an NLP

application can be exported in a number of different formats such as an XML file,

database or ontology. For our JavadocMiner system, generated results are exported

40

Figure 7: JavadocMiner Overview

to an ontology, since it allows for a semantically rich of a large amount of information

using small number of axioms [WKR11]. Users are also able create inferences by

applying reasoning services on the knowledgebase, and retrieve information from the

knowledge base using a standard query language.

For now, we have identified the major components in our JavadocMiner architec-

ture, giving us a general idea on how the system will be able to assess the quality of

documentation found in source code. In the remaining parts of this chapter, we will

provide a more detailed design description of each component.

5.2 Corpus Generation from Source Code:

The SSL Javadoc Doclet

As mentioned in Chapter 3, the tool that provides the most information regarding

the constructs found in Javadoc comments is the Javadoc tool.

<H2>
org.argouml.model

Class AttributeChangeEvent
</H2>

<Package Block>
<Package>org.argouml.model</Package>

<Class Block>
......

</Class Block>
</Package Block>

Figure 8: Documentation Generated Using Javadoc for an ArgoUML Package

The Javadoc tool is capable of extracting all of the Javadoc related information,

and Java source code related information up to the method level (not including the

method body itself), which is sufficient for the assessment of Javadoc comment quality.

41

Javadoc’s standard doclet generates API documentation using the HTML format;

while this is convenient for human consumption, automated NLP applications re-

quire a more structured XML format as we discuss in the rest of this section. For

our purpose, we found that the XML format is much more versatile than HTML, and

therefore ideal for our type of NLP analysis. XML enables users to: (1) define custom

tags and attributes to mark up the information of the XML elements [Ray03] and

(2) define a well-formed XML structure that is easily processed by NLP applications.

With HTML, we are limited to pre-defined tags such as <p> or <head>, and predefined

attributes such as font-size, as well as a standard HTML structure that encloses

information using the pre-defined tags, such as <body> and <table> [GP03]. Such

tags found in HTML are designed to be rendered by a browser for human consump-

tion [Av08], but are less suitable for automatic processing in an NLP framework. For

example, in Figure 8 we show the same Java package taken from the ArgoUML OSS

project [BF09] represented using HTML (left) and XML (right). The HTML represen-

tation not only contains additional irrelevant information, but also uses HTML tags

that do not reflect the semantics of the information they mark-up. This is not the

case for the XML representation, which only includes relevant information and uses

custom defined tags that reflect the source code and source code comment information

such as, Package Block, Class Block.

Figure 9: HTML Generated Documentation Loaded within an NLP Framework

When loading HTML documents generated using the standard doclet into an NLP

framework (Figure 9), the elements of an HTML tag are interpreted as being entities

42

of an annotation. For example, the Java package “org.argouml.model” is interpreted

as being of the type h2. This is because Javadoc’s standard doclet extraction tool

marked up the package using the <h2></h2> tags. As a result, additional processing

is required in order to identify the entity as being a package.

Figure 10: XML Generated Documentation Loaded within an NLP Framework

Compare this with an XML document (Figure 10), where the elements of the

XML tags coincide with the encapsulated entity, clearly identifying them as being of

type Package, Class, Class Comment, and Author.

To satisfy Requirement #1.1, we designed our own doclet capable of generating

XML documents. The SSL Javadoc Doclet [KWR10] converts Java source code and

Javadoc comments into an XML representation, thereby creating a corpus that the

JavadocMiner NLP service can efficiently analyze. The SSL Javadoc Doclet enables

us to (i) control what information from the source code will be included in the corpus,

and (ii) mark up the information using a schema that NLP applications can easily

process.

The SSLDoclet uses a schema that maintains the relationships found in source

code and represents the information using a combination of XML tags, attributes and

elements. In Figure 11, we show how the relationships found in the sample source

code are modelled (note: XML elements and attributes were omitted for readability

purposes).

43

<Abstract Class Block>
<Abstract Class/>

<Extends Block>
<Extends/>
<Extends Comment/>

</Extends Block>
<Class Comment Block>

<Class Comment/>
<Author/>

</Class Comment Block>
<Constructors>

<Constructor Block>
<Constructor/>

<Constructor Comment Block>
<Constructor Comment/>

</Constructor Comment Block>
<Parameter Block>

<Parameter/>
<Parameter Comment/>

</Parameter Block>
</Constructor Block>

</Constructors>
...

</Abstract Class Block>

Figure 11: SSLDoclet Schema

5.2.1 Marking Up Source Code

The SSL Javadoc doclet is able to model both the syntactic and semantic information

found in Java source code, such as:

• Parent/Child relationships between generalized and specialized classes.

• The package an interface or abstract class belongs to.

• Fields, constructors and methods of a class.

• The types, modifiers (private, public, protected), and constant values of the

fields.

• The return types, parameter list, and thrown exceptions of a method.

In Figure 12, we show an abstract class declaration taken from ArgoUML, and the

same class is shown in Figure 13 after converting it using the SSL Doclet. The infor-

mation found in the abstract class is represented using the <Package> and <Extends>

44

package org.argouml.notation . providers ;

import java .beans.PropertyChangeListener ;
import org.argouml.model.Model;
import org.argouml.notation . NotationProvider ;

/∗∗
∗ This abstract class forms the basis of all Notation providers
∗ for the text shown in the Fig that represents the CallState .
∗ Subclass this for all languages .
∗
∗ @author mvw@tigris.org
∗/
public abstract class CallStateNotation extends NotationProvider

Figure 12: An Abstract Class Declaration taken from ArgoUML’s Source Code

tags to model the package the abstract class belongs to, and the super class that

it extends, respectively. The parameter list that belongs to the method “intialiseLis-

tener” are modelled using the <Parameter> XML tag as illustrated in Figure 14.

Both Figures 13 and 14 demonstrate how our doclet is able to represent more

information, compared to the standard doclet, effectively using a well formed XML

representation. For example, we now also know that the parent of the “CallStatNota-

tion” is “Object”, and that the listener parameter of the “intialiseListener” method

has the type “PropertyChangeListener”.

5.2.2 Marking Up Source Code Comments

Our SSL Javadoc Doclet is also designed to mark up the natural language information

found in a Javadoc comment, such as the docComment, block, and in-line tags.

Along with the source code information discussed earlier, Figure 12 also shows an

example of a Javadoc comment that includes a docComment and uses the “@author”

block tag. In Figure 13, we show how Javadoc comments are marked up using the

<Extends Comment> tag, which contains the comment belonging to a super class. Ad-

ditionally, the figure shows how the class comment, belonging to “CallStatNotation”,

is represented using the Class Comment, and Author XML tags.

To conclude, even though there exists a number of XML generating doclets that

can be downloaded from the net, however we feel that our SSLDoclet differs from

the rest due to its ability to generate XML output using a schema that is optimized

45

<Abstract Class Block>
<Abstract Class>CallStateNotation</Abstract Class>
<Package>org.argouml.notation. providers </Package>
<Extends Block>

<Extends superclass=Object
qualifiedType =org.argouml.notation . NotationProvider

superclassFullType =java.lang .Object
type=AbstractClass>

NotationProvider
</Extends>
<Extends Comment>

A class that implements this abstract class manages a
text shown on a diagram. This means it is able to
generate text that represents one or more UML objects.
And when the user has edited this text , the model may be
adapted by parsing the text .
Additionally , a help text for the parsing is provided ,
so that the user knows the syntax .

</Extends Comment>
</Extends Block>
<Class Comment Block>

<Class Comment>
This abstract class forms the basis of all Notation
providers for the text shown in the Fig that represents
the CallState .
Subclass this for all languages .

</Class Comment>
<Author>mvw@tigris.org</Author>

</Class Comment Block>

Figure 13: A Section of a Corpus Generated Using ArgoUML Source Code

for further NLP processing, which is an application scenario not targeted by existing

efforts.

5.3 Preprocessing Phase

Before being able to apply NLP services on Javadoc comments, we apply a prepro-

cessing stage, in-charge of filtering some of the content found in the documentation.

Included in the preprocessing phase are things such as splitting up the string “get-

ToolTip”, for a comment describing a method using the Java naming convention,

or “PersonDAO” for a comment describing the class ‘Person Data Access Object”.

Though not important for determining the writing style of a comment, such strings

would alter the results of the Fog and Kincaid readability measures. Whenever the

46

<Method Block>
<Method modifier=public visibility =public

signature=(java.beans.PropertyChangeListener , java . lang .Object)>
initialiseListener </Method>

<Method Comment Block>
<Method Comment>

Initialise the appropriate model change listeners for the given
modelelement to the given listener . Overrule this when you need
more than listening to all events from the base modelelement.

</Method Comment>
</Method Comment Block>
<Parameter Block>
<Parameter fulltype =java.beans.PropertyChangeListener

type=PropertyChangeListener>
listener </Parameter>

<Parameter Comment>the given listener</Parameter Comment>
</Parameter Block>
<Parameter Block>

<Parameter fulltype =java.lang .Object type=Object>
modelElement</Parameter>

<Parameter Comment>
the modelelement that we provide notation for

</Parameter Comment>
</Parameter Block>

</Method Block>

Figure 14: A Section of a Corpus Generated Using an ArgoUML Method

string “getToolTip” appears in the comment, we use regular expression to split the

string into “get Tool Tip”. Additional content, such as HTML tags, hyperlinks and

in-line tags, are also filtered out before applying the NLP analysis.

5.4 JavadocMiner Quality Assessments

The goal of our JavadocMiner tool is to enable users to (1) automatically assess the

quality of source code comments, (2) provide users with recommendations on how

the Javadoc comment may be improved, and (3) export the in-line documentation

and results of the quality assessment to an ontology to support further analysis such

as querying, reasoning services, and linking the data with other software engineering

artifacts.

For our JavadocMiner system, we focus mostly on readability measures that are

based on statistical models, and avoid using measures which use stop words to cal-

culate the complexity of text. Measures such as the Dale-Chall Readability For-

mula [EC49] developed in 1948 uses a list of 3000 “easy words” to calculate the

47

readability of text. As was observed by [HFB+08], such dictionaries are often not

maintained frequently, and more importantly they do not consider commonly used

terminology used in computer science.

5.4.1 Comment Syntax

The following metrics measuring simple quality factors, provide the initial means of

assessing the internal quality of in-line documentation.

Words Per Javadoc Comment Metric (WPJC)

Originally proposed by [SDZ07], the WPJC metric calculates the average number

of words found in Javadoc comments (Requirement #2.1). After applying NLP pre-

possessing services, such as segmenting the generated documents into sentences, and

sentences into tokens, the WPJC measure is in charge of counting the number of

words found in each Javadoc comment, and dividing it by the number of Javadoc

comments.

WPJC =
of Words in a Javadoc Comment

of Javaodc Comments

Abbreviation Count Metric (ABB)

Using a list of abbreviations from a plain text file, the ABB metric is designed to

detect and count the number of abbreviations used within Javadoc comments (Re-

quirement #2.2). Abbreviated strings within the in-line documentation that match

the entities from the list are annotated using features specifying that the string is an

abbreviation.

Token, Noun and Verb Phrase Count Metrics (TNVC)

For each Javadoc comment within a Java class, we calculate the number of tokens,

noun phrases and verb groups the comment contains using the TNVC metric (Re-

quirement #2.3). The JavadocMiner must first apply noun and verb phrase chunk-

ing [CMBT02] services on in-line documentation to assist in additional quality assess-

ments, for example, determining the writing style of a Javadoc comment.

48

5.4.2 Internal NL Comment Analysis

The following metrics also focus on the natural language quality of the in-line docu-

mentation itself. The metrics aim at assessing the semantic quality of the documen-

tation, which greatly impacts a reader’s ability to understand the technical documen-

tation.

Calculating Comprehension and Retention

Using the “classic readability” [DuB06] measures, we assess the quality of Javadoc

comments based on their ease of understanding and recall (Requirement #3.1). The

core of the Fog Index is sentence length and word length. The weights assigned to

the two parameters are designed to measure the ease of comprehension and retention

of text:

Fog = 0.4(ASL + HW)

Where:

ASL = Average sentence length using number of words.

HW = Number of words with more than two syllables

Calculating Efficiency and Perseverance

To satisfy Requirement #3.2, we use the Flesch-Kincaid Readability Formula to assess

the quality of Javadoc comments based on the efficiency and perseverance readability

factors. Regardless of the similarity with the original Flesch readability measure

(i.e., the use of sentence length, and word length), the two formulas are weighted

differently. The Flesch-Kincaid index actually correlates inversely to the traditional

measure. The same block of text would be analyzed as having a higher Flesch Reading

Ease Score compared to the Flesch-Kincaid Readability Formula. By lowering the

weights, the Flesch-Kincaid formula is designed to focus more on the efficiency rather

than comprehension of text.

Flesch−Kincaid = (0.39 × ASL) + (11.8 × ASW) − 15.19

Where:

ASL = Average sentence length using number of words.

49

ASW = Average number of syllables per word.

The JavadocMiner not only provides default threshold values based on Chapter 2,

but also allows users to define custom threshold levels for the different readability

indices. For sentences that return a readability index above or (as in the case of the

Fog metric) below the threshold, the system generates a warning identifying these

sentence(s).

Second Person Writing Style Metric (SPW)

By analyzing the part-of-speech of sentences found in Javadoc comments, the SPW

metric is in charge of identifying comments that use a prescriptive writing style (Re-

quirement #3.3). For each sentence within the Javadoc comment, we iterate through

each token, identifying sequences where a present participle verb is followed by a

determiner and finally a proper noun (e.g., “gets the label”). Once such sequences

are found, we compare the stem of the verb (e.g., “get”) with the original string.

Sequences where the verb groups of the n-gram match the stem are identified by the

JavadocMiner as using a 2nd person prescriptive writing style. For comments that are

detected as using a prescriptive writing style, the JavadocMiner extracts the n-gram,

converts it to the correct writing style using the stem of the words, and presents users

with recommendations on how the comment can be improved

Passive Writing Style Metric (PWS)

Readability measures, such as FOG and Kincaid, are unable to determine the writing

style for a given block of text (e.g., active vs. \passive). Using a rule-based verb

chunker, the JavadocMiner can provide information regarding the tense, type, and

voice of the verb group. The PWS metric detects sentences that use a passive voice

writing style (Requirement #3.4).

5.4.3 Code/Comment Consistency Analysis

The metrics introduced in this section are designed to analyze in-line documentation

and their consistency in documenting the actual source code. Because the Javadoc

extraction tool is capable of detecting identifiers that contain no documentation, the

50

SSLDoclet is also incharge of detecting identifiers that are not documented using a

Javadoc comment (Requirement #4.1).

Any Javadoc Comment Metric (ANYJ)

To compute the ratio of identifiers with Javadoc comments compared to the total

number of identifiers (Requirement #4.2), we use the ANYJ metric [SDZ07]. ANYJ

can be used to determine which classes provide the least amount of documentation,

and could therefore be most prone to a newly introduced fault in the source code

which would lead to a failure in the program (i.e., bug).

ANYJ =
Declarations With Any Javadoc Comment

Total Number of Declarations

SYNC Metrics (PSYNC/RSYNC/ESYNC)

The following metrics detect methods that are documenting parameters, return types,

and thrown exceptions that are no longer valid (e.g., due to changes in the code):

RSYNC: To identify methods with return types that contain outdated documenta-

tion (Requirement #4.3), we perform string comparison between the value of

the return string indicated in the comment and the actual return type of the

method.

PSYNC: To identify the method parameters that contain outdated documentation

(Requirement #4.4), we perform a string comparison between the value of the

parameter name indicated in the comment and the parameter name as it appears

in the parameter list.

ESYNC: Identifying methods that throw exceptions that have no or out of date doc-

umentation (Requirement #4.5) is made possible by using a string comparison

between the value of the exception string indicated in the comment and the

actual exception type thrown by the method.

The “parseAssociationEnd method” in Figure 15 is an example of a method that

contains a return type, parameter list, and exception that is consistent with the in-line

documentation used in the @return, @param, and @throws block tags.

51

Documentable Item Ratio Metric (DIR)

To satisfy Requirement #4.6, we designed the DIR metric. Originally proposed

by [SDZ07], the DIR metric takes into account the use of Javadoc block tags to

document a constructor or method.

/∗∗ The following method parses the associations of a class diagram.
∗ @return String A String association is returned
∗ @param role The AssociationEnd text describes.
∗ @param text A String on the above format.
∗ @throws ParseException When is detects an error in the role string .
∗ See also ParseError . getErrorOffset ().
∗/
protected String parseAssociationEnd(Object role , String text) throws ParseException

Figure 15: An Example of a Javadoc Method Comment

In Figure 15, we show an example of a Javadoc comment for the “parseAssocia-

tionEnd” method that is completely documented using the block tags. The results of

the DIR metric is the ratio between the parts of a method that should be documented

versus the parts that actually were.

DIR =
Documented Items

Documentable Items

Added Readability Value Metric (ARV)

The ARV metric detects documentation that adds no value beyond what can be under-

stood using the API name (Requirement #4.7) by conducting an n-gram comparison

between the identifier (e.g., “getsTheLabel”), and the docComment (e.g., “Gets the

label”). After (1) splitting the identifier name using regular expressions designed to

process the Java naming convention [DD07] for a Class, Method, etc., and (2) taking

the stem of each word found in both the identifier and the comment, we perform

a string comparison between the two. If the strings are an exact match then the

JavadocMiner informs the user on the bad quality of the comment. Future plans for

this requirement include analysis for comments that are not an exact match however,

still add little value (e.g., “In charge of getting the label.”).

52

5.5 The Javadoc Output Ontology

Results from the previous automated linguistic analysis on in-line documentation are

reported by the JavadocMiner in the form of annotations and feature lists as shown

in Figure 16.

Figure 16: Annotations Created by the JavadocMiner

Although annotations and feature lists are readable to a domain expert (i.e., lan-

guage engineer), it would be difficult for a more general audience to use the informa-

tion. For the result to be useful for software engineers, the generated output needs

to be exported to a format such as XML or a database, allowing the information to

be further queried and analyzed.

In order for the quality assessment provided by the JavadocMiner to be of use, the

data needs to be stored using a persistent storage. In the following section we specify

the response structure by means of the Web Ontology Language (OWL) using OWL

constructs (Requirement #5.1). Even though other formats are possible, representing

information in OWL is beneficial due to it’s ability to provide a common language

that enables the interoperability of different knowledge bases represented using OWL.

Another advantage to using OWL is the non-proprietary standard that is not available

when using database technologies.

A large number of source code and in-line documentation related concepts and

relationships exist within Javadoc generated documentation. In Figure 17, we show

some of the relationships that exist between the different source code and in-line

documentation concepts, and in Figure 18 are some of the relationships that exist

within the source code itself. The domain-specific Javadoc ontology is complemented

by a domain-independent NLP ontology, which models commonly used concepts in NL

53

Figure 17: Ontology Showing Relationships found in JavadocComments

such as Document, Sentence, NP, and VP, as shown in the taxonomic representation

(T-Box) in Figure 18. Some of the NLP ontology relationships are defined in Table 6.

An existing Javadoc ontology is available for download from the Semantic Web

Search engine SWOOGLE1 however, the ontology did not reflect the current version

of Javadoc, and was therefore missing some of the current in-line and block tags

introduced in the later versions of Javadoc.

Figure 18: Ontology Showing Relationships found in Source Code

The Javadoc ontology models both source code related concepts such as Class,

Field, Method and Exception, and in-line documentation related concepts such as

Method Comment, Author and Version. The ontology represents the relationships

1SWOOGLE, http://swoogle.umbc.edu/

54

http://swoogle.umbc.edu/

Table 5: Relationships and Concepts found in the Javadoc Ontology
Object Property Domain Range Description

belongsToPackage Interface ∪ Abstract Class ∪
Class

Package The Package a given Interface or

Class belongs to

hasConstructor Interface ∪ Abstract Class ∪
Class

Constructor Constructors contained within

an Interface or Class

hasConstructorComment Constructor Comment The comment that belongs to a

Constructor

hasAuthor Comment Author The author of a specific com-

ment

hasVersion Comment Version The version of the comment

between the concepts using a number of object properties, some of which are shown

in Table 5.

Table 6: Relationships and Concepts found in the NLP Ontology
Object Property Domain Range Description

hasSentence Document Sentence The sentences found in a Javadoc document

hasNP Sentence NP Noun phrases found in a sentence

hasVP Sentence VP Verb phrases found in a sentence

Finally, relationships can be created between the two ontologies that allow for

the linking of instances across ontology boundaries. For example, an appearsIn

relationship can be used to link the segments or sentences of a document with the

comment they appear in. Not included in Table 5 or 6 are the inverse properties, such

as isAuthorOf or isSentenceOf, which a reasoner uses to create additional inferences,

and that also allow for additional ways for querying the ontology. Modelling the

Javadoc domain using ontologies allows us to query, reason, and create cross links

with other software engineering artifacts represented using OWL models, and thereby

contribute to a rich knowledge base incorporating other software artifacts [RWSC08].

5.5.1 External Traceability Links Generation

When attempting to find the different revisions and issues that belong to a given

Class, developers and maintainers must manually query the different repositories

(e.g., version control, and issue trackers) in search of the information. Having the dif-

ferent software engineering artifacts represented using OWL models allows us to estab-

lish external traceability links between the different repositories (Requirement #5.2).

55

Using multiple ontologies to represent the information within a domain such as soft-

ware engineering or bioinformatics, requires aligning the ontologies as a “prerequisite

for interoperability, and unhampered semantic navigation and search” [Bei10]. Vari-

ous methods have been proposed to to perform ontology alignment (i.e., string-based,

and structural) [Bei10]. Because our knowledge base uses common concepts in soft-

ware engineering such as File, Class, and Issue, and the naming conventions are

similar between the different ontologies, we use a string based comparison to seek out

the common concepts. Cross boundary relations are then created linking the individ-

uals together. The linked ontologies (Figure 19) allows developers and maintainers

to query the entire knowledge base using a single access end-point.

Figure 19: Traceability Links Create Between Different Software Engineering Arti-

facts

For example, an individual attempting to perform a software maintenance task

on a class c2 can query the knowledge base for information regarding (1) the doc-

umentation that is available for the class (javadoc ontology), (2) the pattern(s) the

class may be a part of (source code ontology), (3) the different changes class c2 has

undergone from the time of its initial commit (version control ontology), and finally

(4) the issues that have been reported for the class in the past (issue tracker ontology).

This is just one of the many contexts a user can query the knowledge base for.

56

5.6 Summary

In this chapter, we have presented the design decisions for the main components that

make up the JavadocMiner system. For the corpus generation task, we produce a cor-

pus using source code and source code comments. The generated corpus is then used

as input for the JavadocMiner, which analyzes the quality of the in-line documenta-

tion using a set of metrics. Finally, the results generated by the JavadocMiner are

exported to OWL models for inferencing and querying services, as well as establishing

traceability links with other software engineering artifacts using common concepts.

57

Chapter 6

Implementation

In this chapter we describe the implementation of the JavadocMiner application,

which is created using the General Architecture for Text Engineering (GATE) [CMBT02]

framework. The JavadocMiner uses some of the standard components included within

GATE, as well as components developed by us. We first introduce the implementation

of our Javadoc SSL doclet, and then discuss briefly the GATE framework, followed

by a description of the JavadocMiner. The chapter will conclude with details on the

exporting of entities and relationships into an OWL model using our OwlExporter,

and linking the data with other software engineering artifacts.

6.1 System Overview

The major components that make up our JavadocMiner system are: (i) the SSL

Javadoc Doclet used to generate a corpus from source code and source code comments;

(ii) an NLP application that analyzes the documents in the corpus; and (iii) OWL

ontologies that are used to store the results of the NLP analysis.

To summarize, our JavadocMiner tool measures the completeness and readability

of in-line documentation based on the design decisions discussed in Chapter 5. The

JavadocMiner is also capable of providing users with recommendations on how to

improve a Javadoc comment.

58

Figure 20: Overview of the JavadocMiner System Components

6.2 The SSL Javadoc Doclet

The Javadoc library is in charge of extracting information from the source directory

and providing an interface to a set of objects that are created as a result of the

static source code analysis. Transformation of the static source code analysis into the

desired output (i.e., XML) is then made possible by developing a custom doclet that

uses the Javadoc API library.

Our SSL Javadoc Doclet is an extension to the Javadoc tool [Kra99], which is

implemented as a Javadoc plugin. The doclet is compiled into a Java Archive (JAR),

and can be passed as a command line, MAKE or ANT parameter to the Javadoc tool.

In Figure 21 we show an example of a Javadoc ANT task that indicates (i) the path

and the name of the doclet, (ii) the path to the source directory, (iii) the name of

59

<target name="docs" depends="jar">
<javadoc docletpath = "${doclet.dir}/

${ant.project.name}.jar"
doclet = "${doclet}"
sourcepath = "${src.dir}"
packagenames = "info. semanticsoftware .doclet"
additionalparam = "-J-Xmx256m"
/>

</target>

Figure 21: Javadoc Ant Task that accepts the SSLDoclet as a Parameter

the package in the source directory that needs to be processed, and finally (iv) any

other additional parameters, for example, to increase the default Java heap space.

6.3 GATE Environment

GATE provides a framework for creating language processing software. The frame-

work is implemented using the Java programming language, and can therefore run

on any platform that includes the Java Virtual Machine [CMB+10]. As part of the

GATE framework, a development environment is also distributed. The development

environment is built on top of the GATE framework and includes a graphical inter-

face for developing and editing language analysis components, as well as tools for

visualizing and evaluating the generated results. A detailed discussion of the GATE

framework and its different component can be found in [CMB+10]. The GATE frame-

work includes a set of default components known as resources that provide common

language analyzing tasks discussed in Chapter 2. Each component can be divided

into three main categories:

Visual Resources: represent visualization and editing components that participate

in GUIs.

Language Resources: represent entities such as lexicons, corpora or ontologies.

Processing Resources: represent entities that are primarily algorithmic, such as

parsers, generators or ngram modellers.

The set of resources integrated in GATE are called CREOLE (a Collection of

REusable Objects for Language Engineering). All the resources within CREOLE are

packed as Java Archives (JARs) and imported into the GATE framework as plug-ins.

60

Language Resources. The language resources in GATE include a Corpus, Docu-

ment, and Annotation. They provide the input and output of an NLP service [CMB+10].

The corpus consists of a set of documents, which is made up of text that is processed

using a set of annotations. An annotation is assigned a type that may contain a set

of features. Features are a set of names and values created for an annotation by the

different language analyzing components of a service.

Processing Resources. There exist a number of standard PRs in GATE, which

perform common language analyzing tasks, such as parts-of-speech tagging. Such

resources are seen as being application independent and could be used to process text

from, for example, bioinformatics or software engineering.

To summarize, an application running in the GATE environment typically consists

of:

• A set of Visual resources for extended text processing being run in the GATE

graphical user interface.

• A corpus, i.e., a set of documents, being processed.

• A set of Processing resources, standard or implemented as CREOLE by a user.

The PRs are executed in a sequence defined by the ordering of the components

in a GATE pipeline. The output generated by preceding resources may be used as

input for seceding resources. Furthermore, the results provided by the analysis of

each component enriched the information of the document using annotations.

6.4 The JavadocMiner NLP Application

The core JavadocMiner NLP application is implemented as a GATE pipeline. In this

section, we give a description of the Processing Resources used within our JavadocMiner

system. The JavadocMiner pipeline re-uses components from A Nearly-New Informa-

tion Extraction system (ANNIE) [CMBT02] shipped with GATE and components

developed by us to be used specifically for the JavadocMiner. The components used

in order of their execution, are (Figure 20):

Document Reset PR: If a pipeline is used to process the same document twice,

this component ensures that the previous results are removed.

61

Annotation Set Transfer: This PR is in charge of transferring annotation types

from one annotation set (e.g. Default markup), to an annotation set that is

used for processing (e.g. To be processed).

ANNIE English Tokenizer: The tokenizer identifies words, space-tokens, numbers,

and punctuation as well as other symbols (Appendix C.2).

Javadoc Sentence Splitter: This component prepares the different parts of a Javadoc

comment for the default sentence splitter provided by ANNIE.

ANNIE Sentence Splitter: This component divides the text into sentences trying

to identify the start of a new sentence by considering abbreviations and tokens

(Appendix C.3).

ANNIE POS Tagger: Part-of-speech tagging is performed by the Hepple tagger [Hep00]

included in the GATE distribution (Appendix C.4).

ANNIE Gazetteer: This component provides a list lookup to identify entity names

in the text. The component is used for tagging tokens with their semantic

categories (Appendix C.5). We also use the gazetteer list to detect abbreviations

included in a Javadoc Comment.

Stemmer: The stemmer is in charge of producing the reduced form or stem of an

inflected word. GATE uses the Porter stemmer for English (Appendix C.6).

Multilingual Noun Phrase Extractor: The Noun Phrase Extractor (MuNPEx)1

is a base NP chunker, i.e., it does not deal with any kind of conjunctions,

appositions, or PP-attachments. It is implemented as a JAPE transducer and

can make use of previously detected named entities (NEs) to improve chunking

performance (Appendix C.7).

ANNIE VP Chunker: This transducer, implemented in JAPE, identifies verb groups

and annotates them with tense, voice, type, etc. information (Appendix C.8).

JavadocMiner PR: We implemented a GATE processing resource component called

the JavadocMiner PR that contains the set of metrics specific to Javadoc com-

ment analysis described in Chapter 5. The JavadocMiner PR is implemented

1Multi-Lingual NP Chunker (MuNPEx), http://www.semanticsoftware.info/munpex

62

http://www.semanticsoftware.info/munpex

using the Java programming language [DD07], and takes advantage of the dif-

ferent design patterns such as the builder pattern, enabling the GATE plug-in

to be easily extended to include additional Javadoc quality analysis.

ReadabilityMetrics PR: For analyzing the readability of a given document, we im-

plemented an application independent component that contains the readability

metrics described in the design chapter. The component can be used in any NLP

service where the quality of a document needs to be measured. The Readability-

Metrics PR makes use of an existing library2 to calculate the readability of text

using readability measures, and our own implementation in charge of analyzing

the writing style of a block of text. The readability PR is also implemented

using the Javadoc programming language.

Using the results generated by these components, the JavadocMiner is also able to

give recommendations on how the comment can be improved based on this analysis,

and identifies the verb group that was detected as using a passive voice as shown in

Figure 22.

Figure 22: A Method taken from the ArgoUML OSS assessed using the JavadocMiner

In Figure 28 we show an example of the JavadocMiner NLP pipeline processing

the API documentation taken from ArgoUML project.

2Readability Metrics Java Implementation, http://www.representqueens.com/fathom/

63

http://www.representqueens.com/fathom/

6.5 Javadoc Ontology

As discussed in Chapter 5, we use ontologies for the modelling of the various entities

and relationships [FBMNPS07] extracted from Javadoc. In this section, we discuss

how the results provided by the quality assessment created by our JavadocMiner

system is exported to an ontology using an application independent GATE component

developed by us. We also illustrate, how common concepts found in the Javadoc

ontology are linked with concepts found in different software engineering repositories

like, version control, or issue trackers.

Corpus
GATE

Pipeline
Annotated

Corpus

 OWL Exporter

Populated Ontology

Protégé

Top Braid
Growl

SPARQL

Racer Pellet

Unpopulated Ontology

Figure 23: Ontology Population from Text

6.5.1 Ontology Population Using the OwlExporter

The Javadoc and NLP ontologies created thus far contain only concepts and relation-

ships. Before it can be of help to a software engineer, it needs to be instantiated in

order to obtain a knowledge base. Due to the large number of facts being extracted

from these repositories, an automated approach for “ontology population” [Cim06] is

required based on the results of an NLP analysis step (Figure 23).

In general, designing an ontology’s taxonomy (T-Box), and populating it using

64

Figure 24: An Excerpt from the Javadoc Ontology

concept and relationship assertions (A-Box) [FBMNPS07] is a complicated and time

consuming task that requires the expertise of an ontology engineer. The Web On-

tology Language Exporter (OwlExporter)3 [WKR11] is a component implemented

by us that provides an automated, portable, and simplified means of populating an

ontology using the results provided by an NLP service. Using our OwlExporter com-

ponent, we export the entities and relationships that are created by our JavadocMiner

system as OWL instances and relationships in the Javadoc and NLP ontologies. For

example, the relationships where a class that implements a certain interface which

contains a certain comment that is written by a specific author are all exported to

the Javadoc and NLP ontologies. In Figure 24, we show an excerpt of the populated

Javadoc ontology.

Exporting the results created by our JavadocMiner application to an ontology

enables users to create SPARQL [PS08] queries to extract the asserted and inferred

knowledge of the model. For example, conformance testers can quickly identify the

modules within an application that do not follow organizational standards and thus

return poor quality figures. In Figure 25, we show the results of a SPARQL query

3Web Ontology Language Exporter (OWLExporter), http://www.semanticsoftware.info/

owlexporter

65

http://www.semanticsoftware.info/owlexporter
http://www.semanticsoftware.info/owlexporter

Figure 25: Results of a SPARQL Query on the NLP-Populated Source Code Comment

Ontology

that returns classes that were assessed by our JavadocMiner as having low quality

documentation. Also returned by the query are the authors that created the Javadocs

for the class.

6.5.2 Linking Software Engineering Data

As mentioned in Chapter 5 Section 5.6.1, the process of ontology alignment is to create

a mapping between two or more ontologies. More specifically, when two individuals of

a concept are detected as being similar, an equivalence relationship is created linking

the two instances together [Bei10].

In Figure 26, we show the “StereoTypeUtility” instance found in the version con-

trol, Javadoc, and source code ontologies linked together using the bi-directional

relationship assesrtions [FBMNPS07] “hasCrossLink”. Aligning ontologies in this

manner enables us to focus on the information found in the individual ontology, as

66

Figure 26: Ontologies Linked Using the hasCrossLink relationship

well as the entire knowledge base.

Using SPARQL queries, the entire KB comprised of multiple software engineering

artifacts can be queried using a single end-point. In Figure 27, we show a cross artifact

query that includes information from the source code, Javadoc and version control

ontologies. More specifically, we queried the knowledge base for all Javadoc related

commits (as indicated by the commit message), for the class comment belonging to

the “StereoTypeUtility” class.

67

Figure 27: Cross Artifact SPARQL Query

6.6 Summary

In this chapter, we discussed the implementation of our component-based JavadocMiner

system. The pipeline is assembled using existing ANNIE PRs, and PRs developed

by us such as the ReadabilityMetrics PR. In Figure 28, we show the JavadocMiner

pipeline loaded within GATE. The list of components are visible on the left side, in the

middle we see a document generated using the SSL Javadoc Doclet, and highlighted

is the feature list for the “MethodComment” and “Readabilityanalysis” annotations.

Finally, on the right side are the various annotations of the text.

68

F
ig

u
re

28
:

S
cr

ee
n
sh

ot
of

th
e

J
av

ad
o
cM

in
er

sy
st

em
ru

n
n
in

g
in

G
A
T

E
D

ev
el

op
er

69

Chapter 7

Evaluation

In this chapter, we discuss how the JavadocMiner was applied on two open source

projects to analyze the consistency of source code with comments and the quality of

comments in these systems. We begin our analysis by benchmarking the amount of

time it takes the SSL Javadoc Doclet to generate a corpus from the source directory.

We then evaluate the results of our study by examining how the quality of comments

evolved in time between the different versions. In the second part of our evaluation,

we attempt to correlate the results obtained from our analysis with bug statistics

from each open source project.

7.1 Data

For our case study we required software projects that were:

• Open source, and implemented using the Java programming language.

• Actively maintained projects with at least three major releases.

• Managing source using an issue tracker, such as Redmine1 or Bugzilla2.

We also wanted to examine projects that enforced either an organization-specific

or public coding standard (e.g., GNU3). This enables us to identify the parts of the

source code that do not conform to such standards.

1Redmine, http://www.redmine.org/
2Bugzilla, https://bugzilla.mozilla.org/
3GNU, http://www.gnu.org/

70

http://www.redmine.org/
https://bugzilla.mozilla.org/
http://www.gnu.org/

Table 7: Assessed Open Source Project Versions, Release Dates, Number of Reported

Bugs
Project Version Release Date Number of

Bug Defects

ArgoUML v0.24 02/2007 46

ArgoUML v0.26 09/2008 54

ArgoUML v0.28.1 08/2009 48

Eclipse v3.3.2 06/2007 176

Eclipse v3.4.2 06/2008 413

Eclipse v3.5.1 06/2009 153

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 10 20 30 40 50 60 70 80 90 100 110 120

T
im

e
(m

s)

Source Code Size (mb)

SSL Doclet Duration

SSL Doclet Duration

Figure 29: Reported Bugs for ArgoUML and Eclipse OSS

The two projects we selected that fit our requirements are ArgoUML4, a UML

modeling tool, and the Eclipse IDE5. Both projects are mature and active projects,

which have a significant amount of historical data available. For our study, we were

also interested in monitoring how the quality of Javadoc comments for the two projects

evolved over time, and therefore applied the JavadocMiner on the last three major

releases of each project. In Table 7, we show the versions of the projects that were

part of our quality assessment.

4ArgoUML, http://argouml.tigris.org/
5Eclipse, http://www.eclipse.org/

71

http://argouml.tigris.org/
http://www.eclipse.org/

7.2 Generating a Corpus using Open Source Soft-

ware

We evaluated the performance of our SSL Javadoc doclet in order to assess the time

needed for creating a corpus from source code. In Table 8, we show the time required

to process different versions of the ArgoUML and Eclipse open source projects.

Table 8: Open Source Project Versions, Lines of Code (LOC), Number of Comments

and Identifiers, and Process Duration for ArgoUML and Eclipse

Project LOC Number of Comments Number of Identifiers Duration (sec.)

ArgoUML v0.24 250,000 6,871 13,974 3.4

ArgoUML v0.26 600,000 6,875 14,262 8.9

ArgoUML v0.28.1 800,000 7,168 14,789 12.2

Eclipse v3.3.2 7,000,000 32,172 158,009 93.1

Eclipse v3.4.2 8,000,000 33,919 163,238 115.7

Eclipse v3.5.1 8,000,000 34,360 165,945 123.1

In Figure 29, we show the linear time of which it takes the SSL Javadoc Doclet

to generate a corpus for the data set used in our evaluation. Making our SSL doclet

an efficient tool for transforming Java source code documents into an XML represen-

tation.

7.3 Assessing the Quality of In-Line Documenta-

tion found in Open Source Software

To assist in interpreting the data and finding correlations between the different mea-

sures and software engineering artifacts, such as reported bug defects, we separated

the ArgoUML and Eclipse projects into their major modules; for ArgoUML: Top Level,

View & Control, and Low Level; and for Eclipse: Plugin Development Environment

(PDE), Equinox, and Java Development Tools (JDT).

The quality of the in-line documentation found in each module was assessed sep-

arately for a total of 43,025 identifiers and 20,914 comments from ArgoUML, and

487,192 identifiers and 100,451 comments from Eclipse. As part of our evaluation, we

continue by finding the amount of bug defects that were reported for each version of

72

 0

 5

 10

 15

 20

 25

 30

 35

0.24
0.26

0.28

B
ug

s

Version

Bug Trend - ArgoUML

Top Level
View Control

Low Level

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

3.3.2
3.4.2

3.5.1

B
ug

s

Version

Bug Trend - Eclipse

Equinox
PDE
JDT

Figure 30: Reported Bugs for ArgoUML and Eclipse OSS

the modules for ArgoUML (Figure 30, left), and for Eclipse (Figure 30, right), using

the issue tracker systems used by each project.

The Pearson product-moment [RN88] correlation coefficient measure was then

applied to the data gathered from the quality assessment and issue tracker systems

to determine the varying degrees of correlation between the individual heuristics and

bug defects.

7.4 Quality Analysis

When looking at the code/comment consistency trends for ArgoUML (Figure 31, Top),

and for Eclipse (Figure 32, top), we found that the modules that were thoroughly doc-

umented and consistent with the source code, are the Low Level module in ArgoUML,

and the PDE module in Eclipse.

In terms of the readability measures for ArgoUML (Figure 31, bottom), and

Eclipse (Figure 32, bottom), the Low Level and PDE modules maintained readability

levels that were in-between the other modules for two of the three versions used in

our assessment.

We believe that the reason for these Low Level and PDE modules outperforming

the rest of the modules in every heuristic is the fact that are both base libraries used

throughout the programs. For example, Eclipse is a framework that is extended using

plug-ins that use the services provided by the PDE API module. The Eclipse project

is separated into API and internal non-API packages, and part of the Eclipse coding

policy states that all API packages must be properly documented [SDZ07].

73

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

0.24
0.26

0.28

M
et

ric

Version

Code/Comment Consistency Metric (ANYJ) Trend - ArgoUML

Top Level
View Control

Low Level

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

0.24
0.26

0.28

M
et

ric

Version

Code/Comment Consistency Metric (SYNC) Trend - ArgoUML

Top Level
View Control

Low Level

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

0.24
0.26

0.28

M
et

ric

Version

Internal Metric (Fog) Trend - ArgoUML

Top Level
View Control

Low Level

 0

 2

 4

 6

 8

 10

 12

 14

0.24
0.26

0.28

M
et

ric

Version

Internal Metric (Kincaid) Trend - ArgoUML

Top Level
View Control

Low Level

Figure 31: ArgoUML Charts for Code/Comment and Internal (NL Quality) Metrics

Comment-Bug Correlation

Also as part of our analysis, we correlated the results of our study with another

software engineering artifact, bug defects. By examining the amount of reported

bug defects for each version of the modules (Figure 30), we correlated the quality of

comments found in source code with bug defects. Doing so enables us to determine if

potential problem areas can be identified early by analyzing the in-line documentation.

As we observed earlier, the modules that performed best in our quality assessment

also had the least amount of reported bug defects, and vice versa for the modules that

performed poorly. In order to determine how closely each metric correlated with the

number of reported bug defects, we applied the Pearson product-moment correlation

coefficient [CKC68] on the data gathered from the quality assessment and the number

of reported bug defects (Table 9).

The correlation and coefficient results showed ANYJ, SYNC, ABB, Tokens, and

WPJC as being amongst the strongly correlated measures. With a correlation of at

74

 15

 20

 25

 30

 35

 40

3.3.2
3.4.2

3.5.1

M
et

ric

Version

Code/Comment Consistency Metric (ANYJ) Trend - Eclipse

Equinox
PDE
JDT

 30

 35

 40

 45

 50

 55

 60

3.3.2
3.4.2

3.5.1

M
et

ric

Version

Code/Comment Consistency Metric (SYNC) Trend - Eclipse

Equinox
PDE
JDT

 0

 2

 4

 6

 8

 10

 12

 14

3.3.2
3.4.2

3.5.1

M
et

ric

Version

Internal Metric (Fog) Trend - Eclipse

Equinox
PDE
JDT

 0

 2

 4

 6

 8

 10

 12

 14

3.3.2
3.4.2

3.5.1

M
et

ric

Version

Internal Metric (Kincaid) Trend - Eclipse

Equinox
PDE
JDT

Figure 32: Eclipse Charts Code/Comment and Internal (NL Quality) Metrics

Table 9: Pearson Correlation Coefficient Results for ArgoUML and Eclipse
Project ANYJ SYNC ABB FOG KINCAID TOKENS WPJC NOUNS VERBS

ArgoUML 0.99 0.98 -0.94 0.32 0.79 0.89 0.91 0.98 0.87

Eclipse 0.97 0.89 -0.86 0.37 0.84 0.88 0.86 0.91 0.73

least 80%. In the case of ABB a negative correlation, that is, the higher ABB, the

more amount of reported bugs.

To visualize the correlation between reported bug defects and quality assessments

for the different modules, we plot the number of reported bug defects (X-Axis) against

the values returned by some of the code/comment and internal NL quality metrics

(Y-Axis): see Figure 33 for ArgoUML and Figure 34 for Eclipse.

75

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
et

ric

Bugs

Code/Comment Consistency Metrics (ANYJ and SYNC) - ArgoUML

ANYJ
SYNC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
et

ric

Bugs

Internal Metric (ABB) - ArgoUML

ABB

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

M
et

ric

Bugs

Internal Metrics (Fog, and Kincaid) - ArgoUML

Fog
Kincaid

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

M
et

ric

Bugs

Internal Metrics (Tokens, WPJC, Nouns and Verbs) - ArgoUML

Tokens
WPJC
Nouns
Verbs

Figure 33: Code/Comment Consistency and NL Quality Metrics vs. \Bugs – Ar-

goUML

Human Assessment of Javadoc Comments

As part of our efforts to compare the quality assessment made by our JavadocMiner

system with that of human intuition, the JavadocMiner was evaluated against anno-

tations manually created by a group of students. For our case study, we asked 14

students from an undergraduate level computer science class (COMP 354) and 27

students from a graduate level software engineering course (SOEN 6431) to evaluate

the quality of Javadoc comments randomly selected from ArgoUML. For our survey

we selected a total of 110 Javadoc comments: 15 Class and Interface comments, 8

Field comments, and 87 Constructor and Method comments. Before participating in

the survey, the students were asked to review the Javadoc guidelines6 discussed in

6Javadoc, http://www.oracle.com/technetwork/java/javase/documentation/

index-137868.html

76

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 20 40 60 80 100 120 140 160 180 200 220

M
et

ric

Bugs

Code/Comment Consistency Metrics (ANYJ and SYNC) - Eclipse

ANYJ
SYNC

 0

 1

 2

 3

 4

 5

 20 40 60 80 100 120 140 160 180 200 220

M
et

ric

Bugs

Internal Metric (ABB)- Eclipse

ABB

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 20 40 60 80 100 120 140 160 180 200 220

M
et

ric

Bugs

Internal Metrics (Fog and Kincaid) - Eclipse

Fog
Kinciad

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 20 40 60 80 100 120 140 160 180 200 220

M
et

ric

Bugs

Internal Metrics (Tokens, WPJC, Nouns, Verbs) - Eclipse

Tokens
WPJC
Nouns
Verbs

Figure 34: Code/Comment Consistency and NL Quality Metrics vs. \Bugs – Eclipse

Chapter 2. The students had to log into the free online survey tool Kwik Surveys7

using their student IDs, ensuring that all students complete the survey only once. As

shown in Table 10, most of the students participating had at least 3 years of general

programming and at least 1-2 years of Java programming experience.

Table 10: Years of General and Java Programming Experience of Students

General Java

Course 0 Years 1-2 Years 3+ Years 0 Years 1-2 Years 3+ Years

COMP 354 11% 31% 58% 7% 61% 32%

SOEN 6431 02% 22% 76% 10% 49% 41%

As part of the case study, the students were asked to evaluate the comments

as being either Very Poor, Poor, Good, or Very Good as shown in Figure 35. The

students were also asked to provide a short description justifying their assessment.

7Kwik Surveys, http://www.kwiksurveys.com/

77

http://www.kwiksurveys.com/

Figure 35: A Sample Question from the Survey

From the 110 manually assessed comments, we selected a total of 67 comments:

5 class and interface comments, 2 field comments, and 60 constructor and method

comments, where participants strongly agreed (≥ 60%) as them being of either good

(39 comments) or bad (28 comments) quality. While comparing the students manual

evaluations of method comments with some of the NL measures of the JavadocMiner

(Table 11), we found that the comments that were evaluated negatively contained half

as many words (14), compared to the comments that were evaluated as being good.

Regardless of the insufficient documentation of the bad comments, the readability

index of Fog and Kincaid indicated text that contained a higher density, or more

complex material, which the students found hard to understand.

Table 11: Method Comments Evaluated by Students and the JavadocMiner

Student Evaluation Avg. Number of Words Avg. Fog Avg. Kincaid

Good 28.03 12.63 14.15

Bad 14.79 13.98 12.66

In order to evaluate if students were capable of assessing Javadoc comments based

on some of the syntactic quality factors, we included methods that contained: (1) pa-

rameter lists, (2) return types and (1) thrown exceptions, which needed to be docu-

mented using the appropriate Java annotation. While reviewing the survey results,

we found that most of students failed to analyze the consistency between the code

78

and comments as shown in Figure 36. Our JavadocMiner also detected a total of 8

abbreviations being used within comments, which none of the students mentioned.

Figure 36: A Sample Answer from the Survey

Finally, for twelve of the 39 comments that were analyzed by the students as being

good, 12 of them were not using a declarative third-person writing style, a detail all

of the students also failed to mention. From our case study, it is obvious that humans

are incapable of analyzing in-line documentation based on all of the quality factors

without the help of an application.

7.5 Summary

In this chapter we illustrated how the JavadocMiner was used to assess the quality

of comments found in two open source projects. We began our evaluation by bench-

marking the amount of time it took the SSL Javadoc Doclet to generate a corpus from

source code and source code comments. We found that the Doclet is able to convert

the Java documents into an XML representation in linear time. We continued by an-

alyzing the quality of comments found in different versions of ArgoUML and Eclipse,

and observed how the quality of source code comments increased, decreased or was

flat over time. To correlate the quality of comments with reported bug defects we

(1) applied the Pearson product-moment correlation coefficient measure to both the

results returned by the JavadocMiner and reported bug defects, and (2) plotted the

values of the results with the number of reported bug defects for the different modules.

The results of that study identified which of the metrics had a strong correlation to

bug defects, and could therefore be used to identify parts of an implementation that

is most prone to error due to low quality documentation. As a means of comparing

79

the JavadocMiner with human intuition, we asked students to evaluate the quality

of randomly selected comments. What we found was, most students were unable to

assess the Javadoc comments given the different quality factors. An indication of the

need to automate the process. In Chapter 8 we discuss the conclusion of our work,

and what future plans we hold for our JavadocMiner system.

80

Chapter 8

Conclusions and Future Work

In this thesis, we discussed challenges, the software engineering domain faces, when

assessing the quality of source code comments written in natural language. We pre-

sented an approach that automatically assesses the quality of Javadoc documentation

found in software, implemented in the JavadocMiner tool. We also showed how the

JavadocMiner can be used to identify modules that may contain a higher number

of bug defects, due to poor and out dated in-line documentation. Regardless of the

current trends in software engineering and the paradigm shift from documentation

to development, we have shown how potential problem areas can be minimized by

maintaining source code that is sufficiently documented using good quality up-to-

date source code comments. We demonstrated how the JavadocMiner was used to

assess the quality of in-line documentation found in two existing open source projects.

We also correlated each of the heuristics with bug defects, and found some of the

heuristics had a stronger correlation to bug defects than others.

8.1 Future Work

The readability measures used to analyze the quality of in-line documentation found

in source code make use of simple proxies in order to perform grammatical and lex-

ical complexity analysis. Fairly simple features were often employed due to the lack

of computational power [HCTE08]. Such features “exhibit high bias” due to their

assumption that grammatical complexity is based on sentence length or number of

syllables. More recent approaches to reading difficulty implement more sophisticated

81

models that make use of the growth in computational power [HCTE08]. For exam-

ple, the authors of [CTC04] created a readability measure using a smoothed unigram

model to predict the reading difficulty of web pages. To satisfy the 100 word sample

needed by the model, we plan on merging all the comments found in a given class,

generating a readability index for the entire document. Machine learning techniques

are often used in a variety of text classification problems [SO05]. The data from our

case study, where we asked students to manually assess the quality of in-line documen-

tation, can also be used to train a machine learning algorithm such as Support Vector

Machines (SVMs). Using an SVM algorithm, we can classify the quality of in-line

documentation based on the set of features that we currently have, such as NP, VG,

writing style, and the Flesch-Kinkaid readability index. Separate classifiers would be

used to assess the different types of in-line documentation i.e. class, field and method

comments. By using supervised learning techniques, the bias assumptions made by

the readability measures would be reduced.

An important challenge in software engineering research is the integration of

tools to assist software developers in performing SME tasks efficiently and effec-

tively [KCA06]. The focus of researchers in the past has always been about applying

more sophisticated NLP analysis to assist in software engineering, and less about

tool integration [KCA06]. For example, the Doc Check Doclet quality analysis tool

is designed to be executed using command line, Make, or ANT, and users must also

provide Javadoc parameters that influence the output of the analysis. An added task

that can be seen as unfavourable, compared to the JavadocMiner that can be invoked

from within existing tools such as Eclipse and Hudson.

A central concept in the design of new tools is how they can be tightly integrated

into existing tools used for software engineering. Version control systems, issue track-

ers, mailing lists, and IDEs are just some of the many tools used in industry to facili-

tate software development. The analysis provided by such tools are mainly syntactic

in nature (e.g., making sure an issue contains: issue date, author, severity, status,

and description), and simple forms of NL quality analysis (e.g., spell-checking).

Many tools currently being used employ a framework architecture that is easily ex-

tended using plug-ins. This is especially true for tools used for software development.

82

Figure 37: The JavadocMiner Output Included in Hudson

Tools such as Eclipse1, Redmine2, or Hudson3 all provide an interface that enables

new features to be added. In [WSKR11] we discussed how the JavadocMiner NLP

service was integrated into the Eclipse IDE. This allows developers and maintainers

to perform an analysis on their source code comments while still in the Eclipse envi-

ronment, and receive instant feedback on the quality of comments. This is far more

efficient than introducing an entirely new tool that would require users to navigate

away from their development environment to perform a quality assessment on their

Javadoc comments.

Build servers are also tools commonly used to facilitate software engineering. The

tool is in charge of including all dependencies needed by a software system, and build-

ing the entire source tree. The task is invoked based on a specified time or event

(i.e., file commits using the versioning system). Hudson is a continuous integration

server used to manage the quality of source code being committed by the individual

stakeholder into a versioning system. It is also implemented using a framework ar-

chitecture, enabling users to extend the analysis provided by the tool with their own

1Eclipse,http://www.eclipse.org/
2Redmine,http://www.redmine.org/
3Hudson, http://hudson-ci.org/

83

http://www.eclipse.org/
http://www.redmine.org/
http://hudson-ci.org/

solutions. Developers have already integrated the Checkstyle analysis tool mentioned

in Chapter 7 into the Hudson build server. As part of our future works, we plan

on enriching the analysis provided by Hudson and Checkstyle (Requirement #6.1)

by including the analysis provided by the JavadocMiner into the Hudson plug-in, as

shown in Figure 37.

84

Chapter 9

Publications

9.1 Accepted / Published

• Ninus Khamis, René Witte, and Juergen Rilling. Automatic Quality Assessment

of Source Code Comments: The JavadocMiner. In proceedings of The 15th

International Conference on Applications of Natural Language to Information

Systems (NLDB 2010), June 23–25, Cardiff, UK. (Acceptance rate: 30%)

• Ninus Khamis, Juergen Rilling, and René Witte. Generating an NLP Corpus

from Java Source Code: The SSL Javadoc Doclet. New Challenges for NLP

Frameworks, Workshop at LREC 2010, pp.41–45, May 22, 2010, Valletta, Malta.

• René Witte, Ninus Khamis, and Juergen Rilling. Flexible Ontology Population

from Text: The OwlExporter. In proceedings of The Seventh International

Conference on Language Resources and Evaluation (LREC 2010), pp.3845–3850,

May 19–21, 2010, Valletta, Malta.

• René Witte, Bahar Sateli, Ninus Khamis, and Juergen Rilling. Intelligent Soft-

ware Development Environments: Integrating Natural Language Processing

with the Eclipse Platform. To appear at The 24th Canadian Conference on

Artificial Intelligence (AI 2011), May 25-27, 2011, St. John’s, Canada

85

Bibliography

[ADB04] Ademar Aguiar, Gabriel David, and Greg Badros. Javaml 2.0: Enrich-

ing the markup language for java source code. In XML: Aplicações e

Tecnologias Associadas (XATA 2004), 2004.

[AHM+09] Surafel Lemma Abebe, Sonia Haiduc, Andrian Marcus, Paolo Tonella,

and Giuliano Antoniol. Analyzing the Evolution of the Source Code

Vocabulary. Software Maintenance and Reengineering, European Con-

ference on, pages 189–198, 2009.

[Av08] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer.

The MIT Press, 2 edition, March 2008.

[Aza89] S. Azar. Understanding and Using English Grammar. Prentice Hall

Regents, 1989.

[Bad00] Greg J. Badros. JavaML: a markup language for Java source code.

Computer Networks (Amsterdam, Netherlands: 1999), 33(1–6):159–

177, 2000.

[Bei10] Elena Beisswanger. Exploiting relation extraction for ontology align-

ment. In Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika,

Lei Zhang, Jeff Z. Pan, Ian Horrocks, and Birte Glimm, editors, Inter-

national Semantic Web Conference (2), volume 6497 of Lecture Notes

in Computer Science, pages 289–296. Springer, 2010.

[BF09] Panuchart Bunyakiati and Anthony Finkelstein. The Compliance Test-

ing of Software Tools with Respect to the UML Standards Specification

- The ArgoUML Case Study. In Dimitris Dranidis, Stephen P. Masti-

cola, and Paul A. Strooper, editors, AST, pages 138–143. IEEE, 2009.

86

[Bro83] Ruven E. Brooks. Towards a Theory of the Comprehension of

Computer Programs. International Journal of Man-Machine Studies,

18(6):543–554, 1983.

[BW08] Raymond P. L. Buse and Westley R. Weimer. A metric for software

readability. In ISSTA ’08: Proceedings of the 2008 international sympo-

sium on Software testing and analysis, pages 121–130, New York, NY,

USA, 2008. ACM.

[BWKG05] Jennifer Bevan, E. James Whitehead, Jr., Sunghun Kim, and Michael

Godfrey. Facilitating software evolution research with kenyon. SIG-

SOFT Softw. Eng. Notes, 30(5):177–186, 2005.

[Cho03] G Chowdhury. Natural language processing. Language, 39(1):n/a–n/a,

2003.

[Cim06] Philipp Cimiano. Ontology Learning and Population from Text: Algo-

rithms, Evaluation and Applications. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2006.

[CKC68] Frederick E. Croxton, Sidney Klein, and Dudley J. Cowden. Applied

general statistics / Frederick E. Croxton, Dudley J. Cowden and Sidney

Klein. Pitman, London :, 3rd ed. edition, 1968.

[CMB+10] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin

Tablan, Niraj Aswani, Ian Roberts, Genevieve Gorrell, Adam Funk,

Angus Roberts, Danica Damljanovic, Thomas Heitz, Mark Greenwood,

Horacio Saggion, Johann Petrak, Yaoyong Li, and Wim Peters. Devel-

oping Language Processing Components with GATE Version 6 (a User

Guide). University of Sheffield, December 2010. For GATE version 6.1.

[CMBT02] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE:

A framework and graphical development environment for robust NLP

tools and applications. In Proceedings of the 40th Annual Meeting of

the ACL, 2002.

[CMT00] H. Cunningham, D. Maynard, and V. Tablan. JAPE: a Java An-

notation Patterns Engine (Second Edition). Research Memorandum

87

CS–00–10, Department of Computer Science, University of Sheffield,

November 2000.

[Cob99] C. Cobuild, editor. English Grammar. Harper Collins, 1999.

[CTC04] Kevyn Collins-Thompson and James P. Callan. A language modeling

approach to predicting reading difficulty. In HLT-NAACL, pages 193–

200, 2004.

[DD07] Harvey M. Deitel and Paul J. Deitel. Java. Prentice Hall, 7th ed

edition, 2007. xliv, 1579 p. ; 24cm. 2 CD-ROMS(4 3/4 in.) : ill.

[dSM09] Luis Carlos dos Santos Marujo. REAP em Português, July 2009.

[DuB06] William H. DuBay. Smart language: Readers, Readability, and the

Grading of Text. Impact Information, 2006.

[EC49] Dale Edgar and Jeanne Chall. The concept of readability. 1949.

[EM82] James L. Elshoff and Michael Marcotty. Improving computer program

readability to aid modification. Commun. ACM, 25:512–521, August

1982.

[FBMNPS07] Diego Calvanese Franz Baader, Deborah L. McGuinness, Daniele Nardi,

and Peter F. Patel-Schneider. The Description Logic Handbook: The-

ory, Implementation, and Applications. Cambridge University Press,

2007.

[FL02] Andrew Forward and Timothy C. Lethbridge. The relevance of software

documentation, tools and technologies: a survey. In Proceedings of the

2002 ACM symposium on Document engineering, DocEng ’02, pages

26–33, New York, NY, USA, 2002. ACM.

[FSH+08] Z. P. Fry, D. Shepherd, E. Hill, L. Pollock, and K. Vijay-Shanker.

Analysing source code: looking for useful verb-direct object pairs in

all the right places. Software, IET, 2(1):27–36, February 2008.

[FWG07] Beat Fluri, Michael Würsch, and Harald Gall. Do Code and Com-

ments Co-Evolve? On the Relation between Source Code and Com-

ment Changes. In WCRE, pages 70–79, 2007.

88

[FWGG09] Beat Fluri, Michael Würsch, Emanuel Giger, and Harald C. Gall. Ana-

lyzing the co-evolution of comments and source code. Software Quality

Control, 17(4):367–394, 2009.

[GP03] Charles F. Goldfarb and Paul Prescod. The XML Handbook, Fifth

Edition. Prentice-Hall PTR, 2003.

[Gru93] T. R. Gruber. A translation approach to portable ontology specifica-

tions. Knowledge Acquisition Academic Press Inc. 5(2), 1993.

[Har00] Gretchen Hargis. Readability and computer documentation. ACM

Journal of Computer Documentation, 24(3):122–131, 2000.

[HCTE08] Michael Heilman, Kevyn Collins-Thompson, and Maxine Eskenazi. An

analysis of statistical models and features for reading difficulty predic-

tion. In Proceedings of the Third Workshop on Innovative Use of NLP

for Building Educational Applications, EANL ’08, pages 71–79, Morris-

town, NJ, USA, 2008. Association for Computational Linguistics.

[Hep00] Mark Hepple. Independence and commitment: Assumptions for rapid

training and execution of rule-based POS taggers. In Proceedings of the

38th Annual Meeting of the Association for Computational Linguistics

(ACL-2000), Hong Kong, October 2000.

[HFB+08] Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara, Yana

Novikova, Lori Pollock, and K. Vijay-Shanker. AMAP: automatically

mining abbreviation expansions in programs to enhance software main-

tenance tools. In MSR ’08: Proceedings of the 2008 international work-

ing conference on Mining software repositories, pages 79–88, New York,

NY, USA, 2008. ACM.

[HKST06] Hans-Jörg Happel, Axel Korthaus, Stefan Seedorf, and Peter Tomczyk.

KOntoR: An Ontology-enabled Approach to Software Reuse. In IN:

PROC. OF THE 18TH INT. CONF. ON SOFTWARE ENGINEER-

ING AND KNOWLEDGE ENGINEERING, 2006.

[HM01] Volker Haarslev and Ralf Möller. RACER System Description. In

R. Goré, A. Leitsch, and T. Nipkow, editors, Automated Reasoning:

89

First International Joint Conference (IJCAR) 2001, volume 2083 of

Lecture Notes in Computer Science, page 701, Siena, Italy, June18-23

2001. Springer-Verlag.

[HP02] Rodney D. Huddleston and Geoffrey K. Pullum. The Cambridge Gram-

mar of the English Language. Cambridge University Press, April 2002.

[JH06] Zhen Ming Jiang and Ahmed E. Hassan. Examining the evolution of

code comments in PostgreSQL. In MSR ’06: Proceedings of the 2006

international workshop on Mining software repositories, pages 179–180,

New York, NY, USA, 2006. ACM.

[JW00] W. Strunk Jr and E. B. White. The Elements of Style. Allyn & Bacon,

4th edition, 2000.

[KBT07] Christoph Kiefer, Abraham Bernstein, and Jonas Tappolet. Mining

Software Repositories with iSPAROL and a Software Evolution Ontol-

ogy. In Proceedings of the Fourth International Workshop on Mining

Software Repositories, MSR ’07, pages 10–, Washington, DC, USA,

2007. IEEE Computer Society.

[KCA06] Andrew J. Ko, Michael J. Coblenz, and Htet H. Aung. An exploratory

study of how developers seek, relate, and collect relevant information

during software maintenance tasks. IEEE Transactions on Software

Engineering, 32(12):971–987, December 2006.

[Kla00] George R. Klare. Readable computer documentation. ACM J. Comput.

Doc., 24:148–168, August 2000.

[Knu84] Donald E. Knuth. Literate Programming. The Computer Journal,

27(2):97–111, 1984.

[Kod04] Viswanathan Kodaganallur. Incorporating language processing into

java applications: A javacc tutorial. IEEE Software, 21(4):70–77, 2004.

[Kos10] Jussi Koskinen. Software Maintenance Fundementals. Taylor & Francis

Group., 2010.

90

[Kot00] Jeffrey Kotula. Source Code Documentation: An Engineering Deliver-

able. Technology of Object-Oriented Languages, International Confer-

ence on, 0:505, 2000.

[Kra99] Douglas Kramer. API documentation from source code comments: a

case study of Javadoc. In SIGDOC ’99: Proceedings of the 17th annual

international conference on Computer documentation, pages 147–153,

New York, NY, USA, 1999. ACM.

[KWR10] Ninus Khamis, René Witte, and Juergen Rilling. Generating an NLP

Corpus from Java Source Code: The SSL Javadoc Doclet. In New Chal-

lenges for NLP Frameworks, Valletta, Malta, 05/2010 2010. ELRA.

[LB85] M. M. Lehman and L. A. Belady, editors. Program evolution: processes

of software change. Academic Press Professional, Inc., San Diego, CA,

USA, 1985.

[Lid01] E.D. Liddy. Natural Language Processing. Marcel Decker, Inc, NY,

2nd edition, 2001.

[LPR98] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implications of Evolution

Metrics on Software Maintenance. In Proceedings of the International

Conference on Software Maintenance, ICSM ’98, pages 208–, Washing-

ton, DC, USA, 1998. IEEE Computer Society.

[MCHS09] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, and Ulrike Sattler.

Representing Ontologies Using Description Logics, Description Graphs,

and Rules. Artificial Intelligence, 173(14):1275–1309, 2009.

[MP82] Douglas R. McCallum and James L. Peterson. Computer-based read-

ability indexes. In Proceedings of the ACM ’82 conference, ACM ’82,

pages 44–48, New York, NY, USA, 1982. ACM.

[MRBW10] Christoph Müller, Guido Reina, Michael Burch, and Daniel Weiskopf.

Subversion Statistics Sifter. In George Bebis, Richard D. Boyle,

Bahram Parvin, Darko Koracin, Ronald Chung, Riad I. Hammoud,

Muhammad Hussain, Kar-Han Tan, Roger Crawfis, Daniel Thalmann,

91

David Kao, and Lisa Avila, editors, ISVC (3), volume 6455 of Lecture

Notes in Computer Science, pages 447–457. Springer, 2010.

[NLC03] E. Nurvitadhi, Wing Wah Leung, and C. Cook. Do class comments

aid Java program understanding? In Frontiers in Education (FIE),

volume 1, Nov. 2003.

[Pfl98] Shari Lawrence Pfleeger. Software Engineering: Theory and Practice.

Prentice Hall, 1998.

[PL08] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foun-

dation and Trends in Information Retrieval, 2(1-2):1–135, 2008.

[PP09] D. Pierret and D. Poshyvanyk. An empirical exploration of regularities

in open-source software lexicons. pages 228–32, Piscataway, NJ, USA,

2009.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language

for RDF. Technical report, 1 2008.

[PTZ09] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. Listening to program-

mers Taxonomies and characteristics of comments in operating system

code. In ICSE ’09, pages 331–341, Washington, DC, USA, 2009. IEEE

Computer Society.

[Ray03] Erik T. Ray. Learning XML. O’Reilly & Associates, Sebastopol, Cali-

fornia, 2nd edition, September 2003.

[RN88] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the

correlation coefficient. The American Statistician, 42:59–66, 1988.

[RWSC08] Juergen Rilling, René Witte, Philipp Schuegerl, and Philippe Charland.

Beyond Information Silos – An Omnipresent Approach to Software Evo-

lution. International Journal of Semantic Computing (IJSC), 2(4):431–

468, December 2008. Special Issue on Ambient Semantic Computing.

[SDZ07] Daniel Schreck, Valentin Dallmeier, and Thomas Zimmermann. How

documentation evolves over time. In IWPSE ’07: Ninth international

92

workshop on Principles of software evolution, pages 4–10, New York,

NY, USA, 2007. ACM.

[SO05] Sarah E. Schwarm and Mari Ostendorf. Reading Level Assessment Us-

ing Support Vector Machines and Statistical Language Models. In Pro-

ceedings of the Annual Meeting of the Association for Computational

Linguistics, pages 523–530, 2005.

[SPG+07] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A

practical OWL-DL reasoner. Web Semantics: Science, Services and

Agents on the World Wide Web, 5(2):51–53, June 2007.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner:

System description. In In Proc. of the Int. Joint Conf. on Automated

Reasoning (IJCAR 2006, pages 292–297. Springer, 2006.

[TYKZ07] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment:

bugs or bad comments?*/. In SOSP ’07: Proceedings of twenty-first

ACM SIGOPS symposium on Operating systems principles, pages 145–

158, New York, NY, USA, 2007. ACM.

[Wit] René Witte. Multi-lingual noun phrase extractor.

[WKR11] René Witte, Ninus Khamis, and Juergen Rilling. Flexible Ontology

Population from Text: The OwlExporter. In Int. Conf. on Language

Resources and Evaluation (LREC), Valletta, Malta, 05/2010 2011.

ELRA.

[WSKR11] René Witte, Bahar Sateli, Ninus Khamis, and Juergen Rilling. Intel-

ligent Software Development Environments: Integrating Natural Lan-

guage Processing with the Eclipse Platform. In Canadian Conference

on Artificial Intelligence (Canadian AI), Newfoundland and Labrador,

Canada, 05/2011 2011.

[YWA05] Annie T. T. Ying, James L. Wright, and Steven Abrams. Source code

that talks: an exploration of Eclipse task comments and their impli-

cation to repository mining. SIGSOFT Softw. Eng. Notes, 30(4):1–5,

2005.

93

[Zha08] Hongyu Zhang. Exploring Regularity in Source Code: Software Science

and Zipf’s Law. In WCRE ’08: Proceedings of the 2008 15th Working

Conference on Reverse Engineering, pages 101–110, Washington, DC,

USA, 2008. IEEE Computer Society.

[Zip32] G. K. Zipf. Selective Studies and the Principle of Relative Frequency

in Language, 1932.

[Zok02] David M. Zokaites. Writing Understandable Code. 2002.

[ZWRH06] Yonggang Zhang, René Witte, Juergen Rilling, and Volker Haarslev.

An Ontology-based Approach for the Recovery of Traceability Links.

In 3rd Int. Workshop on Metamodels, Schemas, Grammars, and On-

tologies for Reverse Engineering (ATEM 2006), Genoa, Italy, October

1st 2006.

94

Appendix A

JavadocMiner Pipeline

A detailed list of the GATE PRs used in our JavadocMiner application can be found

in Table 12. In bold are the components developed by us.

Table 12: Processing resources of the JavadocMiner

pipeline

Processing func-

tion

GATE resource

name

Control input

DocumentResetPR Document Reset PR

AnnotTransfer Annotation Set Trans-

fer

Standard PR used to transfer the an-

notations from Default markup to the

processing AS.

Tokenization ANNIE English Tok-

enizer

Standard tokenization rules for English

text.

JavadocSplit JAPE Transducer Grammar to identify Javadoc sen-

tences.

ANNIESentence-

Splitter

ANNIE Sentence

Splitter

Standard sentence splitting rules for

sentences.

Part of speech tagging ANNIE POS Tagger Brill tagger trained on general English

text.

Continued on next page . . .

95

Continuation of Table 12 . . .

Processing func-

tion

GATE resource

name

Control input

Gazetteer ANNIE Gazetteer Gazetteer list used for detecting com-

monly used abbreviations in English

text.

Stemmer Stemmer PR Rule based component, in charge of tak-

ing the stem of the word.

JavadocMiner JavadocMiner PR Contains the set of metrics specifically

used to analyse Javadoc comments.

ReadabilityMetrics ReadabilityMetrics

PR

Contains the set of metrics used to an-

alyze english text.

FeatureTransferer JAPE Transducer Grammar to transfer features from the

inside annotation set to the outside an-

notation set.

DocInfo JAPE Transducer Creates document information such as

sourceURL, start and end offsets.

Verb Phrase chunking ANNIE VP Chunker Grammer to identify Verb Phrases

Noun Phrase

chunking

JAPE Transducer Grammar to identify Noun Phrases

DomainClassFinder JAPE Transducer Identifies the domain terminology anno-

tated by the previous PRs. Needed by

the OwlExporter to create instances in

the domain ontology model.

NLPClassFinder JAPE Transducer Identifies the NLP terminology anno-

tated by the previous PRs. Needed by

the OwlExporter to create instances in

the NLP ontology model.

OwlExportClass JAPE Transducer Creates the temporary annotation type

needed by the OwExporter to create in-

stances in the ontology model.

Continued on next page . . .

96

Continuation of Table 12 . . .

Processing func-

tion

GATE resource

name

Control input

CodeRelationFinder JAPE Transducer Identifies the source code relationships

annotated by previous PRs. Needed by

the OwlExporter to create source code

object and datatype relationships.

CommentRelation-

Finder

JAPE Transducer Identifies the in-line documentation re-

lationships annotated by previous PRs.

Needed by the OwlExporter to create

comment object and datatype relation-

ships.

NLPRelationFinder JAPE Transducer Identifies the NLP relationships anno-

tated by previous PRs. Needed by the

OwlExporter to create NLP object and

datatype relationships.

DomainNLP-

Relation-Finder

JAPE Transducer Identifies the relationships between the

NLP and domain annotations created

by previous PRs. Needed by the Owl-

Exporter to create object and datatype

relationships between the NLP and do-

main ontologies.

OwlExporter OwlExporter PR The PR that is in charge of exporting

the instances and relationships identi-

fied by the pipeline to the related ontol-

ogy.

97

Appendix B

Components Developed for the

JavadocMiner

B.1 SSLDoclet Parameters

The run-time parameters accessible within GATE for the SSLDoclet component, to-

gether with the default values, are shown in Table 13.

Table 13: Default parameter settings for the SSLDoclet component

Parameter Name Type Default Comment

corpus Corpus The GATE corpus needed to store the gen-

erated input documents.

appendCorpus Boolean false Specifies whether all Java files processed

by the doclet get appended to the corpus.

doclet String Specifies the doclet to be used when gen-

erating the Javadocs.

docletPath URL Specifies the location of the doclet to be

used.

debugFlag Boolean false Specifies whether or not to print debug-

ging messages while running the compo-

nent.

98

B.2 JavadocMiner Parameters

The run-time parameters accessible within GATE for the JavadocMiner component,

together with the default values, are shown in Table 14.

Table 14: Default parameter settings for the JavadocMiner component

Parameter Name Type Default Comment

corpus Corpus The GATE corpus needed to store the gen-

erated input documents.

inputASName String Specifies the annotation set that the

user would like to process using the

JavadocMiner component.

metricList ArrayList POS Specifies the list of JavadocMiner metrics

that the user would like to run. Possi-

ble options are (POS, MethodComplete-

ness, CommentAverage, ClassComplete-

ness, AbbreviationCount, MethodCom-

mentStyle).

debugFlag Boolean false Specifies whether or not to print debug-

ging messages while running the compo-

nent.

B.3 ReadabilityMetrics Parameters

The run-time parameter accessible within GATE for the ReadabilityMetrics compo-

nent together with the default values are shown in Table 15.

99

Table 15: Default parameter settings for the Readability-

Metrics component

Parameter Name Type Default Comment

inputASName String Specifies the annotation set that the

user would like to process using the

ReadabilityMetrics component.

outsideAnnotation Set Document Specifies the annotation(s) that the ap-

plication will append features to, spec-

ifying the average figures returned by

the analysis on the insideAnnotation-

Set. For the JavadocMiner application

the values are (AbstractClass Block,

Class Block, Interface Block).

insideAnnotaiton Set Sentence Specifies the annotation(s) that

the application will use to ap-

ply the set of metrics on. For

the JavadocMiner application

the values are (Field Comment,

Method Comment, Construc-

tor Comment).

runFleschMetric Boolean true Specifies whether or not to run the

Flesch readability metric on the corpus.

fleschThreshold double 65 Specifies the the threshold the user

would like to set for the metric. If the

sentence has a Flesh readability index

below the threshold, a feature is created

stating the difference between the two

values.

runFogMetric Boolean true Specifies whether or not to run the Fog

readability metric on the corpus.

Continued on next page . . .

100

Continuation of Table 15 . . .

Parameter Name Type Default Comment

fogThreshold double 60 Specifies the threshold the user would

like to set for the metric. If the sentence

has a Fog readability index above the

threshold, a feature is created stating

the difference between the two values.

runKincaidMetric Boolean true Specifies whether or not to run the Kin-

caid readability metric on the corpus.

kincaidThreshold double 11 Specifies the threshold the user would

like to set for the metric. If the sentence

has a Kincaid readability index above

the threshold, a feature is created stat-

ing the difference between the two val-

ues.

debugFlag Boolean false Specifies whether or not to print debug-

ging messages while running the com-

ponent.

101

Appendix C

Generic GATE Components used

for the JavadocMiner

C.1 JAPE Transducer.

JAPE stands for Java Annotation Patterns Engine and provides finite state transduc-

tion over text annotations based on regular expressions [CMT00]. A grammar written

in JAPE is compiled into a transducer that consists of a set of phases, each of which

consists of a set of pattern/action rules [CMB+10].

C.2 Tokenizer

The tokenizer annotates tokens of a text according to their symbolic structure. There-

fore, it creates the “Token” Annotations with the Features “orth” and “kind”. It

is kept simple, so that it is on the one side flexible enough for all kinds of different

tasks and on the otherside very efficient [CMB+10]. It leaves the more complex work

to the JAPE Transducers (see Section C.1).

C.3 Sentence Splitter

The resource is a cascade of finite-state transducers, which segments text into sen-

tences. Eventually, it creates the Annotation “Sentence” attached to the sentence

boundaries, which is used by other Processing Resources. Each sentence is annotated

102

with the type Sentence. Each sentence break (such as a full stop) is also given a

Split annotation. This has several possible types: “.”, “punctuation”, “CR” (a line

break) or “multi” (a series of punctuation marks such as “?!?!”. The sentence splitter

is domain- and application-independent [CMB+10].

C.4 Part-Of-Speech Tagger

A special resource for tagging tokens of text with corresponding parts of speech.

The Hepple Tagger uses a lexicon and a rule-set, obtained as the result of machine

learning on a large corpus taken from the Wall Street Journal. The resource extends

the “Token” Annotation with the Feature “pos”, which has a value representing a

part-of-speech of the current token. [CMB+10].

C.5 Gazetteer

This component is used for tagging tokens with their semantic categories. It creates

the “Lookup” Annotation over certain tokens with the “majorType” and “minorType”

features. Values of these Features define major and minor semantic categories of the

token. The resource utilizes a set of list files: each file containing a set of names that

have a certain type; and the definition file (lists.def), which attaches the “majorType”

and “minorType” values to each names file [CMB+10].

C.6 Stemmer

The stemmer plugin, “Stemmer Snowball”, consists of a set of stemmers PRs for

the following 11 European languages: Danish, Dutch, English, Finnish, French, Ger-

man, Italian, Norwegian, Portuguese, Russian, Spanish and Swedish. These take the

form of wrappers for the Snowball stemmers freely available from http://snowball.

tartarus.org. Each Token is annotated with a new feature ‘stem’, with the stem

for that word as its value. The stemmers should be run as other PRs, on a document

that has been tokenised [CMB+10].

103

http://snowball.tartarus.org
http://snowball.tartarus.org

C.7 Multi-lingual Noun Phrase Extractor

MuNPEx [Wit] is a base NP chunker, i.e., it does not deal with any kind of con-

junctions, oppositions, or PP-attachments. It is implemented using JAPE and can

make use of previously detected named entities (NEs) to improve chunking perfor-

mance [CMB+10].

C.8 Verb Group Chunker

The rule-based verb chunker is based on a number of grammars of English ([Cob99], [Aza89]).

68 rules were developed for the identification of non recursive verb groups. The rules

cover finite (’is investigating’), non-finite (’to investigate’), participles (’investigated’),

and special verb constructs (’is going to investigate’) [CMB+10].

104

	List of Figures
	List of Tables
	List of Accronyms
	Introduction
	Motivation
	Contribution
	Structure of the Thesis

	Background
	Source Code Comments and Impact on Software Maintenance
	In-line Documentation and Javadoc
	Javadoc Writing Guidelines

	Foundations of Natural Language Processing
	Readability Measures
	Knowledge Representation using Ontologies
	Summary

	Related Work
	Corpus Generation from Source Code
	Quality Analysis of Source Code and Source Code Comments
	Internal Analysis of Source Code Comments
	Code/Comment Consistency Analysis
	External Analysis of Source Code Comments

	Summary

	Requirements Analysis
	Generating a Corpus from Source Code
	Comment Syntax Analysis
	Internal Comment Quality Assessment
	Code/Comment Consistency Analysis
	Representing the JavadocMiner Results
	Tool Integration
	Summary

	Design
	System Components
	Corpus Generation from Source Code:The SSL Javadoc Doclet
	Marking Up Source Code
	Marking Up Source Code Comments

	Preprocessing Phase
	JavadocMiner Quality Assessments
	Comment Syntax
	Internal NL Comment Analysis
	Code/Comment Consistency Analysis

	The Javadoc Output Ontology
	External Traceability Links Generation

	Summary

	Implementation
	System Overview
	The SSL Javadoc Doclet
	GATE Environment
	The JavadocMiner NLP Application
	Javadoc Ontology
	Ontology Population Using the OwlExporter
	Linking Software Engineering Data

	Summary

	Evaluation
	Data
	Generating a Corpus using Open Source Software
	Assessing the Quality of In-Line Documentation found in Open Source Software
	Quality Analysis
	Summary

	Conclusions and Future Work
	Future Work

	Publications
	Accepted / Published

	Bibliography
	JavadocMiner Pipeline
	Components Developed for the JavadocMiner
	SSLDoclet Parameters
	JavadocMiner Parameters
	ReadabilityMetrics Parameters

	Generic GATE Components used for the JavadocMiner
	JAPE Transducer.
	Tokenizer
	Sentence Splitter
	Part-Of-Speech Tagger
	Gazetteer
	Stemmer
	Multi-lingual Noun Phrase Extractor
	Verb Group Chunker

