Visual ServoingFor Robotic Positioning And Tracking Systems

Yimin Zhao

A Thesis
In the Department
of

Mechanical and Industrial Engineering

Presented in Parti&ulfillment of the Requirements
For the Degree of
Doctor of PhilosophyMechanical and Industrial Engineerirag)
Concordia University

Montreal, Quebec, Canada

August 202

© Yimin Zhag, 2012



ABSTRACT

Visual Servoing for Robotic Positionng and Tracking Systems

Yimin Zhao, Ph.D.
Concordia University, 2012

Visual servoing isa robot contromethod in whichcamera sensolse usednside the
control loopandvisual feedback is introducedtathe robot control loop to enhance the
robot control performancein accomplising tasks in unstructured environmentsn
general, sual servoingcan be categorized intonagebased visual servoing (IBVS),

positionbased visual evoing (PBVS) and hybrid approach To improve the

performanceand robustnessf visual servoing systemdydresearcton IBVS for robotic
positioning and tracking systenmainly focugs on aspects oftamera configuratign
imagefeatures, pose estimatiormnddepth determinatian

In the first part ofthis research, two novel ntigle cameraconfigurations ofvisual
servoingsystemsare proposedor robotic manufacturingsystems forpositioninglarge
scaleworkpieces The main advantage of these two multiple camera configuras dimest
the depthsof target objed or targefeatures areonstant or can be determined precisely
by usingcomputer vision. Hencethe accuracy otheinteraction matrixs guaranteedand
thus the positioning performances of visual servoing sysgeman be improved
remarkably The simulation results hew that the proposed multiple camera
configurations of visual servoinfpr largescale manufacturing systeman satisfy the

demand of higkprecison positioningand assemblin theaerospacendustry



In the second part of this research, twoprovedimage featuresor planarcentral
symmetricalshapedbjectsare proposethased on image moment invarigntgich can
represent the pose of target objewatth respect to camera fram@& visual servoing
controllerbased on the proposed imagementfeaturess designednd tusthe control
performance otherobotictracking systenis improvedcompared with the method based
on the commonly used image moment featuegerimental results on aBOF robot
visual servoingystem demonstrate tlkeéiciency of the proposed method

Lastly, to address the challenge of choosing proper image fedturpianar objects to
get maximal decoupled structure thie interaction matrix the neural network (NN)s
applied aghe estimatorof target object posesith respect to camera franbased on the
image moment invariant€omparedwith previous methodghis schemevoids image
interaction matrix singularity and image local minima IBVS. Furthermore the
analytical form of depth computation is given byngscclassical geometrical primitives
and image moment invariantA visual servoingcontrolleris designedandthe tracking
performancas enhanced foroboic trackingsystens. Experimental resulten a 6DOF

robot systenare provided to illustrate the efftiveness of the propossdheme



ACKNOWLEDGEMENTS

| am sincerely grateful tany supervisarDr. W en-Fang Xie for herinitiation of the
research projecther guidance andassistance as well asher invaluable support
throughout this researctHer supervision and encouragement wessential to my
completing this work.Her patience and persistenogade all achievements on this
research project possible.

| am extremely grateful tahe Aerospace Manufacturing Technology Centre
(AMTC), and theNational Research Councibf Canada (NRC), whiclhave provided
facilities for this research aralgreatopportunityto access the visual servoing research
filed. Especially, | would liketo thank Dr. Xiao-Wei Tu andthe robotics automation
group of AMTC for theircontinuous suppgrguidanceandassistance

I thankmy colleaguesand friends at Concordidniversitywho have offered help in
various waysl am especiallygrateful toMr. Abolfazl Mohebbi, his contribution to the
robot hardwaregreatly assisted ithe experiments of this resear¢tam verygrateful to
Mr. Gilles Huard his kind help and perfect work on the experiment sefupe research
enabledsmooth and successful results

I would like to express my g@titudeto my parents, my brother arsister for their
enormousencouragemerdand supportlLast, but not least, | would like to expregsecial
thanks tomy dearwife, Fangxia Lin It is her love, help, understanding and patietizd
made it possible for me taccomplishthis researclthroughout myPh.D. study. Thanks
to my two sons, Yue Zhao and Willams Daniel Zhao, tlegir encouragemensupport

and love | dedicate this thesis tay wife and my family.



TABLE OF CONTENT S

LIST OF FIGURES ...t eee et e ettt e e e anee e e e e e enea e X
LIST OF TABLES ..ottt ettt e e e e e et e e e e e eeenes Xiv
NOMENCLATURE ...t ereer e e e e e e e emee e e e e e e ernna s XV
CHAPTER 1 INTRODUCTI ON ...ttt eteme et emmee e e e e eenennns 18
1.1 Robotic positioning and tracking SYStemsS...........cccoovviviviimeeeeeeeeeeeeeeeeeiinns 18
1.2 Scopes and Contributions of the Thesis............cccccoiim 25

1.2.1 Multiple camera visual servoing for largeale manufacturing system

25

1.2.2 Visual servoing by image moments............ccccuevveiiieecieiiviiiiieeeee. 27

1.3 TRESISOULINE. ....uuiiiiiiiiiiiiii e 28
CHAPTER 2 LITERATURE REVIEW ... 29

2.1 History of Visual SErVOING........cccuuuiiieiiiiiiie e e e mmmr e e e aeens 29
2.2 Classification of visual SENVOING...........ccuuiiiiiiiiiieemreie e e eeeme e 30
2.3 Configuration ofthecamera in visual SEervoing..........cccccoevviiiiiiccce e 33
2.4 3D POSEESHIMALION.....cuiiiiiiiiiiiiiee et 34
2.5 IMAQE fRALUIE.......coi it e e e e e e e e e e e e e annen s 36
2.6 SUMMAIY ..ottt e et e e ettt e e e e e emeneeeeeta e e e e eessnn e eeannneeeeennesd 40



CHAPTER 3 MULTIPLE CAMERA VISUAL SERVOING USED FOR LARGE -

SCALE 3D POSITIONING ..ottt e et e e e eeenes
3.1 INEFOTUCTION . ...ciiiieeee e ceee e e e e e e e e ememene e 42
3.2 Visual servoing CONtrol [aW.............uvvviiiiiiiiieeeieeee e 43

3.2.1 Desired image feature COOrdinates..........ccceeeeveeeeseeecvvneniiiinennn 43
3.2.2 Local desired image feature coordinates..........cccceevvvvvieemeeneennn 44
3.2.3  IBVS CONIOl [AW.......cuviieiieiiiiiiiie e 48
3.2.4 Robot dynamic cONtroller...............uuuveiiiiiieeecee e 51
3.2.5 Control algorithmM..........uuiiiiiiiiee e, 59
3.3 SIMUIALION FESUILS.........eeeiiiiie e 60
3.3.1  Simulation enVIrONMENT.............uuuiiiiiiiiiiieeeiiiiieeer e 60
3.32  CASE SUIES. .....ccoiiiiiiiiiti e e et 63
3.3.3  EITOr @nlySis......coooiiiiiiii et 66
3.4 CONCIUSION ...ttt e 67

CHAPTER 4 MULTIPLE CAMERAS-MULTIPLE TARGET POINT VISUAL

SERVOING IN LARGE -SCALE 3D MANUFACTURING SYSTEMS .........ccccoeiiiieees
ot R [ o1 oo 18 ox 1 o] o W TP PPPPPOTRT 68
4.2 Depth COMPULALION........cciiiiiiie e remr e e e 71
4.3 Visual servoing CoNtrol [aW............cuuuiiiiiiiiiieie e eveeme e 75
4.4 The block diagram ahevisual servoing System...........cccceeveeeeeeeeceecevnnnnn. 48
4.5 Viusal servoing control algorithm...............cooviiiiiiee e 79

vi



4.6 SIMUIATION FESUILS. . ..eee e eaanns 81

4.6.1 Simuation ENVIrGIMENT.........oooriiiiiiiiiieeer e 81
4.6.2 CaSE StUIES.....ceeiieeeeieeeee e 83
4.6.3  EITOr @N@lYSIS......uuuiieiiiiiiiiiiiii ettt 87
A7 CONCIUSDNS ....ceiiiiiiiiieiee e eeee e e e e 89

CHAPTER 5 IMAGE -BASED VISUAL SERVOING USING IMPROVED

IMAGE MOMENTS IN 6 -DOF ROBOT SYSTEMS. ...
5.1 INFOUCTION.....eiiiiiiiiiitiee e ettt e e e e e es 90
5.2 IBVS uSing image MOMENLS.........cccoiiiiiiiiiiiiimemeeeeeeeeeeeeatnaae e emmmeeeseannnes 91

5.21 Image feature extraCtion...........cccuuurrreeierieeeiiieeieeeeee e e e e s e 93
5.3 IBVS cONtroller deSIgn.........couuiiiiiiiiiiiii e 99
5.3.1 TeACNING STAQE.......uuuririiiiiiiiiiiii ettt e e e e e a e 100
5.3.2 Desgn the IBVS control [aw...............eevveiiiiiiiceniiiiiiiiiiiiiieeeeeee 100
5.3.3 Design robot dynamic CONtroller................eeevviiiiieeeiiiiiiiiiiienne 101
5.4  SIMUIALION STUTIES........coiiiiiieit b rre e e e e e e e 102
5.5 EXperimental reSUILS...........iiiiiiiiii e 106
5.5.1 SYSIEM SEIUP....ciiiiiiiei e 106
5.5.2 Expermenal reSultS............ccooviiiiiiiiiiieeee e eeeee e 107
5.6 CONCIUSIONS .....cooiiiiiiiiiee et ee e e enmee s 114

CHAPTER 6 NEURAL NETWORK -BASED IMAGE MOMENTS FOR

ROBOTIC VISUAL SERVOING ...

S 70 R [0 1 o Yo [ 1o3 10 o VPR 115

vii



6.2 IBVS USING IMAQgE MOMENLS.......uuuiiiiiiiiiiiiiiiieeeriiieeee e e e e e e e e e e e e e eeeeeeeas 116

6.2.1 Interaction matrix of image moments................uvvveeemiccceeeeeeennns 116
6.2.2 Choice of Image features............uuuiiiiiniiieeceiiiciee e 119
6.2.3 Interaction matrices related t,, M, .......ccocooiiiiiiiiiinn 120

6.3 Estimation of rotational angle around x and y axes of camera frame....121

6.3.1 Neural network eStimation..............occuuriiiiieacee e 121

6.3.2 NN Generalization and Verification..............ccoveeveeiiccceeiiciiienenn. 126

6.3.3 Depth determination................ouuuuiiiiiccceeeeee e 126

6.3.4 Determinationm, (&, ) ONliNE............ocviriiiiiiiii, 128

6.3.5 Equation of planar object in current camera frame................... 129

6.3.6  IBVS CONLIONIEEL......oiiiiiieeeee e 130

6.4 Experimental RESUIS......ccccoooiiiiiiiiieeeee e 132

6.4.1 Starshapebject............ouuviiiiiiiiiii i 137

6.4.2 Whaleshapebject.............oovviiiiiiiiiieeeeeee e 143

6.5  CONCIUSIONS ...coiiiiiiiiiiiii e eee et emmne e 150
CHAPTER 7 CONCLUSIONS AND FUTURE WORKS ...,

7.1 CONCIUSIONS ... ittt er et eeeeas bbb e e e e e e e e e e e e aenee e 151

7.2 FULUIE WOTKS. ...t 153

7.3 Publications and patent..............uooiiiiiiii e 154
REFERENGCES..... et e e e e et e e e e e e e e

vii






LIST OF FIGURES

Figure 31 Multiple cameras with laser projector robot visual servoing syste3

Figure 32 Local desied image feature............ooooiiiiiiiiemmn e 44
Figure 33 The block diagram of IBVS with multiple cameras......................... 50
Figure 34 Robot and workpiece dynamic model..........ccccooviiiiiieaninnnn. 53
Figure 35 RODOL CONLIOIIE... ... 56
Figure 36 The flow chart of robot control algorithm...............ccoeoieeenens 60
Figure 37 The desired position of robot eBffector...............cccoeciiiiiceeeenns 62

Figure 38 Trajectories of reference points P1, P2, P3 and P4 in robot base &&me

Figure 39 Trajectories of image features in the image planes......................! 64
Figure 310 Image errors in image Plane.........cccoccieiiiiieeceieee e 64
Figure 311 Trajectories of points P1, P2, P3 and P4 botdase frame............ 65
Figure 312 Trajectories in the image planes..........ccccoovviiiiieec s 65
Figure 313 Image feature errors in image plane.........ccccccvvveiiieeseieeeeieneneen 66

Figure 41 Mutiple camerasnultiple target points visual servoing system
EXPENMENTAlI SEIUD. ...ttt ieeei et e e e e e 69
Figure 42 Visual sevoing system user interface........cccccccoveeiiiiccccneeeeen, 70
Figure 43 Mutiple camerasnultiple target points visual servoing system........ 71
Figure 44 lllustration of the virtual image Figure 45 Depth computation
0 OSSR 12
Figure 4-6 The block diagram of visual servoing control system with multiple
(072 10 0 1CT = T J TSP PPPPP 79

Figure 47 The flow chart of robotontrol algorithm...............coovvviiiiieeeee e, 80



Figure 48 The desired position of robot esmffector.................cccccciiieennne 83
Figure 49 Trajectories of points P1, P2, P3 and P4 in robot base frame....... 84
Figure 410 Trajectories in the image planes.........cccccovviiiiieemees 84

Figure 411 Image feature errors in image plane............cccccvvivieeeiiiiiinnnnd 85

Figure 413 Trajectories in the imageauies.............iiiiiiiieeneeee 86
Figure 414 Image feature errors in image Plane...........cccoocvvvivieemeeeeenecnnnen 87
Figure 51 Robotic eyan-hand system configuration..............ccccceeeviiceemninnnn! 92

Figure 52 Orientation of an object defined as the orientation of the ellipse...93

Figure 53 Representation ofi®rs e, of image featurep, on........................l 96
Figure 54 Representation of errggsof image feature, on................cccoeeniies 96
Figure 55 Representation of erroes of image features on...............cc.coool! 96
Figure 56 Representatioof errorses of image features, on............................. a7
Figure 57 IBVS control diagram................uuuuueiiiiiiceeeeeiiiiieee e eeee s 100
Figure 58 Robot dynamic controller................oovviiiee e 101
Figure 59 The visual servoing contralgorithm diagram.............ccccoeeveeeeeeiees 102
Figure 510 Desired image (a) and initial image (Bb).............oooeiiiiieen s 103
Figure 511 The trajectories (a) by the proposed image features................. 103
Figure 512 Point coordinate errors (a) blyet proposed image features.......... 104
Figure 513 Desired image (a) and initial image (Bb).............ooooeiiiiieene s 104
Figure 514 The trajectories (a) by the proposed image features................. 105

Figure 515 Point coordinates error (a) by the proposed image features......105

Figure 516 The controkystem and hardware connected to PUMA.260....... 106

Xi



Figure 517 PUMA 200 hardware components and connections of controlldrOTnit

Figure 518 Robot visual servoing SyStem SEetUR..........uvveeeeieiiiiieemeieieeeeeeeenn 107
Figure 519 Initial image (a) and final image (b) of task.1.............coevvvvriiiennn. 108
Figure 520 Image fature errors of task L..........cccoeeiiiiiiiiiiiccceiiie e, 109
Figure 521 Initial image (a) and final image (b) of task.2..............ccoevvvvvneenn. 109
Figure 522 Image feature errors of task.3...........cccuvviiiiiiieemiiiiiiiiieeeeeeeeen 110
Figure 523 Initial image (a) and final image (b) of task.3.............ccccvvviiieenn, 111
Figure 524 Image feature errors of task.3...........cccuvviiiiiiieemiiiiiiieeeeeeee 111
Figure 525 Initial image (a) and final image (b) tdsk 4..............ccccooiiiiiieenn, 112
Figure 526 Image feature errors of task 4...........cccuuvvveiiiieemiiiiiiiiiiieeeeeeeeeee 113
Figure 527 Image feature errors of robustness.test........ccccccevvvviiccceennennnn. 114
Figure 61 Data sets aegsition for neural network training..............cccccccvvee... 124
Figure 62 Neural network used for estimation efand g ................ccccceeenne. 124
Figure 63 Depth eStimation...............cciiiiiiii i e e 127
Figure 64 Bilinear interpolation...............ccccoooiiiiiieeciiieeeee e 128
Figure 65 Block diagram of control System..........cccceeeviiiieiiieeciiiiiciee e 131
Figure 66 Neural network estimation error f@ .............ccccvvveveeiiniceemncineeneen. 135
Figure 67 Neural network estimation error f@...........ccccoocvvveveeiiiccnnicinennen. 135
Figure 68 The desired position and two initial position...............c.cceevvieeeeens 136
Figure 69 (a)Desired image and (b) initial imagétask 1..................coovvnnn... 138
Figure 610 Depth estimation result of task . L...........cccoovviiiiiiceeiiieceeeee e, 138

Figure6ll (a)Tr aj ect ori es of star.0s...v.er.tl38ces i n

Figue6l1l2(a)Tr aj ect ori es of star.0s...v.er.tl39ces i n

Xii



Figure61l3(a)Tr aj ect ori es of stardés velr.tl39ces i n

Figure 614 Camera trajectories in 3D robot base frame.............ccccevveeeeenee 139
Figure 615 Initial image(a) and desired image (b) of task 2,.(C)................... 141
Figure 616 Depth estimation result of task 2..............ccccoiiiiicccs 141

Figure6l17( a) Tr ajectories of .st.ar.0s..vldIrti ces
Figure618( a) Tr aj ectories of .st.ar.0s..vldX tices

Figure 619 Trajectoriesofst&rs ver ti ces i n i mag.el4r ame,

Figure 620 Camera trajectories in 3D robot base frame.............cccceevveeeenneee 142
Figure 621 Desired image (a) and initial image (b) of task.3........................ 145
Figure 622 Depth estimation result of task 3.............ccoiiiiieec e 145

Figure 623 Experimental results of task3: (a) image feature errors when controlled

Figure 624 Camera trajectories in 3D robot base frame..............cccccoeceenne 146
Figure 625 Initial image (a) and desired image (b) of task 4, (c) and (d) thel47
Figure 626 Depth estimation result of task 6..............cccoiiiiieec i 148

Figure 627 Experiment results afask 6: (a) image feature errors when controlled

xii



LIST OF TABLE S

Table 51 The error of image featurag (e, ) ....coovoovrerrnnininiieee, 94
Table 52 The error of image featurag(ep ) ... 95
Table 53 The error of image featurag (es )........cocevvriviriiriiieeic e, 95
Table 54 The error of image featureg (s, ).........cocovviiiiiiiiiiiemnin e, 95

Table 55 The initial values and desired values of image features in task 1 and task 2

Table 56 The initial values and desired values of image features in task.3.110

Table 57 The initial values and desired values of image features in task.4.112

Table 61 Neural netwok estimated results............cccooiiiiiieeee e 133
Table 62 The image areeorresponding tootational angle................cccccc...... 134
Table 63 The initial values and the desired values of image features......... 137
Table 64 The initial values and the desired values of image features......... 144

Xiv



SYMBOL
{B}
{E}
{C}

(ax!ay)

A

& @ o

NOMENCLATURE

DESCRIPTION

Robot base frame

End-effector frame

The frame of cameri (i =1,2,34)

Thetransformation matrix froniE} to{B}

The transformation matrix frodC.} (i =1,2,34) to{ E}
Parametriczariable

Velocity screw of the cameraxpressed i§C }

Velocity screw ofobotendeffector expressed ifE}
Velocity transformation matrix frofiC.} (i =1,2,3,4) to{E}
Image features the image plane afameai (i =1,2,3,4)
Velocity ofimage featurem the image plane afameai
(i=12,34)

Focal length

The dfective sizeof a pixelof camera image plane

Proportional gain

Vector ofjoint variable
Vector of joint velocity

Velocity of joint acceleration

XV



% Desiredrobot joint velocitydetermined by visual servoing law

W, Wrenchapplied byenvironmento robotend-effector

! Control vector of joint torques sent to robot

f, Vector of joint torquesorresponding to aexternawrenchw,

f, The compited vector of tayues by robot toolbox

ETf Forcemoment transformatiomatrix from {C} to{E}

Kp Proportional coefficient matrix

Ky Differential coefficient matrix

J(q) Robotvelocity Jacobian matrix

Jimage Interaction matrix or imag&ocobian matrix

b Rotational angl@aroundx axisof camera frame

g Rotational angl@aroundx axisof camera frame

K Estimaion values of rotational anglroundx axisof camera
frame

E Estimaion values of otational anglaroundx axisof camera
frame

f The orientation angle

m Imagemoment of ordey + j

m Image central momeioff order; + |

(X4 Yy) Coordinate®f centroid ofimage

XVi



Feedbaclcontrol signal

XVii



CHAPTER 1 INTRODUCTION

1.1  Robotic positioning andtracking systens

In the aerospace indugtr the tasks in fastenintargescale partssuch as drilling,
riveting and welding, in assembly such as piping aimcraft wing alignment need high
precision positioninglt is difficult and expensiveéo obtaina robot with high payload
usingtraditional methodsAlthough 3D metrology and tracking systems including laser
tracker, lagr rada [1], indoor GPS (GlobaPositioning System)2], and other optie
electronic positioning systesyare used for positioning in manufacturing and assembly,
these systems are highly limitéd terms ofspeedand workspace and generally very
expensive. One feasible and eeffectiveway to overcome these constraiissto usea
visual servoing method to achieve high precision positioning.

Visual servoing isa robot controlmethod in which visual feedbaak image from
camera sensolis introduced ito the robotinside a control loopto accomplish task
unstructured environmentndto enhance the robot control performari8e4]. Visual

servoingcan be categorized intimagebased visual servoing (IBVShpositionbased

visual ®rvoing (PBVS) and hybrid gpproach[5]. In the visual servoing systems, there
are two basicameraconfigurations One isto install a camera athetip or endeffector
of the manipulator (eye-in-hand) the other is toset the camea and manipulator
separately (ge-to-hand)[6].

Compared withthe other visual servoing methgodBVS has three main advantage
[7, 8, 9] and has gained research intereshong therobotics community since it is

insensitiveand robust to camera model erroalibration error and measurement noise
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[10]. Hence IBVSis widely used for automated robotic manufacturing systéiig.
However, it is difficut for traditional IBVSwith a single camert deal withthe taskf
robot positioning forargescalemanufacturingsystemsin the aerospace industijyi?].
The reason is thdhe targetfeaturesof a largesize workpiecere chosen far awdyom
each otheto increase the accuracy pbsitioningin largescale manufacturing systems
It is obvious that it igdifficult, if not impossibleto placeall targetfeaturesn the field of
view (FOV) of a single camera. Moreover, due to ldrge size ofthe workpiece, the
disposal of cameras is a key problgh3]. Sometimesthe target featuresre occluded
from the FOV of the camera whereinan unsuitalle viewpointmay causesometarget
featuresto move out ofthe FOV of the camera during visual servoinghismay lead to
savoing failure, especially when the itial position ofthe camera is far away from its
desired ong 14, 15]. Hence, eme researchers have proposexv configuratiors for
camerago improve the visibility oftargetobjecs, such asusing stereo cames@16], or
multiple camerag17, 18]. Neverthelessthese methods amnly effective ina situation
where thesize ofthetarget object is relatively small and the robot-efféctor moves in
a large rangeHowever, inthe aerospacéndustry, arobot endeffectorgenerallymoves
in the vicinity of the desired position and th@arget featuresire chosenfar away from
eachotherin visual servoingTherefore the conventional configuratianof camerasn
visual servoingcannoteffectively dealwith the task of robot positioningfor largescale
manufacturing systems

In addition, t is known thathe interactionmatricesof IBVS actually depend on the
deptls of targetfeatures [19]. In most of cass targetfeaturedepthis treated as constant

or just roughly estimatedguch thatthe visual servoing systemmemains stable and
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convergenbecause of the robustness of IBVS to the error of camera model and system
calibration.Neverthelessin some casethe incorrectdepthestimationof targetfeatures

may cause convergence and stability prolslgz0]. Therefore theexactdetermination of
targetfeatue depttsis still a crucial task irthe design ofBVS systems.

Moreover in largescalemanufacturing systesnthe dynamidorcesof the workpiece
play an important rolen robot dynamic behavisysince the mass t¢drgesizeworkpiece
is not negligible.However, mospapers published on visual servoing foamy on the
kinematic analysis of theisual servoingsystems The dynamics of the robas hardly
taken into consideration thevisual servoing scheme design

In this thesis multiple cameravisual servoingor largescale manufacturingystems
is investigated and the dynamics of robot manufacturing systesne taken into
considerationn designinglBVS systemcontroller Two novel configurations omultiple
cameravisual servoing fom largescale 3D positioningystemare proposedwhich will
bediscussedn Chapter3 andChapterd. Thelist of titlesis as follows
1. fMultiple camera visual servoing witBD CAD laser projector for largecale 3D

positioningo
2. AMul t i p l-naltipte gaarget pomt visual servoingystem for large scale 3D

positioningo

In visual servoing, e of thedrawbacks of IBVS ishatthere exisinteraction matrix
singularities and image local minima leading to IBVS failureobot workspace[21].
Hence he choice oftargetfeaturesis anotherkey point toaddress the challengs
interaction matrixsingularities.Much effort have been contribedl to determine some

decouplingmage featuret deliver a triangular or diagoniatteraction matri22, 23].
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In the determinationof image featuresn visual servoinggeometricfeatures suclas
points, segments or straight Im@3] are usually chosen as th&argetfeatures, and the
corresponding image featuresthe image plane aretilized asimage features anthe
inputs ofvisual servoingontrollers. Howeversuchtargetfeatures can only be applied in
certainlimited targetobjects[24]. In addition the geometric features might be occluded
from the FOV of the camera In this case, the number tife image features does not
matchwith that ofthe desiredones, which may lead to the failure @fsual servoing.In
order totrackthetargetobjects which do not have enough detectable geometric features
and toenhancehe robustness of visual servoing systems, several tergelt featureare
adopted for visual servoin§or example, laser poinfd3, 25| andthe polar signature of
targetobject contouf26] are used atargetfeaturesin thedesign ofIBVS systems

The image momestarenormally used for patterrecognition in computer visiof27,
28]. Recentlythey havebeen adopteds imae featurs for viusal servoingcontrol
scheme design due tbeir easy computatiofrom binary or segmented image or from a
set of extracted points of interest, disregardingt#irgetobject shape complexitgnd
their generic representation of atargetobject, witha simple or complex shage9]. In
addition,low-order moments have amtuitive meaning, since they are directly related to
the area, the centrqidnd the orientation of the objecttimeimage plang21]. Following
previous work, it is known thatusing the image moments asage feature in visual
servoing can renderthe corresponding interaction matrix with maximal decoupled
structure and the inherent problesingularity of the interaction matrix is avoided and
the controlperformance of IBVSystemis thusimproved.

In [22], based on imagenomentinvariants to 2D translation, 2D rotation, and scale,
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two image features are selected toontrolW,, v, the rotational velocity arountthe x and

y axesof the camerarame respectiveljor planarnoncentered symmetrical objecBut
these two imagefeatures cannot be used fgrlanarcentralsymmetrical objects since the
elements othe interaction matrix related to these twoagefeatures are equal to zero

when theplanartargetobject is parallel to the image plaf#l]. In this case,two other
imagefeatures S, S, are proposed to control the rotationvalocities,, w, for planar

centralsymmetrical objects in order to avoid the singularitytld interaction matrix.

However, thesimulation results show thatimage features S , S, for planar central

symmetrical objects used if22] camot represent the pose pfanar target objecs
correctlywith respect with camera franadl the time.In this thesis two improvedimage
momentdor planarcentralsymmetrical objectare proposetb control targebbject pose
of rotating aroundhe x andy axes respectively. Along with the other four cormm
image moment [21, 22], how to analytically derivethe interaction matrix describing
the relationship between theotion of camera anthe derivativeof the image features
with respect to times illustrated. To control the motion ofthe camera, an IBVS
controler is developed for object trackingy using the derivedhteraction matrix The
developed controller is applied tasual servoingor a 6-DOF robotic trackingsystem
and the experimental results demonstrate the effectivengss mfoposed methodrhe
details are given i€hapterbs.

Moreover, t is known that the judicious otbinations of image moments are invariant
to some transformations, such as 2D translation, 2D rofaahscale. This property is
of great value in visual servoirj@9]. No matter what the nature of the possible image

features extracted from the image is, from the coordinates of a set of image features to a

22



set of image momenttshe main question lies in how to combine them to obtain an
adequatestructureof the nteraction matrix othevisual servoingystem. The method of
the reported combinations is just stackingl,[ 22]. However, the inappropriate
combination of image moments and redundant image point cogslingy cause some
potential problems such dscal minima and coupledarget featuresthat lead to
inadequate robot trajectorie2g. Some researchers have drito use different image
moments as image features to solve this probl2in 22, 28]. In [28], the 2D image
moments are combined as ineaf@atures to decouple the control of the rotation from that
of the translation to ensure the visibility of the target object in the FQNeafamera and
also to demonstrate the global stability of the system using only the measurements from
the current ad desired image#n [30, 31], the choice of image features lets doadition
numberof interaction matrix be smalb improve the robustness and #tability of the

systemIn [32], the image moment invariants to 2D translational motion, to 2D rotational
motion and to scale were exploited to decouple translational velgity,,v, from
rotational velocityw,. In [22], several combinations of image moment invariants have
been proposed and two of them are selected as image features to control rotational
velocity w,, W, depending on the object considered. Such a selection of two independent

image fetures makeshe corresponding interaction matrix have a maximal decoupled
structure.Indeed, when the object is parallel to image plane, the interaction matrix

relating camera motion twariations oftheseimage features, denoted ag,, has the

I
expected fornd, =g) 0 0L, L, O.Intheexperimental phase[@g], the error:

e.(b,9)=(c, (b,9)- C,t)2 +(c, (0,9)- C]-:)z was proposed to select the pé;,C;)
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such that the erro€; presents the global minimaith an influence zonthat isas large

and symmetrical as possible. This offline selecpomcess has to be performed for each

new object considered, once the desired image is acquired. Nevertheless, it is noticed that

in the interaction matrices if22, 28], the rotationalvelocity w, , w, are still not

decoupled. Furthermore, in the previotesearch the deptls of target featuresare
assumed to be constd2tl] or approximately comped from the planar object equation
expressed in desired positig@2, 28]. This assumption simplifies the mathematical
development and such an approximation is generallgmedin practice because of the
robustness of visual servoing to modeling errors. However, for large displacement visual
servoing especially in robat tracking systemshis assumption will causecomputatio

error and possible singularity problenirherefore the exact determinationof depths
online is a key step ithe design ofvisual servoing ohigh precigon robotic tracking

systems.

In this thesisto decoupleéhe components correspondingitg W, in interaction matrix,

neural network (NNJbased image features are proposed, whichiedegredto as virtual

image featuremand meanwhileare assumed to be proportional to the rotational angles
aroundthe x andy axes of camera frame respectively. A NN is designed to estthwte
rotational angles arourttie x andy axes otthecamera frame. Then the interaction matrix
related to the proposed image features can be determined babewdotputs of the NN.

In addition, the depthof target features afhe planarshapedobjectare determined by
using image moment invariants online. Hence the computation accurdmjrteraction

matrix of the visual servoingsystemis remarkablyimproved The effectiveness of the
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proposd methodis demonstrated in the experimentdultson a6-DOF roboic tracking

system The details are given @hapter6.

1.2  Scopes andContributions of the Thesis

1.2.1 Multiple camera visual servoing for largescale manufacturing systera

In this thesisthe multiple cameraconfiguratiors of visual servoingfor largescale
manufacturing are proposelBVS is used as visual servoing strateagyd ge-in-hand
architectureis adopted as camera configuratidheanwhile, 1 has been proven that at
least four target points are needed to have the complete velocity stmot end
effector uniquely defined through pseudo inverse of interaction m@8x Hence,a
precise robotic 3D positioning systemvhich is shown inFigure 3-1, is proposed ¥
using a3D CAD laser projectorfour digital cameras anfdur projection screerattached
to a bracketinstalled ona robot endeffectoror workpiece,anda 6 DOF robot.In this
system,a 3D CAD laserprojectorprojecs computer images (typically from CAlles)
directly on objects for layout and alignment applicatif8@, which canprovide 4 target
points on the projection screens different working positiondzour cameras aresed as
visual sensorsand each camei@an onlylook at onetarget point orthe corresponding
projection screen. ring the visual servoing processach targepoint is alwayswithin
the FOVof the corresponding cameris noticed thatat one working position, the laser
beams remairstatianaryin the robot base frame, and the target pointsl@ser spots on
the projection screehsvill move along the laser beamgthie robotendeffector movesn
the robot base frameNevertheless, the depths trget points will always be kept

constantduring the visual servoing procedsecause of the unique system configuration,
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i.e., the position okachprojection screen with respetd the corresponding camera is
fixed.

However, n the above multiple camera configuration of visual servoing system, the
3D CAD laser projector ivery expensive Sometimesthe laser beams are occluded by
objects, e.g., robot arnin addition the calibration othe system isalsotime-consuming
Hence a newmultiple cameraconfigurationof visual servoing systershownin Figure
4-3 is proposedin whichfour pairs of LEDs are installed in the robot b&sane right
above thecamerasttached to a bracket installed e robot endeffector or workpiece
In each pair of LEDs, onef LEDs is used ashe maintarget point (target feature), and
the otheris usel asthe complimentary targgboint, whichis usedo determinethe depth
of targetfeaturein visual servoing. Meanwhilen visual servoing, each cameoaly
obsenes one pair of LEDs. This configuration ensures that all the target points are visible
whenthe robot endeffecta moves ina certan limit rangearound the desired position
The depths otarget pointscan be easily computed online by using the stereo vision
strategy

In addition,the dynamic modebf the robot manufacturing systers considered in this
thesis.Visual servoing cotrol schemesincluding visual servoing controller and robot
dynamic controllerare designed fomultiple camera configurationsf visual servoing
systembased on machine vision, kinematics, dynamics, control theory as well as robotics.
Simulations have been carried out to verify the effectiveness of the proposed visual
servoingschemesainder various conditiong.he image errors of visual servoing systems

are analysed and the stability conditiontlod visual servoing system is given bdsen
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the control theoryThe simulation resultalsodemonstrate that the proposed sysieam

achieve higkprecisionpositioning for largescale manufacturingnd assemblgystems.
1.2.2 Visual servoing by image momerd

Firstly, based on the previous research on the image mdrasetl visual servoing, the
two improvedimage moments, which are closeblated tothe pose ofhe targetobject
rotating aroundhe x andy axes of the camera frameespectivelyare proposed as image
featuredor planarcental symmetrical objectsAlong with the other four comanly-used
image momentghe interaction matrix describing the relationship between the motion of
the camera andhe velocitiesof image featuress derived, andthe IBVS controler is
developed fowisual servoing of a-®OF robotictrackingsystemsThe simulation and

experimental results demonstrate the effectivenesegiroposed methods

Secondly,to achieve the goal of decoupling, v, , two virtual image features are

proposed, which arassumed to bproportional to thengles otthe target object rotating
aroundthe x andy axes ofthe camera frame respectivel\Based on the image moment
invariants, the NNs designed t@stimatethe rotational arlgs of a target objectiround
thex andy axes ofthecamera frame. The interaction matrix related to the proptasgelt
features is determined based on the estimation sefittie NN. The depth othe planar
shapedtarget object can beomputed onlineand thusthe computationaccuracy ofthe
interaction matrixas well asthe global stability of the systemare improved. The
effectiveness of the proposed method is demonstrated in the experimentaloresus

DOF robottrackingsystem
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1.3 Outline of this thesis

The dissertation is composed of seven chapters. The introduction chapter introduces
basic concepts and backgrourasearch The motivation, objective and contribution of
this research are presented as well.

In Chapter2, a detailed litermure review is conducted farisual servoing for robotic
positioningand tracking systems, followed by hohwet presentesearch advanceake
knowledge in the literature.

Based ona 3D CAD laser projectgrthe multiple camera visual servoing used for
large-scale3D positioningsystemis proposed ifChapter3.

In Chapter4, multiple cameramultiple target point ual servoing in largecale 3D
manufacturing systems presented.

To deal withthe robotic tracking systemthe improved imagemo me nvisuals
servoing igdiscussed itChapterb.

In Chapter 6, neural networkbased image moments visual servoifoy robotic
tracking systems igrovided

Chapter 7contains theanajor conclusions of tis dissertation and recommendations for

future work.
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CHAPTER 2 LITERATURE REVIEW

2.1  History of visual servoing

Robot visualservoing has been a very active research subject for the past 30 years.
With the progress in electronic hardwattes robot guided by optielectronic sensors or
more recently by a machine vision systémrealized In industrial applicatios) the
robotic systems from a sanmagvdnesd mgnufactiringa n d
robott eam have been i mpidioa seevoirtg @mgpears Tohhave beenr m
introduced by Hill and Park35] in 1979 to distinguish their approach from earlier
experiments where the system alternated between picture taking and moving.

Visual servoings mainly used in cases where a robsés a feedback machine vision
in its control loop.Visual servoingis the fusion of manyctive researclareas which
includes high geed image process, kinematicgnamics, control treory and reatime
computatiomrandhas beemsed in control engineerirgspecially in manuwafctuing fields.
Visual servoinghas much in common with research in active vision and structure from
motion [36, 37, 38], but it is quite different from theoftendescribeduse of vision in
hierarchical task level robot control sys&i8ome robot systenthatincorporate vision
are designed for task level programmimgnd suchsystems are generally hierarchical,
with higher leved corresponding to more abstract data represensafidre highest level
is capable of reasoning about the task, given a model of the environment. Firstly, the
target location and grasp sites are determined from calibrated stereo vision or laser

rangefinder images, and then a sequersicenoves are planned.h& execution of the
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movements would be dealt with die lowest level.Howeveractive visionis no more
than the use of vision at the lowest level, with simple image processing to provide active
or reflexive behaviourThe active vision[39, 40] proposes thaa set of simple visual
behaviours can accomplish tasks through action, such as controlling attention or gaze.
On the other handjtérature related to structure from motiptl] is also relevant to
visual servoing. Structure from motion attemptsnfer the 3D structure and the relative
motion between object and camera, from a sequence of imlagedotics however, we
generally have considerable amount of a priori knowledge of the tamyed the spatial
relationshipg betweentargetfeatures are knowf42]. The task invisual servoing is to
enable theobot to be interactive with iEnvironmentusingafeedlacksignal in the form
of animage[5]. The fundamental tenet of visual servoing is not to interpret the scene and
then model it, but to direct attention to that part of the scene relevant to the task at hand.
If the system wishes to learn something of the world, rather than consult tle, mod
should consult the world by directing the senddeanwhile the benefit oan active
robotmounted camera includes the ability to avoid occlusion, resolve ambiguity and
increase accuracyurrentresearch on visual servoing mainly foesasn thechdce of
image featurg camera configuratiorgnd stability ofthe visual servoig control system.

Other topics such as rigid body pose estimation are alsed&batisual servoing.

2.2  Classification of visual servoing

In the servoingof machinevision systens, there are two methods to put the visual
feedback signal into acton One i s cal | e dndiihke otleek is dsnal mo v «
servoing. Traditionally visual sensing and manipulation are combined in arlaggen
fashion, 0l ook i napdurady bf¢he opérationvdepengiddirectlyy bnethe
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accuracy of visual sensymanipulatos and their controlles. In addition,intheii | o o k
and moveo strategy, the visual i nformati or
transformed into the positicand orientation in world framend then guide the robot to
the desired location in the world frarffd. This method needs a priori precise calibration
of camera and manipudtors. The alternativeto increasing the accuracy of these
subsystems is to use a vistie¢dback control loop, which will increashe overall
accuracy of the system. This control scheme is called visual servidieddifference
betweenflook and mové andfvisual servoing is thatflook and mové makes use of
joint feedback, whereas visual servoingaise joint feedbackinformation at all[43].
Hencevisual servoing uses the visual informatiom closel-loop fashion ina control
strategyto gude the robot to the desired position.

Visual servoingtechniques are broadly classifiedta the following three types:
imagebased isual servoing (IBVS) positionbased visual servoing (PBV3nd hybrid
approach[6]. IBVS is also referred tasimagefeaturebased technigyesinceit usesthe
imagefeatures extracted from tleapturedimage to directly provide a commanal the
robot. Typically, n IBVS, all the information extracted from the imagand used in
control happens in 2DThe image Jacobin matrixor interaction matrixwhich relates
displacement of image features to the motiothefcamera with respect to target object
is usedfor designing thecontrol systems of IBV@&nda closedloop control is preformed
with regard tamagefeature positionn theimage planeThus,a servoing control system
based only on the image constructed and should be robust against calibrationsgerror
sincethere is no need taatculate the location of target objeatsa 3D world frame. An

important point tanentionhere is that the robot may still move in 3D.
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PBVS is sometimes referred to as pdmesed visualesvoing andt is a modebased
techniquesincethe pose of the object of interest is estimated with respect to the camera
and then a command is issued to the robot controller, which in turn controls the robot. In
this case the image features are extracted as well. Bim#dgefeature informatia is
used to estimate 3D information (pose of the obje@Dnworld frame).In PBVS, the
image features are extracted fronthe image and are used in conjunction wittother
geometricinformationfrom the target to determine tiposewith respect tadhe canera.
Hence, servoingh PBVShappens in 3D.

Hybrid approachease some combination of the 2D and 3D servoing. There have been
a few differem approaches to hybrid servoing, which @acorporateadvantagesf both
IBVS and PBVS.

In summary,n IBVS, servoing iscarried outon the basis of image features directly
which may reduce the computati@n delay, eliminate the necessitgf image
interpretation and eliminate errors in sensor modeling and camera calibjradpn
However it does present gsificant challenge to controller design since the process is
nonlinear and highly couplef43], which will cause some irregular pointsthre control
system ad make the whole control system unstablewever,in PBVS, the pose of the
object is estimated, thus the control law is simple and dikestertheless, because of the
computational error and time delay PBVS, the accumulation of physical error the
mechanical part of the systeor evenoscillation near the optimal solution point can

occur[45].
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2.3  Configuration of camera in visual servoing

In the visual servoing system, there are two basic configurations of cameras. One is to
install the carara atthe tip or endeffectorof manipulator (ge-in-hand) the other is to
set the cam@a and manipulator separately¢go-hand)[45]. According to the number
of cameas used for visual servoingt can furtherdivided into single cameravisual
servoing[46], binocular camergisual servoingtwo cameras)47] and multiple cameras
visual servoing

A camera ineye-to-hand configurationcan be mounted remotelyith a fibre optic
bundle which isused to carry the image fratime neighbourhood dhe endeffector Due
to the smallsize andow cost of modern CCD camerahis approach is not particularly
advantageouf4]. The bemefits of eye-in-handconfigurationinclude the ability to avoid
occlusion, resolve ambiguity andicrease accuracyMany reported visual servoing
systemsuse eye-in-hand configuration exceptwhere there isa reasonthat a camera
camot be mounted on the eradfector, e.g., practical constructions such as payload
limitation or lack ofrobustness of the camera systeandan overhead cameiaang
occluded by the grippeduring the final phse of acqusition [48].

In the largescalerobotic manufacturing systesnthe robot engkffectoronly movesin
the vicinity of the desired position and the targetaturesarechosenfar away from each
other[49, 50]. Therefore, tk conventionatonfiguration of camerasannot deal witlthe
cases mentioned abovendit is obviousthata new configuration of cameras is worthf

investigaton to address ik challenge
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2.4 3D pos estimation

In a visual servoing system, the distance between the camera and feaiyeeis
frequently referred to as depth or rarj@8]. The camera contains a letatformsa 2D
projection of the scene onto the image plane where the sensor is located. This projection
causes the loss of direct depth information, and each point on the image plane
corresponds to a ray in 3D spadderefore, eme additional information is neetl¢o
determine the 3Dpoint corresponding to an image plane poaimtdesigninga visual
servang system This information may come from the multiple views or knowledge of
the geometric relationship betweenvseal targetfeaturesIn the visual servoing sstem
design at leasthreetargetfeature points can determine the pose of the taigjett with
respect tothe cameraframe and providing goodtarget feature is a key step As
evidencedn previous researchhére are many methods to provide goaxet features
on the scenee.g.,a pattern of light is projecteohn the sceneBy using a singleamera
vision system, a laser pointer provides a light spot to follow the planar c¢aturRyo
Furukonwa use a laser projecterwhich projects a stripe of light to the measured 3D
scene by hanfbl]. An image featurés generally definecs any measurable relationship
in animage, and examples include image momenit® relationship between regions or
vertices, polygon face aredscal intensity patterngtc Mos commonly, the coordinates
of an imagefeature point or a region centroid are ussdmage featureé\ goodimage
feature point is the one that can be located unambiguously in different views of the scene.
After good image feature points are obtained Bn image plangthere exist many
approaches to get 3D space information fr@@D image plane irthe visual servoing

system. The main approaches relevant to visual servoimglude ghotogrammetric
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techniqueg[52, 53], stereo vision[54, 55], depth from motion[56], and depth from
dynamicq57, 58].

Photogrammeyr is the science of obtaining information about physical objects via
photographic pictures. The perspective imaging model of the lens and sensor is
characterized by two sets of parameters, referred to as intrinsic and extrinsic parameters.
The intrinsic peameters include focal length, pixel scaling factor and the coordinate of
the optical axis on the image plane. The extrinsic parameters specify the pose of the
camera in the base frame. Camera calibration is the process of determining these
parameters, whkh are generally expressed in the form of a 3 homogeneous
transformation matrix, known as the calibration matrix. The inverse problem, camera
location determination, is to find the camera pdsesed orthe relationshipof image
feature points and the tnhmsic calibration parameters. The cited drawbacks of the
photogrammetric approach are the complex computation, the necessity for camera
calibration and a model of the targebject. Thesystens based on thehotogrammetric
principle have beedemonstrated using iteratiagorithis [59], Kalman filtering[60]
and analytic solutia|[5].

Stereo vision is the interpretation of two views of the scdrmant&com known different
viewpoints to resolve depth ambiguity. The locationasfjetfeature points in one view
must be matched with the location of the saargetfeature poind in the other view.

This matching, or correspondenpeoblem is not trivigl and is subject tonodel error
Another difficulty is missing parts, wheretargetfeature point is visible in only one of

the views, therefore its depth cannot be determifed.
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Depth from motion is closely related to stereoions Sequential monocular views
taken from different viewpoints are interpreted to derive depth information. Such a
sequence may be obtained from a radgtin-handcamera during robot motioit. must
be assumed that targiaturesin the sceneemain static during sequence acquisition
[61].

As for depth from dynamics, many reported experiments utilize fixed catasyat
distance. It is perhaps due to the focus eptd of field problems. The closéabp
trander function of an imagéased ge-ini hand visual servoing includes a gain term due
to perspectivg62, 63, 64], loop gain, and thus the closkxbp response is a function of
the distance between the eefflectormounted camera, and the target feaiure
Conversely, the identified closédop dynamics can be used to derive an estimate of
depth from a single point. More usefully, adaptive control or atselhg regulator
would maintain the desired dynamic responsetaget distance changed, and the
parameter values would be a function of taaigectdistance.

In addition, here are a variety of visidoased depth cues including texture,
perspective stereo disparity, parallax, occlusion and shading. For a mgowbserver,
apparent motion of features is an important depth cue. The usdtgilencues, selected
according to visual circumstance, help resolve ambiguityThe gproackessuitable for
computer vision are reviewed by Jari&®]. Nonetheless, the estimation of depth is still

a main challenge ithe design ofiisual servoing systems.

2.5 Image feature

In IBVS, the geometricfeaturesof imagesuchaspoints,segments or straight line8][
are usually chosen asnage features and are utilized as the inputs ofisual servoing
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contollers. Howevertheseimage features can only be applied isomelimited target
objects[7]. Also, the geometric feature$ theimagemight be occluded from thHeOV of
the camera. Therefore, the colafe geometric image feature cannot be extracted
properly.For instanceif the four corners ofheimage of arectangulatargetobject are
considerechsimagefeaturesone or two corner pointsiay be coveredy the intruding
or unexpected object, suchthe workpieceor a human handluring the operation ahe
system In this case, the number mhagefeatures doesnot matchwith that ofthedesired
image featuresvhich may lead to the failure @fsualservoing.

Recently,to track the objectshat do not have enough detectable geometric features
and toenhancehe robustness of visual servoing systems, several targelt featureare
adopted for visual servoingor example, laser poin{§5, 66] andthe polar signature of
an object contoui67] are used atrgetfeaturesin IBVS. Thus, the corresponding target
features are used as image featurethi®visual servoing system.

The image momestarenormally used for patterrecognition in computer visiof23,
28, 29|, and have been adopted for control scheme design dueittogeneric
representation of any objeict animage plangwith a simple or complex shagd8&Q]. In
addiion, image moments can be computed easily feobinary or segmented image or
from a set of extracted points of interest, disregarding the object shape complexiy. Low
order moments have an intuitive meaning, since they are directly related to thearea, th
centroid and the orientation of the objectheimage plane

In [22], a set of image moments hiasen proposed asiagefeatures. Based oimage

momentinvariants to 2D translation, 2D rotation, and scale, twonage features are

selected to contraks the rotational velocity arounthe x axis and W, the rotational
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velocity aroundthe y axis for noncentered symmetrical objecttlsing the mage
moments asimage features in visual servoingenders the corresponding image
interaction matrix witha maximal decoupled structuréherefore the inherent problem
singularity of the interaction matrix is avoided amehcethe performance ahe IBVS
control systems improved. Nevertheles#)esetwo image featuresannot be used fa
cental symmetrical objectsmage planesince the elements dhe interaction matrix
relaed to these twonage featurgare zero when thglanar targebbject is parad¢l to the

image planeof the camera In this case, thdasttwo image featuress,, S, are proposed

to control the rotational velocitieg, , W, for symmetrical object& theimage plane and

to avoid the singularity ofhe interaction matrix. Howevethe simulationresultsshow
that the last two image features for centered symmetrical objects usg¢@dZjncamot
represent the pose tfe object corectly all the timeln thisthesis two improvedimage
moments related ttargetobject pose rotating arourte x andy axesrespectively are
proposedfor cental symmetrical objectsn the image plane The interaction matrix
describing the relationship between the motiorthefcamera andhe variationsof the
proposed imagéeatures is derived and thelBVS controler is developedasedon the
derivedinteraction matrixThe effectiveness of the proposeéthod is demonstrated in
the experimental resultsy a 6DOF robotvisual servoingrackingsystem

In [28], O. Tahri and F. Chaumette propds®e select the pair ofmage moment
invariants such that theimage moment errorpresentsthe global minima with an
influence zone as large and symmetrasipossible. This offline selection process has to

be performed for each new object considered, once the desired image is adtjisred.

noticed thatin the interaction matrices o2, 28], the rotational velocity, andw, are
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still not decoupleccompletely Hence how to choose two new image featdioesoth

central symmetical and nomymmetricalobjects inthe image planeto decouple the

rotational velocityy, , W, and to avoid the singularity problem remains a major challenge

in visual servoing. Furthermore, in previous reseatbh depth of targeteaturesis
assumed to beonstant[21] or can becalculated from the planar object equation
expressed irthe desired positiorf22, 28]. This assumption simplifies the mathematical
devebpment and such an approximateat#gyis generally accurate enough practice
because of the robustness of the visual servoing scheme to modeling 28ors [
However, for large displacementobotic visual servoingtracking systens, this
assumption will cause computatarerror and possible singularity problenwith the
interaction mati. Therefore, estimating depth ime can improve the accuracy tife
interaction matrix and hence the visual servoing performance.

A neural network has a very strong abilityfor generalization and has been widely
applied in function approximation and data compression, prediction, nonlinearities
compensation, et¢68, 69, 70, 71]. Recently it is used in visual servoing systems. In
[72], anew sel-learning contrder of robot manipulator visualervoing system witeye
in-handconfigurationto track a movingobject is presentedvhere neural networks are
involved in making a direct transition from visual jmint domain without requiring
calibraton. Neural network pproactesarealso adopted to learn tihelationship between
the world coordinate information antie image informatiofi73]. In addition, he neural
networkis trained offline and useshline to provide depth infarationof visual servoing

[74]. In thisthesis to decoup the components ithe interaction matrix corresponding

tow,, W, , two NN-basedmagefeatures, which areproportional to the rotational angles
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aroundthe x andy axes ofthe camera frameespectively are proposed. A NN is
designed to estimate thetationalanglesof the target objecaroundthe x andy axes of
the camera frame. The interactionatricesrelated to the proposeadage features are
determined based on the estimation respiitNN. In additin, the depth othe planar
shapedobject is derived tdurther improve thecomputational accuracy of theverall
interaction maix and to ensure the global stability of thsual servoingystem

In summary, in visual servoing fieddthe main challeges focu®n three aspects. One
is how to choose theonfigurationof cameras in visual servoing systeriitie second
challenge is dggningvisual servoingschems. The last one is howhetarget features in
3D world spacecorresponding tomage featuresn a 2D image planean be obtained
with some additional information. T last challenge is closely related to the
determination of depthlhe simplest form of visual servoingvolves robot motion in a
plane orthogonal to the optical axis of the camerad @an be used for tracking planar
motion such as a conveyor bEI5]. This visual servoing system inspires us to thimét
if the depthof the image features in visual servoirggknown duringthe visual servoing

processit will be conveniento desigrthe visual servoing controller

2.6 Summary

This chapter gave the literature review emsual servoing Additionally, the
classification, history anthe current statef-the-art of visual servoingvere presented.
Also stated werghe main problems that the researchers in this field are currently trying
to solve.Lastly, three majorchallengedo visual servoing arelentified The subsequent
chapters in this thesis are organizedatlress thee challengesn the research area of
visual servoingFirstly, two novel multiple camera configurations of visual servoing for
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largescale robotic manufacturing are propogeavhich the depthsof target features are
constant or can be determined onlinBecondly, ér the robotic tracking systentwo
improvedimage momentswhich can correctly represetite pose ofthe targetobject

rotating aroundhe x andy axes of the camera frameaespectively are proposedor

cental symmetrical objects image plang In addtion, to decouple,, W, the rotational

velocities aroundthe x andy axesof the camera framg& two NN-based image features
referredto as virtual image featuresre designed to bproportional to the rotational
angles arounthe x andy axes ofthe cameraframe The depth ofa planarshapedarget
object can be determined online. Hence, #mntrol performance ofobotic tracking

systens is improvel remarlady.
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CHAPTER 3 MULTIPLE CAMERA VISUAL SERVOING USED

FOR LARGE-SCALE 3D POSITIONING

3.1 Introduction

In this chapter a multiple cameravisual servoing system is proposed for lasgale
roboic manufacturing systems ithe aerospacendustry The system uses eye-hand
architecture to perform visual servoiagshown inFigure3-1. The system consists af
6-DOF robot, a 3D CAD laser projector, four aligned camerasd four projection
screens. The foualigned camera$l(0] and four projection screes are attached toa
bracket, whichs fixed onthe robot endeffector.A 3D CAD laser projectois installed
on therobot baseframe, whichcan project computeimagesand provide four target
feature pointson the projection screens The cameras arased tocapture thetarget
feature pointon the projection screens anbtain poseinformationof the workpiecein
any position of the visual servoingprocess This configurationensuresthat all target
featurepointsarevisible forthe certainlimit of movementaroundthe desired positiorof
the robot endeffecta. It is noticed that athe desired positigrthe laser beam®main
stationaryon therobot base frame and the depthstloé target feature points on the
projection screens,e., the distansebetweenthe camera cemés and the projection
screensare constantluring the visual servoing proces3he objective othis research is

to drive hie workpiece to the desir@asition from any initial pose.
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Figure3-1 Multi ple camera with alaser projectorobot visualservoing system

In Figure3-1, thecoordinate frames and transformation matrices are defined asgollow

{B} denotes robot base fram{g} denotes robot endffector frame, angC} denotes
the frame of camaeri (i =1,2,34). oI is the transformation matrix froiE} to{B} and

CEiT Is thetransformation matrix frodC} (i =1,2,3,4) to {E} .

3.2 Visual servoing control law

3.2.1 Desired image feature coordinates

As shown inFigure3-1, p(X,,Y,Z) is the coordinate athe laser projectorcenterin
the robot base frame p,,(XonYerZow) »  Poo(Xom YorrZos) » Pos(Xoa Your Zos) and
Po.(Xoa: Your Zos) are the intersection points tife laser beams andgjection screenat
the desired positionThe image features 0101, Poz, Pos and py, are f,,, f,,, f,; and f,,
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respectivelywhich are located ahe centresof theimage planes ahecamerasand used
as the desired image features at one working posjteferred toin Figure 3-2). The

vector of the desired image featuredésioted asf,, :[fOT1 fo, fos f0T4]T
3.2.2 Local desired image feature coordinates

Laser beam

Projection screen at

current position

Projection screen at
desired position

Figure3-2 Local desired image feature

If the robotendeffectorhasa pose error arounthe desired position, thargetfeature

points which arethe intersection points ofhe laser beams and the projection screens,

will move along the laser beam to the npuints p,, p,, p, and p, respectively.
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Hereafterthelocal desired image featurg, (x,;, y,) at an instant is defined #seimage

of p (i=1, 2, 3, 4)in the image plan®f the camera when locating at the desired

positiors. At oneworking position, thgparametricequations of the laser beaepressed

in therobot base framean be defined as

exX = Xux+X,(1- x)
i Y=Y, x+Y (1- X) (i=1,2,3,4)
P Z=Z4x+2,1- x)

where x(2 0) is a parametricvariable defining the relative position with regard to
p(X,,Y,Z) and p, (X, Yy, Zy) - Figure 3-2 shows f, (x4, Yy,) the local desired image
feature in the image plamd camera 1The parametric equation tfelaser beamp, p,,is

rewritten as

X = XoX + X (1- X)

1 Y=Y x+Y (- x) (x20) (3.1)
P Z=2Z,x+Z,(1- x)

In Figure 3-2, BlT is the transformation matritom camea 1 frame{C} to the robot

base framgB} and CiT is the transformation matrikrom frame {C,} (cameral

frame{cC} inthe desiregbositior) to robotbase framg B} . So the transformation matrix

from robotbase framg B} to cameral frame{c;} andto {C,,} aredenoted as follows

GT=ST 7 =ET(@ET) =ET T (0) (32)
T =T =@ (@) =ET 8T (@) (33)
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where ET(q) is the robot kinematic matrix or transformation matfimm robot end

effector frameg[E} to robot base framéB} ; q is the joint variable vector of roband(,

is the value ofj at the desired position.

Let [Xq Yo, Z 1]T be the homogenous coordinatescamera 1 framec;} of any

point onlaser beamp, p,,. Oneobtains

Xe Y. zo =ST[x Y z 1 (34)

Substituting 8.1) and 8.2) into 3.4) yields

2)(01 S ¢X01X+ X@-x
e
éYCl g ET-18T -1(q)éY01X+Y|(1 - X
€z, 0% ézprz -y (35)
z e
€1 # e 1

Hence he parametric equation of p,, expressed in camera 1 franpe} can be

obtained by takinghe first three equationef (3.5). It is noticed thaltocal desired point

p, is the intersection point of laser beapp,, and the projection screen planein
addition any targetpoint onthe projectio screen plane in the camera 1 frajug

satisfies

Z. =1, (3.6)

where Z, is the distance between the camera center and the projection ptasen
Substituting 8.6) into thethird equation in3.5) and solving this equatidior x, onecan
obtain x=x, . Thus, substitutingx=x, into (3.1), one immediately obtainghe

coordinates of intersection poip} expressedn base fram¢B} as follows
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ex; =X+ X (1- x)

1Y, = Yo +Y (L x) (3.7)

Il Z,=ZyX +Z,(1- Xx)
From @.3) and 8.7), the coordinates of intersection poigtin camera 1\Whenlocating

atthe desiregbosition) frame{C,,;} arecomputedas follows

é,X01 1\3 X@l.xl"' X1 (1 - %9

e u

éY01 o ET-l B-I- 1(00) @(l-'- Y(l - %9 (3.8)
€Z, U “F Zgx,+Z(1 - ¥

e u e

él ¢ e 1

Hencethelocal desired image coordinate the image plane of cameracan bereadily

compuedas follows

T

ex,a e/ /| o
fu=¢é 0=é X0 5 Youw
gyle &2, Zy, 4

where / is the focal length dhecamera Z, isthe depth othelocal desired point which

is equal tothe distance between the camera ieand the projection scregoane

Similarly, one has

Lol i sueer, 14

- - e = u - - e5 P u

“ gdeH &2, . Z, 020 @ gdeH &2, > Z, 030
X0 &/ /g

foa =6 0= é5 Xos = Youul

o gyd4H &2, > Z, 04[’]

The vector ofocal desired image featuresdsnotedas follows

fa = de1 de2 de3 de4]T (3.9
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3.2.3 IBVS Control law

Let #:[v,; WE]T=[VX v, Vv, W W, WZ]T and
ng:[v; W;]T :[vQx Voy Voo We, Wg, WQZ]T be the velocity screw ofthe

robot endeffector and the velocity screw of camera (i=1,2,3,4) respectively The

velocity transformation matritkom {C} (i =1,2,34) to { E} is denoted as

ET _é,cl,ER EPQSC,ERQZ é,CI,ER Sk(EPc,)qER?

= 3.10
Mo Rpg0 R .

where CiERis the rotational component ofhe transformation matrixand EPCi is the

translational vector frojE} to {C}, i.e.,

&v.g €°R sk(°P.)FRev. g
& =€ e 08 3.11)
g g0 <R %
Hence, we have
-1
Ve 8 e R sk(°P.)cR% &v. o
é "= ec‘o EcléQCI u é Eu (3.12)
ey é c g &%

Letf =[x v, (=1, 2, 3, 4 bethe image featureandf’ =[%¢ #[', (i=1, 2, 3, 4)
bethe corresppdi ng | mage ieslais assumedahaty, @) acecscaling
factors of the camerandare constantn orderto simplify the computation without loss

of generality. The transformation betwe€k ,y,)" and the pixel indexef V)’

depends only on the intrinsic parametdige following relationship between tineotion

of image features and the physical motion of casleodds, i.e.,
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ﬁ# = Jimage( fi Zo )% (313)

where Jimge(fi Zo) is the interaction matrix and Z, is the depthof the local desired
point

For eacimagefeature poin()g y,) , theinteractionmatrix is givenas

e/ X Xy, IP+x @
& 0 7z ;T
‘Jimage(fi ZO): é 0 0 2 2 g (314)
e 0 L _ L - /7 - Yi XY X l:l
8 0 ZO / / H
Substituing (3.12) into (3.13), one obtains
8ER sk(°P.)FRd v, &
ﬁ: ‘Jimage( fi ZO) éCi k( ECi )Q l:l g i SZEJimg ( fi ZO )gVE 8 (315)
g0 cR g &%u A

eER sk(P.)fRg
&y e U
60 oR g

WhereEJ(fi ZO):‘Jimag(fi Zo)

Let f:[flT £, f] f4T]T be the vector of the image features and

#:[Ffr 7 Fﬂr be the vector ofthei mage f e at uesgedisely.Byel oci t
stacking theinteraction matrices of four camerasone obtairs the overallinteraction

matrix as follove
‘]image(f ZO): [E‘]image(fl ZO) E‘Jimage(fz ZO) E‘Jimage(fs ZO) E‘]image(f4 ZO)]T (316)

Hence, the relationship between thelocities of image features and the robot end
e f f eswdoatysérewis
F=d,.df Zo)# (3.17)
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Thustherobotende f f eswelooty sGrewis expressed as
#=Jr.df Z)F (3.18)
where J;nage(f ZO) is thepseudo inversmteraction matrix
If f, denoteghe vector ofthelocal desired image featurethe error function is defined
ase(f)="f- f,. We impose# f) =- Ke(f), thusthe visual servoingcontrol law is
given by

#=- K T Z,)e(f) (3.19)
whereK is the proportionagain, whichtunes the exponential convergence rate toward

f,;.- The control block diagrans shown inFigure 33.

f e(f - # oy ! q
d + () Multiply | | K Inverse Robot |~ | Robot
matrices Jacobian controller
-l T
Interaction
. < Camera
matrix
Estimate Local [
desired image Robot
feature < kinematic

BT
fol

Figure3-3 The block diagram of IBVS with multiple cameras

In Figure 3-3, &, is the robot joint velocity in joint spacndis determined byhe

visual servoingcontrol law { is the command vectdor joint torques sent by the robot

controller
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3.2.4 Robot dynamic controller

It is noticed that th@bovementioneddesign ofthe visual servoindaw only focuses
on the kinematics athe robot without taking the dynamics tfe robot and workpiece
into consideration. In other words, the robot is considerednaisieal manipulation
mechanismThis approach is widely agted in most visual servoing systemhere the
payload ofthe robot is rather small. However, in the proposed lagme robotic
manufacturing systems, the size of workpiece is largéthe dynamiacharacteristics of
robot systemshave asignificant effect in determining performance limits and control
specificationg76]. Thereforethe dynamics of robot and workpiece cannot be negligible.
In this part, thedynamic modebf the robot manufacturing sysmis consideredandthe

robot dynamic controlleis designed.

3.2.4.1 Dynamic model ofthe robot manufacturing system

The dynamic model otthe roboic manufacturing system can be divided into two
parts. One is the robot itself and the other is the workpiece tp&uvisual servoing
system or called environmef?7]. For therobot, the general form of-jint robot

dynamics in contact with the environment can be writtd7&s

M (a)&#+ C(a, epef+ GeF+ G(q) =1 +7, (3.20)
where q is the vector of robot joint variableM (q) is a positive definite, symmetric
inertia matrix;C(q, &) is a vector grouping the Coriolis and centrifugal joint toqu&e
is a \ector grouping the dissipati&iction) joint torques;G(q) is a vector grouping the

gravity joint torques;f is the command vector for the joint torquesjs the vector of
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joint torquescorrespondig toan external wrenchv, applied by the environmento the
robot.

To determine the wrench, applied onthe robot endeffecta by the enviroment, the
gravity and inertia force acting on the workpiece are corsid&o compute the inertia
force acting on the workpiece, the rotational veloaityl acceleration dhework piece
as well aghelinear acceleration of the center of masshefworkpiece have to be known
at any given insint in visual servoingThe dynamic model athe workpiecewhich is
held by the robot endeffector, is shown inFigure3-4. In Figure3-4, {E} representshe
robot endeffector frame. The ufeft superscriptn variables indicates that the vector is
expressed irthe corresponding frame, e.diy, and “i#, denote therotational velocity
and acceleration ofhe robot endeffector respectivelyexpressed in fram@g} . The
frame{C} presents the workpiece frame, the cewnf which is at the center of mass of
the workpiece. The lineavelocity and linearacceleration of the origin of fran{ec}
expressed in framge} is denoted asSv, and ®¥ respectively The transformation matrix
from {C} to {E} is denoted asT, which is determined bythe system configuration.

Based on joint variable, joint velocityet, and joint acceleratio#f, the linear velocity

fv,, linear acceleratioh#, rotational velocity "1, and rotational acceleratiori#, are

computedas follows[79]

(%]

Yo y= () (321)
e
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where J(q) is robotvelocity Jacobian matrix; v, and ®u, are the linear velocity and

rotational velocity of the robot endeffedor respectively.Differentiating (3.21) with

respect to time, one obtains

(3.22)

E

S8

S 0= Hayd+ I (g

D D

E

&
oo

Equation(3.22) isused to compute the linear acceleratighandrotationalacceleration

i, of therobotendeffector in thisthesis

Figure3-4 Robot and workpiece dynamic model

Hence the linear acceleration of the origin ¢iC} expressed in framgg} [79 is
expressed as

S =Fvt+E 2 (g T EC)+Fiy3 EC (323)
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where “Ec is thetranslational vector expressed in frarge

U =CR =(FR)" ¥ (324)

where“¥ is the linear acceleration of the origin {a} expressed in framgc}, SR is
the rotational matrix from framgg} to {C} . Therobotendeffector holdshe workpiece
andboth ofthem move togethein the visual servoing processienceframes {E} and

{C} have the same rotational velocity and rotational acceleration, i.e. "= n ,

€ =E i hold.
“w=eRw, =(cR) i (3.25)
“W=cRE W =(cR)" i (3.26)

In such a situationSF, the inertia force acting at the cembf the mass othe workpiece

and °N, the inertia moment acting on the workpiece can be computed as follows

F=-m"# (3.27)
°N, = 1+ m3 1wy, (3.28)
wherem is the total mass of the workpiece dndis the inertia tensor of the workpiece

written in the framgC}, the origin of which is located at the cendf the massof the

workpiece Furthermoreiit is noticed thatthe gravity ofthe workpiece is a constant
vector in the robot base fram@} . Thus, the effect of the workpiece gravity an

instartaneus momenbf visual servoing can beddresseduite simply by expressg the

gravity vector in the fram¢C} and addingt to the inertia force vector. The gravity
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vector of the workpiece can be expressed in the robot base frame} as
®mg=[0 0 - mg[", andone obtains

“mg=ER mg=ERER"mg =(ERER"[0 0 - mg" (329)
where R is the rotational matrix from framgs} to {c}, g is gravity constanfThus the

total force actingonthe origin of the framgcC} , is expressed in the frame} as

CI:e:CFi +cm_g
The forces and torques appliedita robotendeffectoror at the origin of the frameg}

are obtained bysingtheforcemoment transformatiomatrix[79] i.e.,

[EF - Me]T =cT, [CFe c Ni]T

e

(3.30)
é R , . .
wherefT, =¢._ is theforceemoment transformatiomatrix.
g EC2R £R
Equation(3.30) canbe rewritten compactlgs
w=ET [°F, N (331)

The force transmission model can be obtainedyylying the virtual power principle

[79). As a matter of fact, one has

te=J7(a)w, (332)
wheret, is the vector of joint torques corresponding to the external wrepeipplied

by the environment tdhe robot endeffector andJ™ (q) is the transpose dhe robot
velocity Jacobian matrix.
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3.2.4.2 Robot controller

The structure oftte robot controller is shown igure3-5. In Figure3-5, d,, & and
# denotethe desired joint angle vectahe desiredotationa velocity vector and the

desiredrotational acceleration vector respectivelfhe desiredotationalvelocity &, is

actuallygeneratedby thevisual servoingontrol law(3.19), i.e.,

d =- K3 (0) Iy T Z)fe (3.33)

where J-*(q) is the inverseobot velocityJacobian matrix.

To control the complicated system like3@20), the partitioned controller schenfiéd] is

adopted:

t=ati+b (3.34)
where! is the vector of the jointorques applied to robot jomtz i is the vector othe

joint torquesrepresenting the servo paeg = M (q); 4 denotes the compensation part.

Workpiect
dynamic ¢
model
— q
a=M(q) Robot mpp o
Robot Dynamic System

&

[ b=Clo. @+ G+ - £,
| % T

|
|
+
|
|
|

Figure3-5 Robot controller
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b =C(q, &)+ G+ G(a) - 7, (335)
where M (q) is the computational inertia matrix of the robGt{g, &) is a compensation
for Ciriolis and centrifugalG, and G(q) are the compensations for the friction joint
torques and the gravity respectivefy,is the compensation tq the torque applied by

the robotto the environment. From the robot dynamic controller diagaownin Figure
3-5, the compensation past calculated as
ti=¢f +K #+K e (3.36)

The robot dynamic control lais designeds follows

£ =M (@)t +K,8+K,8) +Cla. @+ G+ G(o)- 7, (337)
where ¢ is the desiredotationalacceleration vectork , is the proportional coefficient
matrix andK, is the differential coefficient matrixhoth of which are diagonal positive
matrices;K  is the errorof the jointvariable and &=¢, - ¢ is the error of thgoint

rotationalvelocity vector.

3.2.4.3 Error analysis

Substituting 8.36) and 8.37) into 3.20), if additionally, the compensation terrisat

are calculated bythe Robotic Toolbox[80] are supposed to be precise enough, i.e.,
M () ® M(a), C(a.4) ° C(0. ), G ° G and G,(q) ° G,(q). one can obtain

ti=g M), - t,) (339)
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Using @.31) and 8.33), it is quite easy tshow that the closeldop system is

characterized by the error equation

g+ K g+ K e=M ' (QF, - t.) (3.39)

It can be inferred from the positive definitenesskofand K, that (e, ¢ = (0,0) is the

global asymptotic sible equilibrium poinf79]. Furthermore, in the proposed largeale
robotic manufacturing systesnit is assumed that the robot eefflector moves in the

nearbyvicinity of its desired positionHencethe variation ofM (q) can be negligible and

the equation3.37) can be simplified by settizg © M (q) as follons

g+ K g+ K e=M'(f, - t,) (3.40)
where M is aconstant real symmetric matrix.

Moreover, q, , &, , & are constantand the desired kinematic parameters keep
updating in the iterations of visual servoirtigenceq, ¢, & will approachq,, &, , &

respectively which implies that the visual servoing system can reducentiage erroy

i.e., the robot can converge to the desired position. Meanw(ile,?.) actually

represents the error of tllynamic model othe roboic manufacturing system anidhas
a significant effect o the steadytate followingerror intheiteration ofvisual servoing

Setting the deriatives to zero in equatio.B6) yields the steadgtate equation

Ke=M"*F,-t.) ore=M*{F,-t)/ K, (341
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Thusit is clear that thersaller (7, - £,) is andthe higherK , is, the smalletthe steady

state followingerror will be in the iteration ofvisual servoing. In order to reduce the

steadystate followingerror and avoid oscillating of the followirgyror, oftenK , is set

to the desired closed loop stiffness afg= 2K‘p1’2 for critical damping.

Form the abovanalysis it is clear that thelynamic model ofoboic manufacturing
system causes the joimobtational velocity followingerror in visual servoing, which
means tht the enekffector velocity screwis different from that determined by the
equation 8.17). Hencethe simple proportional visual servoing control lgiven by(3.16)
cannot besatisfied, whichimplies that the trajectories of the image features in image
frames are not straight lines even tifie proportional gai K is a scalar constant. The

dynamic modelerror of the robat manufacturing systenor (£, - £.), may lead the

trajectories of the image featsrie image frame to be more complex curves.

3.2.5 Control algorithm

The robot control system consists of two control loops, whichhergisual servoing
control loop and robot control loop. The control algorithm is summarized and shown in

Figure3-6.
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extracting the image features
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Compute the local desired image feature
fa

A

Compute the interaction matrix and the
task function of the image features
J fe=f- fy

image

Y
Compute end-effector velocoty screw

#=-KJ i:nage fe

W

A

the robot joint velocity in robot joint space

dy = 3 ()

Compute the end-effector real velocity screw

[Ev. Ew] = a0

A 4

compute the linear acceleration and the
Angular acceleration of the robot

B Ew] = Soa @u

h

compute the external wrench applied by
the environment to the robot end-effector

We

h

Compute the vector of joint torques
corresponding to the external wrench

o =37 (@)w,

t

e

A 4

The robot dynamic control law

t = M(q)(# +K,&+K ,€)+C(q, B+ G+ G(q) - 7,

t

h

-

Robot moves

’7

wheref

elim

is a threshold called task function precision

Figure3-6 The flow chart otherobot control algorithm

Simulation results

In order to validate the proposed scheme, the simukttona 6 DOF robotic

3.3.1 Simulation environment
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manufacturing system is carried outthee Matlab/Simulink environmentThe Robotic

Toolbox[80] is used for robotic dynamic control implementation. In the simulgt@i®




DOF Motoman UPJ is adapted in the proposed faogderobotic manufacturing systesn
Four Sony XC55 cameras are mounted @rtbot eneeffector or workpiece. The focal
length of the cameras/ is 6 (mm) and the scaling factor of the cameras is

a, = a, =13513&(pixels/m). The workpiece is ctangulabody with uniform density

X

shown inFigure3-4. The size of the workpiece is setlag.0 (m), w=1.0(m), h=0.1(m)
and the total mass of the workpiege2 (kg). The coordinate axes of framg are
coincident withthe principle axes oftte workpiece. Stheinertia tensor of the workpiece

written in frame{C} is

ém(I2 +h?)/12 0 0 8 &17 0 Ogpg
°l=¢ 0 (W +h?)/12 0 =0 017 o0}
g€ O 0 m(i*+w’)/124 g0 0 033

The coordinates (pixels) dhe desired image features the image planes of four
cameras after calibration are (320, 240), (320, 240), (320, 240(320, 240), which are
the centes of the image planes othe camerasrespectively The deptts of the target
feature points areset as 0.3 (m). The distance between camerds=1 (m). The
transformation matrices of the camera framéh respect tahe robot endeffector fame

arerepresented as follows

& 00 05g & 00 05g & 0 0 -05g & 0 0 -05g

u u u u

ET:go 10 0y ET:go 10 10y ET:gO 10 10§ ET:g) 10 0§
al =g G Gl T GG T g GG T ;
€ 0 1 -03u € 01 -030 % é 01 -030 % "é@ 0 1 -030
o0 14 o0 14 © 00 14 © 00 14

The coordinate ofthe 3D CAD laser projectorcente in the robot base frames

p, =(0,0.924.3). The coordinates dfargetfeaturepoints (inthe desired position shown

in Figure 3-1) in the robot base framecan be representeds p,,(0.50.420.3) ,
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P02(0.51.420.3), pys(-0.51.420.3), 3d Pos(- 0.50.420.3) . The transformation matrix

from the robot endeffector frame in the desired positida the robot base frame is

& 00 Og
: . 01 0 04 .
represented inhe baseframe & °T =€ U, In addition,the robot control
€© 0 1 03U
© 00 14
feedback matrices are st
@ 0 0 0 0 Og &6 0 0 0 0 Og
: u : u
0 900 0 0 0 600 0 Of
K_e:OOQOOOl:JK_QOOGOOO(J
PP 00900 " HOOE6 O O
€ 000 9 ou €O 000 6 0OU
e u e u
@ 0 0 0 0 9y @ 0 0 0 0 6y

The desired pason of the robot and workpiece is shown iRigure 3-7. In
simulations, lhe systenbehavior for different kinds of movement is investigated. In case
1, the initial position othe workpiece is above theedired position.n case 2, the initial
paosition ofthe workpiece is below thdesired position. In both cases, the initial position

erross includetranslational and rotational components.

-0.5
\\/-5

0 o2 0
‘04 06 o0g 05 X(m)

Y (m) 12

Figure3-7 Thedesired position atherobot endeffector
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3.3.2 Case stulies

Case 1l

The initial position ofthe robot endeffector frame inthe robot base frame

represented ithetransformatiommatrix as follow

€0.9903 - 0.1389 0.0099 - 0.037
_g0.1392  0.9842 - 0.1094 0.410;

® 7600055 0.1097 09939 0.312
€ o 0 0 1

Trajectory
0.4t Initial positior A

Figure3-8 Trajectories ofeferencepoints P1, P2, P3 and P4therobot base frame

—Image ‘feature tréjectory l flmage‘feature tréjectory l
400 ° Desired position | 400, @ Desired position
o Initial position ° Initial position
(332, 318) (346, 316)
0 300~ R 0 300~
[} Q
X X
% 200- (320, 240) % 200- (320, 240)
100~ 100~
100 200 300 400 500 600 100 200 300 400 500 600
u (pixels) u (pixels)
Camera 1 Camera 2
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—Image feature trajectory ' —Image feature trajectary ‘
400 : D_e_5|:'ed position | 40d -: :Du_e‘_sured p_?smon
Initial position (349, 329) nitial position (335, 332)

300 / 7300
[T} [3]
X X
% 200+ (320, 240) % 200- (320, 240)

100~ 100~

100 200 300 400 500 600 100 200 300 400 500 600
u (pixels) u (pixels)
Camera 3 Camera 4

Figure3-9 Trajectoriesnf theimage features the image planes

100
—ul
A vl
80 \u —u2
\R v2
\ ——u3
60 W v3
e —u4d
Error a4
(pixels)
40 \
T eveee oo s

5 10 15 20 25 30 35 40
Iteration

Figure3-10 Image errors itheimage plane

The trajectories of reference pointsthe workpiece irtherobotbase frame are shown
in Figure 3-8, which shows that the workpiece approaches the desiretigpofiom the
initial position1 in the 3D robot base framé-igure 3-9 shows that the trajectories of the
image features ithe imageplanes arealmost straight linedrigure 3-10 shows that the

errors oftheimage featureconverge to zero asymptotically.

Case 2

The initial position of the robot endeffector frame inthe robot base frame is
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represented ithetransformatiomrmatrix as follow:

€0.9781 - 0.2032 0.0448 - 0.076
_20.2074 0.9691 - 0.1338 0.405:

® 7600162 01401 0.9900 0.317¢
e

a 0 0 0 1
Trajectory
0.4+ ze m A Desired positior
Xe
0.2 - P3
Z (m) P1

0.2+
0.9 Initial position

07\\//0/{-5

0 02 04 06 08 10 12 0.5

Y (m) ’ X (m)

Figure3-11 Trajectories of points P1, P2, P3 and Ptherobot base frame

—Image feature trajectory ' —Image feature trajectqry '
400! ° Dg_swed position ] 204 ° Dg;lred position
© Initial position ° Initial position

~300- 300

2 (320, 240) 2 (320, 240)

X X

e &

S 200 S 200

10G- 100+
(329, 100) (357, 97)
100 200 300 400 500 600 100 200 300 400 500 600
u (pixels) u (pixels)
Camera 1 Camera 2
o Desired position o Desired position
40 —Image feature trajectory 40d ° Initial position
o Initial position —Image feature trajectdry

300 % 300
@ (320, 240) I (320, 240)
X X
e &
> 200 \ < 200~

100 (359, 126) 100~ (357, 128)

160 260 360 460 560 660 160 260 36Q 460 560 660
u (pixels) u (pixels)
Camera 3

Camera 4

Figure3-12 Trajectories in the image planes
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Figure3-13 Imagefeatureerrors intheimage plane

The trajectories of reference pointa the workpiece inthe base frame are shown in
Figure 3-11, which shows that the workpiece approaches the desirediggo$éiom the
initial position2 in the 3D robot base framé&igure3-12 shows that the trajectories of the
image features ithe image frame aralmost straight linesrigure 3-13 shows that the

errors of image featuseonverge to zero asymptotically.

3.3.3  Error analysis

The maximum image feature ersaf four cameras is calculated as follows

m: \/D‘Imaxz + D/I‘T‘Ic‘ilX2
In case 1,De = 0.38(pixels) and in case Be, = 0.42(pixels).

If position error in theobotbase frame iBx, the relationship betweebx andDe is

/ 2*a, = De(De = max{De, De,}

The positional error itherobotbaseframeis
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Dx = Dez, _ 0.15(mm)
/ g

where/ , s, , Z, are defined ir8.2.2and3.2.3

The simulation results show that the error of multiple camera configuratigisual
servoing forthe large scalerobotic manufacturing systens within 0.5(mm). It means
tha the propsed configuratiocan satisfythe need of largecale 3D positioningh robot

manufacturing systems.

3.4 Conclusion

The multiple camera configuration of visual servoingfor a largescale robotic
manufacturingsystem isproposedin this chapterThe visual servoingcontrol law for
floating targetfeaturepoints and a robot dynamic controlleare designedto drive the
workpiece to achieve the desired poBee simulaibn results vefly the effectiveness of
the proposedcheme and alswalidatethe feagility of applying the multiple camera
configurations to satisfy the neeflalarge-scalehigh precision 3D positioningystemin

theaerspace indusy.
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CHAPTER 4 MULTIPLE CAMERA -MULTIPLE TARGET
POINT VISUAL SERVOING IN LARGE -SCALE 3D

MANUFACTURING SYSTEMS

41 Introduction

In Chapter3, multiple camera visual servoing wi#tBD CAD laser projector forlarge
scale robotic manufacturing systemas proposed. Howevem this multiple cameras
configuration ofthe visual servoing systemt is noticed thata costly3D CAD laser
projector isused;the laser beams are likebgcluded bythe objects, e.g., robot arnand
the calibratiorprocesof the system igime consumingHence,in this chaptera multiple
camera- multiple target point visual servoing system is proposed where the expensive
laser projector is replaced by a set of LEDBe experimental setup of the systé&n
shown inFigure4-1. Figure4-1 (a) gives the system configuratiowhich includes a 6
DOF robot four digital cameras, LEDs, and workpie€ggure4-1 (b) shows the disposal
of the endeffector,camerasand workpieceThe user interface of the multiple camera
multiple target point visual servoing system is showRigure4-2.

The system aapts eyein-handarchitecturgo perform visual servoingyhich isshown

in Figure 4-3, four principle LEDs (p,, p,, p; and p,) are used to provide fouarget
points onthe robot base frameand the other four complementary LEDg @,, d; and

q,) are installed in vicinityof principle LEDs which are used to determine the depths of

the targetfeaturepoints Also a robot3D pose estimation amdsual sereing control

system is proposedhich consists of visual servoing and robot contreller
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Figure4-1 Multiple cameramultiple target poinvisual servoing systemexperimental
setup

69



5
s e | Ean] AR
—_—

w:ﬁ"w - FEATURE ERROR | “m FEATURE m FEATURE
— .  J— J—
T— [ W e :

Figure4-2 Visual servoing system user interface

A pair of LEDs (i.e., (0, &), (P, 9,), (Ps93), (p,q,)) should bein the FOV ofa

corresponding camera respectivétythe visual servoingprocess The complimentary
LED is on the lindinking two neighboring principld.EDs, and the distance between the
principle LED and the complimentary LED ithe samepair is much smaller than that
between twaneighboringprinciple LEDs (i.e., inFigure4-3, a<<d).The objective of this
research is to designwasual servoingcontroller to drive the workpiece tie desired
positionin therobot base fram&rom any initial poseln Figure4-3, the referencérames

and transformation matrices are defined as follds:denotesthe robot base frame,

{E} denotes the robot ereffector frame,and {C.} denotes the frame of camera
(i=1234) . T is the transformation matrix froiE} to{B} ~and ¢T is the

transformatiormatrix from {C;} (i =1,2,3,4) to {E} .
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Figure4-3 Multiple camerasnultiple target point visual servoing system

4.2  Depth computation

It is well-known that the interactionmatrix in IBVS involves the depths dfarget
featurepoints[28]. Hence, obtaimg the accurate depths tafrgetfeaturepoints online
remains one athe challenges for IBVS. In thipart an online depth estimation methaxl
proposed and a pose estimation algoritormmultiple cameramultiple target poinvisual
servoingsystemfor large scal@oboticmanufacturingystensis developed

In the proposedonfiguration,two neighboringcameras areised to determine the
depthof onetargetfeaturepoint, for instance camera 1 addare used to determine the

depth oftargetfeaturepoint p, with respect to camera 4, which is shownFigure4-3.
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If atargetfeaturepointis visible to both camerasmultaneouslyit is easy to determine
the depth by using the stereo vision methiddwever,in the proposedconfiguration
because th&our camerasare far awayrom each otheronetargetfeaturepoint canonly
be observed bynecamerai.e., p, by camera 1,p, by camera 2and so onln order to
determinethe depth ofa target feature point by stereo vision, onenust know the
coordinates of thenagefeaturepoint in twocamera image plane#\s mentioned above,
one cameraamot capture twofeaturepoints in its FOV,e.g, camera 1 cannot take

targetfeaturepointsp, and p, into its FOVat the same timeTo address this challenge,
the complementaryeaturepoint q,, q,, g; andg, are added into the system shown in
Figure4-3. It is noticed thaw, g,, g;, and d,are placedn the vicinity of featurepoint

p., P,, P;, and p, andlocated on the lines ob, p,, P.P., P;P,, and p,pP; respectively.

mgll U,

(U Vo) T50¥ 7 /

B s

Xy Xcq =
U / ¢ . L .
ye: y5:
S XCl‘—’W'i
Xa Ya Yea
Figure4-4 lllustration ofthevirtual image Figure4-5 Depth computation of

coordinate®f p, in the image plane of camera 1 target pointp,

72



In order to estimate the dep#) of featurepoint p, with respect to camera damera
1 and4 are used as one pair. Similarly, camera 3 and 4 are used to determine the depth
Z, of featurepoint p, with respect to camera 3, and so bmnEigure4-4, thedepth z, of
featurepoint p, with repect to camera 4 is taken as exampleto demonstratehe
procedureof depth computationn the proposedconfiguration, sincdeaturepoint p, is

out of the FOV of camera ifh the visual servoingorocessthe coordinates dheimage

feature ofp, in theimage plane otamera 1 cannot be s&rveddirectly by camera 1
Therefore complimentaryfeaturepoint g, is added in thevicinity of targetfeaturepoint
p,, both of which are within the FOV of camera 1 the visual servoingorocess It is
assumed thamp: (ugr,vpi) and m (ug,vg') denotethe image featuref the target
feature point p, and complimentary feature poing, in the image plane of camera 1
respectively. The complimentaryeature pointg, is located on the line op,p, and the
distance betweemp, and g, is denoted as®@ which is predefined by thesystemsetup.If
theimage plane of camera 1 could extéadjeenough which is calledhe virtual image

plane,theimage coordinates of thmage featuref featurepoint p, in thevirtual image

plane of camera 1 can be denotedmgs(u;:,v;:). According to the computer vision

[81], one has
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(gt -Upl) _ (d-a)

(ugll— u;:ll) a (4.1)
(Vi ~Vpz) _ (d-a)
(vgll— vgll) a (4.2)

Co—yG o @) Gl G C =S . (@) (GO
From @.1) and 4.2), one hasl! =u, = (U - ug) and v = v - S2 (V- V).
As shown inFigure 45, the coordinates ol‘n;l in {C,} the frame of camera, l.e.,

G G G
(Xprs Yo, Z,) are calculated as

Xgr =a, (Ug: - Up) (4.3)
Yo =@, (V! - V) (4.4)
zp =/ (45)

where / is the camera focal length, , a, are scaling factors of the camera dog, V)

are thecoordinatesof the image center point irthe image frame.ln the proposed
configuration four cameras in the system have the same intrinsic parameters. If the

image featureof targetfeature pointp, in the image plane of camera 4 is denoted as

mi(us?,vy?) , and the coordinates afi* in the frame of camera dre denoted as

Ci Cs 5Cs

(Xois YorsZ,0), One has

Xt =a, (U - u,) (4.6)
Yo! =ay(Vy: - Vo) 4.7)
zy =/ (4.8)

From the coordinate plan¥_, - Z., or X, - Z.,, as shownn Figure 45, oneobtains

[2]
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(Za- 1) _ L-(X3E-x54)
e 4.9)

4

where z, is the depth otargetfeaturepoint p, with respect to camera, 4ndL is the

distance between cametaand camera 4&£rom equations4(5), (4.7) and @.9), the depth

of featurepoint p, with respect to cameraid calculated as

Z, = (xCl/—LxC) (4.10)
Similarly, one has

Z,= (yE/—Ly‘;) (411)
Z,= (Xc3/ Lxcz) (4.12)
Z = ﬁ (4.13)

Equations 4.10) to (4.13) areused to compute the depthsfeaturepointsonline during

visual servoing.

4.3  Visual servoing control law

The objective of visual servoing is tesignthe visual servoing controller to drivibe

robot toachieve high precision posihing ofthelargescale workpiecd_et

#:[Evg “w] ]T :[vX , W, WZ]T bethevelocity screw of the robot end
effector expressed in the robot egfflector fame{E} and
3 :[V(T:i WCTi]:[vQX Voy Voo Wen W, WQZ]T be the velocity screw of the

camerai (i=1, 2, 3, 4) expressed irthe corresponding camera franj€} (i=1, 2, 3, 4).
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The velocity transformatiomatrix from thecamerarame{C.} (i=1, 2, 3, 4) to the robot

endeffectorframe{E} is denoted as

R EPC3CER0 e R sk(°P. )CERz
O ER g @O ER g

where SR is the rotatioral component of transformatiomatrix £T, and “P, is the

translatiol vector from{ E} to {C.} (i=1,2,3,9,i.e.,

efv,8_&;R sk(P)ERﬂeV

6 u=é" e < (4.14)

dw,, g0 ¢ R geWcu

Hence, one has

evczeRsk(P)ERraé,:v;a 415
E U e u .

eWcu @0 cR g éwyq

It is assumed thatf, :[>q yi]T (i=1, 2, 3, 4) representsthe image features;

:[# yg]T (i=1, 2, 3, 4) representsthe correspnding image feature velocities;
fo =[XUIi ydi]T (=1, 2, 3, 4 is the desired image features;
f, :[del fT f5 1| is the vector of the desired image feasyrerhich can be
obtained through system calibratidhis well known thata,, a, the scaling factors of

the cameraare constantthe transformation betwedwx, vy |" and[u, v ]  the pixel

indexesdepends only on the intrinsic parametdtss well known thatthe following
relationship between the motiontbkeimage features arttie physical motion the camera

holds
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f:ir)L = ‘Jimage( fi Zi )%, (416)
where .Jm.jge(fi Zi) is the interaction matrix. Br each feature poinitg yi), the

interaction matrixs computed as follows

e/ X Xy P e
& 0 7z ;o
‘]image(fi Z|)= ? ! ! 2 2 l"l (417)
€ /Y - IT-y XY u
0 - -7 X G
& Z / / / U
Substituting 4.13) into @.14), one obtains
-1
e*R sk(*P.)SRo éfy g efv. o
f:ir'L = ‘Jima e(fi ZI) éCi e U é ° U :E‘J' (f Z )é ° u (418)
g é O C||5R g éEM/e[:j image\ i i éEVVeu

&SR SKER,) R

£ -
where Jimae(f' Zi)_‘]image(fi Zi)go qER E

Let z=[z, z, z, z,|' be the vector of the depths ofeature points,
f:[flT fr f) f4T]T be the vector of four image featurecoordinates and

ff= [ﬁh ff ffr ffr]T bethevector of fourimagefeaturevelocites By stacking the

interaction matricesf four image feature®neobtairs the overalinteractionasfollows

Jraelf 2)=[F3ned f

image(l Zl) E‘J f

.
image( image( 2 ZZ) E‘]image(fa 23) E‘]image(f4 ZA)] (419)
Hence, the relationship between the motiontheff image features anthe robot end

effector velocityscrewis denoted as
=3, (f z)m

img

The endeffector velocity screw can lexpresse as
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#: Ji;age(f Z)#

where J; (f Z) is thepseudo inverse dgheinteraction matrix. If the task functiasf

image
the image features defined asf, = f - f, and we impose a simple proportional control
law

# = kt, (4.20)

Thus the visual servoing control signal is

#=- Ko {f Z)f (4.21)

e
where # is the enekeffector velocity screw sent tthe robot controller,K is the

proportional gain which tunes the exponential convergence rate tdyvard

The desiredoint velocity in therobot joint spacewhich is sent taherobotcontroller, is

obtained as follows
¢ = J (g (4.22)

where J(q) is theforward kinematic matrix otherobot.

4.4  The block diagram of the visual servoing system

The block diagram ofthe visual servoing control systemith multiple cameras is
shown inFigure 4-6, which includesthe visual servoing control loop anthe robot

dynamiccontrol loop.
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Figure4-6 Block diagram othevisual servoingontrolsystemwith multiple cameras

In Figure 4-6, the ¢, is the robot jointvelocity in the robot joint space, which is

determined byhe visual servoingcontrol law @.22) and{ is the command vectaf the

joint torques sent by the robot dynamic controllEhe design ofthe robot dynamic

controlleris referred tan CHAPTER 3

4.5  Visual servoingcontrol algorithm

The control algorithnis summarizedn Figure4-7.
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Initialzation
Kv va K p: felim

fd:del dez des de4T

A

Cameras take image and
extracting the image features

f=le7 6F &7

A

Estimating depth using the
equation
Z= [21 Z, Z3 Z4]T

z

Y

Compute the interaction matrix and the
errors of the image features
using equation

fo=1f- f,

A

Compute end-effector velocoty screw using
equation (19) and (20)
#=-KJ . (f Z)f

image'

#

A

the robot joint velocity in robot joint space
using equation (20)
dy =3 (¥

A

Compute the end-effector real velocity screw
[Fv. =w] =3

A

A

compute the linear acceleration and the
Angular acceleration of the robot
end-effector

[ =] = Sy 3w

A

compute the external wrenchw, applied by
the environment to the robot end-effector

W,

e

A

Compute the vector of joint torques
corresponding to the external wrench

fo=3" (qwe

7
‘Y

t =M ()(8 +K &+ K,€) +C(q, e+ G ét+G(a) - 7o

The robot dynamic control law

t

A

Robot moves

fe=(f- f4)? feim

wheref

elim

is a threshold called task function precision

Figure4-7 Flow chart oftherobotcontrol algorithm
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4.6  Simulation results
4.6.1 Simulation environment

In order to validate the proposed scheme, the simulation on a 6 DOF robotic
manufacturing system has been carried outhenMatlab/Simulink environmentThe
Robotic Toolbox 0] is used for robotic dynamic control implementation. In the
simulation, a E©0OF Motoman UPJ is used as the robot in the proposed-dagaie
manufacturing systesnFour Sony XC55 cameras are mounted on the robee#eactor

or workpiece. Théocal lengthof the cameras / = 6(mm), andthe scaling factor of the

cameras is2, =a, =13513%(pixels/m) FourprincipleLEDs (p,, p,, p;, and p,) provide

four targetfeaturepoints for visual seoing; and the other four complementary LEDRgS, (
g,, 9; andgq,) are used taleterminethe deptl of targetfeaturepoints online. All the
LEDs are installed in the robot base frameown n Figure 4-3. The geometric
parameters are set a&s=0.1(m), d =0.9 (m), and L=1(m). The workpiece isa
rectangulabody of uniform density shown iRigure3-4. The size of the workpiece is set
asl =1.4(m). w=1(m) h=0.1(m), and the total mass of the workpieae=2.5(kg).
The coordinate axes of fram@C} are coincident withthe principle axes of the

workpiece. The iartia tensor of the workpiece written in frafi€} is

&m(1% +h?)/12 0 0 2 &41 0 Og
°l=g 0 m(w? +h?)/12 0 =50 o021 o0}
€ 0 0 miZ+w’)/124 0 0 062

The desired coordinates (pixels)tbéimagefeaturepoints in four camera image frame
are (302.37 257.63), (302.37 222.37, (337.63 222.37%, and (337.63 257.63

respectively. The initial depth, is 2.3 (m). The error of the camera mdel is 5%. The
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transformatiomrmatrices of the camera fraswith respect tahe robotendeffector frame

are represented as follows

& 00 05g & 0 0 05 & 0 0 -05g & 0 0 -05g

u u u

ET_go 10 0§ ET_go 10 10 ET_go 10 10§ ET_go 10 0§
c! =z < ol T2Z c! Tz < cl T2 <
7@ 01 -030 % & 01-03 < é&O01-03 % "é&@o01-030
© 00 14 © 00 1 ©oo0 14 © o0 14

The transformatiommatrix of the robot endeffector frame inthe desired position with

respect tadherobot base frame is represented as falow

& 00 Og
U

BT:go 1 0 047
= é 0 1 03u
© 00 14

Thus the coordinates dhe target feature points in the robot base frame can be
represented as followgs, (0.450.47,2.3), p,(0.451.37,2.3), p,;(-0.451.37,2.3), and
p,(- 0.450.47,2.3). The desired position dhe workpiece is shown ifrigure4-8. In

addition, the proportional gais set ask =0.1; therobot control feedback matrices are

set as
® 000 0 Og & 00 00 Og
u u
gogoooou goaoooou
Kéoogooou é0060000|Thft reshold
=é u, v:é u. e Teatureerror resno
péooogool:J éooocsoog
0 000 9 OU € 0 00 6 OU
e u e u
@ 000 0 9 @0 000 0 6

f.um is setas 0.5 pixel in simulation studies.
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4.6.2 Case studies

The systembehaviorfor different kinds of movementis investigated. In case 1, the
initial position ofthe workpiece is above the desired ondtw workpiece and in case 2,
the initial position ofthe workpiece is below the desired onetb& workpiece. In both

cases, the initial posin error includes translationahd rotational components.

Ze P4
P3

0.5-| Xe

Z (m)

0 P1
P2

14

Y (m)

Figure4-8 Desired position ofherobot endeffector
Case 1

The initial position ofthe robot endeffector frame inthe robot base frame is

represented ithetransformational matrix as follows

€0.9903 - 0.1389 0.0099 - 0.037
o _g0.1392  0.9842 - 0.1094 0.4107

. _é—0.0055 0.1097 0.9939 0.312:

e
& 0 0 0 1

The control objective is to drive the workpiece to the desired posibamnthe initial

positions The simulation results are showrFigure4-9 to Figure4-11.
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Figure4-9 Trajectories of points P1, P2, P3 and Pthierobot base frame
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Figure4-10 Trajectories in the image planes
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Figure4-11 Imagefeatureerrors intheimage plane

Figure 4-9 shows that the workpiece approaches the desired position from the initial
position 1 inthe 3D robot base frame arkgure4-10 shows the trajectories of the image
features inthe image frame.Figure 4-11 shows tha the errors ofthe image feature

converge to zero asymptotically.

Case 2
The initial position ofthe robot end effector frame iithe robot base frame is
represented ithetransformationematrix as follows

€0.9781 - 0.2032 0.0448 - 0.076
_20.2074 0.9691 - 0.1338 0.405!

= 7600162 01401 0.9900 0.317¢

e
& 0 0 0 1

The control objective is to drive the workpiece from the initial position to the desired

position. The simulation results are showrrigure4-12to Figure4-14.
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Figure4-13 Trajectories in the image planes
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Figure4-14 Imagefeatureerrors intheimage plane

Figure4-12 shows that the workpiece approaches the desired positiontifieimitial
position 2 inthe 3D robot base framandFigure4-13 shows the trajectories tdieimage
features inthe image frame.Figure 4-14 showstha the errors ofthe image feature

converge to zero asymptotically.

4.6.3 Error analysis

From the simulationasults of case 1 and 2, theaximumerror ofthe image feature
in the imagdramesof four cameras at the end thie visual servoingrocess isalculated

as follows

De=./Du,,2+Dv,>2 (pixels)
Hence, n case 1the maximal error of image featuree =1.2(pixels). Similarly, in
case 2,De, =0.9(pixels). If the positionng error of the workpiece witlespectto the

corresponding target point in the robot base frame is deraded, the relationship

betweenDx and De is proximately described as

0

/ 2*a, = De(De = max(De,, De,})
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Thus, thepositioring errorof the workpiece in the robot base frame is

=% _ 5 g9(mm)
/4

where,/ , s, Z, are defined irSection4.1- Introduction

The positiomng error ofthereference points otheworkpiece in the robot base frame
is within 1 (mm), which cansatisfy the needfor high precision manufacturing and
manipulatng. The sinulation results also demonstrate that the proposed control
algorithm can drive the robair the workpiece from different initigbogtions to the
desired positionThe errors ofthe image feature converge to zero asymptoticalig
visual servoing

From the simulation results, it is clear that the positioning errdhexivorkpiece in
therobot base frame dhis corfiguration is 0.89(mm), which islargerthan0.15 (mm),
the positioning erroof the multiple cameraisual servoingystem witha 3D CAD laser
projector proposeth Chapter3. The iteration number of visual servoing before reaching
the desiregositionis 10Q which islargerthan 40 the iteration number of the proposed
configuration inChapter 3.It is clearthatthe multiple camera configuration €hapter 3
is better tharthe configurationproposed in this chaptar termsof positioningprecision
and convergence speed of image errothémageframes On the other hand, compared
with the multiple cameraonfiguration inChapter 3t has some advantages suchitss
simple structurecosteffectivenessand eag calibration Therefore, it isconcludedthat
the multiple cameranultiple target point configuratiois suitable for application where
the robotic maunfacturing system has only one workipgsitionwith the demand of less
precise positioningWhile the multiple cameras configuration in chapter 3ugable for
the application of robotic manufacturing systarhich hasmultiple working positions
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with the demanaf high precis positioning

4.7 Conclusiors

In this chapter the multiple cameramultiple target point visual servoing system is
presentedThe depths oftthe targetpoints are computed online by usitig stereo vision
method. The visual seri@ scheme isuccessfully designei generateontrol signals
for the robot dynamic ontroller. Based on the dynamic model thfe robotic
manufacturingsystemtherobot dynamic ontroller is designed to drive the workpeeto
achieve the desired ptien. The simulation results verify the effectiveness of the
proposedscheme and also validate the feasibility of applying the multiple camera
multiple target point configuration tlargescale robotic manufacturing systemstiire

aerospace industry.
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CHAPTER 5 IMAGE -BASED VISUAL SERVOING USING

IMPROVED IMAGE MOMENTS IN 6 -DOF ROBOT SYSTEMS

51 Introduction

In Chapters3 and 4, two configurations @hultiple cameravisual servoing for large
scale robotic manufacturing positioning systesmwere presented in which the
geometrical featurpoints are adopted as target features, image points ithe image
plane are used as image featuremd multiple camera configuratioreddress the
challenge ofdepth determination to improve the contparformanceof visual servoing
systems.

In this chapter, image moments are usediraage feature to decouple the
components othe camera velocity screandto reduce the singulaidis of theinteraction
matrix and the local minimas dfmage features inisual servoing, andhusto improve
the controlperformanceof therobottrackingsystem Meanwhile IBVS is still adopted as
visual servoing strategy

Compared withother visual servoing method8VS has three main advantagex].
Firstly, IBVS is afimodelfreed method which means that does not require the model
of thetarget objectSecondy, IBVS isrobust to camera model erroksstly IBVS isalso
insensitive to camera calibration es¢B82]. However, thedrawbacks of IBVSare the
singularitiesof interaction matrixandthelocal minimas of theimagefeatures, which lead
to IBVS failure. Thereby, he choice ofimage features is a key point to solve the

problem of the singularity of interaction matrix and the local minima tfe image
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features Severalefforts have beemadeto determine some decoupliilgagefeatures to
deliver a triangular or diagonal interactiontma[21, 22, 2§].

The image momestarenormally used for patterrecognition in computer visiof31,
32]. Using properimage moments asnage features in visual servoingendersthe
interaction maix with a maximal decoupled structuf@2]. Thus, the inherent problem
of singularitesof the interactionmatrix is avoided and theontrol performance of IBVS
systemis significantly improved. In [22], based onimage momeninvariants to 2D

trandation, 2D rotation, and scaleywo imagemomentsS, andS, are selecteds image
featurego control w, and w, theangularvelocitiesaroundthex andy axes ofthecamera

frame respectivelyfor the cental symmetrich target object.However, the simulation

resultsshow that theséwo image featuress,and S, camot represent thpose of the

target object all the time

In this chapter two newimprovedimagefeatures are proposeds image features for
centralsymmetricakargetobjectsto control theipose rotating arounithe x andy axes of
thecamera frameespectivelyA dynamicvisual servoingontrolleris designedased on
the proposed image featuresefficiently drive the robot endeffector to track the desired
object. The developed controller is applied to @6F robot visual servoingracking
system and the experental results demonstrate the effectivenesshe proposed

scheme

5.2 IBVS using image moments

The objective of IBVS is to contrdhe robot endeffector to approach an unknown

targetobject with various pose and shapethis part, thelevelopment of the IBVS using
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image moments for a-BOF robotvisual servoing trackingystemis introduced The
configuration of the considered systershown inFigure5-1, which is composed of a 6

DOF robot and @amera mounted on the robot esftector.

Camera

Object

Object frame

World reference
frame

Figure5-1 Robotic eyein-hand system configuration

In Figure 5-1, H denotes the transformation between two reference frames. To
accomplish IBVS for such robotvisual servoing trackingystem, we firdy derive the
interaction matrixwhich indicates the relationship between the motion of selected image
features and thecrewvelocity ofthe camera based on tls&x chosen image features and

then design an IBVS controller to control the motion of the robot
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5.2.1 Image feature extraction

In order to controthe 6 DOF of the camera at least six image featurase neededor

visual servoing For an imagel (x,y), the twedimensional geometric momemi, and

central momentsy of orderi + j aredefined ag22]

o o

m; = AKX Y'1(x y)dxdy (5.1)

m = Affx- X3)' (Y- ¥g)' 1(x y)dxdy (5.2)

where(x,,Y,) are the coordinates dfecentroid intheimage frame.

It is known thatthe low-order moments have their own properti@hich can denote
the geometric characteristiof the target object inthe image.Four image features are

choserasthe sameasthosein [22], i.e.

a=m,,: theareaof theobjectin theimage plangzerd" order monent);

Xy =M/Myy, Y, =M,/ My, - the coordinate athe centroid {irst order moments);

f :%arctanﬂ): the orientation anglésecond order momentshown inFigure
M- M,

5-2.

Figure5-2 Orientation of an object defined as the orientation of the ellipse
obtained using the value of the object moments of order less than 3
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However, here are manways to choos the image featurem [83], the well-known
skewnesss are chosen aghe rest two image features. [@2], the image momerst

:ésx =(C,C; +5,8;) /K

:'Sy =(s,C;- C,8;) /K

have been utilized as image features fbe cental symmetrica
target object to contral, andw,, the angularvelocites aroundthe x andy axes ofthe

camera frame respectivelyyhich obtairs the decoupled visual servoing behavior.

Nevertheless, our simulatioesultsshow thatS,_and S, camot representhe right pose

of thetargetobjectall the time.

In this chapter two newimagemomentsare proposeds image feature® replaceS,
and S, in [22] if target objecthiavecental symmetrical shapesvhich can tell the right

poses of thetargetobjecs. The finalimproved imagdeatures aréefinedas follows

9
P = 0.1- (ClCZ +3132)/ M4 (53)
9
Py =(SC, - ¢S;) /M4

— ——:

wherec, = my,- m,, C, = My~ 3y, s, = m,, S, = My - 3, My = My, + g,

Table5-1 The error of image features(e; )
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