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   Visual servoing is a robot control method in which camera sensors are used inside the 

control loop and visual feedback is introduced into the robot control loop to enhance the 

robot control performance in accomplishing tasks in unstructured environments. In 

general, visual servoing can be categorized into image-based visual servoing (IBVS), 

position-based visual servoing (PBVS), and hybrid approach. To improve the 

performance and robustness of visual servoing systems, the research on IBVS for robotic 

positioning and tracking systems mainly focuses on aspects of camera configuration, 

image features, pose estimation, and depth determination.  

   In the first part of this research, two novel multiple camera configurations of visual 

servoing systems are proposed for robotic manufacturing systems for positioning large-

scale workpieces. The main advantage of these two multiple camera configurations is that 

the depths of target objects or target features are constant or can be determined precisely 

by using computer vision. Hence the accuracy of the interaction matrix is guaranteed, and 

thus the positioning performances of visual servoing systems can be improved 

remarkably. The simulation results show that the proposed multiple camera 

configurations of visual servoing for large-scale manufacturing systems can satisfy the 

demand of high-precision positioning and assembly in the aerospace industry. 

ABSTRACT 
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   In the second part of this research, two improved image features for planar central 

symmetrical-shaped objects are proposed based on image moment invariants, which can 

represent the pose of target objects with respect to camera frame. A visual servoing 

controller based on the proposed image moment features is designed and thus the control 

performance of the robotic tracking system is improved compared with the method based 

on the commonly used image moment features. Experimental results on a 6-DOF robot 

visual servoing system demonstrate the efficiency of the proposed method. 

Lastly, to address the challenge of choosing proper image features for planar objects to 

get maximal decoupled structure of the interaction matrix, the neural network (NN) is 

applied as the estimator of target object poses with respect to camera frame based on the 

image moment invariants. Compared with previous methods, this scheme avoids image 

interaction matrix singularity and image local minima in IBVS. Furthermore, the 

analytical form of depth computation is given by using classical geometrical primitives 

and image moment invariants. A visual servoing controller is designed and the tracking 

performance is enhanced for robotic tracking systems. Experimental results on a 6-DOF 

robot system are provided to illustrate the effectiveness of the proposed scheme.  
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CHAPTER 1 INTRODUCTION  

1.1 Robotic positioning and tracking systems 

    In the aerospace industry, the tasks in fastening large-scale parts such as drilling, 

riveting and welding, in assembly such as piping and aircraft wing alignment need high 

precision positioning. It is difficult and expensive to obtain a robot with high payload 

using traditional methods. Although 3D metrology and tracking systems including laser 

tracker, laser radar [1], indoor GPS (Global Positioning System) [2], and other optic-

electronic positioning systems are used for positioning in manufacturing and assembly, 

these systems are highly limited in terms of speed and workspace, and generally very 

expensive.  One feasible and cost-effective way to overcome these constrains is to use a 

visual servoing method to achieve high precision positioning. 

Visual servoing is a robot control method in which visual feedback or image from 

camera sensors is introduced into the robot inside a control loop to accomplish tasks in 

unstructured environments and to enhance the robot control performance [3, 4]. Visual 

servoing can be categorized into image-based visual servoing (IBVS), position-based 

visual servoing (PBVS), and hybrid approach [5]. In the visual servoing systems, there 

are two basic camera configurations. One is to install a camera at the tip or end-effector 

of the manipulator (eye-in-hand); the other is to set the camera and manipulator 

separately (eye-to-hand) [6]. 

Compared with the other visual servoing methods, IBVS has three main advantages 

[7, 8, 9] and has gained research interest among the robotics community since it is 

insensitive and robust to camera model error, calibration error, and measurement noise 
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[10]. Hence IBVS is widely used for automated robotic manufacturing systems [11]. 

However, it is difficult for traditional IBVS with a single camera to deal with the tasks of 

robot positioning for large-scale manufacturing systems in the aerospace industry [12]. 

The reason is that the target features of a large size workpiece are chosen far away from 

each other to increase the accuracy of positioning in large-scale manufacturing systems. 

It is obvious that it is difficult, if not impossible, to place all target features in the field of 

view (FOV) of a single camera. Moreover, due to the large size of the workpiece, the 

disposal of cameras is a key problem [13]. Sometimes the target features are occluded 

from the FOV of the camera, wherein an unsuitable viewpoint may cause some target 

features to move out of the FOV of the camera during visual servoing. This may lead to 

servoing failure, especially when the initial position of the camera is far away from its 

desired one [14, 15]. Hence, some researchers have proposed new configurations for 

cameras to improve the visibility of target objects, such as using stereo cameras [16], or 

multiple cameras [17, 18]. Nevertheless, these methods are only effective in a situation 

where the size of the target object is relatively small and the robot end-effector moves in 

a large range. However, in the aerospace industry, a robot end-effector generally moves 

in the vicinity of the desired position and the target features are chosen far away from 

each other in visual servoing. Therefore, the conventional configurations of cameras in 

visual servoing cannot effectively deal with the task of robot positioning for large-scale 

manufacturing systems.  

In addition, it is known that the interaction matrices of IBVS actually depend on the 

depths of target features [19]. In most of cases, target feature depth is treated as constant 

or just roughly estimated such that the visual servoing system remains stable and 
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convergent because of the robustness of IBVS to the error of camera model and system 

calibration. Nevertheless, in some cases the incorrect depth estimation of target features 

may cause convergence and stability problems [20]. Therefore, the exact determination of 

target feature depths is still a crucial task in the design of IBVS systems. 

Moreover, in large-scale manufacturing systems, the dynamic forces of the workpiece 

play an important role in robot dynamic behaviors, since the mass of large size workpiece 

is not negligible. However, most papers published on visual servoing focus only on the 

kinematic analysis of the visual servoing systems. The dynamics of the robot is hardly 

taken into consideration in the visual servoing scheme design. 

In this thesis, multiple camera visual servoing for large-scale manufacturing systems 

is investigated, and the dynamics of robot manufacturing systems are taken into 

consideration in designing IBVS system controller. Two novel configurations of multiple 

camera visual servoing for a large-scale 3D positioning system are proposed, which will 

be discussed in Chapter 3 and Chapter 4. The list of titles is as follows:  

1. ñMultiple camera visual servoing with 3D CAD laser projector for large-scale 3D 

positioningò  

2. ñMultiple camera-multiple target point visual servoing system for large scale 3D 

positioningò 

     In visual servoing, one of the drawbacks of IBVS is that there exist interaction matrix 

singularities and image local minima leading to IBVS failure in robot workspace [21]. 

Hence the choice of target features is another key point to address the challenge of 

interaction matrix singularities. Much effort have been contributed to determine some 

decoupling image features to deliver a triangular or diagonal interaction matrix [22, 23].  
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In the determination of image features in visual servoing, geometric features such as 

points, segments or straight lines [3] are usually chosen as the target features, and the 

corresponding image features in the image plane are utilized as image features and the 

inputs of visual servoing controllers. However, such target features can only be applied in 

certain limited target objects [24]. In addition, the geometric features might be occluded 

from the FOV of the camera. In this case, the number of the image features does not 

match with that of the desired ones, which may lead to the failure of visual servoing. In 

order to track the target objects which do not have enough detectable geometric features, 

and to enhance the robustness of visual servoing systems, several novel target features are 

adopted for visual servoing. For example, laser points [13, 25] and the polar signature of 

target object contour [26] are used as target features in the design of IBVS systems.   

The image moments are normally used for pattern-recognition in computer vision [27, 

28]. Recently they have been adopted as image features for viusal servoing control 

scheme design due to their easy computation from binary or segmented image or from a 

set of extracted points of interest, disregarding the target object shape complexity and 

their generic representation of any target object, with a simple or complex shape [29]. In 

addition, low-order moments have an intuitive meaning, since they are directly related to 

the area, the centroid, and the orientation of the object in the image plane [21]. Following 

previous work, it is known that using the image moments as image features in visual 

servoing can render the corresponding interaction matrix with maximal decoupled 

structure, and the inherent problem-singularity of the interaction matrix is avoided and 

the control performance of IBVS system is thus improved. 

In [22], based on image moment invariants to 2D translation, 2D rotation, and scale, 
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two image features are selected to control xw , yw  the rotational velocity around the x and 

y axes of the camera frame respectively for planar non-centered symmetrical objects. But 

these two image features cannot be used for planar central symmetrical objects since the 

elements of the interaction matrix related to these two image features are equal to zero 

when the planar target object is parallel to the image plane [21]. In this case, two other 

image features xS , yS  are proposed to control the rotational velocities xw , yw for planar 

central symmetrical objects in order to avoid the singularity of the interaction matrix. 

However, the simulation results show that image features xS , yS  for planar central 

symmetrical objects used in [22] cannot represent the pose of planar target objects 

correctly with respect with camera frame all the time. In this thesis, two improved image 

moments for planar central symmetrical objects are proposed to control target object pose 

of rotating around the x and y axes respectively. Along with the other four common 

image moments in [21, 22], how to analytically derive the interaction matrix describing 

the relationship between the motion of camera and the derivative of the image features 

with respect to time is illustrated. To control the motion of the camera, an IBVS 

controller is developed for object tracking by using the derived interaction matrix. The 

developed controller is applied to visual servoing for a 6-DOF robotic tracking system 

and the experimental results demonstrate the effectiveness of the proposed method. The 

details are given in Chapter 5.  

Moreover, it is known that the judicious combinations of image moments are invariant 

to some transformations, such as 2D translation, 2D rotation, and scale. This property is 

of great value in visual servoing [29]. No matter what the nature of the possible image 

features extracted from the image is, from the coordinates of a set of image features to a 
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set of image moments, the main question lies in how to combine them to obtain an 

adequate structure of the interaction matrix of the visual servoing system. The method of 

the reported combinations is just stacking [21, 22]. However, the inappropriate 

combination of image moments and redundant image point coordinates may cause some 

potential problems such as local minima and coupled target features that lead to 

inadequate robot trajectories [28].  Some researchers have tried to use different image 

moments as image features to solve this problem [21, 22, 28]. In [28], the 2D image 

moments are combined as image features to decouple the control of the rotation from that 

of the translation to ensure the visibility of the target object in the FOV of the camera and 

also to demonstrate the global stability of the system using only the measurements from 

the current and desired images. In [30, 31], the choice of image features lets the condition 

number of interaction matrix be small to improve the robustness and the stability of the 

system. In [32], the image moment invariants to 2D translational motion, to 2D rotational 

motion and to scale were exploited to decouple translational velocity xv , yv , zv  from 

rotational velocity zw . In [22], several combinations of image moment invariants have 

been proposed and two of them are selected as image features to control rotational 

velocity xw , yw  depending on the object considered. Such a selection of two independent 

image features makes the corresponding interaction matrix have a maximal decoupled 

structure. Indeed, when the object is parallel to image plane, the interaction matrix 

relating camera motion to variations of these image features, denoted as
||J , has the 

expected form || 0 0 0 0x yL LJ w w
è ø=ê ú. In the experimental phase of [28], the error: 

2*2* )),(()),((),(
tttt jjiic cccce -+-= gbgbgb

 
was proposed to select the pair ),( ji cc
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such that the error ce  presents the global minima, with an influence zone that is as large 

and symmetrical as possible. This offline selection process has to be performed for each 

new object considered, once the desired image is acquired. Nevertheless, it is noticed that 

in the interaction matrices in [22, 28], the rotational velocity xw , yw are still not 

decoupled. Furthermore, in the previous research, the depths of target features are 

assumed to be constant [21] or approximately computed from the planar object equation 

expressed in desired position [22, 28]. This assumption simplifies the mathematical 

development and such an approximation is generally accepted in practice because of the 

robustness of visual servoing to modeling errors. However, for large displacement visual 

servoing, especially in robotic tracking systems, this assumption will cause a computation 

error and possible singularity problems. Therefore, the exact determination of depths 

online is a key step in the design of visual servoing of high precision robotic tracking 

systems.  

In this thesis, to decouple the components corresponding toxw , yw in interaction matrix, 

neural network (NN)-based image features are proposed, which are referred to as virtual 

image features and meanwhile are assumed to be proportional to the rotational angles 

around the x and y axes of camera frame respectively.  A NN is designed to estimate the 

rotational angles around the x and y axes of the camera frame. Then the interaction matrix 

related to the proposed image features can be determined based on the outputs of the NN. 

In addition, the depths of target features of the planar-shaped object are determined by 

using image moment invariants online. Hence the computation accuracy of the interaction 

matrix of the visual servoing system is remarkably improved. The effectiveness of the 
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proposed method is demonstrated in the experimental results on a 6-DOF robotic tracking 

system. The details are given in Chapter 6. 

1.2 Scopes and Contributions of the Thesis   

1.2.1 Multiple camera visual servoing for large-scale manufacturing systems 

   In this thesis, the multiple camera configurations of visual servoing for large-scale 

manufacturing are proposed. IBVS is used as visual servoing strategy and eye-in-hand 

architecture is adopted as camera configuration. Meanwhile, it has been proven that at 

least four target points are needed to have the complete velocity screw of robot end-

effector uniquely defined through pseudo inverse of interaction matrix [33]. Hence, a 

precise robotic 3D positioning system, which is shown in Figure 3-1, is proposed by 

using a 3D CAD laser projector, four digital cameras and four projection screens attached 

to a bracket installed on a robot end-effector or workpiece, and a 6-DOF robot. In this 

system, a 3D CAD laser projector projects computer images (typically from CAD files) 

directly on objects for layout and alignment applications [34], which can provide 4 target 

points on the projection screens at different working positions. Four cameras are used as 

visual sensors, and each camera can only look at one target point on the corresponding 

projection screen. During the visual servoing process, each target point is always within 

the FOV of the corresponding camera. It is noticed that, at one working position, the laser 

beams remain stationary in the robot base frame, and the target points (the laser spots on 

the projection screens) will move along the laser beams if the robot end-effector moves in 

the robot base frame. Nevertheless, the depths of target points will always be kept 

constant during the visual servoing process because of the unique system configuration, 



 

26 

 

i.e., the position of each projection screen with respect to the corresponding camera is 

fixed. 

  However, in the above multiple camera configuration of visual servoing system, the 

3D CAD laser projector is very expensive. Sometimes the laser beams are occluded by 

objects, e.g., robot arm. In addition, the calibration of the system is also time-consuming. 

Hence, a new multiple camera configuration of visual servoing system shown in Figure 

4-3 is proposed, in which four pairs of LEDs are installed in the robot base frame right 

above the cameras attached to a bracket installed on the robot end-effector or workpiece. 

In each pair of LEDs, one of LEDs is used as the main target point (target feature), and 

the other is used as the complimentary target point, which is used to determine the depth 

of target feature in visual servoing. Meanwhile, in visual servoing, each camera only 

observes one pair of LEDs. This configuration ensures that all the target points are visible 

when the robot end-effector moves in a certain limit range around the desired position. 

The depths of target points can be easily computed online by using the stereo vision 

strategy.  

    In addition, the dynamic model of the robot manufacturing system is considered in this 

thesis. Visual servoing control schemes, including visual servoing controller and robot 

dynamic controller, are designed for multiple camera configurations of visual servoing 

system based on machine vision, kinematics, dynamics, control theory as well as robotics. 

Simulations have been carried out to verify the effectiveness of the proposed visual 

servoing schemes under various conditions. The image errors of visual servoing systems 

are analysed and the stability condition of the visual servoing system is given based on 
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the control theory. The simulation results also demonstrate that the proposed systems can 

achieve high-precision positioning for large-scale manufacturing and assembly systems. 

1.2.2 Visual servoing by image moments  

Firstly, based on the previous research on the image moment-based visual servoing, the 

two improved image moments, which are closely related to the pose of the target object 

rotating around the x and y axes of the camera frame respectively, are proposed as image 

features for planar central symmetrical objects. Along with the other four commonly-used 

image moments, the interaction matrix describing the relationship between the motion of 

the camera and the velocities of image features is derived, and the IBVS controller is 

developed for visual servoing of a 6-DOF robotic tracking systems. The simulation and 

experimental results demonstrate the effectiveness of the proposed methods. 

   Secondly, to achieve the goal of decouplingxw , yw , two virtual image features are 

proposed, which are assumed to be proportional to the angles of the target object rotating 

around the x and y axes of the camera frame respectively.  Based on the image moment 

invariants, the NN is designed to estimate the rotational angles of a target object around 

the x and y axes of the camera frame. The interaction matrix related to the proposed target 

features is determined based on the estimation results of the NN. The depth of the planar-

shaped target object can be computed online and thus the computation accuracy of the 

interaction matrix as well as the global stability of the system are improved. The 

effectiveness of the proposed method is demonstrated in the experimental results on a 6-

DOF robot tracking system. 
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1.3    Outline of this thesis 

   The dissertation is composed of seven chapters. The introduction chapter introduces 

basic concepts and background research. The motivation, objective and contribution of 

this research are presented as well. 

   In Chapter 2, a detailed literature review is conducted for visual servoing for robotic 

positioning and tracking systems, followed by how the present research advances the 

knowledge in the literature. 

    Based on a 3D CAD laser projector, the multiple camera visual servoing used for 

large-scale 3D positioning system is proposed in Chapter 3.  

    In Chapter 4, multiple camera-multiple target point visual servoing in large-scale 3D 

manufacturing systems is presented. 

    To deal with the robotic tracking system, the improved image momentôs visual 

servoing is discussed in Chapter 5.  

    In Chapter 6, neural network-based image moments visual servoing for robotic 

tracking systems is provided. 

    Chapter 7 contains the major conclusions of this dissertation and recommendations for 

future work. 
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CHAPTER 2 LITERATURE REVIEW  

2.1 History of visual servoing 

    Robot visual servoing has been a very active research subject for the past 30 years. 

With the progress in electronic hardware, the robot guided by optic-electronic sensors or 

more recently by a machine vision system is realized. In industrial applications, the 

robotic systems from a simple ñpick and placeò robot to an advanced manufacturing 

robot-team have been implemented. The term ñvision servoingò appears to have been 

introduced by Hill and Park [35] in 1979 to distinguish their approach from earlier 

experiments where the system alternated between picture taking and moving.  

   Visual servoing is mainly used in cases where a robot uses a feedback machine vision 

in its control loop. Visual servoing is the fusion of many active research areas which 

includes high speed image process, kinematics, dynamics, control theory and real-time 

computation and has been used in control engineering especially in manufacturing fields.  

Visual servoing has much in common with research in active vision and structure from 

motion [36, 37, 38], but it is quite different from the often-described use of vision in 

hierarchical task level robot control systems. Some robot systems that incorporate vision 

are designed for task level programming, and such systems are generally hierarchical, 

with higher levels corresponding to more abstract data representations. The highest level 

is capable of reasoning about the task, given a model of the environment. Firstly, the 

target location and grasp sites are determined from calibrated stereo vision or laser 

rangefinder images, and then a sequence of moves are planned. The execution of the 
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movements would be dealt with at the lowest level. However active vision is no more 

than the use of vision at the lowest level, with simple image processing to provide active 

or reflexive behaviour. The active vision [39, 40] proposes that a set of simple visual 

behaviours can accomplish tasks through action, such as controlling attention or gaze.  

   On the other hand, literature related to structure from motion [41] is also relevant to 

visual servoing. Structure from motion attempts to infer the 3D structure and the relative 

motion between object and camera, from a sequence of images. In robotics however, we 

generally have a considerable amount of a priori knowledge of the target, and the spatial 

relationships between target features are known [42]. The task in visual servoing is to 

enable the robot to be interactive with its environment using a feedback signal in the form 

of an image [5]. The fundamental tenet of visual servoing is not to interpret the scene and 

then model it, but to direct attention to that part of the scene relevant to the task at hand. 

If the system wishes to learn something of the world, rather than consult the model, it 

should consult the world by directing the sensor. Meanwhile the benefit of an active 

robot-mounted camera includes the ability to avoid occlusion, resolve ambiguity and 

increase accuracy. Current research on visual servoing mainly focuses on the choice of 

image features, camera configuration, and stability of the visual servoing control system. 

Other topics such as rigid body pose estimation are also related to visual servoing. 

2.2 Classification of visual servoing  

   In the servoing of machine vision systems, there are two methods to put the visual 

feedback signal into action. One is called ñlook and moveò, and the other is visual 

servoing. Traditionally visual sensing and manipulation are combined in an open-loop 

fashion, ólookingô then ómovingô. The accuracy of the operation depends directly on the 
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accuracy of visual sensors, manipulators and their controllers. In addition, in the ñlook 

and moveò strategy, the visual information obtained by the camera or optical sensor is 

transformed into the position and orientation in world frame, and then guide the robot to 

the desired location in the world frame [5]. This method needs a priori precise calibration 

of cameras and manipulators. The alternative to increasing the accuracy of these 

subsystems is to use a visual-feedback control loop, which will increase the overall 

accuracy of the system. This control scheme is called visual servoing. The difference 

between ñlook and moveò and ñvisual servoingò is that ñlook and moveò makes use of 

joint feedback, whereas visual servoing uses no joint feedback information at all [43]. 

Hence visual servoing uses the visual information in closed-loop fashion in a control 

strategy to guide the robot to the desired position. 

 Visual servoing techniques are broadly classified into the following three types: 

image-based visual servoing (IBVS), position-based visual servoing (PBVS), and hybrid 

approach [6]. IBVS is also referred to as image feature-based technique, since it uses the 

image features extracted from the captured image to directly provide a command to the 

robot. Typically, in IBVS, all the information extracted from the image and used in 

control happens in 2D. The image Jacobin matrix or interaction matrix which relates 

displacement of image features to the motion of the camera with respect to target object 

is used for designing the control systems of IBVS and a closed-loop control is preformed 

with regard to image feature position in the image plane. Thus, a servoing control system 

based only on the image is constructed and should be robust against calibration errors, 

since there is no need to calculate the location of target objects in a 3D world frame. An 

important point to mention here is that the robot may still move in 3D.  
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   PBVS is sometimes referred to as pose-based visual servoing and it is a model-based 

technique since the pose of the object of interest is estimated with respect to the camera 

and then a command is issued to the robot controller, which in turn controls the robot. In 

this case the image features are extracted as well. But the image feature information is 

used to estimate 3D information (pose of the object in 3D world frame). In PBVS, the 

image features are extracted from the image and are used in conjunction with other 

geometric information from the target to determine the pose with respect to the camera. 

Hence, servoing in PBVS happens in 3D. 

   Hybrid approaches use some combination of the 2D and 3D servoing. There have been 

a few different approaches to hybrid servoing, which can incorporate advantages of both 

IBVS and PBVS.  

     In summary, in IBVS, servoing is carried out on the basis of image features directly, 

which may reduce the computational delay, eliminate the necessity of image 

interpretation and eliminate errors in sensor modeling and camera calibration [ 44]. 

However it does present a significant challenge to controller design since the process is 

non-linear and highly coupled [43], which will cause some irregular points in the control 

system and make the whole control system unstable. However, in PBVS, the pose of the 

object is estimated, thus the control law is simple and direct. Nevertheless, because of the 

computational error and time delay of PBVS, the accumulation of physical error in the 

mechanical part of the system or even oscillation near the optimal solution point can 

occur [45].  
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2.3 Configuration of camera in visual servoing 

    In the visual servoing system, there are two basic configurations of cameras. One is to 

install the camera at the tip or end-effector of manipulator (eye-in-hand); the other is to 

set the camera and manipulator separately (eye-to-hand) [45]. According to the number 

of cameras used for visual servoing, it can further divided into single camera visual 

servoing [46], binocular camera visual servoing (two cameras) [47] and multiple cameras 

visual servoing.  

    A camera in eye-to-hand configuration can be mounted remotely with a fibre optic 

bundle, which is used to carry the image from the neighbourhood of the end-effector. Due 

to the small size and low cost of modern CCD cameras, this approach is not particularly 

advantageous [4]. The benefits of eye-in-hand configuration include the ability to avoid 

occlusion, resolve ambiguity and increase accuracy. Many reported visual servoing 

systems use eye-in-hand configuration, except where there is a reason that a camera 

cannot be mounted on the end-effector, e.g., practical constructions such as payload 

limitation or lack of robustness of the camera system, and an overhead camera being 

occluded by the gripper during the final phase of acquisition [48].  

In the large-scale robotic manufacturing systems, the robot end-effector only moves in 

the vicinity of the desired position and the target features are chosen far away from each 

other [49, 50]. Therefore, the conventional configuration of cameras cannot deal with the 

cases mentioned above, and it is obvious that a new configuration of cameras is worthy of 

investigation to address this challenge. 
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2.4 3D pose estimation 

    In a visual servoing system, the distance between the camera and target feature is 

frequently referred to as depth or range [15]. The camera contains a lens that forms a 2D 

projection of the scene onto the image plane where the sensor is located. This projection 

causes the loss of direct depth information, and each point on the image plane 

corresponds to a ray in 3D space. Therefore, some additional information is needed to 

determine the 3D point corresponding to an image plane point in designing a visual 

servoing system. This information may come from the multiple views or knowledge of 

the geometric relationship between several target features. In the visual servoing system 

design, at least three target feature points can determine the pose of the target object with 

respect to the camera frame, and providing good target features is a key step. As 

evidenced in previous research, there are many methods to provide good target features 

on the scene, e.g., a pattern of light is projected on the scene. By using a single-camera 

vision system, a laser pointer provides a light spot to follow the planar contour [15].  Ryo 

Furukonwa used a laser projector, which projects a stripe of light to the measured 3D 

scene by hand [51]. An image feature is generally defined as any measurable relationship 

in an image, and examples include image moments, the relationship between regions or 

vertices, polygon face areas, local intensity patterns, etc. Most commonly, the coordinates 

of an image feature point or a region centroid are used as image features. A good image 

feature point is the one that can be located unambiguously in different views of the scene. 

After good image feature points are obtained in an image plane, there exist many 

approaches to get 3D space information from a 2D image plane in the visual servoing 

system. The main approaches relevant to visual servoing include photogrammetric 
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techniques [52, 53], stereo vision [54, 55], depth from motion [56], and depth from 

dynamics [57, 58]. 

    Photogrammetry is the science of obtaining information about physical objects via 

photographic pictures. The perspective imaging model of the lens and sensor is 

characterized by two sets of parameters, referred to as intrinsic and extrinsic parameters. 

The intrinsic parameters include focal length, pixel scaling factor and the coordinate of 

the optical axis on the image plane. The extrinsic parameters specify the pose of the 

camera in the base frame. Camera calibration is the process of determining these 

parameters, which are generally expressed in the form of a 3×4 homogeneous 

transformation matrix, known as the calibration matrix. The inverse problem, camera 

location determination, is to find the camera pose, based on the relationship of image 

feature points and the intrinsic calibration parameters. The cited drawbacks of the 

photogrammetric approach are the complex computation, the necessity for camera 

calibration, and a model of the target object.  The systems based on the photogrammetric 

principle have been demonstrated using iterative algorithms [59], Kalman filtering [60] 

and analytic solutions [5].  

    Stereo vision is the interpretation of two views of the scene taken from known different 

viewpoints to resolve depth ambiguity. The location of target feature points in one view 

must be matched with the location of the same target feature points in the other view. 

This matching, or correspondence problem is not trivial, and is subject to model error. 

Another difficulty is missing parts, where a target feature point is visible in only one of 

the views, therefore its depth cannot be determined [47].  
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    Depth from motion is closely related to stereo vision. Sequential monocular views 

taken from different viewpoints are interpreted to derive depth information. Such a 

sequence may be obtained from a robot eye-in-hand camera during robot motion. It must 

be assumed that target features in the scene remain static during sequence acquisition 

[61]. 

As for depth from dynamics, many reported experiments utilize fixed camera-target 

distance. It is perhaps due to the focus or depth of field problems. The closed-loop 

transfer function of an image-based eye-inïhand visual servoing includes a gain term due 

to perspective [62, 63, 64], loop gain, and thus the closed-loop response is a function of 

the distance between the end-effector-mounted camera, and the target features. 

Conversely, the identified closed-loop dynamics can be used to derive an estimate of 

depth from a single point. More usefully, adaptive control or a self-tuning regulator 

would maintain the desired dynamic response as target distance changed, and the 

parameter values would be a function of target object distance. 

    In addition, there are a variety of vision-based depth cues including texture, 

perspective, stereo disparity, parallax, occlusion and shading. For a moving observer, 

apparent motion of features is an important depth cue. The use of multiple cues, selected 

according to visual circumstance, helps to resolve ambiguity. The approaches suitable for 

computer vision are reviewed by Jarvis [55]. Nonetheless, the estimation of depth is still 

a main challenge in the design of visual servoing systems. 

2.5 Image feature  

In IBVS, the geometric features of image such as points, segments or straight lines [3] 

are usually chosen as image features and are utilized as the inputs of visual servoing 
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controllers. However, these image features can only be applied in some limited target 

objects [7]. Also, the geometric features of the image might be occluded from the FOV of 

the camera. Therefore, the complete geometric image feature cannot be extracted 

properly. For instance, if the four corners of the image of a rectangular target object are 

considered as image features, one or two corner points may be covered by the intruding 

or unexpected object, such as the workpiece or a human hand during the operation of the 

system. In this case, the number of image features does not match with that of the desired 

image features, which may lead to the failure of visual servoing.  

    Recently, to track the objects that do not have enough detectable geometric features 

and to enhance the robustness of visual servoing systems, several novel target features are 

adopted for visual servoing. For example, laser points [65, 66] and the polar signature of 

an object contour [67] are used as target features in IBVS. Thus, the corresponding target 

features are used as image features for the visual servoing system.  

The image moments are normally used for pattern-recognition in computer vision [23, 

28, 29], and have been adopted for control scheme design due to its generic 

representation of any object in an image plane, with a simple or complex shape [30].  In 

addition, image moments can be computed easily from a binary or segmented image or 

from a set of extracted points of interest, disregarding the object shape complexity. Low-

order moments have an intuitive meaning, since they are directly related to the area, the 

centroid and the orientation of the object in the image plane.   

In [22], a set of image moments has been proposed as image features. Based on image 

moment invariants to 2-D translation, 2-D rotation, and scale, two image features are 

selected to control xw , the rotational velocity around the x axis, and yw , 
the rotational 
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velocity around the y axis for non-centered symmetrical objects. Using the image 

moments as image features in visual servoing renders the corresponding image 

interaction matrix with a maximal decoupled structure. Therefore, the inherent problem-

singularity of the interaction matrix is avoided and hence the performance of the IBVS 

control system is improved. Nevertheless, these two image features cannot be used for a 

central symmetrical objects image plane since the elements of the interaction matrix 

related to these two image features are zero when the planar target object is parallel to the 

image plane of the camera. In this case, the last two image features xS , yS  are proposed 

to control the rotational velocitiesxw , yw for symmetrical objects in the image plane and 

to avoid the singularity of the interaction matrix. However, the simulation results show 

that the last two image features for centered symmetrical objects used in [22] cannot 

represent the pose of the object correctly all the time. In this thesis, two improved image 

moments related to target object pose rotating around the x and y axes respectively are 

proposed for central symmetrical objects in the image plane. The interaction matrix 

describing the relationship between the motion of the camera and the variations of the 

proposed image features is derived, and the IBVS controller is developed based on the 

derived interaction matrix. The effectiveness of the proposed method is demonstrated in 

the experimental results on a 6-DOF robot visual servoing tracking system. 

In [28], O. Tahri and F. Chaumette proposed to select the pair of image moment 

invariants such that the image moment error presents the global minima, with an 

influence zone as large and symmetrical as possible. This offline selection process has to 

be performed for each new object considered, once the desired image is acquired. It is 

noticed that in the interaction matrices of [22, 28], the rotational velocity xw  and yw are 
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still not decoupled completely. Hence how to choose two new image features for both 

central symmetrical and non-symmetrical objects in the image plane to decouple the 

rotational velocity xw , yw and to avoid the singularity problem remains a major challenge 

in visual servoing. Furthermore, in previous research, the depth of target features is 

assumed to be constant [21] or can be calculated from the planar object equation 

expressed in the desired position [22, 28]. This assumption simplifies the mathematical 

development and such an approximate strategy is generally accurate enough in practice 

because of the robustness of the visual servoing scheme to modeling errors [28]. 

However, for large displacement robotic visual servoing tracking systems, this 

assumption will cause computational error and possible singularity problems with the 

interaction matrix. Therefore, estimating depth online can improve the accuracy of the 

interaction matrix and hence the visual servoing performance. 

    A neural network has a very strong ability for generalization and has been widely 

applied in function approximation and data compression, prediction, nonlinearities 

compensation, etc. [68, 69, 70, 71].  Recently, it is used in visual servoing systems. In 

[72], a new self-learning controller of robot manipulator visual servoing system with eye-

in-hand configuration to track a moving object is presented, where neural networks are 

involved in making a direct transition from visual to joint domain without requiring 

calibration. Neural network approaches are also adopted to learn the relationship between 

the world coordinate information and the image information [73]. In addition, the neural 

network is trained offline and used online to provide depth information of visual servoing 

[74].  In this thesis, to decouple the components in the interaction matrix corresponding 

to xw , yw  
, two NN-based image features, which are proportional to the rotational angles 
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around the x and y axes of the camera frame respectively, are proposed.  A NN is 

designed to estimate the rotational angles of the target object around the x and y axes of 

the camera frame. The interaction matrices related to the proposed image features are 

determined based on the estimation results of NN. In addition, the depth of the planar-

shaped object is derived to further improve the computational accuracy of the overall 

interaction matrix and to ensure the global stability of the visual servoing system. 

    In summary, in visual servoing fields, the main challenges focus on three aspects. One 

is how to choose the configuration of cameras in visual servoing systems. The second 

challenge is designing visual servoing schemes. The last one is how the target features in 

3D world space corresponding to image features in a 2D image plane can be obtained 

with some additional information. This last challenge is closely related to the 

determination of depth. The simplest form of visual servoing involves robot motion in a 

plane orthogonal to the optical axis of the camera and can be used for tracking planar 

motion such as a conveyor belt [75]. This visual servoing system inspires us to think that 

if the depth of the image features in visual servoing is known during the visual servoing 

process, it will be convenient to design the visual servoing controller.  

2.6 Summary 

    This chapter gave the literature review on visual servoing.  Additionally, the 

classification, history and the current state-of-the-art of visual servoing were presented.  

Also stated were the main problems that the researchers in this field are currently trying 

to solve. Lastly, three major challenges to visual servoing are identified. The subsequent 

chapters in this thesis are organized to address these challenges in the research area of 

visual servoing. Firstly, two novel multiple camera configurations of visual servoing for 
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large-scale robotic manufacturing are proposed in which the depths of target features are 

constant or can be determined online.  Secondly, for the robotic tracking system, two 

improved image moments, which can correctly represent the pose of the target object 

rotating around the x and y axes of the camera frame respectively, are proposed for 

central symmetrical objects in image planes. In addition, to decouple xw , yw the rotational 

velocities around the x and y axes of the camera frames, two NN-based image features 

referred to as virtual image features are designed to be proportional to the rotational 

angles around the x and y axes of the camera frame. The depth of a planar-shaped target 

object can be determined online. Hence, the control performance of robotic tracking 

systems is improved remarkably. 
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CHAPTER 3 MULTIPLE CAMERA VISUAL SERVOING USED 

FOR LARGE-SCALE 3D POSITIONING  

3.1 Introduction  

In this chapter, a multiple camera visual servoing system is proposed for large-scale 

robotic manufacturing systems in the aerospace industry. The system uses eye-in-hand 

architecture to perform visual servoing as shown in Figure 3-1. The system consists of a 

6-DOF robot, a 3D CAD laser projector, four aligned cameras, and four projection 

screens. The four aligned cameras [10] and four projection screens are attached to a 

bracket, which is fixed on the robot end-effector. A 3D CAD laser projector is installed 

on the robot base frame, which can project computer images and provide four target 

feature points on the projection screens.  The cameras are used to capture the target 

feature points on the projection screens and obtain pose information of the workpiece in 

any position of the visual servoing process. This configuration ensures that all target 

feature points are visible for the certain limit of movement around the desired position of 

the robot end-effector.  It is noticed that at the desired position, the laser beams remain 

stationary on the robot base frame and the depths of the target feature points on the 

projection screens, i.e., the distances between the camera centres and the projection 

screens, are constant during the visual servoing process. The objective of this research is 

to drive the workpiece to the desired position from any initial pose. 
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Figure 3-1 Multiple cameras with a laser projector robot visual servoing system 

 

In Figure 3-1, the coordinate frames and transformation matrices are defined as follows: 

}{ B  denotes robot base frame, }{ E  denotes robot end-effector frame, and }{ iC denotes 

the frame of camera i )4,3,2,1( =i .  TB

E  is the transformation matrix from }{ E  to }{ B  and 

TE

Ci  
is the transformation matrix from }{ iC )4,3,2,1( =i  to }{ E . 

3.2 Visual servoing control law 

3.2.1  Desired image feature coordinates 

    As shown in Figure 3-1, ),,( llll ZYXp
 
is the coordinate of the laser projector center in 

the robot base frame, ),,( 01010101 ZYXp , ),,( 02020202 ZYXp , ),,( 04030303 ZYXp  and 

),,( 04040404 ZYXp  are the intersection points of the laser beams and projection screens at 

the desired position. The image features of 01p
, 02p

, 03p
 and 04p

 are 01f , 02f , 03f  and 04f
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respectively, which are located at the centres of the image planes of the cameras and used 

as the desired image features at one working position (referred to in Figure 3-2). The 

vector of the desired image features is denoted as [ ]TTTTT

d fffff 040302010= . 

3.2.2  Local desired image feature coordinates 
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Figure 3-2 Local desired image feature 

 

   If the robot end-effector has a pose error around the desired position, the target feature 

points, which are the intersection points of the laser beams and the projection screens, 

will move along the laser beam to the new points 
1p , 2p , 3p  and 

4p  respectively. 
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Hereafter, the local desired image feature ),( dididi yxf  at an instant is defined as the image 

of ip (i=1, 2, 3, 4) in the image plane of the camera i when locating at the desired 

positions. At one working position, the parametric equations of the laser beams expressed 

in the robot base frame can be defined as 
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         (i= 1, 2, 3, 4)  

where )0(²x  is a parametric variable defining the relative position with regard to 

),,( llll ZYXp  and ),,( 0000 iiii ZYXp . Figure 3-2 shows ),( 111 ddd yxf  the local desired image 

feature in the image plane of camera 1. The parametric equation of the laser beam 01ppl is 

rewritten as 
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)0( ²x                                                                                         (3.1)  

In Figure 3-2, TB

C1
 is the transformation matrix from camera 1 frame }{ 1C  to the robot 

base frame }{ B , and TB

C01  
is the transformation matrix from frame }{ 01C  (camera 1 

frame }{ 1C  in the desired position) to robot base frame }{ B . So the transformation matrix 

from robot base frame }{ B  to camera 1 frame }{ 1C  and to }{ 01C  are denoted as follows 

T
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---- ==                                                                        (3.2) 
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where )(qTB

E  is the robot kinematic matrix or transformation matrix from robot end-

effector frame }{ E  to robot base frame }{ B ; q is the joint variable vector of robot and 0q  

is the value of q at the desired position. 

   Let [ ]TCCC ZYX 1
111

be the homogenous coordinates in camera 1 frame }{ 1C  of any 

point on laser beam 01ppl .  One obtains  

[ ] [ ]TC

B

T

CCC ZYXTZYX 11 1

111
=                                                                           (3.4) 

 Substituting (3.1) and (3.2) into (3.4) yields 
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                                                                           (3.5) 

Hence the parametric equation of 01ppl  expressed in camera 1 frame }{ 1C  can be 

obtained by taking the first three equations of (3.5). It is noticed that local desired point 

1p  is the intersection point of laser beam 01ppl  
and the projection screen plane.  In 

addition, any target point on the projection screen plane in the camera 1 frame }{ 1C  

satisfies  

01
ZZC =                                                                                                                           (3.6) 

where 0Z  is the distance between the camera center and the projection screen plane. 

Substituting (3.6) into the third equation in (3.5) and solving this equation forx, one can 

obtain 
1xx= . Thus, substituting 

1xx=  into (3.1), one immediately obtains the 

coordinates of intersection point 
1p   expressed in base frame }{ B  as follows 
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(3.7) 

From (3.3) and (3.7), the coordinates of intersection point 
1p  in camera 1 (when locating 

at the desired position) frame }{ 01C  are computed as follows    
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                                                                        (3.8)  

Hence, the local desired image coordinates in the image plane of camera 1 can be readily 

computed as follows
 

 

T

d

d

d Y
Z

X
Zy

x
f ù

ú

ø
é
ê

è
=ù
ú

ø
é
ê

è
= 01

0

01

01

1

1

ll
 

where lis the focal length of the camera, 0Z
 
is the depth of the local desired point which 

is equal to the distance between the camera centre and the projection screen plane. 

Similarly, one has 

T

d

d

d Y
Z

X
Zy

x
f ù

ú

ø
é
ê

è
=ù
ú

ø
é
ê

è
= 02

0

02

02

2

2

ll
,  

T

d

d

d Y
Z

X
Zy

x
f ù

ú

ø
é
ê

è
=ù
ú

ø
é
ê

è
= 03

0

03

03

3

3

ll
, 

T

d

d

d Y
Z

X
Zy

x
f ù

ú

ø
é
ê

è
=ù
ú

ø
é
ê

è
= 04

0

04

04

4

4

ll

 

The vector of local desired image features is denoted as follows    

[ ]TT

d

T

d

T

d

T

ddl fffff 4321=                                                                                             (3.9) 
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3.2.3  IBVS Control law  
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TT

E vvvvr wwww == T

E
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be the velocity screw of the 

robot end-effector and the velocity screw of camera i (i=1,2,3,4) respectively. The 

velocity transformation matrix from }{ iC )4,3,2,1( =i  to }{ E  is denoted as  
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(3.10)   

where RE

Ci
is the rotational component of the transformation matrix and 

iC

EP
 
is the 

translational vector from }{ E  to }{ iC , i.e., 

ù
ú

ø
é
ê

è

ù
ù
ú

ø

é
é
ê

è
=ù
ú

ø
é
ê

è

i

i

i

iii

C

C

E

C

E

CC

EE

C

E

E
v

R

RPskRv

ww 0

)(
                                                                                  (3.11) 

 Hence, we have 
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 Let [ ],
T

iii yxf = (i= 1, 2, 3, 4) be the image features and [ ],
T

iii yxf ###=  (i=1, 2, 3, 4 ) 

be the corresponding image featuresô velocities. It is assumed that xa , ya  are scaling 

factors of the camera and are constant in order to simplify the computation without loss 

of generality. The transformation between 
T

ii yx ),( and the pixel indexes
T

ii vu ),(  

depends only on the intrinsic parameters. The following relationship between the motion 

of image features and the physical motion of cameras holds, i.e.,
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age=                                                                                                                         (3.13)  

where ( )oiimage ZfJ
 
is the interaction matrix, and 0Z

 
is the depth of the local desired 

point. 

For each image feature point , the interaction matrix is given as 
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Substituting (3.12) into (3.13), one obtains 
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Let [ ]TTTTT fffff 4321=  be the vector of the image features and 

[ ]TTTTT fffff 4321
#####=  be the vector of the image featureôs velocity respectively. By 

stacking the interaction matrices of four cameras, one obtains the overall interaction 

matrix as follows 

( )=0ZfJimage   
( ) ( ) ( ) ( )[ ]Timage

E

image

E

image

E

image

E ZfJZfJZfJZfJ 04030201             
(3.16)

 

Hence, the relationship between the velocities of image features and the robot end-

effectorôs velocity screw is 

( )rZfJf image
##

0
=                                                                                                       (3.17) 

( )i ix y
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Thus the robot end-effectorôs velocity screw is expressed as  

( )fZfJr image
##

0

+=
                                               

                                                         (3.18) 

where ( )0ZfJimage

+
 is the pseudo inverse interaction matrix.  

If  dlf
 
denotes the vector of the local desired image features, the error function is defined 

as dlfffe -=)( . We impose )()( fKefe -=# , thus the visual servoing control law is 

given by  

 ( ) )(0 feZfKJr imge

+-=#                                                                                              (3.19) 

where K  is the proportional gain, which tunes the exponential convergence rate toward 

dlf . The control block diagram is shown in Figure 3-3.  
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Figure 3-3 The block diagram of IBVS with multiple cameras 

 

In Figure 3-3, dq# is the robot joint velocity in joint space and is determined by the 

visual servoing control law; t is the command vector for joint torques sent by the robot 

controller. 
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3.2.4 Robot dynamic controller 

It is noticed that the above-mentioned design of the visual servoing law only focuses 

on the kinematics of the robot without taking the dynamics of the robot and workpiece 

into consideration. In other words, the robot is considered as an ideal manipulation 

mechanism. This approach is widely adopted in most visual servoing systems where the 

payload of the robot is rather small. However, in the proposed large-scale robotic 

manufacturing systems, the size of workpiece is large and the dynamic characteristics of 

robot systems have a significant effect in determining performance limits and control 

specifications [76]. Therefore, the dynamics of robot and workpiece cannot be negligible. 

In this part, the dynamic model of the robot manufacturing system is considered and the 

robot dynamic controller is designed. 

3.2.4.1 Dynamic model of the robot manufacturing system  

The dynamic model of the robotic manufacturing system can be divided into two 

parts. One is the robot itself and the other is the workpiece plus the visual servoing 

system or called environment [ 77]. For the robot, the general form of n-joint robot 

dynamics in contact with the environment can be written as [78] 

ev qGqqqqCqqM tt+=+G++ )(),()( #####
                                                                       (3.20) 

where q  is the vector of robot joint variable; )(qM  is a positive definite, symmetric 

inertia matrix; ),( qqC # is a vector grouping the Coriolis and centrifugal joint toques; qv
#G  

is a vector grouping the dissipative (friction) joint torques; )(qG  is a vector grouping the 

gravity joint torques; t is the command vector for the joint torques; et is the vector of 
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joint torques corresponding to an external  wrench ew  applied by  the environment to  the  

robot. 

   To determine the wrench ew
 
applied on the robot end-effector by the environment, the 

gravity and inertia force acting on the workpiece are considered. To compute the inertia 

force acting on the workpiece, the rotational velocity and acceleration of the work piece, 

as well as the linear acceleration of the center of mass of the workpiece have to be known 

at any given instant in visual servoing. The dynamic model of the workpiece, which is 

held by the robot end-effector, is shown in Figure 3-4.  In Figure 3-4, }{ E  represents the 

robot end-effector frame. The up-left superscript in variables indicates that the vector is 

expressed in the corresponding frame, e.g., e

Ew  and e

Ew#
 
denote the rotational velocity 

and acceleration of the robot end-effector respectively expressed in frame }{ E . The 

frame }{C  presents the workpiece frame, the centre of which is at the center of mass of 

the workpiece. The linear velocity and linear acceleration of the origin of frame }{C  

expressed in frame }{ E  is denoted as c

Ev  and c

Ev#
 
respectively. The transformation matrix 

from }{C  to }{ E  is denoted as TE

C , which is determined by the system configuration. 

Based on joint variable q , joint velocityq#, and joint accelerationq##, the linear velocity

e

Ev , linear acceleration e

Ev#, rotational velocity e

Ew , and rotational acceleration e

Ew# are 

computed as follows [79] 
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where )(qJ  is robot velocity Jacobian matrix; 
e

E v
 
and 

e

Ew
 
are the linear velocity and 

rotational velocity of the robot end-effector respectively. Differentiating (3.21) with 

respect to time, one obtains 

qqJqqJ
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ê

è

w
                                                                                               (3.22) 

Equation (3.22) is used to compute the linear acceleration e

Ev# and rotational acceleration 

e

Ew# of the robot end-effector in this thesis. 
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Figure 3-4 Robot and workpiece dynamic model 

 

Hence the linear acceleration of the origin of }{C  expressed in frame }{ E  [79] is 

expressed as 
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(3.23)  
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where 
E

EC  is the translational vector expressed in frame { }E . 

e

ETR

Cc

EC

Ec

C vRvRv ### )(==
                                                                                                 

(3.24) 

where c

Cv#
 
is the linear acceleration of the origin of }{C  expressed in frame }{C , RC

E
 is 

the rotational matrix from frame }{ E  to }{C . The robot end-effector holds the workpiece 

and both of them move together in the visual servoing process. Hence frames }{ E  and 

}{C have the same rotational velocity and rotational acceleration, i.e., e

E

c

E ww= , 

e

E

c

E ww ##=
 
hold. 

e

ETE

Cc

EC

Ec

C RR www )(==                                                                                                  (3.25) 

e

ETE

Cc

EC

Ec

C RR www ### )(==                                                                                                 (3.26) 

In such a situation, 
i

CF  the inertia force acting at the centre of the mass of the workpiece 

and 
i

C N  the inertia moment acting on the workpiece can be computed as follows  

c

C

i

C vmF #-=                                                                                                                   (3.27) 

c

CC

c

C

c

CC

i

C IIN www ³+=- #                                                                                             (3.28) 

where m is the total mass of the workpiece and IC
 is the inertia tensor of the workpiece 

written in the frame }{C , the origin of which is located at the centre of the mass of the 

workpiece. Furthermore, it is noticed that the gravity of the workpiece is a constant 

vector in the robot base frame }{ B . Thus, the effect of the workpiece gravity on an 

instantaneous moment of visual servoing can be addressed quite simply by expressing the 

gravity vector in the frame }{C  and adding it to the inertia force vector. The gravity 
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vector of the workpiece can be expressed in the robot base frame }{ B  as

[ ]T
B

mgmg -= 00 , and one obtains 

mgRRmgRmg
BE

B
C
E

BC
B

C
==  [ ]TTE

C
B
E mgRR -= 00)(                                                                (3.29) 

where  C
E R is the rotational matrix from frame }{ E  to }{C , g is gravity constant. Thus the 

total force acting on the origin of the frame }{C , is expressed in the frame }{C  as 

mgFF
C

i

C

e

C +=  

The forces and torques applied at the robot end-effector or at the origin of the frame }{ E  

are obtained by using the force-moment transformation matrix [79] i.e., 

[ ] [ ]Ti

C

e

C

f

E

C

T

e

E

e

E NFTMF =
                                                                                  

(3.30) 

where 
0E

CE

C f E
E E

C C

R
T

EC R R

è ø
=é ù
é ù³ê ú

 is the force-moment transformation matrix. 

Equation (3.30) can be rewritten compactly as  

[ ]Ti

C

e

C

f

E

Ce NFTw=                                                                                                     (3.31)  

The force transmission model can be obtained by applying the virtual power principle 

[79]. As a matter of fact, one has                                     

e

T

e wqJ )(=t                                                                                                                 (3.32)                                  

where et is the vector of joint torques corresponding to the external wrench ew  applied 

by the environment to the robot end-effector and )(qJT

 is the transpose of the robot 

velocity Jacobian matrix. 
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3.2.4.2 Robot controller 

   The structure of the robot controller is shown in Figure 3-5. In Figure 3-5, dq , dq# and

dq## denote the desired joint angle vector, the desired rotational velocity vector and the 

desired rotational acceleration vector respectively. The desired rotational velocity dq# is 

actually generated by the visual servoing control law (3.19), i.e.,  

( )eimd fZfJqKJq +--= age

1 )(#
                                                                                       

(3.33) 

where )(1 qJ-  is the inverse robot velocity Jacobian matrix. 

To control the complicated system like (3.20), the partitioned controller scheme [79] is 

adopted: 

btat +¡=                                                                                                                     (3.34) 

where tis the vector of the joint torques applied to robot joints; t¡ is the vector of the 

joint torques representing the servo part; )(
~

qM=a ; b denotes the compensation part.  
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Figure 3-5 Robot controller 
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ev qGqqqqC tb ~)(
~~

),(
~

-+G+= ###                                                                                       (3.35) 

where )(
~

qM  is the computational inertia matrix of the robot; ),(
~

qqC # is a compensation 

for Ciriolis and centrifugal; 
vG

~
 and )(

~
qG  are the compensations for the friction joint 

torques and the gravity respectively, et
~  is the compensation to et the torque applied by 

the robot to the environment. From the robot dynamic controller diagram shown in Figure 

3-5, the compensation part is calculated as  

eKeKq pvd ++=¡ ###t
                                                                                                       

(3.36)
  

The robot dynamic control law is designed as follows 

evpvd qGqqqqCeKeKqqM tt ~)(
~~

),(
~

))((
~

-+G++++= ######
                                   

                   (3.37)
 

where dq## is the desired rotational acceleration vector; pK  is the proportional coefficient 

matrix and vK  is the differential coefficient matrix, both of which are diagonal positive 

matrices; pK  is the error of the joint variable; and qqe d
### -=  is the error of the joint 

rotational velocity vector. 

3.2.4.3 Error analysis 

Substituting (3.36) and (3.37) into (3.20), if additionally, the compensation terms that 

are calculated by the Robotic Toolbox [80] are supposed to be precise enough, i.e., 

),()(
~

qMqM º ),,(),(
~

qqCqqC ##º
vv GºG

~
 and )()(

~
qGqG vv º , one can obtain  

)~)((1

eeqMq ttt --=¡ -##                                                                                                (3.38) 
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Using (3.31) and (3.33), it is quite easy to show that the closed-loop system is 

characterized by the error equation 

)~)((1

eepv qMeKeKe tt-=++ -###                                                                                  (3.39) 

 

It can be inferred from the positive definiteness of pK and vK  that )0,0(),( =ee #  is the 

global asymptotic stable equilibrium point [79]. Furthermore, in the proposed large-scale 

robotic manufacturing systems, it is assumed that the robot end-effector moves in the 

nearby vicinity of its desired position. Hence the variation of )(qM  can be negligible and 

the equation (3.37) can be simplified by setting )(qMM º  as follows 

)~(1

eepv MeKeKe tt-=++ -###                                                                                       (3.40)  

where M is a constant real symmetric matrix. 

Moreover, dq , dq# , dq##  are constant and the desired kinematic parameters keep 

updating in the iterations of visual servoing. Henceq , q#, q## will approach dq , dq#, dq##

respectively, which implies that the visual servoing system can reduce the image error, 

i.e., the robot can converge to the desired position.  Meanwhile, )~( ee tt- actually 

represents the error of the dynamic model of the robotic manufacturing system and it has 

a significant effect on the steady-state following-error in the iteration of visual servoing. 

Setting the derivatives to zero in equation (3.36) yields the steady-state equation 

)~(1

eep MeK tt-= -
, or pee KMe /)~(1 tt-= -

                     
                                      (3.41) 
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Thus it is clear that the smaller )~( ee tt-  is and the higher pK
 
is, the smaller the steady-

state following-error will be in the iteration of visual servoing. In order to reduce the 

steady-state following-error and avoid oscillating of the following-error, often pK  is set 

to the desired closed loop stiffness and 1/22v pK K-=  for critical damping. 

    Form the above-analysis, it is clear that the dynamic model of robotic manufacturing 

system causes the joint rotational velocity following-error in visual servoing, which 

means that the end-effector velocity screw is different from that determined by the 

equation (3.17). Hence the simple proportional visual servoing control law given by (3.16) 

cannot be satisfied, which implies that the trajectories of the image features in image 

frames are not straight lines even if the proportional gain K  is a scalar constant. The 

dynamic model error of the robotic manufacturing system or )~( ee tt- , may lead the 

trajectories of the image features in image frame to be more complex curves. 

3.2.5 Control algorithm  

   The robot control system consists of two control loops, which are the visual servoing 

control loop and robot control loop.  The control algorithm is summarized and shown in 

Figure 3-6. 
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where limef  is a threshold called task function precision. 

Figure 3-6 The flow chart of the robot control algorithm 
 

3.3 Simulation results 

3.3.1 Simulation environment 

In order to validate the proposed scheme, the simulations on a 6 DOF robotic 

manufacturing system is carried out in the Matlab/Simulink environment. The Robotic 

Toolbox [80] is used for robotic dynamic control implementation. In the simulations, a 6-
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DOF Motoman UPJ is adapted in the proposed large-scale robotic manufacturing systems. 

Four Sony XC55 cameras are mounted on the robot end-effector or workpiece. The focal 

length of the cameras l is 6 (mm) and the scaling factor of the cameras is 

135135== yx aa (pixels/m). The workpiece is a rectangular body with uniform density 

shown in Figure 3-4. The size of the workpiece is set as l=1.0  (m), w=1.0 (m), h=0.1 (m) 

and the total mass of the workpiece m=2 (kg).  The coordinate axes of frame { }C  are 

coincident with the principle axes of the workpiece. So the inertia tensor of the workpiece 

written in frame }{C  is 
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The coordinates (pixels) of the desired image features in the image planes of four 

cameras after calibration are (320, 240), (320, 240), (320, 240), and (320, 240), which are 

the centres of the image planes of the cameras respectively. The depths of the target 

feature points are set as 0.3 (m). The distance between cameras is L=1 (m). The 

transformation matrices of the camera frames with respect to the robot end-effector frame 

are represented as follows 
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The coordinate of the 3D CAD laser projector centre in the robot base frame is

)3.4,92.0,0(=lp . The coordinates of target feature points (in the desired position shown 

in Figure 3-1) in the robot base frame can be represented as )3.0,42.0,5.0(01p ,
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)3.0,42.1,5.0(02p , )3.0,42.1,5.0(03 -p , and )3.0,42.0,5.0(04 -p . The transformation matrix 

from the robot end-effector frame in the desired position to the robot base frame is 

represented in the base frame as 
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The desired position of the robot and workpiece is shown in Figure 3-7. In 

simulations, the system behavior for different kinds of movement is investigated. In case 

1, the initial position of the workpiece is above the desired position. In case 2, the initial 

position of the workpiece is below the desired position. In both cases, the initial position 

errors include translational and rotational components.  

                                   

Figure 3-7 The desired position of the robot end-effector 
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3.3.2 Case studies 

Case 1 

   The initial position of the robot end-effector frame in the robot base frame is 

represented in the transformation matrix as follow   

                                                                                                                             

                                          

0.9903 0.1389 0.0099 0.0370

0.1392 0.9842 0.1094 0.4107

0.0055 0.1097 0.9939 0.3121

0 0 0 1
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Figure 3-8 Trajectories of reference points P1, P2, P3 and P4 in the robot base frame 
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   Camera 3                                                       Camera 4 

 

Figure 3-9 Trajectories of the image features in the image planes 
 

 

 

Figure 3-10 Image errors in the image plane 

 

The trajectories of reference points on the workpiece in the robot base frame are shown 

in Figure 3-8, which shows that the workpiece approaches the desired position from the 

initial position 1 in the 3D robot base frame. Figure 3-9 shows that the trajectories of the 

image features in the image planes are almost straight lines. Figure 3-10 shows that the 

errors of the image features converge to zero asymptotically. 
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represented in the transformation matrix as follow: 
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Figure 3-11 Trajectories of points P1, P2, P3 and P4 in the robot base frame 
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Figure 3-12 Trajectories in the image planes 
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Figure 3-13 Image feature errors in the image plane 

The trajectories of reference points on the workpiece in the base frame are shown in 

Figure 3-11, which shows that the workpiece approaches the desired position from the 

initial position 2 in the 3D robot base frame. Figure 3-12 shows that the trajectories of the 

image features in the image frame are almost straight lines. Figure 3-13 shows that the 

errors of image features converge to zero asymptotically. 

3.3.3    Error analysis 

The maximum image feature errors of four cameras is calculated as follows 
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In case 1, 38.01=De (pixels) and in case 2, 42.02 =De (pixels). 
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15.00 =
D
=D

x

eZ
x
la

(mm) 

where l, xs , 0Z  are defined in 3.2.2 and 3.2.3.  

   The simulation results show that the error of multiple camera configuration of visual 

servoing for the large-scale robotic manufacturing system is within 0.5 (mm). It means 

that the proposed configuration can satisfy the need of large-scale 3D positioning in robot 

manufacturing systems.  

3.4  Conclusion 

   The multiple camera configuration of visual servoing for a large-scale robotic 

manufacturing system is proposed in this chapter. The visual servoing control law for 

floating target feature points and a robot dynamic controller are designed to drive the 

workpiece to achieve the desired pose. The simulation results verify the effectiveness of 

the proposed scheme and also validate the feasibility of applying the multiple camera 

configurations to satisfy the need of a large-scale high precision 3D positioning system in 

the aerospace industry. 
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CHAPTER 4 MULTIPLE CAMERA -MULTIPLE TARGET 

POINT VISUAL SERVOING IN LARGE -SCALE 3D 

MANUFACTURING SYSTEMS  

4.1  Introduction     

   In Chapter 3, multiple camera visual servoing with a 3D CAD laser projector for  large-

scale robotic manufacturing system was proposed. However, in this multiple cameras 

configuration of the visual servoing system, it is noticed that a costly 3D CAD laser 

projector is used; the laser beams are likely occluded by the objects, e.g., robot arm; and 

the calibration process of the system is time consuming. Hence, in this chapter, a multiple 

camera - multiple target point visual servoing system is proposed where the expensive 

laser projector is replaced by a set of LEDs. The experimental setup of the system is 

shown in Figure 4-1.  Figure 4-1 (a) gives the system configuration, which includes a 6-

DOF robot, four digital cameras, LEDs, and workpiece. Figure 4-1 (b) shows the disposal 

of the end-effector, cameras, and workpiece. The user interface of the multiple camera-

multiple target point visual servoing system is shown in Figure 4-2.  

   The system adapts eye-in-hand architecture to perform visual servoing, which is shown  

in Figure 4-3, four principle LEDs (
1p ,

2p , 3p  and 
4p ) are used to provide four target 

points on the robot base frame, and the other four complementary LEDs (
1q , 2q , 3q  and 

4q ) are installed in vicinity of principle LEDs which are used to determine the depths of 

the target feature points. Also a robot 3D pose estimation and visual servoing control 

system is proposed, which consists of visual servoing and robot controllers. 
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(a) 

 

(b) 

Figure 4-1 Multiple camera-multiple target point visual servoing system experimental 

setup 
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Figure 4-2 Visual servoing system user interface 

   A pair of LEDs (i.e., ( 1p 1q ), ( 2p 2q ), ( 3p 3q ), ( 4p 4q )) should be in the FOV of a 

corresponding camera respectively in the visual servoing process. The complimentary 

LED is on the line linking two neighboring principle LEDs, and the distance between the 

principle LED and the complimentary LED in the same pair is much smaller than that 

between two neighboring principle LEDs (i.e., in Figure 4-3, a<<d). The objective of this 

research is to design a visual servoing controller to drive the workpiece to the desired 

position in the robot base frame from any initial pose. In Figure 4-3, the reference frames 

and transformation matrices are defined as follows: }{ B  denotes the robot base frame, 

}{ E  denotes the robot end-effector frame, and }{ iC  denotes the frame of camera i

)4,3,2,1( =i . TB

E
 is the transformation matrix from }{ E  to }{ B , and TE

Ci  
is the 

transformation matrix from }{ iC )4,3,2,1( =i  to }{ E . 
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Figure 4-3 Multiple cameras-multiple target point visual servoing system 

4.2 Depth computation 

It is well-known that the interaction matrix in IBVS involves the depths of target 

feature points [28]. Hence, obtaining the accurate depths of target feature points online 

remains one of the challenges for IBVS. In this part, an online depth estimation method is 

proposed and a pose estimation algorithm for multiple camera-multiple target point visual 

servoing system for large scale robotic manufacturing systems is developed. 

In the proposed configuration, two neighboring cameras are used to determine the 

depth of one target feature point, for instance camera 1 and 4 are used to determine the 

depth of target feature point 
4p  with respect to camera 4, which is shown in  Figure 4-3. 



 

72 

 

If a target feature point is visible to both cameras simultaneously, it is easy to determine 

the depth by using the stereo vision method. However, in the proposed configuration, 

because the four cameras are far away from each other, one target feature point can only 

be observed by one camera, i.e., 1p  by camera 1, 2p  by camera 2, and so on. In order to 

determine the depth of a target feature point by stereo vision, one must know the 

coordinates of the image feature point in two camera image planes.  As mentioned above, 

one camera cannot capture two feature points in its FOV, e.g., camera 1 cannot take 

target feature points
1p  and 

4p  into its FOV at the same time. To address this challenge, 

the complementary feature point 
1q , 

2q , 3q
 
and 

4q  are added into the system shown in 

Figure 4-3. It is noticed that 1q , 2q , 3q , and 4q are placed in the vicinity of feature point 

1p , 2p , 3p , and 4p  and located on the lines of 41 pp , 12 pp , 23 pp , and 34 pp  respectively.  
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       Figure 4-4 Illustration of the virtual image                  Figure 4-5 Depth computation of  

     coordinates of 4p  in the image plane of camera 1         target point 4p                                                                  
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    In order to estimate the depth 
4Z  of feature point 

4p  with respect to camera 4, camera 

1 and 4 are used as one pair. Similarly, camera 3 and 4 are used to determine the depth 

3Z
 
of feature point 3p  with respect to camera 3, and so on. In Figure 4-4, the depth 

4Z  of 

feature point 
4p  with respect to camera 4 is taken as an example to demonstrate the 

procedure of depth computation. In the proposed configuration, since feature point 
4p  is 

out of the FOV of camera 1 in the visual servoing process, the coordinates of the image 

feature of 
4p  in the image plane of camera 1 cannot be observed directly by camera 1.   

Therefore, complimentary feature point 
1q  is added in the vicinity of target feature point

1p , both of which are within the FOV of camera 1 in the visual servoing process. It is 

assumed that ),( 11

1

1

1 1

C

p

C

p

C

p vum  and ),( 1

1

1

1

1

1

C

q

C

q

C

q vum
 
denote the image features of the target 

feature point 
1p  and complimentary feature point 

1q  in the image plane of camera 1 

respectively.  The complimentary feature point 
1q  is located on the line of 41 pp  and the 

distance between 
1p  and 

1q  is denoted as a  which is pre-defined by the system setup. If  

the image plane of camera 1 could extend large enough, which is called the virtual image 

plane, the image coordinates of the image feature of feature point 
4p  in the virtual image 

plane of camera 1 can be denoted as ),( 1

4

1

4

1

4

C

p

C

p

C

p vum .  According to the computer vision 

[81], one has 
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From (4.1) and (4.2), one has )( 1
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As shown in Figure 4-5, the coordinates of 1

4

C

pm
 
in }{ 1C  the frame of camera 1, i.e., 

),,( 1

4

1

4
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p zyx  are calculated as   
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where lis the camera focal length, xa , ya  are scaling factors of the camera and ),( 00 vu

are the coordinates of the image center point in the image frame. In the proposed 

configuration, four cameras in the system have the same intrinsic parameters. If the 

image feature of target feature point 
4p  in the image plane of camera 4 is denoted as
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in the frame of camera 4 are denoted as
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l=4
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 From the coordinate plane 11 CC ZX -  or 44 CC ZX - , as shown in Figure 4-5, one obtains 

[2]    
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where 
4Z  is the depth of target feature point 

4p  with respect to camera 4, and L is the 

distance between camera 1 and camera 4. From equations (4.5), (4.7) and (4.9), the depth 

of feature point 
4p  with respect to camera 4 is calculated as 
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Similarly, one has 
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Equations (4.10) to (4.13) are used to compute the depths of feature points online during 

visual servoing. 

4.3 Visual servoing control law 

   The objective of visual servoing is to design the visual servoing controller to drive the 

robot to achieve high precision positioning of the large-scale workpiece. Let 

 [ ] [ ]Tzyxzyx

TT

e

EE vvvvr wwww == T

e
#  be the velocity screw of the robot end-

effector expressed in the robot end-effector frame }{ E  and  

[ ][ ]TzCyCxCzCyCxC

T

Ci

T

CiC iiiiiii
vvvvr wwww ==#  be the velocity screw of the 

camera i (i= 1, 2, 3, 4) expressed in the corresponding camera frame }{ iC (i= 1, 2, 3, 4). 
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The velocity transformation matrix from the camera frame }{ iC (i= 1, 2, 3, 4) to the robot 

end-effector frame }{ E  is denoted as            
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where RE

Ci  
is the rotational component of transformation matrix v

E

CT
i

 and 
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EP is the 

translational vector from }{ E  to }{ iC  (i=1,2,3,4), i.e., 
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Hence, one has  
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It is assumed that [ ]Tiii yxf = (i= 1, 2, 3, 4) represents the image features; 

[ ]Tiii yxf ###= (i= 1, 2, 3, 4) represents the corresponding image feature velocities; 

[ ]Tdididi yxf =
 (i= 1, 2, 3, 4) is the desired image features; 

[ ]TT

d

T

d

T

d

T

dd fffff 4321=  is the vector of the desired image features, which can be 

obtained through system calibration. It is well known that xa , ya  the scaling factors of 

the camera are constant, the transformation between [ ]Tii yx
 
and [ ]Tii vu  the pixel 

indexes depends only on the intrinsic parameters. It is well known that the following 

relationship between the motion of the image features and the physical motion the camera 

holds 
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where ( )iiimage ZfJ
 
is the interaction matrix. For each feature point( )ii yx , the 

interaction matrix is computed as follows     
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Substituting (4.13) into (4.14), one obtains 
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Let [ ]TZZZZZ 4321=  be the vector of the depths of feature points, 

[ ]TTTTT fffff 4321=  be the vector of four image feature coordinates, and 

[ ]TTTTT fffff 4321
#####=  be the vector of four image feature velocities. By stacking the 

interaction matrices of four image features, one obtains the overall interaction as follows 

( ) ( ) ( ) ( ) ( )[ ]Timage

E

image

E

image

E

image

E

image ZfJZfJZfJZfJZfJ 44332211=                      (4.19) 

Hence, the relationship between the motion of the image features and the robot end-

effector velocity screw is denoted as 

( )rZfJf img
##=  

The end-effector velocity screw can be expressed as  
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( )fZfJr image
## +=

 

where ( )ZfJimage

+
 is the pseudo inverse of the interaction matrix. If the task function of 

the image features is defined as de fff -=  and we impose a simple proportional control 

law 

ee Kff -=#                                                                                                                      (4.20) 

Thus the visual servoing control signal is 

( )eimage fZfKJr +-=#                                                                                                   (4.21) 

where r# is the end-effector velocity screw sent to the robot controller, K  is the 

proportional gain which tunes the exponential convergence rate toward df . 

The desired joint velocity in the robot joint space, which is sent to the robot controller, is 

obtained as follows 

rqJqd
## )(1-=                                                                                                                    (4.22) 

where )(qJ  is the forward kinematic matrix of the robot. 

4.4 The block diagram of the visual servoing system 

The block diagram of the visual servoing control system with multiple cameras is 

shown in Figure 4-6, which includes the visual servoing control loop and the robot 

dynamic control loop. 
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Figure 4-6 Block diagram of the visual servoing control system with multiple cameras 

In Figure 4-6, the dq#is the robot joint velocity in the robot joint space, which is 

determined by the visual servoing control law (4.22) and tis the command vector of the 

joint torques sent by the robot dynamic controller. The design of the robot dynamic 

controller is referred to in CHAPTER 3. 

4.5 Visual servoing control algorithm  

 The control algorithm is summarized in Figure 4-7. 
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where limef  is a threshold called task function precision.  

 

 

Figure 4-7 Flow chart of the robot control algorithm 
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4.6 Simulation results 

4.6.1 Simulation environment 

In order to validate the proposed scheme, the simulation on a 6 DOF robotic 

manufacturing system has been carried out in the Matlab/Simulink environment. The 

Robotic Toolbox [80] is used for robotic dynamic control implementation. In the 

simulation, a 6-DOF Motoman UPJ is used as the robot in the proposed large-scale 

manufacturing systems. Four Sony XC55 cameras are mounted on the robot end-effector 

or workpiece. The focal length of the cameras is 6=l (mm), and the scaling factor of the 

cameras is 135135== yx aa (pixels/m). Four principle LEDs (
1p ,

2p , 3p  and 
4p ) provide 

four target feature points for visual servoing; and the other four complementary LEDs (
1q ,

2q , 3q  and 
4q ) are used to determine the depths of target feature points online. All the 

LEDs are installed in the robot base frame shown in Figure 4-3. The geometric 

parameters are set as 1.0=a (m), 9.0=d (m), and 1=L (m). The workpiece is a 

rectangular body of uniform density shown in Figure 3-4. The size of the workpiece is set 

as 4.1=l (m). 1=w (m) 1.0=h (m), and the total mass of the workpiece 5.2=m (kg). 

The coordinate axes of frame }{C  are coincident with the principle axes of the 

workpiece. The inertia tensor of the workpiece written in frame }{C  is 
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The desired coordinates (pixels) of the image feature points in four camera image frames 

are (302.37, 257.63), (302.37, 222.37), (337.63, 222.37), and (337.63, 257.63) 

respectively. The initial depth 
0Z  is 2.3 (m). The error of the camera model is 5%. The 
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transformation matrices of the camera frames with respect to the robot end-effector frame 

are represented as follows  
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The transformation matrix of the robot end-effector frame in the desired position with 

respect to the robot base frame is represented as follows 

ù
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E
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Thus the coordinates of the target feature points in the robot base frame can be 

represented as follows: ),3.2,47.0,45.0(1p  ),3.2,37.1,45.0(2p ),3.2,37.1,45.0(3 -p  and

)3.2,47.0,45.0(4 -p . The desired position of the workpiece is shown in Figure 4-8.  In 

addition, the proportional gain is set as 1.0=K ; the robot control feedback matrices are 

set as 
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vK . The feature error threshold 

limef  is set as 0.5 pixel in simulation studies. 
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4.6.2 Case studies 

  The system behavior for different kinds of movement is investigated. In case 1, the 

initial position of the workpiece is above the desired one of the workpiece and in case 2, 

the initial position of the workpiece is below the desired one of the workpiece. In both 

cases, the initial position error includes translational and rotational components.  

 
 

Figure 4-8 Desired position of the robot end-effector 

Case 1 

    The initial position of the robot end-effector frame in the robot base frame is 

represented in the transformational matrix as follows                                                                                   
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The control objective is to drive the workpiece to the desired position from the initial 

positions. The simulation results are shown in Figure 4-9 to Figure 4-11. 
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Figure 4-9 Trajectories of points P1, P2, P3 and P4 in the robot base frame 
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Figure 4-10 Trajectories in the image planes 
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Figure 4-11 Image feature errors in the image plane 

 

Figure 4-9 shows that the workpiece approaches the desired position from the initial 

position 1 in the 3D robot base frame and Figure 4-10 shows the trajectories of the image 

features in the image frame. Figure 4-11 shows that the errors of the image feature 

converge to zero asymptotically. 

Case 2 

    The initial position of the robot end effector frame in the robot base frame is 

represented in the transformational matrix as follows 
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The control objective is to drive the workpiece from the initial position to the desired 

position. The simulation results are shown in Figure 4-12 to Figure 4-14. 
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Figure 4-12 Trajectories of points P1, P2, P3 and P4 in the robot base frame 
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Figure 4-13 Trajectories in the image planes 
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Figure 4-14 Image feature errors in the image plane 

 

Figure 4-12 shows that the workpiece approaches the desired position from the initial 

position 2 in the 3D robot base frame, and Figure 4-13 shows the trajectories of the image 

features in the image frame. Figure 4-14 shows that the errors of the image feature 

converge to zero asymptotically. 

4.6.3 Error analysis 

    From the simulation results of case 1 and 2, the maximum error of the image features 

in the image frames of four cameras at the end of the visual servoing process is calculated 

as follows 
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 Hence, in case 1, the maximal error of image features 2.11=De (pixels). Similarly, in 

case 2, .902 =De (pixels). If the positioning error of the workpiece with respect to the 

corresponding target point in the robot base frame is denoted as xD , the relationship 
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Thus, the positioning error of the workpiece in the robot base frame is  

89.00 =
D
=D

x

eZ
x
la

(mm) 

where, l, xs , 0Z  are defined in Section 4.1- Introduction. 

The positioning error of the reference points on the workpiece in the robot base frame 

is within 1 (mm), which can satisfy the need for high precision manufacturing and 

manipulating. The simulation results also demonstrate that the proposed control 

algorithm can drive the robot or the workpiece from different initial positions to the 

desired position. The errors of the image features converge to zero asymptotically in 

visual servoing.  

From the simulation results, it is clear that the positioning error of the workpiece in 

the robot base frame of this configuration is 0.89 (mm), which is larger than 0.15 (mm), 

the positioning error of the multiple camera visual servoing system with a 3D CAD laser 

projector proposed in Chapter 3. The iteration number of visual servoing before reaching 

the desired position is 100, which is larger than 40 the iteration number of the proposed 

configuration in Chapter 3.  It is clear that the multiple camera configuration in Chapter 3 

is better than the configuration proposed in this chapter in terms of positioning precision 

and convergence speed of image errors in the image frames. On the other hand, compared 

with the multiple camera configuration in Chapter 3, it has some advantages such as  its 

simple structure, cost-effectiveness, and easy calibration. Therefore, it is concluded that 

the multiple camera-multiple target point configuration is suitable for application where 

the robotic manufacturing system has only one working position with the demand of less 

precise positioning. While the multiple cameras configuration in chapter 3 is suitable for 

the application of robotic manufacturing system which has multiple working positions 
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with the demand of high precise positioning. 

4.7 Conclusions 

In this chapter, the multiple camera-multiple target point visual servoing system is 

presented. The depths of the target points are computed online by using the stereo vision 

method. The visual servoing scheme is successfully designed to generate control signals 

for the robot dynamic controller.  Based on the dynamic model of the robotic 

manufacturing system, the robot dynamic controller is designed to drive the workpiece to 

achieve the desired position. The simulation results verify the effectiveness of the 

proposed scheme, and also validate the feasibility of applying the multiple camera-

multiple target point configuration to large-scale robotic manufacturing systems in the 

aerospace industry. 
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CHAPTER 5 IMAGE -BASED VISUAL SERVOING USING 

IMPROVED IMAGE MOMENTS IN 6 -DOF ROBOT SYSTEMS 

5.1 Introduction  

In Chapters 3 and 4, two configurations of multiple camera visual servoing for large-

scale robotic manufacturing positioning systems were presented, in which the 

geometrical feature points are adopted as target features, i.e., image points in the image 

plane are used as image features, and multiple camera configurations address the 

challenge of depth determination to improve the control performance of visual servoing 

systems. 

 In this chapter, image moments are used as image features to decouple the 

components of the camera velocity screw and to reduce the singularities of the interaction 

matrix and the local minimas of image features in visual servoing, and thus to improve 

the control performance of the robot tracking system. Meanwhile IBVS is still adopted as 

visual servoing strategy. 

   Compared with other visual servoing methods, IBVS has three main advantages [24]. 

Firstly, IBVS is a ñmodel-freeò method, which means that it does not require the model 

of the target object. Secondly, IBVS is robust to camera model errors. Lastly IBVS is also 

insensitive to camera calibration errors [82]. However, the drawbacks of IBVS are the 

singularities of interaction matrix and the local minimas of the image features, which lead 

to IBVS failure.  Thereby, the choice of image features is a key point to solve the 

problem of the singularity of interaction matrix and the local minima of the image 
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features. Several efforts have been made to determine some decoupling image features to 

deliver a triangular or diagonal interaction matrix [21, 22, 28].   

The image moments are normally used for pattern-recognition in computer vision [31, 

32]. Using proper image moments as image features in visual servoing renders the 

interaction matrix with a maximal decoupled structure [22]. Thus, the inherent problem 

of singularities of the interaction matrix is avoided and the control performance of IBVS 

system is significantly improved. In [22], based on image moment invariants to 2-D 

translation, 2-D rotation, and scale, two image moments xS and yS are selected as image 

features to control xw  and yw  
the angular velocities around the x and y axes of the camera 

frame respectively for the central symmetrical target object. However, the simulation 

results show that these two image features xS and yS  cannot represent the pose of the 

target object all the time. 

In this chapter, two new improved image features are proposed as image features for 

central symmetrical target objects to control their pose rotating around the x and y axes of 

the camera frame respectively. A dynamic visual servoing controller is designed based on 

the proposed image features to efficiently drive the robot end-effector to track the desired 

object. The developed controller is applied to a 6-DOF robot visual servoing tracking 

system and the experimental results demonstrate the effectiveness of the proposed 

scheme. 

5.2       IBVS using image moments 

   The objective of IBVS is to control the robot end-effector to approach an unknown 

target object with various pose and shape. In this part, the development of the IBVS using 
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image moments for a 6-DOF robot visual servoing tracking system is introduced. The 

configuration of the considered system is shown in Figure 5-1, which is composed of a 6-

DOF robot and a camera mounted on the robot end-effector.  
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Figure 5-1 Robotic eye-in-hand system configuration 

    

In Figure 5-1, H denotes the transformation between two reference frames. To 

accomplish IBVS for such a robot visual servoing tracking system, we firstly derive the 

interaction matrix, which indicates the relationship between the motion of selected image 

features and the screw velocity of the camera based on the six chosen image features and 

then design an IBVS controller to control the motion of the robot. 
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5.2.1  Image feature extraction 

In order to control the 6 DOF of the camera, at least six image features are needed for 

visual servoing. For an image ),( yxI , the two-dimensional geometric moment ijm  and 

central moments ijm  of order ji+  are defined as [22]  

ññ
¤

¤-

¤

¤-

= dxdyyxIyxm ji

ij ),(                                                                                                      (5.1)                      

ññ
¤

¤-

¤

¤-

--= dxdyyxIyyxx j

g

i

gij ),()()(m                                                                                   (5.2)  

where ),( gg yx  are the coordinates of the centroid in the image frame. 

It is known that the low-order moments have their own properties, which can denote 

the geometric characteristics of the target object in the image. Four image features are 

chosen as the same as those in [22], i.e. 

00ma= : the area of the object in the image plane (zero
th
 order moment); 

0010 mmxg = , 0001 mmyg = : the coordinate of the centroid (first order moments); 

 )
2

arctan(
2

1

0220

11

mm

m
f

-
= : the orientation angle (second order moments) shown in Figure 

5-2. 

f

),( gg yx

 
Figure 5-2 Orientation of an object defined as the orientation of the ellipse 

obtained using the value of the object moments of order less than 3 



 

94 

 

 

However, there are many ways to choose the image features. In [83], the well-known 

skewnesses are chosen as the rest two image features. In [22], the image moments 
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 have been utilized as image features for the central symmetrical 

target object to control xw  
and yw , the angular velocities around the x and y axes of the 

camera frame respectively, which obtains the decoupled visual servoing behavior. 

Nevertheless, our simulation results show that xS
 
and yS  cannot represent the right pose 

of the target object all the time.  

    In this chapter, two new image moments are proposed as image features to replace xS

and yS  in [22] if  target objects have central symmetrical shapes, which can tell the right 

poses of the target objects. The final improved image features are defined as follows 
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(5.3) 

where 02201 mm -=c , 21032 3mm -=c , 
111 m=s , 12302 3mm -=s , 02201 mm +=M . 

 

Table 5-1 The error of image features xP (
xPe ) 

 






























































































































