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ABSTRACT

Information-Theoretic Analysis using Theorem Proving

Tarek Mhamdi

Concordia University, 2012

Information theory is widely used for analyzing a wide range of scientific and

engineering problems, including cryptography, neurobiology, quantum computing, pla-

giarism detection and other forms of data analysis. Despite the safety-critical nature

of some of these applications, most of the information-theoretic analysis is done using

informal techniques, mainly computer simulation and paper-and-pencil analysis, and

thus cannot be completely relied upon. The unreliable nature of the produced results

poses a serious problem in safety-critical applications and may result in heavy financial

losses or even the loss of human life. In order to overcome the inaccuracy limitations

of these techniques, this thesis proposes to conduct the analysis within the trusted

kernel of a higher-order-logic (HOL) theorem prover. For this purpose, we provide

HOL formalizations of the fundamental theories of measure, Lebesgue integration

and probability and use them to formalize some of the most widely used information-

theoretic principles. We use the Kullback-Leibler divergence as a unified measure of

information which is in turn used to define the main measures of information like the

Shannon entropy, mutual information and conditional mutual information. Further-

more, we introduce two new measures of information leakage, namely the information

leakage degree and the conditional information leakage degree and compare them with

existing measures. We illustrate the usefulness of the proposed framework by tackling

various applications including the performance analysis of a communication encoder
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used in the proof of the Shannon source coding theorem, the quantitative analysis of

privacy properties of a digital communications mixer and the one-time pad encryption

system using information-theoretic measures.
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Chapter 1

Introduction

1.1 Motivation

Knowing ignorance is strength. Ignoring knowledge is sickness.

Lao-Tse, Tao Te Ching [6th Century BCE]

Hardware and software systems usually exhibit some kind of random or unpredictable

behavior, either because of a faulty component, interaction with an unpredictable en-

vironment or simply because of the use of a probabilistic algorithm within the system.

Due to these elements of randomness and uncertainty, establishing the correctness of

a system under all circumstances usually becomes impractically expensive. The engi-

neering approach to evaluate the performance of these systems is to use probabilistic

analysis. Furthermore, information-theoretic analysis is gaining more ground in the

study of correctness and performance of a broad range of scientific and engineering

systems. In fact, after it was first introduced by Shannon in his seminal paper [62],

information theory has become an increasingly popular discipline in a wide range of

applications including communication, cryptography, quantum computing, plagiarism
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detection and other forms of data analysis.

Information-theoretic analysis consists in using measures of information to quan-

tify the flow of information and evaluate the performance of a system or a protocol.

Examples of this analysis include the evaluation of anonymity networks and security

protocols. Anonymity networks such as Crowds [54] and Tor [20] have been proposed

to provide anonymous communication between entities in a network. Analyzing the

anonymity properties of these protocols consists in finding out how much information

an attacker can learn about the senders and receivers in the network. One way to do

so is through quantitative analysis of information flow [64, 58] which allows to mea-

sure how much information about the high security inputs of a system can be leaked,

accidentally or maliciously, by observing the systems outputs and possibly the low

security inputs. Quantitative analysis of information flow has also been proposed to

analyze security protocols [64]. In fact, while these protocols aim to preserve sensitive

and confidential data and prevent it from being leaked or tainted, a small leakage

of information is sometimes necessary, as is the case for password checking or for a

voting protocol.

Traditionally, computer simulations and paper-and-pencil based analysis have

been used for the analysis of probabilistic systems as well as the quantitative analysis

of information. Computer simulation provides, however, less accurate results due to

the usage of computer arithmetics, such as floating or fixed point numbers, that leads

to numerical approximations. In addition, it cannot handle large-scale problems due

to their enormous computer processing time requirements. The unreliable nature of

the produced results poses a serious problem in safety-critical applications, such as
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those in secure communications, space travel, military applications, and medicine.

Paper-and-pencil analysis, on the other hand, does not scale well to complex systems

and is prone to human error.

As an alternative approach to overcome the above shortcomings, we propose

a computer-assisted technique which consists in conducting the probabilistic and

information-theoretic analysis using formal methods [2]. Formal methods are tech-

niques used to model complex software and hardware systems as mathematical enti-

ties. They are used for the specification, analysis and verification of these systems to

improve their reliability, design time and comprehensibility. They broadly fall into two

main categories: proof based methods, mainly theorem proving and state-exploration

methods, mainly model checking. While theorem proving is a scalable technique that

can handle large designs, model checking suffers from the so called state-explosion

problem which prevents its application to larger systems [40]. On the other hand,

while model checking is fully automatic, deriving proofs is a user guided technique

that requires a lot of expertise and hence can be tedious and difficult.

Several probabilistic model checking tools have been developed, we mention for

example, PRISM [41] and VESTA [60]. However, in addition to the above short-

comings of model checking, this technique can only be used for systems that can be

expressed as finite state machines or Markov chains. Higher-order-logic, on the other

hand, is highly expressive and can be used to describe any mathematical relation-

ship, in particular, the mathematical theories needed to conduct the probabilistic and

information-theoretic analysis. For this reason, we propose to conduct this analysis

within the sound core of a higher-order-logic theorem prover
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Theorem proving [30] is a field of computer science and mathematical logic that

allows to conduct computer-assisted formal proofs of the correctness of systems and

programs using mathematical reasoning. The implementation and specification of a

system are both expressed in terms of logical formulas and the proof of correctness

is derived from a very small set of axioms and inference rules. The soundness of

theorem proving guarantees that only valid results are provable, hence, overcoming

the inaccuracies of simulation and paper-and-pencil based techniques. We give a brief

overview of theorem proving, which we use in our work, in Section 2.2.

In order to achieve our objective of using a higher-order-logic theorem prover

to perform the information-theoretic analysis, we need first to formalize, or write in

a formal language, all the underlying theories that are needed to express the systems

and protocols under consideration. This includes the formalization of probability

and information theory concepts in higher-order logic. In this work, we propose a

generalized higher-order-logic formalization of the underlying mathematical theories

of measure [9], Lebesgue integration [6], probability [26] and information theory [14].

Using measure theory to formalize probability has the advantage of providing a math-

ematically rigorous treatment of probability and a unified framework for discrete and

continuous probability measures. Lebesgue integration is used to develop statistical

properties of random variables and various measures of information.

Several measures of information flow have been proposed in the literature. For
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instance, Serjantov [61] and Diaz et al. [19] independently proposed to use the en-

tropy to define the quality of anonymity and to compare different anonymity sys-

tems. Malacaria [44] defined the leakage of confidential information in a program

as the conditional mutual information between its outputs and secret inputs, given

the knowledge of its low security inputs. Deng [18] proposed relative entropy as a

measure of the amount of information revealed to the attacker after observing the

outcomes of the protocol, together with the a priori information. Chatzikokolakis [10]

modeled anonymity protocols as noisy channels and used the channel capacity as a

measure of the loss of anonymity. Zhu and Bettati [68] used the mutual information

to define what they called anonymity degree and used it to analyze a digital MIX,

which is a communication system introduced by Chaum [11] to create hard-to-trace

communications. We introduce two novel measures of information leakage, namely

the information leakage degree and the conditional information leakage degree. We

will compare them to the existing measures and show that they have the advantage

that they not only quantify the information leakage but also describe the quality of

leakage by normalizing the measure by the maximum leakage that the system allows

under extreme situations. We show how the information leakage degrees can be used

to evaluate both the anonymity and privacy properties of protocols. We compare the

proposed information leakage degree to the anonymity degree introduced in [68] and

show that our definition is more generic.

We illustrate the practical effectiveness of our work and its utilization to con-

duct information-theoretic analysis using a theorem prover, by tackling various ap-

plications including a data compression [14] application consisting of the proof of the

Shannon source coding theorem. We also evaluate the anonymity properties of an
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anonymity-based MIX channel [68] as well as the privacy properties of the one-time

pad encryption system [15].

In this thesis, we use the HOL4 theorem prover [24] for the above mentioned

formalization and verification tasks. The main motivation behind this choice is to

build upon existing formalizations of measure [37] and Lebesgue integration [13] theo-

ries in HOL. The methodology is, however, valid for other higher-order-logic theorem

provers.

1.2 State-of-the-Art

Probabilistic analysis using formal methods have been an active research area, lately.

The most mature technique has been probabilistic model checking where several tools

have been developed. The formalization of probability and some concepts of informa-

tion theory in proof assistants have also been investigated in several related works.

Below, we present the state-of-the-art in terms of the different theories that have been

formalized as well as a brief overview of probabilistic model checking.

1.2.1 Measure and Probability

The early foundations of probabilistic analysis in a higher-order-logic theorem prover

were laid down by Nȩdzusiak [46] and Bialas [8] when they proposed a formalization of

some measure and probability theories in higher-order logic. Hurd [37] implemented

their work and developed a formalization of measure and probability theories in HOL.

Despite important contributions, Hurd’s formalization did not include basic concepts

such as the expectation of random variables. In Hurd’s formalization, a measure space

is the pair (A, μ); A is a set of subsets of a space X, called the set of measurable
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sets and μ is a measure function. Hence, the space is implicitly the universal set of

the appropriate type. This approach does not allow to construct a measure space

where the space is not the universal set. The only way to apply this approach for an

arbitrary space X is to define a new type for the elements of X, redefine operations

on this set and prove properties of these operations. This requires considerable effort

that needs to be done for every space of interest.

Hasan [31] built upon Hurd formalizations of measure and probability to verify

the probabilistic and statistical properties of some commonly used discrete [33] and

continuous [32] random variables. The results were then utilized to formally reason

about the correctness of many real-world systems including the analysis of the Coupon

Collector’s problem [34] and the Stop-and-Wait protocol [35]. Hasan’s work inherits

the above mentioned limitations of Hurd’s work. For example, separate frameworks

for handling systems with discrete and continuous random variables are required and

the inability to handle multiple continuous random variables. Another important

limitation of this work is the requirement of independence of random variables. This

assumption cannot be satisfied for a large class of systems involving multiple random

variables.

Abbasi [1] extended the work of Hasan by formalizing statistical properties of

continuous random variables as well as the probability distribution properties of mul-

tiple random variables and used it for the formal reliability analysis of engineering

systems using theorem proving. The results from Abbasi’s formalization are valid

only for the specific probability distributions considered. In fact, to be able to prove
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a property of a specific random variable, the user would start with that random vari-

able and derive the proof. A better approach would be to prove a general result that

can be applied to various random variables. Furthermore, Abbasi’s work has also

the disadvantage that the results cannot be used for both discrete and continuous

random variables and inherits the limitation of requiring the independence of random

variables from Hasan’s formalization.

Based on the work of Hurd [37], Coble [13] extended the formalization of measure

theory by defining the measure space as the triple (X,A, μ) allowing him to work with

an arbitrary space X and hence eliminate the above shortcoming of the formalization

of Hurd. Coble has also defined probability spaces and random variables. However,

this formalization considers only finitely-valued measures and functions as it was based

on standard real numbers. Using extended-real numbers in the formalization has many

advantages. It allows us to define sigma-finite and other infinite measures as well as

signed measures. It also allows to define extended-real valued functions. Furthermore,

Coble’s formalization does not include Borel spaces and hence it was not possible to

prove the properties of measurable functions. A later version of the formalization of

measure contained the definition of the Borel sigma algebra but it was defined based

on open intervals instead of open sets. This limits the applications to real-valued

measurable functions.

1.2.2 Lebesgue Integration

Richter [55] ported Hurd’s formalization [37] of measure theory and probability theory

in Isabelle/HOL [51], and used it to formalize Lebesgue integration. Only real-valued

functions are considered in this work as the definition of Borel spaces was also defined
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as being generated by the intervals. Defining the Borel sigma algebra based on the

open sets allows to work with functions defined on any topological space, such as the

complex numbers or Rn, the n-dimensional Euclidean space. Richter’s formalization

does include the main convergence theorems of the Lebesgue integral and the impor-

tant Radon Nikodym derivative, which used to define several concepts of probability

and information theories. This formalization does not support extended-valued real

functions.

Coble has also provided a nice formalization of Lebesgue integration in the HOL4

theorem prover but it was not based on the extended-real numbers and hence limiting

the scope of applications and, more importantly, it prevents us from proving various

convergence theorems and the important Radon Nikodym theorem. Furthermore, in

the formalization of Coble which lacked the Borel sigma algebra, it was not possible to

prove properties of the Lebesgue integral for arbitrary functions like the monotonicity

and linearity of the integral. Only the properties for positive simple functions were

provided. Finally, defining the Borel sigma algebra using open sets, allows to prove

the properties and apply the Lebesgue integral to a large class of continuous functions,

in particular, trigonometric and exponential functions.

A formalization of the Lebesgue integral on the extended-reals has been pro-

posed in Mizar [63]. To the best of our knowledge, the Radon Nikodym derivative

and its properties as well as the Lebesgue convergence theorems have not been for-

malized in Mizar. Finally, in his work on the formalization of topology using the PVS

theorem prover, Lester [42] provided formalizations for measure and integration theo-

ries. Lester’s formalization lacks the proofs of the properties of the Lebesgue integral
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as well as the Lebesgue convergence theorems, both of which are very important to

the usability of the formalization to analyze systems properties.

1.2.3 Information Theory

Coble used his formalization of measure theory and probability to formalize some

concepts of information theory in HOL. This formalization, evidently, inherits the

above mentioned drawbacks of his formalization measure and Lebesgue integration.

In fact, the lack of extended-real numbers in his formalization, as mentioned above,

prevented him from proving the important Radon Nikodym theorem. This theorem

plays a vital role in the proof of existence of the Radon Nikodym derivative and hence

allows to prove various properties of the derivative and, by extension, all the measures

of information that use it in their definitions.

A formalization of the positive extended-reals in HOL was proposed by Hurd [38]

and has been imported to the Isabelle theorem prover. Hölzl used this work to for-

malize various measures of information and the underlying theories in Isabelle, based

on the work of Coble. While this is a work in progress, the formalization that has

been published by Hölzl [36] lacks the important properties of the Radon Nikodym

derivative and the Kullback-Leibler divergence and the different measures of informa-

tion. It also does not handle signed measures or functions taking negative valued as

only positive extended-real numbers are supported.

More recently, Affeldt [3] provided a simplified formalization of probability the-

ory in the Coq proof assistant [7] and used it to formalize basic concepts of information
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theory. The aim of this work was to prove Shannon’s source coding and channel the-

orems and not to provide a generalized formalization of probability or information

theory that can be used to analyze other applications.

1.2.4 Probabilistic Model Checking

In addition to theorem proving, probabilistic model checking is the second most widely

used formal probabilistic analysis method [4, 57]. Like traditional model checking [5],

probabilistic model checking involves the construction of a precise state-based math-

ematical model of the given probabilistic system, which is then subjected to exhaus-

tive analysis to verify if it satisfies a set of probabilistic properties formally expressed

in some appropriate logic. Numerous probabilistic model checking algorithms and

methodologies have been proposed in the open literature, e.g., [17, 50], and based

on these algorithms, a number of tools have been developed, e.g., PRISM [41] and

VESTA [60].

In addition to the accuracy of the results, another important feature of prob-

abilistic model checking is the ability to perform the analysis automatically. On

the other hand, probabilistic model checking is limited to systems that can only be

expressed as probabilistic finite state machines or Markov chains. Another major

limitation of the probabilistic model checking approach is state-space explosion [5].

Similarly, to the best of our knowledge, it has not been possible to precisely reason

about information-theoretic foundations, such as expectation, variance and measures

of information, using probabilistic model checking so far. Higher-order-logic theorem

proving, on the other hand, overcomes the limitations of probabilistic model checking

and thus allows conducting formal information-theoretic analysis of a wide range of

engineering systems but at the cost of significant user interaction.
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1.3 Proposed Methodology

The main objective of this work is to provide a comprehensive framework to conduct

probabilistic and information-theoretic analysis of systems and protocols within the

sound core of a theorem prover, as an alternative to less accurate techniques like

simulation and paper-and-pencil methods and to other less scalable techniques like

probabilistic model checking. We provide the tools to model random components of

systems and protocols to be able to prove their desired probabilistic, statistical and

information theoretic properties. As depicted in Figure 1.1, the proposed framework

Formal proofs of system properties

Lebesgue Integration

Probability Theory Information Theory

Measure Theory

Rational Theory Topology Theory

System Model (Formal) System Specification (Formal)

Theorem Prover

System Description System Properties

Extended Real Numbers

Figure 1.1: Overview of the Proposed Framework

provides the necessary tools to mathematically express a system description and its
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desired properties in a format that is understood by the theorem prover. The frame-

work is presented in terms of theories to be developed specifically for this work but

are usable in a much wider range of applications. Lebesgue integration, for instance,

is used in this work to define statistical properties of random variables but the devel-

oped theory can also be used in the study of Fourier series and Fourier transforms.

We provide a formalization in HOL of the set of extended-real numbers R, which

is the set of real numbers augmented by the negative and positive infinity. We use this

formalization as a basis for the development of the various theories of the framework

allowing us to prove several properties, mainly convergence theorems, that would not

have been possible to prove using the normal (finite) real numbers. We also provide

a formalization of the set of rational numbes Q as well as some concepts of topology

of R, necessary in our development of measure theory.

We use measure theory to formalize probability as it has the advantage of pro-

viding a mathematically rigorous treatment of probability and a unified framework

for discrete and continuous probability measures. We formalize measure theory based

on the Borel spaces allowing us to work on any topological space and prove important

properties of extended-real-valued measurable functions. To do so, we make use of

the formalization of Q and the topology of R to formalize the Borel sigma algebra in

terms of open sets.

We formalize the Lebesgue integral in HOL based on the extended-real num-

bers. Using the theories mentioned above, we prove various properties of the integral,

especially its convergence theorems. The use of extended-real numbers allows us to
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prove the important Radon Nikodym theorem and use it to define the Radon Nikodym

derivative, necessary to define most commonly used measures of information. We use

the Lebesgue integral to define various statistical properties of random variables, such

as the expectation and variance, and the different measures of information.

We formalize probability in higher-order logic according to the Kolmogorov ax-

iomatic definition of probability [39]. This definition provides a mathematically con-

sistent way for assigning and deducing probabilities of events. It consists in defining

a set of all possible outcomes, Ω, called the sample space, a set F of events which are

subsets of Ω and a probability measure p such that (Ω, F, p) is a measure space with

p(Ω) = 1. In this context, a random variable is then a measurable function and its

expectation is equal to the Lebesgue integral with respect to the probability measure.

The main goal of our framework is the information theory. The formalization

of information theory consists in using the underlying theories of measure, Lebesgue

integration and probability to develop a higher-order-logic formalization of the main

concepts and measures of information. We make use of the Radon Nikodym deriva-

tive, defined in the Lebesgue integration theory, to formalize the Kullback-Leibler

divergence. The latter is then used to define most commonly used measures of in-

formation such us the Shannon entropy, mutual information and conditional mutual

information.
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1.4 Thesis Contributions

The main contribution of this thesis is an approach and the required formal framework

for conducting the information-theoretic analysis within the trusted kernel of a higher-

order-logic theorem prover. We propose this technique as an alternative approach

to less accurate or less scalable techniques like computer simulation and paper-and-

pencil analysis. To achieve this goal, we formalize several fundamental mathematical

theories including measure theory, Lebesgue integration, probability and information

theory. Each of these underlying theories constitute a considerable contribution to

the theorem proving community as they can be used in a wide range of engineering

and mathematical applications. They have been released in the official distribution

of the HOL4 theorem prover [47] but they can also be adapted to any other higher-

order-logic theorem prover. We list below the main contributions of this work with

references to related publications provided in the Biography section at the end of the

thesis.

• Formalization of the extended-real numbers in HOL including the type and

operators definition as well as their properties. This formalization is used to

define the various theories of this work, but can be useful to develop a number

of other mathematical theories [Bio-Cf2].

• Formalization of measure theory over the extended-real numbers which allows

us to work with non-negative measures, signed measures as well as sigma-finite

and other infinite measures. This theory includes the formalization of Borel

spaces based on open sets making it possible to define measurable functions

over any topological space. This required the formalization of basic concepts

of the topology of the set of real numbers as well as a rich formalization of the
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rational numbers in HOL [Bio-Cf2, Bio-Cf3].

• Formalization of Lebesgue integration over extended-real-numbers in HOL in-

cluding the integral definition and its properties for arbitrary functions. The

use of extended-real numbers allowed us to prove various properties and con-

vergence theorems that would not have been possible to prove with normal real

numbers [Bio-Cf2, Bio-Cf3].

• Formalization of probability theory in higher-order-logic including probability

spaces, random variables and probability mass functions. We used the Lebesgue

integration to define the statistical properties of random variables such as the

expectation, variance and covariance. We proved some classical results from the

probability theory including the Markov and Shannon inequalities as well as the

Weak Law of Large Numbers [Bio-Jr2]

• Formalization of the most commonly used measures of information including

the Shannon entropy, mutual information and conditional mutual information.

We use the Kullback-Leibler divergence as a unified measure of information

from which we derive all the other measures and provide simpler expressions

of these measures for the case of finite spaces. We proved the Asymptotic

Equipartition Property, an important result in information theory used in the

proof of several theorems such as the Shannon source coding theorem [Bio-Jr2].

To the best of our knowledge, this is the first higher-order-logic formalization of

these information-theoretic notions which also includes their properties.

• An approach to conduct quantitative analysis of information flow using a the-

orem prover and proposed two new measures of information leakage. We used

this technique to analyse the anonymity properties of an anonymity-based single
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MIX [Bio-Cf1] and later extended it to study the security performance of the

one-time pad encryption system [Bio-Jr1].

1.5 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we provide a brief overview

of information theory starting from quantifying uncertainty to the definition of the

different measures of information. We also provide in this chapter an introduction to

theorem proving and the HOL4 theorem prover.

In Chapter 3, we present a formalization of the fundamental theories of measure

and Lebesgue integration in HOL, based on the extended-real numbers. In measure

theory, we formalize the basic definitions as well as the Borel spaces and use them to

verify the properties of measurable functions. Finally, we present our formalization

of the Lebesgue integral and prove its main properties.

The formalization of probability concepts is presented in Chapter 4 including the

basic definitions of probability spaces and random variables as well as their statistical

properties. We also provide a detailed formalization of the most commonly used

measures of information and their properties. Finally we provide an overview of the

field of quantitative analysis of information flow and propose two novel measures of

information leakage.

We use the proposed approach of information-theoretic analysis and the devel-

oped formal framework in the study of various applications in Chapter 5. We prove

the properties of the typical encoder as well as analyze an anonymity-based single

MIX. Finally, we evaluate the performance of the one-time pad encryption.

Finally, Chapter 6 provides concluding remarks and several future research di-

rections.
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Chapter 2

Preliminaries

In this chapter, we provide a brief overview of information theory. We start by linking

uncertainty to information and use that observation to describe the different measures

of information that have been proposed to conduct the information-theoretic analysis.

We also provide a short introduction to higher-order-logic theorem proving technology

and the HOL4 theorem prover, the proof assistant we used in our development.

2.1 Information Theory

“Real knowledge is to know the extent of ones ignorance.”

Confucius [551-479 BCE]

This statement captures concisely the relationship between knowledge or information

and uncertainty. In fact, information has been intuitively defined as the reduction in

uncertainty. As a result, to come up with a measure of information, we first need to

be able to quantify uncertainty.
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2.1.1 Quantifying Uncertainty

Any situation of uncertainty is characterized by a number n of possibilities where it

is unknown which one will be selected. Formally, such a situation can be described

by a set of possibilities S = {e1 . . . en} called a scheme of choice. We are interested in

coming up with a measure of the uncertainty in the scheme of choice S. Intuitively, the

uncertainty can be measured by the number of questions that are needed to be asked

to determine which possibility was selected. A natural choice would be the cardinality

|S| or the number of elements of S. A more clever choice, however, is log |S|, which
is the number of questions needed if we recursively partition the set into two halves

of equal size, if |S| is even. Otherwise, the number of questions needed is log |S|+ 1.

When the probabilities of the different outcomes are known, it is possible to

come up with a measure that better describes the uncertainty induced by the different

outcomes. First, the uncertainty measure should be a decreasing function of the

probability. In fact, the more likely the occurrence of a particular event is, the less

anticipating uncertainty its actual observation contains. Furthermore, the uncertainty

of a particular joint outcome should be equal to the sum of the uncertainties of the

individual outcomes when the outcomes are independent. This property is a form of a

Cauchy equation and the solution should be from the class of functions defined by the

equation h(x) = c logb(p(x)), where c is an arbitrary constant and b is a non-negative

constant distinct from 1. The constant c should be negative in order for the measure

to be decreasing with probability. Finally, since the uncertainty is maximized when all

the outcomes are equiprobable c can be chosen to be −1. The choice of b determines

the unit of uncertainty: bit when b = 2 and nat when b = 10.

The uncertainty associated with the probabilistic scheme of choice is the average

of the uncertainties of all the possible outcomes, weighted by their corresponding
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probabilities. This definition coincides with the definition of Shannon Entropy.

H(X) =
∑

−p(x)log(p(x))

2.1.2 Measures of Information

Information is defined as the amount of reduced uncertainty. Consider a random

variable X taking values x ∈ S with probabilities p(x). The random variable describes

an experiment which outcome is uncertain. The uncertainty in this case is equal to

the entropy H(X) = −∑
x∈S p(x) log(p(x)). When a certain outcome is observed, the

uncertainty is eliminated and the information gained by performing the experiment

is equal to H(X). The entropy of a random variable is then a measure of the amount

of information gained by observing the actual value of the variable.

If the experiment is carried out only partially where the actual value is not

observed but instead some event E occurs. The amount of information gained in this

case is equal to the initial uncertainty H(X) reduced by the posterior uncertainty

H(X|E). This definition can, however, result in negative information. More generally,

the reduction in uncertainty of a random variable X due to another random variable

Y , called the mutual information, is equal to I(X;Y ) = H(X)−H(X|Y ).

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

The mutual information is a symmetric and non-negative measure of the dependence

between the two random variables. It is a special case of a more general quantity called

the relative entropy or Kullback-Leibler (KL) divergence. The latter is a measure of

the distance between two probability distribution functions p and q and is defined as:

D(p||q) =
∑
x

p(x) log
p(x)

q(x)
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Using this definition, the mutual information is actually the KL divergence between

the joint probability p(x, y) and the product of marginal probabilities p(x)p(y). If the

two random variables are independent (p(x, y) = p(x)p(y)), the divergence is equal to

zero.

Information theory [62, 25] was developed as a mathematical theory for com-

munication by Claude E. Shannon to define the theoretical limits on the achievable

performance of data compression and transmission rate of communication. The limits,

being the entropy and the channel capacity, respectively, are given in terms of coding

theorems for information sources and noisy channels. Information theory has since

been used in analyzing the correctness and performance of a broad range of scientific

and engineering systems.

A higher-order-logic formalization of the most commonly used measures of in-

formation is presented in Chapter 4, based on the definition of the KL divergence.

We also prove, in Chapter 5, the Asymptotic Equipartition Property (AEP) and use

it in the proof of the Shannon source coding theorem.

2.2 Theorem Proving

Theorem proving is an approach where both the system and its desired properties are

expressed as formulae in some mathematical logic. This logic is defined by a formal

system, called proof system or calculus, which defines a set of axioms and a set of

inference rules. Theorem proving is the process of deriving formal proofs from the

basic axioms and possibly intermediate lemmas using inference rules. The axioms are

usually “elementary” in the sense that they capture the basic properties of the logic’s

operators.

Proof styles are often characterized as “forward” or “backward”. A forward
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proof starts with the axioms and assumptions; inference rules are then applied until

the desired theorem is proven. A backward proof starts with the theorem as a goal and

tactics are applied to reduce the goal into simpler intermediate sub-goals. Sufficiently

simple sub-goals are discharged by matching axioms or assumptions or by applying

built-in decision procedures.

Many theorem-proving systems have been implemented and used for all kinds

of verification problems. The most popular proof assistants include HOL4 [24], Is-

abelle [51], ACL2 [43], PVS [48] and Coq [7]. These systems are distinguished by,

among other aspects, the underlying mathematical logic, the way automatic decision

procedures are integrated into the system and the user interface. We use the HOL4

theorem prover in our work, mainly because we build on several underlying theories

that exist in HOL4.

HOL4 Theorem Prover

The HOL4 system is a general purpose theorem prover which is capable of conducting

proofs in higher-order logic. It utilizes the simple type theory of Church [12] along

with Hindley-Milner polymorphism [45] to implement higher-order logic. HOL has

been successfully used as a verification framework for both software and hardware as

well as a platform for the formalization of pure mathematics.

In order to ensure secure theorem proving, the logic in the HOL system is

represented in the strongly-typed functional programming language ML [52]. An

ML abstract data type is used to represent higher-order-logic theorems and the only

way to interact with the theorem prover is by executing ML procedures that operate

on values of these data types. The HOL core consists of only 5 basic axioms and

8 primitive inference rules, which are implemented as ML functions. Soundness is

22



assured as every new theorem must be verified by applying these basic axioms and

primitive inference rules or any other previously verified theorems/inference rules.

HOL4 has automatic recursive type definitions, structural induction tools and

rewriting tools. The set of types, type operators, constants and axioms available in

HOL4 are organized in the form of theories. There are two built-in primitive theories,

bool and ind, for Booleans and individuals, respectively. Other important theories,

which are arranged in a hierarchy, have been added to axiomatize lists, products, sums,

numbers, primitive recursion and arithmetic. On top of these, users are allowed to

introduce application-dependent theories by adding relevant types, constants, axioms

and definitions.

HOL4 supports both forward and goal-directed backward proofs in a natural-

deduction style calculus. The user interacts with HOL4 through the functional meta-

language ML and proofs are derived by applying tactics to proof goals. A tactic

corresponds to a high-level proof step which automatically generates a sequence of

elementary inference rules necessary to justify the step.

The HOL theorem prover includes many proof assistants and automatic proof

procedures [27] to assist the user in directing the proof. The user interacts with a

proof editor and provides it with the necessary tactics to prove goals while some of

the proof steps are solved automatically by the proof decision procedures. Table 2.1

provides the mathematical interpretations of some frequently used HOL symbols and

functions, which are inherited from existing HOL theories, in this thesis.
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Table 2.1: HOL Symbols and Functions

HOL Symbol Meaning

∧ Logical and

∨ Logical or

¬ Logical negation

:: Adds a new element to a list

++ Joins two lists together

hd L Head element of list L

tl L Tail of list L

(a, b) A pair of two elements

fst First component of a pair

snd Second component of a pair

λx.t(x) Function that maps x to t(x)

{x|P(x)} Set of all x such that P (x)

{X|T} Or Univ Universal Set

{X|F} Or {} Empty Set

FINITE s s is a finite set

compl A Complement of set A

A subset B A is a subset of B

A inter B A intersection B

A union B A union B

A diff B Difference between sets A and B

e INSERT s {e} union s

s DELETE e s diff {e}
disjoint A B Sets A and B are disjoint

image f A Set with elements f(x) for all x ∈ A

bigunion P Union of all sets in the set P

sum(0, k)(λn.f(n))
∑k−1

n=0 f(n)

suminf(λn.f(n)) lim
k→∞

∑k
n=0 f(n)

lim(λn.f(n)) Limit of a real sequence f

@x.t(x) Some x such that t(x) is true

CHOICE s Some x in s
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Chapter 3

Measure Theory and Lebesgue

Integration in HOL

In order to provide a formalization of probability and information theory in higher-

order logic, we need first to formalize the fundamental theories of measure and

Lebesgue integration.

We use measure theory to formalize probability and information theory as it

has the advantage of providing a mathematically rigorous treatment of probabilities

and a unified framework for discrete and continuous probability measures. In this

context, a probability measure is a measure function, an event is a measurable set

and a random variable is a measurable function.

We use the Lebesgue integral to define the statistical properties of random vari-

ables such as the expectation, variance and different measures of information. The

reason behind this choice over the more commonly known Riemann integral is the

unified definition of the Lebesgue integral for both discrete and continuous cases as

well as the ability to handle a broader class of functions. Furthermore, the Lebesgue

integral exhibits a better behavior when it comes to interchanging limits and integrals.
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Both formalizations of measure theory and Lebesgue integral that we will present

in the next sections are based on the extended-real numbers. This allows us to define

sigma-finite and even infinite measures and handle extended-real-valued measurable

functions. It also allows us to prove the properties of the Lebesgue integral and

its convergence theorems for arbitrary functions. We present a higher-order-logic

formalization of the extended-real numbers in the following section.

3.1 Formalization of Extended Real Numbers

The set of extended-real numbers R is the set of real numbers R extended with two

additional elements, namely, the positive infinity +∞ and negative infinity −∞. R

is useful to describe various limiting behaviors in many mathematical fields. For

instance, it is necessary to use the extended reals system to define the integration

theory, otherwise the convergence theorems such as the monotone convergence and

dominated convergence theorems would be less useful. Using the extended reals to

define the measure theory makes it possible to define sigma-finite measures and other

infinite measures. With extended-real numbers, the limit of a monotonic sequence is

always defined, infinite when the sequence is divergent, but still defined and properties

can be proven on it. The price to pay for these advantages is an increased level of

difficulty in the analysis and the need to prove a large body of theorems on the

extended reals and operators on them.

3.1.1 Type and Operators

An extended real is either a normal real number, positive infinity or negative infinity.

we use Hol_datatype to define the new type extreal as follows:
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val _ = Hol_datatype ‘extreal = NegInf | PosInf | Normal of real‘

The HOL notation x:real is used to specify the type of the variable x, which, in this

case, is the real type for real numbers. After defining the new type, Normal (1:real)

is now of type :extreal. To simplify the notation and represent Normal 1 as 1, which

is in this case an extended real number (1:extreal), we use the following functions:

val extreal_of_num_def = Define ‘extreal_of_num n = Normal (&n)‘;

val _ = add_numeral_form (#"x", SOME "extreal_of_num");

All arithmetic operations of the real numbers need to be extended for the new type.

To do so, we define HOL functions over the new type and then overload the common

operators using these functions. For instance, we define the addition operation over

the extended-real numbers using the function extreal_add presented below, and

overload the + operator with this function. The function extreal_add extends the

addition as follows:

∀a. a �= −∞ ⇒ a+ (+∞) = +∞+ a = +∞

∀a. a �= +∞ ⇒ a+ (−∞) = −∞+ a = −∞

This is formalized in higher-order logic as:


 extreal_add (Normal x) (Normal y) = Normal (x + y) ∧
extreal_add (Normal _) a = a ∧
extreal_add b (Normal _) = b ∧
extreal_add NegInf NegInf = NegInf ∧
extreal_add PosInf PosInf = PosInf

The function is left undefined when one of the operands is PosInf and the other is

NegInf. The + operator is then overloaded as
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val _ = overload_on ("+", Term ‘extreal_add’);

Similarly, we extend the other arithmetic operators and prove their properties.

val _ = overload_on ("-", Term ‘extreal_sub‘);

val _ = overload_on ("*", Term ‘extreal_mul‘);

val _ = overload_on ("/", Term ‘extreal_div‘);

val _ = overload_on ("≤", Term ‘extreal_le‘);

val _ = overload_on ("<", Term ‘extreal_lt‘);

val _ = overload_on ("~", Term ‘extreal_ainv‘);

val _ = overload_on ("numeric_negate", Term ‘extreal_ainv‘);

val _ = overload_on ("inv", Term ‘extreal_inv‘);

val _ = overload_on ("abs", Term ‘extreal_abs‘);

val _ = overload_on ("logr", Term ‘extreal_logr‘);

val _ = overload_on ("lg", Term ‘extreal_lg‘);

val _ = overload_on ("exp", Term ‘extreal_exp‘);

val _ = overload_on ("pow", Term ‘extreal_pow‘);

val _ = overload_on ("sqrt", Term ‘extreal_sqrt‘);

The order relation, for example, is extended as: ∀a ∈ R, −∞ ≤ a ≤ +∞.


 extreal_le (Normal x) (Normal y) = (x ≤ y) ∧
extreal_le NegInf a = T ∧
extreal_le b PosInf = T ∧
extreal_le c NegInf = F ∧
extreal_le PosInf d = F

With this order, R is a complete lattice where every subset has a supremum and an

infimum.
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3.1.2 Supremum and Infimum

The supremum or least upper bound of a set s ⊆ R is the least element of R that it is

greater than or equal to every element of s. We formalize the supremum in HOL as:


 extreal_sup p =

if ∀x. (∀y. p y ⇒ y ≤ x) ⇒ (x = PosInf) then PosInf

else (if ∀x. p x ⇒ (x = NegInf) then NegInf

else Normal (sup (λr. p (Normal r))))’;

In this definition, sup refers to the supremum over a set of real numbers.

The infimum or greatest lower bound of a set s ⊆ R is the greatest element of R that

it is less than or equal to every element of s. We use the definition of supremum to

formalize the infimum as:


 extreal_inf p = - extreal_sup (IMAGE numeric_negate p)

The function numeric_negate takes a set as an argument and returns a new set where

all the elements of the original set are negated. We overload the sup and inf operators

with these new definitions.

val _ = overload_on ("sup", Term ‘extreal_sup‘);

val _ = overload_on ("inf", Term ‘extreal_inf‘);

Next, we prove the following theorem in HOL, which we will use in the Radon Nikodym

theorem proof of Section 4.2.1.

Theorem 3.1. For any non-empty, upper bounded (by a finite number) set P of

extended real numbers, there exists a monotonically increasing sequence of elements

of P that converges to the supremum of P .
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Proof. For the case where the supremum is an element of the set, we simply consider

the sequence ∀n, xp(n) = supP . Otherwise, we prove that xp(n), defined below, is

one such sequence.

xp(0) = @r. r ∈ P ∧ (supP − 1) < r and

xp(n+ 1) = @r. r ∈ P ∧ max(xp(n), supP − 1
2n+1 ) < r < supP


 xp(0) = @r. r∈P ∧ (sup P - 1) < r


 xp(n+1) = @r. r∈P ∧ max(xp(n), sup P - 1
2n+1) < r < sup P

where @ represents the Hilbert choice operator.

3.1.3 Summation over a Set

We then define the sum of extended real numbers over a finite set and prove its

properties whenever the sum is defined. The obvious way to define the sum is the

following, where ITSET is the HOL function to iterate over sets,

val SIGMA_DEF = new_definition("SIGMA_DEF",

‘‘SIGMA f s = ITSET (λe acc. f e + acc) s (0:extreal)’’)

However, using this definition, we are not able to prove the recursive form without

requiring that all the elements we are adding are finite. In fact, to be able to prove

the recursive form, we need to use the theorem

∀f e s b.

(∀x y z. f x (f y z) = f y (f x z)) ∧ FINITE s ⇒
(ITSET f (e INSERT s) b = f e (ITSET f (s DELETE e) b))

This requires that the addition is associative and commutative for all the elements

considered, which is not the case unless we restrict our definition to finite values.
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This is, obviously, undesirable when working with extended-real numbers. Instead,

we propose the following definition for the sum.

val SIGMA_def = let open TotalDefn

in tDefine "SIGMA"

‘SIGMA (f:’a -> extreal) (s: ’a -> bool) =

if FINITE s then

if s={} then 0:extreal

else f (CHOICE s) + SIGMA f (REST s)

else ARB‘

(WF_REL_TAC ‘measure (CARD o SND)‘ THEN

METIS_TAC [CARD_PSUBSET, REST_PSUBSET])

end;

We use WF_REL_TAC to initiate the termination proof of the definition with the mea-

sure function measure (CARD o SND). We also use the first-order decision procedure

METIS_TAC which we apply to the two theorems CARD_PSUBSET and REST_PSUBSET

stating that REST s is a proper subset of s and that the cardinal of a proper subset

of a set s is smaller than that of s. The functions CHOICE and REST return some

element of a set and the remaining subset obtained by excluding that element from

the original set, respectively.

From this definition, we prove the recursive form, which will be used in proving the

main properties of the sum.

∀f s. FINITE s ⇒
∀e. (∀x. x ∈ e INSERT s ⇒ f x �= NegInf) ∨

(∀x. x ∈ e INSERT s ⇒ f x �= PosInf) ⇒
(SIGMA f (e INSERT s) = f e + SIGMA f (s DELETE e))
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Notice that we can have infinite values as long as the sum is defined. The properties

that we proved include the linearity, monotonicity, and the summation over disjoint

sets and products of sets.

Finally, we define the infinite sum of extended real numbers
∑

n∈N xn using the SIGMA

and sup operators and prove its properties.

val ext_suminf_def = Define

‘ext_suminf f = sup (IMAGE (λn. SIGMA f (count n)) UNIV)’

We provided an extensive formalization of the extended real numbers, which con-

sists of more than 220 theorems written in around 4500 lines of code. It contains

all the necessary tools to formalize most of the concepts that we need in measure,

integration, probability and information theories. In the next sections, we present the

formalization of these theories based on the extended-real numbers.

3.2 Formalization of Measure Theory in HOL

A measure is a way to assign a number to a set, interpreted as its size, and can be

considered as a generalization of the concepts of length, area, volume, etc. Two im-

portant examples are the Lebesgue measure on a Euclidean space and the probability

measure on a Borel space. The former assigns the conventional length, area and vol-

ume of Euclidean geometry to suitable subsets of Rn, n = 1, 2, 3 and the latter assigns

a probability to an event and satisfies the condition that the measure of the sample

space is equal to 1.

We provide a formalization of measure theory based on the Zermelo-Fraenkel

set theory [21] with the famous Axiom of Choice (ZFC). This set theory is the most

common foundation of mathematics up to the present day and allows to avoid a
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number of paradoxes caused by the use of the naive set theory. The Axiom of Choice,

however, implies the existence of counter-intuitive sets and gives rise to paradoxes of

its own, in particular, the Banach-Tarski paradox [67], which says that it is possible

to decompose a solid unit ball into finitely many pieces and reassemble them into two

copies of the original ball, using only rotations and no scaling. This paradox shows

that there is no way to define the volume in three dimensions in the context of the ZFC

set theory and at the same time requires that the rotation preserves the volume, and

that the volume of two disjoint sets is the sum of their volumes. The solution to this

is to tag some sets as non-measurable and to assign a volume only to a measurable

set. Consequently, a measure function is defined over a class of subsets called the

measurable sets and assigns a non-negative real number to every measurable set. It

satisfies the countable additivity condition which states that the measure of the union

of a collection of disjoint sets is equal to the sum of their measures.

3.2.1 Basic Definitions

Let A be a collection of subsets (or subset class) of a space X. We define a predicate

subset_class in HOL that will test whether A is a subset class of X. This is

formalized in HOL as:


 subset_class X A = ∀s. s ∈ A ⇒ s ⊆ X

We also define the countable function that will test whether a set s is countable. A

set is countable if its elements can be counted one at a time, or in other words, if

there exists a surjective function f : N → s such that every element of the set s can

be associated with a natural number. This is formalized in HOL as:


 countable s = ∃f. ∀x. x ∈ s ⇒ ∃(n:num). f n = x
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Definition 3.1. (Sigma Algebra)

Let A be a collection of subsets (or subset class) of a space X. A defines a sigma

algebra on X iff A contains the empty set ∅, and is closed under countable unions and

complementation within the space X.

We formalize a sigma algebra in HOL as follows:


 sigma_algebra (X,A) =

subset_class X A ∧ {} ∈ A ∧
(∀s. s ∈ A ⇒ X\s ∈ A) ∧
∀c. countable c ∧ c ⊆ A ⇒ ⋃

c ∈ A

where X\s denotes the complement of s within X and
⋃

c the union of all elements

of c.

The pair (X,A) is called a σ-field or a measurable space and A is the set of measurable

sets. We define the space and subsets functions such that


 space (X,A) = X


 subsets (X,A) = A

Trivial examples of a sigma algebra on a space X include the empty set, which is the

smallest sigma algebra on X and the powerset of X, P(X) which is comprised of all

subsets of X and is the largest sigma algebra on X.

For any collection G of subsets of X, we can construct σ(X,G), the smallest sigma

algebra on X containing G. σ(X,G) is called the sigma algebra on X generated

by G. There is at least one sigma algebra on X containing G, namely the powerset

of X. σ(X,G) is the intersection of all those sigma algebras. The sigma algebra on

X generated by G is formalized in HOL as:


 sigma X G = (X,
⋂{s | G ⊆ s ∧ sigma_algebra (X,s)})
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where
⋂

c denotes the intersection of all elements of c.

Definition 3.2. (Measure Space)

A triplet (X,A, μ) is a measure space iff (X,A) is a measurable space and μ : A → R

is a non-negative and countably additive measure function.

A probability space (Ω,A, p) is a measure space satisfying p(Ω) = 1. We formalize a

measure space in HOL as follows:


 measure_space (X,A,μ) =

sigma_algebra (X,A) ∧ positive (X,A,μ) ∧
countably_additive (X,A,μ)

A measure function is countably additive when the measure of a countable union

of pairwise disjoint measurable sets is the sum of their respective measures. The

countable additivity property is formalized in HOL as:


 countably_additive (X,A,μ) =

∀f. f ∈ (UNIV → A) ∧
(∀m n. m �= n ⇒ DISJOINT (f m) (f n)) ∧
⋃

(IMAGE f UNIV) ∈ A ⇒
μ o f sums μ(

⋃
(IMAGE f UNIV))

In this definition, the countable union of subsets is captured through the domain of

the function f which is the set of natural numbers UNIV(:num) and the range of f

which is the set of measurable sets A. The function μ is then countably additive if

the sequence μ(f(n)) converges to μ(
⋃

n f(n)).

We define the helper functions m_space, measurable_sets and measure which take

a measure space as an argument and return the correspond component as follows:
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 m_space (X,A,μ) = X


 measurable_sets (X,A,μ) = A


 measure (X,A,μ) = μ

There is a special class of functions, called measurable functions, that are structure

preserving, in the sense that the inverse image of each measurable set is also mea-

surable. This is analogous to continuous functions in metric spaces where the inverse

image of an open set is open. Measurable functions will be used in the next sections

to define random variables.

Definition 3.3. (Measurable Functions)

Let (X1,A1) and (X2,A2) be two measurable spaces. A function f : X1 → X2 is called

measurable with respect to (A1,A2) (or (A1,A2) measurable) iff f−1(A) ∈ A1 for all

A ∈ A2.

The HOL formalization is the following:


 f ∈ measurable a b =

sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a → space b) ∧
∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a

The HOL function PREIMAGE denotes the inverse image of a function. Notice that

unlike Definition 3.3, the inverse image in the formalization needs to be intersected

with space a because the functions in HOL are total, meaning that they map every

value of a certain HOL type (even those outside space a) to a value of an appropriate

type which may or may not be in space b. In other words, writing in HOL that f

is a function from space a to space b, does not exclude values outside space a and

hence the intersection is needed.
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In this definition, we did not specify any structure on the measurable spaces. If

we consider a function f that takes its values on a metric space, most commonly the

set of real numbers or complex numbers, then the Borel sigma algebra on that space

is used. In the following, we present our formalization of the Borel sigma algebra in

HOL.

3.2.2 Borel Sigma Algebra

Working with the Borel sigma algebra makes the set of measurable functions a vector

space. It also allows us to prove various properties of the measurable functions nec-

essary for the formalization of the Lebesgue integral and prove its properties in HOL.

The Borel sigma algebra on a space X is the smallest sigma algebra generated by the

open sets of X. We use the sigma function we defined earlier to formalize the Borel

sigma algebra.


 borel X = sigma X (open_sets X)

An important example, especially in the theory of probability, is the Borel sigma

algebra on R, denoted by B(R) which we simply call Borel in the sequel.


 Borel = sigma UNIV(:extreal) (open_sets UNIV)

where UNIV is the universal set of extended real numbers R. Clearly, the formalization

of the Borel sigma algebra, which is based on the open sets, requires the formalization

of some topology concepts of R. An earlier theory of the topology of R has been

developed in HOL by Harrison [28]. Unfortunately, it does not use the set theory and

also lacks some of the important theorems that we need in our development. Harrison,

later, developed an extensive topology theory [29] in HOL-Light. Additionally, a

formalization of the set of rational numbers Q is need in our work to prove, for
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instance, the various properties of B(R). A theory for the rational numbers was also

developed in HOL but does not include the theorems that we need and is in fact

unusable for our development because we need to work with rational numbers as a

subset of real numbers and not of a different HOL type.

Rational Numbers

A rational number is any number that can be expressed as the quotient of two integers,

the denominator of which is positive. We use natural numbers and express Q, the

set of rational numbers, as the union of non-negative (Q+) and non-positive (Q−)

rational numbers.


 Q = {r | ∃ n,m. r = n
m

∧ m > 0} ∪ {r | ∃ n,m. r = −n
m

∧ m > 0}

We prove in HOL an extensive number of reassuring properties on the set Q as well

as a few other less straightforward ones, namely, Q is countable, infinite and dense in

R.

Theorem 3.2. N ⊂ Q and ∀x, y ∈ Q, −x, x+ y, x− y, x ∗ y ∈ Q and ∀y �= 0, 1
y

and x
y

∈ Q

A proof of this theorem in HOL is at the same time straightforward and tedious but

it is necessary to manipulate elements of the newly defined set of rational numbers

and prove their membership to Q in the following theorems.

Theorem 3.3. The set of rational numbers Q is countable.

Proof. We prove that there exists a bijection f1 : N → N×N∗ from the set of natural

numbers N to the cross product of N and the set of positive natural numbers N∗. Let

f2 : N×N∗ → Q+ such that f2(a, b) =
a
b
. and f = f2 ◦f1. Then ∀x ∈ Q+, there exists
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n ∈ N such that f(n) = x. This proves that Q+ is countable. Similarly, we prove that

Q− is countable and that the union of two countable sets is countable.

Theorem 3.4. (Q dense in R)

∀x, y ∈ R and x < y, there exists r ∈ Q such that x < r < y.

Proof. We start by defining the ceiling of x as the smallest natural number larger

than x, denoted by �x� and prove that ∀x, x ≤ �x� and ∀x ≥ 0, �x� < x + 1. Let

x, y ∈ R such that x < y. We use the ceiling function and the Archimedean property

to construct r such that x < r < y.

Another definition that will be useful in our development is the set of open

intervals with rational end-points Ir = {]r1, r2[: r1, r2 ∈ Q}.


 open_intervals_set = {{x | a<x ∧ x<b} | a ∈ UNIV ∧ b ∈ UNIV}

We prove that Ir is countable by showing that the mapping Ir → Q × Q that sends

an open interval ]r1, r2[∈ Ir to the ordered pair of rational numbers (r1, r2) ∈ Q×Q is

injective, and that the cross product of two countable sets, Q in this case, is countable.

Topology

To define the Borel sigma algebra on R, we need some concepts of the topology of R

formalized in HOL. We could not use the formalization of topology by Harrison [28]

because it does not support extended real numbers, it does not use the set theory and

also lacks some of the important theorems that we need in our development. In the

following, we define the concepts of neighborhood and open set in R and prove the

required theorems.
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Definition 3.4. Let a ∈ A ⊂ R. A is a neighborhood of a iff there exists a real

number d > 0 such that ∀x. |x − a| < d ⇒ x ∈ A. In other words, a is an interior

point of A.


 neighborhood A a = ∃d. 0<d ∧ ∀y. a - d < y ∧ y < a + d ⇒ y ∈ A

Definition 3.5. A set that is a neighborhood to all of its points in an open set.

Equivalently, if every point of a set is an interior point then the set is open.


 ∀A. open_set A = ∀x. x ∈ A ⇒ neighborhood A x

The following are some of the several properties related to open sets that we proved

in HOL.

Theorem 3.5. (Open Sets Properties)

Property 1: The empty set and the universal set are open.

Property 2: Every open interval is an open set.

Property 3: The union of any family of open sets is open.

Property 4: The intersection of a finite number of open sets is open.

Property 5: Every open set in R is the union of a countable family of open intervals.

Proof. We only show the proof for Property 5. Let A be an open set in R, then by

the definition of open set, for all x in A there exists an open interval containing x

such that ]a, b[⊂ A. Using the property of density of Q in R, there exists ]ar, br[⊂ A

containing x, ar and br being rational numbers. A is the union of a family of elements

of Ir which is then countable because Ir is countable.

Theorem 3.6. The inverse image of an open set by a continuous function is open.

40



Proof. Let A be an open set in R. From the previous theorem, A is a countable

union of open intervals (Ai). f
−1(A) = f−1(

⋃
Ai) =

⋃
f−1(Ai). Using Property 3, it

suffices to prove that the inverse image of an open interval is open. For this we use

the definition of a continuous function and the limit of a function to prove that any

point of f−1(Ai) is an interior point.

Borel Measurable Sets

We prove in this section that the Borel sigma algebra on the real line B(R) is generated
by the open intervals (]c, d[ for c, d ∈ R). This is actually used in many textbooks as

a starting definition for the Borel sigma algebra on R. While we will prove that the

two definitions are equivalent in the case of the real line, our formalization is vastly

more general and can be used for any metric space such as the complex numbers or

R
n
, the n-dimensional Euclidian space.

Theorem 3.7. B(R) is generated by the open intervals ]c, d[ where c, d ∈ R


 Borel = sigma UNIV (open_intervals_set)

Proof. The sigma algebra generated by the open intervals, σI , is by definition the

intersection of all sigma algebras containing the open intervals. B(R) is one of them

because the open intervals are open sets (Property 2). Hence, σI ⊆ B(R). Conversely,
B(R) is the intersection of all sigma algebras containing the open sets. σI is one of

them because every open set on the real line is the union of a countable collection of

open intervals (Property 5). Consequently B(R) ⊆ σI and finally B(R) = σI .

We also prove in HOL that B(R) is generated by any of the following classes of

intervals: ] −∞, c[, [c,+∞[, ]c,+∞[, ] −∞, c], [c, d[, ]c, d], [c, d], where c, d ∈ R. To

prove this result it suffices to prove that any interval ]c, d[ is contained in the sigma
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algebra corresponding to each class. For the case of the intervals of type [c, d[, this

follows from the equation ]c, d[ =
⋃

n [c + 1
2n
, d[. For the open rays ] − ∞, c [, the

result follows from the fact that [a, b[ can be written as the difference of two rays,

[a, b[ = ] − ∞, b [ \ ] − ∞, a [. In a similar manner, we prove in HOL that all

mentioned classes of intervals generate the Borel sigma algebra on R. Another useful

result, asserts that the singleton sets are measurable sets of B(R).

Theorem 3.8. ∀c ∈ R, {c} ∈ B(R)


 ∀c:real. {c} ∈ subsets Borel

The proof of this theorem follows from the fact that a sigma algebra is closed under

countable intersections and the following equation.

∀c ∈ R {c} =
⋂
n

[c− 1

2n
, c+

1

2n
[

3.2.3 Extended-Real-Valued Measurable Functions

Recall that in order to check if a function f is measurable with respect to (A1,A2),

it is necessary to check that for any A ∈ A2, its inverse image f−1(A) ∈ A1. The

following theorem states that, for extended-real-valued functions, it suffices to perform

the check on the open rays ((−∞, c), c ∈ R).

Theorem 3.9. Let (X,A) be a measurable space. A function f : X → R is measurable

with respect to (A,B(R)) iff ∀c ∈ R, f−1((−∞, c)) ∈ A


 f ∈ measurable a Borel =

sigma_algebra a ∧ f ∈ (space a → UNIV) ∧
∀c. {x | f x < c} ∩ space a ∈ subsets a
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Proof. Suppose that f is measurable with respect to (A,B(R)), we showed in the

previous section that ∀c ∈ R, ] − ∞, c[∈ B(R). Since f is measurable then f−1(] −
∞, c[) ∈ A. Now suppose that ∀c ∈ R, f−1(] − ∞, c[) ∈ A, we need to prove

∀A ∈ B(R), f−1(A) ∈ A. This follows from Property 5 stating that A is a countable

union of open intervals and the equalities f−1(
⋃

n∈N An) =
⋃

n∈N f
−1(An) and f−1(]−

∞, c[) =
⋃

n∈N f
−1(]− n, c[)

In a similar manner, we prove in HOL that f is measurable with respect to (A,B(R))
iff ∀ c, d ∈ R the inverse image of any of the following classes of intervals is an element

of A: ]−∞, c[, [c,+∞[, ]c,+∞[, ]−∞, c], [c, d[, ]c, d], [c, d].

Every constant real function on a space X is measurable. The indicator function on

a set A is measurable iff A is measurable.

In the following, we prove in HOL various properties of the real-valued measurable

functions.

Theorem 3.10. If f and g are (A,B(R)) measurable and c ∈ R then cf , |f |, fn,

f + g, f ∗ g and max(f, g) are (A,B(R)) measurable.


 ∀a f g h c.

sigma_algebra a ∧
f ∈ measurable a Borel ∧
g ∈ measurable a Borel ⇒

((λx. c * f x) ∈ measurable a Borel) ∧
((λx. abs(f x)) ∈ measurable a Borel) ∧
((λx. f x pow n) ∈ measurable a Borel) ∧
((λx. f x + g x) ∈ measurable a Borel) ∧
((λx. f x * g x) ∈ measurable a Borel) ∧
((λx. max (f x) (g x)) ∈ measurable a Borel)
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Theorem 3.11. If (fn) is a monotonically increasing sequence of extended-real-valued

measurable functions with respect to (A,B(R)), such that ∀ x, f(x) = supn∈N fn(x)

then f is also (A,B(R)) measurable.


 ∀a f fi.

sigma_algebra a ∧
∀i. fi i ∈ measurable a Borel ∧
∀x. mono_increasing (λi. fi i x) ∧
∀x. x ∈ m_space m ⇒ f x = sup (IMAGE (λi. fi i x) UNIV)

⇒ f ∈ measurable a Borel

Theorem 3.12. Every continuous function g : R → R is (B(R),B(R)) measurable.


 ∀g. (∀x. g contl x) ⇒ g ∈ measurable Borel Borel

Theorem 3.13. If g : R → R is continuous and f is (A,B(R)) measurable then g ◦ f
is also (A,B(R)) measurable.


 ∀a f g. sigma_algebra a ∧ f ∈ measurable a Borel ∧
(∀x. g contl x) ⇒ g o f ∈ measurable a Borel

Theorem 3.12 is a direct result of Theorem 3.6 stating that the inverse image of an

open set by a continuous function is open. Theorem 3.13 guarantees, for instance,

that if f is measurable then exp(f), Log(f), cos(f) are measurable. This is derived

using Theorem 3.12 and the equality (g ◦ f)−1(A) = f−1(g−1(A)).

3.2.4 Products of Measure Spaces

We formalize products of measure spaces to be able to formalize measurable functions

defined over product spaces. Let m1 = (X1,S1, μ1) and m2 = (X2,S2, μ2) be two
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measure spaces. The product of m1 and m2 is defined to be the measure space

(X1 × X2,S, μ), where S is the sigma algebra on X1 × X2 generated by subsets of

the form A1 × A2 where A1 ∈ S1, and A2 ∈ S2. The measure μ is defined for σ-finite

measure spaces as

μ(A) =

∫
X1

μ2({y ∈ X2|(x, y) ∈ A}) dμ1

and S is defined using the sigma operator which returns the smallest sigma algebra

containing a set of subsets, i.e., the product subsets in this case.

Let g(s1) be the function s2 → (s1, s2) and PREIMAGE denote the HOL function

for inverse image, then the product measure is formalized as


 prod_measure m1 m2 =

(λa. integral m1 (λs1. measure m2 (PREIMAGE g(s1) a)))

The integral in this definition is the Lebesgue integral for which we present the for-

malization in the next section. We verified in HOL that the product measure can be

reduced to μ(a1 × a2) = μ1(a1)× μ2(a2) for finite measure spaces.


 prod_measure m1 m2 (a1 × a2) = measure m1 a1 × measure m2 a2

We use the above definitions to define products of more than two measure spaces as

follows. X1×X2×X3 = X1× (X2×X3) and μ1×μ2×μ3 is defined as μ1× (μ2×μ3).

We also define the notion of absolutely continuous measures where μ1 is said to be

absolutely continuous w.r.t μ2 iff for every measurable set A, μ2(A) = 0 implies

μ1(A) = 0.

3.3 Formalization of Lebesgue Integration in HOL

Lebesgue integration [6] is a fundamental concept in many mathematical theories,

such as real analysis [23], probability [26] and information, which are widely used to
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model and reason about the continuous and unpredictable components of physical

systems. The reasons for its extensive usage, compared to the commonly known

Riemann integral, include the ability to handle a broader class of functions, which are

defined over more general types than the real line, and its better behavior when it

comes to interchanging limits and integrals, which is of prime importance, for instance,

in the study of Fourier series.

3.3.1 Lebesgue Integral

Similar to the way in which step functions are used in the development of the Riemann

integral, the Lebesgue integral makes use of a special class of functions called positive

simple functions. They are measurable functions taking finitely many values. In other

words, a positive simple function g is represented by the triple (s, a, α) as a finite linear

combination of indicator functions of measurable sets (ai) that form a partition of the

space X.

∀x ∈ X, g(x) =
∑
i∈s

αiIai(x) ci ≥ 0 (3.1)

We also add the condition that positive simple functions take finite values, i.e., ∀i ∈
s. xi < ∞. Their Lebesgue integral can however be infinite.

The Lebesgue integral is first defined for these functions and the definition is then

extended to non-negative functions and finally to arbitrary functions.

Definition 3.6. (Lebesgue Integral of Positive Simple Functions)

Let (X,A, μ) be a measure space. The integral of the positive simple function g with

respect to the measure μ is defined as

∫
X

g dμ =
∑
i∈s

αiμ(ai) (3.2)

This is formalized in HOL as
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 pos_simple_fn_integral m s a α =

SIGMA (λi. α i * measure m (a i)) s

While the choice of ((αi), (ai), s) to represent g is not unique, the integral as defined

above is independent of that choice. Several properties of the Lebesgue integral of

positive simple functions such as the linearity and monotonicity have been proven

in [13]. We build on these results and extend them for our definition in which the

Lebesgue integral is extended-real valued.

We use the definition of the Lebesgue integral of positive simple functions to define

the integral of non-negative measurable functions using the supremum operator as

follows:

∫
X

f dμ = sup{
∫
X

g dμ | g ≤ f and g positive simple function} (3.3)

Its formalization in HOL is the following:


 pos_fn_integral m f =

sup {r | ∃g. r ∈ psfis m g ∧ ∀x. g x ≤ f x}

where psfis m g is used to represent the Lebesgue integral of the positive simple

function g. Finally, the integral for an arbitrary measurable function f is formalized

in terms of the integrals of f+ and f− where f+ and f− are the non-negative functions

defined by f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0).

∫
X

f dμ =

∫
X

f+ dμ−
∫
X

f− dμ (3.4)

Its formalization in HOL is the following.


 integral m f = pos_fn_integral m (fn_plus f) -

pos_fn_integral m (fn_minus f)
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3.3.2 Lebesgue Monotone Convergence

The Lebesgue monotone convergence is arguably the most important theorem of the

Lebesgue integration theory and it plays a major role in the proof of the Radon

Nikodym theorem [9] and the properties of the integral. We present in the sequel a

proof of the theorem in HOL.

Theorem 3.14. Let (fn) be a monotonically increasing sequence of non-negative mea-

surable functions such that ∀ x, f(x) = supn∈N fn(x), then

∫
X

f dμ = sup
n∈N

∫
X

fn dμ

The higher-order-logic formalization of the Lebesgue monotone convergence is the

following:


 ∀m f fi. measure_space m ∧ ∀i x. 0 ≤ fi i x ∧
∀i. fi i ∈ measurable (m_space m, measurable_sets m) Borel ∧
∀x. mono_increasing (λi. fi i x) ∧
∀x. x ∈ m_space m ⇒ f x = sup (IMAGE (λi. fi i x) UNIV) ⇒

pos_fn_integral m f =

sup (IMAGE (λi. pos_fn_integral m (fi i)) UNIV)

We prove the Lebesgue monotone convergence theorem by using the properties of

the supremum and by proving the lemma stating that if f is the supremum of a

monotonically increasing sequence of non-negative measurable functions fn and g is

a positive simple function such that g ≤ f , then the integral of g satisfies

∫
X

g dμ ≤ sup
n∈N

∫
X

fn dμ

Or, as formalized in HOL:
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 ∀m f fi g r.

measure_space m ∧ ∀i x. 0 ≤ fi i x ∧
∀i. fi i ∈ measurable (m_space m, measurable_sets m) Borel ∧
∀x. mono_increasing (λi. fi i x) ∧
∀x. x ∈ m_space m ⇒ (f x = sup (IMAGE (λi. fi i x) UNIV)) ∧
r ∈ psfis m g ∧ ∀x. g x ≤ f x ⇒

r ≤ sup (IMAGE (λi. pos_fn_integral m (fi i)) UNIV)

3.3.3 Integrability

Our definition of the Lebesgue integral, based on the extended-real numbers, ensures

that the integral is always defined for non-negative functions even when the integral

is infinite. In this section, we define the criteria of integrability for an arbitrary

measurable function and prove the integrability theorem which will play an important

role in proving the properties of the Lebesgue integral.

Definition 3.7. Let (X,A, μ) be a measure space, a measurable function f is inte-

grable iff
∫
X
|f | dμ < ∞ or equivalently iff

∫
X
f+ dμ < ∞ and

∫
X
f− dμ < ∞


 integrable m f =

f ∈ measurable (m_space m,measurable_sets m) Borel ∧
pos_fn_integral m (fn plus f) < ∞) ∧
pos_fn_integral m (fn minus f) < ∞)

We prove what we call the integrability theorem which has been used in some text-

books as a definition for integrability. This theorem provides also an alternative

definition of the Lebesgue integral and plays an essential role to prove the properties

of the Lebesgue Integral.
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Theorem 3.15. For any non-negative integrable function f there exists a sequence of

positive simple functions (fn) such that ∀n, x, fn(x) ≤ fn+1(x) ≤ f(x) and ∀ x, fn(x) →
f(x). In addition, ∫

X

f dμ = sup
n∈N

∫
X

fn dμ

For arbitrary integrable functions, the theorem is applied to f+ and f− and results

in a well-defined integral, given by

∫
X

f dμ = sup
n∈N

∫
X

f+
n dμ− sup

n∈N

∫
X

f−
n dμ


 ∀m f. measure_space m ∧ integrable m f ⇒
∃fi ri.

∀x. mono_increasing (λi. fi i x) ∧
∀x. x ∈ m_space m ⇒

(fn_plus f x = sup (IMAGE (λi. fi i x) UNIV)) ∧
∀i. ri i ∈ psfis m (fi i) ∧
∀i x. fi i x ≤ fn_plus f x ∧
pos_fn_integral m (fn_plus f) = sup (IMAGE ri UNIV) ∧

∃gi vi.

∀x. mono_increasing (λi. gi i x) ∧
∀x. x ∈ m_space m ⇒

(fn_minus f x = sup (IMAGE (λi. gi i x) UNIV)) ∧
∀i. vi i ∈ psfis m (gi i) ∧
∀i x. gi i x ≤ fn_minus f x ∧
pos_fn_integral m (fn_minus f) = sup (IMAGE vi UNIV)

Proof. We prove the theorem by showing that the sequence (fn), defined below, sat-

isfies the conditions of the Lebesgue Monotone Convergence theorem. We apply this
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sequence for both f+ and f−.

fn(x) =
4n−1∑
k=0

k

2n
I{x| k

2n
≤f(x)< k+1

2n
} + 2nI{x|2n≤f(x)} (3.5)

First, we use the definition of (fn) to prove in HOL the following lemmas


 ∀n x, 2n ≤ f(x) ⇒ fn(x) = 2n


 ∀n x and k < 4n, k
2n

≤ f(x) < k+1
2n

⇒ fn(x) = k
2n


 ∀x, (f(x) ≥ 2n) ∨ (∃k, k < 4n and k
2n

≤ f(x) < k+1
2n

)

Using these lemmas we prove that the sequence (fn) is pointwise convergent to f

(∀ x, f(x) = supn fn(x)), upper bounded by f (∀n, x, fn(x) ≤ f(x)) and monotoni-

cally increasing (∀n, x, fn(x) ≤ fn+1(x)).

3.3.4 Integral Properties

Most properties of the Lebesgue integral cannot be proved directly from the defini-

tion of the integral. Using the integrability theorem proven above, we can write the

Lebesgue integral of any non-negative function as the supremum of sequence of in-

tegrals of positive simple functions. Using the properties of the supremum and the

properties of the Lebesgue integral of positive simple functions, it is possible to prove

the integral properties of non-negative functions and then for arbitrary measurable

functions.

Let f and g be integrable functions and c ∈ R then


 ∀x, 0 ≤ f(x) ⇒ 0 ≤ ∫
X
f dμ


 ∀x, f(x) ≤ g(x) ⇒ ∫
X
f dμ ≤ ∫

X
g dμ


 ∫
X
cf dμ = c

∫
X
f dμ


 ∫
X
f + g dμ =

∫
X
f dμ+

∫
X
g dμ
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 A and B disjoint sets ⇒ ∫
A∪Bf dμ =

∫
A
f dμ+

∫
B
f dμ

3.4 Summary and Discussions

We proposed in this chapter, a higher-order-logic formalization of the set of extended-

real numbers which we used to formalize measure theory and Lebesgue integration in

HOL. The formalization of measure theory includes the Borel sigma algebra allowing

us to define measurable functions over arbitrary topological spaces and prove their

properties. We formalized the Lebesgue Integral based on the extended-real numbers

and we proved its main properties and convergence theorems. Both measure theory

and Lebesgue integration formalization can be used to conduct the formal analysis of

a wide range of engineering systems and protocols. We use them in the next section to

formalize probability and information theory in HOL. The formalizations presented in

this chapter required, approximatively, 15000 lines of codes, including definitions and

theorems as well as their proofs. The formalization of extended-real numbers consists

of more than 220 theorems. The numbers of theorems in the formalization of measure

theory and Lebesgue integration are 120 and 100, respectively. It is worth mentioning

that this number keeps decreasing starting from the formalization of the extended-real

numbers and this can be explained by the way we are building the different theories

on top of each other. This illustrates the advantage of the hierarchy we used to build

the framework. The HOL scripts can be found in the official release of the HOL4

theorem prover [66].
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Chapter 4

Formalization of Information

Theory

In this chapter, we make use of the formalizations of measure theory and Lebesgue

integration in HOL to provide a higher-order-logic formalization of probability theory.

The latter is then used to formalize the main concepts of information theory. Finally,

we give an overview of the quantitative analysis of information flow which is gaining

lately a lot of interest in a wide range of applications, in particular, to evaluate the

performance of anonymity and privacy protocols.

4.1 Formalization of Probability in HOL

Probability provides mathematical models for random phenomena and experiments.

The purpose is to describe and predict relative frequencies (averages) of these ex-

periments in terms of probabilities of events. The classical approach to formalize

probabilities, which was the prevailing definition for many centuries, defines the prob-

ability of an event A as p(A) = NA

N
, where NA is the number of outcomes favorable to
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the event A and N is the number of all possible outcomes of the experiment. Prob-

lems with this approach include the assumptions that all outcomes are equally likely

(equiprobable) and that the number of possible outcomes is finite.

Kolmogorov [39] later introduced the axiomatic definition of probability, which

provides a mathematically consistent way for assigning and deducing probabilities of

events. This approach consists in defining a set of all possible outcomes, Ω, called the

sample space, a set F of events which are subsets of Ω and a probability measure p

such that (Ω, F, p) is a measure space with p(Ω) = 1.

4.1.1 Basic Definitions

Definition 4.1. (Ω, F, p) is a probability space if it is a measure space and p(Ω) = 1.


 ∀p. prob_space p ⇔
measure_space p ∧ (measure p (p_space p) = 1)

A probability measure is a measure function and an event is a measurable set.


 prob = measure


 events = measurable_sets


 p_space = m_space

Definition 4.2. Two events A and B are independent iff p(A ∩B) = p(A)p(B).

Here A ∩B is the intersection of A and B, that is, it is the event that both events A

and B occur.


 independent p a b ⇔
a ∈ events p ∧ b ∈ events p ∧
prob p (a ∩ b) = prob p a * prob p b
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Definition 4.3. X : Ω → R is a random variable iff X is (F,B(R)) measurable

where F denotes the set of events. Here we focus on real-valued random variables but

the definition can be adapted for random variables having values on any topological

space thanks to the general definition of the Borel sigma algebra.


 random_variable X p s ⇔
prob_space p ∧ X ∈ measurable (p_space p,events p) s

The properties we proved in the previous section for measurable functions are obvi-

ously valid for random variables.

Theorem 4.1. If X and Y are random variables and c ∈ R then the following func-

tions are also random variables: cX, |X|, Xn, X + Y,XY and max(X, Y ).

Definition 4.4. Two random variables X and Y are independent iff ∀A,B ∈ B(R),
the events {X ∈ A} and {Y ∈ B} are independent.

The set {X ∈ A} denotes the set of outcomes ω for which X(ω) ∈ A. In other words

{X ∈ A} = X−1(A).


 independent_rv p X Y s t ⇔
∀A B. A ∈ subsets s ∧ B ∈ subsets t ⇒
independent p (PREIMAGE X A ∩ p_space p) (PREIMAGE Y B ∩ p_space p)

The event {X ∈ A} is used to define the probability mass function (PMF) of a random

variable.

Definition 4.5. The probability mass function pX of a random variable X is defined

as the function assigning to A the probability of the event {X ∈ A}.

∀A ∈ B(R), pX(A) = p({X ∈ A}) = p(X−1(A))
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 distribution p X = (λA. prob p (PREIMAGE X A ∩ p_space p))

The cumulative distribution function (CDF) of a random variable is defined as:

FX(x) = P (X ≤ x)

which we formalize in HOL as:


 CDF p X = (λx. distribution p X {y | y ≤ x})

We formalize the joint distribution of two random variables as:


 joint_distribution p X Y =

(λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p))

The properties of the joint distribution that we proved in HOL include:


 pXY (a×b) = pY X(b×a)


 pXY (a×b) ≤ pX(a)


 pXY (a×b) ≤ pY (b)


 FINITE (p_space p) ⇒ SIGMA (λ(x,y). pXY {(x,y)}) (X(Ω)×Y(Ω)) = 1


 FINITE (p_space p) ⇒ pX(a) = SIGMA (λx. pXY (a×{x})) Y(Ω)


 FINITE (p_space p) ⇒ pY (b) = SIGMA (λx. pXY ({x}×b)) X(Ω)


 FINITE (p_space p) ⇒
SIGMA (λ(x,y). pXY {(x,y)} * f x) (X(Ω)×Y(Ω)) =

SIGMA (λx. pX{x} * f x) X(Ω)

The conditional distribution of a random variable X given the random variable Y is

formalized as:


 conditional_distribution p X Y =

(λa b. joint_distribution p X Y (a b) / distribution p Y b)
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4.1.2 Statistical Properties

In this section, we provide a formalization of the expectation, variance and covariance

of a random variable in HOL. These definitions use the Lebesgue integration formal-

ization and, hence, are valid for both discrete and continuous random variables.

Expectation

The expectation of a random variable is the weighted average of all its possible values.

Definition 4.6. The expectation of a random value X is defined as the integral of X

with respect to the probability measure. E[X] =
∫
Ω
X dp


 expectation = integral

We prove the following properties of the expectation of random variables:


 E[X+Y] = E[X] + E[Y]


 E[aX] = aE[X]


 E[a] = a


 X ≤ Y then E[X] ≤ E[Y]


 independent_rv X Y ⇒ E[XY] = E[X]E[Y]

As stated earlier, the definition of expectation is valid for both discrete and continuous

cases. We prove for the case where the sample space is finite, the definition of the

expectation can be simplied to:


 FINITE (p_space p) ⇒
E[X] = SIGMA (λr. r * distribution p X {r}) (IMAGE X (p_space p))
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We provide a simplified definition for the expectation of real-valued random variables,

which provides an easier way to compute the expecation of random variables with-

out the need to work with integrals. This formula is derived from Equation 3.5 in

Chapter 3.


 E[X] = supn∈N
∑4n−1

k=0
k
2n
×(FX(

k+1
2n

)-FX(
k
2n
)) + 2n×(1-FX(2

n))

The conditional expectation is formalized in the following HOL definition:


 conditional_expectation p X s =

@f. real_random_variable f p ∧ ∀g. g ∈ s ⇒
integral p (λx. f(x)Ig(x)) = integral p (λx. X(x)Ig(x))

Variance

The variance is another descriptor of probability distributions providing a measure

of how far the numbers are spread out around the expectation. The covariance is a

measure of the correlation between two random variables.

Definition 4.7. The variance of a random variable X is defined as V ar(X) = E[|X−
E[X]|2]. The covariance of two random variables X and Y is defined as Cov(X, Y ) =

E[(X − E[X])(Y − E[Y ])]. Two random variables X and Y are uncorrelated iff

Cov(X, Y ) = 0.

Some of the properties that we verified in HOL for the variance and covariance include:


 Var(X) = E[X2] - E[X]2


 Cov(X,Y) = E[XY]-E[X]E[Y]


 Var(X) ≥ 0


 ∀a∈R, Var(aX) = a2Var(X)
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 Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)


 uncorrelated X Y ⇒ Var(X+Y) = Var(X) + Var(Y)


 ∀i �=j, uncorrelated Xi Xj ⇒ Var(
∑N

i=1 Xi)=
∑N

i=1 V ar(Xi)

4.2 Formalization of Information Measures in HOL

Using the formalization of the foundational theories of measure, Lebesgue integra-

tion and probability, we are able to provide a higher-order-logic formalization of the

main concepts of information theory. We start by formalizing the Radon-Nikodym

derivative [23] and use it to define the KL divergence. The latter provides a unified

framework based on which we define the most commonly used measures of informa-

tion, those found in the main textbooks of Information Theory [14, 25, 22] such as

the Shannon entropy and mutual information. We start by providing the general

definitions which are valid for both discrete and continuous cases and then prove the

corresponding reduced expressions where the measures considered are absolutely con-

tinuous over finite spaces. We build on the foundations, presented in [13], to provide a

more general formalization of information theory including the properties of measures

of information.

4.2.1 Radon-Nikodym Derivative

The Radon-Nikodym derivative of a measure ν with respect to the measure μ is

defined as a non-negative measurable function f , satisfying the following formula, for

any measurable set A [23]. ∫
A

f dμ = ν(A)

We formalize the Radon-Nikodym derivative in HOL as
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 RN_deriv m v =

@f. f IN measurable (X,S) Borel ∧
∀x ∈ X, 0 ≤ f x ∧
∀a ∈ S, integral m (λx. f x × Ia x) = v a

where @ denotes the Hilbert-choice operator. The existence of the Radon-Nikodym

derivative is guaranteed for absolutely continuous measures by the Radon-Nikodym

theorem stating that if ν is absolutely continuous with respect to μ, then there exists

a non-negative measurable function f such that for any measurable set A,

∫
A

f dμ = ν(A)

We proved the Radon-Nikodym theorem in HOL for finite measures which can be

easily generalized to σ-finite measures.


 ∀m v s st.

measure_space (s,st,m) ∧
measure_space (s,st,v) ∧
abs_cont (s,st,m) (s,st,v) ⇒

∃f. f ∈ measurable (s,st) Borel ∧
∀x ∈ s, 0 ≤ f x < ∞ ∧
∀a ∈ st, integral m (λx. f x × Ia x) = v a

The formal reasoning about the above theorem is primarily based on the Lebesgue

monotone convergence and the following lemma which, to the best of our knowledge,

has not been referred to in mathematical texts before

Lemma 1. If P is a non-empty set of extended-real valued functions closed under the

max operator, g is monotone over P and g(P ) is upper bounded, then there exists a
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monotonically increasing sequence f(n) of functions, elements of P , such that:

sup
n∈N

g(f(n)) = sup
f∈P

g(f)

Proof. Proving the Radon Nikodym theorem consists in defining the set F of non-

negative measurable functions such that for any measurable set A,
∫
A
f dμ ≤ ν(A).

Then we prove that this set is non-empty, upper bounded by the finite measure of

the space and is closed under the max operator. Next, using the monotonicity of the

integral and the lemma above, we prove the existence of a monotonically increasing

sequence f(n) of functions in F such that:

sup
n∈N

∫
X

fn dμ = sup
f∈F

∫
X

f dμ

Finally, we define the function g such that ∀x, g(x) = supn∈N fn(x) and prove that g

satisfies the conditions of the theorem by using the Lebesgue monotone convergence

theorem to prove that: ∫
X

g dμ = sup
n∈N

∫
X

fn dμ

We formally verified various properties of the Radon-Nikodym derivative. For in-

stance, we prove that for absolutely continuous measures defined over a finite space,

the derivative reduces to


 ∀x ∈ s, u{x} �= 0 ⇒
RN_deriv u v x = v{x}/u{x}

The following properties play a vital role in formally reasoning about the Radon-

Nikodym derivative and have also been formally verified.


 ∀x ∈ s, 0 ≤ RN_deriv m v x < ∞

 RN_deriv m v ∈ measurable (s,st) Borel


 ∀a ∈ st, integral m (λx. RN_deriv m v x × Ia x) = v a
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4.2.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence [14] DKL(μ||ν) is a measure of the distance

between two distributions μ and ν. It can be used to define most information-theoretic

measures such as mutual information and entropy and can, hence, be used to provide

a unified framework to formalize most information leakage measures. It is because

of this reason that we propose to formalize the KL divergence in this paper as it

will facilitate the formal reasoning about a wide variety of information flow related

properties. The KL divergence is defined as:

DKL(μ||ν) = −
∫
X

log
dν

dμ
dμ

where dν
dμ

is the Radon-Nikodym derivative of ν with respect to μ. The KL divergence

is formalized in HOL as:


 KL_divergence b m v = -integral m (λx. log b (RN_deriv m v x))

where b is the base of the logarithm. DKL is measured in bits when b = 2. We

formally verify various properties of the KL divergence. For instance, we prove that

for absolutely continuous measures over a finite space, it reduces to:

DKL(μ||ν) =
∑
x∈s

μ{x} log μ{x}
ν{x}


 KL_divergence b u v = SIGMA (λx. u{x} log b (u{x} / v{x})) s

We also prove the following properties


 KL_divergence b u u = 0


 1 ≤ b ⇒ 0 ≤ KL_divergence b u v

The non-negativity of the KL divergence for absolutely continuous probability mea-

sures over finite spaces is extensively used to prove the properties of information
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theory measures like mutual information and entropy. To prove this result, we use

the Jensen’s inequality [56] and the concavity of the logarithm function.

We show in the subsequent sections how we use the KL divergence to formalize

mutual information, Shannon entropy, conditional entropy and the conditional mutual

information, which are some of the most commonly used measures of information.

4.2.3 Mutual Information

The mutal information I(X;Y ) of two random variables is a measure of the mutual

dependence of the two random variables in the sense that it measures how much

uncertainty about one of these variables is reduced when the other variable is known.

Mutual information has been proposed as a measure of information leakage [68] from

the secure inputs X of a program to its public outputs Y . It is defined as the KL

divergence between the joint distribution and the product of marginal distributions.

The following is a formalization of mutual information in HOL.


 I(X;Y) = KL_divergence b (joint_distribution p X Y)

prod_measure (distribution p X)

(distribution p Y)

We prove various properties of mutual information in HOL, such as the non-negativity,

symmetry and reduced expression for finite spaces, using the result that the joint

distribution is absolutely continuous w.r.t the product of marginal distributions.


 0 ≤ I(X;Y)


 I(X;Y) = I(Y;X)


 I(X;Y) = 0 ⇔ independent_rv X Y


 I(X;Y) = SIGMA (λ(x,y). p{(x,y)} log b (p{(x,y)}/p{x}p{y})) s
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4.2.4 Shannon Entropy

The Shannon entropy H(X) is a measure of the uncertainty associated with a ran-

dom variable. Equivalently, it is a measure of the average information content missing

when the value of the random variable is unknown. The Shannon entropy was one of

the first measures to be proposed to analyze anonymity protocols and secure commu-

nications [61, 19]. It can be defined as the expectation of pX or simply as I(X;X).


 H(X) = I(X;X)

We prove that it can also be expressed in terms of the KL divergence between pX and

the uniform distribution puX , where N is the size of the alphabet of X.


 H(X) = log(N) - KL_divergence b (distribution p X)

(uniform_dist p X)

The cross entropy H(X, Y ) which measures how much entropy is contained in a joint

system of two random variables is the entropy of the random variable (X, Y ) and

hence there is no need for a separate formalization of the cross entropy.

The conditional entropy H(X|Y ) quantifies the remaining uncertainty about the ran-

dom variable X given that the value of the random variable Y is known. It is defined

in terms of the KL divergence as follows:


 H(X|Y) = log(N) - KL_divergence b (joint_distribution p X Y)

prod_measure (uniform_dist p X)

(distribution p Y)

The entropy properties that we prove in HOL include:


 0 ≤ H(X) ≤ log(N)


 max(H(X),H(Y)) ≤ H(X,Y) ≤ H(X) + H(Y)
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 H(X|Y) = H(X,Y) - H(Y)


 0 ≤ H(X|Y) ≤ H(X)


 I(X;Y) = H(X) + H(Y) - H(X,Y)


 I(X;Y) ≤ min(H(X),H(Y))


 H(X) = -SIGMA (λx. p{x} log b (p{x})) s


 H(X|Y) = -SIGMA (λ(x,y). p{(x,y)} log b (p{(x,y)}/p{y})) s

4.2.5 Conditional Mutual Information

The conditional mutual information I(X;Y |Z) allows one to measure the expected

value of mutual information of two random variablesX and Y given knowledge of Z. It

was used by Malacaria [44] as a measure of information leakage for a program with high

security inputsX, low security outputs Y and low security inputs Z. I(X;Y |Z) is then
a measure of how much information about the secret inputs is leaked to an attacker

by observing the outputs of a program given knowledge of the low security inputs.

The conditional mutual information is defined as the KL divergence between the joint

distribution pXY Z and the product measure pX|ZpY |ZpZ . Its HOL formalization is as

follows:


 conditional_mutual_information b p X Y Z =

KL_divergence b (joint_distribution p X Y Z)

(prod_measure (conditional_distribution p X Z)

(conditional_distribution p Y Z)

(distribution p Y))

We formally verify the following reduced form of the conditional mutual information

for finite spaces by first proving that pXY Z is absolutely continuous w.r.t pX|ZpY |ZpZ
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and then apply the reduced form of the KL divergence.

I(X;Y |Z) =
∑

(x,y,z)∈X×Y×Z
p(x, y, z) log

p(x, y, z)

p(x|z)p(y|z)p(z)

When the two random variables X and Y are independent given Z, the conditional

mutual information I(X;Y |Z) = 0. In fact, in this case,

∀x, y, z. p(x, y, z) = p(x, y|z)p(z) = p(x|z)p(y|z)p(z).


 indep_rv_cond p X Y Z ⇒ I(X;Y|Z) = 0

We also prove a few other important results regarding the conditional mutual infor-

mation which will be useful later in our work.


 0 ≤ I(X;Y|Z)


 I(X;Y|Z) = H(X|Z) - H(X|Y,Z)


 I(X;Y|Z) = I(X;(Y,Z)) - I(X;Z)


 I(X;Y|Z) ≤ H(X|Z)

The first property is a direct result of the non-negativity of the KL divergence. We

will show next a proof of the second property. In the same manner we prove the third

property. Finally the fourth property is a result from the second property and the

non-negativity of the entropy.

I(X;Y|Z) =
∑

p(x, y, z) log p(x,y,z)
p(x|z)p(y|z)p(z)

=
∑

p(x, y, z) log p(x|y,z)
p(x|z)

=
∑

p(x, y, z) log(p(x|y, z)) -
∑

p(x, z) log(p(x|z))
= - H(X|Y,Z) + H(X|Z)

So far, we have provided a higher-order-logic formalization of the KL divergence which

we used to define various measures of quantitative information flow. This framework,
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along with the formalization of measure and probability theories, allows us to conduct

many analyses of quantitative information flow using a theorem prover and hence

guaranteeing the soundness of the analysis.

4.3 Quantitative Analysis of Information Flow

A classical approach to protecting the confidentiality of sensitive information is to use

a noninterference technique which aims to make it independent of the public output of

the protocol. Unfortunately, this cannot be applied to a large number of applications

where a small leak of information is intended by design to ensure the functionality

of the protocol. In an election protocol, for instance, while the votes should remain

secret, the election results should be made public. Similarly, a password checker

reveals some information when rejecting an incorrect password.

Quantitative analysis of information flow [64, 58] is gaining a lot of attention in

a variety of contexts, such as secure information flow, anonymity protocols, and side-

channel analysis. It allows to measure how much information about the high security

inputs of a system can be leaked, accidentally or maliciously, by observing the systems

outputs and possibly the low security inputs. Unlike non-interference analysis, which

only determines whether a system is completely secure or not completely secure,

quantitative information flow analysis provides an information-theoretic measure on

how secure or insecure a system is.

Various measures are being proposed to quantify the flow of information. Ser-

jantov [61] and Diaz et al. [19] independently proposed to use entropy to define the

quality of anonymity and to compare different anonymity systems. In this technique,

the attacker assigns probabilities to the users after observing the system and does not

make use of any apriori information he/she might have. The attacker simply assumes
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a uniform distribution among the users before observation. Malacaria [44] defined the

leakage of confidential information in a program as the conditional mutual informa-

tion between its outputs and secret inputs, given the knowledge of its low security

inputs. Chatzikokolakis [10] modeled anonymity protocols as noisy channels and used

the channel capacity as a measure of the loss of anonymity. If it is equal to 0 then the

attacker can learn nothing more by observing the protocol. In the cases where some

leakage of information is intended by design as is the case in an election protocol,

for example, another measure for the loss of anonymity, the conditional capacity, was

proposed to take into account the intended leakage. In both cases however, there is

no analytical formula to compute the capacity and numerical algorithms have to be

used. Symmetry properties of channels, when present, can be exploited to compute

the capacity. Deng [18] used the notion of relative entropy to measure the degree of

anonymity that protocols can guarantee.

We introduce two new measures of information, namely the information leakage

degree and the conditional information leakage degree, which can be used to evaluate

the anonymity and security properties of various systems and protocols.

4.3.1 Information Leakage Degree

Consider a program having a set of secret inputs, represented by the random variable

X and a set of public outputs, represented by Y . We define the information leakage

degree of this program as

D =
H(X|Y )

H(X)

where H(X) and H(X|Y ) represent the Shannon entropy of X and the conditional

entropy of X given Y , respectively.


 D p X Y = conditional_entropy p X Y / entropy p X
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To better understand the intuition behind this definition, let us consider the two

extreme cases of a completely secure program and a completely insecure program.

Complete security, intuitively, happens when the knowledge of the public output Y of

a program does not affect the uncertainty about the secret input X. This is equivalent

to the requirement that X is independent of Y . In this case H(X|Y ) = H(X) and the

information leakage degree is equal to 1. On the other hand, when the output of the

program completely identifies its secret input, the entropy H(X|Y ) is equal to 0 and

hence the information leakage degree is equal to 0 in this case of perfect identification.

For situations between the two extremes, we prove that the information leakage degree

lies within the interval (0, 1).


 0 ≤ D p X Y ≤ 1

Using the properties of mutual information, I(X;Y ), we prove that the information

leakage degree is also equal to

D = 1− I(X;Y )

H(X)

This result illustrates the significance of the information leakage degree definition since

mutual information measures how much information an adversary can learn about the

input X after observing the output Y . This also allows to compare our definition to

the anonymity degree proposed in [68] as

D′ = 1− I(X;Y )

logN

where N is the size of the alphabet of X. Our definition is more general. In fact,

when X is uniformly distributed, the two measures coincide D = D′. However, in

the general case, we believe that our definition is more accurate since, for instance,

in the perfect identification scenario, D is always equal to 1 regardless of the input
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distribution. On the other hand, D′ is equal to 1 only in the special case of a uniform

distribution. In [68] the authors considered using H(X) as a normalization factor

instead of logN but opted for the latter arguing that the input distribution is already

accounted for in mutual information. But as stated previously, with the definition of

D′, the proof for perfect identification is only valid for uniformly distributed inputs.

4.3.2 Conditional Information Leakage Degree

We propose another variation of information leakage degree that is more general and

can cover a wider range of scenarios. First, consider a program which has a set of

high security inputs S, a set of low security inputs L and a set of public outputs

O. The adversary wants to learn about the high inputs S by observing the outputs

O given the knowledge of the low inputs L. To capture this added information for

the adversary (low inputs), we propose the following definition, which we call the

conditional information leakage degree.

Dc =
H(S|(O,L))

H(S|L)

This is formalized in HOL as


 D c p S L O =

conditional_entropy p S (O,L) / conditional_entropy p S L

Just like the previous case, consider the two extremes of perfect security and perfect

identification. When the outputs and the secret inputs are independent, given L, the

conditional entropy H(S|(O,L)) is equal to H(S|L) which results in a conditional

leakage degree equal to 1 for perfect security. However, if the public inputs and

outputs completely identify the secret inputs, then H(S|(O,L)) is equal to 0 and so

is the conditional leakage degree in the case of perfect identification. As in the case
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of leakage degree, we are also able to show that the conditional information leakage

degree lies within the interval (0, 1).


 0 ≤ D c p X Y Z ≤ 1

We also prove that the conditional information leakage degree can be written in terms

of the conditional mutual information and the conditional entropy.

Dc = 1− I(S;O|L)
H(S|L)

This shows that this definition is clearly a generalization of the information leakage

degree for the case of programs with additional low security inputs.

We provide more intuition to interpret this definition by proving the data pro-

cessing inequality (DPI) [14], which states that if the random variables X, Y and Z

form a Markov chain, then I(X;Z) ≤ I(X;Y ).

Definition 4.8. Random variables X, Y , Z are said to form a Markov chain in

that order (denoted by X → Y → Z) if the conditional distribution of Z depends

only on Y and is conditionally independent of X. Specifically, X, Y and Z form a

Markov chain X → Y → Z if the joint probability mass function can be written as

p(x, y, z) = p(x)p(y|x)p(z|y).

We formalize this in HOL as follows.


 markov_chain p X Y Z ⇔
∀x y z, pXY Z{(x,y,z)} = pX{x} * pY |X{y}{x} * pZ|Y {z}{y}

We prove that X → Y → Z is equivalent to the statement that X and Z are condi-

tionally independent given Y .


 markov_chain p X Y Z ⇔ indep_rv_cond p X Z Y
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In fact, p(x)p(y|x)p(z|y) = p(x, y)p(z|y) = p(x|y)p(z|y)p(y). This in turn is equivalent

to I(X;Z|Y ) = 0.


 markov_chain p X Y Z ⇔ I(X;Z|Y) = 0

This result allows us to prove the DPI as follows:


 markov_chain p X Y Z ⇒ I(X;Z) ≤ I(X;Y)

We prove the DPI theorem using the properties of mutual information. In fact, as

shown previously,


 I(X;(Y,Z)) = I(X;Z) + I(X;Y|Z)

By symmetry of mutual information, we also have


 I(X;(Y,Z)) = I(X;Y) + I(X;Z|Y)

Since I(X;Z|Y ) = 0 for a Markov chain,


 I(X;(Y,Z)) = I(X;Y)

Using the non-negativity of the conditional mutual information, it is straightforward

to conclude that


 I(X;Z) ≤ I(X;Y)

The data processing inequality is an important result in information theory that is

used, for instance, in statistics to define the notion of sufficient statistic. We make use

of the DPI to interpret the conditional information leakage degree. For a system with

high security inputs S, low security inputs L and outputs O, if the outputs depend

only on the low inputs, i.e., p(O|S, L) = p(O|L) then S → L → O and S and O are

conditionally independent given L. This is the perfect security scenario, for which
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Dc = 1. Using the DPI, we conclude that I(S;O) ≤ I(S;L). This means that when

the conditional mutual information leakage is equal to 1, no clever manipulation of

the low inputs, by the attacker, deterministic or random, can increase the information

that L contains about S, (I(S;L)).

4.4 Summary and Discussions

In this chapter, we used the formalization of measure theory and Lebesgue information

to provide a higher-order-logic formalization of the main concepts of probability and

information theory. We formalized the basic definitions of probability spaces and

random variables as well as their statistical properties. Based on the formalization

of the KL divergence, we defined the most commonly used measures of information

including the Shannon entropy and mutual information. We have also introduced

two novel measures of information leakage that we will use in Chapter 5 to reason

about information flow of real-world protocols and programs. The formalization of

probability presented in this chapter required around 3000 lines of code, including

basic definitions and proofs of 60 theorems. The formalization of information theory

required 3000 lines of code and 40 theorems. This is a great indication of the decreasing

trend of the number of theorems thanks to the hierarchy used within the framework.

These formalizations are now part of the official release [47] of the HOL4 theorem

prover.

73



Chapter 5

Applications

In previous chapters, we provided a comprehensive framework that can be used in

the formal probabilistic and information-theoretic analysis of a wide range of systems

and protocols. We illustrate the usefulness of conducting this analysis using theorem

proving by tackling a number of applications including a data compression application,

the formal analysis of an anonymity-based MIX channel and the properties of the one-

time pad encryption system.

5.1 Data Compression

Data compression or source coding may be viewed as a branch of information theory in

which the primary objective is to reduce redundancy, minimizing the amount of data

to be stored or transmitted. It consists in encoding information using fewer bits than

an unencoded representation would use, through use of specific encoding schemes. As

depicted in Figure 5.1, data compression has important applications in the areas of

data storage and data transmission, for instance, in the speech compression for real-

time transmission over digital cellular networks. On the other hand, the proliferation
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Figure 5.1: Source Coding

of computer communication networks is resulting in massive transfer of data and the

growing number of data processing applications require storage of large volumes of

data. Compressing data reduces costs and increases capacity. However, to guarantee

reliable transmission or storage of data, particularly in systems for safety-critical

applications, a certain limit of compression must be respected.

We propose to formally prove an important result establishing the fundamental

limit of data compression. This result is also known as the Shannon source coding

theorem and states that it is possible to compress the data at a rate that is arbitrarily

close to the Shannon entropy without significant loss of information. In other words,

n independent and identically distributed (iid) random variables with entropy H(X)

can be expressed on the average by nH(X) bits without significant risk of information

loss, as n tends to infinity. To the best of our knowledge, most of the formalization

framework that we need for this application, such as the properties of real valued

measurable functions, properties of the expectation of arbitrary functions, variance,

independence of random variables and the weak law of large numbers, is not available

in the open literature.

A proof of this result consists in proposing an encoding scheme for which the

average codeword length can be made arbitrarily close to nH(X) with negligible

probability of loss. We propose to perform a typical set encoding [14]. The typical

set contains the typical sequences which are used to represent the frequent source

symbols while the non-typical sequences represent rare source symbols.

The encoding is performed separately for the typical and the non-typical set as
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Figure 5.2: Typical Set Encoding

depicted in Figure 5.2. Clearly, we need to formalize the concept of a typical set and

prove its properties to be able to formally verify that the average codeword length

associated to the typical-set encoding can be made arbitrarily close to the Shannon

entropy with a vanishing probability of error. To prove the properties of the typical

set, we need to prove the Asymptotic Equipartition Property (AEP) [14, 25], which in

turn, requires the proof of the classical probability results, namely, the Weak Law of

Large Numbers (WLLN) and the Chebyshev inequality.

5.1.1 Chebyshev and Markov Inequalities

In probability theory, both the Chebyshev and Markov inequalities provide estimates

of tail probabilities. The Chebyshev inequality guarantees, for any probability dis-

tribution, that nearly all the values are close to the mean and it plays a major role

in the derivation of the laws of large numbers [49]. The Markov inequality provides

loose yet useful bounds for the cumulative distribution function of a random variable.

Let X be a random variable with expected value m and finite variance σ2. The

Chebyshev inequality states that for any real number k > 0,

P (|X −m| ≥ kσ) ≤ 1

k2
(5.1)

The HOL formalization of the Chebyshev inequality is stated as:


 random_variable X p Borel ∧
integrable p (λx. (Xx − E[X])2) ∧ 0 < k ⇒
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prob p {x | x ∈ Ω ∧ kVar[X] ≤ |X x - E[X]|} ≤ 1
k2

The Markov inequality states that for any real number k > 0,

P (|X| ≥ k) ≤ m

k
(5.2)

Its formalization in HOL is the following:


 random_variable X p Borel ∧ integrable p X ∧ 0 < k ⇒
prob p {x | x ∈ Ω ∧ k ≤ |X x|} ≤ E[X]

k

Instead of directly proving these inequalities, we provide a more general proof using

measure theory and Lebesgue integrals in HOL that can be used for both and a

number of similar inequalities. The probabilistic statement follows by considering a

space of measure 1.

Theorem 5.1. Let (S,S, μ) be a measure space, and let f be a measurable function

defined on S. Then for any nonnegative function g, nondecreasing on the range of f,

μ({x ∈ S : f(x) ≥ t}) ≤ 1

g(t)

∫
S

g ◦ f dμ .


 ∀m f g t.

(let A = {x | x ∈ m_space m ∧ t ≤ f x} in

measure_space m ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀x. 0 ≤ g x) ∧ (∀x y. x ≤ y ⇒ g x ≤ g y) ∧
integrable m (λx. g (f x)) ⇒
measure m A ≤ (1 / (g t)) * integral m (λx. g (f x)))

The Chebyshev inequality is derived by letting t = kσ, f = |X −m| and g defined as

g(t) = t2 if t ≥ 0 and 0 otherwise. The Markov inequality is derived by letting t = k,

f = |X| and g defined as g(t) = t if t ≥ 0 and 0 otherwise.
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Proof. Let A = {x ∈ S | t ≤ f(x)} and IA be the indicator function of A. From the

definition of A, ∀x 0 ≤ g(t)IA(x) and ∀x ∈ A, t ≤ f(x). Since g is non-decreasing,

∀x g(t)IA(x) ≤ g(f(x))IA(x) ≤ g(f(x)). As a result, ∀x g(t)IA(x) ≤ g(f(x)). A is

measurable because f is (S,B(R)) measurable. Using the monotonicity of the integral,

verified in Chapter 3,
∫
S
g(t)IA(x)dμ ≤ ∫

S
g(f(x))dμ. Finally from the linearity of

the integral g(t)μ(A) ≤ ∫
S
g ◦ fdμ.

5.1.2 Weak Law of Large Numbers (WLLN)

The WLLN [49] states that the average of a large number of independent measure-

ments of a random quantity converges in probability towards the theoretical average

of that quantity. Interpreting this result, the WLLN states that for a sufficiently

large sample, there will be a very high probability that the average will be close to

the expected value. This law is used in a multitude of fields. It is used, for instance,

to prove the AEP which is a fundamental concept in the field of information theory.

Theorem 5.2. Let X1, X2, ... be an infinite sequence of independent, identically dis-

tributed random variables with finite expected value E[X1] = E[X2] = ... = m and let

X = 1
n

∑n
i=1 Xi then for any ε > 0,

lim
n→∞

P (|X −m| < ε) = 1 (5.3)


 prob_space p ∧ 0 < ε ∧
(∀i j. i �=j ⇒ uncorrelated p (Xi) (Xj)) ∧
(∀i. E[Xi] = m) ∧ (∀i. Var[Xi] = v) ⇒

lim (λn. prob p {x | x ∈ Ω ∧ | 1
n

∑n
i=1Xi x - m| < ε}) = 1

Proof. Using the linearity property of the Lebesgue integral as well as the properties

of the variance, we prove that E[X] = 1
n

∑n
i=1 m = m and V ar(X) = σ2

n
. Applying
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the Chebyshev inequality to X, we get P (|X−m| ≥ ε) ≤ σ2

nε2
. Equivalently, 1− σ2

nε2
≤

P (|X −m| < ε) ≤ 1. It then follows that limn→∞ P (|X −m| < ε) = 1.

5.1.3 Asymptotic Equipartition Property (AEP)

The Asymptotic Equipartition Property (AEP) [14] is the information theory analog

of the Weak Law of Large Numbers. It states that for a stochastic source X, if its

time series X1, X2, . . . is a sequence of iid random variables with entropy H(X), then

− 1
n
log(p(X1, . . . , Xn)) converges in probability to H(X).

Theorem 5.3. (AEP): if X1, X2, . . . are iid then

− 1

n
log(p(X1, . . . , Xn)) −→ H(X) in probability

We formally verify the AEP using the WLLN result proved in the previous section

as well as the various properties of joint probability distributions, independence of

random variables and the log operator proved in Chapter 3.


 prob_space p ∧ 0 < ε ∧
(∀i j. i �=j ⇒ independent_rv p (Xi) (Xj)) ∧
(∀i. E[Xi] = m) ∧ (∀i. Var[Xi] = v) ∧ (∀i. H[Xi] = H[X]) ⇒
lim (λn. prob p {x | x∈ s ∧ |− 1

n
log(

∏n
i=1 pXi

{x}) - H[X]| < ε}) = 1

Proof. LetX1, X2, . . . be iid random variables and let Yi = −log(pXi
). Then Y1, Y2, . . .

are iid random variables and ∀i, E[Yi] = H(X). Using the Weak Law of Large Num-

bers, we have:

lim
n→∞

P (| 1
n

n∑
i=1

Yi −H(X)| < ε) = 1
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Furthermore,

1

n

n∑
i=1

Yi =
1

n

n∑
i=1

−log(p(Xi)) = − 1

n
log(

n∏
i=1

p(Xi))

And since X1, . . . , Xn are mutually independent,

− 1

n
log(

n∏
i=1

p(Xi)) = − 1

n
log(p(X1 . . . Xn))

Consequently,

lim
n→∞

P (| − 1

n
log(p(X1 . . . Xn))−H(X)| < ε) = 1 (5.4)

5.1.4 Typical Set

A consequence of the AEP is the fact that the set of observed sequences (x1, . . . , xn) for

which joint probabilities p(x1, x2, . . . , xn) are close to 2−nH(X) has a total probability

equal to 1. This set is called the typical set and such sequences are called the typical

sequences. In other words, out of all possible sequences, only a small number of

sequences will actually be observed and those sequences are nearly equally probable.

The AEP guarantees that any property that is proved for the typical sequences will

then be true with high probability and will determine the average behavior of a large

sample.

Definition 5.1. The typical set An
ε with respect to p(x) is the set of sequences (x1, . . . , xn)

satisfying:

2−n(H(X)+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H(X)−ε). (5.5)

The typical set has the following properties
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Theorem 5.4. if (x1, . . . , xn) ∈ An
ε then

H(X)− ε ≤ − 1

n
log(p(x1, . . . , xn)) ≤ H(X) + ε (5.6)

This theorem is a direct consequence of Definition 5.1.

Theorem 5.5. ∀ε > 0, ∃N, ∀n ≥ N, p(An
ε ) > 1− ε.

The proof of this theorem is derived from the formally verified AEP. The next two

theorems give upper and lower bounds for the number of typical sequences |An
ε |.

Theorem 5.6. |An
ε | ≤ 2n(H(X)+ε).

Proof. Let x = (x1, . . . , xn), then
∑

x∈An
ε
p(x) ≤ 1. From Equation 5.5, ∀x ∈ An

ε ,

2−n(H(X)+ε) ≤ p(x). Hence
∑

x∈An
ε
2−n(H(X)+ε) ≤ ∑

x∈An
ε
p(x) ≤ 1. Consequently,

2−n(H(X)+ε)|An
ε | ≤ 1 proving the theorem.

Theorem 5.7. ∀ε > 0, ∃N.∀n ≥ N, (1− ε)2n(H(X)−ε) ≤ |An
ε |.

Proof. Let x = (x1, . . . , xn). From Theorem 5.5, ∃N.∀n ≥ N, 1 − ε <
∑

x∈An
ε
p(x).

From Equation 5.5, ∀x ∈ An
ε , p(x) ≤ 2−n(H(X)−ε). Hence, ∃N.∀n ≥ N, 1 − ε <

∑
x∈An

ε
p(x) ≤ ∑

x∈An
ε
2−n(H(X)−ε). Consequently, ∃N.∀n ≥ N, 1−ε < 2−n(H(X)−ε)|An

ε |
proving the theorem.

5.1.5 Data Compression Limit

The main idea behind the proof of the source coding theorem is that the average

codeword length for all sequences is close to the average codeword length considering

only the typical sequences. This is true because according to the typical set properties

above, for a sufficiently large n, the typical set has a total probability close to 1. In

other words, for any ε > 0, and sufficiently large n, the probability of observing a
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non-typical sequence is less than ε. Furthermore, the number of typical sequences is

smaller than 2n(H(X)+ε) and hence no more than n(H(X) + ε) + 1 bits are needed to

represent all typical sequences.

If we denote by Y the random variable defined over all the possible sequences

and returns the corresponding codeword length. The expectation of the Y is equal to

the average codeword length L. Using the properties of the typical set we can prove

that

L ≤ n(H(X) + ε
′
) (5.7)

where ε
′
= ε+ 1

n
.

Consequently, for any ε > 0 and n sufficiently large, the code rate L
n
can be made as

close as needed to the entropy H(X) while maintaining a probability of error of the

encoder that is bounded by ε.

5.1.6 Discussions

In this application, we made use of the framework presented in previous chapters for

formally verifying the limit of data compression. This has the advantage of providing

an exact mechanical proof of the result, similar to the one obtained through paper-

and-pencil analysis, compared to less accurate results given by other computer based

simulation approaches. Compared to the paper-and-pencil based analytical method,

the correctness of the result is guaranteed by the soundness of the theorem prover.

Furthermore, the formal proof serves as a way to improve the formal specification of

the problem, by focusing only on the necessary assumptions to prove the result and

ignoring the unnecessary ones.

To the best of our knowledge, this was the first time the AEP has been formally

verified. This is also the first formal proof of Chebychev and Markov inequalities that
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uses measure theory and Lebesgue integration and that can be applied to various

similar inequalities. The formalization of Shannon entropy, in Chapter 4, allowed us

to define the typical set and prove its properties. These proofs required approximately

3 weeks of human effort and around 1000 lines of HOL code. The upside is that these

results can be reused in several other engineering applications.

Our formalization has influenced the work of Affeldt et al [3], in which they

proved the Shannon’s theorems in the Coq proof assistants. In that work, the authors

provided a simplified formalization of the concepts involved instead of generalized

definitions that can be used in other applications, like we did in this thesis.

5.2 Anonymity-based Single MIX

In communication networks, privacy requires not only confidentiality of the informa-

tion but also hiding the identities of the communicating parties. Several anonymous

networks have been proposed to ensure anonymous communication, e.g. Onion Rout-

ing [65], Tor [20], Crowds [54], Mixminion [16], etc. Most of the proposed solutions

are based on Chaum’s original idea of a threshold mix [11]. Mixes are relay nodes

that collect packets from different users, shuffle them then forward them to their des-

tinations in such a way that an external eavesdropper cannot link an outgoing packet

to its corresponding sender.

In this section, we use our formalization to reason about an anonymity-based

single MIX, designed to hide the communication links between a set of senders and

a set of receivers. We model a single MIX as a communication node connecting m

senders (s1, . . . , sm) to n receivers (r1, . . . , rn). The single MIX is determined by its

inputs (senders), outputs (receivers) and the transition probabilities. We can also

add clauses in the specification to capture additional information about the MIX like
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structural symmetry. The following is the formalization of the single MIX given in

Figure 5.3.


 MIX_channel s m X Y =

X(s) = {0;1} ∧ Y(s) = {0;1;2;3} ∧
(pY |X {0}{0} = 1

2
) ∧ (pY |X {1}{0} = 1

2
) ∧ (pY |X {2}{1} = 1)

r3

r2

r1

r0

1
2

1

1
2

s0

s1

Figure 5.3: Single MIX Example

Zhu and Bettati [68] used the single MIX to model an anonymity-based covert-channel

where a sender is trying to covertly send messages through the MIX. They used the

channel capacity as a measure of the maximum information that can be leaked through

the MIX and can be used as a measure of the quality of anonymity of the network.

A communication between a sender si and a receiver rj is denoted by [si, rj]. The

term p([su, rv]s|[si, rj]a) represents the probability that the communication [su, rv] is

suspected given that [si, rj] is actually taking place. This model describes attacks on

sender-receiver anonymity. The input symbols of the covert-channel are the actual

sender-receiver pairs [s, r]a and the output symbols are the suspected pairs [s, r]s. In

this case, p([s, r]s|[s, r]a) represents the result of the anonymity attack. We consider

the case where an attacker can establish a covert-channel by having 1 sender s1 com-

municate with any combination of j receivers. The same reasoning can be applied to
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multiple senders. The authors claim the following result [68]:

For a single sender s1 on a single mix, the maximum covert-channel capacity is

achieved when s1 can communicate to all receivers.

We initially tried to formally verify this result, using the foundational results pre-

sented in the previous chapters, but we found a counter-example for an assumption

upon which the paper-and-pencil proof of the above result is based. The erroneous

assumption states that the maximum of the mutual information is achieved when all

input symbols have non-zero probabilities regardless of the transition probabilities

(the results of the anonymity attack). We are able to prove in HOL that it is not

necessary for the sender s1 to communicate with all receivers to achieve capacity.

First, we provide a higher-logic-formalization of the channel capacity which is

defined as the maximum, over all input distributions, of the mutual information be-

tween the input and the output of the channel. We formalize it in HOL using the

formalization of mutual information from Chapter 4 and the Hilbert-choice operator;

i.e., if it exists, the capacity is some c such that c = Im(X;Y ) for some probability

distribution m and for any input distribution p, Ip(X;Y ) ≤ c.


 capacity s X Y = @c. (∃m. c = Im(X;Y )) ∧ (∀m. Im(X;Y ) ≤ c)

Next, consider the covert-channel depicted in Figure 5.4. To simplify the no-

tation, let xi = [s1, ri]a and yi = [s1, ri]s. This covert-channel is formalized in HOL

as


 MIX_channel_1 s m X Y =

(X(s) = {0;1;2}) ∧ (Y(s) = {0;1;2}) ∧
(pX{0} = pX{2}) ∧
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[s1, r2]s

[s1, r3]s

[s1, r1]s
1
2

1p

1− 2p

p

[s1, r1]a

[s1, r2]a

[s1, r3]a
1

1
2

Figure 5.4: Counter-Example for [68]

(pY |X {0}{0} = 1) ∧ (pY |X {0}{1} = 1
2
) ∧ (pY |X {0}{2} = 0) ∧

(pY |X {1}{0} = 0) ∧ (pY |X {1}{1} = 0) ∧ (pY |X {1}{2} = 0) ∧
(pY |X {2}{0} = 0) ∧ (pY |X {2}{1} = 1

2
) ∧ (pY |X {2}{2} = 1)

We prove that its mutual information is equal to 2p.


 ∀X Y s. MIX_channel_1 s m X Y ⇒
I(X;Y) = 2 * p X {0}

We also prove that the capacity is equal to 1 and corresponds to p = 1
2
. This means

that the input distribution that achieves the channel capacity is [p{x0} = 1
2
, p{x1} =

0, p{x2} = 1
2
]. Hence, we prove that the sender s1 does not need to communicate

with the receiver r2 and still achieve maximum capacity, contradicting the result

in [68]. Notice that with p = 1
2
, I(X;Y ) = H(X) = 1 which implies that the degree

of information leakage D = 0. So for this covert-channel, the maximum capacity

corresponds to perfect identification.
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5.2.1 Discussions

Unlike the paper-and-pencil based analysis, a machine-assisted analysis of quantita-

tive information flow using theorem proving guarantees the accuracy of the results.

In fact, the soundness of theorem proving inherently ensures that only valid formulas

are provable. The requirement that every single step of the proof needs to be derived

from axioms or previous theorems using inference rules, allows us to find missing as-

sumptions and even sometimes wrong statements as was the case in this single MIX

application. We were able to detect the problem with the reasoning described in the

above sections and confirm the result using our formalization in HOL. In this spe-

cific case, we detected the problem when trying to prove the erroneous assumption

stating that the channel capacity is achieved when all input symbols have non-zero

probabilities. This result contradicts Theorem 4.5.1 of [22], which inspired us to come

up with the counter-example. Our analysis has also been confirmed by Prof. Gal-

lager from MIT, the author of the much cited book Information Theory and Reliable

Communication [22].

To the best of our knowledge, this is the first time the properties of mixes

have been analyzed using theorem proving. This is obviously not a large application

and can be extended to reason about MIX networks and other anonymity networks

in general. However this serves as an example to illustrate the usefulness of the

framework presented in this thesis. Thanks to the rich formalization we provided in

Chapters 3 and 4, we were able to analyze the MIX of this application within one

week of human effort and using around 500 lines of HOL code.
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5.3 One-Time Pad

The one-time pad is a simple yet solid encryption system that provides, if used cor-

rectly, an unbreakable security. The encryption is performed by modular addition of

every character of the plaintext with a character from a secret random key of at least

the same length as the original message. If the key is truly random and never reused

in whole or in part, then it can be proven that the one-time pad encryption provides

a perfect security. We formally prove this property within the HOL4 theorem prover

using the higher-order-logic framework proposed in this thesis.

The one-time pad encryption technique takes its name from the paper pads that

have been historically used to distribute the keys, making it easy to simply pull the

top sheet of the pad and destroy it after use. An example of a Russian one-time pad

that was captured by MI5 is depicted in Figure 5.5.

Figure 5.5: A Russian One-time pad, captured by MI5 [53]

The one-time pad has been extensively used to secure the communications of

various international intelligence agencies and was used for instance in the Washing-

ton/Moscow hotline to provide perfectly secure communication between the White
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House and the Kremlin and without disclosing any other secret cryptographic tech-

nology.

The main challenges for this encryption technique are the generation of truly

random keys and their distribution to both sender and receiver. This sometimes makes

the technique impractical and limits the types of its applications to the cases where,

for example, absolute security is a real must, regardless of the costs. Still, the one-

time pad is available as a backup encryption option if other theoretically less secure

but more practical encryption systems are unavailable for reasons of war or attacks.

The one-time pad encryption is also very important in situations, where both sender

and receiver need to do all the work by hand without the use of a computer, whether

because one is not available or to avoid possible vulnerabilities of a standard computer.

The structure of a typical one-time pad encryption system is depicted in Fig-

ure 5.6. The plaintext is first encoded into digits or bits then fed to the encryption

block which performs a modular addition (modulo 10) to produce a cipher text. The

latter is transmitted to the receiver side which performs the inverse operations to

recover the original message.

Decryption
Received

Key
R

K

Decoding

Encoding Encryption
Plaintext

Key

M

K

Eavesdropper C

Ciphertext

Figure 5.6: One-Time Pad Encryption
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0 1 2 3 4 5 6 7 8 9

A T O N E S I R
2 B C D F G H J K L M
6 P Q U V W X Y Z . /

Table 5.1: Straddling Checkerboard Example

5.3.1 Encoding - Decoding

We use a straddling checkerboard to convert the alphabetic plaintext into digits. With

this conversion scheme, the more frequent letters in a language are encoded with a

lower number of digits, leading to a compressed output and, hence, shorter messages

to be transmitted. Besides, a straddling checkerboard allows to achieve a simple form

of information diffusion, or in other words, it reduces the redundancy in the statistics

of the plaintext. An example checkerboard for the English language can be found in

Table 5.1. We formalize the straddling checkerboard as the function checkerboard

of the HOL type:


 checkerboard: char -> num

We present the definition of checkerboard associated with Table 5.1 for the first-row

letters as well as P and /.


 (checkerboad #’’A’’ = 0) ∧
(checkerboad #’’T’’ = 1) ∧
(checkerboad #’’O’’ = 3) ∧
(checkerboad #’’N’’ = 4) ∧
(checkerboad #’’E’’ = 5) ∧
(checkerboad #’’S’’ = 7) ∧
(checkerboad #’’I’’ = 8) ∧
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(checkerboad #’’R’’ = 9) ∧
(checkerboad #’’P’’ = 60) ∧
(checkerboad #’’/’’ = 69)

Using the above definition of the straddling checkerboard, we formalize the encoding

and decoding blocks as encode and decode functions, respectively. The encoder takes

as input a string representing the alphabetic plaintext which it decomposes into a list

of characters, each of which is processed through the checkerboard, and returns a list

of digits. The decoder performs the inverse operations to convert a list of digits back

to a string. The functions encode and decode have the following HOL types:


 encode: string → num list


 decode: num list → string

5.3.2 Encryption - Decryption

The ecryption and decryption blocks are formalized as two functions, encrypt and

decrypt, taking as input a pair of same length lists of digits and returning a list of

digits.


 encrypt:(num list,num list) → num list


 decrypt:(num list,num list) → num list

The encryption is performed by a modulo10 addition, digit by digit, of the list repre-

senting the encoded message and the list of digits representing the one-time pad key.

The result of this operation is a ciphertext which is also represented by a list of digits.

On the receiver side, the ciphertext is decrypted by subtracting, modulo10, the key

from ciphertext, resulting into a list of numbers that represent the original message.

In the case where the plaintext is encoded into bits instead of digits, both encryption
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and decryption are performed by a simple XOR operation. We formalize encrypt in

higher-order logic, recursively. h1 and h2 represent the first elements or heads of the

lists and t1 and t2 their tails. The :: operator is the list constructor.


 encrypt ([],[]) = [] ∧
∀t1 t2 h1 h2.

encrypt (h1::t1,h2::t2) =

(h1+h2) MOD 10::encrypt (t1,t2)

Similarly, we formalize the decryption block as follows.


 decrypt ([],[]) = [] ∧
∀t1 t2 h1 h2.

decrypt (h1::t1,h2::t2) =

(h1-h2) MOD 10::decrypt (t1,t2)

Finally, let m be the original message (plaintext), k be the one-time pad key and r

be the received message after decryption and decoding. The one-time pad (OTP)

encryption is then formalized in HOL using the following predicate.


 ∀ m k r.

OTP m k r ⇔
r = decode(decrypt(encrypt(encode m,k),k))

As a reassuring property, we prove in HOL that the one-time pad as designed and

formalized above, ensures that the received message is equal to the original message.


 ∀ m k r. OTP m k r ⇒ (r = m)
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5.3.3 Perfect Security

We formally verify that the one-time pad provides perfect security by proving that

the information leakage degree, formalized in Chapter 4 Section 4.3, is equal to one.

Let M,C and K denote the random variables representing the plaintext, cipher-

text and keys, respectively. Hence, K is uniformly distributed and is independent of

M , which allows us to prove that


 ∀ m ∈ M, c ∈ C.
P(M = m | C = c) = P(M = m)

This follows from the following lemmas, which we prove using the properties we for-

mally proved in Chapter 4 about probability distributions.


 P(M = m | C = c) = P(M = m, C = c) / P(C = c)


 P(M = m, C = c) = P(M = m, K = m ⊕ c)


 P(M = m, K = m ⊕ c) = P(M = m) P(K = m ⊕ c)


 P(K = m ⊕ c) = 2−n


 P(C = c) = 2−n

Next, we prove that the conditional entropy of M given C is equal to the entropy of

M and that the mutual information I(M ;C) is equal to zero.


 H(M|C) = H(M)


 I(M;C) = 0

Finally, it follows that the information leakage degree is equal to 1, meaning that the

one-time pad encryption is information-theoretically secure and there is no leakage of

information about the secret input (plaintext) to a possible eavesdropper.


 D(M,C) = 1
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5.3.4 Discussions

In this application, we were able to formally prove the perfect security property of the

OTP encryption system thanks to the various properties of probability distributions

presented in Section 4.1 of Chapter 4 as well as the properties of the Shannon entropy

and mutual information from Section 4.2 of the same Chapter. Theorem proving

allows to provide a generic result that does not depend on which message has been

encrypted, unlike the kind of results produced by computer simulation. If fact, simu-

lation can be used to detect the presence of bugs but is not useful to guarantee their

absence. The formalization of the different components of the OTP as well as the

proof of its security property required around two weeks of human effort and around

800 lines of code.

5.4 Summary and Discussions

In this chapter, we have verified some classical results of probability theory, namely,

the Shebyshev and Markov inequalities and the Weak Law of Large Numbers. We used

these results to formally verify the Asymptotic Equipartition Property, an important

property used in the proofs of numerous information-theoretic theorems. We use

the AEP to verify the properties of a typical encoder that is used in the formal

proof of the Shannon source coding theorem. We have also presented two example

applications of the use of quantitative analysis within a theorem prover to analyse

the properties of an anonymity-based MIX channel as well as the properties of the

one-time pad encryption. In the first example, we were able to detect a problem

and come up with a counter-example to a result that was reported in a prominent

paper [68]. In the second example, we were able to formalize the encryption system,
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verify its functionality as well as prove a generic result about its perfect security. The

soundness and the deduction style of the theorem prover guarantee the validity of the

analysis when deriving these proofs. Besides, the results of this type of analysis are

generic and valid for any instance of the system. We argue that these benefits are

even more significant when dealing with larger and more complex systems as is the

case for nowadays parallel and distributed systems.

These applications illustrate how our formalization of information theory and

the different underlying theories of measure, Lebesgue integration and probability,

can be used to reason about a multitude of engineering applications. Conducting the

analysis within the sound core of a theorem prover helped to add more trust to the

proved results. It allowed to detect a bug in the paper-and-pencil analysis of the MIX

channel example. While the formalization of the different theories required more than

20,000 lines of code, the applications of this chapter have only required around 800

lines of code, on average. Still, a considerable effort by the user is still needed to

conduct the analysis.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have proposed to conduct the information-theoretic analysis of sys-

tems and protocols using a higher-order-logic theorem prover. To do so, we proposed

a formal framework of all the tools needed to describe the system under consideration

and its desired properties in a formal language that can be used within the theorem

prover and make it possible to formally analyze these properties. Compared to the

standard techniques of computer simulation and paper-and-pencil analysis, our ap-

proach allows to exploit the soundness of theorem proving to deliver more accurate

and trusted results. It also allows to provide generic results instead of proving the

properties for specific instances of the system.

The framework we provided consists in a higher-order-logic formalization of the

main concepts of information theory along with the formalization of the underlying

theories of measure, Lebesgue integration and probability. We formalized the most

commonly used measures of information starting with the KL divergence which we

used to define the other measures like the Shannon entropy and mutual information.
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This provides the tools necessary to perform the quantitative analysis of information

for various applications like the evaluation of performance of various anonymity and

security protocols.

We provided generalized formalizations of measure and Lebesgue integration

which are based on the extended-real numbers and the Borel sigma algebras. Using

this, we formalized the main concepts of probability and verified a number of classical

results. The way these theories have been formalized, allows to work with discrete and

continuous random variables in a unified framework where the properties are valid for

both cases. We then provided simplifications of the theorems in the cases of finite or

countable spaces.

While we built on previous research for the different theories, to the best of

our knowledge, our work provides the most generalized formalizations as has been

discussed in the previous chapters. Furthermore, we introduced, in this thesis, two

novel measures of information leakage that can be used, for instance, in the evaluation

of anonymity and privacy protocols. Our work has been accepted to be part of the

official release of the HOL4 theorem prover, but it can also be adopted for any other

higher-order-logic theorem prover.

Finally, we illustrated the usefulness of our approach and formal framework by

tackling several applications in the areas of communication, anonymity and privacy.

We proved the properties of a typical encoder used in the proof of the Shannon source

coding theorem. We also analyzed an anonymity based single MIX that was proposed

in the prominent paper of Zhu and Bettati [68]. We were able to find an error in the

paper-and-pencil analysis presented in the paper thanks to the soundness of theorem

proving. We offered a counter-example to the result proposed in [68] to confirm our
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analysis. Finally, we used our framework to formally prove the perfect security prop-

erty of the one-time pad encryption. These applications highlight the feasibility and

benefits of conducting the information-theoretic analysis using a higher-order-logic

theorem prover. In fact, the added trust provided by the deduction style of theorem

proving, is a crucial requirement when dealing with safety-critical applications. An-

other benefit of this approach is the generic results that are guaranteed to be valid

for every single instance of the system. These benefits are even more significant for

larger and more complex systems.

6.2 Future Work

Information theory has been an important basis for the analysis of a wide range

of applications, especially in the fields of communication and cryptography. This

thesis lays the ground to a promising approach for the information-theoretic analysis

of safety-critical applications. Building on the formalization and verification results

presented in this thesis, several extensions can be explored to further strengthen the

proposed framework. Some future research directions are outlined below.

• While using the extended-real numbers made it possible to provide a more gen-

eralized formalization of measure and Lebesgue integration, it added some com-

plexity to the proofs. It is possible to simplify these proofs by creating a simpli-

fication set ext_ss which contains the most used theorems of the extended-real

numbers theory, especially the various properties of the operators. Creating

tactics and decision procedures for this purpose is also an interesting extension

that needs to be explored.
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• The probability density function (PDF) is defined as the Radon Nikodym deriva-

tive of the cumulative distribution function with respect to the probability mea-

sure. Formalizing the PDF allows to analyze the class of systems that can be

described by standard continuous distributions such as the normal distribution.

The latter can be used to model a wide class of systems due to the central limit

theorem. A formal proof of this theorem can also be an interesting extension

to the formalization developed in this thesis. Finally, formalizing the PDF al-

lows to write the statistical properties of random variables, like the expectation,

in terms of the density function and hence can be useful in the evaluation of

continuous systems.

• The definition of the Borel sigma algebra is based on the open sets which can be

used to define the Lebesgue integral for functions ranging over Euclidian spaces.

On the other hand, our formalization is general enough to handle functions of

multiple variables. The integral of these functions is what is called the multiple

integral. The formalization can be enriched by proving the properties of multiple

integrals such as under which conditions it is possible to change the order of the

integrals, which can be useful in many cases to simplify the computation of the

multiple integral.

• Our formalization can also be enriched by porting some of the concepts that

have been developed by Abbasi [1] to perform the reliability analysis of engi-

neering systems. We believe that our formalization of probability is more suited

to conduct this analysis since it allows to prove the general properties of the

system regardless of which probability distribution is used. The unified frame-

work for discrete and continuous random variables is another advantage of this

porting. More importantly, our formalization does not require the independence
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of random variables and hence can be used to analyse a larger class of systems.

• Crowds [54] and Tor [20] are two of the main solutions proposed to provide

anonymity in communication networks. The evaluation of the performance of

these networks is an interesting application of the approach proposed in this

thesis. The measures of information leakage proposed in this thesis can be

used to quantify the leakage of information for different configuration of these

networks. Conducting the analysis using theorem proving provides accurate

analysis and generic results.

• Building on the data compression application, jointly typical sets and the notion

of communication channel and codes can be formalized allowing to prove the

Shannon channel coding theorem as well as other coding theorems. This will

constitutes an important step to formalize digital communication systems and

evaluate their performances.

• A mix network [59] consists of several interconnected stages or single mixes.

the interconnection of the stages determines the network topology. The single

mix application of this thesis can be extended by formalizing mix networks

as well as the basic attacks and adversary models in the networks. This will

allow to reason about several real-world applications like electronic voting and

anonymous email and telecommunications.
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