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Abstract 

Forest industry is one of the key economic initiatives in Quebec (Canada). This industry has 

recently faced some obstacles, such as the scarcity of raw material, higher competitiveness in the 

market and new obligations applied in North America regarding sustainable development. These 

problems force lumber industries to improve their efficiency and become more service sensitive, 

in order to ensure the on time demand fulfillment. To achieve the goals aforesaid, one solution is 

to integrate the uncertainties more appropriately into production planning models. Traditional 

production planning approaches are based on deterministic models which in fact, ignore the 

uncertainties. A stochastic production planning approach is an alternative which models the 

uncertainties as different scenarios. Our goal is to compare the effectiveness of deterministic and 

stochastic approaches in sawing unit of sawmills on a rolling planning horizon. The comparison is 

performed under different circumstances in terms of length of planning horizon, re-planning 

frequency, and demand characteristics defined by its average and standard deviation. The design 

of experiments method is used as a basis for performing the comparison and the experiments are 

ran virtually through Monte-Carlo simulation. Several experiments are performed based on 

factorial design, and three types of robust parameter design (Taguchi, combined array, and a new 

protocol) which are integrated with stochastic simulation. Backorder and inventory costs are 

considered as key performance indicators. Finally a decision framework is presented, which 

guides managers to choose between deterministic and stochastic approaches under different 

combinations of length of planning horizon, re-planning frequency, and demand average and 

variation. 

 

Key words: sawmills, production planning, design of experiments, robust parameter design, 

uncertainty, Monte- Carlo simulation 
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 Introduction 1

 

1.1 Foreword 
 

The lumber industry is one of the most important business sectors in Quebec (Canada). In 

recent years this industry has faced serious difficulties. Cid Yáñez et al. [1] mentioned 

some of these obstacles. The scarcity of logs in both quantity and quality aspects in 

public forests, especially in eastern Canada, is one of the challenges in lumber industry, 

which highlights the need for using raw materials more efficiently. On the other side, the 

lumber industry market has become more competitive which justifies Quebec sawmills to 

have higher flexibility in demand fulfillment. New market obligations in the North 

America to consider sustainable development of value-added wood-based products are 

forcing lumber producers to replace the widely accepted traditional price-based push 

strategy with demand-driven approaches of production planning. 

One of the most important issues influencing sawmill industry performance and 

profitability is the uncertainty. Santa-Eulalia et al. [2] mentioned three sources for 

uncertainty in sawmills: supply, manufacturing process, and demand uncertainty. 

According to Santa-Eulalia et al. [3] these uncertainties create a complex planning 

environment in which decision makers have to analyze different alternatives before 

implementing any of them. According to Kazemi Zanjani et al. [4-6], random process 

yields, due to non-homogeneity in the quality of raw materials (logs), and demand 

variation, caused due to difficulties in forecasting market condition, are two sources of 

uncertainty in sawmills. 



2 
 

As sawmill industry is categorized as a divergent production process, ignoring demand 

uncertainties may lead either to increased backorder levels (lost customers), or to huge 

inventory of products with low or zero demand in the market. In addition, ignoring the 

random yield in production planning models can lead to large inventory sizes of low 

quality and price products, and lack of high quality and price products. As a consequence, 

the industry will face with financial penalties and reduced capability of competition in the 

market. This research focuses on this issue in the sawing unit of sawmills to help this 

industry to deal with the impact of uncertainties and to increase the efficiency. 

The focus of this study is on production planning in the sawing unit of sawmills. There 

are two approaches for production planning in sawmills. The production planning 

approach in Quebec sawmill industry is currently based on deterministic optimization 

models, by considering the average of random parameters. Kazemi Zanjani et al. [4-6] 

illustrated that ignoring the uncertainty in production planning models may lead to 

serious consequences in terms of failure to fulfill the demand at the right time. This can 

affect the company’s reputation significantly regarding customer service level and may 

impose back order penalties to the company. Kazemi Zanjani et al. [4-6] proposed 

stochastic programming models, which considers different scenarios of random process 

yields and demand. 

1.2 Goal of the study  

Our goal is to study and compare the effectiveness of deterministic and stochastic 

production planning models in sawing units of sawmills. Since production planning in 

real sawmills is performed on a rolling planning horizon, the comparison between these 

models in this study is also performed on a rolling planning horizon. While in fix 
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planning horizon the production plan is fixed, in rolling planning horizon the production 

plan can be updated in predetermined intervals based on the feedback data received from 

the implementation of plans in previous periods. 

The final goal of the comparison among the two models in this study is to propose a 

decision framework, in order to identify which production planning approach is 

appropriate under different circumstances in the sawing units of sawmills, in terms of 

length of planning horizon, re-planning frequency, and demand average and standard 

deviation.  

The influence of the above factors and their interactions on the performance of stochastic 

and deterministic models on a rolling planning horizon will be compared by conducting 

designed experiments. We considered backorder and inventory costs as our key 

performance indicators. As it is not possible and economically reasonable to interrupt the 

production line in real sawmills, the comparison is performed via Monte-Carlo 

simulation. The simulation experiments were implemented based on the design of 

experiments (DOE) and robust parameter design as the main methodologies. The 

simulation results are finally analyzed by means of statistical approaches.  

1.3 Research contribution 

Some studies have been previously done to compare the performance of production 

planning approaches in sawmill industries. Santa-Eulalia et al. [3] compared the 

performance of different planning and control policies by means of robust parameter 

designs for a lumber supply chain industry. Lemieux et al. [7] studied the performance of 

pull and push strategies by referring to a virtual lumber case. In another attempt Kazemi 
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Zanjani et al. [5] compared a two stage stochastic production planning model considering 

process random yields with the deterministic production planning model on a fix 

planning horizon. They proved the superiority of stochastic model regarding backorder 

amounts and the level of model precision. 

Although all the attempts aforesaid aimed to compare the performance of different 

production planning approaches in sawmill industry, they included one or some of the 

following shortcomings: i) ignoring the rules of design of experiments, ii) implementing 

the experiments on a fixed planning horizon instead of rolling planning horizon, and iii) 

implementing only one type of robust parameter design methodologies. In an attempt to 

overcome these shortcomings we extend the existing contributions by:  

- Performing the comparison based on designed experiments. 

- Implementing the experiments on a rolling planning horizon. 

- Integrating the robust parameter design with stochastic simulation to compare the 

performance of stochastic and deterministic production planning models in sawing 

unit of sawmills. 

- Using three types of robust parameter design in addition to factorial design to 

propose a decision framework. 

 

1.4 Summary and research overview  

In this chapter, we provided an introduction regarding problem statement, goal of this 

study, the applied methodology to achieve the goal, and the contribution of this study by 

comparing the previous contributions in the literature on this topic. Chapter 2 includes a 

literature review regarding previous attempts to compare different production planning 
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approaches in sawmills, a brief introduction to DOE/ Robust parameter design, and 

previous studies on integration of stochastic simulation and robust parameter design. 

Chapter 3 describes the methodology applied in this study. Chapter 4 provides the results 

and analysis of the sawmill case study. It also presents a decision framework based on the 

achieved results and analysis. Chapter 5 provides a conclusion and further steps.  
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 Literature Review 2

In this chapter we review literature related to this thesis in the following topics: 

2.1  Sawmill processes and characteristics 

2.2 Production planning approaches in the sawing unit of sawmills 

2.3 Previous attempts to compare different production planning approaches in  

sawmills 

2.4 Design of experiments (DOE)  

2.5 Factorial designs 

2.6 Robust Parameter Design (RPD) 

2.7 Comparison between Taguchi and combined array methodologies 

2.8 Integrated robust parameter design and stochastic simulation 

2.9 A new protocol to integrate robust parameter design and stochastic simulation 

 

2.1 Sawmill processes and characteristics 

  

Since our case study is focused on sawmills industry, in this section, we briefly describe 

sawmill processes and characteristics. Log sorting, sawing, drying, planing and grading 

(finishing) can be considered as main sawmill processes.  Logs from different districts of 

forest are the raw material in sawmills industry. After bucking the felled trees, they are 

transported to sawmill. Logs are sawn, dried and finally graded in a finishing process to 

be transported to domestic and international markets. Figure 1 illustrates the sawmill 

main processes. 
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Figure 1- Illustration of sawmills main processes 

Although our focus in this study is on sawing unit of sawmills, other processes are also 

explained briefly in this section. According to Gaudreault et al. [8] and Kazemi Zanjani et 

al. [4-6] different production units in sawmills operate as follows: 

2.1.1 Sawing process  

The bucked trees (logs) are classified based on common attributes such as diameter class, 

length, taper, etc. when they are shipped to sawmill. In sawing unit, the logs are cut into 

different dimensions of rough pieces of lumbers (e.g. 2(in) ×4(in) ×8(ft.), 2(in) ×4(in) 

×10(ft.), 2(in) ×6(in) ×16(ft.)…) by means of different cutting patterns. Figure 2 

illustrates three different sample sets of lumbers achieved by different cutting patterns:  

 

Figure 2- Different sample sets of lumbers sawn by different cutting patterns [6] 
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The lumbers’ quality and quantity obtained from each cutting pattern depends on the 

quality and characteristics of the input logs. Although the logs are classified in sawmills, 

variable characteristics are observed in different logs in each class. In fact, natural 

variable conditions during the growth period of trees affect the characteristics of logs.  

The non-homogeneity in logs, as a consequence, makes it impossible to anticipate the 

exact yield of a log while deciding on the production plan.                    

2.1.2 Drying process 

 

Drying operation decreases the moisture of lumbers. The required drying level is usually 

based on industrial standards, but in some cases it depends also on customer’s required 

specification. Drying is a complicated process and can take several days. The lumbers 

should be loaded and dried in kiln dryers in batches. There are several constraints and 

each company has its own loading patterns. It is useful to mention that sometimes a 

combination of air drying and kiln drying is applied to increase the lumbers final quality.  

2.1.3 Finishing process 

 

During this final process, lumbers are planed and sorted according to their quality. More 

precisely, different quality levels are defined based on the degree of moisture and 

physical defects. The drying process used for each batch dictates the achievable products 

in the finishing unit. In other words, the output products of different drying processes are 

considered as different inputs for the finishing unit.         
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2.2 Production planning approaches in the sawing unit of sawmills 
 

Since, the focus of current study is on sawing unit of sawmills, in this section, we are 

going to review the literature of production planning in the sawing unit.  

According to Kazemi Zanjani et al. [4-6] and Guadreault et al. [8] the goal of production 

planning models in the sawing units of sawmills is to determine the optimal quantity of 

log consumption from different classes and the selection of corresponding cutting 

patterns in order to fulfill lumber demand. The objective is to minimize total cost 

including log consumption, inventory and backorder costs.  

Ignoring the uncertainties aforesaid in sawmill production planning will lead to increased 

back order levels (lost customer), as well as huge inventory of products with  low or zero 

demand in the market, and consequently, facing with financial penalties and reduced 

capability of competition in the market. 

Different production planning approaches in sawmills are classified in the literature based 

on the way they deal with uncertainties: 

2.2.1 Deterministic production planning models 

Deterministic optimization models are the traditional production planning tools in many 

sawmills. In the deterministic approach, the objective function minimizes back order, 

inventory and production costs subject to production capacity constraints and product and 

material inventory balance. Deterministic models ignore uncertainty by considering the 

average of random process yields. This method usually results in extra inventory of 

products with lower quality and price and on the other hand backorder of products with 

higher quality and price. This will make sawmills to fail in demand fulfillment and 
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consequently facing with decreased service level. It also results in poor utilization of raw 

materials and reduced competition ability in the market. 

A common practice in many sawmills in order to take into account the uncertainties while 

adopting deterministic production planning approaches is the rolling horizon planning. In 

this approach, at the beginning of a planning horizon, the decision maker generates a plan 

based on the available forecasted data (e.g., demand). The production plan is then 

updated at predetermined intervals during the planning horizon as the information with 

regard to demand and actual inventory/backorder level of products and raw materials are 

updated. Nevertheless, as the rolling horizon planning is a reactive approach, it cannot 

address completely the issue of uncertainty. 

2.2.2 Stochastic production planning models 

In the stochastic programming approach, the random yields and demand are modeled as a 

set of scenarios and/or a scenario tree. The objective of such stochastic production 

planning models is to generate a plan with the minimum expected cost for all possible 

scenarios for random yield and demand. As the stochastic programming predicts different 

scenarios, it can be considered as a proactive approach to deal with uncertainties. The 

only drawback of such stochastic programming models is their complexity in terms of 

modeling and solving. Moreover, estimating realistic scenarios for random parameters is 

another important issue.  

Kazemi Zanjani et al.[5] proposed a two stage stochastic model for sawmill production 

planning while considering random process yields. For considering both yield and 

demand uncertainties, K. Zanjani et al. [4, 6] proposed a multi stage stochastic model.  



11 
 

2.3 Previous attempts to compare different production planning approaches 

in sawmills 
 

In this section we will review the literature related to comparing different production 

planning approaches in sawing units. Their shortcomings and relation to our study are 

presented at the end of this section. 

Santa-Eulalia et al. [2] performed robust experiments to study the effect of different 

planning and control policies for lumber supply chain industry. They also tried to find the 

optimum combination of effective factor levels in order to minimize the impact of 

uncertainties of supply, manufacturing and demand. They identified three controllable 

factors which are the control levels, planning method and planning horizon. Back order 

and inventory averages were defined as key performance indicators (KPIs) for evaluating 

the system performance. They came to the conclusion that regarding the backorder cost, 

the control level has the most important role and planning horizon and planning method 

do not have great impact. In other words more frequent control provides better customer 

service. For inventory level, their result illustrated that none of the factors solely has great 

impact. Based on their results, in order to decrease the inventory level a suitable 

combination of all factors levels should be considered. 

Lemieux et al. [7] compared the results of implementing two different production 

planning strategies (pull/ push) in sawmills, where they used a virtual lumber case 

derived from actual Canadian lumber industry. They performed two experiments, where 

in the first one only push and pull production planning models were compared. In the 

second experiment, another approach regarding a combination of pull and push 

production planning has been added to this comparison. The results indicated that the fill 
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rate will not be affected considerably by the production planning method. On the other 

hand, the combined pull/push method will result in the least back order.   

In another attempt, Kazemi Zanjani et al. [5] compared a two stage stochastic production 

planning model by considering random yields with the mean value deterministic 

production planning model on a fix planning horizon. Their results illustrated that the 

stochastic approach is superior to the deterministic model as it leads to smaller amounts 

for back order and besides provides higher precision of the production plan. 

Although all the above literature attempted the comparison between different production 

planning models in sawmills, there are still some shortcomings and some areas for 

extending and improving the studies aforesaid. For example some of them do not follow 

the rules of design of experiments, or are implemented on a fixed planning horizon. As a 

consequence, in this research we plan to consider: 

1      Performing the comparison based on designed experiments 

2 Implementing the experiments on a rolling planning horizon 

3 Using three types of robust parameter design in addition to factorial design to 

propose a decision framework 

4 Integrating the robust parameter design with stochastic simulation  

2.4 Design of Experiments (DOE) 

According to Montgomery et al. [9] the purpose of running designed experiments is to 

define the relation between input and output variables of a system. By analyzing the 

experimental results, we aim to find the impact of input factors and their changes on the 

response variable(s). It is important to mention that in many cases the final goal is to 
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propose the level of input factors which make the system or process robust against noise 

factors (sources of system variability).  

Montgomery et al. [9] also indicated that designing the experiment is the first step of any 

experimental problem. The second important step is to analyze the achieved experimental 

results. These two steps are linked together, since the well-designed experiment is vital to 

guarantee trustable results. A statistical approach for designing the experiment and 

collecting the data is necessary to achieve appropriate data and to find meaningful 

conclusions based on statistical methods.  

Montgomery et al. [9] mentioned 7 major steps for designing the experiments as follows: 

“i) recognition and statement of the problem, ii) selection of response variables, iii) 

choice of factors, levels and range, iv) choice of experimental design, v) performing the 

experiment, vi) statistical analysis of the data, and vii) conclusion and recommendation.”  

There are different types of DOE which can be applied in related steps. The initial step is 

usually to perform factorial experiments especially    designs where “k” represents the 

number of factors. In the next steps, more detailed experiments such as robust parameter 

design are run. In the following, different types of DOE are provided. 

2.5 Factorial designs 

Montgomery et al. [9, 10] have explained the factorial designs. They mentioned that 

many experiments include two or more factors. The experimenter tries to find the 

influence of these factors on the output response of the system. The right approach to deal 

with cases including several factors is to conduct a factorial experiment. A complete 

factorial design analyses all possible combinations of all factor levels. “For example, if 
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there are “a” levels of factor “A” and “b” levels of factor “B”, each replication contains 

all “a  b” level combinations.” [9, 10] 

The main effect of a factor is the change in the value of response variable caused by 

changing the factor level. If the effect of a factor on response variable depends on the 

level of another factor(s), there is an interaction between them. It means for example, the 

effect of factor “A” depends on the level chosen for factor “B”. By the help of factorial 

design, we can study not only the main effects but also the interactions effects between 

factors. This ability to investigate the interaction effects is the main superiority of 

factorial designs comparing to classical method of exploring the factor effects one by 

one. Regression models prepared for response variables (KPIs) besides ANOVA tests are 

used to decide if a special factor or interaction is statistically significant.  

Some special cases of the general factorial designs are important because they are widely 

used in many industries. The most important one is the experiment which considers “k” 

factors, and allocates only two levels to each of them. These levels may be quantitative or 

qualitative. “A complete replicate of such a design requires 222…2=    

observations which is also called a    factorial design.” [9, 10]. This type of experiment 

is especially appropriate in the first steps of experimentation. The reason is that in early 

stages, there are many potential effective factors. By applying     design we can study 

the impact of these factors and all their interactions with the minimum number of 

necessary experiments.  
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Although the    design is a useful and trustable methodology, there are more detailed and 

coherent experiments which can be applied in cases including noise (uncontrollable) 

factors. The following section summarizes those types of experiments. 

2.6 Robust Parameter Design (RPD)  

There are two types of factors in each system or process: i) controllable factors, and ii) 

noise (uncontrollable) factors. The classical DOE which was explained in the previous 

section is only capable to include controllable factors in the experimental structure.  

There have been several attempts to deal with the noise factors in processes. The initial 

attempts were concentrating on removing the noise factors. This method is not only 

economically inefficient, but also in some cases it is not even applicable. Later, some 

attempts were performed in order to make the system robust against the noise impacts 

instead of removing them. To do so, it seemed to be vital to develop an experimenting 

approach which considers the noise factors in the experimental design.   

Based on Montgomery et al. [9] robust parameter design (RPD) is an approach and a 

particular type of DOE that includes both controllable and noise factors in its structure. It 

emphasizes on choosing the levels of controllable factors in a process or a product to 

achieve robustness, which includes two objectives: i) to ensure that the average of the 

response variable remains close to a desired value, and ii) to ensure that the variability 

around this target value is as small as possible.  

Although noise factors are not controllable in usual processing level, they may be 

controlled in research or developing level and during the RPD experimentation. By fixing 

the levels of noise factors artificially during the experiments, RPD aims to find the levels 
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of controllable factors, which can minimize the variability caused by the noise 

(uncontrollable) factors. This setting will result in a robust process/system that is, a 

process/system affected minimally by variations. There are two main methodologies for 

robust parameter design which are reviewed in the following sections.  

2.6.1 Taguchi crossed array methodology for robust design 

The initial approach in robust parameter design was proposed by Taguchi [11] in 1980s. 

Taguchi’s method is based on the fact that it is not always possible or economically 

reasonable to remove or reduce the sources of variation. This method intends to make the 

system insensitive to noise factors. Taguchi method is based on new quality control 

approaches. In these approaches, reducing the variability around the response is superior 

to simply achieving a desirable response value. The reason is that in traditional quality 

control approaches, the controllable factor levels were set in a way to achieve the best 

possible response variable. In this case, the variability caused by noise factors could 

easily make the chosen levels useless. In other words it made it necessary to run another 

set of experiments in order to find the new optimum levels of controllable factors under 

new circumstances caused by the impact of variability.  

Taguchi [12] has proposed a special structure to include the noise factors in the 

experimental designs. This structure contains two separate arrays: i) inner array which is 

allocated to the controllable factors, and ii) outer array which is allocated to the noise 

factors. This type of experimental design is called a “crossed array design”. 
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The following table illustrates a sample of crossed array design based on Montgomery et 

al. [9]. The experiment consists of four controllable factors A, B, C and D each at two 

levels, and one noise factor E which has two levels as well. 

 

To run the experiments, these two arrays will cross each other. In other words, every 

combination (run) of the inner array will be performed for all combinations (low and high 

levels of E) of the outer array. This way, the noise factor is included in our experiments  

Table 1- A sample of crossed array design [9] 

 

   
E 

A B C D Low Level High Level 

- - - - - + 

+ - - + - + 

- + - + - + 

+ + - - - + 

- - + + - + 

+ - + - - + 

- + + - - + 

+ + + + - + 

and if there is an interaction between noise and controllable factors, it is possible to 

choose the appropriate levels for controllable factors to reduce the impact of the noise 

factor.  

The designs of inner and outer arrays are independent. There are several design 

possibilities. Taguchi et al. [12] proposed orthogonal arrays in his “quality engineering 

handbook”. Montgomery et al. [9] proposed fractional factorial designs for inner arrays 

and full factorial designs for outer arrays. By using orthogonal arrays or fractional 

factorial designs, some interaction effects will be missed due to the aliased structure. The 

accuracy of results depends on the size and type chosen for orthogonal arrays or level of 

Outer Array 
Inner Array 
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fractioning for factorial designs. It is also possible to have full factorial designs for both 

arrays which may lead to higher accuracy, but larger size of experimental designs.  

Taguchi et al. [12] defines the signal to noise ratio (S/N ratio) as an indicator of 

variability. The S/N ratio formula depends on the desired response variable[13]. Indeed, it 

is always desired to have the highest S/N ratio for better robustness. Let us denote by   , 

  and s are the value, the average and the variance of response variable, respectively. Three 

types of response variables are illustrated in [13], as follows:      

o when a larger response value is better: 

 (1) 

o when a smaller response value is better: 

(2) 

o when the nominal response value is the best: 

(3) 

Taguchi’s method is suitable to find the optimum levels of controllable factors among the 

predefined values of factors levels. More precisely, it does not have the capability to 

explore other amounts for factors levels. Due to this shortcoming, always the 

combination of Taguchi method and regression model or response surface method has 

been considered. In this way, we have the ability to evaluate the impact of other values 

for controllable factors, which lay within the low and high levels defined for the 

experiment.  

Montgomery et al. [9] proposed a revision to the Taguchi method to use the variance of 

the response variable directly, as the indicator of variability, instead of S/N ratio. They 

S/N ratio=         
∑  

  
 ⁄

 
   

 
  

 

S/N ratio=  10     
∑   

  
   

 
  

 

S/N ratio= 10     
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mentioned that S/N ratio has complicated calculations, and besides they criticized its 

accuracy to find the factor effects on variation. They suggested considering mean and 

variance of each treatment of inner array as response variables, and apply usual 

regression analysis to find important factors and interactions. Table 2 illustrates an 

example regarding mean and direct variance calculations. It is important to mention that 

as the sample variance follows a chi-square distribution, Montgomery et al. [9]  suggested 

analyzing the natural logarithm of the variance, instead.  

Table 2- A sample of Montgomery proposed method [9] 

    
E 

  
A B C D Low Level High Level Mean Variance 

- - - - - + 7.54 0.09 

+ - - + - + 7.9 0.071 

- + - + - + 7.52 0.001 

+ + - - - + 7.64 0.008 

- - + + - + 7.6 0.074 

+ - + - - + 7.79 0.053 

- + + - - + 7.36 0.03 

+ + + + - + 7.66 0.017 

2.6.2 Combined array methodology for robust design 

Although the crossed array design is a considerable step regarding the inclusion of noise 

factors in designing the experiments, it has some shortcomings. Firstly, although it 

provides information about interactions between controllable and noise factors, the 

resulted regression model does not include any direct terms regarding the main effect of 

noise factors or any term representing the interaction effect between noise and 

controllable factors. Also, this method can lead to a very large size of experiments 

because of its special structural design.  
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To solve the problems aforesaid, Welch et al. [14] proposed another method called 

combined array design. The crossed array design forces the experimenter to include high 

order interactions of noise and controllable factors. In this method there are no inner and 

outer arrays and the noise factors are included in the same design as the controllable 

factors. Combined array method results in empirical model considering some terms 

regarding interactions between controllable and noise factors. It can also provide the 

same level of information by smaller size of experiments.  

Similar to the revised method Montgomery suggested for Taguchi approach, the 

combined array method tries to find the appropriate empirical models for the mean and 

variance of response variable. The difference is that in the revised Taguchi method, the 

mean and variance for each factor combination is calculated and behaves as a response 

value. Then the regression model is calculated for the mean and variance separately. In 

the combined array design, on contrary, there will be one regression model for the 

response value. Then the functions regarding mean and variance will be extracted based 

on this regression model. In other words, the regression model found for the response 

variable will be the basis for both functions of mean and variance.  

The following example illustrates the sample steps for a case including only one noise 

factor based on Montgomery et al. [9]: 

1. To find the appropriate regression model for the response value: 

(4) y =   +     +     +       +    +       +       + ɛ 
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where y refers to response variable,    is an intercept representing the average of all 

achieved response values,    and    refer to controllable factors,    is the noise factor 

and ɛ represents the error.  

2. In order to find the model for the mean, it is enough to take the expected value of 

equation (4) over   . In the combined array design the coded variables are used for both 

noise and controllable factors. By coded we mean that the variables are centered on zero 

and have upper and lower limits as    . As a result the expected value of noise factors 

and subsequently any term including noise factors are equal to zero. In addition, as the 

error is supposed to have random distribution, it is expected to have zero mean value as 

well. As a result the mean regression model will be a function of controllable factors and 

it will be defined as follows: 

(5) 

3. To find the model regarding the variance of response variable, Montgomery [9] 

proposes two steps. First they expand the response model in a first-order Taylor series 

around    = 0. The result would be as follows: 

(6) 

where R is the remainder term in tailor series and can be ignored. Therefore, the final 

variance function over   will be as follows: 

(7) 

where    refers to the variance of noise factor and   refers to the variance of error.  This 

function contains only controllable factors, but the impact of noise factor is considered by 

including the regression coefficient of interaction between noise and controllable factors. 

 

  (y) =   +     +     +        

 

y     +     +     +       +    +     +         + R+ ɛ 

 

  (y)=    
     +     +      

  +    

 



22 
 

The achieved regression models can be used for further analyzes as the Taguchi method. 

These two methods are the milestones of robust design. The next section reviews the 

literature regarding the comparison of Taguchi and combined array methodologies. 

2.7 Comparison between Taguchi and Combined array methodologies 

Taguchi and combined array designs are the basis of robust parameter design. Several 

attempts have been performed to compare the performance of these two methods. 

 

Shoemaker et al. [15] compared the performance of Taguchi method and combined array 

design. They compared these methods regarding several aspects and by means of few 

examples.  Finally, they concluded that the most important benefit of combined array 

method is its smaller size of experiments comparing the Taguchi method. The reason is 

that Taguchi method forces the experimenter to evaluate all control by noise factor 

interactions, in case that so many of these interactions specially the high order ones are 

not necessary to be studied. This happens due to the special structure of Taguchi’s 

method, which will also lead to miss some important data regarding interactions between 

controllable factors or the curvature effects. In other words, due to the special structure of 

Taguchi array, if the experimenter is interested to verify some interactions between 

controllable factors or curvature effects, a larger experiment should be run. This 

limitation does not exist in combined array methodology, and the experimenter can 

decide to which level the interaction between noise and controllable factors should be 

studied and the rest of degrees of freedom can be allocated to estimate desirable effects.  

Borror and Montgomery [16] focused on the drawbacks of Taguchi method and 

compared it with a mixed resolution combined array approach. A mixed resolution design 
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allows setting the experiment as to be able to study the impacts of factors, interactions, 

curvature and quadratic terms which are assumed and suspect to be important. Similar to 

Shoemaker et al. [15], they emphasized that the main advantage of combined array design 

is that it provides smaller necessary number of experiments comparing Taguchi method 

for evaluating the same parameters of interest.  

They used the results of a sample experiment to compare the performance of these two 

methods. The comparison confirmed that combined array design has smaller size while 

covering more information. The proposed optimal settings for controllable factors were 

not the same for both models. Nevertheless, by comparing the two approaches, the 

settings of controllable factors provided by both models concluded in approximately the 

same “mean” of response variable. On the other hand, the setting provided by combined 

array design leads to less variance of response variable than Taguchi method. As 

achieving the least possible variance of response variable has the highest importance and 

priority in robust designs, it is another indicator of the superiority of combined array 

method. 

In another attempt, Bates et al. [17] compared four different methodologies to perform 

robust designs by stochastic computer simulations. They reviewed four methodologies 

including Taguchi, combined array design, dual response surface analysis and the 

stochastic emulator strategy. The comparison was performed regarding an example 

including seven controllable factors and seven noise factors. The final comparison 

between the aforesaid methodologies indicated that the proposed factor settings were not 

always the same by all methods.  More precisely, there were even some factors 

distinguished important by one method whereas the other method could not diagnose 
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their effectiveness. It is important to note that although Taguchi method has been 

criticized due to its shortcomings in so many studies, it illustrated an acceptable 

performance in the mentioned example.  

Kunert et al. [18] applied both Taguchi and combined array methods in an experiment 

and compared the results. They mentioned that based on the experiment’s results, 

Taguchi method has been more capable and precise to distinguish some important factors 

(which the combined array was unable to find) regarding the variance of response 

variable. It is another indicator which supports the results by Bates et al. [17] confirming 

the validity of the Taguchi method. 

Based on the literature aforesaid, we concluded that both methodologies are worthwhile 

to be implemented in our case. As we aim to implement our experiments by means of 

Monte-Carlo simulation, the next section covers the literature regarding the integration of 

robust design and stochastic simulation. 
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2.8 Integrating robust parameter design and stochastic simulation 

Giovagnoli et al. [19] mentioned that the classical robust designs were initially 

introduced for physical experiments and hence, although the noise factors are varying in 

reality, they are fixed artificially during the experiments. In other words, in physical 

experiments just a few levels of the noise factors are included and investigated in the 

experiments. This limitation can be relaxed by means of capabilities of stochastic 

simulation to run less expensive and faster experiments which finally results in more 

number of trials and makes it possible to simulate the noise factors stochastically. As a 

result, the user is not forced to consider only few levels for noise factor. They mentioned 

that stochastic simulation is the best tool to perform robust design, as it can transmit the 

noise impact into the experimental outputs. Several attempts have been previously 

performed to combine robust design and stochastic simulation.  

Antognini et al. [20] focused on the utilization and importance of computer simulation in 

performing quality improvement experiments and DOE. They mentioned that performing 

the experiments via computer simulation is a momentum in the design of experiments. 

Antognini et al. [20] covered some aspects regarding computer simulation experiments: i) 

sequential experimenting which follows a step by step experimenting with a stopping rule 

defined by economic constraints, and ii) the use of stochastic simulation including 

random factors to imitate the random behavior of the system under study. They 

mentioned that running the experiments by simulation has three major advantages 

comparing implementing them in physical systems: i) it becomes easier to study the 

relationship between input and output variables, ii) the system becomes more observable, 
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and iii) running the experiments by the help of simulation is easier and cheaper than 

implementing them in real and physical circumstances.  

Romano et al. [21] reviewed an integration of physical experimenting and computer 

simulation. They compared physical experiments versus computer ones through three 

features: feasibility, cost, and fidelity.  They mentioned that in many cases it is not 

possible or it is expensive to run the experiments in physical circumstances. On the other 

hand, they indicated that computer experiments are not as trustable as physical ones. 

Consequently, they suggested a procedure for integrating computer and physical 

experimenting and implemented their procedure in two case studies. Their results 

illustrated that adding computer simulation to the experimenting procedure will result in 

better achievements comparing the cases using only physical experiments. The reason 

was that as computer experiments are cheaper comparing the physical ones, it is possible 

to find more details about the system by performing more experiments. 

Santa-Eulalia et al. [2] performed robust experiments to compare different planning and 

control policies for lumber supply chain industry. They referred to a case study of 

sawmill supply chain. Three controllable factors including control level, planning method 

and length of planning horizon and three noise factors regarding demand, manufacturing 

and supply uncertainties were defined. They considered backorder and inventory sizes as 

the key performance indicators to compare the performance of different scenarios. 

Taguchi crossed array design and Monte-Carlo simulation were applied as the main 

methodology in their study. Through performing four replications for each experiment, 

they concluded that control level is the only main source of backorder variation. On the 

other hand, interaction effects are the source of change in the inventory size. They 
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proposed optimal levels for controllable factors regarding the priority to decrease 

backorder. 

Grubic et al. [22] argued that robust parameter design is an appropriate tool to improve 

the performance of a supply chain network. They tried to prove this argument by using a 

simple supply chain example and applying Taguchi method in a discrete event 

simulation. Delivery lead time and total cost of the supply chain were defined as KPIs. 

Control factors included number of system components, amount of products, buffer 

capacity and transporters capacity. The noise factors were the customer demand, 

distributer’s inventory level and quality deviation. They performed 12 replications for 

each experiment and proposed the optimal factor levels considering the experimental 

result. 

In another attempt Grubic et al. [23] used the robust design to analyse a supply chain 

network. Total cost of the system and product availability were considered as two KPIs in 

their study. They defined five controllable factors, including number of distributer’s 

transporters, number of producer’s transporters, the order of distributers, production 

volume and accumulation of orders. Five noise factors were also considered including 

order time deviation between producer and distributer and, between distributer and 

wholesalers, transporting time deviation between producer and distributer and, between 

distributer and wholesalers and finally end demand variation. They performed three 

replications for each experiment by means of discrete event simulation and proposed the 

optimal levels of controllable factors. 
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Shang et al. [24] proposed an integrated method which included simulation, Taguchi 

approach, response surface methodology and optimization to find the optimum levels of 

controllable factors so as to obtain the best possible performance of a supply chain. They 

considered six controllable factors: delayed differentiation, information sharing, capacity 

limit, reorder quantity, lead time and reliability. The defined noise factors were inventory 

holding cost and demand variability. They used a combination of methodologies 

aforesaid to find the optimum levels of controllable factors which minimize total cost and 

maximize service level as two desirable KPIs.  

Veza et al. [25] mentioned that Taguchi crossed array design has the potential to be a 

suitable method to improve supply chain performance. It is applicable in all three 

planning levels (strategic, tactical and operational) and in all types of industries. They 

used discrete event simulation for modeling the system and supported their study with a 

practical example representing a simple supply chain network of a TV set assembly 

process. The controllable factors included three buffer capacities regarding assembly 

stations and one controllable factor for replenishment quantity. Three noise factors 

regarding the reworks and standard deviation of transportation time were also defined. 

Total cost of the system and the number of backorders were considered as KPIs. They 

finally proposed the optimum levels of controllable factors based on the results of the 

Taguchi and ANOVA methods.  

Shukla et al. [26] proposed an integrated approach including simulation, Taguchi, 

regression analysis and optimization to minimize the total cost of supply chain network 

design. By applying the proposed approach the supply chain planners and decision 

makers can choose the level of operating factors such as appropriate plant capacity, 
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reorder policy, lead time, etc. in order to achieve the optimal efficiency of the entire 

supply chain. By using simulation and referring to a sample supply chain, they suggested 

an approach for decision makers to understand the impact of controllable factors and 

make the system robust against demand uncertainty.  

Deva et al. [27] also used Taguchi method as a tool to study the supply chain network 

behavior. They used a hypothetical supply chain network as a sample for their analysis 

and considered average inventory level as the KPI. They used discrete event simulation 

and through running five replications, they compared the results obtained from different 

factor levels under the noise impacts caused by demand and lead time variation. 

Although all previous attempts have tried to integrate robust parameter design with 

stochastic simulation, they have used only the Taguchi method. Giovagnoli et al. [19] 

proposed a new methodology for integrating robust parameter design and stochastic 

simulation which is reviewed in following section. Their methodology has some 

similarities with Taguchi and combines array designs.  

2.9 A new protocol to integrate robust parameter design and stochastic 

simulation  

Giovagnoli et al. [19] categorized the noise factors into two groups:  i) Z1: Noise factors 

which are modeled and coded stochastically by simulation, and ii) Z2:  Noise factors 

which are fixed at different levels (similar to the traditional robust designs) 

 

By considering “Y” as the response variable and “X” as the vector of controllable factors, 

they have defined two stages of the approach as follows: 
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Stage 1: In this stage “the computer experiment is performed by stochastically simulating 

the noise Z1 for chosen level of (x,  ), and the sample mean and variance of the observed 

responses are calculated.” [19]. In other words, they perform several replications for each 

combination of controllable factors and type II noise factor(s). Each replication provides 

a different response value regarding the uncertainty caused by simulating Z1. Next, the 

mean and variance of response values achieved for different replications are calculated 

with respect to Z1. This process will be repeated for all pairs of (x,  ). These values are 

then used to obtain the mean and variance regression models by means of ordinary least 

square methods. The following equations are provided by performing this stage. Equation 

8 represents the expected value regression model. It is provided based on response value 

average amounts calculated for different replications of each pair of (x,  ). Similarly, 

equation 9 represents the logarithm of variance regression model which is calculated 

based on observed variance values for different replication of each pair of (x,  ). 

 

(8) 

(9) 

 

Similar to Taguchi method, as direct variance follows a chi-squared distribution, the 

logarithm of variance which has the normal distribution is used for calculations. The 

unknown parameters β, ϒ and δ will be estimated by least square methods aforesaid.  

Stage 2: This stage refers to the fact that the achieved regression models cover only the 

limited levels considered for Z2 in the first stage. As the level of Z2 is unknown and 

random in reality, they provided the models which are valid for all values of Z2. Equation 

10 represents the expected value function which is applicable for all levels of Z2. To 

   
                           

   

           |               
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achieve this function, Giovagnoli et al. [19] proposed to find the expected value of  

average regression model in stage 1 (equation 8) with respect to Z2. Similarly, equation 11 

provides a valid variance function for all levels of Z2. This model has two terms: i) the 

expected value of variance regression model in stage 1 (equation 9) with respect to Z2 

and, ii) variance of expected value regression model in stage 1 (equation 9) with respect 

to Z2. These models are as follows: 

(10) 

(11) 
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 Methodology 3

This section presents the methodology applied in the current study. As mentioned in the 

introduction section, the goal of this study is to propose a decision framework, which 

suggests the appropriate production planning approach under different circumstances, in 

terms of length of planning horizon, re-planning frequency, and demand average and 

standard deviation. To compare the performance of these approaches, it is necessary to 

run designed experiments. As it is not possible and economically reasonable to interrupt 

the production line in real sawmills to perform the real experiments, they were performed 

via Monte-Carlo simulation.  

In this section, we first explain the simulation process. Then, we explain the method for 

generating random components of simulation and implementing them in the simulation 

process. The last section describes the steps applied for running the designed 

experiments. The following 4 sections have been covered in this chapter: 

3.1 Simulation process 

3.2 Generating random components (yield and demand) 

3.3 Implementing the random components in the simulation process 

3.4 Applied steps for running the designed experiments 
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3.1 Simulation process  

3.1.1 Monte-Carlo Simulation 

As we mentioned earlier, all experiments are performed by the aide of Monte-Carlo 

simulation. The core idea of Monte-Carlo simulation is to use random samples of 

parameters or inputs to explore the behavior of a complex system or process which 

cannot be analyzed by an analytic approach. The simulation process designed for the 

implementation of different production planning models on a rolling planning horizon is 

explained and illustrated, as follows. 

3.1.2 Different phases of the simulation process 

The simulation process is divided into two phases: planning and implementing. In the 

“planning” phase, the production plans as well as the random demand profile and yield 

scenarios are prepared as the inputs to the simulator. Then the simulator implements the 

proposed plan for each re-planning interval. We call this stage as the “implementation” 

phase. The outputs of the simulator include the realized backorder cost of product and 

inventory costs of products and raw material (logs). The above process is then repeated 

for the whole simulation horizon which is considered as one year in our case. More 

details on the two phases of the simulation are provided in the following sub-sections. 

3.1.3 Planning phase 

In this phase, the deterministic and stochastic models are solved by          

optimization software, and the optimal production plan is obtained for each of them. 

These two models are presented in appendix I. The production plan illustrates how many 

times each process should be run in each period for the whole planning horizon. In 

addition, solving the plan by          results in the expected amounts of backorder and 
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inventory costs for each production planning model. The production plan is prepared for 

the whole planning horizon, which is considered as 15 and 30 days in this study. 

3.1.4 Implementation phase 

The second phase includes implementing the achieved production plan in planning phase 

on a rolling planning horizon. In the rolling planning horizon, the production plan is 

updated in predetermined intervals based on the feedback received from implementation 

of plans in previous periods. The re-planning frequency is considered to be 1 day and 7 

days. 

Starting from the beginning of the simulation horizon, the production plan for the first 

planning horizon (e.g., 30 days) is implemented through simulation for periods in the first 

interval (e.g., 10 days). Next, the data related to model parameters, such as the inventory 

level of raw material in addition to the inventory and backorder levels of products 

resulted, after implementing the plan, are calculated at the end of the first interval. These 

updated values, in addition to a newly generated random demand profile are then used as 

a feedback to update the plan for the next planning horizon. The updated plan will then be 

implemented via simulation for another re-planning interval. This process continues for 

all intervals till the end of the simulation horizon. Figure 3 illustrates the above process, 

where the planning horizon and re-planning frequency are considered as 30 and 10 days, 

respectively. 

More detail of how to perform implementation phase are provided after describing the 

procedures of generating random components in the simulation process. 
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Figure 3- The simulation process 

 

3.2 Random factors in the simulation  

There are two random factors considered in the simulation process described earlier: 

random process yields and random demand. The method for generating random 

components should reflect the behavior of random yield and demand in real sawmills. 

3.2.1 Random yield scenarios 

Yield scenarios are generated based on a sample of yields prepared by a log sawing 

simulator (Optitek, FPI-innovation). Optitek is developed to simulate sawing process of 

Quebec sawmills industry. The class of raw material (logs), cutting pattern, and the 

number of logs to be sawn are the inputs for this simulator. Considering the input data 

and random characteristics of logs, Optitek provides the yield scenarios as the output. It is 

necessary to mention that although the logs are from the same class of raw material and 

they are sawn by the same cutting pattern, their yields are not the same. The reason is 

Prepare production plan 

 

Update production plan 
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their nonhomogeneous characteristics caused during the growth period. Based on 

           data, the probability distribution of process yields is estimated as follows [5]: 

1 Take a sample of logs in each log class (e.g. 3000) and let them be processed by 

each cutting pattern. Compute the average yield of the sample.  

2 Repeat step 1 for a number of replications (e.g., 30). 

3 By the Central Limit Theorem (CLT) in statistics, the average yield has a normal 

distribution. Thus, based on the average yields computed for each replication in 

step 2, estimate the mean and variance of normal distribution corresponding to the 

average yields of each process (combination of cutting pattern and class of raw 

material). 

Hence, for each process, a normal distribution is estimated. It is assumed that raw 

materials are supplied from the same section of forest during the planning horizon. 

Therefore, the yields distributions are supposed to be the same for all periods of the 

planning horizon. It is worth mentioning that these normal distributions are used to 

generate yield scenarios for both the stochastic production plan in the planning phase and 

the implementing phase in the simulation process. 

3.2.2 Random demand profile 

According to Lemieux et al. [7], two types of demand are observed in sawmills: 

Spot market demand: the customer refers to the sales department and asks for required 

products. If the products are available at the desired time, the demand will become a 

formal order. Otherwise, it is assumed that the customer will choose another supplier. As 

a conclusion, the spot market demand does not affect the backorder cost.  
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Contract-based demand: In the contract-based demand, in contrast to the spot market 

demand, if a customer order cannot be fulfilled on time, the company will face a 

backorder cost. The procedure for generating the contract-based demand is as follow: 

1 Consider the start date of simulation.  

2 Generate a random interval for the next demand date. 

3 If the calculated date for the next demand is prior to the end date of simulation,  

continue generating the next interval, else stop generating the demand dates. 

4 Generate total demand quantity for each product, randomly, after generating all  

demand dates. This random quantity represents the total demand of each product  

during the simulation horizon. 

5 Allocate to and divide the total demand of each product among demand dates. 

The procedure to generate the total demand quantity for the simulation horizon (step 4 of 

above procedure) is as follows:  

1 Calculate average demand for each product based on historical data. 

2 Calculate maximum and minimum product demands based on the average 

amounts and by considering a standard deviation (e.g. 40%). We have considered 

5% and 40% as standard deviation of demand for our case study, based on 

experts’ point of view. Table 3 incorporates the average, and maximum and 

minimum amounts of demand. The uniform distribution for demand of each 

product can be calculated based on the values of these three parameters. 

3  Generate total demand quantity for the simulation horizon for each product 

randomly based on the mentioned uniform distributions. 
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It is important to remind that this demand profile is updated at each re-planning interval 

by multiplying them by a noise factor (uniformly distributed on [0, 1]). The next section 

explains how these random components will be implemented in the simulation process. 

3.3 Implementing the random components in the simulation process  

In section 3.1 we briefly explained simulation process and its phases. In this section, the 

simulating procedure is described in more details regarding the information presented in 

section 3.2.  

Table 3- Demand uniform distribution regarding 5% and 40% of demand standard deviation 
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To perform the simulation, first the optimal production plan identified by each production 

planning model indicates how many times each process should be run in each period. For 

example X11= 20 is equivalent to repeat process 1 for 20 times in period 1. By “process” 

we mean a combination of a cutting pattern and a class of raw materials. If this 

production plan was implemented in real sawmills, the process yields would differ 

randomly for every replication of the process due to different characteristics of logs (as 

the raw materials). Kazemi Zanjani et al. [5] proposed the following process to simulate 

the implementation of production plans in sawmills by taking into account random 

process yields:  

1 Get production plans proposed by both models in addition to random demand and 

yield scenarios as the inputs. 

2 Simulate the production plan implementation as follows: 

2.1 Define the sample size equal to the number of times each process should be 

run in each period (production plan). 

2.2 Take randomly a sample of scenarios (with the defined size) for the yields of 

each process. Available scenarios for the yields of each process are based on 

the estimated normal distribution for each set of processes and products. 

Kazemi Zanjani et al. [5] explained that this step of simulation process is 

equivalent to selecting a sample of logs in each class of raw materials, 

randomly, and cut them by different cutting patterns. 

3 Compute the total production size of each product at the end of each period, after 

simulating the plan implementation for that period.  
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4 Compute the backorder or inventory size of each product in each period based on 

the total production size of that product (computed in the previous step) and its 

demand for that period. 

Figure 4 illustrates the above process. 

 

 

 

 

 

 

 

 

 

 

Figure 4- Simulation process of implementing the production plans in sawmills [5] 

 

3.4 The steps applied for running the designed experiments 

As we mentioned previously, the method to perform the experiments is based on rules of 

the design of experiments (DOE). We explained about different types of DOE, and 

summarized the major steps of applying these experiments. In this section, we explain 

how we have applied those steps in our case study. 

Total production 

size per product 

per period 

Backorder and 

inventory size per 

product per period 
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-  Recognition and statement of the problem: Our goal is to compare deterministic and 

stochastic production planning models for sawing units of sawmills. We also propose 

a decision framework that identifies under which circumstances it is suitable to use 

stochastic or deterministic production planning approaches. 

-  Selection of response variables: We need to introduce key performance indicators 

(KPIs) to evaluate and compare the performance of stochastic and deterministic 

approaches. Two KPIs were considered as follow: 

- Backorder cost: defined as the cost of unfulfilled demand at the end of the 

simulation horizon. 

- Inventory cost: defined as the cost of unsold products/ by-products at the end of 

the simulation horizon. 

-   Choice of factors, levels and their range: There are several factors which may 

influence the performance of production planning models. There are two types of 

factors in each system or process: controllable and noise (uncontrollable) factors. Four 

potential controllable factors and one noise factor are defined as follows: 

- Length of planning horizon: defined as the period of time on which the 

planning is applied. 

- Re-planning frequency: defined as re-planning intervals. 

- Demand level: it represents the average of demand and is defined as the 

percentage of total capacity of sawmill. 

- Planning approach: defined as stochastic and deterministic approaches. 
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- Demand variation (noise factor): defined as the standard deviation of 

demand probability distribution 

We have considered two levels for each factor based on experts’ point of view which 

will be explained in the experimental specification section in the next chapter. 

-  Choice of experimental design: It is necessary to define the suitable method and 

number of replications while designing the experiments. Moreover, the resolution of 

experiments should be decided as well. In our case, we started with    experiments 

which is a special type of factorial design and completed the study with three 

methodologies of robust design, including Taguchi crossed array method, combined 

array method and a protocol for combining robust design and stochastic simulation. 

The number of replications is considered to be 10 and 20 in different experiments. In 

our study, as all levels of interactions are important to be investigated, we ran the full 

factorial design. In other words, the highest resolution was considered in all the 

designed experiments, mentioned above. 

-  Performing the experiment: As we mentioned earlier, it is not realistic to run the 

experiments in real sawmill. Hence, in this study we used Monte Carlo simulation to 

run each experiment.  

-   Statistical analysis of the data: statistical methods should by applied for analyzing in 

cases including experimental error. “Statistical methods help us to present the results 

of many experiments in terms of an empirical model, that is, an equation derived from 

the data that expresses the relationship between the response variable and the 
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important design factor(s)” [9]. In current study we used regression models and 

analysis of variance as statistical (ANOVA) methods for analyzing the data.  

-   Conclusion and recommendation: The last step is to propose a conclusion. In our case, 

the decision framework which recommends the appropriate production planning 

approach represents the desired conclusion.  
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 Experimental Results and Analysis 4
 

In this chapter, the results of applying the proposed methodology, presented in the 

previous section, for a realistic scale prototype sawmill is provided. It includes the step 

by step designed experiments performed in this study, and illustrates the procedure which 

led to final experimental setting and results. 

We first present the explanation of the case study and specification of experiments. The 

results of designed experiments in addition to a decision framework are then provided. 

This chapter includes 6 sections: 

4.1 Case study 

4.2 Experimental specifications 

4.3 Full Factorial design 

4.4 Classical robust parameter designs 

4.5 A protocol to combine robust parameter design and stochastic simulation 

4.6 Decision framework 
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4.1 Case study 

As we mentioned previously, the focus of this study is on sawing unit of sawmills. We 

considered a sawmill industry located in Quebec (Canada) as our case study. It includes 

27 products/ by products (logs) with random demand which follow a uniform distribution 

as explained in the methodology chapter. The lumbers are sawn to produce the logs and 

they are classified based on their two end diameters into 3 classes. In addition, 5 different 

cutting patterns were defined for sawing the logs. In other words, there are totally 15 

processes (the combination of each cutting pattern and each class of raw material) to 

produce the aforesaid 27 products. The process yields follow a normal distribution which 

is identified for each process as explained in the methodology chapter.  

The next section explains about the experimental specifications such as the defined 

factors, KPIs and technical support of the experiments.  
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4.2 Experimental specifications 

As we mentioned in our methodology, we initially defined four potential controllable 

factors including: length of planning horizon, re-planning frequency, demand level, and 

planning approach. In addition, we considered one noise (uncontrollable) factor in our 

study which is the demand variation.  

Two levels have been considered for each factor which is illustrated in following tables: 

Table 4- Description of controllable factor levels in experimental designs 

 

Table 5- Description of noise factor levels in experimental designs 

 

Although we considered 100 percent as the high level for demand in the final sets of our 

experiments, we had tried other values in initial experimental revisions. It is also 

important to mention that it is tricky to define the exact sawing capacity of sawmill. 

In order to evaluate and compare the experimental results, two KPIs have been defined: 

backorder and inventory costs. 

Demand Variation 
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As none of the interactions between controllable factors could be definitely considered to 

be unimportant, based on experts’ point of view, it was decided to run the experiments for 

all possible factor interactions. In other words, the highest resolution was considered in 

our experiments. 

We used the Microsoft C#


  to code our Monte-Carlo stochastic simulation. In addition 

Cplex 12.1


 was used for optimizing the production planning models to be implemented 

by simulation. The simulation horizon considered to be one year. Due to the fact that 

optimization and simulation were time consuming processes, especially for stochastic 

models, we used 10 to 12 parallel computers (CPU i7, with 16Gb RAM) to accelerate the 

procedure. Each set of experiments took approximately 1 to 2 weeks to be completed.  
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4.3 Full factorial design 

In order to find the way that factors and their interactions are influencing the KPIs, a full 

factorial design was performed. As none of the factor interactions could be definitely 

considered to be negligible based on the experts’ point of view, it was decided to run a 

full factorial design experiment.  

Demand standard deviation was considered to be 5% in this set of experiments. The 

backorder and inventory costs were considered as KPIs. Each experiment was replicated 

for 10 times by considering four controllable factors, each at two levels. Hence, a total of 

160 experiments were run. Table 6 illustrates the design of the experiment. 

 

Table 6- Design of the full factorial experiment 

 

The achieved values for backorder and inventory costs are listed in appendix II. Analysis 

of variance (ANOVA) is the statistical tool that is applied to analyze the results of the 
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designed experiments. By applying ANOVA, a regression model is achieved which 

illustrates the influence of controllable factors and their interactions on the output of the 

system, which can be measured by KPIs. R-squared (R-sq) is an indicator of the fitness of 

the regression model to the experimental data. Higher R-sq. is desired for fitting a 

regression model. As it is illustrated in table 7, the achieved R-sq. in the    factorial 

experiment is satisfactory to continue the analysis based on the resulted regression 

models for backorder and inventory costs. 

Table 7- Adjusted R-sq. of the full factorial experiment 

KPI R-sq. (adj.) 

Backorder cost 96.99% 

Inventory cost 99.69% 

In ANOVA, the most effective factors and their interactions are analyzed by reviewing P-

values. Considering the experimental error (α-error) as 5%, any factor/ interaction with P-

value less that 5% can be considered as factors/ interactions which highly affect the KPI. 

Table 8 incorporates factors, interactions and the associated P-values based on ANOVA 

results for the backorder cost. 

Regarding the presented data in table 8, planning approach, demand level and their 

interaction are the most influencing factor/interactions on the backorder cost. If the 

interaction of some factors is important, only the interaction will be interpreted but not 

the main effect of each factor. Figure 5 illustrates the interaction plot of demand level and 

planning approach regarding the backorder cost.  

It is important to mention that the coded units were applied in the experiments. This way 

“-1” presents the deterministic production planning approach and “+1” presents the 
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 Table 8- Resulting P-value regarding simulated backorder cost of the full factorial experiment 

Factor/ Interaction P-value 

Planning App 0.10% 

Planning Hor. 58.00% 

Re-planning 81.00% 

Demand Level 0.00% 

Planning App*Planning Hor. 67.20% 

Planning App*Re-planning 86.60% 

Planning App*Demand Level 0.10% 

Planning Hor.*Re-planning 67.70% 

Planning Hor.*Demand Level 58.00% 

Re-planning *Demand Level 81.00% 

Planning App*Planning Hor.*Re-planning 54.70% 

Planning App*Planning Hor.*Demand Level 67.20% 

Planning App*Re-planning *Demand Level 86.60% 

Planning Hor.*Re-planning *Demand Level 67.70% 

Planning App*Planning Hor.*Re-planning *Demand Level 54.70% 

stochastic one. This figure can be interpreted as follows: in higher levels of demand, 

stochastic model performs better than the deterministic model, in terms of the backorder 

cost. In other words, the superiority of stochastic model versus deterministic one in 

higher demand levels is more considerable. It is again important to emphasize that the P-

values of other factors and factor interactions are large, making it much less probable to 

be effective comparing the important factors/ interactions on the backorder cost. 

Table 9 incorporates factors, interactions and the associated P-values based on ANOVA 

results for the inventory cost. As the table illustrates, the demand level is the most 

influencing factor impacting the inventory cost.  
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Figure 5- Demand level and planning approach interaction effect plot regarding the simulated 

backorder cost of the full factorial experiment 

 

Table 9- Resulting P-value regarding the simulated inventory cost of the full factorial experiment 

Factor/ Interaction P-value 

Planning App 92.60% 

Planning Hor. 68.40% 

Re-planning 38.00% 

Demand Level 0.00% 

Planning App*Planning Hor. 13.20% 

Planning App*Re-planning 53.60% 

Planning App*Demand Level 94.80% 

Planning Hor.*Re-planning 50.10% 

Planning Hor.*Demand Level 47.40% 

Re-planning *Demand Level 43.40% 

Planning App*Planning Hor.*Re-planning 67.70% 

Planning App*Planning Hor.*Demand Level 9.50% 

Planning App*Re-planning *Demand Level 58.90% 

Planning Hor.*Re-planning *Demand Level 14.50% 

Planning App*Planning Hor.*Re-planning *Demand Level 69.10% 

Figure 6 illustrates the impact of the demand level on the inventory cost. It illustrates that 

by increasing the demand level the simulated inventory cost decreases, as it could be 

expected. 
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Figure 6- Demand level main effect plot regarding simulated inventory cost of the full factorial 

experiment 

A decision framework thus can be proposed based on the results discussed in this section. 

The decision framework can differ regarding the KPI of interest:  

- Considering the backorder cost: stochastic model has better performance 

especially in higher demand levels. In summary, it is better to apply stochastic 

approach when the demand gets close to the maximum capacity of sawmill. 

 

- Considering the inventory cost: by increasing the demand level, the simulated 

inventory cost will decrease which is an expected result.  

It is important to emphasize that the resulted decision framework is only valid 

considering the cases with 5% of demand variation. As the demand variation usually 

differs in reality and it is not necessarily a fixed amount, we continued our experiments 

considering other methods which can propose valid decision frameworks for uncertain 

demand variation levels. 
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4.4 Classical robust parameter designs 

As we mentioned, the achieved results in the previous section are valid only for a fixed 

demand variation (e.g., 5%). As demand variation is a noise factor and is not usually 

under control in sawmills, we searched for a methodology which can support a decision 

framework while considering all levels of noise (uncontrollable) factors. Our goal is to 

present factor settings which are robust against variation.  

In cases including the random noise factor, robust design is the appropriate option. This 

section covers the designs, results and analysis of two classical robust parameter 

methodologies. The methods include Taguchi (S/N ratio and direct variance) and 

combined array designs. 

4.4.1 Taguchi robust parameter design  

As we mentioned in section 2, the design structure in this approach is a combination of 

one inner and one outer array. The inner array includes controllable factors and the outer 

array includes noise factor(s). In our case, we have four controllable factors and one noise 

factor. Table 10 illustrates the experimental design for Taguchi method in current study. 

The factor levels definitions are as explained in tables 4 and 5. Considering two levels for 

all factors, totally 32 experiments were performed. Classical robust design was initially 

proposed for physical experiments. The core idea in such cases is to fix the noise factors 

artificially and perform the experiment. By fixing the noise factor in physical 

experiments, there will be no source of uncertainty and as a result, the initial version of 

Taguchi method does not consider replications in its procedure. However, this seems to 

be insufficient for our case study. We aim at imitating random behavior of demand by 
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means of stochastic simulation. Despite fixing the levels of the demand variation, the 

demand profile in the simulation follows a uniform distribution. Hence, running the  

Table 10- Design of Taguchi experiment 

 

Taguchi design with one replication does not provide a realistic experimental condition. 

Through searching the literature more profoundly, we found some studies focused on 

combining Taguchi and stochastic simulation. More precisely, in these methods, several 

replications for each inner/outer array setting are considered. Consequently, the 

combination of Taguchi and stochastic simulation is applied in this study. The results are 

provided as follows:  

4.4.1.1 Taguchi method by considering the S/N ratio 
 

As we mentioned earlier, the initial proposed Taguchi method has two features for 

Inner Array Outer Array 

Run 
Planning 

Approach 

Length of 

Planning 

Horizon 

Re-planning 

Frequency 

Demand Level 

(contract % of 

total capacity) 

5% Demand 

variation 

40% Demand 

variation 

1 + +   + - + 

2 + + + - - + 

3 + + - + - + 

4 + + - - - + 

5 + - + + - + 

6 + - + - - + 

7 + - - + - + 

8 + - - - - + 

9 - + + + - + 

10 - + + - - + 

11 - + - + - + 

12 - + - - - + 

13 - - + + - + 

14 - - + - - + 

15 - - - + - + 

16 - - - - - + 
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analyzing the experimental results: average and S/N ratio. The average is calculated 

regarding the achieved values for each combination of the inner array and several settings 

of the outer array.  To clarify better, if the outer array includes for example two levels for 

the noise factor, there are two KPI values for each setting of inner array: one regarding 

the low level of noise factor and the other regarding the high level of noise factor. The 

average will then be calculated based on these two values. Table 11 illustrates the 

aforesaid combinations. 

Table 11- Taguchi replications for inner/ outer array 

Inner Array Outer Array 

Run 
Planning 

Approach 

 Length of 

Planning 

Horizon 

 Re-

planning 

Frequency 

Demand Level 

(% of total 

capacity) 

5% 

Demand 

variation 

40% 

Demand 

variation 

1 + + + + - + 

 

 

In the current study, each run has been repeated 20 times. Consequently, the average has 

been calculated regarding both outer array levels and different replications of each run.  

We also calculated the S/N ratio as the indicator of KPI variance. Higher S/N ratio 

illustrates less transmitted variability from noise factors. As lower back order and 

inventory sizes are desired, the following formulation was applied to find S/N ratio: 

(2) 

where: 

- “n” represents the number of replications (which is equal to 40 in our case) and 

-    
 ” represents the squared value of KPI  

Average 

S/N ratio= - 10     
∑   
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Table 12 illustrates the calculated average and S/N ratio for backorder and inventory 

costs based on the simulation results. 

Table 12- Calculated average and S/N ratio for backorder and inventory costs in the Taguchi method 
 

Planning 

Approach 

Length of 

Planning 

Horizon 

Re-

planning 

Frequency 

Demand 

Level 

Backorder 

Cost Average 

Inventory 

Cost 

Average 

Backorder 

Cost S/N 

Ratio 

Inventory 

Cost S/N 

Ratio 

Deterministic 15 1 0.5 95.4963405 8301619220 -54.70675386 -198.532039 

Deterministic 15 1 1 1723320006 467548041 -186.189048 -176.555327 

Deterministic 15 7 0.5 90459.1347 8355268316 -109.4223561 -198.582122 

Deterministic 15 7 1 1868619665 431330457 -187.8290212 -175.835756 

Deterministic 30 1 0.5 1983.76628 8695428971 -81.97040998 -198.946365 

Deterministic 30 1 1 2197850234 545897422 -189.1314122 -177.933958 

Deterministic 30 7 0.5 856563.929 8195497475 -133.5587681 -198.477399 

Deterministic 30 7 1 1846494891 536156100 -187.4736256 -177.672318 

Stochastic 15 1 0.5 332.338311 7703936229 -63.00094863 -197.905219 

Stochastic 15 1 1 1704137894 492486673 -186.1397153 -177.235337 

Stochastic 15 7 0.5 96156.0121 8018970168 -112.6421262 -198.193929 

Stochastic 15 7 1 1864111003 554993374 -187.7629644 -177.772046 

Stochastic 30 1 0.5 994.575487 8555485620 -71.60810796 -198.813369 

Stochastic 30 1 1 1672545664 454809288 -185.7826523 -175.701194 

Stochastic 30 7 0.5 152048.658 8216740001 -114.757237 -198.433089 

Stochastic 30 7 1 2035337876 628663278 -188.449903 -178.56096 

Detailed KPI values for each replication are presented in Appendix III. Considering the 

above results and 5% as experimental error, Figures 7 to 16 indicate and analyze the 

important factors/ interactions affecting average and S/N ratio based on ANOVA 

analysis. Significant factors/ interactions are highlighted by squared signs. Alphabetical 

codes are used to represent the factors, for simplicity, as follows:  

- A: Planning approach 

- B: Length of planning horizon 

- C: Re-planning frequency 

- D: Demand level 
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As it is illustrated in Figure 7, demand level is the only important factor influencing the 

backorder cost average; whereas re-planning frequency, demand level, their interaction 
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Figure 7- Normal plot of effects regarding backorder cost average of Taguchi method 
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Figure 8- Normal plot of effects regarding backorder cost S/N ratio of Taguchi method 

and length of planning horizon are important factors regarding the backorder cost S/N 

ratio. Reviewing the main and interaction effect plots is necessary to propose a decision 

framework. 
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By reviewing figures 9 to 11, it can be observed that both the backorder cost average and 

variation will be decreased at the low level of the demand. In other words, if the decision- 

maker prefers a low backorder cost he/ she should avoid contracts close to the maximum 

capacity of the sawing unit. On the other hand, a high S/N ratio (which is always 

desirable) can be achieved at the low level of re-planning frequency and planning 

horizon. Having short re-planning frequency is especially helpful while the demand is 

low. Prior to continue our analysis and decision framework, it is important to review the 

goal of robust design. 
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Figure 9- Main effect plot of demand level regarding backorder cost average of Taguchi method 
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Figure 10- Main effect plot of planning horizon regarding backorder cost S/N ratio of Taguchi 

method 
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Figure 11- Interaction effect plot of demand level and re-planning frequency regarding backorder 

cost S/N ratio of Taguchi method 

Robust design was initially proposed to find the optimum factor levels in a way that they 

can resist against variability as much as possible. By resistance, Taguchi meant two 

aspects: 1) to provide the maximum S/N ratio and 2) to optimize the average (maximum, 

minimum, or target). Hence, factors/ interactions with considerably higher effects 

(important factors) were considered for the optimization procedure. The initial Taguchi 

method proposed unique optimum important factor settings. 

In the current study, as mentioned before the goal is to propose a decision framework; but 

not a unique optimal solution. The decision framework should guide the decision maker 

to choose between deterministic and stochastic production planning approaches under 

different circumstances. Different circumstances are caused by the other controllable 

factors levels (length of planning horizon, re-planning frequency and demand level) 

proposed by the decision maker. In fact, the decision maker defines the levels of these 
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three factors as inputs and aims to find the appropriate planning approach based on the 

robust design results.  

The decision maker is supposed to be approximately aware of the demand average 

(demand level as a percentage of the sawing unit capacity) as an input of decision 

framework. On the other hand, the decision maker does not have exact forecast of the 

variance of demand. The latter makes it impossible to define the demand variation as a 

controllable (known) factor. Therefore, it was necessary to apply a method which can 

provide a function to link controllable factors with KPIs, while it is also valid for all 

levels of the noise factor.  These functions can be used to find the appropriate planning 

approach for different levels of three other controllable factors.  

In this study, Taguchi method was applied to find the valid regression model (function) 

for all demand variation levels between 5% and 40%. In summary, the regression models 

achieved by applying the Taguchi method are the decision frameworks for predicting the 

KPI behavior under different factor combinations and regarding different planning 

approaches. There are some points which should be considered while using the regression 

models:  

- It is worth mentioning that although the planning approach is not identified as a 

significant factor, it does not mean that it has no effect on the backorder/ 

inventory costs. Being considered as an un-important factor is equal to the fact 

that effect is small “comparing” the impact of important factors. Figure 12 

illustrates the main effect of the planning approach on the backorder cost average 

as an example. It is clear that applying stochastic model leads to less average 
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backorder; however, the improvement is smaller comparing the impact caused by 

decreasing the demand level.  

- The achieved regression models are based on coded units (   
 ), so the actual factor 

levels should be converted to coded values in order to be used as inputs.  

- The management may define not all but some of the input factors and try to find 

the optimum setting for all unknown factors, including the planning approach. 

- As there are two regression models regarding the average and S/N ratio in the  

Taguchi method, usually the objective is to maximize the S/N ratio as the 

objective function and to define a target, maximum or minimum level for the 

average, as a constraint and solve the resulting optimization model. In the current 

study, the target or maximum levels for KPIs depend on management point of 

view and are flexible. Equations 12 and 13 represent the achieved regression 

models for backorder cost average and S/N ratio, respectively. The previously  
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Figure 12- Main effect plot of planning approach regarding backorder cost average of Taguchi 

method 
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mentioned alphabetical codes are used for simplicity. Although the decision maker is the 

one who decides on the input factors, it is strongly recommended to have the lowest 

levels for planning horizon and re-planning frequency regarding the above figures and try 

to find the optimum planning approach regarding the demand level.  

Backorder cost average ($millions) =  

932- 23A + 37B + 20C + 932D - 20AB + 46AC -22AD - 18BC + 37BD + 20CD + 44ABC - 

20ABD + 46ACD - 18BCD + 44ABCD                                                                                      (12) 

Backorder cost S/N ratio =  

- 140.0 + 1.3 A - 4.1 B - 12.7 C - 47.3 D + 2.7 AB + 0.6 AC - 0.9 AD + 0.7 BC + 3.7 BD + 12.2 

CD - 0.1 ABC - 2.4 ABD - 1.1 ACD - 0.5 BCD - 0.5 ABCD                                                     (13) 

The decision framework aforesaid is associated with the backorder cost and does not 

include the inventory cost, as another KPI.  Figures 13 to 16 in addition to equations 14 

and 15 represent the results for the inventory cost. The logic for interpreting these outputs 

is the same as the backorder cost.  
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Figure 13- Normal plot of effects regarding inventory cost average of Taguchi method 
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Regarding the normal plots of effects, the only important factor is the demand level for 

both inventory cost average and S/N ratio. The main effect plots of demand for inventory 

cost average and S/N ratio are illustrated in figures 15 and 16. 
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Figure 14- Normal plot of effects regarding inventory cost S/N ratio of Taguchi method 
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Figure 15- Main effect plot of demand level regarding inventory cost average of Taguchi method 

According to the above figures, less inventory cost is expected for high demand levels. 

By reviewing Figure 16, we observe that high level demand will result in not only smaller 
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average but also less variation for inventory cost for different levels of the noise factor. 

Equations 14 and 15 represent inventory cost average and S/N ratio regression models. 
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Figure 16- Main effect plot of demand level regarding inventory cost S/N ratio of Taguchi method 

Inventory cost average ($ millions) =  

4,385- 56A + 94B - 17C - 3,871D + 42AB + 44AC + 75AD - 67BC - 67BD + 41CD – 0.9 ABC - 

60ABD - 9ACD + 84BCD + 12ABCD                                                                                       (14) 

Inventory cost S/N ratio =  

-187.8 - 0.0 A - 0.2 B - 0.1 C + 10.7 D + 0.2 AB - 0.3 AC - 0.2 AD - 0.1 BC - 0.1 BD - 0.2 CD - 

0.1 ABC + 0.3 ABD - 0.3 ACD - 0.2 BCD - 0.1 ABCD                                                             (15) 

It is worth mentioning that the planning approach coefficient in the S/N ratio regression 

function was so small which was appeared as zero.  

The proposed factor levels regarding different KPIs (backorder and inventory costs) may 

result in contradictory decision frameworks. In some cases a tradeoff must be considered 

regarding the priorities of KPIs. For example in the current study, the backorder cost has 

the higher priority.  



65 
 

4.4.1.2 Taguchi method by considering the direct variance 
 

As we mentioned earlier, Taguchi proposed the S/N ratio as the indicator of variation. 

Montgomery [9] mentioned two shortcomings of S/N ratio: i) it needs complicated 

calculations, and ii) the accuracy and capability of the S/N ratio to find the appropriate 

solution for RPD problems can be argued. He consequently proposed to consider directly 

the variance of results, instead of calculating the S/N ratio. Since the variance follows 

chi-square distribution, the logarithm of variance which follows a normal distribution 

should be referred for further analysis. Table 13 illustrates the logarithm of variance for 

backorder and inventory costs.  The detailed information for each replication is presented 

in appendix III.  

Table 13- Backorder and Inventory cost logarithm of variance in the Taguchi experiment 

Model 
Planning  
Horizon 

Rolling  
Horizon 

Demand 
Volume  

Percentage 

Backorder Cost 
Log. of Variance 

Inventory Cost 
Log. of Variance 

Deterministic 15 1 0.5 5.468060404 18.39154973 

Deterministic 15 1 1 18.0859444 17.37985725 

Deterministic 15 7 0.5 10.91061348 18.37937262 

Deterministic 15 7 1 18.42164722 17.30609269 

Deterministic 30 1 0.5 8.197040998 18.46544254 

Deterministic 30 1 1 18.5369162 17.52077722 

Deterministic 30 7 0.5 13.35259824 18.52433757 

Deterministic 30 7 1 18.34941657 17.48468505 

Stochastic 15 1 0.5 6.286364203 18.38812089 

Stochastic 15 1 1 18.09275365 17.4681988 

Stochastic 15 7 0.5 11.25278531 18.2345369 

Stochastic 15 7 1 18.40885193 17.47440454 

Stochastic 30 1 0.5 7.14107905 18.47268748 

Stochastic 30 1 1 18.00633603 17.22791536 

Stochastic 30 7 0.5 11.45177441 18.35290629 

Stochastic 30 7 1 18.46670239 17.51984206 
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Based on the obtained results, the defined important factors and interactions are the same 

as S/N ratio results.  The achieved regression models based on the direct variance of each 

KPI for different levels of the noise factor are provided as follows: 

Backorder cost logarithm of variance =  

13.777 - 0.138 A + 0.411 B + 1.300 C + 4.519 D - 0.283 AB - 0.043 AC + 0.086 AD - 0.083 BC -

0.367 BD -1.184 CD + 0.019 ABC+ 0.232 ABD+ 0.122ACD+ 0.035 BCD + 0.065 ABCD    (16)                                                          

Inventory cost logarithm of variance =  

17.9119 - 0.0196 A + 0.0342 B - 0.0024 C - 0.4892 D - 0.0331 AB + 0.0055 AC + 0.0195AD + 

0.0268 BC - 0.0186 BD + 0.0259 CD + 0.0132 ABC -0.0312 ABD + 0.0455 ACD + 0.0137 BCD 

+ 0.0178 ABCD                                                                                                                           (17) 

As it is illustrated, this model illustrates main effect of planning approach regarding 

inventory variation more precisely comparing to the S/N ratio approach. 

As mentioned in the literature review, Taguchi method does not include any term 

regarding the main effect of noise factor(s) and interaction effects between the 

controllable and the noise factor(s) in its proposed regression models. Due to this 

shortcoming, we used the combined array design as an alternative approach.  

4.4.2 Combined array design 

The core idea of combined array design is to include the noise factor in the same array of 

controllable factors. This way, the achieved regression model contains the terms 

regarding main effect of noise factor and its interaction effects with controllable factors. 

Table 14 illustrates the designed combined array for the current case study. The 

experiment was performed regarding the highest resolution including all possible factor 
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interactions. Considering two levels for each factor defined in tables 1 and 2, the total 

number of experiments is 32.  

Table 14- Design of combined array experiment 
 

Combined Array Design 

Run 
Planning 

Approach 

Length of 

Planning 

Horizon 

Re-planning 

Frequency 

Demand Level 

(% of total 

capacity) 

Noise Factor 

(Demand 

variation) 

1 + + + + + 

2 + + + + - 

3 + + + - + 

4 + + + - - 

5 + + - + + 

6 + + - + - 

7 + + - - + 

8 + + - - - 

9 + - + + + 

10 + - + + - 

11 + - + - + 

12 + - + - - 

13 + - - + + 

14 + - - + - 

15 + - - - + 

16 + - - - - 

17 - + + + + 

18 - + + + - 

19 - + + - + 

20 - + + - - 

21 - + - + + 

22 - + - + - 

23 - + - - + 

24 - + - - - 

25 - - + + + 

26 - - + + - 

27 - - + - + 

28 - - + - - 

29 - - - + + 

30 - - - + - 

31 - - - - + 

32 - - - - - 

 

The initial combined array methodology includes four steps: 

1. To fix the noise factor levels. 
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2. To perform one replication of each experiment. 

3. To use the achieved KPI to find a regression model (unlike the Taguchi method 

that uses the average and S/N ratio of KPIs to find regression models). The 

corresponding model is called the response model and includes the main and 

interaction effects of both controllable and noise factors.  

4. To find the average and variance functions of the response model with respect to  

the noise factor. 

Similar to Taguchi method, the initial version of combined array design does not include 

any replications. In our case, despite fixing the levels of the demand variation, the 

demand profile in the simulation follows a uniform distribution. Hence, running the 

combined array design with one replication does not provide a realistic experimental 

condition. Although we found no literature regarding the combination of combined array 

and stochastic simulation, we decided to apply it for 20 replications for each experiment. 

The average of the resulted KPIs was used to find the mentioned response model. Table 

15 includes the resulted average backorder and inventory costs for each experiment 

regarding 20 replications. 

 

The detailed results are provided in appendix III.  Figures 17 and 18 present normal plots 

of effects for backorder and inventory costs, respectively, considering 5% as the 

experimental error and ANOVA as the analyzing tool. The normal plots indicate that the 

demand level is the only important controllable factor for both KPIs. Moreover, the noise 

factor (demand variation) is an important factor for both KPIs. As the achieved response 

model based on these results will be referred to find both average and variance functions, 
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it is concluded that demand level is the only important controllable factor regarding 

average and variance of both KPIs, with respect to the noise factor. 

Table 15- Resulted backorder and inventory costs averages in the combined array method 
 

Planning 
Approach 

Length of 
Planning 
Horizon 

Re-planning 
Frequency 

Demand Level 
Demand 
variation 

Backorder 
Cost Average 

Inventory 
Cost 

Average 

Determinist 15 1 0.5 5% 0 8158485246 

Determinist 15 1 0.5 40% 190.9926809 8444753194 

Determinist 15 1 1 5% 997808448.6 159134951.1 

Determinist 15 1 1 40% 2448831563 775961130.7 

Determinist 15 7 0.5 5% 0 8031525120 

Determinist 15 7 0.5 40% 180918.2693 8679011511 

Determinist 15 7 1 5% 963120734.8 149858650.1 

Determinist 15 7 1 40% 2774118595 712802263.9 

Determinist 30 1 0.5 5% 0 8214736217 

Determinist 30 1 0.5 40% 3967.532555 9176121726 

Determinist 30 1 1 5% 956052317.5 163958173.4 

Determinist 30 1 1 40% 3439648151 927836670.9 

Determinist 30 7 0.5 5% 0 8209101253 

Determinist 30 7 0.5 40% 1713127.858 8181893697 

Determinist 30 7 1 5% 941817804.6 152453451.2 

Determinist 30 7 1 40% 2751171978 919858749.1 

Stochastic 15 1 0.5 5% 0 8146474303 

Stochastic 15 1 0.5 40% 664.6766224 7261398154 

Stochastic 15 1 1 5% 918757069.1 155675384.6 

Stochastic 15 1 1 40% 2489518719 829297960.5 

Stochastic 15 7 0.5 5% 0 8100281225 

Stochastic 15 7 0.5 40% 192312.0241 7937659110 

Stochastic 15 7 1 5% 958949021.4 165953581.8 

Stochastic 15 7 1 40% 2769272985 944033166.8 

Stochastic 30 1 0.5 5% 0 8164664798 

Stochastic 30 1 0.5 40% 1989.150974 8946306442 

Stochastic 30 1 1 5% 932136876.6 168585772.2 

Stochastic 30 1 1 40% 2412954451 741032804 

Stochastic 30 7 0.5 5% 0 8178124329 

Stochastic 30 7 0.5 40% 304097.3153 8255355672 

Stochastic 30 7 1 5% 891410895.3 185825241.2 

Stochastic 30 7 1 40% 3179264856 1071501316 



70 
 

2000000000150000000010000000005000000000

99

95

90

80

70

60

50

40

30

20

10

5

1

Effect

DE

E

D

Normal Plot of the Effects
(Response is Backorder Cost Average, Alpha = 0.05)

 

Figure 17- Normal plot of effects regarding backorder cost of combined array method 

The backorder and inventory cost response models are presented as equations 18 and 19. 

“E” is the alphabetical code representing the demand variation. 
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Figure 18- Normal plot of effects regarding inventory cost of combined array method 

Backorder cost response model ($ millions) =  

932- 23 A + 37B + 20 C + 931D + 459E - 19 AB + 45AC - 22AD - 12AE - 18BC + 36BD + 44BE 

+ 19CD + 22CE + 459DE + 43ABC - 19ABD - 20ABE + 45ACD + 42E - 12ADE - 18BCD - 
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14BCE + 44BDE + 22CDE + 43,761,443 ABCD + 50ABCE - 20ABDE + 42ACDE - 14BCDE + 

50ABCDE                                                                                                                          (18) 

Inventory cost response model ($ millions) =  

4,384- 56A + 93B - 17C - 3,870D + 228E + 41AB + 44AC + 75AD - 58AE - 66BC - 66BD + 70BE 

+ 41CD - 7CE + 123DE – 0.9 ABC - 60 ABD + 48ABE -8ACD + 34ACE + 70ADE + 84BCD - 

78BCE - 48BDE + 30CDE + 11ABCD + 2ABCE - 70ABDE - 5ACDE + 95BCDE + 7ABCDE                                                                                                                                      

(19) 

Considering the fact that the demand variation (noise) is modeled as coded values (   
 ), 

its expected value and variance are zero and one, respectively. Consequently and based 

on calculations provided in the literature review, the average and variance functions with 

respect to the noise factor for backorder and inventory costs are as follows: 

Backorder cost average ($ millions) = 
               *(equation 18) =  

                                                    

                                                                                                (20) 

Backorder cost variance ($ millions) =          * (equation 18) =  

                                                        

                                         ) 
2 
                                           (21) 

Inventory cost average ($ millions) =                * (equation 19) =  

4,384 - 56A + 93B - 17C - 3,870D + 41AB + 44AC + 75AD - 66BC - 66BD + 41CD – 0.9 ABC - 

60ABD - 8ACD + 84BCD + 11ABCD                                                                                        (22) 

Inventory cost variance ($ millions) =           * (equation 19) =  

                                                   

                            ) 
2
                                                                     (23) 

The only important factor regarding both backorder and inventory cost averages is 

demand level which is the same as the results of Taguchi method. Comparing to the 

                                                           
 Expected value and variance with respect to the noise factor (E) 
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Taguchi method, the combined array method could not find any important factor 

regarding the backorder cost variance except for the demand level. The reason is that the 

only important interaction between noise and controllable factors in response model is the 

interaction between demand level and demand variation. In addition, the combined array 

method could not find any important interaction between noise and controllable factors 

regarding inventory cost response model. Hence, there is no important factor regarding 

inventory variance. This might have happened due to the fact that the original combined 

array methodology does not include any procedure for replications (the initial version of 

Taguchi had the concept of replication which was extended by the users). Therefore the 

combined array design does not make profit of the possibility of having replications. We 

overcome the above shortcoming of the combined array design by applying another 

methodology in the following section.  

  



73 
 

4.5 A protocol to combine robust parameter design and stochastic 

simulation 

This two stage approach methodology is proposed by Giovagnoli et al. [19] for 

combining robust parameter design and stochastic simulation. This method is considered 

as the general protocol which has similarities with combined array and Taguchi methods.  

According to [19], “Classical robust design relies on physical experiments whose factors 

are controllable factors and the noise factors. Noise factors, albeit they vary randomly in 

the process, are controlled in the experiment. Thus, only a few of them, and with few 

levels, are usually included in the design. This constraint can at times be relaxed in 

simulation.” In order to relax this constraint, the noise factors are divided into two 

categories: i) the noises which are considered stochastically in experiments:    and, ii) 

the noises with fixed levels:   .  

In our case, the demand distribution (uniform distribution) is considered to be    which is 

simulated randomly in the simulation process. The demand variation is allocated fixed 

levels and is behaved as a fixed level noise factor in the design structure (  ). The 

experimental structure is the same as combined array illustrated in table 14 in the 

previous section. The defined factor levels are the same as previous experiments, as well.  

The methodology is based on two stages: in the first stage, the computer experiments are 

run based on stochastically simulated demand distribution (  ) for each experiment. We 

emphasize that each experiment includes a fixed level of demand variation as a noise 

factor type II (  ). The level can be either 5% or 40%. Average and variance of several 

replications of each experiment will be then calculated. Similar to the Taguchi method, as 

the calculated variance follows a chi-square distribution, the logarithm of variance should 
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be referred for further analysis. The achieved results are illustrated in table 16. 

Table 16- Resulted backorder and inventory cost averages and logarithm of variance of new protocol 

Planning 
Approach 

Length of 
Planning 
Horizon 

Re-
planning 

Frequency 

Demand 
Level 

Demand 
variation 

Backorder 
Cost  

Average 

Backorder 
Cost Log. 

of 
Variance 

Inventory 
Cost 

Average 

Inventory 
Cost Log. 

of 
Variance 

Determinist 15 1 0.5 5% 0 0.00 8158485246 16.89 

Determinist 15 1 0.5 40% 191 5.77 8444753194 18.69 

Determinist 15 1 1 5% 997808449 16.92 159134951 15.54 

Determinist 15 1 1 40% 2448831563 18.12 775961131 17.46 

Determinist 15 7 0.5 5% 0 0.00 8031525120 16.81 

Determinist 15 7 0.5 40% 180918 11.18 8679011511 18.67 

Determinist 15 7 1 5% 963120735 15.90 149858650 15.46 

Determinist 15 7 1 40% 2774118595 18.57 712802264 17.39 

Determinist 30 1 0.5 5% 0 0.00 8214736217 16.94 

Determinist 30 1 0.5 40% 3968 8.50 9176121726 18.73 

Determinist 30 1 1 5% 956052318 15.95 163958173 15.42 

Determinist 30 1 1 40% 3439648151 18.58 927836671 17.57 

Determinist 30 7 0.5 5% 0 0.00 8209101253 16.71 

Determinist 30 7 0.5 40% 1713128 13.65 8181893697 18.83 

Determinist 30 7 1 5% 941817805 15.80 152453451 15.56 

Determinist 30 7 1 40% 2751171978 18.46 919858749 17.50 

Stochastic 15 1 0.5 5% 0 0.00 8146474303 16.83 

Stochastic 15 1 0.5 40% 665 6.57 7261398154 18.66 

Stochastic 15 1 1 5% 918757069 15.95 155675385 15.18 

Stochastic 15 1 1 40% 2489518719 18.09 829297960 17.56 

Stochastic 15 7 0.5 5% 0 0.00 8100281225 16.91 

Stochastic 15 7 0.5 40% 192312 11.54 7937659110 18.53 

Stochastic 15 7 1 5% 958949021 16.06 165953582 15.08 

Stochastic 15 7 1 40% 2769272985 18.55 944033167 17.47 

Stochastic 30 1 0.5 5% 0 0.00 8164664798 16.93 

Stochastic 30 1 0.5 40% 1989 7.42 8946306442 18.75 

Stochastic 30 1 1 5% 932136877 16.18 168585772 15.22 

Stochastic 30 1 1 40% 2412954451 17.96 741032804 17.24 

Stochastic 30 7 0.5 5% 0 0.00 8178124329 16.98 

Stochastic 30 7 0.5 40% 304097 11.73 8255355672 18.66 

Stochastic 30 7 1 5% 891410895 16.14 185825241 15.37 

Stochastic 30 7 1 40% 3179264856 18.51 1071501316 17.42 
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Figures 19 and 20 present the normal plot of effects indicating important factors/ 

interactions for backorder cost average and logarithm of variance, respectively. 
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Figure 19- Normal plot of effects regarding backorder cost average of new protocol 
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Figure 20- Normal plot of effects regarding backorder cost logarithm of variance of new protocol 

As it is illustrated in figure 19, the interaction between demand level and demand 

variation are the only important factor considering backorder cost average. Figure 21 
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illustrates the interaction effect plot for the backorder cost average. Low level of demand 

has better performance in all levels of demand variation.  

                          

Figure 21- Interaction effect plot of demand level and demand variation regarding backorder cost 

average of new protocol 

Figure 21 illustrates that i) the interaction of length of planning horizon and demand 

variation, and ii) the interaction between re-planning frequency, demand level and 
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Figure 22- Interaction effect plot of demand level and demand variation regarding backorder cost 

logarithm of variance of new protocol 
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demand variation are significant regarding the backorder cost logarithm of variance. The 

figures 22 and 23 indicate the mentioned interactions. Based on figure 22, shorter 

planning horizon leads to less backorder variation especially in higher demand variation 

levels.  
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Figure 23- Interaction effect plot of re-planning frequency, demand level & demand variation on 

backorder cost logarithm of variance of new protocol 

Figure 23 illustrates that lower demand level and shorter re-planning frequency lead to 

smaller backorder logarithm of variance.  

Similar to the Taguchi method, in order to have a decision framework we need to 

consider the regression models. The achieved regression models are provided for average 

and logarithm of variance of backorder cost as follows: 

Backorder cost average =  

932,100,992 - 22,553,246 A + 37,054,040 B + 19,868,841 C + 931,951,162 D + 459,597,669 E - 

19,592,641 AB + 45,507,684 AC - 22,465,799 AD - 12,706,655 AE - 18,313,528 BC + 36,950,972 
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BD + 44,380,127 BE + 19,719,863 CD + 22,959,857 CE + 459,447,839 DE + 43,672,820 ABC - 

19,503,711 ABD - 20,148,937 ABE +  45,594,942 ACD + 42,483,421 ACE - 12,619,209 ADE - 

18,415,959 BCD - 14,534,483 BCE +  44,277,058 BDE + 22,810,879 CDE + 43,761,443 ABCD + 

50,008,516 ABCE - 20,060,007 ABDE + 42,570,680 ACDE - 14,636,913 BCDE + 50,097,139 

ABCDE                                                                                                                             (24) 

Backorder cost logarithm of variance =  

11.003 - 0.084 A + 0.177 B + 0.627 C + 6.231 D + 2.946 E - 0.104 AB + 0.019 AC + 0.030 AD - 

0.069 AE - 0.021 BC - 0.213 BD + 0.224 BE - 0.613 CD + 0.696 CE - 1.826 DE - 0.024 ABC + 

0.157 ABD -0.190 ABE + 0.100 ACD - 0.057 ACE + 0.046 ADE + 0.036 BCD - 0.066 BCE - 

0.166 BDE - 0.544 CDE + 0.002 ABCD + 0.040 ABCE + 0.071 ABDE + 0.023 ACDE -0.008 

BCDE + 0.065 ABCDE                                                                                                              (25) 

The same interpretation is performed for the inventory cost, as the second KPI. Figures 

24 and 25 illustrate the normal plots of effects regarding the inventory cost average and 

logarithm of variance, respectively. 
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Figure 24- Normal plot of effects regarding inventory cost average of new protocol 
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Based on figure 24, only demand level and demand variation are significant regarding the 

inventory cost average. On the other hand, figure 25 indicates that the interaction 

between planning approach, demand level and demand variation is significant regarding  
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Figure 25- Normal plot of effects regarding inventory cost logarithm of variance of new protocol 

the inventory cost logarithm of variance. Figures 26 and 27 present the main and 

interaction effect plots for important factors, mentioned above. 

          

Figure 26- Main effect plot of demand level regarding inventory cost average of new protocol 
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Figure 26 illustrate the higher demand level will result in lower inventory cost average, as 

expected. On the other hand, figure 27 illustrates that higher demand level and stochastic 

planning approach lead in smaller amounts for inventory cost logarithm of variance. It is 
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Figure 27- Interaction effect plot of planning approach, demand level and demand variation 

regarding inventory cost logarithm of variance of new protocol 

important to highlight that larger demand will result in both lower inventory cost average 

and logarithm of variance. The associated equations for the inventory cost average and 

logarithm of variance are as follows: 

Inventory cost average =  

4,384,676,915 - 56,416,336 A + 93,907,855 B - 17,474,518 C - 3,870,691,335 D + 228,124,558 E 

+ 41,756,113 AB + 44,055,645 AC + 75,168,910 AD - 58,062,059 AE - 6,684,6037 BC - 

66,511,912 BD + 70,779,057 BE + 41,274,742 CD - 7,562,519 CE + 123,180,370 DE - 957,996 

ABC - 60,153,926 ABD + 48,782,956 ABE -8,765,695 ACD + 34,795,630 ACE + 70,485,289 

ADE + 84,073,981 BCD - 78,452,951 BCE - 48,408,122 BDE + 30,520,662 CDE + 11,566,875 
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ABCD + 2,322,183 ABCE - 70,351,272 ABDE - 5,543,017 ACDE + 95,089,289 BCDE + 

7,137,984 ABCDE                                                                                                                       (26) 

Inventory cost logarithm of variance =  

17.0925 - 0.0427 A + 0.0221 B - 0.0085 C - 0.6903 D + 0.9781 E + 0.0006 AB + 0.0113 AC - 

0.0415 AD + 0.0080 AE + 0.0223 BC - 0.0120 BD - 0.0048 BE + 0.0117 CD - 0.0042 CE + 

0.0698 DE + 0.0099 ABC - 0.0144 ABD - 0.0362 ABE + 0.0023 ACD - 0.0149 ACE + 0.0473 

ADE + 0.0252 BCD + 0.0042 BCE - 0.0242 BDE - 0.0057 CDE + 0.0097 ABCD + 0.0013 ABCE 

- 0.0226 ABDE + 0.0306 ACDE - 0.0174 BCDE + 0.0145 ABCDE                                   (27)                                     

The achieved functions for average and logarithm of variance in stage 1 are valid only for 

5% and 40% of demand variation and considering random noise factor   , based on 

Giovagnoli et al. [19]. To expand the above regression functions and get valid ones for all 

levels of demand variation (  ), they proposed the following calculations: 

Average function = 
   * (average function in stage 1) 

Variance function=    * (logarithm of variance function in stage 1) +       (average 

function in stage 1) 

Considering coded variables (    
  for   , its expected value and variance are equal to 

zero and one, respectively. Consequently and with respect to explanation provided in the 

literature review, the final regression models for our case are calculated as follows: 

Backorder cost average =   

932,100,992 -22,553,246 A+ 37,054,040 B+ 19,868,841 C+ 931,951,162 D -19,592,641 AB+ 

45,507,684 AC -22,465,799 AD-  18,313,528 BC+ 36,950,972BD+ 19,719,863 CD+ 

43,672,820ABC-19,503,711 ABD +  45,594,942ACD-18,415,959 BCD +43,761,443ABCD  (28)                                                        

                                                           
 Expected value and variance with respect to    
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Backorder cost variance =  

(11.003 - 0.084 A + 0.177 B + 0.627 C + 6.231 D - 0.104 AB + 0.019 AC + 0.030 AD - 0.021 BC - 

0.213 BD - 0.613 CD - 0.024 ABC + 0.157 ABD + 0.100ACD + 0.036 BCD + 0.002 ABCD) + 

(459,597,669 - 12,706,655 A + 44,380,127 B + 22,959,857 C + 459,447,839 D - 20,148,937 AB + 

42,483,421 AC - 12,619,209 AD - 14,534,483 BC + 44,277,058 BD + 22,810,879 CD + 

50,008,516 ABC - 20,060,007 ABD + 42,570,680 ACD - 14,636,913 BCD + 50,097,139 ABCD                                                                                                                                         

(29) 

Inventory cost average =  

4,384,676,915 - 56,416,336 A + 93,907,855 B - 17,474,518 C - 3,870,691,335 D + 41,756,113 AB 

+ 44,055,645 AC + 75,168,910 AD - 6,684,6037 BC - 66,511,912 BD + 41,274,742 CD - 957,996 

ABC - 60,153,926 ABD - 8,765,695 ACD + 84,073,981 BCD + 11,566,875 ABCD          (30)                                                                                       

Inventory cost variance =  

(17.0925 - 0.0427 A + 0.0221 B - 0.0085 C - 0.6903 D  + 0.0006 AB + 0.0113 AC - 0.0415 AD  + 

0.0223 BC - 0.0120 BD  +  0.0117 CD -  + 0.0099 ABC - 0.0144 ABD + 0.0023 ACD + 0.0252 

BCD + 0.0097 ABCD) + (228,124,558 - 58,062,059 A + 70,779,057 B - 7,562,519 C + 

123,180,370 D + 48,782,956 AB + 34,795,630 AC + 70,485,289 AD - 78,452,951 BC - 

48,408,122 BD + 30,520,662 CD + 2,322,183 ABC - 70,351,272 ABD - 5,543,017 ACD + 

95,089,289 BCD + 7,137,984 ABCD                                                                                         (31) 

The superiority of this model is highlighted by underlined terms, comparing to the 

combined array methodology. In this model, the expected value of logarithm of variance 

regression model has been included in final variance function in addition to the variance 

of average regression model. This way, the new protocol can benefit from the possibility 
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of replications in the stochastic simulation and having the possibility of calculating the 

variance of those replications.  

Although this method results in a more precise variance function comparing to the 

combined array design, it is not very helpful in our case study. Although the new method 

distinguishes some important factors and interactions regarding backorder and inventory 

costs variances in the related logarithm regression models, their effects are trivialized in 

the final variance functions (stage two). This happens due to the fact that the coefficients 

derived from the regression models of logarithm of variance (the underlined sections) are 

very small comparing the coefficients derived from regression functions of the average. 

Therefore, when they are combined in the final variance functions, the effect of important 

factors in the logarithm of variance regression models are trivialized. It should be 

mentioned that the small coefficients in the aforementioned model illustrate the negligible 

impact of Z1 (uniform distribution of demand) on the variation of response variable. 

The next section focuses on choosing the most appropriate robust parameter design for 

our case study and proposes the decision framework, as the final goal of this study. 
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4.6 Decision framework 

 

We applied three methodologies for robust parameter design in this study. The results 

indicated that the new protocol to combine robust parameter design and stochastic 

simulation provides the same results as the combined array methodology. Therefore, we 

considered Taguchi and combined array methodologies to propose the decision 

framework in our case study. Considering the results and discussions in the previous 

section, we chose the Taguchi method by using the direct variance, as it provided more 

accuracy regarding the main effect of planning approach comparing to the S/N ratio. 

Based on the experimental results provided in the previous section, it is not possible to 

propose a robust planning approach which results in smaller amounts for average and 

variance of backorder and inventory costs at all levels of demand variation. Hence, to 

propose the appropriate planning approach, we can follow two options:  

4.6.1 The demand variation is unknown  

In this case we use the regression models achieved by Taguchi or combined array 

methods to propose the decision framework. Taguchi [12] mentioned that in new quality 

control approaches the main goal is to minimize variance around the response value and 

then optimize the value of response variable. Based on this point of view and inspired 

from Chen [28], we suggest to follow the subsequent procedure to propose a decision 

framework: 

        [    ] 

                   [    ]     
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Or 

        [    ] 

                   [    ]     

                      

           

where, “m” is the target or maximum allowed value for the average of response variable 

(backorder or inventory costs) defined by management.    to    are representing 

planning horizon, re-planning frequency and demand level respectively whereas    

represents planning approach. The resulted regression models for average and variance of 

backorder and inventory costs are implemented separately in the above optimization 

model to propose the best planning approach under different levels of    to   . There are 

two options: 

Considering Taguchi method regression models based on direct variance values: 

Equations 12 and 16 can be used as average and variance functions for backorder cost, 

whereas equations 14 and 17 are used for inventory cost optimization model. 

Although the managers are supposed to make decision about the level of controllable 

factors as the inputs for the decision framework, the results of Taguchi method suggest 

the following level settings to decrease the average and variance of backorder and 

inventory costs: 

-  The demand level is the only important factor influencing the backorder cost 

average; whereas re-planning frequency, demand level, their interaction and 
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length of planning horizon are important regarding the backorder cost logarithm 

of variance. It was observed that both the backorder cost average and variance 

will be decreased at the low level of the demand. In other words, if the decision 

maker prefers a low backorder cost he/ she should avoid contracts close to the 

maximum capacity of sawmills. On the other hand, lower variation of backorder 

cost can be achieved at the low level of re-planning frequency and planning 

horizon. Having short re-planning frequency is especially helpful while the 

demand level is low.  

-  Regarding the inventory cost, the demand level was the only distinguished 

important factor for both average and logarithm of variance. Higher demand level 

will result in not only less inventory cost average but also smaller variation 

around the average. 

As it is observed here and we mentioned previously, in some cases the proposed factor 

levels are in contradiction for different KPIs. In such situation a tradeoff or prioritization 

is necessary. In our case, the system is service sensitive and the backorder cost has the 

first priority for decision making.  

No matter what the levels of controllable factors would be, the following table compares 

the performance of two planning approaches based on decision framework under sample 

of different circumstances. By comparing the performances, it becomes possible to 

propose the appropriate production planning approach for each case. 
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Table 17- The performance of production planning approaches under sample of different 

circumstances based on Taguchi method 
 

Planning 
Approach 

Length of 
Planning 
Horizon 

Re-planning 
Frequency 

Demand 
Level 

Backorder 
Cost 

Average 

Inventory 
Cost 

Average 

Backorder 
Cost 

Logarithm of 
Variance 

Inventory 
Cost 

Logarithm of 
Variance 

Deterministic 15 1 0.5 1 8300.9 5.468 18.3915 

Stochastic 15 1 0.5 0 7703.1 6.288 18.3879 

Deterministic 15 1 1 1723 466.9 18.084 17.3799 

Stochastic 15 1 1 1705 493.1 18.092 17.4683 

Deterministic 15 7 0.5 1 8355.1 10.91 18.3795 

Stochastic 15 7 0.5 0 8020.9 11.254 18.2343 

Deterministic 15 7 1 1867 433.1 18.422 17.3059 

Stochastic 15 7 1 1865 554.9 18.41 17.4743 

Deterministic 30 1 0.5 1 8695.1 8.198 18.4655 

Stochastic 30 1 0.5 0 8556.9 7.142 18.4727 

Deterministic 30 1 1 2199 545.1 18.538 17.5207 

Stochastic 30 1 1 1669 454.9 18.006 17.2279 

Deterministic 30 7 0.5 1 8196.9 13.352 18.5243 

Stochastic 30 7 0.5 0 8219.1 11.452 18.3531 

Deterministic 30 7 1 1847 534.9 18.348 17.4847 

Stochastic 30 7 1 2037 629.1 18.468 17.5199 
 

Considering combined array method average and variance functions 

Equations 20 and 21 can be used as average and variance functions for backorder cost, 

whereas equations 22 and 23 are used for inventory cost optimization model. 

As mentioned in the related section, combined array could distinguish demand level as 

the only important factor regarding backorder cost average and variance in addition to 

inventory cost average. It is also important to mention that no important factor was 

distinguished by this method regarding the inventory cost variance. Considering the fact 

aforesaid and regarding the combined array results, it is suggested to avoid  contracts 

close to the maximum capacity of sawmills in order to achieve lower backorder cost 
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average and variance. On the other hand, in order to have lower inventory average cost it 

is better to have higher demand levels, as expected. 

Similar to Taguchi method, we propose the comparison between the performances of two 

planning approaches under a sample of different circumstances in table 18. The table is 

prepared based on the achieved results for combined array method. 

Table 18- The performance of production planning approaches under sample of different 

circumstances based on combined array method 
 

Planning 
Approach 

Length of 
Planning 
Horizon 

Re-planning 
Frequency 

Demand 
Level 

Backorder 
Cost 

Average 

Inventory 
Cost 

Average 

Backorder 
Cost 

Variance 

Inventory 
Cost 

Variance 

Deterministic 15 1 0.5 0 8,299 0 19,881 

Stochastic 15 1 0.5 0 7,707 0 192,721 

Deterministic 15 1 1 1,726 469 527,076 95,481 

Stochastic 15 1 1 1,706 493 624,100 113,569 

Deterministic 15 7 0.5 0 8,355 0 105,625 

Stochastic 15 7 0.5 0 8,019 0 6,241 

Deterministic 15 7 1 1,866 429 813,604 78,961 

Stochastic 15 7 1 1,862 557 813,604 151,321 

Deterministic 30 1 0.5 2 8,691 0 227,529 

Stochastic 30 1 0.5 2 8,551 0 151,321 

Deterministic 30 1 1 2,192 545 1,532,644 145,161 

Stochastic 30 1 1 1,676 453 550,564 81,225 

Deterministic 30 7 0.5 2 8,195 0 121 

Stochastic 30 7 0.5 2 8,215 0 1,369 

Deterministic 30 7 1 1,844 537 813,604 148,225 

Stochastic 30 7 1 2,032 629 1,304,164 194,481 

 

4.6.2 The demand variation is known 

In this case, it is better to perform a factorial experiment for the specified variance level, 

similar to what was performed for 5% of demand variation in section 4.5. Hence, two 

cases might happen: 
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1. The planning approach is identified as an important factor or appears in important 

interactions: This makes it possible to definitely propose one of the planning 

approaches as the superior one. An example is the results of full factorial design 

for 5% of demand variation. In this experiment, the interaction of planning 

approach and demand level was considered to be important regarding backorder 

cost average. In the mentioned experiment, the results indicated that stochastic 

planning approach is superior to deterministic one especially for higher demand 

levels considering backorder average cost. 

2. The planning approach is not identified as an important factor or it is not included 

in an important interaction: In this case it would be more appropriate to use the 

regression model, specifically estimated for the defined demand variation, as the 

decision framework for example. Based on the full factorial design for 40% of 

demand variation, the planning approach is not important regarding backorder or 

inventory costs averages and the demand level is the only important factor 

regarding these two KPIs.  Therefore, the decision framework will be defined as 

follow: 

                             

                                 

           

And 

                             

                                 

           

where again    to    represent planning horizon, re-planning frequency and demand level 

respectively; whereas    represents planning approach. Table 19 illustrates the results 
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regarding backorder cost average for different combinations of other controllable factors 

for the 40% of demand variation as an example. The details of this experiment are 

presented in Appendix IV. 

Table 19- The performance of production planning approaches under a sample of different 

circumstances based on 40% demand variation regarding backorder cost regression model 

 

Planning Approach 
Length of Planning 

Horizon 
Re-planning 
Frequency 

Demand 
Level 

Backorder Cost 
Average 

($millions) 

Deterministic 15 1 0.5 1 

Stochastic 15 1 0.5 0 

Deterministic 15 1 1 2855 

Stochastic 15 1 1 2525 

Deterministic 15 7 0.5 1 

Stochastic 15 7 0.5 0 

Deterministic 15 7 1 2839 

Stochastic 15 7 1 3085 

Deterministic 30 1 0.5 1 

Stochastic 30 1 0.5 0 

Deterministic 30 1 1 3807 

Stochastic 30 1 1 2669 

Deterministic 30 7 0.5 1 

Stochastic 30 7 0.5 0 

Deterministic 30 7 1 2407 

Stochastic 30 7 1 2469 
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 Conclusions and future steps 5

This chapter provides a summary of research performed in this thesis and covers the most 

remarkable aspects and conclusions of this study. We also present the possible steps for 

future work.  

5.1 Conclusions 

The goal of this study was to compare the performance of deterministic and stochastic 

production planning models in sawing unit of sawmills. Regarding this objective, we 

conducted a related literature review which proved the necessity of performing a new 

study to compare these two models based on design of experiments and on a rolling 

planning horizon.  

The experiments were performed virtually through Monte-Carlo simulation, as it was not 

possible and economically reasonable to run them in real sawmills. We started 

experimenting procedure by factorial design and continued it with three methods of 

robust parameter design (Taguchi crossed array design, combined array design and a new 

protocol to combine robust parameter design with stochastic simulation).  The final goal 

of the comparison was to propose a decision framework in order to identify the 

appropriate production planning approach under different circumstances in terms of 

length of planning horizon, re-planning frequency and demand average and standard 

deviation. These applied steps covered the contributions of our study which were: 

- Performing the comparison based on designed experiments. 

- Implementing the experiments on a rolling planning horizon. 
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- Integrating the robust parameter design with stochastic simulation to compare the 

performance of stochastic and deterministic production planning models in 

sawing unit of sawmills. 

- Using three types of robust parameter design in addition to factorial design to 

propose a decision framework. 

The proposed decision framework depended on the available information regarding 

demand variation as the noise factor.  Two cases might happen: i) demand variation was 

unknown, and ii) demand variation was known 

In first case, it was suggested to refer to robust parameter design to propose the decision 

framework. The reason was that robust parameter design provided valid results for all 

levels of demand variation. Based on the achieved experimental results, the following 

points must be highlighted: 

 As the new protocol provided the same results as combined array methodology, 

we decided to consider only Taguchi method and combined array design as two 

alternatives for proposing the decision framework. 

 Inspired by Taguchi [12] and Chen [28], an optimization model was considered as 

the basis for the decision framework. In this optimization model, the variance 

equation resulted by the robust parameter design approach (Taguchi or combined 

array) was considered to be the objective function. The average function (with 

respect to the desired or the maximum level defined by management for each 

KPI), in addition to allowed levels for controllable factors, were considered as 
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constraints. The model seeks those factor combinations that minimize the 

variance around a target response (KPI) value.  

 We proposed separate optimization models for each KPI. In some cases the 

proposed planning approaches might be in contradiction for different KPIs. In our 

case, the system was service sensitive and the backorder cost had the first priority 

for decision making. 

 The management was supposed to identify the desired value for backorder and/ or 

inventory costs in addition to the length of planning horizon, re-planning 

frequency and demand level as the inputs of the optimization model. The 

appropriate planning approach would then be decided as the output of decision 

framework.  

 The proposed decision framework was applicable to identify not only the 

appropriate planning approach but also the appropriate level for all other 

controllable factors. 

 Considering Taguchi method, it was recommended to avoid contracts close to the 

maximum capacity of sawmills to have lower backorder cost average and 

variance. In addition, shorter re-planning frequency and planning horizon were 

helpful to achieve low backorder cost variance. On the other hand having higher 

demand level could result in lower levels of both inventory cost average and 

variance. 

 Considering combined array method, it was recommended to avoid demand levels 

close to maximum sawmill capacity to have lower backorder cost average and 

variance. In addition, having higher demand level could result in lower inventory 
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cost average as expected. It was important to mention that combined array design 

did not distinguish any important factor regarding the inventory cost variance and 

had no suggestions in this regard. 

 The achieved functions of Taguchi and combined array method provided almost 

the same results for KPI averages. This happened due to the fact that we 

considered the highest resolution for our experiments. 

 Although it was not possible to choose the best method among Taguchi and 

combined array, we might suggest Taguchi method to propose a better decision 

framework in our case. The reason was that Taguchi method could distinguish 

more important factors regarding backorder and inventory cost variances. In 

addition, the sample decision frameworks illustrated in tables 17 and 18 indicated 

that combined array method could not distinguish any differences between the 

performance of deterministic and stochastic production planning approaches in 

some cases. It is also necessary to mention that these two methods may propose 

different suggestions in some circumstances which may happen due to their 

different approaches for calculating the variance functions. 

As we mentioned, the proposed decision framework depended on the available 

information regarding demand variation as the noise factor. The above explanations are 

regarding the cases that demand variation is unknown. The other case happens when the 

demand variation is known. In this case we suggested performing factorial design which 

may lead to two situations:  

 The planning approach was identified as an important factor or appears in 

important interactions. This made it possible to definitely propose one of the 
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planning approaches as the superior one. An example was the results of full 

factorial design for 5% of demand variation which suggested stochastic 

production planning model in order to decrease the backorder cost average. 

 The planning approach was not identified as an important factor or it was not 

included in an important interaction. In this case it would be more appropriate to 

use the regression model, specifically estimated for the defined demand variation, 

as the decision framework. This way, we had a new decision framework in which 

the achieved regression model for backorder or inventory cost averages were used 

as the objective function and the allowed levels for controllable factors were the 

constraints. We tried to find the best planning approach for each setting of 

controllable factor levels in order to minimize the KPI average. Table 19 

compared the performance of deterministic and stochastic production planning 

approaches under a sample of different circumstances. The comparison was done 

based on the proposed decision framework for 40% demand variation. 

Finally, we can conclude that the goals and objectives of this study are achieved, and it 

can be used as the basis for future works. 

5.2 Future work 

This case study compared the traditional deterministic production planning models in 

sawmills with stochastic production planning approach. The results of the current study 

and the guidelines it provided, especially regarding the appropriate methodology for such 

comparisons, can be used in similar works. The future steps can be defined as follows: 
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-  The stochastic model in current study considers only random process yields. We 

suggest comparing the deterministic model with another stochastic model that 

considers both random yields and demand as uncertain parameters.  

-  To find more precise estimations for experimental environment. Experimental 

environment include the demand distribution and sawmill capacity. The data 

applied in this study can be improved in future work by using more updated 

historical data. The latter would result a more precise decision framework in terms 

of finding the superior planning approach. 
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Appendix I 

Deterministic and Stochastic Models for Sawmill Production Planning 

        

p product (lumber) 
t period 
c raw material (log) class 

a production process 
r resource (machine) 

           

hpt inventory holding cost per unit of product p in period t 

bpt backorder cost per unit of product p in period t 

mct raw material cost per unit of class c in period t 

Ic0 the inventory of raw material of class c at the beginning of planning horizon 

Ip0 the inventory of product p at the beginning of planning horizon 

Sct the quantity of material of class c supplied at the beginning of period t 

dpt demand of product p by the end of period t 

 ac the units of class c raw material consumed by process a (consumption factor) 

 ap the units of product p produced by process a (yield of process a) 

 ar the capacity consumption of resource r by process a 

Mrt the capacity of resource r in period t 

                    

Xat the number of times each process a should be run in period t (production plan) 

Ict inventory size of raw material of class c by the end of period t 

Ipt inventory size of product p by the end of period t 

Bpt backorder size of product p by the end of period t 

 

Deterministic Model for Sawmill Production Planning 
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Stochastic Model for Sawmill Production Planning 
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Appendix II 

The Backorder and Inventory Costs Values for Full Factorial Design 

(5% Demand variation) 

Planning 
Approach 

Length of 
Planning Horizon 

Re-planning 
Frequency 

Demand 
Level 

Simulated 
Inventory Cost 

Simulated 
Backorder Cost 

Deterministic 15 1 0.5 8,370,666,125 0 

Deterministic 15 1 0.5 8,459,025,496 0 

Deterministic 15 1 0.5 8,025,344,423 0 

Deterministic 15 1 0.5 8,582,683,763 0 

Deterministic 15 1 0.5 8,223,545,260 0 

Deterministic 15 1 0.5 8,051,704,530 0 

Deterministic 15 1 0.5 8,137,375,025 0 

Deterministic 15 1 0.5 7,749,024,485 0 

Deterministic 15 1 0.5 7,851,397,803 0 

Deterministic 15 1 0.5 8,691,368,671 0 

Deterministic 15 1 1 82,390,000 1,048,099,705 

Deterministic 15 1 1 162,793,150 887,370,565 

Deterministic 15 1 1 143,593,152 958,430,838 

Deterministic 15 1 1 107,133,306 958,680,681 

Deterministic 15 1 1 211,921,826 982,308,267 

Deterministic 15 1 1 140,443,296 899,939,736 

Deterministic 15 1 1 139,620,867 1,005,435,364 

Deterministic 15 1 1 96,600,139 1,015,885,485 

Deterministic 15 1 1 151,501,757 1,112,011,596 

Deterministic 15 1 1 198,667,779 931,771,872 

Deterministic 15 7 0.5 7,874,038,374 0 

Deterministic 15 7 0.5 7,908,475,145 0 

Deterministic 15 7 0.5 8,114,321,032 0 

Deterministic 15 7 0.5 8,514,661,289 0 

Deterministic 15 7 0.5 7,849,607,266 0 

Deterministic 15 7 0.5 7,733,907,758 0 
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Deterministic 15 7 0.5 8,399,630,317 0 

Deterministic 15 7 0.5 8,382,917,851 0 

Deterministic 15 7 0.5 8,635,802,985 0 

Deterministic 15 7 0.5 8,440,782,583 0 

Deterministic 15 7 1 174,011,504 961,836,812 

Deterministic 15 7 1 131,455,064 995,007,502 

Deterministic 15 7 1 151,865,839 887,634,963 

Deterministic 15 7 1 141,164,731 1,162,518,364 

Deterministic 15 7 1 249,351,098 730,262,326 

Deterministic 15 7 1 84,793,786 975,069,049 

Deterministic 15 7 1 291,276,889 945,259,787 

Deterministic 15 7 1 119,070,776 1,070,784,489 

Deterministic 15 7 1 202,585,474 802,790,216 

Deterministic 15 7 1 178,977,296 1,019,890,397 

Deterministic 30 1 0.5 7,681,304,292 0 

Deterministic 30 1 0.5 8,472,008,415 0 

Deterministic 30 1 0.5 8,176,424,206 0 

Deterministic 30 1 0.5 7,878,888,544 0 

Deterministic 30 1 0.5 8,256,120,161 0 

Deterministic 30 1 0.5 8,524,641,385 0 

Deterministic 30 1 0.5 7,577,208,541 0 

Deterministic 30 1 0.5 7,860,763,090 0 

Deterministic 30 1 0.5 7,743,138,933 0 

Deterministic 30 1 0.5 7,992,119,390 0 

Deterministic 30 1 1 146,055,631 1,173,011,818 

Deterministic 30 1 1 174,579,926 1,145,147,148 

Deterministic 30 1 1 203,934,326 999,949,532 

Deterministic 30 1 1 237,361,485 891,088,186 

Deterministic 30 1 1 123,270,145 1,109,491,119 

Deterministic 30 1 1 230,499,764 1,036,465,830 

Deterministic 30 1 1 219,090,111 818,165,475 

Deterministic 30 1 1 228,019,345 858,634,141 
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Deterministic 30 1 1 122,972,594 948,932,308 

Deterministic 30 1 1 198,891,103 808,012,937 

Deterministic 30 7 0.5 8,323,301,560 0 

Deterministic 30 7 0.5 8,034,657,640 0 

Deterministic 30 7 0.5 8,245,992,233 0 

Deterministic 30 7 0.5 8,449,297,344 0 

Deterministic 30 7 0.5 7,729,236,149 0 

Deterministic 30 7 0.5 7,795,825,469 0 

Deterministic 30 7 0.5 8,119,105,382 0 

Deterministic 30 7 0.5 8,251,826,304 0 

Deterministic 30 7 0.5 8,067,428,430 0 

Deterministic 30 7 0.5 7,787,162,093 0 

Deterministic 30 7 1 250,565,368 933,033,827 

Deterministic 30 7 1 125,013,259 1,007,068,192 

Deterministic 30 7 1 192,731,531 1,008,255,128 

Deterministic 30 7 1 92,650,334 1,051,091,795 

Deterministic 30 7 1 185,596,481 1,192,542,972 

Deterministic 30 7 1 182,325,950 992,410,985 

Deterministic 30 7 1 101,158,816 1,040,768,751 

Deterministic 30 7 1 132,424,898 946,606,521 

Deterministic 30 7 1 163,502,250 1,091,504,627 

Deterministic 30 7 1 180,697,998 811,913,312 

Stochastic 15 1 0.5 8,624,584,896 0 

Stochastic 15 1 0.5 7,934,836,171 0 

Stochastic 15 1 0.5 8,275,043,011 0 

Stochastic 15 1 0.5 7,707,555,150 0 

Stochastic 15 1 0.5 8,177,640,156 0 

Stochastic 15 1 0.5 8,390,995,183 0 

Stochastic 15 1 0.5 8,435,274,154 0 

Stochastic 15 1 0.5 7,567,279,572 0 

Stochastic 15 1 0.5 7,855,587,098 0 

Stochastic 15 1 0.5 7,940,972,574 0 



105 
 

Stochastic 15 1 1 231,149,456 752,497,841 

Stochastic 15 1 1 178,750,062 1,052,806,616 

Stochastic 15 1 1 199,993,086 685,863,478 

Stochastic 15 1 1 173,206,267 884,070,335 

Stochastic 15 1 1 57,016,226 997,156,858 

Stochastic 15 1 1 134,718,522 836,837,293 

Stochastic 15 1 1 166,868,587 961,113,216 

Stochastic 15 1 1 158,698,630 977,479,015 

Stochastic 15 1 1 118,859,153 846,150,940 

Stochastic 15 1 1 107,321,569 851,907,796 

Stochastic 15 7 0.5 8,495,270,387 0 

Stochastic 15 7 0.5 8,134,012,055 0 

Stochastic 15 7 0.5 8,629,420,937 0 

Stochastic 15 7 0.5 8,454,971,766 0 

Stochastic 15 7 0.5 7,965,638,015 0 

Stochastic 15 7 0.5 7,877,804,120 0 

Stochastic 15 7 0.5 7,754,726,585 0 

Stochastic 15 7 0.5 7,875,676,830 0 

Stochastic 15 7 0.5 7,710,276,973 0 

Stochastic 15 7 0.5 7,967,007,201 0 

Stochastic 15 7 1 192,245,352 907,075,534 

Stochastic 15 7 1 116,245,786 1,142,130,232 

Stochastic 15 7 1 127,032,437 959,061,068 

Stochastic 15 7 1 217,614,224 769,173,406 

Stochastic 15 7 1 190,592,522 761,761,208 

Stochastic 15 7 1 191,753,590 769,428,953 

Stochastic 15 7 1 207,093,760 951,567,580 

Stochastic 15 7 1 194,676,373 881,562,159 

Stochastic 15 7 1 254,782,755 751,216,176 

Stochastic 15 7 1 166,668,676 1,109,006,719 

Stochastic 30 1 0.5 8,245,422,914 0 

Stochastic 30 1 0.5 8,517,431,405 0 
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Stochastic 30 1 0.5 7,845,399,520 0 

Stochastic 30 1 0.5 8,347,987,310 0 

Stochastic 30 1 0.5 7,852,092,622 0 

Stochastic 30 1 0.5 8,028,436,564 0 

Stochastic 30 1 0.5 7,764,696,183 0 

Stochastic 30 1 0.5 7,659,280,394 0 

Stochastic 30 1 0.5 8,559,542,906 0 

Stochastic 30 1 0.5 7,780,179,715 0 

Stochastic 30 1 1 208,162,086 965,714,857 

Stochastic 30 1 1 188,227,291 817,031,275 

Stochastic 30 1 1 141,470,990 965,417,452 

Stochastic 30 1 1 239,821,078 715,616,320 

Stochastic 30 1 1 185,392,322 933,057,681 

Stochastic 30 1 1 185,983,162 1,068,420,064 

Stochastic 30 1 1 195,198,809 761,037,727 

Stochastic 30 1 1 167,421,692 771,950,998 

Stochastic 30 1 1 144,645,089 974,105,881 

Stochastic 30 1 1 191,976,540 956,497,481 

Stochastic 30 7 0.5 8,002,038,546 0 

Stochastic 30 7 0.5 8,058,435,633 0 

Stochastic 30 7 0.5 8,245,001,802 0 

Stochastic 30 7 0.5 8,227,522,815 0 

Stochastic 30 7 0.5 7,881,879,094 0 

Stochastic 30 7 0.5 8,453,315,508 0 

Stochastic 30 7 0.5 8,458,539,860 0 

Stochastic 30 7 0.5 8,662,959,133 0 

Stochastic 30 7 0.5 8,500,040,601 0 

Stochastic 30 7 0.5 8,137,174,939 0 

Stochastic 30 7 1 159,759,198 1,069,464,264 

Stochastic 30 7 1 96,822,310 1,006,835,694 

Stochastic 30 7 1 262,227,924 834,691,344 

Stochastic 30 7 1 180,475,571 861,679,597 
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Stochastic 30 7 1 110,937,290 913,677,536 

Stochastic 30 7 1 144,363,157 791,601,678 

Stochastic 30 7 1 237,025,551 732,152,803 

Stochastic 30 7 1 157,010,954 787,592,028 

Stochastic 30 7 1 113,969,894 1,063,510,542 

Stochastic 30 7 1 176,754,257 926,085,507 
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Appendix III 

The Backorder and Inventory Costs Values for RPD 

Planning 

Approach 

Length of 

Planning Horizon 

Re-planning 

Frequency 

Demand 

Level 

Demand 

variation 

Simulated 

Inventory Cost 

Simulated 

Backorder Cost 

Determinist 15 1 0.5 40% 10,645,728,930 0 

Determinist 15 1 0.5 40% 8,121,944,967 0 

Determinist 15 1 0.5 40% 9,510,674,265 0 

Determinist 15 1 0.5 40% 8,408,518,672 3,420 

Determinist 15 1 0.5 40% 4,468,786,635 0 

Determinist 15 1 0.5 40% 10,001,079,198 0 

Determinist 15 1 0.5 40% 8,443,056,345 0 

Determinist 15 1 0.5 40% 7,063,046,211 0 

Determinist 15 1 0.5 40% 11,132,868,137 0 

Determinist 15 1 0.5 40% 6,409,117,126 0 

Determinist 15 1 0.5 40% 8,984,952,054 0 

Determinist 15 1 0.5 40% 11,615,647,892 0 

Determinist 15 1 0.5 40% 6,095,052,744 352 

Determinist 15 1 0.5 40% 3,538,024,025 0 

Determinist 15 1 0.5 40% 10,473,862,061 0 

Determinist 15 1 0.5 40% 9,303,501,805 48 

Determinist 15 1 0.5 40% 11,533,791,633 0 

Determinist 15 1 0.5 40% 8,091,265,906 0 

Determinist 15 1 0.5 40% 7,670,960,526 0 

Determinist 15 1 0.5 40% 7,383,184,754 0 

Stochastic 15 1 0.5 40% 6,985,571,865 0 

Stochastic 15 1 0.5 40% 7,147,148,484 0 

Stochastic 15 1 0.5 40% 6,062,554,557 0 

Stochastic 15 1 0.5 40% 11,822,908,195 0 

Stochastic 15 1 0.5 40% 9,762,273,302 0 

Stochastic 15 1 0.5 40% 8,713,069,270 0 

Stochastic 15 1 0.5 40% 5,440,638,224 0 

Stochastic 15 1 0.5 40% 7,285,331,480 0 

Stochastic 15 1 0.5 40% 10,020,823,303 0 

Stochastic 15 1 0.5 40% 5,521,205,291 0 

Stochastic 15 1 0.5 40% 5,658,133,450 0 

Stochastic 15 1 0.5 40% 4,228,229,405 704 

Stochastic 15 1 0.5 40% 4,387,307,629 6,092 

Stochastic 15 1 0.5 40% 5,604,058,249 0 
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Stochastic 15 1 0.5 40% 9,625,593,466 0 

Stochastic 15 1 0.5 40% 10,293,339,946 0 

Stochastic 15 1 0.5 40% 7,705,484,017 0 

Stochastic 15 1 0.5 40% 6,039,421,508 6,498 

Stochastic 15 1 0.5 40% 7,181,481,090 0 

Stochastic 15 1 0.5 40% 5,743,390,355 0 

Determinist 15 1 0.5 5% 8,462,951,759 0 

Determinist 15 1 0.5 5% 7,938,073,327 0 

Determinist 15 1 0.5 5% 7,921,064,356 0 

Determinist 15 1 0.5 5% 8,631,357,553 0 

Determinist 15 1 0.5 5% 7,999,403,979 0 

Determinist 15 1 0.5 5% 7,536,016,453 0 

Determinist 15 1 0.5 5% 8,470,454,574 0 

Determinist 15 1 0.5 5% 7,818,592,967 0 

Determinist 15 1 0.5 5% 8,127,010,456 0 

Determinist 15 1 0.5 5% 7,773,807,596 0 

Determinist 15 1 0.5 5% 8,294,522,228 0 

Determinist 15 1 0.5 5% 8,303,618,633 0 

Determinist 15 1 0.5 5% 8,330,744,068 0 

Determinist 15 1 0.5 5% 8,481,411,181 0 

Determinist 15 1 0.5 5% 8,200,457,671 0 

Determinist 15 1 0.5 5% 8,108,496,060 0 

Determinist 15 1 0.5 5% 8,061,155,969 0 

Determinist 15 1 0.5 5% 8,028,231,718 0 

Determinist 15 1 0.5 5% 8,301,118,528 0 

Determinist 15 1 0.5 5% 8,381,215,838 0 

Stochastic 15 1 0.5 5% 8,362,589,916 0 

Stochastic 15 1 0.5 5% 7,892,567,945 0 

Stochastic 15 1 0.5 5% 8,475,640,112 0 

Stochastic 15 1 0.5 5% 8,236,514,387 0 

Stochastic 15 1 0.5 5% 7,768,416,612 0 

Stochastic 15 1 0.5 5% 8,350,077,337 0 

Stochastic 15 1 0.5 5% 8,292,066,000 0 

Stochastic 15 1 0.5 5% 8,053,277,624 0 

Stochastic 15 1 0.5 5% 8,205,290,613 0 

Stochastic 15 1 0.5 5% 7,857,490,666 0 

Stochastic 15 1 0.5 5% 7,997,082,536 0 

Stochastic 15 1 0.5 5% 8,203,373,644 0 

Stochastic 15 1 0.5 5% 8,034,662,318 0 

Stochastic 15 1 0.5 5% 8,325,642,187 0 

Stochastic 15 1 0.5 5% 8,388,368,577 0 
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Stochastic 15 1 0.5 5% 8,369,140,524 0 

Stochastic 15 1 0.5 5% 7,613,176,501 0 

Stochastic 15 1 0.5 5% 8,591,240,129 0 

Stochastic 15 1 0.5 5% 8,028,017,978 0 

Stochastic 15 1 0.5 5% 7,884,850,452 0 

Determinist 15 1 1 40% 255,744,280 1,644,647,589 

Determinist 15 1 1 40% 476,300,444 2,391,447,154 

Determinist 15 1 1 40% 450,963,825 1,282,363,843 

Determinist 15 1 1 40% 381,166,280 2,820,448,415 

Determinist 15 1 1 40% 944,175,955 2,208,347,817 

Determinist 15 1 1 40% 190,651,857 2,143,938,213 

Determinist 15 1 1 40% 1,209,518,594 2,552,887,349 

Determinist 15 1 1 40% 1,006,169,397 2,184,014,631 

Determinist 15 1 1 40% 980,465,172 2,008,177,436 

Determinist 15 1 1 40% 785,731,596 1,173,741,181 

Determinist 15 1 1 40% 1,007,762,979 4,922,797,654 

Determinist 15 1 1 40% 726,920,314 1,733,316,503 

Determinist 15 1 1 40% 192,299,930 2,669,766,994 

Determinist 15 1 1 40% 2,303,659,573 3,387,869,247 

Determinist 15 1 1 40% 753,808,452 904,209,461 

Determinist 15 1 1 40% 356,801,462 1,725,361,778 

Determinist 15 1 1 40% 1,314,788,957 5,390,732,757 

Determinist 15 1 1 40% 1,445,683,767 1,672,892,985 

Determinist 15 1 1 40% 30,831,647 2,775,868,465 

Determinist 15 1 1 40% 705,778,133 3,383,801,781 

Stochastic 15 1 1 40% 494,055,909 1,289,776,511 

Stochastic 15 1 1 40% 224,700,924 2,468,463,070 

Stochastic 15 1 1 40% 922,891,884 1,262,871,182 

Stochastic 15 1 1 40% 1,789,829,264 2,404,644,533 

Stochastic 15 1 1 40% 154,403,696 2,145,840,048 

Stochastic 15 1 1 40% 1,349,709,321 4,177,582,689 

Stochastic 15 1 1 40% 252,982,161 2,284,726,517 

Stochastic 15 1 1 40% 511,282,010 3,310,521,721 

Stochastic 15 1 1 40% 139,859,113 3,752,247,027 

Stochastic 15 1 1 40% 692,736,855 1,446,823,892 

Stochastic 15 1 1 40% 449,785,647 2,323,408,650 

Stochastic 15 1 1 40% 1,864,704,729 3,434,527,370 

Stochastic 15 1 1 40% 1,258,053,488 4,239,908,442 

Stochastic 15 1 1 40% 1,026,386,235 1,285,376,871 

Stochastic 15 1 1 40% 116,790,595 3,104,611,263 

Stochastic 15 1 1 40% 991,230,866 4,633,514,684 
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Stochastic 15 1 1 40% 542,199,706 1,589,004,275 

Stochastic 15 1 1 40% 476,056,099 1,212,309,193 

Stochastic 15 1 1 40% 1,304,497,365 1,531,747,629 

Stochastic 15 1 1 40% 2,023,803,341 1,892,468,811 

Determinist 15 1 1 5% 287,638,830 747,494,025 

Determinist 15 1 1 5% 133,271,958 1,165,340,307 

Determinist 15 1 1 5% 178,680,093 676,734,864 

Determinist 15 1 1 5% 110,013,129 912,178,247 

Determinist 15 1 1 5% 115,121,282 1,057,105,696 

Determinist 15 1 1 5% 127,694,690 950,587,155 

Determinist 15 1 1 5% 189,299,818 890,153,152 

Determinist 15 1 1 5% 155,626,095 985,703,116 

Determinist 15 1 1 5% 205,404,796 957,315,020 

Determinist 15 1 1 5% 242,106,749 2,105,980,789 

Determinist 15 1 1 5% 288,374,465 718,933,987 

Determinist 15 1 1 5% 133,127,488 1,027,304,411 

Determinist 15 1 1 5% 113,814,082 945,569,639 

Determinist 15 1 1 5% 64,442,799 965,694,838 

Determinist 15 1 1 5% 165,046,963 1,060,026,142 

Determinist 15 1 1 5% 153,872,107 1,009,960,403 

Determinist 15 1 1 5% 145,214,367 838,646,720 

Determinist 15 1 1 5% 140,991,074 911,740,394 

Determinist 15 1 1 5% 134,140,065 1,036,267,763 

Determinist 15 1 1 5% 98,818,172 993,432,302 

Stochastic 15 1 1 5% 98,871,327 1,118,103,791 

Stochastic 15 1 1 5% 189,856,850 869,126,149 

Stochastic 15 1 1 5% 208,172,680 851,031,085 

Stochastic 15 1 1 5% 77,382,127 852,866,588 

Stochastic 15 1 1 5% 137,794,300 798,841,933 

Stochastic 15 1 1 5% 150,009,786 942,071,242 

Stochastic 15 1 1 5% 196,923,468 967,584,462 

Stochastic 15 1 1 5% 227,809,337 792,499,866 

Stochastic 15 1 1 5% 191,399,210 994,992,158 

Stochastic 15 1 1 5% 139,974,560 1,015,588,687 

Stochastic 15 1 1 5% 174,798,823 875,292,320 

Stochastic 15 1 1 5% 133,145,073 771,870,543 

Stochastic 15 1 1 5% 137,596,206 1,031,253,376 

Stochastic 15 1 1 5% 137,957,739 884,478,504 

Stochastic 15 1 1 5% 100,033,057 1,057,494,378 

Stochastic 15 1 1 5% 199,831,979 946,938,922 

Stochastic 15 1 1 5% 141,033,245 959,175,859 
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Stochastic 15 1 1 5% 146,143,748 940,483,535 

Stochastic 15 1 1 5% 161,312,855 887,869,276 

Stochastic 15 1 1 5% 163,461,319 817,578,706 

Determinist 15 7 0.5 40% 9,203,776,524 0 

Determinist 15 7 0.5 40% 9,783,178,151 0 

Determinist 15 7 0.5 40% 10,386,563,580 4,400 

Determinist 15 7 0.5 40% 9,117,513,851 121 

Determinist 15 7 0.5 40% 11,408,869,397 0 

Determinist 15 7 0.5 40% 10,710,398,444 0 

Determinist 15 7 0.5 40% 11,712,311,547 0 

Determinist 15 7 0.5 40% 10,440,918,019 0 

Determinist 15 7 0.5 40% 6,495,694,337 0 

Determinist 15 7 0.5 40% 7,304,916,065 44,855 

Determinist 15 7 0.5 40% 6,750,337,652 248 

Determinist 15 7 0.5 40% 6,044,340,097 1,279,572 

Determinist 15 7 0.5 40% 9,256,209,908 69,875 

Determinist 15 7 0.5 40% 8,782,179,428 425,425 

Determinist 15 7 0.5 40% 7,711,559,850 0 

Determinist 15 7 0.5 40% 5,919,415,745 713,020 

Determinist 15 7 0.5 40% 9,725,806,033 0 

Determinist 15 7 0.5 40% 7,251,300,516 0 

Determinist 15 7 0.5 40% 4,007,744,623 1,080,848 

Determinist 15 7 0.5 40% 11,567,196,460 0 

Stochastic 15 7 0.5 40% 4,816,543,203 2,167,031 

Stochastic 15 7 0.5 40% 9,895,662,690 8,325 

Stochastic 15 7 0.5 40% 6,112,955,670 0 

Stochastic 15 7 0.5 40% 8,408,792,584 0 

Stochastic 15 7 0.5 40% 8,820,116,308 0 

Stochastic 15 7 0.5 40% 6,816,526,931 1,628,789 

Stochastic 15 7 0.5 40% 7,342,532,464 41 

Stochastic 15 7 0.5 40% 11,113,198,970 0 

Stochastic 15 7 0.5 40% 7,520,717,016 0 

Stochastic 15 7 0.5 40% 5,601,193,134 0 

Stochastic 15 7 0.5 40% 9,449,259,581 0 

Stochastic 15 7 0.5 40% 7,708,813,036 0 

Stochastic 15 7 0.5 40% 9,678,604,944 1,770 

Stochastic 15 7 0.5 40% 11,728,880,023 17,048 

Stochastic 15 7 0.5 40% 7,275,941,450 19,936 

Stochastic 15 7 0.5 40% 6,148,028,169 3,299 

Stochastic 15 7 0.5 40% 7,293,873,229 0 

Stochastic 15 7 0.5 40% 5,758,011,732 0 
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Stochastic 15 7 0.5 40% 8,206,464,330 0 

Stochastic 15 7 0.5 40% 9,057,066,734 0 

Determinist 15 7 0.5 5% 8,257,429,519 0 

Determinist 15 7 0.5 5% 8,375,185,774 0 

Determinist 15 7 0.5 5% 7,687,721,583 0 

Determinist 15 7 0.5 5% 8,452,318,103 0 

Determinist 15 7 0.5 5% 8,281,725,863 0 

Determinist 15 7 0.5 5% 7,806,004,484 0 

Determinist 15 7 0.5 5% 7,891,460,812 0 

Determinist 15 7 0.5 5% 8,513,756,608 0 

Determinist 15 7 0.5 5% 7,871,786,454 0 

Determinist 15 7 0.5 5% 8,067,247,095 0 

Determinist 15 7 0.5 5% 7,874,097,292 0 

Determinist 15 7 0.5 5% 7,684,387,571 0 

Determinist 15 7 0.5 5% 8,075,513,443 0 

Determinist 15 7 0.5 5% 7,914,151,303 0 

Determinist 15 7 0.5 5% 7,736,721,705 0 

Determinist 15 7 0.5 5% 8,157,491,456 0 

Determinist 15 7 0.5 5% 7,770,604,123 0 

Determinist 15 7 0.5 5% 7,919,432,401 0 

Determinist 15 7 0.5 5% 8,196,194,246 0 

Determinist 15 7 0.5 5% 8,097,272,555 0 

Stochastic 15 7 0.5 5% 7,800,455,304 0 

Stochastic 15 7 0.5 5% 7,745,428,396 0 

Stochastic 15 7 0.5 5% 7,805,955,887 0 

Stochastic 15 7 0.5 5% 8,325,796,868 0 

Stochastic 15 7 0.5 5% 7,806,794,449 0 

Stochastic 15 7 0.5 5% 8,186,030,217 0 

Stochastic 15 7 0.5 5% 8,515,865,683 0 

Stochastic 15 7 0.5 5% 7,600,440,426 0 

Stochastic 15 7 0.5 5% 8,584,930,815 0 

Stochastic 15 7 0.5 5% 8,276,460,383 0 

Stochastic 15 7 0.5 5% 8,410,830,206 0 

Stochastic 15 7 0.5 5% 7,823,598,951 0 

Stochastic 15 7 0.5 5% 8,195,863,139 0 

Stochastic 15 7 0.5 5% 8,147,600,537 0 

Stochastic 15 7 0.5 5% 8,243,278,151 0 

Stochastic 15 7 0.5 5% 8,059,163,714 0 

Stochastic 15 7 0.5 5% 8,233,743,975 0 

Stochastic 15 7 0.5 5% 7,777,893,688 0 

Stochastic 15 7 0.5 5% 8,402,500,052 0 
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Stochastic 15 7 0.5 5% 8,062,993,667 0 

Determinist 15 7 1 40% 311,895,113 1,890,560,837 

Determinist 15 7 1 40% 1,472,508,085 1,967,805,831 

Determinist 15 7 1 40% 55,674,250 2,822,978,732 

Determinist 15 7 1 40% 234,283,409 1,491,116,944 

Determinist 15 7 1 40% 198,357,331 2,891,437,832 

Determinist 15 7 1 40% 709,658,569 2,332,514,526 

Determinist 15 7 1 40% 1,796,687,167 1,584,033,823 

Determinist 15 7 1 40% 942,070,506 7,826,475,826 

Determinist 15 7 1 40% 751,667,463 1,932,713,596 

Determinist 15 7 1 40% 510,902,151 2,332,412,074 

Determinist 15 7 1 40% 1,079,293,118 1,801,177,171 

Determinist 15 7 1 40% 567,066,373 1,819,418,000 

Determinist 15 7 1 40% 360,587,042 2,318,730,505 

Determinist 15 7 1 40% 145,363,374 4,176,169,249 

Determinist 15 7 1 40% 1,195,831,813 1,347,042,401 

Determinist 15 7 1 40% 451,332,713 1,149,445,647 

Determinist 15 7 1 40% 538,345,245 1,543,244,972 

Determinist 15 7 1 40% 1,018,422,242 5,340,094,699 

Determinist 15 7 1 40% 416,068,747 1,592,808,088 

Determinist 15 7 1 40% 1,500,030,569 7,322,191,138 

Stochastic 15 7 1 40% 431,603,577 1,117,786,513 

Stochastic 15 7 1 40% 924,779,588 3,141,015,338 

Stochastic 15 7 1 40% 1,105,603,011 1,625,965,002 

Stochastic 15 7 1 40% 347,612,832 1,595,257,661 

Stochastic 15 7 1 40% 310,407,195 2,482,974,861 

Stochastic 15 7 1 40% 603,091,136 1,041,209,282 

Stochastic 15 7 1 40% 1,828,659,477 2,522,348,655 

Stochastic 15 7 1 40% 534,117,300 2,038,664,569 

Stochastic 15 7 1 40% 545,556,876 2,073,726,736 

Stochastic 15 7 1 40% 2,153,400,352 6,889,132,882 

Stochastic 15 7 1 40% 865,367,342 1,558,707,555 

Stochastic 15 7 1 40% 1,016,043,243 6,671,696,767 

Stochastic 15 7 1 40% 63,999,223 1,263,726,105 

Stochastic 15 7 1 40% 914,194,715 4,858,549,017 

Stochastic 15 7 1 40% 965,727,717 6,214,830,233 

Stochastic 15 7 1 40% 866,132,213 1,785,614,540 

Stochastic 15 7 1 40% 1,577,496,506 2,401,375,692 

Stochastic 15 7 1 40% 838,190,939 1,413,805,811 

Stochastic 15 7 1 40% 1,541,173,225 3,298,816,636 

Stochastic 15 7 1 40% 1,447,506,869 1,390,255,850 
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Determinist 15 7 1 5% 232,411,422 976,229,463 

Determinist 15 7 1 5% 188,001,140 876,662,440 

Determinist 15 7 1 5% 149,537,680 832,968,801 

Determinist 15 7 1 5% 119,272,702 880,984,284 

Determinist 15 7 1 5% 154,438,179 1,083,291,378 

Determinist 15 7 1 5% 220,870,473 929,068,574 

Determinist 15 7 1 5% 192,311,632 958,095,946 

Determinist 15 7 1 5% 91,250,227 998,945,264 

Determinist 15 7 1 5% 66,962,438 1,001,556,977 

Determinist 15 7 1 5% 240,734,207 890,322,554 

Determinist 15 7 1 5% 235,561,159 1,032,729,019 

Determinist 15 7 1 5% 109,977,285 938,354,811 

Determinist 15 7 1 5% 93,105,967 907,257,385 

Determinist 15 7 1 5% 136,751,089 1,102,603,391 

Determinist 15 7 1 5% 149,357,984 977,943,774 

Determinist 15 7 1 5% 131,812,353 941,213,804 

Determinist 15 7 1 5% 161,464,134 996,238,445 

Determinist 15 7 1 5% 142,048,932 1,185,369,737 

Determinist 15 7 1 5% 94,033,116 837,503,747 

Determinist 15 7 1 5% 87,270,883 915,074,903 

Stochastic 15 7 1 5% 169,721,478 991,121,356 

Stochastic 15 7 1 5% 135,700,508 989,694,323 

Stochastic 15 7 1 5% 233,681,170 823,563,484 

Stochastic 15 7 1 5% 149,948,488 1,133,818,511 

Stochastic 15 7 1 5% 128,037,734 1,055,153,181 

Stochastic 15 7 1 5% 146,179,578 946,857,884 

Stochastic 15 7 1 5% 163,446,435 870,415,349 

Stochastic 15 7 1 5% 197,818,904 966,529,359 

Stochastic 15 7 1 5% 189,334,996 764,345,609 

Stochastic 15 7 1 5% 121,609,367 956,672,576 

Stochastic 15 7 1 5% 198,580,369 945,795,733 

Stochastic 15 7 1 5% 186,869,583 978,073,227 

Stochastic 15 7 1 5% 172,973,624 789,374,100 

Stochastic 15 7 1 5% 121,092,688 917,342,533 

Stochastic 15 7 1 5% 108,820,793 924,957,494 

Stochastic 15 7 1 5% 211,559,460 997,198,155 

Stochastic 15 7 1 5% 200,217,059 1,036,589,147 

Stochastic 15 7 1 5% 162,575,173 1,179,559,747 

Stochastic 15 7 1 5% 133,800,886 1,061,527,967 

Stochastic 15 7 1 5% 187,103,343 850,390,693 

Determinist 30 1 0.5 40% 11,407,423,983 0 
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Determinist 30 1 0.5 40% 12,185,739,400 0 

Determinist 30 1 0.5 40% 8,088,920,668 0 

Determinist 30 1 0.5 40% 11,383,928,866 0 

Determinist 30 1 0.5 40% 9,607,849,383 0 

Determinist 30 1 0.5 40% 9,111,644,332 0 

Determinist 30 1 0.5 40% 5,030,399,902 0 

Determinist 30 1 0.5 40% 10,362,479,697 0 

Determinist 30 1 0.5 40% 10,084,399,752 0 

Determinist 30 1 0.5 40% 10,747,574,923 0 

Determinist 30 1 0.5 40% 13,019,277,808 0 

Determinist 30 1 0.5 40% 4,776,940,661 79,351 

Determinist 30 1 0.5 40% 8,726,802,015 0 

Determinist 30 1 0.5 40% 8,617,668,562 0 

Determinist 30 1 0.5 40% 8,568,405,288 0 

Determinist 30 1 0.5 40% 7,438,558,186 0 

Determinist 30 1 0.5 40% 9,451,939,719 0 

Determinist 30 1 0.5 40% 7,678,225,803 0 

Determinist 30 1 0.5 40% 5,465,136,829 0 

Determinist 30 1 0.5 40% 11,769,118,736 0 

Stochastic 30 1 0.5 40% 11,352,258,222 16,918 

Stochastic 30 1 0.5 40% 10,425,618,843 0 

Stochastic 30 1 0.5 40% 11,250,093,252 0 

Stochastic 30 1 0.5 40% 9,597,480,565 0 

Stochastic 30 1 0.5 40% 6,491,053,377 0 

Stochastic 30 1 0.5 40% 11,096,382,182 0 

Stochastic 30 1 0.5 40% 5,718,283,252 0 

Stochastic 30 1 0.5 40% 7,314,550,796 2,624 

Stochastic 30 1 0.5 40% 7,052,115,628 1,811 

Stochastic 30 1 0.5 40% 7,910,282,034 16,733 

Stochastic 30 1 0.5 40% 10,744,208,480 1,697 

Stochastic 30 1 0.5 40% 10,779,330,718 0 

Stochastic 30 1 0.5 40% 4,545,866,701 0 

Stochastic 30 1 0.5 40% 12,734,678,742 0 

Stochastic 30 1 0.5 40% 10,237,351,166 0 

Stochastic 30 1 0.5 40% 11,025,101,930 0 

Stochastic 30 1 0.5 40% 7,170,325,759 0 

Stochastic 30 1 0.5 40% 9,801,134,760 0 

Stochastic 30 1 0.5 40% 4,981,129,837 0 

Stochastic 30 1 0.5 40% 8,698,882,594 0 

Determinist 30 1 0.5 5% 7,924,918,198 0 

Determinist 30 1 0.5 5% 7,459,329,325 0 



117 
 

Determinist 30 1 0.5 5% 8,488,799,874 0 

Determinist 30 1 0.5 5% 8,082,724,087 0 

Determinist 30 1 0.5 5% 8,521,726,367 0 

Determinist 30 1 0.5 5% 8,550,426,599 0 

Determinist 30 1 0.5 5% 7,893,774,258 0 

Determinist 30 1 0.5 5% 8,302,060,253 0 

Determinist 30 1 0.5 5% 8,124,981,499 0 

Determinist 30 1 0.5 5% 8,412,894,890 0 

Determinist 30 1 0.5 5% 8,098,444,514 0 

Determinist 30 1 0.5 5% 8,236,467,733 0 

Determinist 30 1 0.5 5% 8,074,864,607 0 

Determinist 30 1 0.5 5% 8,288,336,071 0 

Determinist 30 1 0.5 5% 7,975,963,925 0 

Determinist 30 1 0.5 5% 8,151,733,793 0 

Determinist 30 1 0.5 5% 8,075,243,055 0 

Determinist 30 1 0.5 5% 8,598,469,200 0 

Determinist 30 1 0.5 5% 8,716,548,756 0 

Determinist 30 1 0.5 5% 8,317,017,334 0 

Stochastic 30 1 0.5 5% 8,568,774,574 0 

Stochastic 30 1 0.5 5% 8,448,685,190 0 

Stochastic 30 1 0.5 5% 8,008,114,018 0 

Stochastic 30 1 0.5 5% 8,389,919,046 0 

Stochastic 30 1 0.5 5% 8,026,071,331 0 

Stochastic 30 1 0.5 5% 7,643,606,451 0 

Stochastic 30 1 0.5 5% 7,919,900,475 0 

Stochastic 30 1 0.5 5% 8,569,767,375 0 

Stochastic 30 1 0.5 5% 8,017,937,621 0 

Stochastic 30 1 0.5 5% 7,743,132,402 0 

Stochastic 30 1 0.5 5% 8,198,309,200 0 

Stochastic 30 1 0.5 5% 8,365,795,422 0 

Stochastic 30 1 0.5 5% 8,313,041,842 0 

Stochastic 30 1 0.5 5% 8,407,868,420 0 

Stochastic 30 1 0.5 5% 8,323,163,438 0 

Stochastic 30 1 0.5 5% 7,693,137,768 0 

Stochastic 30 1 0.5 5% 8,441,545,424 0 

Stochastic 30 1 0.5 5% 7,780,431,641 0 

Stochastic 30 1 0.5 5% 8,205,091,890 0 

Stochastic 30 1 0.5 5% 8,229,002,443 0 

Determinist 30 1 1 40% 861,405,234 7,498,216,904 

Determinist 30 1 1 40% 527,321,111 2,432,352,028 

Determinist 30 1 1 40% 846,248,302 1,335,486,384 
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Determinist 30 1 1 40% 1,154,366,293 1,265,856,681 

Determinist 30 1 1 40% 244,450,359 1,903,453,924 

Determinist 30 1 1 40% 334,065,384 2,368,267,319 

Determinist 30 1 1 40% 69,591,945 3,569,545,088 

Determinist 30 1 1 40% 524,108,793 1,951,278,571 

Determinist 30 1 1 40% 1,117,826,852 3,397,193,598 

Determinist 30 1 1 40% 869,307,785 4,908,616,867 

Determinist 30 1 1 40% 2,101,530,773 4,036,001,622 

Determinist 30 1 1 40% 1,689,767,353 875,082,885 

Determinist 30 1 1 40% 1,363,319,960 5,825,476,953 

Determinist 30 1 1 40% 532,492,494 3,126,698,752 

Determinist 30 1 1 40% 1,437,618,981 5,917,024,736 

Determinist 30 1 1 40% 1,183,995,906 6,023,372,184 

Determinist 30 1 1 40% 751,400,792 1,938,607,106 

Determinist 30 1 1 40% 2,234,858,747 6,027,968,714 

Determinist 30 1 1 40% 199,374,933 1,809,690,057 

Determinist 30 1 1 40% 513,681,421 2,582,772,638 

Stochastic 30 1 1 40% 894,775,842 3,072,362,748 

Stochastic 30 1 1 40% 473,375,605 1,907,692,539 

Stochastic 30 1 1 40% 762,431,383 2,753,762,082 

Stochastic 30 1 1 40% 759,705,872 1,145,892,498 

Stochastic 30 1 1 40% 1,095,225,830 2,426,911,035 

Stochastic 30 1 1 40% 323,938,058 1,997,524,793 

Stochastic 30 1 1 40% 553,526,948 2,322,213,236 

Stochastic 30 1 1 40% 818,653,175 1,533,705,731 

Stochastic 30 1 1 40% 1,353,697,562 3,382,572,061 

Stochastic 30 1 1 40% 464,686,869 1,026,387,384 

Stochastic 30 1 1 40% 848,547,696 925,960,343 

Stochastic 30 1 1 40% 397,070,807 4,490,096,481 

Stochastic 30 1 1 40% 401,573,132 1,962,204,421 

Stochastic 30 1 1 40% 371,553,277 2,383,663,470 

Stochastic 30 1 1 40% 161,790,579 2,274,560,227 

Stochastic 30 1 1 40% 880,586,417 4,033,341,655 

Stochastic 30 1 1 40% 1,167,273,515 2,750,493,002 

Stochastic 30 1 1 40% 1,423,961,795 1,844,265,147 

Stochastic 30 1 1 40% 1,538,504,074 3,557,928,311 

Stochastic 30 1 1 40% 129,777,643 2,467,551,856 

Determinist 30 1 1 5% 205,527,725 799,989,950 

Determinist 30 1 1 5% 150,388,939 906,285,039 

Determinist 30 1 1 5% 179,995,933 930,597,363 

Determinist 30 1 1 5% 156,417,700 949,134,577 
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Determinist 30 1 1 5% 142,245,567 948,196,179 

Determinist 30 1 1 5% 240,237,656 753,507,016 

Determinist 30 1 1 5% 147,793,732 1,076,913,895 

Determinist 30 1 1 5% 144,309,391 1,088,719,210 

Determinist 30 1 1 5% 231,072,206 945,230,612 

Determinist 30 1 1 5% 160,516,851 1,002,808,816 

Determinist 30 1 1 5% 167,352,348 1,036,888,515 

Determinist 30 1 1 5% 74,701,256 1,064,300,615 

Determinist 30 1 1 5% 197,471,508 939,945,544 

Determinist 30 1 1 5% 139,189,180 864,115,942 

Determinist 30 1 1 5% 131,995,500 910,137,171 

Determinist 30 1 1 5% 137,941,245 965,480,363 

Determinist 30 1 1 5% 197,296,793 951,729,367 

Determinist 30 1 1 5% 279,750,542 1,102,192,338 

Determinist 30 1 1 5% 120,473,410 853,792,916 

Determinist 30 1 1 5% 74,485,987 1,031,080,921 

Stochastic 30 1 1 5% 177,968,160 902,090,205 

Stochastic 30 1 1 5% 249,327,266 846,266,375 

Stochastic 30 1 1 5% 160,657,506 1,029,113,761 

Stochastic 30 1 1 5% 168,879,342 995,411,018 

Stochastic 30 1 1 5% 164,477,609 866,767,564 

Stochastic 30 1 1 5% 142,190,266 849,302,311 

Stochastic 30 1 1 5% 175,528,332 1,043,293,126 

Stochastic 30 1 1 5% 153,113,540 944,856,209 

Stochastic 30 1 1 5% 219,828,131 904,486,946 

Stochastic 30 1 1 5% 119,934,842 1,084,499,653 

Stochastic 30 1 1 5% 169,730,110 867,648,637 

Stochastic 30 1 1 5% 227,664,970 711,607,042 

Stochastic 30 1 1 5% 114,744,386 1,121,049,655 

Stochastic 30 1 1 5% 192,484,799 1,086,008,350 

Stochastic 30 1 1 5% 156,811,214 748,192,950 

Stochastic 30 1 1 5% 158,363,016 858,460,938 

Stochastic 30 1 1 5% 98,404,974 1,167,548,575 

Stochastic 30 1 1 5% 161,584,047 868,826,479 

Stochastic 30 1 1 5% 237,807,843 916,216,877 

Stochastic 30 1 1 5% 122,215,090 831,090,863 

Determinist 30 7 0.5 40% 4,992,489,205 844,144 

Determinist 30 7 0.5 40% 9,363,826,797 0 

Determinist 30 7 0.5 40% 8,319,694,894 442 

Determinist 30 7 0.5 40% 11,927,229,570 0 

Determinist 30 7 0.5 40% 8,085,763,510 165,883 
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Determinist 30 7 0.5 40% 9,465,589,871 0 

Determinist 30 7 0.5 40% 9,840,527,833 0 

Determinist 30 7 0.5 40% 3,061,156,336 30,036,114 

Determinist 30 7 0.5 40% 7,119,410,640 1,880,280 

Determinist 30 7 0.5 40% 11,629,759,343 0 

Determinist 30 7 0.5 40% 6,051,827,193 24,900 

Determinist 30 7 0.5 40% 8,695,367,404 33,657 

Determinist 30 7 0.5 40% 4,570,961,730 0 

Determinist 30 7 0.5 40% 8,509,950,110 0 

Determinist 30 7 0.5 40% 4,635,316,742 1,102,010 

Determinist 30 7 0.5 40% 10,160,646,612 0 

Determinist 30 7 0.5 40% 11,803,057,467 1,895 

Determinist 30 7 0.5 40% 9,814,724,190 0 

Determinist 30 7 0.5 40% 9,995,056,471 4,333 

Determinist 30 7 0.5 40% 5,595,518,034 168,899 

Stochastic 30 7 0.5 40% 8,202,909,204 0 

Stochastic 30 7 0.5 40% 10,137,724,327 0 

Stochastic 30 7 0.5 40% 8,676,869,866 0 

Stochastic 30 7 0.5 40% 5,314,798,309 1,945,376 

Stochastic 30 7 0.5 40% 4,918,728,614 2,710,140 

Stochastic 30 7 0.5 40% 10,264,221,757 3,954 

Stochastic 30 7 0.5 40% 9,853,672,969 0 

Stochastic 30 7 0.5 40% 11,407,973,452 0 

Stochastic 30 7 0.5 40% 6,613,005,501 0 

Stochastic 30 7 0.5 40% 6,242,253,255 805,743 

Stochastic 30 7 0.5 40% 10,388,899,270 23 

Stochastic 30 7 0.5 40% 7,924,531,320 0 

Stochastic 30 7 0.5 40% 9,119,156,439 534 

Stochastic 30 7 0.5 40% 6,884,569,394 18,214 

Stochastic 30 7 0.5 40% 11,915,206,086 7,635 

Stochastic 30 7 0.5 40% 4,589,545,618 384,925 

Stochastic 30 7 0.5 40% 8,374,022,963 183,970 

Stochastic 30 7 0.5 40% 7,070,622,925 21,432 

Stochastic 30 7 0.5 40% 7,287,276,394 0 

Stochastic 30 7 0.5 40% 9,921,125,772 0 

Determinist 30 7 0.5 5% 8,237,218,683 0 

Determinist 30 7 0.5 5% 8,001,451,988 0 

Determinist 30 7 0.5 5% 8,245,187,359 0 

Determinist 30 7 0.5 5% 8,373,191,748 0 

Determinist 30 7 0.5 5% 8,459,123,515 0 

Determinist 30 7 0.5 5% 8,306,267,969 0 
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Determinist 30 7 0.5 5% 8,141,419,357 0 

Determinist 30 7 0.5 5% 8,600,187,232 0 

Determinist 30 7 0.5 5% 8,288,389,408 0 

Determinist 30 7 0.5 5% 8,241,725,947 0 

Determinist 30 7 0.5 5% 7,858,528,795 0 

Determinist 30 7 0.5 5% 7,960,361,523 0 

Determinist 30 7 0.5 5% 8,213,917,430 0 

Determinist 30 7 0.5 5% 8,000,166,622 0 

Determinist 30 7 0.5 5% 8,247,794,734 0 

Determinist 30 7 0.5 5% 8,408,944,842 0 

Determinist 30 7 0.5 5% 8,196,640,144 0 

Determinist 30 7 0.5 5% 7,715,709,307 0 

Determinist 30 7 0.5 5% 8,105,874,083 0 

Determinist 30 7 0.5 5% 8,579,924,368 0 

Stochastic 30 7 0.5 5% 8,588,400,673 0 

Stochastic 30 7 0.5 5% 7,850,846,183 0 

Stochastic 30 7 0.5 5% 8,281,144,589 0 

Stochastic 30 7 0.5 5% 8,324,604,533 0 

Stochastic 30 7 0.5 5% 7,576,266,619 0 

Stochastic 30 7 0.5 5% 8,124,072,600 0 

Stochastic 30 7 0.5 5% 8,630,701,711 0 

Stochastic 30 7 0.5 5% 8,438,381,486 0 

Stochastic 30 7 0.5 5% 7,787,310,724 0 

Stochastic 30 7 0.5 5% 7,892,466,023 0 

Stochastic 30 7 0.5 5% 8,565,960,185 0 

Stochastic 30 7 0.5 5% 7,869,960,000 0 

Stochastic 30 7 0.5 5% 8,200,564,059 0 

Stochastic 30 7 0.5 5% 8,243,284,867 0 

Stochastic 30 7 0.5 5% 8,630,932,321 0 

Stochastic 30 7 0.5 5% 7,893,475,083 0 

Stochastic 30 7 0.5 5% 7,973,080,226 0 

Stochastic 30 7 0.5 5% 8,094,476,251 0 

Stochastic 30 7 0.5 5% 8,373,548,586 0 

Stochastic 30 7 0.5 5% 8,223,009,870 0 

Determinist 30 7 1 40% 741,147,020 1,325,273,112 

Determinist 30 7 1 40% 390,565,953 2,842,404,156 

Determinist 30 7 1 40% 424,097,530 3,015,938,076 

Determinist 30 7 1 40% 1,333,317,694 1,818,893,970 

Determinist 30 7 1 40% 870,907,124 3,466,989,603 

Determinist 30 7 1 40% 1,484,221,727 2,463,139,544 

Determinist 30 7 1 40% 1,041,328,752 1,578,110,943 
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Determinist 30 7 1 40% 1,977,077,807 5,646,928,370 

Determinist 30 7 1 40% 329,147,652 2,549,335,961 

Determinist 30 7 1 40% 1,783,422,391 6,292,745,966 

Determinist 30 7 1 40% 1,624,893,212 4,837,171,542 

Determinist 30 7 1 40% 347,504,520 990,525,681 

Determinist 30 7 1 40% 483,398,418 2,285,908,752 

Determinist 30 7 1 40% 1,344,610,412 2,601,964,574 

Determinist 30 7 1 40% 1,336,845,258 6,008,410,036 

Determinist 30 7 1 40% 378,094,012 1,191,100,810 

Determinist 30 7 1 40% 477,071,007 1,196,252,211 

Determinist 30 7 1 40% 1,266,000,440 777,847,610 

Determinist 30 7 1 40% 619,110,092 1,602,108,668 

Determinist 30 7 1 40% 144,413,961 2,532,389,966 

Stochastic 30 7 1 40% 1,343,115,986 2,694,647,093 

Stochastic 30 7 1 40% 1,652,964,468 5,774,782,187 

Stochastic 30 7 1 40% 1,272,974,518 2,640,218,893 

Stochastic 30 7 1 40% 1,033,699,133 2,753,378,608 

Stochastic 30 7 1 40% 723,793,716 2,107,776,441 

Stochastic 30 7 1 40% 1,548,604,381 628,480,383 

Stochastic 30 7 1 40% 1,247,948,459 6,012,407,809 

Stochastic 30 7 1 40% 2,445,659,880 6,835,724,022 

Stochastic 30 7 1 40% 1,045,960,618 3,264,904,194 

Stochastic 30 7 1 40% 730,153,970 6,186,594,749 

Stochastic 30 7 1 40% 879,327,587 2,189,261,937 

Stochastic 30 7 1 40% 393,525,184 4,095,141,745 

Stochastic 30 7 1 40% 1,043,962,261 1,412,211,477 

Stochastic 30 7 1 40% 1,083,698,326 2,550,247,046 

Stochastic 30 7 1 40% 866,083,204 4,018,164,999 

Stochastic 30 7 1 40% 223,434,699 2,179,331,431 

Stochastic 30 7 1 40% 219,668,982 2,112,182,950 

Stochastic 30 7 1 40% 935,529,852 3,651,230,281 

Stochastic 30 7 1 40% 1,368,235,697 1,511,903,088 

Stochastic 30 7 1 40% 1,371,685,395 966,707,781 

Determinist 30 7 1 5% 240,784,947 889,433,907 

Determinist 30 7 1 5% 134,200,881 961,973,119 

Determinist 30 7 1 5% 93,287,044 904,895,011 

Determinist 30 7 1 5% 72,487,583 879,609,820 

Determinist 30 7 1 5% 71,297,140 1,100,186,879 

Determinist 30 7 1 5% 142,574,535 1,011,651,266 

Determinist 30 7 1 5% 128,043,524 868,724,337 

Determinist 30 7 1 5% 157,945,101 929,191,803 
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Determinist 30 7 1 5% 261,526,870 822,876,259 

Determinist 30 7 1 5% 148,013,498 1,101,863,071 

Determinist 30 7 1 5% 184,929,160 926,145,725 

Determinist 30 7 1 5% 199,496,506 961,342,873 

Determinist 30 7 1 5% 262,826,026 844,944,689 

Determinist 30 7 1 5% 74,807,838 968,933,807 

Determinist 30 7 1 5% 185,866,581 874,995,941 

Determinist 30 7 1 5% 149,760,841 917,890,257 

Determinist 30 7 1 5% 107,783,822 1,077,978,737 

Determinist 30 7 1 5% 211,908,295 937,240,489 

Determinist 30 7 1 5% 103,256,284 963,407,741 

Determinist 30 7 1 5% 118,272,547 893,070,362 

Stochastic 30 7 1 5% 258,418,214 876,366,261 

Stochastic 30 7 1 5% 192,933,334 706,805,421 

Stochastic 30 7 1 5% 206,438,529 952,513,784 

Stochastic 30 7 1 5% 194,431,026 1,033,798,687 

Stochastic 30 7 1 5% 186,081,696 805,543,489 

Stochastic 30 7 1 5% 141,558,553 907,914,999 

Stochastic 30 7 1 5% 206,819,120 931,808,161 

Stochastic 30 7 1 5% 216,931,975 882,724,379 

Stochastic 30 7 1 5% 195,634,076 848,112,916 

Stochastic 30 7 1 5% 216,491,870 651,200,648 

Stochastic 30 7 1 5% 111,441,540 928,500,541 

Stochastic 30 7 1 5% 164,916,312 1,059,220,734 

Stochastic 30 7 1 5% 304,754,276 722,504,408 

Stochastic 30 7 1 5% 207,195,079 970,541,099 

Stochastic 30 7 1 5% 124,739,726 813,012,327 

Stochastic 30 7 1 5% 138,597,619 836,127,554 

Stochastic 30 7 1 5% 112,386,520 1,114,318,289 

Stochastic 30 7 1 5% 210,666,228 908,122,728 

Stochastic 30 7 1 5% 138,725,118 989,161,877 

Stochastic 30 7 1 5% 187,344,015 889,919,605 
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Appendix IV 

The Backorder and Inventory Costs Values for Full Factorial Design 

(40% Demand variation) 

Planning 

Approach 

Length of 

Planning Horizon 

Re-planning 

Frequency 

Demand 

Level 

Simulated 

Inventory Cost 

Simulated 

Backorder Cost 

Determinist 15 1 0.5 8,984,952,054 0 

Determinist 15 1 0.5 11,615,647,892 0 

Determinist 15 1 0.5 6,095,052,744 352 

Determinist 15 1 0.5 3,538,024,025 0 

Determinist 15 1 0.5 10,473,862,061 0 

Determinist 15 1 0.5 9,303,501,805 48 

Determinist 15 1 0.5 11,533,791,633 0 

Determinist 15 1 0.5 8,091,265,906 0 

Determinist 15 1 0.5 7,670,960,526 0 

Determinist 15 1 0.5 7,383,184,754 0 

Determinist 15 1 1 1,007,762,979 4,922,797,654 

Determinist 15 1 1 726,920,314 1,733,316,503 

Determinist 15 1 1 192,299,930 2,669,766,994 

Determinist 15 1 1 2,303,659,573 3,387,869,247 

Determinist 15 1 1 753,808,452 904,209,461 

Determinist 15 1 1 356,801,462 1,725,361,778 

Determinist 15 1 1 1,314,788,957 5,390,732,757 

Determinist 15 1 1 1,445,683,767 1,672,892,985 

Determinist 15 1 1 30,831,647 2,775,868,465 

Determinist 15 1 1 705,778,133 3,383,801,781 

Determinist 15 7 0.5 6,750,337,652 248 

Determinist 15 7 0.5 6,044,340,097 1,279,572 

Determinist 15 7 0.5 9,256,209,908 69,875 

Determinist 15 7 0.5 8,782,179,428 425,425 

Determinist 15 7 0.5 7,711,559,850 0 

Determinist 15 7 0.5 5,919,415,745 713,020 

Determinist 15 7 0.5 9,725,806,033 0 

Determinist 15 7 0.5 7,251,300,516 0 

Determinist 15 7 0.5 4,007,744,623 1,080,848 

Determinist 15 7 0.5 11,567,196,460 0 

Determinist 15 7 1 1,079,293,118 1,801,177,171 

Determinist 15 7 1 567,066,373 1,819,418,000 
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Determinist 15 7 1 360,587,042 2,318,730,505 

Determinist 15 7 1 145,363,374 4,176,169,249 

Determinist 15 7 1 1,195,831,813 1,347,042,401 

Determinist 15 7 1 451,332,713 1,149,445,647 

Determinist 15 7 1 538,345,245 1,543,244,972 

Determinist 15 7 1 1,018,422,242 5,340,094,699 

Determinist 15 7 1 416,068,747 1,592,808,088 

Determinist 15 7 1 1,500,030,569 7,322,191,138 

Determinist 30 1 0.5 13,019,277,808 0 

Determinist 30 1 0.5 4,776,940,661 79,351 

Determinist 30 1 0.5 8,726,802,015 0 

Determinist 30 1 0.5 8,617,668,562 0 

Determinist 30 1 0.5 8,568,405,288 0 

Determinist 30 1 0.5 7,438,558,186 0 

Determinist 30 1 0.5 9,451,939,719 0 

Determinist 30 1 0.5 7,678,225,803 0 

Determinist 30 1 0.5 5,465,136,829 0 

Determinist 30 1 0.5 11,769,118,736 0 

Determinist 30 1 1 2,101,530,773 4,036,001,622 

Determinist 30 1 1 1,689,767,353 875,082,885 

Determinist 30 1 1 1,363,319,960 5,825,476,953 

Determinist 30 1 1 532,492,494 3,126,698,752 

Determinist 30 1 1 1,437,618,981 5,917,024,736 

Determinist 30 1 1 1,183,995,906 6,023,372,184 

Determinist 30 1 1 751,400,792 1,938,607,106 

Determinist 30 1 1 2,234,858,747 6,027,968,714 

Determinist 30 1 1 199,374,933 1,809,690,057 

Determinist 30 1 1 513,681,421 2,582,772,638 

Determinist 30 7 0.5 6,051,827,193 24,900 

Determinist 30 7 0.5 8,695,367,404 33,657 

Determinist 30 7 0.5 4,570,961,730 0 

Determinist 30 7 0.5 8,509,950,110 0 

Determinist 30 7 0.5 4,635,316,742 1,102,010 

Determinist 30 7 0.5 10,160,646,612 0 

Determinist 30 7 0.5 11,803,057,467 1,895 

Determinist 30 7 0.5 9,814,724,190 0 

Determinist 30 7 0.5 9,995,056,471 4,333 

Determinist 30 7 0.5 5,595,518,034 168,899 

Determinist 30 7 1 1,624,893,212 4,837,171,542 

Determinist 30 7 1 347,504,520 990,525,681 

Determinist 30 7 1 483,398,418 2,285,908,752 
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Determinist 30 7 1 1,344,610,412 2,601,964,574 

Determinist 30 7 1 1,336,845,258 6,008,410,036 

Determinist 30 7 1 378,094,012 1,191,100,810 

Determinist 30 7 1 477,071,007 1,196,252,211 

Determinist 30 7 1 1,266,000,440 777,847,610 

Determinist 30 7 1 619,110,092 1,602,108,668 

Determinist 30 7 1 144,413,961 2,532,389,966 

Stochastic 15 1 0.5 5,658,133,450 0 

Stochastic 15 1 0.5 4,228,229,405 704 

Stochastic 15 1 0.5 4,387,307,629 6,092 

Stochastic 15 1 0.5 5,604,058,249 0 

Stochastic 15 1 0.5 9,625,593,466 0 

Stochastic 15 1 0.5 10,293,339,946 0 

Stochastic 15 1 0.5 7,705,484,017 0 

Stochastic 15 1 0.5 6,039,421,508 6,498 

Stochastic 15 1 0.5 7,181,481,090 0 

Stochastic 15 1 0.5 5,743,390,355 0 

Stochastic 15 1 1 449,785,647 2,323,408,650 

Stochastic 15 1 1 1,864,704,729 3,434,527,370 

Stochastic 15 1 1 1,258,053,488 4,239,908,442 

Stochastic 15 1 1 1,026,386,235 1,285,376,871 

Stochastic 15 1 1 116,790,595 3,104,611,263 

Stochastic 15 1 1 991,230,866 4,633,514,684 

Stochastic 15 1 1 542,199,706 1,589,004,275 

Stochastic 15 1 1 476,056,099 1,212,309,193 

Stochastic 15 1 1 1,304,497,365 1,531,747,629 

Stochastic 15 1 1 2,023,803,341 1,892,468,811 

Stochastic 15 7 0.5 9,449,259,581 0 

Stochastic 15 7 0.5 7,708,813,036 0 

Stochastic 15 7 0.5 9,678,604,944 1,770 

Stochastic 15 7 0.5 11,728,880,023 17,048 

Stochastic 15 7 0.5 7,275,941,450 19,936 

Stochastic 15 7 0.5 6,148,028,169 3,299 

Stochastic 15 7 0.5 7,293,873,229 0 

Stochastic 15 7 0.5 5,758,011,732 0 

Stochastic 15 7 0.5 8,206,464,330 0 

Stochastic 15 7 0.5 9,057,066,734 0 

Stochastic 15 7 1 865,367,342 1,558,707,555 

Stochastic 15 7 1 1,016,043,243 6,671,696,767 

Stochastic 15 7 1 63,999,223 1,263,726,105 

Stochastic 15 7 1 914,194,715 4,858,549,017 
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Stochastic 15 7 1 965,727,717 6,214,830,233 

Stochastic 15 7 1 866,132,213 1,785,614,540 

Stochastic 15 7 1 1,577,496,506 2,401,375,692 

Stochastic 15 7 1 838,190,939 1,413,805,811 

Stochastic 15 7 1 1,541,173,225 3,298,816,636 

Stochastic 15 7 1 1,447,506,869 1,390,255,850 

Stochastic 30 1 0.5 10,744,208,480 1,697 

Stochastic 30 1 0.5 10,779,330,718 0 

Stochastic 30 1 0.5 4,545,866,701 0 

Stochastic 30 1 0.5 12,734,678,742 0 

Stochastic 30 1 0.5 10,237,351,166 0 

Stochastic 30 1 0.5 11,025,101,930 0 

Stochastic 30 1 0.5 7,170,325,759 0 

Stochastic 30 1 0.5 9,801,134,760 0 

Stochastic 30 1 0.5 4,981,129,837 0 

Stochastic 30 1 0.5 8,698,882,594 0 

Stochastic 30 1 1 848,547,696 925,960,343 

Stochastic 30 1 1 397,070,807 4,490,096,481 

Stochastic 30 1 1 401,573,132 1,962,204,421 

Stochastic 30 1 1 371,553,277 2,383,663,470 

Stochastic 30 1 1 161,790,579 2,274,560,227 

Stochastic 30 1 1 880,586,417 4,033,341,655 

Stochastic 30 1 1 1,167,273,515 2,750,493,002 

Stochastic 30 1 1 1,423,961,795 1,844,265,147 

Stochastic 30 1 1 1,538,504,074 3,557,928,311 

Stochastic 30 1 1 129,777,643 2,467,551,856 

Stochastic 30 7 0.5 10,388,899,270 23 

Stochastic 30 7 0.5 7,924,531,320 0 

Stochastic 30 7 0.5 9,119,156,439 534 

Stochastic 30 7 0.5 6,884,569,394 18,214 

Stochastic 30 7 0.5 11,915,206,086 7,635 

Stochastic 30 7 0.5 4,589,545,618 384,925 

Stochastic 30 7 0.5 8,374,022,963 183,970 

Stochastic 30 7 0.5 7,070,622,925 21,432 

Stochastic 30 7 0.5 7,287,276,394 0 

Stochastic 30 7 0.5 9,921,125,772 0 

Stochastic 30 7 1 879,327,587 2,189,261,937 

Stochastic 30 7 1 393,525,184 4,095,141,745 

Stochastic 30 7 1 1,043,962,261 1,412,211,477 

Stochastic 30 7 1 1,083,698,326 2,550,247,046 

Stochastic 30 7 1 866,083,204 4,018,164,999 
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Stochastic 30 7 1 223,434,699 2,179,331,431 

Stochastic 30 7 1 219,668,982 2,112,182,950 

Stochastic 30 7 1 935,529,852 3,651,230,281 

Stochastic 30 7 1 1,368,235,697 1,511,903,088 

Stochastic 30 7 1 1,371,685,395 966,707,781 

 


