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Abstract

Sliding Mode Fault Tolerant Reconfigurable Control against Aircraft Control Surface

Failures

Tao Wang, Ph.D.

Concordia University, 2012

Operational failure of control surfaces is one of the main reasons leading to aircraft crash.

Since the conventional control methodologies are not adequate to accommodate such failures,

fault tolerant control (FTC) is required for safety critical system. The invariance property and

unique synthesization procedure of sliding mode control (SMC) make it one of the most competitive

candidates for FTC. In this thesis, SMC-based FTC methods for nonlinear systems are developed

to handle both partial loss faults and total failures in the control surfaces. The first SMC-based

FTC is developed to accommodate both modeling uncertainty and uncertainty incurred by the

faults. Different design parameters are utilized to deal with the uncertainty incurred by fault and

that due to modeling errors respectively in the SMC design. Direct adaptive control is combined

into such a SMC to alleviate the requirement of the a priori knowledge of the uncertainty bounds.

The second SMC-based FTC is developed to redistribute the control effort between faulty regular

actuator and redundant actuator autonomously based on effectiveness of the regular actuators. The

tolerability of the developed controller is characterized by the amount of fault that controller can

deal with. It is used as the threshold to activate the redundant actuator when the regular actuator

cannot accommodate the fault alone. In order to obtain the effectiveness of the actuator, special

sensors or fault detection and diagnosis (FDD) schemes are required. Special sensors are costly and

additional design of the system is required. Using FDD, during the period from the moment when

fault occurred to that when the effectiveness information can be obtained, the system is under the

danger of losing control. The third SMC-based FTC without a dedicated FDD is developed based

on the absolute value quantity of switching surface. The control effort is redistributed to regular

and redundant actuator autonomously by monitoring the absolute value of the sliding surface. The

validity of the proposed algorithms is verified on a high fidelity model of Boeing 747-100/200.
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Chapter 1

Introduction

Fault tolerant control attracts more and more attention of researchers from academic community

and industry recently, because of the increasing demand for safety critical system and complex

autonomous system, such as, aircraft, nuclear reactor, satellite, autonomous unmanned aerial

vehicle (UAV)/unmanned ground vehicle (UGV)/unmanned underwater vehicle (UUV), and etc.

This thesis focuses on fault tolerant control of aircraft with faults in actuators. In order to clarify

the concepts utilized in this thesis, the definition of faults and failures are cited here firstly. Then

the motivation of this thesis is elaborated and the problem is stated. Finally the contribution is

summarized and the structure of this thesis is outlined.

1.1 Definition of Faults and Failures

A standard of the terminology in fault detect and diagnosis (FDD) and fault tolerate control (FTC)

fields has been drawn up by IFAC SAFEPROCESS technical committee to avoid ambiguity among

researchers [Chen and Patton, 1999; Isermann and Balle, 1997]. Definitions of faults and failures

are cited here in the following:

Fault: An unpermitted deviation of at least one characteristic property or parameter of the system

from the acceptable/usual/standard condition.

Failure: A permanent interruption of a system’s ability to perform a required function under

specified operating conditions.
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The above definitions make difference between faults and failures: a failure means complete

breakdown of a function while a fault means partial loss of effectiveness of a function. As for

a fault occurring on an actuator, the actuator can still contribute to the controlled system but

may have a slower response or become less effective. But when a failure occurs on an actuator, a

redundant actuator is needed to be able to generate the same desired effect.

1.2 Motivation

Along with the evolution of computer, sensor and control technology, it is possible not only to release

human being from repeated mechanical labor, but also to free people from onerous brainwork, and

even more to realize the dream of man for complicated tasks out of the reaching range of human’s

physical and mental limit. This stimulates the evolution from automatic machines to more and more

intelligent and autonomous systems. In the control field, the theory and practice are evolved from

not only to reject disturbance and suppress noise, but also to be robust to parameter uncertainty,

and even more to be tolerant with changing dynamics due to contingent events, such as faults and

failures in sensors, actuators or system structure.

On the other hand, avoidance of harm to human and damage of property is upmost for the safety

critical systems, i.e. there must be some mechanism that can detect faults and failures and trigger

the alarm. The faults and failures are kinds of contingent events in the system that mostly change

the system dynamics and disable the normal controller, which may lead to catastrophe if they

are not dealt with in time and properly. The industrial and academia have developed techniques

to detect and isolate such contingent events in systems in the past 40 years. The information

about these contingent events is used to activate an emergence response system. Such emergence

response system mostly is monitored or processed by human being. To process these events in time

and properly in complicated systems, such as aircrafts, satellite, nuclear power plants and robotic

systems, is beyond the reaction capability of human being. In this kind of situation, considering

these events in the controller design becomes more and more important, which is the newly emerging

control architecture: fault tolerant control.

One of the main reasons leading to loss of control of aircraft is the operational failure in the
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actuators, the control surfaces, such as elevators, ailerons and rudders. On February 16, 2000, a

McDonnell Douglas DC-8-71F lost its pitch control (elevator) on takeoff, resulting in a crash and

destruction of the airplane and death of three flight crew members [FSS-2000, 2006]. Another air

crash due to failure in elevator occurs on January 8, 2003, which killed all 19 passengers and 2 pilots

aboard on an airplane Beechcraft 1900D operating as US Airways Express Flight 5481 [Wikepedia,

2006]. On September 8, 1994, a fault in the Boeing 737 rudder killed all 133 people on board

of USAir Flight 427 [Wikipedia, 2012]. Flight simulation systems LLC made a list of faults and

failures occurred in the flight control system from 1970 to 2006, many of which are due to faults

and failures in control surfaces [FSS, 2006].

An ideal way of fault tolerant control is to combine the technologies developed in fault detection

and identification fields (provide dynamics model of the faulty system), and the model-based control

methods (reconfigure the controller online).

Similar to adaptive control method developed in process control system, the changing of the

parameters (for FTC, the changing parameters induced by faults and failures) must be slow enough

to let identification mechanism identify the system dynamics model (for FTC, rebuild the model

of the faulty system), i.e., there must be abundant excitation to the changing dynamics of the

system with updating so that a new controller can be synthesized online based on the identified

system model and the stability of the system is guaranteed. This is why adaptive control is only

suitable for the systems whose parameters are time invariant but unknown, or the changing of the

parameters is very slow.

For the accidental events such as fault and failure, the change of the dynamics may be very

fast and is unpredictable while the computation of the dedicated FDD is time consuming. Before

such an FTC, which depends heavily on a reliable faulty system model generated by FDD, will be

activated, the system may be in the danger of losing its stability. Fig. 1.1 shows the time history

of such FTC [Zhang and Jiang, 2006], in which tF stands for the time instant at which the fault

occurs; tD stands for time instant when the fault is detected; tR stands for the time instant when the

reconfigurable control has been synthesized; and tC is the time instant after which all the transients

due to the fault and the control system reconfiguration have settled down and a new steady-state

has been reached, and the system enters the post-fault interval. After fault occurrence and before

a reconfigured controller based on the faulty system model has been built, the system has been

3



operated in a “bad” condition since the system is in a faulty condition but the feedback control

designed for normal condition is still in action which provides inappropriate closed-loop control

action to the system because of the system-controller mismatch. Performance and stability of the

closed-loop system during this time period is mainly dependent on the severity of the fault and the

fault tolerance of the nominal controller. The system may even become or tend to become unstable,

as shown in the dash-line in Fig. 1.1. In other words, during the period of tF and tR the system

is to some extent out of control, or lose of control. This is not tolerable even to FDD module,

since if the system goes unstable, it is hard or impossible for the FDD module to collect correct

information for generating a reliable faulty system model. Hence, FTC must have the capability

to keep the faulty system stable at least before the faulty model can be identified and the better

FTC based on the faulty model can be put in effect.

Figure 1.1: Three intervals in FTCS (adopted from [Zhang and Jiang, 2006])

Another method that can be borrowed here from the control field, is robust control which has

gained more and more attention both in theory and practice recently. It is well-known that there

is always difference or error between the model and the real physical system, i.e. there exists

uncertainty in system model. The robust control considers this uncertainty in the synthesis of
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controller. A robust controller can be designed when the information of the uncertainty is available

in statistical meaning. There is a trade-off with performance depending on how we simplify the

model, i.e., how much we know the system or how much uncertainty the system will be assumed

to have. In this sense, the uncertainty of system model is ‘known’ in statistical meaning. For some

kinds of faults, like partial loss fault, robust control method can tolerate them in some extent and is

called passive fault tolerant control (PFTC) compared with the above mentioned FDD-based FTC

which is named as active FTC (AFTC). However, fault and failure in nature are contingent events

for the system, and they are different from the system model uncertainty, i.e. it is ‘unknown’ even

in statistical sense. These kinds of accidental events change the system dynamics greatly so that

no a priori knowledge on the faults and failures will be available for the designer of the controller.

It is clear here, fault should be dealt with differently from the normal system modeling uncertainty.

In another aspect, the aircraft system is expected to operate normally all the time, while faults

are unexpected events with small probability. One of the problems in PFTC is that it degrades

the performance of normal healthy system significantly if trade-off is made to accommodate more

faults. Hence, it is better to deal with faults and modeling error respectively.

From the above analysis, we can draw the conclusion that AFTC based on FDD has the problem

of delay in building FTC based on new faulty model from FDD while PFTC based on robust control

method has the problem of only dealing with partial loss fault in some extent. In this thesis, new

FTCs that can deal with faults as well as failures without the delay of time in finding the faulty

system model and without significant degradation of normal controller, are developed.

1.3 Statement of the Problem

From the above motivation, the objective of this thesis is to develop a controller that can stabilize

the system when there are faults or failures in the actuators. In particular, this thesis focuses on

developing fault tolerant controllers that can tolerate partial loss faults and total failures in real

time without degrading the performance of normal controller.

The development of such controllers is carried out in three aspects. The first aspect is to

investigate the method on how to separate the modeling uncertainty and faults in the controller

design. This is based on the consideration of effectiveness of the controller where fault tolerance
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should not sacrifice the performance of the normal controller.

The second aspect is to define tolerability and use this information in developing reconfigurable

controllers that can fully utilize the regular actuators in accommodating significant faults and total

failures.

The third aspect is to develop fast responding FTC that can tolerate both faults and failures

without delay of time in finding the faulty system model. To deal with the fast changing dynamics

due to faults and failures, a feasible way is to extract the changing dynamic mode directly from the

sensor data, e.g., model-free control [Han, 1994; Sipahi, 2012] and sensor-data driven control (like

multi-scale wavelet control [Parvez, 2003; Cimino and Prabhakar, 2012]). The common problem of

these methods is that it is hard to prove the stability in theory. In this thesis, change in sliding mode

surface is used as the index to faults and failures occurrence, and a sliding mode reconfigurable

fault tolerant controller is developed based on it. The stability of the proposed controller is proved.

1.4 Contributions

Although faults can be considered as a kind of uncertainty, it is different from modeling uncertainty.

The modeling uncertainty is statistically known in the design period of the controller, i.e. it can be

estimated a priori. It can also be interactive with the design of the system with consideration of

the system performance and cost. Whereas, the fault is an contingent event which occurs in small

probability. In order to tolerate such a fault, the normal control performance has to be sacrificed

greatly which is ineffective and costly. So it is cost effective to deal with modeling uncertainty

and fault separately. The first contribution of this thesis work is the separation of modeling

uncertainty and fault in controller design. Extra design parameters are introduced in the sliding

mode control (SMC), which make separation between the dealing with modeling uncertainties and

faults naturally.

In the above partial loss fault tolerant control, the uncertainty bound of the fault must be

assumed to be known in the controller design. This constrains the fault tolerant controller’s

tolerance to only the ‘assigned’ partial loss fault. The second contribution of this thesis lies in

combining adaptive mechanism into the above SMC strategy that separates the modeling uncertainty

and fault so that SMC has the capability to tolerate varied magnitude partial loss fault without
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sacrificing the normal healthy system performance [Wang et al., 2010a, 2012a].

In the sliding mode partial loss fault tolerant control, it is assumed that the actuator still can

stabilize the system with acceptable performance when there are partial faults in the actuators. If

the faults are more significant than what the regular actuators can tolerate, a functionally redundant

actuator must be activated to work together with the regular actuator to stabilize the system. Here

a key concept has to be defined: tolerability, i.e. how we know if the regular actuators can tolerate

the faults by itself or not. In this thesis, tolerability is defined in the context of SMC design on

regular actuator which comes to the third contribution of the thesis. Since it is difficult to get

the analytical representation of tolerability, off-line simulation of tolerability has been implemented

within the architecture of SMC in this thesis. Once the knowledge of the tolerability of SMC

is obtained, i.e. how much fault the actuator can deal with solely without significant lose of

performance, the design of reconfigurable control is quantitatively indexed. The control effort will

be reconfigured among the faulty regular actuators and redundant actuators when the faulty regular

actuators cannot tolerate the fault by themselves.

With the information of tolerability of the regular actuator under SMC, and the effectiveness of

actuator obtained from special sensors or an FDD scheme, a reconfigurable controller is implemented

as the fourth contribution of this thesis. With this method, the reconfiguration of the control effort

is autonomous between the regular and redundant actuators when the regular actuators cannot

accommodate the faults solely. The reconfiguration is not simply a switch between the regular

and redundant actuators, but a seamless integration of them [Wang et al., 2010b, 2012b]. When

the regular actuator cannot accommodate the fault but still can contribute to the control of the

system, we use it to work with the redundant actuators together to stabilize the system instead of

discarding it. This is a cost effective way of designing reconfigurable controller, since the redundant

actuator is not designed to have the feature of regular actuator, for example, the stabilizer as the

redundant actuator for elevator is slower than the elevator in response.

Although the above reconfigurable control is effective and economic, it is hard to get the

information of effectiveness. There are two methods to get information of effectiveness: FDD

or special sensors. For the special sensors, it will be costly to redesign the system with such special

sensors. FDD is time consuming and may trigger wrong alarm because of the measurement noise and

uncertainty in the dynamic model. Another problem with FDD is that it needs abundant excitation
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to extract the change in the dynamics of the system. Finally, FDD can only work out the change

in a stable system dynamics while the fault or failure may lead to an irrational unstable system

due to the inappropriately designed controller which is designed for normal situation. So before a

better FTC based on the information from FDD can be built, some control must be put into action

to stabilize the system. The sliding function (some literatures call switching function, or switching

manifold) in SMC is a kind of index to the changes of the system dynamics. It can be used as the

indicator of faults and failures. As the fifth contribution of this thesis, a new reconfigurable control

method based on sliding function without a dedicated FDD is proposed [Wang et al., 2010c, 2012c].

Though there is some performance degradation, this method can stabilize the system. Because

the sliding function is the combination of error signals which can be obtained in real time, the

reconfiguration is also carried out in real time. The control structure does not change and there is

no delay in ‘finding’ the faults and failures, so the reconfiguration is autonomous. As the redundant

actuator is seamlessly integrated into the controller, this method can deal with not only partial loss

fault but also total failures in regular actuators without redesigning the controller. The theoretical

stability analysis is given and the simulation on FTLAB747 shows the effectiveness of this method.

In summary, the contributions of this dissertation are as the following:

1. Separate the modeling uncertainty and the fault in sliding mode controller design.

2. Develop an adaptive mechanism in the SMC strategy that separate the modeling uncertainty

and fault.

3. Define tolerability in the context of SMC design on regular actuator.

4. Develop a reconfigurable controller using the information of the effectiveness of the regular

actuators that can deal with not only partial loss fault but also failures in the regular

actuators.

5. Develop a reconfigurable controller without a dedicated FDD mechanism.
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1.5 Outline of the Thesis

Chapter 2 gives the literature review of the recent work in the field of FTC and specially in the

sliding mode FTC. In this chapter, modeling of faults and failures and basic knowledge of FTC

are introduced as well as the literature review on different methods of FTC. Also this chapter

summarizes the features of SMC, how to design SMC for SISO system and MIMO system, and how

it is used in FTC as well as the literature review of sliding mode FTC.

Chapter 3 introduces the simulation package FTLAB747 and three models of Boeing 747-100/200:

one high fidelity model based on coefficients obtained from the wind tunnel test which is used

in the simulation package FTLAB747; one nonlinear longitudinal model of Boeing 747-100/200

which is used in the derivation of the third model; one fitted nonlinear longitudinal model of

Boeing 747-100/200 derived from the nonlinear longitudinal model is used for the controller design.

Modeling of faults, failures and faulty system are also introduced in this chapter.

Chapter 4 compares uncertainty and fault. Two important features of control systems are

investigated: i.e. the robustness dealing with uncertainty and the tolerability dealing with fault

and failure. The tolerability of SMC is analyzed and simulated.

In Chapter 5, a sliding mode controller with two sets of design parameters that can deal with

system modeling uncertainty and fault respectively is developed. Adaptive version of this kind

of sliding fault tolerant control is also developed without using a priori knowledge of the system

bound.

In Chapter 6, a reconfigurable FTC based on SMC using information of effectiveness of regular

actuators is developed. The tolerability of SMC is used in the controller design to make the control

system more energy efficient.

In Chapter 7, a sliding mode reconfigurable FTC utilizing sliding surface as the fault indicator

is developed. A dedicated FDD is not required in this control strategy, which makes the system

can respond to faults and failures instantly.

Finally, a conclusion and the future works are presented in Chapter 8.
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Chapter 2

Literature Review

This chapter summarizes the basic knowledge of FTC and SMC, and reviews the literature on

FTC and specially on sliding mode FTC. The first section of this chapter introduces the basic

knowledge of FTC and reviews relevant works in this field published in the literature. The second

section briefly introduces SMC in the following aspects: what are SMC and sliding surface, the

reachability condition, the chattering problem of SMC, the design of SMC for affine SISO and

MIMO nonlinear systems. In the third section, the works on FTC with SMC are reviewed and

discussed. The last section gives a summary of literature review.

2.1 Fault Tolerant Control (FTC) Techniques

Fault tolerant control systems (FTCS) are control systems that can accommodate faults and failures

in sensors, actuators or system struture automatically. They can maintain overall system stability

and acceptable performance when there are faults or failures in the system. FTCS were also known

as self-repairing, reconfigurable, restructurable, or self designing control systems [Zhang and Jiang,

2008].

There is a lot of literature on FTC. The works in [Stengel, 1991; Blanke et al., 1997; Patton,

1997; Jones, 2003; Zhang and Jiang, 2003b, 2008] are some widely referred surveys in this field.

Some published books are [Mahmoud et al., 2003; Blanke et al., 2003; Ducard, 2009; Noura et al.,

2009; Yang et al., 2010; Edwards et al., 2010b; Alwi et al., 2011]. In terms of the model used in the
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control design as linear or nonlinear, FTCS can be classified in two different groups, linear FTCS

(LFTCS) dealing with linear models or nonlinear FTCS (NFTCS) dealing with nonlinear models.

Most of the literatures deal with LFTCS [Zhang and Jiang, 2008]. A review on NFTCS can be

found in [Benosman, 2010].

In general, FTCS can be classified into two types according to its synthesization method: passive

FTCS (PFTCS) and active FTCS (AFTCS) [Patton, 1997; Blanke et al., 2003; Zhang and Jiang,

2008]. In passive fault tolerant control, controllers are fixed and are designed to be robust against a

class of presumed faults and uncertainty [Eterno et al., 1985]. In contrast to passive fault tolerant

control, active fault tolerant control reacts to the system faults actively by reconfiguring control

actions based on the information from FDD scheme. A comprehensive review of AFTCS is presented

in [Zhang and Jiang, 2008]. The paper gives various classification of AFTCS according to different

criteria such as design methodologies and applications, and discusses open problems and current

research topics in AFTCS. Figure 2.1 presents a general structure of AFTCS. The lightening arrows

show where fault and failure may occur (actuators, sensors and system). The command governor

block plans and manages the desired trajectory of the controlled outputs; the FDD block detects and

identifies the faults and failures in the system; and reconfiguration mechanism block reconfigures

new feedforward and feedback controller with the information from FDD.

AFTCS depends on online knowledge of faults from FDD. FDD utilizes analytical redundancy

as a cheaper way in contrast to physical redundancy for fault tolerance. Analytical redundancy

means an explicit mathematical model of the system is used for fault detection, identification and

recovery/reconfiguration (FDIR). The faults are diagnosed by using the information included in

the model and in the online measurements. However, due to the measurement noise, external

disturbances and model uncertainties, FDD may falsely alarm. Another problem with AFTCS is

the time delay in FDD and control reconfiguration. The FDD must search for a judge from the

noisy measures affected by external disturbances and model uncertainties. Also, the controller

redesign block needs time to design/search for a new controller according to the faults information.

PFTCS has the drawbacks that it is reliable only for the class of faults taken into account in the

design of the PFTCS. Furthermore, the performance of the closed-loop system is not optimized for

each fault scenario. However, it has the advantage to avoid the time delay due to online diagnosis

of the faults and reconfiguration of the controller, as required in AFTCS [Zhang and Jiang, 2006].
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Figure 2.1: General structure of AFTCS (adopted from [Zhang and Jiang, 2008])

In practical applications, PFTCS is a complement of AFTCS. Indeed, PFTCS are necessary during

the fault detection and estimation phases [Zhang et al., 2004], where PFTCS is used to ensure the

stability of the faulty system, before switching to AFTCS. Another scenario where PFTCS is used

as a complement of AFTCS is in the switching-based AFTCS, where the AFTCS switches between

different PFTCS, each controller being designed off-line to cope with a finite number of expected

faults and stored in a controller bank [Ingimundarson and Sáncheze Peña, 2008].

PFTCS is usually based on robust control ideas and therefore robustly handles faults/failures

without requiring any information from any FDD scheme [Chen and Patton, 1999; Yang and

Stoustrup, 2000]. AFTCS in general requires explicit information of the occurred faults/failures

and therefore some mechanism of FDD is required. AFTCS can be divided into two sub-groups:

projection type FTC and online reconfiguration/adaptation. In projection based FTC, the controller

is designed for all possible faults/failures that might occur in the system. The projected controller

will only be activated when certain fault/failure occurs. Projection based FTC is subdivided

into three categories which are model switching or blending, scheduling and prediction. Online

reconfiguration/adaptation AFTCS is based on reconfiguration (redistributing the control signals

or reallocating control efforts) or adaption online. Some different FTC strategies are summarized
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in the following subsections.

2.1.1 Multiple Models Switching and Tuning (MMST) and Interactive Multiple

Model (IMM)

The natural way of expanding linear control method to FTC is the using of multiple linear models.

There are two ways to use multiple models. One is MMST [Bošković and Mehra, 1998; Gopinathan

et al., 1998; Jones, 2003; Narendra and Balakrishnan, 1997; Narendra et al., 2003], the other is IMM.

Multiple model schemes were initially proposed to deal with the changes in operating conditions

and varying flight envelopes.

Figure 2.2: MMST control strategy (adopted from [Narendra et al., 2003])
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For a chosen operating condition or a certain fault, as shown in Figure 2.2, a single model and

controller will be chosen based on the error between the current system and the predesigned model

in the MMST method. Although this method is based on well known linear control methods, it may

be tedious to implement it. In order to deal with all possible types of faults and failures, enormous

number of models and controllers are needed to be designed and tuned. The switching between

models and controllers, sometimes may introduce undesired transients. Another disadvantage is

that this method depends on the robustness of the FDD to identify the correct model. And it

cannot deal with multiple faults/failures [Jones, 2003].

IMM method builds a few linear models based on a few carefully chosen flight conditions and

design linear controllers at these selected operating conditions (or faults/failures). The estimated

plant output or control input is obtained by blending the predetermined models when the operating

conditions change or faults/failures occur as shown in Figure 2.3. In IMM, it is assumed that

every possible flight condition including faults/failures can be modeled as a convex combination

of the predetermined linear models. An IMM estimator detects and isolates the faults/failures by

obtaining an estimate of the plant output from a blend of predefined linear models and provides

a probability weight for the controller reconfiguration. The control signal is synthesized based

on a blend of predefined controllers [Zhang and Jiang, 2001] or online control law calculations

using the probability weight provided by the IMM estimator. One problem of IMM schemes is

finding the right balance of blending/probability weights to get the best model match. IMM is also

heavily dependent on the embedded IMM estimator based FDD scheme to correctly identify the

faults/failures.

2.1.2 Gain Scheduling and Linear Parameter Varying (LPV) Approaches

Gain scheduling is a kind of ‘divide and conquer’ design procedure [Leith and Leithead, 2000].

It decomposes the nonlinear system into a family of linear systems and design a linear controller

for each one of them. MMST and IMM are particular types of gain scheduling according to this

definition. Gain scheduling means scheduling of linear models and its associated controllers either

by parameters or states to deal with nonlinear control problems resulting from a change in the

operating conditions and flight envelope. Gain scheduling is also based on precalculated control

laws. In some flight conditions, the controller structure does not need to be changed. Only the
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Figure 2.3: IMM control strategy (adopted from [Zhang and Jiang, 2001])
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gains of the controller need to be changed according to the flight conditions or the faults/failures

conditions. Predefined gains are chosen for specific flight conditions or specific parameters. This

can be presented in the form of a simple logic switch between two gains, or more commonly through

the use of lookup tables or curve fitting [Balas, 2002]. Gain scheduling is easily to be understood

and implemented. However, when the faults/failures are significant, the structure of the nominal

controllers may be incapable of coping with them. In this case, gain scheduling is insufficient and

controller reconfiguration is required.

Another gain scheduling type of controller is linear parameter varying (LPV) control [Leith and

Leithead, 2000]. In such a control strategy, LPV model is built as a smooth semi-linear model that

varies with a parameter like altitude and/or speed. Instead of combining predefined linear models,

the LPV model changes with some non-state parameters [Ganguli et al., 2002]:

ẋ(t) = A(p)x(t) +B(p)u(t) (2.1)

y(t) = C(p)x(t) +D(p)u(t) (2.2)

where p is the varying parameter e.g. speed or altitude. If p is a constant, then the LPV

system becomes a linear time invariant (LTI) system [Ganguli et al., 2002]. LPV provides some

guarantees of stability and performance when compared to classical gain scheduling. Controller

synthesization for LPV model is unique and it is different from controller design for linear model

and nonlinear model [Scherer, 2012]. Compared with linear model based methods, LPV-based

controllers synthesization do not need to be designed on many models of different operation point,

since LPV is a smooth continuous model instead of switch of multi-models. Some general literature

on LPV are [Balas, 2002; Wu, 2001]. How to design the controller for LPV models is still a research

topic [Scherer, 2012]. In the field of FTC, papers such as [Ganguli et al., 2002; Marcos et al., 2005;

Rodrigues et al., 2007] represent some of the research work in this area.

Gain scheduling and LPV methods in FTC also depend heavily on reliable faulty system model

from FDD.

2.1.3 Model Predictive Control (MPC)

Unlike many other control paradigms which came from the academic community, the development

of predictive control/model predictive control (MPC) was initiated in the process industry. This is
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due to the fact that the concept and the mathematical description of MPC is easy to understand

by most control engineers in industry. Therefore it is not surprise that MPC is the most widely

applied method in the process control industry [Maciejowski, 2002] besides classical PID controller.

The original idea for MPC is to allow the production process to run as close as possible to the

process limits without violating any of the limits, in order to maximize production and therefore

profit. The main benefit of MPC is in the handling of limits and constraints. This is the main

motivation for the study of MPC for flight control and especially FTC. Examples of MPC in the

field of flight control and FTC can be found in [Magni et al., 1997; Maciejowski and Jones, 2003;

Jones, 2003; Abdolhosseini et al., 2012]. Because of its synthesization method, MPC has the ability

to handle the actuator limits by including these limits in the optimization process which is used to

obtain the control signals.

Generally speaking, MPC is an iterative control algorithm based on optimal control. The

iteration can be summarized as follows: at the current time, the current plant states are sampled

and a cost minimizing strategy (using on-line optimal control and taking into account the system

constraints) is computed for a relatively short time horizon into the future. The objective is to

obtain predicted state trajectories in the future using the current states and the computed control

signals. Only the first control signal from the optimization is applied to the real actuators. When

new samples of system states are obtained, the calculations of the next controls are repeated. MPC

is also known as receding horizon control [Maciejowski, 2002; Magni et al., 1997]. Figure 2.4 is the

structure of MPC.

Figure 2.4: MPC control strategy (adopted from [Sánche and Rodellar, 1996])
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The driver block/reference model generates the desired output based on the physical feasibility

and desired dynamics. The predictive model block generates the control signals that force the

output of the plant to follow the desired outputs using previous inputs and outputs of the plant

[Sánche and Rodellar, 1996]. The optimization can be solved using quadratic programming or fast

linear programming algorithms [Maciejowski, 2002]. Surely, MPC method in FTC also needs fault

information from FDD in the optimization.

2.1.4 Adaptive FTC

One way of dealing with changes in the system (such as load variation, disturbance, accident

events like faults/failures) is adaptive mechanism. Motivated by the design of autopilots for high

performance aircraft in the 1950s, adaptive control was proposed as a way of dealing with a wide

range of flight conditions [Slotine and Li, 1991]. Adaptive control is used in order to automatically

adjust the controller parameters to keep the desired performance when the system changes in

parameters or structure.

Adaptive control theory shows that it is efficient, stable and even robust for systems with slow

varying parameters [Narendra and Annaswamy, 1989; Slotine and Li, 1991; Ioannou and Sun,

1995]. These assumptions of slow varying parameters are usually not met by the systems under the

influence of faults and failures, which typically have a nonlinear behavior with sudden parameter

or structure changes. So adaptive control alone does not have the capability to accommodate faults

and failures.

In [Tao et al., 2004] adaptive control is studied for the systems with stuck actuator failure. In

stuck actuator failure case, the actuator gets stuck on some fixed position which can be seen as

some fixed unknown parameters that can be estimated online with adaptation mechanism. This

is a method that parameterizes some fixed or slowly varying parameters. Faults and failures are

random events which may occur abruptly, at unexpected location and without knowing which kind

of fault or failure it is, i.e. how to know it is a stuck failure is a problem before the adaptive

mechanism is activated. Even it is stuck failure, the system may go unstable before the adaptive

mechanism is in effect. This means the adaptive mechanism has the opportunity to be in effect only

if the normal controller can still stabilize the system before the adaptive mechanism can estimate
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the stuck failure. Another problem of this method is that it is designed for a fixed system structure,

e.g., if it is not a stuck but a floating failure or partial loss fault, this method will not work.

Combined with sliding mode control (SMC), adaptive control is studied extensively in control

with less a priori knowledge of model. In [Wheeler et al., 1998; Stepanenko et al., 1998], the

uncertainty bounds are parameterized. The actuator effectiveness is transformed to uncertainty in

[Shin et al., 2005] and the adaptive method is used to estimate the bound of this uncertainty. The

gain of discontinuous control part in SMC is parameterized in [Alwi and Edwards, 2005, 2008a;

Alwi et al., 2008]. Some SMC-based schemes have been proposed within MRAC (Model Reference

Adaptive Control) frame such as [Leung et al., 1991; Chou and Cheng, 2003; Costa and Hsu, 1990;

Hsu and Costa, 1989; Hsu et al., 1994, 1997, 2006; Alwi and Edwards, 2007b; Alwi et al., 2008].

These methods will be discussed in detail in the sliding mode fault tolerant control section.

2.1.5 Control Signal Redistribution

When faults and failures occur in actuators, one of the possible feature of FTC is to redistribute the

control efforts to make them still can shape the system in the desired way. There are several ways of

control signal redistribution: pseudo inverse (PIM) method [Gao and Antsaklis, 1989, 1991], control

allocation [Bordignon, 1996; Hamayun et al., 2012] and dynamic inversion [Enns et al., 1994].

Pseudo Inverse Method (PIM)

Pseudo inverse is the minimum length solution of least squares problem of matrix [Lawson and

Hanson, 1974]. The pseudo inverse method in FTC is to place the poles of the faulty system as

close as possible to the nominal closed-loop poles. The following derivation gives insight into the

pseudo inverse method. Consider a linear system given by

ẋ(t) = Ax(t) +Bu(t) (2.3)

where the state vector x(t) ∈ Rn, the control vector u(t) ∈ Rm, state matrix A has dimension n×n

and input matrix B has dimension n×m. Assume that a state feedback gain K of dimension m×n

has been designed, and the control law is defined as

u(t) = Kx(t) (2.4)
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and therefore the closed-loop system is given by

ẋ(t) = (A+BK)x(t) (2.5)

During faults/failures, the closed-loop faulty system can be represented by

ẋf (t) = (Af +BfKf )xf (t) (2.6)

where xf ∈ Rn is the state vector of faulty system; Af and Bf are the state matrix and input

matrix of the faulty system. The idea is to obtain a Kf so that the faulty system closed-loop

performance will be as close as possible to the nominal one (2.5). Since the objective is to obtain

xf (t) = x(t), a necessary condition is to ensure

(A+BK) = (Af +BfKf )

and therefore

Kf = B†
f (A−Af +BK) (2.7)

where B†
f is the pseudo inverse of Bf . The plant matrices A and B and the gain K is assumed to

be known a priori. The faulty system (Af , Bf ) can be obtained from FDD. So in theory, Kf can be

obtained from (2.7). For a non-square Bf matrix, the pseudo inverse of Bf provides some degrees

of freedom which can be used to redistribute the control effort to keep the desired performance

[McLean and Aslam-Mir, 1991; Patton, 1997].

The main drawback of PIM is the theoretical analysis of its stability [Huzmezan and Maciejowski,

1997; Jones, 2003; Patton, 1997; Yang et al., 2007]. Other drawbacks are the assumption that the

state measurements are always available [Patton, 1997; Yang et al., 2007] and lack of robustness

[Yang et al., 2007].

Control Allocation (CA)

In most safety-critical systems such as aircraft system, there is actuator redundancy. This allows

freedom to design fault tolerant control systems to maintain stability and acceptable performance

when faults occur. When some control surfaces lose their effectiveness completely or the actuators

saturate to the extent that stability cannot be attained, the control efforts must be reallocated to

redundant actuators.
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When all actuators have the same physical characteristics, for example they are segments of a

multi-segment elevator or rudder for an aircraft, a reasonable design for the applied control inputs

is the one with equal or proportional actuation for each actuator [Tao et al., 2004]. This is not the

case all the time. Some redundant actuators have different dynamics, e.g. the stabilizer can be

the redundant actuator for elevator. The natural way for control allocation is to initiate “back-up”

controller using redundant actuator when regular actuator is found completely lost its effectiveness

[Alwi and Edwards, 2006].

Early ideas of control allocation are discussed in [Patton, 1997]. In its early development, the idea

of redistributing the control signals to the remaining healthy actuators was called ‘restructuring’

[Patton, 1997]. An early example is given in [Huber and McCulloch, 1984], where a ‘restructuring

controller’ utilizing a ‘control mixer concept’ is used to redistribute the control signals. Control

allocation attracts more and more interest in the FTC community partly because of the development

of high performance, highly redundant aircraft [Bošković and Mehra, 2002; Buffington, 1997;

Shtessel et al., 1999; Wells and Hess, 2003] and improvements in computational power (which

is necessary in order to solve on-line optimization problems) [Beck, 2002; Bordignon and Durham,

1995; Durham, 1993; Enns, 1998].

PIM and CA seem to be identical since both employ a pseudo inverse which provides some

design freedom, the major difference between CA and PIM is that in CA, the controller is designed

based on a ‘virtual control’ signal and the CA will map the virtual control to the actual control

demand to the actuators. The benefit here is that the controller design is independent of the CA

unit: the virtual control is synthesized firstly and CA distributes the control signal into actuators.

Papers such as [Härkeg̊ard and Glad, 2005; Shin et al., 2005; Zhang et al., 2007; Benosman et al.,

2009; Alwi and Edwards, 2010; Zhou et al., 2010b,a; Hamayun et al., 2012] are some of the recent

works in this area.

CA is based on separating the control law from the control allocation task (see Figure 2.5). This

is done by designing a controller to provide a ‘virtual control’ which is mapped to the actual control

signals sent to the actuators. Consider an overactuated system such as a passenger aircraft [Brière

and Traverse, 1993] or modern fighter aircraft [Forssell and Nilsson, 2005] represented by a linear

system

ẋ(t) = Ax(t) +Buu(t) (2.8)
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Figure 2.5: Control allocation strategy (adopted from [Jones, 2003])

where the state vector x(t) ∈ Rn, the control vector u(t) ∈ Rm, state matrix A has dimension n×n

and input matrix Bu has dimension n×m. Bu is assumed can be factorized such that

Bu = BνB

Therefore, the linear system in (2.8) becomes

ẋ(t) = Ax(t) +Bνν(t)

where ν(t) is the ‘virtual control’ defined by

ν(t) := Bu(t)

For a given ν(t) the control signal u(t) is recovered as

u(t) = B†ν(t)

where B† = WBT (BWBT )−1 is a right pseudo inverse of B. The weight matrix W represents

the design freedom which distributes the control signals to actuators according to the different

contribution of each individual actuator.

In most of the literature, the weight W = I [Shin et al., 2005] (i.e. equal control signal

distribution among all actuators) is typically chosen. In some cases (such as finding the control

signal distribution that reduces drag and fuel consumption), a different choice of weighting matrix

W can be employed. In a constrained optimization problem, the weight W can be chosen to achieve

the desired performance taking into consideration of actuator constraints [Enns, 1998].

The works in [Buffington et al., 1999; Davidson et al., 2001; Zhang et al., 2007] use CA as a

means for FTC. The benefits of CA is that the controller structure needs not to be redesigned in the
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case of faults and it can deal directly with total actuator failures by automatically redistributing

the control signals among the regular and redundant actuators. As in MPC, another major benefit

of CA is that actuator limitations can be handled by including the actuator constraints in the

optimization process.

One of the drawbacks of CA is that, for linear systems, the pure factorization Bu = BνB is

a very strong requirement and therefore approximations Bu ≈ BνB have been made [Buffington

et al., 1999; Davidson et al., 2001; Härkeg̊ard and Glad, 2005; Hess and Wells, 2003]. Another

drawback is online optimization like linear or quadratic programming is required. This is difficult

even with nowadays high computational power computer to the optimization online and in real

time.

Dynamic Inversion (DI)

DI has the ability to handle changes of operating condition naturally due to the modeling in the

whole operating range. This capability has motivated researchers to consider DI for control of

system with wide operating conditions like the space re-entry vehicle which flies from supersonic

speed during re-entry and subsonic regions during the glide back to the runway [Ito et al., 2001,

2002].

The idea of DI can be shown by considering the following affine nonlinear system

ẋ(t) = f(x, t) +G(x, t)u(t)

where the state vector x(t) ∈ Rn, the control vector u(t) ∈ Rm, f(x, t) ∈ Rn, and G(x, t) ∈ Rn×m;

further, each entry in f(x, t) and G(x, t) is assumed to be continuous with continuous bounded

derivative with respect to x(t); G(x, t) �= 0 ∀x. By rearranging the equation with respect to u(t),

as in [Tandale and Valasek, 2005], the control law can be represented by

u(t) = G(x, t)−1(ẋd(t)− f(x, t))

where ẋd is the predetermined desired closed-loop reference demand. In [Ito et al., 2002], dynamic

inversion is described as ‘... a control synthesis technique by which existing deficient, or undesirable

dynamics are canceled and replaced by desirable dynamics. Cancelation and replacement are
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achieved through careful algebraic selection of the feedback function. For this reason, it is also

called feedback linearization ...’.

Since a continuous nonlinear model which cover almost all the system operating range is used

in DI, a fixed controller can be synthesized without model switching and gain scheduling. If the

control input matrix G(x, t) is precise, control allocation can be implemented naturally without an

extra mechanism [Joosten et al., 2007].

DI requires a perfect model of the system dynamics, which is not realistic in practice. In

[Ito et al., 2002] robust control methods such as H∞ is used as outer loop control to minimize

or suppress undesired behavior due to plant uncertainties which cause imperfect plant dynamic

cancelation. Anyway, DI requires a deep understanding and knowledge of the plant in order to be

able to cancel the plant dynamics perfectly. In reality, this is quite impractical.

Another drawback of dynamic inversion is the assumption of full-state feedback which is not

an issue in modern aircraft, civil [Brière and Traverse, 1993] or advanced military aircraft [Forssell

and Nilsson, 2005], but full state measurement is not always available for many other systems.

In [Fisher, 2004; Idan et al., 2001; Ito et al., 2002, 2001; Joosten et al., 2007] dynamic inversion

is utilized in the implementation of FTC. Because of a perfect system dynamics model is required

in the implementation of DI, for FTC it is the requirements of a perfect model of the faulty system,

i.e. it depends heavily on the FDD mechanism [Lombaerts et al., 2007].

2.1.6 Robust Control (H∞ Control)

Since there are always disturbances and uncertainties in the controlled system, robustness to

disturbances and uncertainties is always the major concern in feedback control [Zhou and Doyle,

1999]. Robust control is a control method that makes trade-off between performance and robustness.

H∞ as the most developed robust control method has been researched and developed in many

applications ranging from industrial process control to aircraft control problems, and it is robust

control always referred to. Since partial loss fault can be seen as a kind of uncertainty, robust

control method can be used to deal with it. FTC using robust control method doesn’t require

to get information of faults online and therefore works in normal situation as well as in faulty

conditions. This is why it is called passive fault tolerant control in the literature. The capability
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to deal with faults depends on the predesigned controller which is based on minimizing the effect

of uncertainty or disturbances on the system (robustness) [Magni et al., 1997], i.e. how much fault

can be tolerated is predesigned. The design of H∞ control is separated in two steps. The first step

is to decide the type and structure of the uncertainty to be considered which is difficult and requires

some insight into the plant [Magni et al., 1997]. The second step is to choose frequency dependent

weights based on some performance specifications and then to solve an optimization problem. H∞

mixed sensitivity, μ-synthesis and H∞ loop shaping [Skogestad and Postlethewaite, 1996] are some

of the mostly studied H∞ controller design techniques.

One of the disadvantages of H∞ is the controller is conservative in the normal conditions in order

to guarantee the stability in the event of partial loss faults [Magni et al., 1997], and the performance

in the normal condition is sacrificed for robustness. So H∞ robust control can only tolerate the

prescribed faults by sacrificing performance in the normal situation. Another drawback is that the

final controller is usually of a higher order than the system. In the practice, model reduction is

required to truncate the order of the controller [Magni et al., 1997] to make it implementable. The

literatures [Marcos et al., 2005; Magni et al., 1997] describe some of the research results of H∞

control in flight FTC.

Another kind of robust control method is SMC, which will be discussed in the next section.

Though in general, FTC is categorized into AFTC and PFTC, in the academia it is mostly

referred to AFTC while PFTC is considered as robust control [Zhang and Jiang, 2008]. However,

because of the delay of FDD and synthesization of reconfigurable control, which will not be a

trivial time, the faulty system is posed in a situation during the period of this delay in which it is

a system with fault and failure while it is controlled by the normal controller which surely is the

‘wrong’ controller. Furthermore, the system may lose its stability and disable the FDD mechanism.

So in the normal controller there must be some control mechanism that can accommodate fault

and failure before FDD can detect and identify the fault and failure and a better reconfigurable

controller can be synthesized online.
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2.2 Sliding Mode Control (SMC)

Originating from the 1950s in Union of Soviet Socialist Republics (USSR), sliding mode control

has developed into a topic of great interest in control theory and practice in many applications.

There are tons of publications dedicated to it, [Utkin, 1977; Young, 1978; Decarlo et al., 1988; Hung

et al., 1993; Young et al., 1999] as some reviews and tutorials, [Gao, 1990; Slotine and Li, 1991;

Utkin, 1992; Edwards and Spurgeon, 1998] as several books and [Perruquetti and Barbot, 2002;

Liu, 2005; Edwards et al., 2006; Bartolini et al., 2008; Boiko, 2009; Bandyopadhyay et al., 2009;

Fridman et al., 2011] as some books with recent advances in this field.

SMC is a nonlinear type of control strategy and is a special variable structure control (VSC).

The design of SMC is unique compared to other strategies. The design is separated into two steps:

first, a sliding surface is designed to assign the performance of the closed-loop system; second, the

control law is designed to force the trajectory of the states towards the sliding surface and once

reached, the states are forced to remain on the surface [Utkin, 1977].

SMC is a robust control methodology, and it is invariant to matched uncertainties which belongs

to the range of the control input distribution matrix [Utkin, 1992; Edwards and Spurgeon, 1998].

With dynamic sliding mode [Shtessel, 1997] or high order sliding mode [Levant, 2001] or combined

with backstepping approach [Khalil, 1992], even unmatched uncertainties can be tolerated in SMC.

This robustness property of SMC, called invariance [Utkin, 1992], comes from the high-speed

switching function that forces the state trajectory approaching the sliding surface and keeps on

it.

The invariance property makes SMC a strong candidate for FTC when handling actuator faults.

Because of the unique design, SMC can accommodate significant uncertainties without losing

greatly of performance as other robust control methods such as H∞. Moreover, since the system

character is determined by the chosen sliding surface, this gives more freedom in the design of

SMC which makes it easily of combining other methods and resorting to less a priori knowledge.

The paper [Hess and Wells, 2003] argues that SMC has the potential to become an alternative to

reconfigurable control and has the ability to maintain the required performance without requiring

an FDD.

In this section, the basic concepts and principles of SMC are introduced. The SMC design with
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feedback linearization on SISO and MIMO system is introduced in the next section. Then the

application of SMC in FTC is reviewed in the following section.

2.2.1 Brief Introduction to SMC

Consider affine nonlinear system, i.e., system has a state space model nonlinear in the the state

vector and linear in the control vector of the form:

ẋ(t) = f(x, t) +G(x, t)u(t) (2.9)

where the state vector x(t) ∈ Rn, the control vector u(t) ∈ Rm, f(x, t) ∈ Rn, and G(x, t) ∈ Rn×m;

further, each entry in f(x, t) and G(x, t) is assumed to be continuous with continuous bounded

derivative with respect to x(t).

In SMC each entry ui(t) of the switched control u(t) ∈ Rm has the form

ui(x, t) =

⎧⎨
⎩ u+i (x, t) with si(x) > 0

u−i (x, t) with si(x) < 0
∀i = 1, 2, · · · ,m (2.10)

where si(x) = 0 is the ith sliding surface associated with the (n−m)-dimensional sliding surface

s(x) = [s1(x), s2(x), · · · , sm(x)]T = 0 (2.11)

The design of SMC is in two stages. First is the design of the sliding surface and second is

the design of the control law that sliding mode is achieved and then maintained on the surface.

Once the states are in sliding mode, the closed-loop system is robust to matched uncertainties and

behaves as a reduced-order system with motion independent of the control. Matched uncertainty

is the uncertainty within the range space of the input matrix G(x, t). Consider uncertainty and

disturbance in Eq.(2.9):

ẋ = f(x, t) + Δf(x, t) +G(x, t)u+ d(t) (2.12)

where Δf(x, t) represents the modeling error and d(t) the external disturbance. The matched

uncertainty means there exist Δf̃(x, t) and d̃(t) such that

Δf(x, t) = G(x, t)Δf̃(x, t), d(t) = G(x, t)d̃(t) (2.13)

The performance of the controlled system depends on the choice of the sliding surface. Typically,

SMC consists of continuous and discontinuous components. The discontinuous component is
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designed to drive the states towards the sliding surface under modeling uncertainty and disturbance,

and so it determines the robustness of SMC system. Once on the surface, the continuous component

becomes more dominant than the discontinuous one and drives the system to the steady state.

2.2.2 Sliding Surface

The sliding surface

s(x) = 0 (2.14)

is a (n −m)-dimensional manifold in Rn determined by the intersection of m(n − 1)-dimensional

sliding surfaces si(x). The sliding surfaces are designed such that system response has a desired

stability or tracking characteristics.

Mostly, for convenience and simplicity, linear sliding surface are prevalent, while nonlinear ones

are possible, for example, in [Bandyopadhyay et al., 2009] nonlinear sliding surface is designed

such that it changes the system’s closed-loop damping ratio from its initial low value to a final high

value. Initially, the system is lightly damped resulting in a quick response and as the system output

approaches the set point, the system is made overdamped to avoid overshoot. In this method, the

system behavior is fine tuned thanks to the uniqueness of SMC which separates the design of control

law and the design of system performance. In this thesis linear sliding surface as following is used.

s(x) = Sx(t) (2.15)

where S is an m× n matrix.

2.2.3 Regular Form and Reduced-Order Dynamics

Assuming the system Eq.(2.9) is completely linearizable in a reasonable domain, the system Eq.(2.9)

can be transformed to a regular format [Slotine and Li, 1991]

ẋ1 = f1(x, t)

ẋ2 = f2(x, t) +G2(x, t)u (2.16)
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where x1 ∈ Rn−m and x2 ∈ Rm; G2(x, t) is m ×m nonsingular mapping. Assume a linear sliding

surface of the form

s(x) = [S1 S2]

⎡
⎣ x1

x2

⎤
⎦ (2.17)

i.e.

S1x1 + S2x2 = 0

where without loss of generality S2 is assumed to be nonsingular. So in a sliding mode

x2 = −S−1
2 S1x1 (2.18)

and

ẋ1 = f1(x, t) = f1(x1,−S−1
2 S1x1, t) (2.19)

is the reduced-order dynamics which represents the performance of the closed-loop system. The

design of the sliding surface s(x) is the choice of S1 and S2 to make the reduced-order dynamics

meets the desired performance.

2.2.4 Reachability Condition

The SMC control law is not designed to directly meet some desired closed-loop system performance,

but to ensure the sliding surface is reached and motion on sliding mode is maintained which is called

reachability condition. The reachability condition means the trajectory of the system states must

always point towards the sliding surface. In the case of single input system, it is

lims→0+ ṡ < 0

lims→0− ṡ > 0
(2.20)

or in a compact method

sṡ < 0 (2.21)

around s(t) = 0. A more strict reachability condition that ensures the sliding surface is reached

despite the presence of uncertainty and in finite time is given by

sṡ ≤ −η|s| (2.22)

where η is a small positive design scalar. Eq.(2.22) is called ‘η-reachability condition’ [Slotine and

Li, 1991].
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2.2.5 Chattering

Invariance of SMC comes from infinite frequency switching of discontinuous finite control action

instead of infinite high gains in the classical continuous control [Utkin, 1992]. However, infinite

frequency switching is impractical as well as infinite high gain. In the practical mechanical or

electrical system, there is always delay in the actuator, i.e. the switching of control is always in

finite frequency. So SMC suffers from chattering in its originality. Figure 2.6 shows how chattering

is caused by delay. A trajectory of state in the region s > 0 is heading toward the sliding manifold

s = 0. It meets the manifold firstly at point a. In ideal SMC, the trajectory should start sliding on

the manifold from this point a. In the real system, the delay between the changing of control signal

and the sign change of the s causes the trajectory crosses the manifold into the region s < 0. When

the control switches, the trajectory reverses its direction and goes again towards the manifold.

Once again it crosses the manifold, and repeat of this process creates the oscillation shown in the

figure, which is known as chattering. Chattering will decrease the control accuracy, lead to high

heat losses in electrical power circuit, and wear the moving mechanical parts greatly. It also may

excite unmodeled high-frequency dynamics, which degrades the performance of the system and may

even lead to instability.

Figure 2.6: Chattering due to delay in control switching
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Sliding mode system is equivalent to relay feedback system [Boiko and Fridman, 2005] and

chattering can be considered as a limit cycle or as the existence of a fixed point of the Poincaré

map [Boiko and Fridman, 2005]. Since chattering is unavoidable, controlling the magnitude of

the limit cycle is one solution to make SMC practical in real system [Wang, 1990]. One way of

attenuating the chattering magnitude is to use internal model, i.e. to use the a priori known system

dynamics in the closed-loop control system such that the uncertainty can be decreased. Feedback

linearization is such a method in nonlinear control field, which is the turn point work that makes

SMC a practical control method [Slotine, 1984].

2.2.6 SMC Design with Feedback Linearization

Single Input Single Output (SISO) System

Consider a SISO nonlinear affine system:⎧⎨
⎩ ẋ = f(x) + g(x)u

y = h(x)
(2.23)

where f(x) and g(x) are smooth vector fields, and h(x) is differentiable function with relative degree

of n, x ∈ Rn is the state vector, y ∈ R is the output and the scalar u is the control input. The

nonlinear system Eq.(2.23) can be transformed into following companion form by using feedback

linearization technique [Utkin, 1977] as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = z2

ż2 = z3
...

żn = A(x) +B(x)u

y = z1

(2.24)

where

A(x) = Ln
fh(x), B(x) = LgL

n−1
f h(x) (2.25)

are the Lie derivatives of corresponding functions.

Define switching surface as:

s = e(n−1) + λn−2e
(n−2) + · · ·+ λ1ė+ λ0e (2.26)
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where

e = yd(t)− y(t) (2.27)

yd is the output reference profile, λ0 > 0, λ1 > 0, · · · , λn−2 > 0 are design coefficients chosen to

provide desired sliding mode dynamics:

s = 0 (2.28)

Derive this function we have:

ṡ = y
(n)
d (t)−A(x)−B(x)u+ λn−2e

(n−1) + ·+ λ1ë+ λ0ė

Choose Lyapunov function as:

V =
1

2
s2 (2.29)

Design the controller as:

u = B(x)−1[y
(n)
d (t)−A(x) + λn−2e

(n−1) + ·+ λ1ë+ λ0ė+ ρsign(s)] (2.30)

The derivative of the Lyapunov function is:

V̇ = −ρ|s| ≤ 0

According to the invariant set theory [Slotine and Li, 1991], the system converges to the origin.

Multi Input Multi Output (MIMO) System

This section extends the result of last section to MIMO system. Consider affine nonlinear system⎧⎨
⎩ ẋ = f(x) +G(x)u

y = h(x)
(2.31)

where x ∈ Rn is the state vector, y ∈ Rm is the output vector, u ∈ Rm is the control vector;

f(x) ∈ Rn, h(x) ∈ Rm are differentiable vector-functions, G(x) ∈ Rn×m is the control input

distribution matrix:

G(x) = [g1(x), g2(x), · · · , gm(x)]

where gi(x) ∈ Rn(i = 1, 2, · · · ,m) are differentiable vector-functions. Assuming that the system is

completely linearizable in a reasonable domain x ∈ Γ. The Eq. (2.31) can then be transformed into
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a companion form [Utkin, 1977] as:

⎡
⎢⎢⎢⎢⎢⎢⎣

y
(r1)
1

y
(r2)
2

...

y
(rm)
m

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Lr1
f h1(x)

Lr2
f h2(x)

...

Lrm
f hm(x)

⎤
⎥⎥⎥⎥⎥⎥⎦
+ E(x)u (2.32)

where

E(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Lg1L
r1−1
f h1 Lg2L

r1−1
f h1 · · · LgmL

r1−1
f h1

Lg1L
r2−1
f h2 Lg2L

r2−1
f h2 · · · LgmL

r2−1
f h2

...
...

...
...

Lg1L
rm−1
f hm Lg2L

rm−1
f hm · · · LgmL

rm−1
f hm

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.33)

|E(x)| �= 0 ∀ x ∈ Γ; Lri
f and LgiL

ri−1
f hi (∀ i = 1, 2, · · · ,m) are corresponding Lie derivatives.

Define sliding surface as:

si = e
(ri−1)
i + λi(ri−2)e

(ri−2)
i + · · · + λi1ėi + λi0ei, ∀ i = 1, 2, · · · ,m (2.34)

where

ei = ydi(t)− yi(t), e
(j)
i =

djei
dtj

, ∀ i = 1, 2, · · · ,m

ydi(t) is the output reference, λi0 > 0, λi1 > 0, · · · , λi(ri−2) > 0, ∀ i = 1, 2, · · · ,m are design

coefficients chosen to provide desired sliding mode dynamics:

si = 0, ∀ i = 1, 2, · · · ,m (2.35)

The dynamics of the system in s-subspace is derived as following:

ṡ = Ψ(x, t)− E(x)u (2.36)

where

Ψ(x, t) = [ψ1(x, t), ψ2(x, t), · · · , ψm(x, t)]T (2.37)

ψi(x, t) = y
(ri)
di

+ λi(ri−2)e
(ri−1)
i + · · · + λi0ėi − Lri

f hi(x), ∀ i = 1, 2, · · · ,m (2.38)

For convenience of derivation, define a new control output:

μ = E(x)u (2.39)
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Eq.(2.36) can then be rewritten in scalar format as follows:

ṡi = ψi(x, t)− μi, ∀ i = 1, 2, · · · ,m (2.40)

Choose a Lyapunov function as:

V =
1

2
sT s =

1

2

m∑
i=1

s2i (2.41)

Following theorem can be obtained.

Theorem 2.1 [Slotine and Li, 1991] For the nonlinear system Eq.(2.31), sliding surface Eq.(2.34)

is asymptotically stable by employing the following feedback control:

u = E(x)−1(Ψ(x, t) +R · Σ) (2.42)

where

R = diag{ρ1, ρ2, · · · , ρm}

Σ = [sign(s1), sign(s2), · · · , sign(sm)]T , ∀ i = 1, 2, · · · ,m

{ρi} are positive values representing the gains of the discontinuous control terms.

Proof: Taking the derivative of the Lyapunov function Eq.(2.41) w.r.t. time, one can obtain

following result:

V̇ = sT ṡ = sT [Ψ(x, t)− E(x)u] = −sTRΣ = −
m∑
i=1

ρi|si| ≤ 0

With invariant set theorem [Slotine and Li, 1991], Theorem 2.1 is proved.

2.3 Sliding Mode Fault Tolerant Control

These years, some researchers began to use sliding mode method on aircraft fault tolerant control

[Shtessel et al., 1998; Alwi and Edwards, 2005; Hess and Wells, 2003]. From the control structure,

sliding mode fault tolerant control can be considered as passive fault tolerant control since it does

not need a unique block in the control system to do the collection of faults information [Zhang and

Jiang, 2008]. It is a kind of robust control in this sense. But in contrast to regular robust control,

35



which synthesizes the controller on some fixed performance index and does trade-off between

performance and robustness to the uncertainty of the system dynamics, it can accommodate

significant uncertainties without causing great degradation in performance. Combined with adaptive

control, SMC can be synthesized with little or even no knowledge of uncertainties and faults [Hsu

and Costa, 1989; Costa and Hsu, 1990; Leung et al., 1991; Hsu et al., 1994, 1997; Fisher, 2004;

Tao et al., 2004; Alwi and Edwards, 2005; Hsu et al., 2006]. Despite the robustness in handling

uncertainties due to actuator faults, SMC is a ‘fixed’ or ‘unreconfigurable’ or passive method for

FTC, itself alone can only accommodate partial loss faults to some extents and cannot accommodate

total failures and severe partial loss faults which saturates the actuator to the extent that the SMC

cannot stabilize the system due to its position and rate limits.

Most of the FTC based on SMC is designed for partial loss of effectiveness in the actuators.

Shtessel presented a decentralized pure SMC for aircraft in [Shtessel and Tournes, 1995] and

developed finite-reaching-time continuous SMC [Shtessel and Buffington, 1998a,b]. These are the

basics of SMC scheme of the following works of Shtessel on FTC dealing with partial loss control

surface faults. A special continuous power function is used instead of discontinuous control when

the states cross the switching manifold to smooth the discontinuous control and thus eliminate

the chattering. In [Shtessel et al., 1998, 1999, 2000, 2002] multiple time scale reconfigurable sliding

mode control concept, which partitions the system in different time scales, is presented. The control

was synthesized based on the idea of backstepping control. In the most inner loop the discontinuous

control is replaced with boundary layer continuous approximation. The boundary layer is chosen

considering the integrator windup, actuator deflection limit and deflection rate limit. Though this

method considered the position and rate limit of actuators, it cannot accommodate severe partial

loss faults. This is because of the limit of position and rate in actuator deflection, SMC can only

accommodate partial loss to some extent, with sacrifice performance of airplane in normal healthy

condition without faults. In [Shtessel, 1995, 1997; Shtessel and Shkolnikov, 2003] a dynamic sliding

mode control method that can not only accommodate matched uncertainties but also accommodate

the unmatched uncertainties, is presented. All the methods can only deal with some kinds of partial

loss faults.

In [Wells, 2002; Hess and Wells, 2003; Vetter et al., 2003] asymptotic observers are used to

eliminate the effect of the actuator parasitic dynamics, i.e., high-frequency dynamics often neglected
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in control system design. SMC systems are vulnerable to the effect of these parasitic dynamics due

to the chattering caused by high speed switching. In flight control applications, these neglected

dynamics mostly are the high frequency dynamics of the actuators. This method also can only deal

with partial loss actuator faults.

Works by [Corradini and Orlando, 2006; Corradini et al., 2006] present a sliding mode fault

tolerant control method for linear model that detects fault by monitoring sliding surfaces and

identifies the fault by applying particular test input to the plant. Before detecting and identifying

the detailed faults, a conservative controller considering a very “pessimistic” worst case is designed.

The occurrence of a fault is detected simply by monitoring the sliding surfaces: when the state

leaves the sliding hyperplane, it means that a fault has occurred in one of the actuators components.

The method uses specially designed test input to detect the faults from the sliding surface. When

the test input has been utilized, if the absolute value of sliding surface increased, then this actuator

stuck at some position. It is not easy to find such test input. After getting the knowledge of the

faults the controller is reconfigured using the same method as that of the conservative controller

design. This method can deal with stuck actuator failure. But the method assumes the redundant

actuator is exact duplication of the regular actuator which is not available in most real systems.

These results are the stimulation of this thesis in two aspects. Firstly, sliding surface can be used

as the index or indicator of faults and failures; Secondly, some passive controller must be utilized

to stabilize the system before the faults and failures can be detected and identified.

Combined with adaptive control, SMC can be synthesized with little and even without a

priori knowledge of the uncertainties, this makes it more suitable for FTC [Wheeler et al., 1998;

Stepanenko et al., 1998; Tao et al., 2004; Alwi and Edwards, 2005; Shin et al., 2005; Xiao et al.,

2008].

[Alwi and Edwards, 2005, 2008a] proposed a novel adaptive gain in the nonlinear part of the

control law of SMC which reacts to the occurrence of a fault and attempts to keep the switching

function as close as possible to zero, thus maintaining tracking performance. When this gain

reaches the maximum allowable set gain, a warning signal is sent to the pilot or an automatic

change to the “back-up” controller could be initiated. This is a kind of way to detect the stuck

fault in regular control surface, e.g., the elevator. The “back-up” redundant control surface, e.g.,

stabilizer is activated when the adaptive gain reaches some maximum value. Though this method
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can deal with total failure such as stuck as well as partial loss fault, it does not fully utilize the

regular actuator. When the adaptive gain reaches its maximum value that stimulates the redundant

actuator, it does not mean the regular actuator totally fails while this method discards the regular

actuator completely. The faulty regular actuator may still contribute to the system, though itself

alone cannot accommodate the ‘severe’ partial loss fault. Sometimes the redundant actuator may

not work as well as the regular actuator, e.g., the stabilizer is slower than elevator in dynamics.

The not totally failed faulty regular actuator can still work in some degree to help the redundant

actuator to get better performance than only using redundant actuator.

In [Tao et al., 2004; Hu et al., 2011] adaptive SMCs are used to accommodate stuck failures.

These methods need knowledge of the structure of the system when it is healthy and when it is

faulty. This means for different structure of faulty system, e.g., stuck failure and partial loss fault,

different controllers should be synthesized. There will be switching of controllers when the system

structure changes.

In [Alwi and Edwards, 2006, 2007a,b, 2008b, 2010; Hamayun et al., 2012] SMC-based FTCs

combined with control allocation that automatically distribute control efforts when there is fault

or failure are proposed. These schemes use the effectiveness level of the actuators as the weight in

distributing control efforts, and redistribute control to the remaining actuators when faults/failures

occur. The effectiveness level of the actuators is assumed coming from FDD or special sensors. This

method is synthesized based on linear model.

2.4 Summary

Generally, FTC is categorized into PFTC and AFTC. From the above literature review, it can

be seen that most of the works on AFTC come together with the progress in FDD mechanisms.

Theoretically, AFTC can deal with all kinds of faults and failures. In practice, AFTC will be costly

because of the complicated architecture due to the combination with FDD and the reconfiguration of

controller online. Besides, time delay from the faults occurrence to the detection and identification

of faults and then to the reconfiguration of controller based on the faults information, is the main

constraints of the application of AFTC. During the delay from faults occurrence to a reconfigured

controller in execution, the system is in the danger of losing control due to the mismatch of controller
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and system dynamics. The controller-system mismatch may also disable the FDD which cannot get

the right information for building the faulty system model if the system is out of control. So some

kind of controller must be working to stabilize the system during the delay. This is the motivation

of this thesis.

PFTC is mostly a kind of robust control that can accommodate preassigned faults, i.e., it can

only deal with partial loss fault. H∞ and SMC are two mostly researched robust control methods in

FTC field. They both sacrifice the normal controller performance to get robustness to uncertainties

in the system dynamics. However, SMC’s unique design methodology, that separates the design

procedure into two subsystems, makes it possible to be robust to uncertainties without sacrificing

too much performance of normal controller. Even more, the reaching attractor in SMC is extended

to sliding manifold (a dynamic subsystem) from the equilibrium in other methodologies. This

means there is a dynamic subsystem that can sense the dynamic variation due to disturbances and

faults. This is the reason this thesis uses SMC in the development of fast response reconfigurable

FTC.
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Chapter 3

Modeling of Boeing 747-100/200 and

Faulty System

It is costy and time consuming in testing FTC on real systems, especially in aircraft system.

There are available models in the open literature such as nonlinear F-16 model [Sonneveldt, 2006;

Russell, 2003] and ADMIRE (Aero-Data Model In Research Environment) [Forssell and Nilsson,

2005] which comprise full order nonlinear equations of aircrafts. ADMIRE is a generic model of a

small single-seat fighter aircraft with a delta-canard configuration, which is developed within the

project GARTEUR Flight Clearance FM (AG11) in Europe. Both F-16 and ADMIRE are limited

in redundancy, they are suitable for simulation of normal control and partial loss fault tolerant

control. FTLAB747 is a simulation package of Boeing 747-100/200 with rich redundancy and is a

good platform for FTC simulation test.

3.1 FTLAB747

The FTLAB747 software running under MATLAB/Simulink has been developed for the study of

FTC and FDD schemes. It represents a ‘real world’ model of Boeing 747-100/200 aircraft, where

the technical data and motion equations have been obtained from NASA [Hanke and Nordwall,

1970; Hanke, 1971]. The software evolved from DASMAT (Delft University Aircraft Simulation

And Analysis Tool) [van der Linden, 1996] and Flight Lab 747 [Smaili, 1996]. Later it is enhanced
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to FTLAB747 V6.1/V6.6 for use in terms of fault detection and fault tolerant control [Marcos

and Balas, 2003]. It was augmented with a classical autopilot and increased modularization which

make it especially suitable for FTC under GARTEUR AG16 in Europe [Breeman, 2006]. Figure

3.1 shows the AG16 benchmark sketch and Figure 3.2 shows the main frame of AG16 benchmark.

Figure 3.1: Sketch of AG16 benchmark model (Adopted from [Breeman, 2006])

Figure 3.2: The main benchmark model of AG16 (Adopted from [Breeman, 2006])

The high fidelity nonlinear model of FTLAB747 has 77 states incorporating rigid body variables,

sensors, actuators and aero-engine dynamics. All the control surfaces and engine dynamics are

modeled with realistic position limits and rate limits. The specific aerodynamics coefficients are

taken from [Hanke and Nordwall, 1970], which have been obtained from extensive wind tunnel
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experiments, simulations and test flights.

Till now, FTLAB747 is the only model in the open literature which replicates a real failure

condition, and it was used in the investigation of the ELAL flight 1862 (Bijlmermeer incident) in

1992 [Smaili et al., 2006] using the real flight recorded data. Therefore, the FTLAB747 model

represents a realistic test bed for the FTC schemes and it was chosen as the test bench for the FTC

algorithms of this thesis.

3.2 High Fidelity Model of Boeing 747-100/200

Boeing 747-100/200 is an inter-continental wide-body transport airplane with range of 10,000 km,

maximum level speed 975 km/hr and design ceiling of 137166 m [Hanke, 1971].

Boeing 747-100/200 aircraft has abundant actuators: four engines, a movable horizontal stabilizer

(used for pitch trim purposes when the elevators work well, can provide pitch moment when

elevators have faults or failures), four elevator segments (i.e. two inboards and two outboards)

for the control of longitudinal axis motion; twelve spoilers (10 in-flight spoilers used symmetrically

for speed brakes and used asymmetric to complement the directional control, 2 ground spoilers

are only used during ground operations), two pairs of inboard and outboard flaps used for lateral

control; a two-panel rudder for direction control [Marcos and Balas, 2003]. This makes it the perfect

representative of commercial airplanes flying today, and thus an ideal benchmark to design and test

FTC and FDD algorithms.

The general mathematical flight dynamics model of a rigid aircraft can be written as:

ẋ = f(x) +G(x)u(t) (3.1)

y = h(x) (3.2)

where x ∈ Rn(n = 12) is the vector of states of the aircraft system:

x = [p q r VTAS α β φ θ ψ he xe ye]
T (3.3)

p, q, r are roll, pitch and yaw angular rates respectively; VTAS , α, β are the true air speed,

angle of attack and sideslip angle respectively; φ, θ, ψ are roll angle, pitch angle and yaw angle

respectively; he, xe, ye are the positions of the aircraft with respect to Earth (North-East-Down
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reference frame). f(x) ∈ Rn(n = 12) is the system dynamics vector; h(x) ∈ Rl is the output vector;

G(x) ∈ Rn×m is the control input distribution matrix. u is the m-dimensional control vector; y is

the l-dimensional output vector. For Boeing 747-100/200 with m = 16:

u = [δeil δeir δeol δeor δail δair δaol δaor δrl δru δih δsp T1 T2 T3 T4] (3.4)

where eil, eir, eol, eor represent inner left, inner right, outer left and outer right elevators; ail, air,

aol, aor represent inner left, inner right, outer left and outer right ailerons; rl, ru represent lower

and upper rudders; ih represents stabilizer; sp represents spoiler; δ is deflection of control surface;

Ti, ∀i = 1, 2, 3, 4, is the thrust output of ith engine. The dynamics model can be detailed in the

following four groups of differential equations [Marcos and Balas, 2003].

The force equations:

α̇ =
−Fx sinα+ Fz cosα+m(−p cosα sinβ + q cosβ − r sinα sinβ)VTAS

mVTAS cosβ + CLα̇ q̄S
c̄

VTAS

(3.5)

β̇ =
−Fx cosα sinβ + Fy cosβ − Fz sinα sinβ +m(−p sinα+ r cosα)VTAS

mVTAS
(3.6)

V̇TAS =
1

m
(Fx cosα cosβ + Fy sinβ + Fz cosβ sinα) (3.7)

The moment equations:

ṗ = (c1r + c2p)q + c3Mx + c4Mz (3.8)

q̇ = c5pr − c6(p
2 − r2) + c7My (3.9)

ṙ = (c8p− c2r)q + c4Mx + c9Mz (3.10)

The kinematics equations:

φ̇ = p+ tan θ(q sinφ+ r cosφ) (3.11)

θ̇ = q cosφ− r sinφ (3.12)

ψ̇ = (q sinφ+ r cosφ)
1

cos θ
(3.13)

The navigational equations:

ḣe = −(−u sin θ + v cos θ sinφ+ w cosφ cos θ) (3.14)
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ẋe = u cosψ cos θ + v(− cosφ sinψ + cosψ sinφ sin θ)

+w(sinφ sinψ + cosφ cosψ sin θ) (3.15)

ẏe = u sinψ cos θ + v(cosφ cosψ + sinψ sinφ sin θ)

+w(− cosψ sinφ+ cosφ sinψ sin θ) (3.16)

In these differential equations, the true airspeed VTAS = [u, v, w]:

u = VTAS cosα cosβ (3.17)

v = VTAS sinβ (3.18)

w = VTAS sinα cosβ (3.19)

The products and moments of inertia coefficients are:

c1 =
(Iyy−Izz)Izz−I2xz

Γ c2 =
(Ixx−Iyy+Izz)Ixz

Γ

c3 = Izz
Γ c4 = Ixz

Γ

c5 = Izz−Ixx
Iyy

c6 = Ixz
Iyy

c7 = 1
Iyy

c8 =
(Ixx−Iyy)Ixx+I2xz

Γ

c9 = Ixx
Γ Γ = IxxIzz − I2xz

(3.20)

The forces and moments in body-axes for the Boeing 747 are:

Fx = q̄SCXb
+

4∑
i=1

Tni −mg sin θ (3.21)

Fy = q̄SCYb
+ 0.0349[Tn1 + Tn2 − (Tn3 + Tn4)] +mg cos θ sinφ (3.22)

Fz = q̄SCZb
− 0.0436

4∑
i=1

Tni +mg cos θ cosφ (3.23)

Mx = q̄Sb

[
Clb +

1

b
(CYb

z̄cg − CZb
ȳcg)− c̄α̇

bVTAS
CZα̇b

ȳcg

]
+0.0436[Tn1yeng1 + Tn2yeng2 − (Tn3yeng3 + Tn4yeng4)] (3.24)

My = q̄Sc̄

[
Cmb

+
1

c̄
(CZb

x̄cg − CXb
z̄cg) +

c̄α̇

bVTAS

(
Cmα̇b

+
x̄cg
c̄

CZα̇b

)]

+
4∑

i=1

Tnizengi (3.25)

Mz = q̄Sb

[
Cnb

+
1

b
(CXb

ȳcg − CYb
x̄cg) +

bβ̇

VTAS
Cnβ̇b

]

+Tn1yeng1 + Tn2yeng2 − (Tn3yeng3 + Tn4yeng4) (3.26)
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Transformation of aerodynamic coefficients in stability reference frame to body reference frame

are:

CXb
= −CD cosα+ CL sinα CYb

= CY

CZb
= −CD sinα− CL cosα Clb = Cl cosα− Cn sinα

Cmb
= Cm Cnb

= Cl cosα+ Cn cosα

(3.27)

The aerodynamic coefficients are [Hanke and Nordwall, 1970]:

CL = CLbasic
+ (ΔCL)αwdp=0

+Δ(dCL
dα )αwdp=0

+ dCL
dα̇

α̇c̄
2VTAS

+ dCL
dq

qsc̄
2VTAS

+dCL
dnZ

nZ +Kα

[
dCL
dδih

δihfrl
+ dCL

dδEI
δEI

+ dCL
dδEO

δEO

]
+ΔCLspoilers

+ΔCLoutboard ailerons
+ΔCLlanding gear

+ΔCLground effect
+ΔCLflap failure

(3.28)

CD = K
[
CDbasic

+ dCD
δih

δihfrl

]
+ (1−K)CDMach

+ΔCDspoilers
+ΔCDlanding gear

+ΔCDground effect
+ΔCDsideslip

+ΔCDrudders
+ΔCDflap failure

(3.29)

CY = dCY
dβ β + dCY

dp
psb

2VTAS
+ dCY

dr
rsb

2VTAS
+ΔCYspoilers

+ΔCYrudders
+ΔCYflap failure

+ΔCYle flap failure

(3.30)

Cm = Cmbasic
+ (ΔCm0.25)αwdp=0

+Δ(dCm0.25
dα )αwdp=0

+ CL(CG− 0.25) + dCm
dα̇

α̇c̄
2VTAS

+dCm0.25
dq

qsc̄
2VTAS

+ dCm0.25
dnZ

nZ +Kα

[
dCm0.25
dδih

δihfrl
+ dCm0.25

dδEI
δEI

+ dCm0.25
dδEO

δEO

]
+ΔCm0.25spoilers +ΔCm0.25inboard ailerons

+ΔCm0.25outboard ailerons

+ΔCm0.25landing gear
+ΔCm0.25ground effect

+ΔCm0.25sideslip +ΔCm0.25rudder

+ΔCm0.25flap failure

(3.31)

Cl = dCl
dβ β + dCl

dp
psb

2VTAS
+ dCl

dr
rsb

2VTAS
+ΔClspoilers +ΔClrudders +ΔClinboard ailerons

+ΔCloutboard ailerons
+ΔClflap failure

+ΔClle flap failure

(3.32)

Cn = dCn
dβ β + dCn

dβ̇

β̇b
2VTAS

+ dCn
dp

psb
2VTAS

+ dCn
dr

rsb
2VTAS

+ΔCnspoilers
+ΔCninboard ailerons

+ΔCnoutboard ailerons
+ΔCnrudders

+ΔCnflap failure
+ΔCnle flap failure

(3.33)

The meaning of the variables and parameters in these aero-dynamic coefficients can be found in

[Hanke and Nordwall, 1970].

The transformation of angular rate in body-axes to stability-axes is:

ps = p cosα+ r sinα (3.34)

qs = q (3.35)

rs = −p sinα+ r cosα (3.36)
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Wing design plane angle of attack (angle between the airflow and the wing root chord line) has

the following relationship with fuselage reference line angle of attack:

αwdp = αfrl + 2π/180 (3.37)

where 2◦ is the incidence angle, iw.

The above model is the high fidelity nonlinear model used in the FTLAB747 simulation platform.

In [Marcos, 2001], the aerodynamic coefficients are reduced in complexity using analytical and

simulation methods. The following is the reduced aerodynamic coefficients using simulation method:

CL = CLbasic
+

dCL

dq

qsc̄

2VTAS
+ΔCLspoilers

(3.38)

CD = KCDbasic
+ (1−K)CDMach

+ΔCDspoilers
+ΔCDsideslip

(3.39)

CY =
dCY

dβ
β +

dCY

dp

psb

2VTAS
+ΔCYrudders

(3.40)

Cm = Cmbasic
+

dCm

dα̇

α̇c̄

2VTAS
+

dCm0.25

dq

qsc̄

2VTAS
(3.41)

Cl =
dCl

dβ
β +

dCl

dp

psb

2VTAS
+

dCl

dr

rsb

2VTAS
+ΔClrudders +ΔClailerons

(3.42)

Cn =
dCn

dβ
β +

dCn

dp

psb

2VTAS
+

dCn

dr

rsb

2VTAS
+ΔCnrudders

(3.43)

These are the aerodynamic coefficients used in the following longitudinal model.

3.3 Nonlinear Longitudinal Model of Boeing 747-100/200

A full nonlinear equations of the Boeing 747 longitudinal motion are taken from [Marcos, 2001;

Szászi et al., 2005] over the up-and-away flight regime: altitude he ∈ [3000, 12000]m, angle of attack

α ∈ [−2◦, 8◦] and total airspeed V ∈ [150, 280]m/s. The detailed nonlinear equations of motion

are:

α̇ =

[
1− q̄Sc̄

2mV 2
TAS

(1.45− 1.8xcg)
dCL

dq

]
q +

g cos(α− θ)

VTAS
− q̄S

mVTAS
CLbasic

−
[

q̄S

mVTAS
Kα

dCL

dδei

]
δei −

[
q̄S

mVTAS
Kα

dCL

dδeo

]
δeo

−0.0436 cosα+ sinα

mVTAS

4∑
i=1

Tni (3.44)
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q̇ =
c7q̄Sc̄

2VTAS

[
c̄
dCm

dq
− (1.45− 1.8xcg)(x̄cg cosα+ z̄cg sinα)

]
q + c7q̄Sc̄Cmbasic

+c7q̄S [CDMach
(z̄cg cosα− x̄cg sinα)− CLbasic

(z̄cg sinα+ x̄cg cosα)]

+c7q̄SKα

[
c̄
dCm

dδei
− (x̄cg cosα+ z̄cg sinα)

dCL

dδei

]
δei

+c7q̄SKα

[
c̄
dCm

dδeo
− (x̄cg cosα+ z̄cg sinα)

dCL

dδeo

]
δeo

+c7q̄SKαc̄
dCm

dσ
σ + c7

4∑
i=1

zengiTni (3.45)

V̇TAS = g sin(α− θ)− q̄S

m
CDMach

+
cosα− 0.0436 sinα

m

4∑
i=1

Tni (3.46)

θ̇ = q (3.47)

ḣe = − sin(α− θ)VTAS (3.48)

The aerodynamic coefficients and their derivatives are calculated from the look-up table described

in [Hanke and Nordwall, 1970].

3.4 Fitted Nonlinear Longitudinal Model of Boeing 747-100/200

An approximate fitted nonlinear longitudinal model of Boeing 747-100/200 is obtained from fitted

aerodynamic coefficients as polynomial functions of angle of attack and velocity for level flight over

the flight envelope [Shin et al., 2006]. The thrust generated by four engines is described by “4T”

using one variable and also the four elevators are described as one variable δe for simplicity. These

mean:

Tn1 = Tn2 = Tn3 = Tn4 = T

δei = δeo = δe

dCL

dδei
=

dCL

dδeo
=

dCL

2dδe

dCm

dδei
=

dCm

dδeo
=

dCm

2dδe

The aerodynamic coefficients are approximated as:

CDMach
= κ20α

2 + κ10α+ κ01VTAS + κ00 (3.49)

dCL

dδe
= τ02V

2
TAS + τ01VTAS + τ00 (per degree) (3.50)
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CLbasic
= η10α+ η01VTAS + η00 (3.51)

Cmbasic
= ξ20α

2 + ξ10α+ ξ01VTAS + ξ00 (3.52)

dCm

dδe
= ζ02V

2
TAS + ζ01VTAS + ζ00 (per degree) (3.53)

where the constant coefficients are:

κ20 = 3.27, κ10 = 3.48× 10−2, κ01 = 4.45× 10−5, κ00 = 9.92× 10−3,

τ02 = −1.44× 10−7, τ01 = 4.26× 10−5, τ00 = 3.21× 10−3,

η10 = 5.15, η01 = 1.21× 10−3, η00 = 6.15× 10−3,

ξ20 = 2.39, ξ10 = −1.46, ξ01 = −3.20× 10−4, ξ00 = 0.12,

ζ02 = 4.35× 10−7, ζ01 = −1.16× 10−4, ζ00 = −1.76× 10−2.

The other derivatives are:

Kα = 1, (3.54)

dCL

dq
= 5.1707, (3.55)

dCm

dq
= −20.8073, (3.56)

dCm

dσ
= −2.8374 (per rad). (3.57)

The other parameters: xcg = 0.25, x̄cg = −(xcg − 0.25)c̄ = 0, z̄cg = zcgref − zcg = 0,m =

3 × 105kg, c7 = 1/Iyy, Iyy = 4.5278 × 107kg · m2, g = 9.7851m/s2, c̄ = 8.324m,S = 511m2, ρ =

0.59kg/m3, zeng1 = 0.94m, zeng2 = 2.53m, zeng3 = 2.53m, zeng4 = 0.94m. The trim point is:

αtrim = 0.0162rad, qtrim = 0rad/s, VTAStrim = 230m/s, θtrim = 0.0162rad, htrim = 7000m, δetrim =

0deg, σtrim = 0.0128rad, Ttrim = 41631N.

The ultimate approximate nonlinear longitudinal model over up-and-away flight rigime of Boeing

747-100/200, which is utilized in the synthesization of some of the algorithms in this proposal, is

shown as following:

α̇ = 0.989186q +
9.7851 cos(α− θ)

VTAS
− 0.000502483(0.00615 + 5.15α

+0.00121VTAS)VTAS − 0.000502483VTAS(0.00321 + 0.0000426VTAS

−1.44× 10−7V 2
TAS)δe −

0.0436 cosα+ sinα

75000VTAS
T (3.58)
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q̇ = −0.00239997qVTAS + 0.0000277133(0.12− 1.46α+ 2.39α2

−0.00032VTAS)V
2
TAS + 0.0000277133V 2

TAS(−0.0176− 0.000116VTAS

+4.35× 10−7V 2
TAS)δe − 0.0000786336V 2

TASσ + 1.53275× 10−7T (3.59)

V̇TAS = 9.7851 sin(α− θ)− 0.000502483(0.00992 + 0.0348α+ 3.27α2

+0.0000445VTAS)V
2
TAS +

cosα− 0.0436 sinα

75000
T (3.60)

θ̇ = q (3.61)

ḣe = − sin(α− θ)VTAS (3.62)

3.5 Open-Loop Longitudinal Response of Boeing 747-100/200

Here is the simulation results of the open-loop response of longitudinal axis of Boeing 747-100/200

on FTLAB747 (AG16) with high fidelity nonlinear model, the reduced aerodynamic coefficients

based nonlinear longitudinal model and the fitted approximate nonlinear longitudinal model.

The elevator changes from 0 degree to -2 degree at 25 second, then changes to 2 degree at 50

second and at last changes to 0 degree at 75 second. The mass of the aircraft is 30000kg. The trim

point is αtrim = 0.029rad, qtrim = 0rad/s, VTAStrim = 230m/s, θtrim = 0.029rad, htrim = 7000m,

δetrim = 0deg, σtrim = 0.061rad, Ttrim = 41375N . The simulation result is shown in Figure 3.3.

It can be seen that the inclination is similar though the difference is not small on the FTLAB747

to the other two platforms. This is due to the longitudinal dynamics on the other two platforms

are reduced by aerodynamic coefficient complexity in simulation similarity, refer to [Marcos, 2001].

The difference between the other two platforms comes from the fitted aerodynamic coefficients and

also the approximation of some coefficients and variables to be constants.

3.6 Modeling of Faults and Failures

3.6.1 Types of Actuator Faults and Failures

Faults and failures may occur at any part of the system, such as sensors, controllers, actuators or

the plant components. This thesis focuses on faults and failures occurring at actuators on aircrafts.

Actuator faults and failures on the aircraft can be classified as: partial loss faults, total failure such
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Figure 3.3: Open loop response to elevator doublet on three platforms
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as stuck, hard-over and floating.

Partial loss actuator fault means decreasing in the actuator’s effectiveness. This is the most

common fault situation in aircraft system which may be caused by partial loss of a control surface,

or pressure reduction in hydraulic lines [Fisher, 2004; Zhang and Jiang, 2002]. According to the

IFAC SAFEPROCESS definition of fault in Chapter 1, fault always means partial loss fault. Total

failure means the actuator cannot exert expected designed efforts any more. In aircraft systems

three most commonly occurred actuator failures are stuck, hardover and floating.

Stuck, or lock-in-place failure, is a failure condition when an actuator is stuck at some fixed

position and immovable. This might be caused by a mechanical jam, due to lack of lubrication

for example. This type of failure is studied in [Chen and Jiang, 2005; Fisher, 2004; Ganguli et al.,

2002; Gopinathan et al., 1998; Zhang and Jiang, 2003a].

Float failure is a failure condition when the control surface moves freely without providing any

moment to the aircraft. An example of a float failure is the loss of mechanical link in the elevator’s

actuator causing it to move freely in the direction of angle of attack and therefore not producing

any effective moment in the pitch axis. This situation is considered in [Burcham et al., 1998; Fisher,

2004; Ganguli et al., 2002].

Hardover, or runaway failure is the most catastrophic types of failure where the control surface

moves at its maximum rate limit until it reaches its maximum position limit or its blowdown

limit which is the aerodynamic limit of the control surface deflection at a specified speed which

overpowers the movement of the actuator. It might not be the maximum physical deflection of the

control surface. Any deflection above the blowdown limit can cause structural damage) [Stengel,

2004]. For example, a rudder runaway failure can occur when there is an electronic component

failure which causes a wrong large signal to be sent to the actuators leading the rudder to be

deflected at its maximum rate to its maximum deflection at low speed (or its blowdown limit at

high speed). Hardover can be seen as a special stuck failure at the maximum/minimum limit

position. This type of failure is studied in [Smaili et al., 2006].

The above faults and failures can be graphically shown in Figure 3.4.
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Figure 3.4: Types of actuator faults and failures on aircraft (adopted from [Ducard, 2009])

3.6.2 Modeling of Faults and Failures

The faults and failures defined in the afore section can be modeled as [Zhang, 2006]:

ua(t) = La(t)u(t) + (I − La(t))fa(t) (3.63)

where ua(t) = [u1a(t), u
2
a(t), · · · , uma (t)]T ∈ Rm is the actual control output vector, u(t) = [u1(t), u2(t),

· · · , um(t)]T ∈ Rm is the synthesized control output vector, La = diag{l1a, l2a, · · · , lma } is a diagonal

matrix represents the operational effectiveness of the actuators, I is m × m identity matrix and

fa(t) = [f1
a (t), f

2
a (t), · · · , fm

a (t)]T ∈ Rm is the vector of stuck or floating value of the actuators.

For different types of actuator fault and failure the above model can be specified in detail by

(∀ i = 1, 2, · · · ,m):

uia =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(t) lia = 1; f i
a = 0 for all t ≥ tF Fault and failure free

liau
i(t) 0 < lia < 1; f i

a = 0 for all t ≥ tF Partial loss fault

f i
a = ui(tF ) lia = 0 for all t ≥ tF Stuck failure

f i
a = ūi or ui lia = 0 for all t ≥ tF Hardover failure

f i
a = f i(t) lia = 0 for all t ≥ tF Floating failure

(3.64)

where ūi is the maximum control output of ith actuator and ui is the minimum control output of

ith actuator, tF is the occurrence time of fault or failure, f i(t) is unknown bounded function out

of control.
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3.6.3 Modeling of Faulty Systems

Consider affine nonlinear system:

ẋ(t) = f(x, t) +G(x, t)u(t) (3.65)

y(t) = h(x, t) (3.66)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control vector, y ∈ Rl; f(x, t) ∈ Rn the output

vector, G(x, t) ∈ Rn×m and h(x, t) ∈ Rl; further, each entry in f(x, t) , G(x, t) and h(x, t) is

assumed to be continuous with continuous bounded derivative with respect to x(t). With actuator

faults (3.63) and (3.64), the affine nonlinear system can be expressed as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f(x, t) +G(x, t)ua

= f(x, t) +G(x, t)La(t)u(t) +G(x, t)(I − La(t))fa(t)

= f ′(x, t) +G′(x, t)u(t)

y(t) = h(x, t)

(3.67)

where

f ′(x, t) = f(x, t) +G(x, t)(I − La(t))fa(t) (3.68)

and

G′(x, t) = G(x, t)La(t) (3.69)

It can be seen from (3.67) that the partial loss actuator faults will affect the control input distribution

G(x), while the total failures (stuck, hardover and floating) will change the system dynamics by

fa(t) through the input matrix G(x). For total failures (stuck, hard-over and floating), the system

must have redundant actuator to apply/replace the control action that would be generated by the

regular actuators which are totally failed.

3.7 Summary

This chapter introduces the high fidelity model of Boeing 747-100/200 in the simulation and two

approximated longitudinal models used in the design of control algorithms in this thesis. Open-loop

responses of the three models show how the model used in the design of controller approximates

the high fidelity model. The types and modeling of actuator faults and failures are introduced as

well as the modeling of system with faults and failures in actuators in this chapter.
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Chapter 4

Robustness vs. Tolerability

The emergence of closed-loop feedback control is due to the fact that there is always something

uncertain, e.g. disturbance, modeling uncertainty, unmodeling dynamics and measurement noise.

In order to evaluate how the system can deal with these uncertain things, some characteristic of

feedback control system are defined, such as stability, sensitivity and robustness. For the modern

complicated control system like autonomous vehicles, satellite, aircraft and nuclear power plant,

another uncertainty must be considered: the accidental events like load changing, fault and failure.

Robustness can be a very general characteristic that indexes how the feedback control can deal with

all the uncertainties, such as disturbance, measurement noise, modeling uncertainty, unmodeling

dynamics and even more accidental events like fault and failure. Technically, robustness is referred

to how the system can deal with the perturbations of the system model, while leaves disturbance

and measurement noise to other characteristic like stability and sensitivity. For the most uncertain

things, the accidental events like fault and failure, a new characteristic is needed since the different

physical meaning between modeling uncertainty and fault/failure. In this chapter, firstly modeling

uncertainty and fault/failure are compared and distinguished. Then robustness and tolerability are

defined. Lastly, tolerability of SMC with regular actuator is defined and tested on the simulation

model of Boeing 747-100/200.
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4.1 Modeling Uncertainty vs. Fault/Failure

Faults and failures can be treated as uncertainties and disturbances in some sense. In the faulty

system model (3.67), consider uncertainties, i.e.,

f(x, t) = f0(x, t) + Δf(x, t), G(x, t) = G0(x, t) + ΔG(x, t) (4.1)

where f0(x, t) is the nominal system dynamics, Δf(x, t) is the uncertainty of nominal system

dynamics; G0(x, t) is the nominal control distribution matrix, ΔG(x, t) is the uncertainty of

nomimal control distribution matrix. Then the model of the system with modeling uncertainty

and faults or failures becomes:

ẋ(t) = f0(x, t) + Δf(x, t) + [G0(x, t) + ΔG(x, t)]ua

= f0(x, t) + Δf(x, t) + [G0(x, t) + ΔG(x, t)]{La(t)u(t) + [I − La(t)]fa(t)}
= f0(x, t) + Δ′f(x, t) + [G0(x, t) + Δ′G(x, t)]u(t)

(4.2)

where

Δ′f(x, t) = Δf(x, t) + [G0(x, t) + ΔG(x, t)][I − La(t)]fa(t) (4.3)

and

G′(x, t) = ΔG(x, t)La(t)−G0(x, t)[I − La(t)] (4.4)

From Eq.(4.2) it can be seen that partial loss faults go into the uncertainty of control distribution

matrix and failures go into the uncertainty of system dynamics. Though in the mathematical

model Eq.(4.2) faults and failures are represented the same as with modeling uncertainty, the

nature of fault and failure is different from the modeling uncertainties. Modeling uncertainties

are inevitable while faults are some occasional events. For example of aircraft, there will always

be modeling uncertainty in the system dynamics while it will work almost all the time in normal

healthy condition without fault and failure.

Modeling uncertainty can be negotiated with the control performance in the design period, i.e. in

the design of the controller, when the performance is degraded too much that cannot meet the design

specification or the control is too conservative such that demanding more powerful actuators, the

system must be refined to be more precise to lessen the uncertainties. In other words, the statistical

property of modeling uncertainty is ‘fixed’ after the system has been built (generally). However,
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faults and failures are contingent in their happening. Even more complicated, it is contingent in

their occurring time, occurring place, magnitude and character (type of fault and failure).

In the design of controllers, modeling uncertainties can be estimated in their bounds a priori

and robust control strategy can be resorted to deal with such kinds of uncertainties determinately

without degrading the performance beyond the requirement. For a FTC system, it is hard to decide

how much severity of the fault and failure and which kind of fault and failure it should deal with.

For safety-critical system like aircraft, the FTC must be able to deal with all kinds of fault and

failure since they are intolerable due to the big risk to the human beings on board.

With robust control method, faults can only be assumed to be in some bounds that only certain

faults can be dealt with. So if we design FTC using robust control method, only certain preassigned

faults can be accommodated. When we want to accommodate more severe faults, the performance

of the closed-loop system will be sacrificed more. To some extent, the trade-off between the

performance and robustness cannot lead to a working system even with degraded performance,

e.g., system with failures or faults saturate the actuator to certain extent that the regular actuator

cannot deal with alone.

Because of the different nature of modeling uncertainty and fault/failure, an effective FTC which

can deal with both of them should deal with them respectively. In the character of FTC, an extra

one should be defined besides robustness. In the following sections, robustness will be introduced

firstly, and then tolerability, the ability against fault and failure, in the sense of SMC design will

then be defined.

4.2 Robustness

Robustness can be a very general character that indexes how the feedback control can deal with

all the uncertainties, such as disturbance, measurement noise, modeling uncertainty, unmodeling

dynamics and fault/failure. Technically, robustness is referred to how the system can deal with the

perturbations of the system model.

Rigid definition of robustness or robust stability can be found in many books, such as [Doyle

et al., 1990; Zhou and Doyle, 1999]. The following shows the robustness of a SMC control system.
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To assess the robustness of the sliding mode control, the vector-function Ψ(x, t) and the control

distribution matrix E(x) in Eq. (2.36) are rewritten in the following format:

Ψ(x, t) = Ψ0(x, t) + ΔΨ(x, t) (4.5)

E(x) = E0(x) + ΔE(x) (4.6)

where Ψ0(x, t) and E0(x) are the norminal value of Ψ(x, t) and E(x), while ΔΨ(x, t) and ΔE(x)

are bounded uncertain vector and matrix. ΔΨ(x, t) is due to modeling error of system dynamics

or failures and ΔE(x) is due to modeling error of control distribution or partial loss fault. Define:

ΔM = ΔE(x) · E−1
0 (x) (4.7)

Φ(x, t) = ΔΨ(x, t)−ΔM ·Ψ0(x, t) (4.8)

Assumption 4.1 The nominal value of control gain distribution has the following properties:

|E0(x)| �= 0 (4.9)

Assumption 4.2 The uncertainty of control gain distribution meets the following bounds:

|(ΔM)ii| < Di < 1, ∀ i = 1, 2, · · · ,m (4.10)

where Di, ∀ i = 1, 2, · · · ,m, are some positive constants.

Assumption 4.3 The uncertainty of system dynamics meets the following bounds:

|[Φ(x, t)]i| ≤ Li, ∀ i = 1, 2, · · · ,m (4.11)

where Li, ∀ i = 1, 2, · · · ,m are some positive constants.

Substituting the control output Eq. (2.42) with nominal values

u = E0(x)
−1(Ψ0(x, t) +R · Σ) (4.12)

into Eq. (2.36) yields

ṡ = Φ(x, t)− (Im +ΔM)R · Σ

Choose Lyapunov function as:

V =
1

2
sT s (4.13)
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Take the derivative of this function leading to:

V̇ = sT ṡ

= sT [Φ(x, t)− (Im +ΔM)RΣ]

=
∑m

i=1(Φ)isi −
∑m

i=1(1 + ΔMii)ρi|si|
≤ ∑m

i=1[Li|si| − (1− |ΔMii|)ρi|si|]
≤ ∑m

i=1[Li|si| − (1− |Di|)ρi|si|]

(4.14)

Considering the robustness of the control system, Theorem 2.1 becomes the following theorem.

Theorem 4.1 For the nonlinear system Eq. (2.31) with bounded uncertainties Eq. (4.11), sliding

surface Eq. (2.34) is asymptotically stable by employing control Eq. (4.12) with design parameters

as following:

ρi >
Li

1−Di
, ∀ i = 1, 2, · · · ,m (4.15)

Proof: From Eq. (4.14) and Eq. (4.15), following can be derived:

V̇ ≤ 0

Theorem 4.1 is proved.

From Theorem 4.1, it can be seen that SMC is robust to model perturbation, i.e. SMC is a kind

of robust control.

4.3 Tolerability

In SMC theory, if the control effort can be increased without limits, it can accommodate very large

uncertainties. However, this is not the case in practice, where all the actuators have position and

rate limits, e.g., the control surfaces in the aircraft system have physical position limits in their

deflections and rate limits in the deflection rates. Table 4.1 shows the deflection position and rate

limits of control surfaces of Boeing 747-100/200.

Position limit means that the physical position constraints and rate limit means the actuator has

its own dynamics and it can only change with a limited rate. Partial loss fault in actuator can be

treated as a kind of uncertainty in the control distribution matrix. Hence, SMC can accommodate
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Table 4.1: Control surfaces deflection position and rate limits of Boeing 747-100/200 [Adopted from

Breeman [2006]]

control

surface
symbol

maximum

displacement

normal operation

(full boost) rate

one hydraulic system

failure rate

[deg] [deg/s] [deg/s]

elevators

• inboard δEI +17/-23 +37/-37 +30/-26

• outboard δEO +17/-23 +37/-37 -

stabilizer ΔFRL +3/-12 0.5→0.2 0.25→0.1

ailerons

• inboard δAI +20/-20 +40/-45 +27/-35

• outboard δAO +15/-25 +45/-55 +22/-45

spoilers δSP

• inboard +20/0 +75/-75 -

• midspan +45/0 +75/-75 -

• outboard +45/0 +75/-75 -

• ground +20/0 +75/-75 -

flaps

• inboard δFI +113/0 +1.83/-1.83 -

• outboard δFO +113/0 +1.83/-1.83 -

rudder

• upper δRU +25/-25 +50/-50 +40/-40

• lower δRL +25/-25 +50/-50 +40/-40

yaw

damper

• upper δY U +3.6/-3.6 +15/-15 -

• lower δY L +3.6/-3.6 +15/-15 -
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partial loss fault in some extent due to its inherent robustness as stated in the last section, i.e.,

there is a point of partial loss fault, where the faulty actuator cannot deal with the fault alone.

In this scenario the redundant actuators will be activated to work together with the faulty regular

actuator to keep the same/similar function of the healthy regular actuators.

This point can be found from the position limit and rate limit. Here position limit is used to

show how to reach the point of the tolerability of system for regular actuator with SMC. Consider

companion affine nonlinear system Eq. (2.32) and rewrite E(x) as:

E(x) = E0(x)Wc

E0(x) is the nominal input distribution matrix. Wc is effectiveness matrix of actuators:

Wc = diag{wc1, wc2, · · · , wcm} (4.16)

where:

1 ≥ wci ≥ 0, ∀ i = 1, 2, · · · ,m (4.17)

wci = 1 means there is no fault in the regular actuator, wci = 0 means total loss of the regular

actuator and the value between 1 and 0 means there is a partial loss fault in the regular actuator.

Choose the control law as:

u = R · Σ (4.18)

where R and Σ are the same as in Eq. (2.42). By choosing the same Lyapunov function as in

Eq. (2.41) and taking derivative of this Lyapunov function, one obtains:

V̇ = sT ṡ = sT (Ψ− E0WcRΣ)

where Ψ(x, t) is the same as in Eq. (2.37). We have:

siṡi = ψisi − E0iiwciρi|si|, ∀ i = 1, 2, · · · ,m

Utilizing η-reachability condition [Slotine and Li, 1991]:

ψisi − E0iiwciρi|si| ≤ −η|si|

That is:

E0iiwciρi ≥ ηi − |ψi|
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Here ρi must have the same sign as E0ii. So one has:

wci ≥ ηi − |ψi|
|E0ii||ρi| (4.19)

Suppose ρi is limited in its magnitude by |ρi|max and ψ has a bound of F , then wci should be:

wci ≥ 1

|ρi|max

ηi − F

|E0ii| = wcitolerable
(4.20)

This is the point of tolerability of the system for faults in the regular actuators with SMC, i.e.,

when the effectiveness of the actuator is less than this upper bound wcitolerable , the faulty actuator

cannot accommodate the fault alone, some redundant actuators are needed. The tolerability is

defined as:

Definition 4.1 Tolerability of the system for faults in actuators with SMC is defined as the limited

fault (uncertainty) that certain actuator can accommodate alone with SMC.

Remark 4.1 This definition is the starting point of activating redundant actuators, since from

this point the regular actuators cannot accommodate the fault solely, redundant actuator(s) must be

activated. wcitolerable is the threshold of activating the redundant actuators.

4.4 Tolerability of the Elevator on Boeing 747-100/200 with SMC

It is not easy to get the analytical tolerability because analytical model is not always obtainable,

e.g., the aerodynamic coefficients are always given in lookup table. Since we have the high fidelity

simulation model of Boeing 747 with lookup tables of aerodynamic coefficients, simulations have

been done to estimate the tolerability of elevator with SMC. The simulations here are performed on

the 3 platforms: longitudinal axis of Boeing 747-100/200 on FTLAB747 (AG16) with high fidelity

nonlinear model, the reduced aerodynamic coefficients based nonlinear longitudinal model and the

fitted approximate nonlinear longitudinal model.

Figure 4.1 and Figure 4.2 show the simulation results under SMC with maximum deflection of

elevator at the full range of 17 ◦. This is the situation the effectiveness is 1, i.e., there is no fault in

elevator.

The simulation results under SMC with maximum deflection of elevator at 10 ◦ (59% of effectiveness)

are shown in Figure 4.3 and Figure 4.4.
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Figure 4.1: States and control of SMC controlled system with full effectiveness

0 5 10 15 20 25 30 35 40
−0.01

0

0.01

t (sec)

s

approximated

0 5 10 15 20 25 30 35 40
−0.01

0

0.01

t (sec)

s

fitted

0 5 10 15 20 25 30 35 40
−0.01

0

0.01

t (sec)

s

ftlab

Figure 4.2: Sliding surface of SMC controlled system with full effectiveness
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Figure 4.3: States and control of SMC controlled system with 59% effectiveness
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Figure 4.4: Sliding surface of SMC controlled system with 59% effectiveness

The simulation results under SMC with maximum deflection of elevator at 5 ◦ (29% of effectiveness)

are shown in Figure 4.5 and Figure 4.6.
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Figure 4.5: States and control of SMC controlled system with 29% effectiveness
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Figure 4.6: Sliding surface of SMC controlled system with 29% effectiveness

The simulation results under SMC with maximum deflection of elevator at 4 ◦ (24% of effectiveness)

are shown in Figure 4.7 and Figure 4.8.
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Figure 4.7: States and control of SMC controlled system with 24% effectiveness
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Figure 4.8: Sliding surface of SMC controlled system with 24% effectiveness

The simulation results under SMC with maximum deflection of elevator at 3 ◦ (18% of effectiveness)

are shown in Figure 4.9 and Figure 4.10.
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Figure 4.9: States and control of SMC controlled system with 18% effectiveness
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Figure 4.10: Sliding surface of SMC controlled system with 18% effectiveness

The simulation results under SMC with maximum deflection of elevator at 2 ◦ (12% of effectiveness)

are shown in Figure 4.11 and Figure 4.12.
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Figure 4.11: States and control of SMC controlled system with 12% effectiveness

From the above simulation results we can see that for the FTLAB747 when the elevator has

maximum deflection of only 4 ◦ the elevator cannot accommodate the fault itself, while for the

reduced nonlinear models this is 2 ◦. This will be used in the reconfigurable control design.

4.5 Summary

The chapter investigates several characteristics of FTC systems. In the context of FTC, the

capability to accommodate fault and failure is one extra characteristic of the control system. In this

chapter, faults and failures are compared with modeling uncertainty firstly. Then the robustness

of the controller against modeling uncertainty and the tolerability of the controller accommodating

fault and failure are introduced and defined on the design of SMC. The tolerability will be used in
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Figure 4.12: Sliding surface of SMC controlled system with 12% effectiveness

the reconfigurable control design in Chapter 6.
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Chapter 5

Sliding Mode Fault Tolerant Control

Dealing with Modeling Uncertainties

and Actuator Faults Separately

In Chapter 4, the difference between modeling uncertainty and actuator faults have been discussed

and it is necessary to deal with these two kind of uncertainties separately in an effective FTC

design. In this chapter, two sliding mode control algorithms are developed for nonlinear systems

with both modeling uncertainties and actuator faults. The first algorithm is developed under an

assumption that the uncertainty bounds are known. Different design parameters are utilized to deal

with modeling uncertainties and actuator faults respectively. The second algorithm is an adaptive

version of the first one, which is developed to accommodate the uncertainties and faults without

utilizing the exact bounds information. The stability of the overall control systems is proved by

using Lyapunov function. The effectiveness of the developed algorithms have been verified on the

nonlinear longitudinal model of Boeing 747-100/200.

5.1 Introduction

Partial loss fault in actuator is a very common fault in aircraft systems. This kind of fault

can be treated as uncertainty added to the control distribution gain and incorporated in the
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controller design. Robust control techniques can then be resorted to accommodate this kind of

fault. Traditional robust control, e.g. H∞, makes trade-off between performance and robustness

[Blanke et al., 2003]. Actuator fault may cause large changes in the control distribution gain, i.e.,

a large uncertainty may be caused by actuator fault which may occur uncertainly in terms of time,

location and magnitude. In the normal situation, such uncertainty does not affect the system and

only pose effects on the system when there is a fault. If this occasional large uncertainty is taken into

consideration in the traditional robust control system design, it will lead to unacceptable system

performance in normal situation due to the big trade-off for considering such great uncertainty. As

discussed in Chapter 2.2, SMC is a suitable candidate because of its insensitivity and robustness.

Since faults do not occur all the time (normally real system will mostly work under conditions

without faults), uncertainties due to faults are not always in effect. In general, SMC was synthesized

with one design parameter in the discontinuous part of the control considering the uncertainty in

the system dynamics and the uncertainty caused by actuator faults together [Shtessel et al., 1998;

Wheeler et al., 1998; Alwi and Edwards, 2005; Huang and Way, 2001; Hess and Wells, 2003]. This

leads to significant control effort even there is no actuator fault. In [Slotine and Coetsee, 1986] the

uncertainties of system dynamics and control gain are separated. However, both lower and upper

bounds of the uncertainty of control distribution gain should be known, because these uncertainties

are still dealt with by only one design parameter.

For some applications, the uncertainty bound of the system dynamics is hard to obtain. In

FTC system, faults in fact occur at unknown time and with unknown magnitude. The uncertainty

incurred by such faults in control distribution gain may be significant and come into play at unknown

time with unknown magnitude. This stimulates a new control strategy, which incorporates adaptive

strategies in the SMC to accommodate unknown uncertainty bound [Wheeler et al., 1998; Alwi and

Edwards, 2005; Alwi et al., 2010; Edwards et al., 2010a]. Adaptive mechanism was used on the

uncertainty bound in [Wheeler et al., 1998] and on the discontinuous control term in [Alwi and

Edwards, 2005; Alwi et al., 2010; Edwards et al., 2010a]. However, the estimated parameters are

concerned with both uncertainties in system dynamics and those caused by actuator faults.

This chapter develops firstly a SMC algorithm that deals with the uncertainties in system

dynamics and control distribution gain separately with only the information on upper bounds

of the uncertainties. An extra design parameter, compared with traditional SMC, is introduced in
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the discontinuous component of the control to deal with the uncertainty caused by actuator faults.

Then an adaptive SMC method is synthesized with different estimated parameters which deals with

the uncertainties of system dynamics and actuator faults separately. This method does not need

the exact values of the uncertainty bounds. The gain of discontinuous control term that deals with

the uncertainty in system dynamics and the gain of discontinuous control term that deals with

uncertainty incurred by actuator faults are estimated respectively.

The rest of this chapter is organized as follows. In Section 5.2 a SMC is derived with separated

uncertainties in system dynamics and control distribution gain for affine nonlinear systems using

Lyapunov method. Derivation of an adaptive SMC and proof of its stability are provided in Section

5.3. In Section 5.4, the simulation results on the nonlinear longitudinal model of Boeing 747-100/200

are given to show the effectiveness of the developed algorithms. Finally, a summary is presented in

Section 5.5.

5.2 Sliding Mode Fault Tolerant Control with Separated Uncertainty

Bounds

Considering the SISO affine nonlinear system Eq.(2.23) with modeling uncertainty and faults, the

system dynamics and control distribution gain can be rewritten as:

A(x) = A0(x) + ΔA(x)

B(x) = B0(x) + ΔB(x)
(5.1)

where A0(x) is the nominal system dynamics, B0(x) is the nominal control distribution gain;

ΔA(x) is the modeling uncertainty on system dynamics and ΔB(x) is the uncertainty in control

distribution gain incurred by a fault in actuator. In this chapter only partial loss fault in actuator

is considered, which means that faulty actuator will not lose its effectiveness completely. Thus we

have the following assumption.

Assumption 5.1 The control distribution gain has the following properties:

B0(x) �= 0, B(x) �= 0 (5.2)

We assume that the uncertainties in system dynamics and control distribution gain are limited

to certain constants.
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Assumption 5.2 The uncertainty of system dynamics and the uncertainty caused by actuator fault

are bounded and satisfy:

||ΔA(x)|| < F < +∞
|ΔB(x)B−1

0 (x)| < L < 1
(5.3)

where F > 0, L > 0 are positive numbers representing the upper bound of uncertainty in the system

dynamics and upper bound of the uncertainty caused by actuator fault.

The derivative of the sliding manifold Eq.(2.26) becomes:

ṡ = λ0ė+ λ1ë+ · · ·+ λn−2e
(n−1) + y

(n)
d (t)− y(n)(t)

= ψ0(x)−ΔA(x)− (B0(x) + ΔB(x))u

where

ψ0(x) = λ0ė+ λ1ë+ · · ·+ λn−2e
(n−1) + y

(n)
d (t)−A0(x) (5.4)

In traditional SMC-based FTC, one parameter ρ is designed as the gain of the discontinuous

control term to deal with uncertainty in system dynamics and uncertainty caused by partial loss

fault together. In the following theorem, two parameters (ρ, γ) are designed in the discontinuous

control term to deal with uncertainty in system dynamics and uncertainty caused by fault separately,

in the presence of both system uncertainties and faults.

Theorem 5.1 For the nonlinear system Eq.(2.23) with bounded uncertainties Eq.(5.3), sliding

manifold Eq.(2.26) is asymptotically stable by employing following feedback control:

u = un + uss + usg (5.5)

where

un = B−1
0 ψ0 (5.6)

is the nominal control with knowledge of a priori nominal model and

uss = B−1
0 ρsign(s) (5.7)

usg = B−1
0 γ|ψ0|sign(s) (5.8)

are the discontinuous control terms. The design parameters ρ and γ are chosen as following:

ρ >
F

1− L
(5.9)
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γ >
L

1− L
(5.10)

Proof:

Define a Lyapunov function as:

V =
1

2
s2 (5.11)

The derivative of the above function is:

V̇ = −sΔA− sΔBB−1
0 ψ0 − ρ|s| −ΔBB−1

0 ρ|s|
−γ|ψ0||s| −ΔBB−1

0 γ|ψ0||s|
(5.12)

Using the uncertainty bound assumption Eq.(5.3) obtains:

V̇ < −[ρ(1− L)− F ]|s| − [γ(1− L)− L]|ψ0||s| (5.13)

If the two design parameters ρ and γ are selected as in Eq.(5.9) and Eq.(5.10), it can be concluded

that:

V̇ < 0

which shows the sliding manifold Eq.(2.26) is asymptotically stable. Thus the system can asymptotically

track the desired reference yd(t).

Remark 5.1 Here we use two design parameters (ρ, γ) to deal with the uncertainties in system

dynamics and control distribution gain separately with only the information of the upper bounds

of the uncertainties (F,L). Compared with traditional SMC, an extra design parameter γ is

introduced into the discontinuous control term to accommodate the uncertainty caused by actuator

faults separately from the uncertainty in system dynamics.

5.3 Adaptive Sliding Mode Fault Tolerant Control

For some applications, not only the precise system model is hard to obtain, but also the uncertainty

bound is hard to know in advance. This is obvious in FTC system. The faults may occur at

uncertain time and with unknown magnitudes. Hence for partial loss fault in actuator, the change in

control distribution gain of ΔB(x) is not available in advance. Adaptive method can be introduced

into SMC to accommodate the unknown uncertainty bound of the system dynamics, and also partial
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loss fault in actuators. The uncertainty bounds in system dynamics are considered to be nominal,

so the adaptive method can be used. In FTC system, partial loss fault in actuator occurs at certain

unknown time but the fault magnitude will be kept invariable after the occurrence of the fault.

Hence, the uncertainty in the control distribution gain caused by partial loss fault is bounded by a

constant after the fault occurs. An adaptive SMC synthesized with two design parameters in the

discontinuous control term is proposed for the nonlinear system with system dynamic uncertainties

and actuator faults. Two adaptive laws are designed to estimate separately the uncertainty bounds

of system dynamics and control distribution gain. This method avoids significant control effort in

the methods that the combined uncertainty bound is used. This is the design philosophy of efficient

FTC: when no fault occurs, no extra control effort will be exerted.

The adaptive SMC synthesized with two design parameters in the discontinuous control term is

summarized as follows.

Theorem 5.2 For the nonlinear system Eq.(2.23) under control of Eq.(5.5), sliding manifold

Eq.(2.26) is asymptotically stable utilizing the following adaptive laws:

ρ̇ = aρ|s|
γ̇ = aγ |s||ψ0|

(5.14)

where aρ and aγ are adaptive rates.

Proof:

Define parameter errors as:

ρ̃ = ρb − ρ

γ̃ = γb − γ
(5.15)

where

ρb =
F

1− L
, γb =

L

1− L
(5.16)

F > 0 and L > 0 are defined as in Eq.(5.3).

Choose a Lyapunov function as:

V =
1

2
s2 +

1

2

1− L

aρ
ρ̃2 +

1

2

1− L

aγ
γ̃2 (5.17)
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The derivative of this Lyapunov function with respect to time is:

V̇ = −sΔA− sΔBB−1
0 ψ0 − ρ|s| −ΔBB−1

0 ρ|s|
−γ|ψ0||s| −ΔBB−1

0 γ|ψ0||s|
−(ρb − ρ)|s|(1− L)− (γb − γ)|ψ0||s|(1− L)

(5.18)

All the symbols except the adaptive rates used here are as defined in Section 5.2. With Eq.(5.3),

Eq.(5.18) can be rewritten as:

V̇ < |s|F + L|s||ψ0| − (1− L)ρ|s| − (1− L)γ|ψ0||s|
−(ρb − ρ)|s|(1− L)− (γb − γ)|ψ0||s|(1− L)

Based on Eq.(5.16):

V̇ < 0

which shows the sliding manifold Eq.(2.26) with the adaptive sliding mode algorithm is asymptotically

stable. Thus the system can asymptotically track the desired reference yd(t).

Remark 5.2 The adaptive SMC algorithm proposed here is synthesized with two adaptive laws to

estimate two parameters (ρ, γ), which clearly separated the uncertainties in system dynamics and in

control distribution gain. Thus the synthesization is clearly aimed and the control effort is greatly

reduced when there is small uncertainty in control distribution gain. The control effort reduction

is more significant in the FTC system where we can deal separately with uncertainty of system

dynamics and the uncertainty caused by the partial loss fault in actuator.

5.4 Simulation and Evaluation

The longitudinal motion considered is to track a pitch angle command θd in the presence of both

partial loss fault of elevator and system dynamics uncertainties. The control was synthesized with

the fitted nonlinear longitudinal model of Boeing 747-100/200 and the simulation was carried out

on the nonlinear longitudinal model of Boeing 747-100/200 in Chapter 3.

The reference signals come from following prefilter:

θ̈d + 3θ̇d + 4θd = 4θ� (5.19)
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where θ� changes from 0 to 0.1 rad at 5 second, and goes back to 0 at 10 second, then changes to

– 0.1 rad at 15 seconds, and goes back to 0 at 20 seconds and last for 5 seconds. This pattern will

repeat in the next 25 seconds. Partial loss of effectiveness in elevator occurs at 25 seconds and there

is certain uncertainties in system dynamics A(x). To make it simple, multiplicative uncertainty is

used in the simulation, e.g., 10% uncertainty in system dynamics means that the nominal system

dynamics used in the control synthesization is (1 − 10%)A. Three cases are simulated. In the

first case there is 10% uncertainty in system dynamics and 50% partial loss fault will occur at 25

seconds. In the second case there is 10% uncertainty in system dynamics and 70% partial loss fault

will occur at 25 seconds. In the third case there is 20% uncertainty in system dynamics and 50%

partial loss fault will occur at 25 seconds.

Case 1: 10% uncertainties in system dynamics, 50% partial loss fault

Choose λ = 1, F = 0.02, L = 0.5, ρ = 0.04, γ = 1 in the proposed sliding mode algorithm. For

comparison, the traditional SMC with only one design parameter in the discontinuous control term

had been implemented with ρ = 0.166.

Figure 5.1 shows the tracking performance and the control output with the proposed SMC

(PSMC) and the traditional SMC (TSMC) simulated on the nonlinear longitudinal model of Boeing

747-100/200. The solid line is the desired pitch angle profile, the dash dot line is the pitch angle

output of the system with the proposed SMC and the dotted line is the pitch angle output of the

system with the traditional SMC. The bottom plot in the figure shows the control effort of the

elevator. The solid line is the control output with the proposed SMC and the dotted line is the

control output with the traditional SMC.

The simulation results shows that, with both the proposed a SMC method and the traditional

SMC, the aircraft can track the pitch angle command profile with a small tracking error even when

there is uncertainty in the system dynamics and partial loss fault in the elevator. The tracking

performance is quantified by Root Mean Square Error (RMSE) of the tracking error of pitch angle

shown in Table 5.1. Compared with the traditional SMC method, the control effort is greatly

reduced in proposed SMC, which can be observed in Figure 5.1 and is quantified by the Root Mean

Square (RMS) of the control effort as in Table 5.1. In the figure, θT and δeT mean the pitch angle

and control output of the system under control of traditional SMC.
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Figure 5.1: Tracking performance using SMCs with 10% uncertainty in system dynamics and 50%

loss of effectiveness in elevator
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In the proposed adaptive SMC method, λ = 3, aρ = 0.3, aγ = 5 were chosen. For comparison,

the traditional adaptive SMC with only one estimated parameter in the discontinuous control term

had been implemented with adaptive rates as aρ = 1.

The tracking performance with the adaptive SMC methods is shown on top plot of Figure 5.2

and the control effort of the elevator is shown on the bottom plot of Figure 5.2. The adaptive

parameter ρ and γ are illustrated in Figure 5.3. ρT means the variation of ρ in the simulation

with the traditional adaptive SMC. The simulation results show that the adaptive SMC algorithms

can still track the desired command without using the exact uncertainty bounds. Compared with

the traditional adaptive SMC method, the control effort is reduced in the proposed adaptive SMC,

which can be observed in Figure 5.2 and is quantified in Table 5.1. Compared with the nonadaptive

algorithm, the control effort is less, which can be observed from Figure 5.1 and Figure 5.2 and the

RMS value is shown in Table 5.1. The estimated parameters converge to some values.

Case 2: 10% uncertainties in system dynamics, 70% partial loss fault

It is shown in Figure 5.4, with the nonadaptive SMC, when the partial loss fault was increased

to 70% loss of effectiveness in the elevator, i.e., only 30% of the control surface is in effective, the

system cannot track the desired trajectory. However, the adaptive SMC can still track the desired

trajectory although there is certain tracking errors in the initial stage after fault occurrence at 25

sec. In the figure, θa and δea mean the pitch angle and control output of the system under control

of adaptive SMC. Figure 5.5 shows the variation of the estimated parameters in adaptive SMC

which converge to some values.

Case 3: 20% uncertainties in system dynamics, 50% partial loss fault

It is shown in Figure 5.6, with the nonadaptive SMC, when the uncertainty in system dynamics was

increased to 20%, the tracking performance is bad. However, with the adaptive SMC, the system

can still track the desired trajectory with acceptable performance. The estimated parameters in

the adaptive SMC, which are shown in Figure 5.7, converge to some values.

All the three cases show that the proposed algorithms can accommodate partial loss fault in the

actuator and uncertainty in the system dynamics without losing significant performance in normal
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Figure 5.2: Tracking performance using adaptive SMCs with 10% uncertainty in system dynamics

and 50% loss of effectiveness in elevator
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Figure 5.3: Adaptive parameters ρ and γ used in adaptive SMCs with 10% uncertainty in system

dynamics and 50% loss of effectiveness in elevator
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Figure 5.4: Tracking performance using proposed SMCs with 10% uncertainty in system dynamics

and 70% loss of effectiveness in elevator
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Figure 5.5: Adaptive parameters ρ and γ used in proposed adaptive SMC with 10% uncertainty in

system dynamics and 70% loss of effectiveness in elevator
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Figure 5.6: Tracking performance using proposed SMCs with 20% uncertainty in system dynamics

and 50% loss of effectiveness in elevator
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Figure 5.7: Adaptive parameters ρ and γ used in proposed adaptive SMC with 20% uncertainty in

system dynamics and 50% loss of effectiveness in elevator
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Table 5.1: RMSE of pitch angle’s tracking error and RMS of control effort (PA: pitch angle, TE:

tracking error, AF: after fault, CE: control effort)

RMSE of RMSE of

Control algorithm PA’s TE PA’s TE AF RMS of CE

(rad) (rad) (◦)

Case 1

nonadaptive
TSMC 0.0014 0.0019 5.1482

PSMC 0.0013 0.0019 3.7238

adaptive
TSMC 0.0061 0.0081 4.3172

PSMC 0.0062 0.0081 2.6909

Case 2
nonadaptive PSMC 0.0250 0.0354 3.2993

adaptive PSMC 0.0125 0.0174 2.6358

Case 3
nonadaptive PSMC 0.0086 0.0122 3.6753

adaptive PSMC 0.0064 0.0080 2.7149

situation. The simulation results of the first case show that the proposed SMC can reduce the

control effort without sacrificing the tracking performance compared to the traditional SMC with

one design parameter in the discontinuous control term. The adaptive SMC can still track the

command profile with little degradation of the tracking performance, without the information of

the bound of the uncertainty. The second and third cases show that the proposed adaptive SMC

can still track the command profile even when the partial loss fault or the uncertainty in system

dynamics increases.

5.5 Summary

In this chapter, SMC algorithm is developed with introduction of an extra design parameter in the

discontinuous control term to accommodate the uncertainty caused by actuator faults separately

from the uncertainty in system dynamics for affine nonlinear system. The controller can deal with

these two uncertainties respectively. In addition, an adaptive SMC algorithm, with two estimated

parameters concerning the uncertainties of system dynamics and control distribution gain (the

fault), is developed without using exact bound values of the uncertainties. Simulations on the
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nonlinear longitudinal Boeing 747-100/200 airplane show the effectiveness of both algorithms.
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Chapter 6

Sliding Mode Reconfigurable Control

Using Information of Control

Effectiveness of Actuators

In this chapter, a sliding mode reconfigurable control algorithm is developed to deal with nonlinear

aircraft system with partial loss fault or total loss failure of actuators. Sliding mode controllers

for redundant actuators are combined with those for regular actuators to reconfigure the control

system autonomously with the information of effectiveness of the regular actuators. The tolerability

of the sliding mode control system for faults is utilized in the reconfigurable control to improve

the efficiency of the controller. The stability of the control algorithm is proved with Lyapunov

method. The effectiveness of the developed control system has been validated by simulation of the

longitudinal control of Boeing 747-100/200 on FTLAB747.

6.1 Introduction

The paper [Alwi and Edwards, 2008a] developed an adaptive sliding mode control method to deal

with partial loss faults and stuck failures in actuator system of an aircraft based on linear system

model. This is a controller that can only work around the trim points of the aircraft. The redundant

actuators are activated when the online estimated discontinuous control magnitude exceeds a certain
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limit. The regular actuators are discarded completely when the redundant actuators are activated,

though the regular actuators may still contribute to the control of the airplane, e.g., when the regular

actuators suffer from a severe partial loss faults that saturate the actuators. In this situation,

the regular actuator cannot accommodate the faults solely, but they can still contribute to the

control of aircraft. [Zhang et al., 2007; Alwi and Edwards, 2008b; Hamayun et al., 2010a,b, 2011]

developed control allocation algorithms that reallocates the control efforts with health information

of actuators. This method will redistribute the control efforts even under the situations where the

regular actuators can still accommodate the partial loss faults, i.e., the reallocation will start even

though the regular actuator can deal with the fault solely.

In the last chapter, a sliding mode fault tolerate control is developed to deal with fault and

modeling uncertainty separately. The method can only deal with partial loss fault the below some

level. As shown in Figure 6.1, when the partial loss fault increase to 90% the controller can not

deal with it. And surely, this method cannot deal with failures. In this chapter, a sliding mode

reconfigurable control law is developed to accommodate all levels of partial loss fault and total

loss failure in the regular actuators without redesigning the controller, with benefits of simple and

reliable control system design since the baseline controller does not need to be changed on-line

for the concern to stability, safety as well as verification & certification in practical engineering

practices. The control effort is reconfigured autonomously between the regular actuator and the

redundant actuator when the regular actuator with fault cannot accommodate the fault solely.

The difference between this method and the work of [Alwi and Edwards, 2008a] is that the regular

actuator will still contribute to the fault tolerant control when the regular actuator does not totally

fail, but loses its effectiveness partially. The redundant actuator is not designed for having the same

features or capabilities as the regular actuator, such as stabilizer and elevator, since stabilizer is

normally used for airplane trimming and its moving rate is much slower than that of the elevator,

as shown in Table 4.1. It is better to use the regular actuator when it still can contribute to the

control of the airplane since the highest priority of an aircraft is to try all possible solutions and

available control resources for keeping the aircraft to be controlled and landed safely. The method

of this thesis work is different from [Alwi and Edwards, 2008b; Hamayun et al., 2010a,b, 2011] in

that it uses the tolerability of the system for regular actuator with sliding mode control to determine

when the reconfiguration of the control effort starts, i.e., the redundant actuators are only started
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when the regular actuators cannot deal with faults solely. Faults information (effectiveness of

certain actuators) is needed in the development of the fault tolerant controller. This information

can be obtained from certain sensors installed on actuators [Alwi and Edwards, 2008b] or by using

certain fault magnitude estimation scheme. The stability of the designed controller is proved by

using Lyapunov method. The effectiveness of the control algorithm is simulated and validated on

longitudinal control of Boeing 747 under platform FTLAB747.

Figure 6.1: Control performance of 90% partial loss fault in elevator

The rest of this chapter is organized as follows. Firstly, the problem this chapter will deal

with is formulated. Secondly, a sliding mode reconfigurable control is derived for affine nonlinear

systems using Lyapunov method. Thirdly, the simulation results of the longitudinal control of

Boeing 747-100/200 on FTLAB747 are given. Summary is given finally.
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6.2 Problem Formulation

The flight dynamics of a rigid aircraft can be modeled as affine nonlinear system in Eq.(2.31) where

x ∈ R12 is the state vector of the aircraft:

x = [p q r VTAS α β φ θ ψ he xe ye]
T

where p, q, r are roll, pitch and yaw angular rates respectively; VTAS , α, β are the true air speed,

angle of attack and sideslip angle respectively; φ, θ, ψ are roll angle, pitch angle and yaw angle

respectively.

Remark 6.1 As one important family of nonlinear systems, the above affine nonlinear system

representation in Eq. (2.31) is widely used for airplane modeling. Due to inherent nonlinearity

of airplanes, the dynamics of airplane should generally be represented by nonlinear function f(x)

with respect to the states x, while the control actions can be approximated as linear addition to the

system as G(x)u (although G(x) is nonlinear function with respect to the states x).

Considering the modeling uncertainty and the control redundancy, system Eq. (2.31) can be

reformulated as:⎧⎨
⎩ ẋ = f0(x) + Δf(x) + (Gc(x) + ΔGc(x))uc + (Gr(x) + ΔGr(x))ur

y = h(x)
(6.1)

where f0(x) is the nominal form of f(x); Gc(x) ∈ Rn×m is the control input distribution matrix of

regular actuators; Gr(x) ∈ Rn×m is the control input distribution matrix of redundant actuators.

Δf(x), ΔGc(x), ΔGr(x) are unknown bounded perturbations which may be caused by modeling

uncertainties and faults. uc is the control effort of regular actuators and ur is the control effort of

redundant actuators.

Remark 6.2 When there are no redundant actuators for certain regular actuators, the output of

redundant actuators will be zero. If there are more than one redundant actuators for one regular

actuator, then allocation algorithms are needed. In this situation, the control output for these

redundant actuators can still be synthesized as ‘one’ control output.
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Problem 6.1 Given a real-time command reference profile yd(t), a SMC for aircraft system Eq. (6.1)

is designed so that the system can track the command reference profile, even when there are

faults/failures in the actuators, with tracking errors asymptotically converged to zero:

lim
t→∞ |ydi − yi| = 0, ∀ i = 1, 2, · · · ,m (6.2)

6.3 Sliding Mode Reconfigurable Control

From the robustness analysis of the method in Chapter 4, it can be seen that sliding mode control

can accommodate modeling errors and certain partial loss faults in one regular actuator. When there

is severe partial loss faults that saturate the regular actuators significantly, the regular actuator can

not deal with them solely. Furthermore, when there is a total failure such as stuck or floating in the

regular actuator, it has no capability to deal with it. From the tolerability analysis in Chapter 4,

there is a point where the regular actuator with SMC cannot accommodate severe partial loss fault

alone. For stuck and floating faults, the actuators lost their effectiveness totally, and even worse

the outputs of the regular actuators become constant or time-varying disturbances added to the

system. In the first situation, the regular actuator can still contribute to the fault tolerant control

of the aircraft, and it can work together with redundant actuators to accommodate the faults. In

the second situation, the redundant actuators will replace the regular actuators completely. In

this section, a method that can reconfigure the controller autonomously when these two kinds of

faults occur in the system by utilizing the effectiveness information of the regular actuators will be

developed.

Rewrite the companion format Eq. (2.32) into the format of Eq. (6.1), i.e., rewrite E(x)u:

E(x)u = Ec(x)uc + Er(x)ur = [Ec0(x) + ΔEc(x)]uc + [Er0(x) + ΔEr(x)]ur (6.3)

where Ec(x), Er(x) are the control input distribution of regular actuators and redundant actuators;

Ec0(x), Er0(x) are the nominal value of control input distribution of regular actuators and redundant

actuators; ΔEc(x), ΔEr(x) are bounded uncertain matrix of the nominal control input distribution

of regular actuators and redundant actuators.

The control effectiveness of the regular actuators is defined in Eq. (4.16). It can be obtained

from fault detection and diagnosis block or from certain sensors installed on the control surfaces.
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With this effectiveness information of the regular actuators, Eq. (6.3) can be rewritten as:

E(x)u = [Ec0(x) + ΔEc(x)]Wcuc + [Er0(x) + ΔEr(x)]ur (6.4)

Following theorem can be obtained for the sliding mode reconfigurable controller that can

accommodate not only partial loss but also total loss of regular actuators.

Theorem 6.1 For the nonlinear system Eq. (2.32) and Eq. (6.4), sliding surface Eq. (2.34) is

asymptotically stable by employing the following feedback control law:

uc = Ec0(x)
−1(Ψ0(x, t) +R · Σ) (6.5)

ur =

⎧⎨
⎩ urtrim if wci ≥ wcitolerable

Er0(x)
−1(Im −Wc)(Ψ0(x, t) +R · Σ) if wci < wcitolerable

(6.6)

even when there are partial loss fault or total failure in regular actuators. The uncertainty of control

input distribution meets the following bounds:

|(ΔEcE
−1
c0 )ii| < Di < 1, |(ΔErE

−1
r0 )ii| < Di < 1, ∀ i = 1, 2, · · · ,m (6.7)

Proof: If wci ≥ wcitolerable , it is evident from Theorem 4.1.

If wci < wcitolerable , choose a Lyapunov function as:

V =
1

2
sT s (6.8)

The time derivative of the Lyapunov function Eq. (6.8) can be obtained as following:

V̇ = sT ṡ

= sT [Ψ0 +ΔΨ− (Im +ΔEcE
−1
c0 )Wc(Ψ0 +R · Σ)− (Im +ΔErE

−1
r0 )(Im −Wc)(Ψ0 +R · Σ)]

= sT [Φc − (Im +ΔEcE
−1
c0 )WcR · Σ− (Im +ΔErE

−1
r0 )(Im −Wc)R · Σ]

=
∑m

i=1{(Φc)isi − [1 + (ΔEcE
−1
c0 )ii]wciρi|si| − [1 + (ΔErE

−1
r0 )ii](1− wci)ρi|si|}

where Φc = ΔΨ−ΔEcE
−1
c0 WcΨ0 −ΔErE

−1
r0 (Im −Wc)Ψ0.

Assume that the uncertainty of system dynamics meets the following bounds:

|[Φc(x, t)]i| ≤ Lci, ∀ i = 1, 2, · · · ,m (6.9)

where Lci, ∀ i = 1, 2, · · · ,m are some positive constants.
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Choose the design parameter as:

ρi >
Lci

1−Di
, ∀ i = 1, 2, · · · ,m (6.10)

Then the derivative of V meets:

V̇ ≤ ∑m
i=1{Li|si| − [1− |(ΔEcE

−1
c0 )ii|]wciρi|si| − [1− |(ΔErE

−1
r0 )ii|](1− wci)ρi|si|}

≤ ∑m
i=1[Li|si| − (1−Di)wciρi|si| − (1−Di)(1− wci)ρi|si|]

=
∑m

i=1[Lci − (1−Di)ρi]|si|
≤ 0

The sliding surface Eq. (2.34) is then asymptotically stable.

6.4 Simulation Results

The longitudinal motion is considered to track a pitch angle command θd even in the presence

of partial loss or total loss of effectiveness of elevator. The control law was synthesized with the

fitted approximate longitudinal model of Boeing 747-100/200 and the simulation was carried out

on FTLAB747.

The reference signals come from following prefilter:

θ̈d + 3θ̇d + 4θd = 4θ� (6.11)

where θ� changes from 0 to 0.1 rad at 5 second, and goes back to 0 at 10 second, then changes to

-0.1 rad at 15 seconds, and then goes back to 0 at 20 seconds and lasts for 5 seconds. This pattern

will repeat every 25 seconds.

The sliding surface is chosen as:

s = θ̇d − q + λ(θd − θ) (6.12)

Assume ΔE = 0.4E0, then ΔM = 0.4 and D = 1 + ΔM = 1.4. The focus of this chapter is

on how the faults and failures affect the control system, therefore it is assumed that there is no

uncertainty in f(x). From the trim values, it can be calculated that |Φ| < 0.7073, so L = 0.5052.

Choose λ = 3, ρ = 0.53 and wctolerable = 0.4 and three sliding mode reconfigurable control

algorithms are simulated: the one proposed in this chapter, the one with control allocation [Alwi
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and Edwards, 2008b] and the one proposed in [Alwi and Edwards, 2008a]. Simulation results are

shown in Fig. 6.2, Fig. 6.3 and Fig. 6.4. In the figures, subscript CA means the related variable in

control allocation sliding mode control algorithm and subscript switch means the related variable

in the adaptive sliding mode control proposed in [Alwi and Edwards, 2008a]. Six situations with

different types and levels of elevator faults are simulated: 1) normal, 2) 50% partial loss fault, 3)

90% partial loss fault, 4) total failure floating with angle of attack α, 5) total failure stuck at 17◦

and 6) total failure stuck at −1◦.
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Figure 6.2: Pitch angle tracking under different testing scenarios
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Figure 6.3: Elevator deflection under different testing scenarios
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Figure 6.4: Stabilizer deflection under different testing scenarios
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Fig. 6.2 shows the tracking performance with the three sliding mode reconfigurable control

algorithms. The solid line is the reference profile θd. The dash line is the pitch angle simulated on

the nonlinear longitudinal model Boeing 747-100/200 with the proposed algorithm in this chapter,

the dot line is with the control allocation SMC and the dash-dot line is with the adaptive SMC

proposed in [Alwi and Edwards, 2008a]. Fig. 6.3 shows the synthesized control output of elevator

and Fig. 6.4 shows the synthesized control output of stabilizer. The dash line in these two figures is

the control output with the SMC algorithm proposed in this chapter, the dot line with the control

allocation SMC and the dash-dot line with the adaptive SMC presented in [Alwi and Edwards,

2008a].

The simulation results show that, with the three sliding mode reconfigurable controller, the

aircraft can track the pitch angle command profile with small tracking error even when there is a

partial loss fault or a total loss failure of elevator. With the proposed SMC in this chapter, the

control effort is reconfigured autonomously between elevator and stabilizer with control effectiveness

information of the elevator when there is a fault in the elevator which is beyond the tolerability

of elevator. Contrast to the SMC with control allocation which will activate stabilizer whenever

there is a fault, the stabilizer will only be activated beyond tolerability of the regular actuator with

SMC. This can be found in Fig. 6.3 and Fig. 6.4. For the adaptive SMC proposed in [Alwi and

Edwards, 2008a], when it is beyond the tolerability the stabilizer will be activated and the elevator

will discarded completely even though the elevator still can contribute to fault accommodation.

This can be observed in Fig. 6.3 and Fig. 6.4. In the design of the plane, stabilizer is not for

control surface of pitch control under normal flight conditions, but mainly for trimming purpose.

So practically, it is better only to activate stabilizer when the elevator cannot accommodate the

fault soly and it is better to use elevator together with stabilizer when it is not completely failed.

6.5 Summary

In this chapter, a sliding mode reconfigurable control algorithm is developed to accommodate partial

or total loss of control effectiveness of regular actuator under the assumption that the effectiveness

of the regular actuator can be obtained from a fault detection and diagnosis scheme or certain

sensors. The redundant actuator is activated autonomously when there is severe partial loss fault

99



that saturates the regular actuator or the regular actuator fails totally. This algorithm is effective

in normal situation, partial fault situation and even total failure situation. The stability of the

reconfigurable control is proved using Lyapunov method. Simulation validation on the longitudinal

control of Boeing 747-100/200 shows the effectiveness of the developed algorithm.
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Chapter 7

Sliding Mode Reconfigurable Fault

Tolerant Control for Nonlinear

Aircraft Systems without FDD

In Chapter 6, a sliding mode reconfigurable controller using the information of actuator effectiveness

from special sensors or an FDD scheme which are costly and are not always available, was proposed.

In this chapter, a sliding mode reconfigurable control is developed to accommodate partial loss fault

and total failure occurred in regular actuators without using explicit knowledge of the faults/failures.

With the proposed reconfiguration control, the system even does not ‘notice’ the faults or failures.

No fault detection and identification module (compared with the active fault tolerant control

method [Song et al., 2003]) or special sensors is needed. The control is reconfigured autonomously by

monitoring the switching function. The synthesis of sliding mode control on regular and redundant

actuators are ‘combined’ or ‘integrated’ into one procedure. The redundant actuators will start to

work together with the regular actuators when the regular actuators cannot suppress the tracking

error to the defined boundary due to total failures or partial loss faults that saturate the regular

actuators.

101



7.1 Sliding Mode Reconfigurable Control without Dedicated FDD

Considering the same Problem 6.1 in Chapter 6. With the nonlinear airplane Eq.(2.32), Eq.(6.1)

and Eq.(6.3), we have the following theorem for the sliding mode reconfigurable controller that can

accommodate partial loss and total failure of regular actuators such as stuck and floating without

explicit knowledge of faults/failures.

Theorem 7.1 For nonlinear system Eq.(2.32), Eq.(6.1) and Eq.(6.3), sliding manifold Eq.(2.34)

is asymptotically stable by employing the following feedback control

uc =
1

2
Ec0(x)

−1(Ψ0(x, t) +R · Σ)(−P + Im) (7.1)

ur =
1

2
Er0(x)

−1(Ψ0(x, t) +R · Σ)(P + Im) (7.2)

where

P = diag{sign(|s1| − ε1), sign(|s2| − ε2), · · · , sign(|sm| − εm)}

ε1, ε2, · · · , εm are small positive constants. This controller works in normal situation, under partial

loss fault, and under total failure of regular actuators. The uncertainty of control input distribution

meets the following bounds:

|(ΔEcE
−1
c0 )ii| < Di < 1, ∀ i = 1, 2, · · · ,m (7.3)

|(ΔErE
−1
r0 )ii| < Di < 1, ∀ i = 1, 2, · · · ,m (7.4)

where Di, ∀ i = 1, 2, · · · ,m, are some positive constants.

Proof: Choose a Lyapunov function as:

V =
1

2
sT s (7.5)

In the normal healthy situation or partial loss fault situation (which means the regular actuator

can still contribute), taking the time derivative of Lyapunov function Eq.(7.5) and using control
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Eq.(7.1)-Eq.(7.2), one obtains:

V̇ = sT ṡ

= sT [Ψ0 +ΔΨ− 1

2
(Im +ΔEcE

−1
c0 )(Ψ0 +R · Σ)(−P + Im)− 1

2
(Im +ΔErE

−1
r0 )(Ψ0 +R · Σ)(P + Im)]

= sT [Φc − 1

2
(Im +ΔEcE

−1
c0 )R · Σ(−P + Im)− 1

2
(Im +ΔErE

−1
r0 )R · Σ(P + Im)]

=
m∑
i=1

{(Φc)isi − 1

2
[1 + (ΔEcE

−1
c0 )ii]ρi|si|(−Pii + 1)− 1

2
[1 + (ΔErE

−1
r0 )ii]ρi|si|(Pii + 1)} (7.6)

where

Φc = ΔΨ− 1

2
ΔEcE

−1
c0 Ψ0(−P + Im)− 1

2
ΔErE

−1
r0 Ψ0(P + Im)

It is assumed that the uncertainty of system dynamics meets the following bounds:

|[Φc(x, t)]i| ≤ Lci, ∀ i = 1, 2, · · · ,m (7.7)

where Lci, ∀ i = 1, 2, · · · ,m, are some positive constants.

Choose the design parameter as:

ρi >
Lci

1−Di
, ∀ i = 1, 2, · · · ,m (7.8)

Then the derivative of V becomes:

V̇ ≤
m∑
i=1

{Lci|si| − 1

2
[1− |(ΔEcE

−1
c0 )ii|]ρi|si|(−Pii + 1)− 1

2
[1− |(ΔErE

−1
r0 )ii|]ρi|si|(Pii + 1)}

≤
m∑
i=1

[Lci|si| − 1

2
(1−Di)ρi|si|(−Pii + 1)− 1

2
(1−Di)ρi|si|(Pii + 1)]

=
m∑
i=1

[Lci − (1−Di)ρi]|si|

≤ 0 (7.9)

This means that the system is stable with the control laws Eq.(7.1)-Eq.(7.2).

When there is a total failure, uc loses all its effectiveness and becomes disturbance added to the

system, i.e., uc = Uc(x, t), where Uc(x, t) is a bounded function, e.g., if it is a stuck failure, Uc(x, t)

will be a constant; if it is a floating failure, Uc(x, t) will be a function of angle of attack which

is limited. The control output ur for regular actuator still keeps as in Eq.(7.2). We assume the
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bound Eq.(7.4) still keeps. When |si| ≥ εi,
1
2(P + Im) = Im, 1

2(−P + Im) = 0. Choose a Lyapunov

function

V =
1

2
sT s (7.10)

Taking the time derivative of the Lyaponov function and using control law Eq.(7.2), one can obtain:

V̇ = sT ṡ

= sT [Ψ0 +ΔΨ′ − (Im +ΔErE
−1
r0 )(Ψ0 +R · Σ)]

= sT [Φr − (Im +ΔErE
−1
r0 )R · Σ]

=

m∑
i=1

{(Φr)isi − [1 + (ΔErE
−1
r0 )ii]ρi|si|} (7.11)

where

Φr = ΔΨ′ −ΔErE
−1
r0 Ψ0

ΔΨ′ = ΔΨ− Ec(x)Uc(x, t)

The uncertainty of system dynamics is assumed to meet the following bounds:

|[Φr(x, t)]i| ≤ Lri, ∀ i = 1, 2, · · · ,m (7.12)

where Lri, ∀ i = 1, 2, · · · ,m, are some positive constants.

Choose the design parameter as:

ρi >
Lri

1−Di
, ∀ i = 1, 2, · · · ,m (7.13)

Then the derivative of V becomes:

V̇ ≤
m∑
i=1

{Li|si| − [1− |(ΔErE
−1
r0 )ii|]ρi|si|}

≤
m∑
i=1

[Lri − (1−Di)ρi]|si|

≤ 0 (7.14)

This means the system will converge to the boundary layer |si| = εi, ∀ i = 1, 2, · · · ,m.

We choose

ρi > max{ Lci

1−Di
,

Lri

1−Di
}, (7.15)

With the control laws Eq.(7.1) and Eq.(7.2), the system can track the reference profile in all the

situations: normal, partial loss fault and total failure.
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Remark 7.1 In this algorithm, control outputs are reconfigured autonomously to regular actuators

and redundant actuators, using the variation of sliding surface, i.e., the combined state error signal

of the system. When there is a big change in the state due to initial condition, big disturbance,

big change in the desire state trajectory as well as fault or failures, the redundant actuators will be

activated to help the regular actuator goes back to the steady state, or at least in a small boundary

in the situation of totally failure in the regular actuators.

7.2 Simulation Results

The longitudinal motion is considered to track a pitch angle command θd with partial loss fault

and total failure of elevator. The control was synthesized with the fitted approximate longitudinal

model of Boeing 747-100/200 and the simulation was done on FTLAB747. The redundant actuator

is stabilizer.

The reference signals are generated by the following prefilter:

θ̈d + 3θ̇d + 4θd = 4θ� (7.16)

where θ� changes from 0 to 0.1 rad at 5 second, and goes back to 0 at 10 second, then changes to

-0.1 rad at 15 seconds, and goes back to 0 at 20 seconds.

The switching surface is chosen as:

s = θ̇d − q + λ(θd − θ) (7.17)

Choose λ = 3, ρ = 0.53, ε = 0.01 in the control algorithm. Simulation results are shown in Fig. 7.1

(the tracking performance with the sliding mode reconfigurable control), Fig. 7.2 (the synthesized

control output of elevator), Fig. 7.3 (the synthesized control output of stabilizer) and Fig. 7.4

(the switching function). Six situations with respect to elevator operating condition are simulated:

health, 50% partial loss fault, 90% partial loss fault, floating with angle of attack, lock at 17◦ and

−1◦. All the faults/failures occur at 10 second.

The simulation results shows that, with the designed sliding mode reconfigurable controller, the

aircraft can track the pitch angle command profile with small tracking error even when there is

partial loss and total failure on the regular actuator: elevator.
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Figure 7.1: Pitch angle tracking
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Figure 7.2: Elevator deflection
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Figure 7.3: Stabilizer deflection
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Figure 7.4: The switching function s
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7.3 Summary

A sliding mode fault tolerant control algorithm is developed to accommodate partial loss fault and

total failure in regular actuators with the help of redundant actuators. The fault and failure are

detected by monitoring the sliding surface without using a dedicated fault and failure detection

module. The controller integrates the regular actuators and the redundant actuators seamlessly.

The stability of proposed controller is proved using Lyapunov method. Simulation results show the

effectiveness of the proposed fault tolerant controller.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis has developed several fault tolerant controllers based on sliding mode control. The

research works focus on the aircraft with partial loss fault and totally failure in regular actuators.

In order to improve the control efficiency of fault tolerant control without sacrificing performance

of normal controller, it is effective to deal with modeling uncertainty and fault separately in the

controller design. The conceptual differentiation of modeling uncertainty and faults introduces an

extra characteristic of fault tolerant controller other than normal or robust controller.

With extra design parameters in the sliding mode controller design, handling of fault can be

separated from the handling of modeling uncertainty in the sliding mode controller naturally. This

kind of fault tolerant control is efficient because of the separate dealing of faults and modeling

uncertainty. The performance of the normal controller will not sacrifice much if adaptive mechanism

is introduced in the controller.

If the effectiveness of the control surface can be obtained from special sensors or FDD scheme,

an efficient reconfigurable controller can be synthesized to be tolerant with partial loss fault and

total failure in regular actuator. The tolerability sets a point on which if the regular actuators can

accommodate the fault solely. When the regular actuator cannot accommodate the fault solely,

redundant actuators are activated to help the regular actuator to stabilize the system. The faulty

regular actuator will still contribute even it cannot deal with the faults itself provided it is not
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in a failure situation. The reconfiguration of the control effort among the regular actuators and

redundant actuators is autonomously and seamlessly.

Because of the cost of special sensors and the delay of FDD, the effectiveness information is not

always available. A reconfigurable control that monitors the absolute value of the sliding function

is developed to deal with faults as well as failures without dedicated fault and failure detection

mechanism. This method can make sure the faulty system is stabilized all the time. This is also

the requirement for a working fault detection and diagnosis system which will provide the fault and

failure information of the system in the fault tolerant control with better performance.

The theoretical analysis with Lyapunov function and the simulation on the high fidelity Boeing

747-100/200 aircraft model showed the effective of all the algorithms developed in this thesis.

8.2 Future Works

Since there is always physical position and rate limit in the actuator, it is significant both in theory

and practice in optimizing the SMC-based FTC considering these constraints. In the simulations

of this thesis, although in the FTLAB747 and also in the nonlinear longitudinal model the physical

position limit and rate limit are implemented in the simulation model, the effects of these limits

have not been studied yet. This is one of the future works that expands the research of this thesis.

Chattering is an unavoidable problem in all SMC-based control algorithms. In the context of the

research of this thesis, the immediate future work is the study on how the chattering will interact

with the dynamics of the actuators. From the point of view in frequency domain, chattering is a

limit cycle. The study on how this limit cycle will affect the system, especially how it will interact

with faults in the actuators, is another future work.

SMC is chosen as an option for FTC in the thesis, it is not only because of its methodology

but also the philosophy behind it: the dynamic behavior of the system can be partitioned through

control. Since fault and failure are contingent event in the system, new methods that can partition

the dynamic feature of the system, especially the faults and failures from the normal system is a

challenging and interest future research direction.

In the Networked Autonomous Vehicles (NAV) Lab of Concordia, several platforms have been
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introduced in the research of FTC, such as the quadrotor and Airbus A380 unmanned aerial vehicle

test-beds. In the near future, the algorithms of this thesis can be implemented on these platforms.
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