
Decentralized Receding Horizon Control with Application to Multiple Vehicle Systems

Yan Zhao

A Thesis

in

The Department

of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Mechanical Engineering) at

Concordia University

Montreal, Quebec, Canada

August 2008

© Yan Zhao, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45535-7
Our file Notre reference
ISBN: 978-0-494-45535-7

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Decentralized Receding Horizon Control with Application to Multiple Vehicle Systems

Yan Zhao

Receding horizon control (RHC) has been one of the most popular control

approaches recently due to its capability to achieve optimal performance in the presence

of saturation constraints. There have been numerous new research results for RHC (also

referred to as model predictive control) in the process control community. However, due

to the high computational cost, associated with the numerical optimization problem, RHC

has not often been successfully implemented on multiple vehicle systems with fast

dynamics.

Decentralized receding horizon control (DRHC) is a new promising approach to

reduce the computational burden of RHC. It allows the division of the computation

problem into smaller parts which are solved using a group of computational nodes. This

results in a substantial reduction in the computational time required for RHC. This thesis

involves modeling of wheeled and hovercraft vehicles including actuator dynamics. It

then applies the DRHC approach to the vehicles and implements the DRHC systems in

virtual reality simulations and an experimental setup. Together, these results establish a

new and useful framework for applying RHC to multiple vehicle problems.

iii

Acknowledgements

I would like to take this opportunity to express a great gratitude to my supervisor,

Dr. Brandon Gordon, who led me into the world of scientific field, inspired my interest

and passion for research, gave me the clues whenever I was lost, and pointed out my

weaknesses in order to improve myself. Without his insightful guidance and advice, this

thesis would never be accomplished.

I would like to thank my friend Jiande Li and his family for all their help, support

and comforting throughout these years.

I would also like to thank AH Azimi, who not only helped me from the academic

point of view, but also extended my views of the world that we are living in.

I would also like to express my gratitude to my colleagues, Reza Pedrami, Hojjat

Izadi, Sivaram Wijenddra, Hongan Wang and Fei Yang, who built a friendly atmosphere

in our office and lab.

Last but not least, I would like to thank my wife, Xiaoou, and my parents, whose

love, support, understanding and encouragement pushed me into moving forward and

overcome the difficulties on the way.

iv

ToXiaoou, Mom and Dad

V

Table of Contents

List of Figures viii

List of Tables xiii

Nomenclature xiv

1. Introduction 1

1.1. Literature Review 2

1.1.1. Receding Horizon Control and its Implementation 2

1.1.2. Distributed Computing Systems 7

1.1.3. Decentralized RHC Formation Control 8

1.2. Thesis Objectives and Contributions 12

2. Overview of RHC and Decentralized RHC 14

2.1. Optimal Control 14

2.2. Flat Outputs 16

2.3. Receding Horizon Control 16

2.3.1. Form the Problem 18

2.3.2. Solve the Problem 19

2.3.3. Apply the Input 21

2.4. Decentralized Receding Horizon Control 27

2.5. Cooperative Control Example 32

3. Modeling and Identification of Wheeled Vehicles 36

3.1. Wheeled Vehicle Model 36

3.1.1. Kinematic Model of the Wheeled Vehicle 36

3.1.2. Dynamic Model of the Vehicle Actuators38

3.1.3. Sensor Dynamics and Noises.'. 39

3.1.4. State Equations of the Wheeled Vehicles 41

3.2. Parameter Identification 41

3.2.1. Parameter Identifications of the Actuators 42

3.2.2. Parameter Identification of Wheeled Vehicles 48

3.3. Model Verification 55

4. Modeling and Identification of Hovercraft Vehicles 61

vi

4.1. Hovercraft Vehicle Model 61

4.1.1. Dynamic Model of the Hovercraft Actuators 61

4.1.2. Dynamic Model of the Hovercraft 64

4.1.3. State Equations of the Hovercraft Vehicles 65

4.2. Parameter Identification 66

4.2.1. Parameter Identification of the Actuators 66

4.2.2. Parameter Identification of the Hovercraft Vehicle 72

4.3. Model Verification 82

5. Application of Decentralized Receding Horizon Control to Wheeled Vehicles 88

5.1. Controller Design 88

5.2. Simulations 90

5.3. Apparatus 94

5.4. Checking the Constraint and Tuning the Parameters 95

5.5. Experimental Verification 101

6. Application of Distributed DRHC to Hovercrafts 106

6.1. Distributed RHC System 107

6.1.1. User Datagram Protocol 107

6.1.2. Data Loss, Data Transmission Delay, Computation Time, and Time

Synchronization 108

6.2. Controller Design , I l l

6.3. Distributed Simulation 113

6.4. Virtual Reality System 116

6.4.1. Battlefield Scene 116

6.4.2. Classes Construction 117

6.4.3. Framework of the System 118

6.5. Cockpit Simulator 119

7. Conclusions and Future Work 122

References 124

vii

List of Figures

Fig.l. Illustration of RHC trajectory generation [83] 17

Fig.2. Interpolation scheme 21

Fig.3. RHC time parameters 23

Fig.4. Control signal for retarded actuation method 26

Fig.5. Control signal for on-the-fly computation method 26

Fig.6. RHC flowchart 27

Fig.7. Six-vehicle system 27

Fig.8. DRHC flowchart, first approach 30

Fig.9. DRHC flowchart, second approach 32

Fig.10. Angular regulation example of DRHC 33

Fig.l 1. Simulation result of the angle regulation and tracking example 35

Fig.12. The wheeled vehicle side view 37

Fig.13. The wheeled vehicle top view 37

Fig.14. The wheeled vehicle front view 37

Fig.15. The wheeled vehicle perspective view 37

Fig.16. The wheeled vehicle's schematic model 38

Fig. 17. Camera Array 40

Fig.18. Pattern of the sensor delays 40

Fig.19. Cross bar assembly 42

Fig.20. Linear square approximation of angular acceleration of the left motor (IC#1).... 45

Fig.21. Left motor angular velocity response using linear square approximation (IC#1) 45

Fig.22. Linear square approximation of angular acceleration of the left motor (IC#2)..„ 46

Fig.23. Left motor angular velocity response using linear square approximation (IC#2) 46

Fig.24. Linear square approximation of angular acceleration of the right motor (IC#1) . 47

Fig.25. Right motor angular velocity response using linear square approximation (IC#1)

47

Fig.26. Linear square approximation of angular acceleration of the right motor (IC#2) . 48

Fig.27. Left motor angular velocity response (IC#2) 48

Fig.28. Velocity along X-axis (IC#3) 50

viii

Fig.29. Velocity along Y-axis (IC#3) 50

Fig.30. Angular velocity (IC#3) 51

Fig.31. Angle vs. time (IC#3) 51

Fig.32. Position vs. time (IC#3) 52

Fig.33. Path (IC#3) 52

Fig.34. Velocity along X-axis (IC#4) 53

Fig.35. Velocity along Y-axis (IC#4) 53

Fig.36. Angular velocity (IC#4) 54

Fig.37. Angle vs. time (IC#4) 54

Fig.38. Position vs. time (IC#4) 55

Fig.39. Right motor angular velocity response (IC#5) 56

Fig.40. Left motor angular velocity response (IC#5) 57

Fig.41. Velocity along X-axis (IC#6) 57

Fig.42. Velocity along Y-axis (IC#6) 58

Fig.43. Angular velocity (IC#6) 58

Fig.44. Angle vs. time (IC#6) 59

Fig.45. Position vs. time (IC#6) 59

Fig.46. Path (IC#6) 60

Fig.47. The hovercraft vehicle top view 61

Fig.48. The hovercraft vehicle perspective view 61

Fig.49. Duty cycle ratio vs. input voltage 63

Fig.50. The hovercraft vehicle's schematic model 65

Fig.51. Average Voltage on the tail motor (IC#7) 69

Fig.52. Average Voltage on the tail motor (IC#8) 69

Fig.53. Average Voltage on the main motor (IC#7) 70

Fig.54. Average Voltage on the main motor (IC#9) 70

Fig.55. Average Voltage on tail motor vs. input voltage on FM controller 71

Fig.56. Average Voltage on main motor vs. input voltage on FM controller 71

Fig.57. Acceleration along XB-axis (IC#10) 74

Fig.58. Acceleration along YB-axis (IC#10) 74

Fig.59. Angular Acceleration (IC#10) 75

ix

Fig.60. Velocity along XB-axis (IC#10) 75

Fig.61. Velocity along YB-axis (IC#10) 76

Fig.62. Angular Velocity (IC#10) 76

Fig.63. Acceleration along XB-axis (IC#11) 77

Fig.64. Acceleration along YB-axis (IC#11) 77

Fig.65. Angular Acceleration (IC#11) 78

Fig.66. Velocity along XB-axis (IC#11) 78

Fig.67. Velocity along YB-axis (IC#11) 79

Fig.68. Angular Velocity (IC#11) 79

Fig.69. Angular Acceleration (IC#12) 80

Fig.70. Angular Velocity (IC#12) 80

Fig.71.Angle(IC#12) 81

Fig.72. Angular Acceleration (IC#13) 81

Fig.73. Angular Velocity (IC#13) 82

Fig.74. Angle (IC# 13) 82

Fig.75. Acceleration along XB-axis (IC#14) 83

Fig.76. Acceleration along YB-axis (IC#14) 84

Fig.77. Angular Acceleration (IC#14) 84

Fig.78. Velocity along XB-axis (IC#14) 85

Fig.79. Velocity along YB-axis (IC#14) 85

Fig.80. Angular velocity (IC#14) 86

Fig.81. Angle vs. time (IC#14) 86

Fig.82. Position vs. time (IC#14) 87

Fig.83. Simulation of trajectory following, for a single wheeled vehicle- 91

Fig. 84. Simulation of trajectory following and formation control, for 2 wheeled vehicles

92

Fig.85. Distance between the two vehicles, for the case presented in Fig.84 92

Fig.86. Simulation of trajectory following and formation control, for 3 wheeled vehicles

93

Fig.87. Distance between two of the three vehicle for the case presented in Fig.86 93

x

Fig.88. Simulation of trajectory following and formation control, for 6 wheeled vehicles

94

Fig.89. Formation error of the system for the case presented in Fig.88 94

Fig.90. Structure of the apparatus 95

Fig.91. Trajectory following using wheeled vehicle, before tuning RHC 97

Fig.92. Trajectory following using wheeled vehicle, after adding constraint 99

Fig.93. Trajectory following using wheeled vehicle, after adding constraint and tuning

100

Fig.94. Experimental result of the first trajectory following example with a single

wheeled vehicle 102

Fig.95. Experimental result of the second trajectory following example with a single

wheeled vehicle 102

Fig.96. First formation control experiment with three wheeled vehicles 103

Fig.97. Formation error of the first formation control experiment 104

Fig.98. Second formation control experiment with three wheeled vehicles 104

Fig.99. Formation error of the second formation control experiment 105

Fig.100. Layout of the three agents' formation 107

Fig.101. Data transmission delay between two computers 109

Fig. 102. Computation time on a single computer 110

Fig.103. Flowchart of the distributed RHC simulation I l l

Fig. 104. Trajectory following and obstacle avoidance for distributed simulation case

(IC#11) 114

Fig. 105. Trajectory following and obstacle avoidance experimental results for single

computer case (IC#11) 114

Fig. 106. Trajectory following and obstacle avoidance for distributed simulation case

(IC#12) 115

Fig. 107. Trajectory following and obstacle avoidance experimental results for single

computer case (IC#12) 115

Fig.108. Screenshot of the virtual reality system rendering 116

Fig.109. Inheritance of classes in the program 117

Fig.l 10. A driver seat mounted on the 6-DOF platform 120

XI

Fig.l 11. Flow chart for the virtual reality system and cockpit simulator 121

xii

List of Tables

Table 1. Estimated motor parameters from linear least square approximation of the left

motor 44

Table 2. Estimated motor parameters from linear least square approximation of the right

motor 44

Table 3. Estimated wheeled vehicle parameters 49

Table 4. Estimated motor parameters for the hovercraft tail motor 68

Table 5. Estimated motor parameters for the hovercraft main motor 68

Table 6. Estimated hovercraft parameters 73

xiii

Nomenclature

RHC Receding Horizon Control

DRHC Decentralized Receding Horizon Control

MPC Model Predictive Control

node a computer in a distributed computing system

IC Initial Condition

SQP Sequential Quadratic Programming

x state vector

u input vector

u* optimal input vector

x. state vector of the i'h vehicle

u. input vector of the i4h vehicle

u.

i, j

optimal input vector of the ith vehicle

x . . state vector of the i'h vehicle estimated on the/* vehicle

u , . input vector of the ih vehicle estimated on the/* vehicle

P,Q,R,K,C weighting matrices

J cost function

x ,v coordinates of the vehicle
c ' J c

u longitudinal velocity of the vehicle

v latitudinal velocity of the vehicle

x iv

0 c yaw angle of the vehicle

rc yaw angular velocity of the vehicle

R . . the radius of the wheeled vehicle 's wheel
wheel

co angular velocity of the wheeled vehicle's motor

1 distance between the wheeled vehicle 's wheels
w

J moment of inertia of the wheeled vehicle's motor
wm

K k linear friction coefficient of the wheeled vehicle 's motor
bwm

u Coulomb friction coefficient of the wheeled vehicle's motor

N v the number of the vehicle in a multiple vehicle system

(X B , YB) body attached coordinate system

(X G, YG) global coordinate system

U input voltage of the wheeled vehicle motor

m h mass of the hovercraft vehicle

ahM' ahT coefficients of the linear relationship between average voltage and motor

Fh M , FhT thrust generated by the main and tail rotors of the hovercraft

1... distance between the two main rotors
hM

l._ distance between the tail rotor and the center of the hovercraft
hi

J h moment of inertia of the hovercraft

b h u , b h v , b h r viscous friction coefficients of the hovercraft along X B, YB, ZB

J J1 cost function for leader's trajectory following

xv

rr nominal distance between i'h and/* vehicle

j f l cost function for a non-leading vehicle's formation control

R Q radius of the obstacle

x 0 , y 0 coordinate of the obstacle

P, K weighting scalars

j * v cost function for leader's obstacle avoiding

9 communication delay

C, computation time

xD vector of desired states

(x D, yD) desired posit ion coord ina te

GD desired angle

to D L desired angle velocity of the left motor of the wheeled vehicle

coD R desired angle velocity of the right motor of the wheeled vehicle

U set of admissible input

X set of admissible state

time when optimization step starts

time when computation starts

time when computation ends

computation time

actuation time

c2

XVI

[tjjtj] time period from t, to 12

A set of multi-vehicle system

A j set of neighbours of the i'h vehicle

J; cost function of the i'h vehicle

HI hovercraft 1

H2 hovercraft 2

z flat output vector

i state vector of the multi-vehicle system

u input vector of the multi-vehicle system

i state vector of the neighbours of the/' vehicle

u. input vector of the neighbours of the /'* vehicle

9r reference angle

J; cost function of the i'h vehicle

TPBVP Two Point Boundary value Problem

H Hamiltonian function

tf end time of optimization

N. number of interpolation points

N number of control points

N number of unknown parameters

A)s matrix of states for parameter identification

xls vector of unknown parameters

b , vector of outputs for parameter identification

U level voltage level on the servo amplifier of the hovercraft

Kratjo duty cycle ratio

UhMotor average voltage on the motor

U h T input voltage for the tail motor of the hovercraft

U m input vol tage for the main motors of the hovercraft

U h input voltage for the any motor of the hovercraft

tSD sensor delay from the vision system

TSD upper bound of the sensor delay from the vision system

cr synchronization offset among subsystems

1. Introduction

The control of multiple vehicle systems has been a popular topic in both the

scientific and engineering world in recent years. The most commonly researched aspects

are the online strategies and controller design suitable for multiple vehicle systems in

different environments. These strategies and controllers have to guarantee a desired

cooperative performance among the members of the systems. Many fruitful theoretical

algorithms are created and their implementations can be found in many journals and

conferences.

Among those methods, Receding Horizon Control, also known as Model

Predictive Control (MPC), stands out due to its ability of yielding a superior tracking

performance [9]. Since its introduction in the process control world, in the early eighties

[1][2], it has attracted attention of many researchers, and has been successfully applied to

industrial processes [3][5]. Thus, it is natural to advance a step further by applying RHC

to the formation control of multi-agent systems.

However, RHC is also well known for its high computational expenses of solving

numerical optimization problems involved with it [37], which make it difficult to be

implemented on fast and/or complex dynamical systems. In addition, for the problems

involving some subsystems, like formation control of multi-vehicle systems, the

commonly used method was in centralized fashion, in which one controller had full

control of the system and calculated all the control inputs for each member in such

system [47]. This method significantly increased the dimensionality of the optimization

problem and the computation burden, as a result, which made it nearly impossible to be

implemented in real-time systems.

1

Thanks to the advent of decentralized RHC, the formation control of multiple

agent systems becomes possible because of the concept of solving problems among a

group of solvers. Furthermore, due to the recent development in computer industry, faster

and more reliable calculation capacities in personal computers and the mass production of

multi-core CPU and high speed network, solving complicated large-scale numerical

optimization problems does not anymore rely on extremely powerful computers, which

makes the study of RHC easier and more affordable.

1.1. Literature Review

The literature review is presented in this subsection; however, it is divided into

different subsections for readers' convenience. Firstly, application of single RHC is

reviewed. After that, distributed computing and decentralized RHC are considered and

some of the articles related to the current work are presented.

1.1.1. Receding Horizon Control and its Implementation

Receding Horizon Control is essentially a repeated on-line solution of a finite

horizon open-loop optimal control problem [64]. Based on the current states, the

controller predicts the states of the system over a period, called optimization horizon, and

achieves the admissible inputs by solving the cost function associated with the actual

control problem. However, only a fraction of the calculated inputs will be applied to the

actual system during a period called execution horizon. Then the process is repeated.

2

This control scheme is capable of controlling linear or nonlinear systems, as long

as the model of the system is accurate enough to depict the system's behaviour. In

addition, it can handle the constraints of the system, such as input saturations and state

constraints, by modifying the cost function associated with the control problem.

Furthermore, changing the mission of the controller can also be done simply by

modifying the cost function, and the modification can be done in an online fashion

according to the mission and environment.

On the other hand, there are some disadvantages of RHC that holds back the

researchers from applying it to the fast dynamic systems. The first one is the foresaid

computation cost. The high computational demand of RHC has created a challenging

obstruction that makes the employment of RHC to fast dynamic systems, such as

aerospace or aviation, extremely difficult. The other drawback is in theoretical field. It is

difficult to deal with the stability and feasibility of RHC, and the stability of its usage in

decentralized fashion is still left undone. However, these two disadvantages evoke the

researchers to challenge the problems and improve the performance of RHC.

Several researchers have already conducted intensive surveys on RHC, for

example, in [4] the author provided a tutorial for its mathematical background; in [5] the

authors not only concentrated on RHC theories, but delivered a comprehensive

comparison among the most commonly used RHC structures; while in [6] the authors

discussed more about the robustness of this control method. The authors in [37], similar

to [4], provided a systematic explanation of RHC, and a different numerical optimization

solver for nonlinear systems with perturbation.

3

Besides the above articles, the efforts of improving RHC usually can be divided

into three categories: one is to improve the stability of the controller with respect to

nonlinear systems with uncertainties, such as noise, model uncertainty and delays;

another one is to reduce the computation time by using different optimization solvers;

and the last one is to improve the performance of RHC in different applications.

A. Stability

In [6], a receding horizon controller for constrained linear time-invariant systems

with additive uncertainty was introduced. This controller presented better performance in

terms of robustness and the ability to handle cases with large computational complexity.

In that method, the control algorithm took the optimization horizon as a tunable

parameter, which allowed a tradeoff between the performance and the complexity.

In [9], a robust receding horizon controller for linear systems with model

uncertainty was proposed. This method was differed from the method in [6], since they

sought the worst case scenario for the cost function and its upper bound. In addition, they

extended their method into solving arbitrary reference tracking problems. The authors in

[12] proposed a relatively simple method to determine the feedback control inputs for

both linear and nonlinear systems. However, because of the computation complexity, this

method is only good for slow nonlinear systems.

To ensure the stability, some basic controllers were embedded into the RHC

controller. For example, the authors in [8] brought linear quadratic controller into RHC

for the cases of finite input constraint sets, and proved asymptotical stability. In [10] and

[11], the authors provided a robust dual-mode receding horizon controller for a wide class

4

of nonlinear systems with state and control constrains and model errors. In these two

papers, the control inputs were obtained from two algorithms; an optimal control

algorithm and a P controller. The optimal algorithm was applied when the plant was

stable, or the states were within a predefined region, while the other was applied when

the plant was considered unstable, or the states were out of this region.

In [42], the authors proposed a combination between adaptive control and

receding horizon control method for nonlinear systems in order to stabilize the plant with

control constraints. The adaptive controller was used to adjust the model in case of

modeling errors and/or perturbations in the system. However, a different solution was

presented in [38] to solve receding horizon control problems for nonlinear systems by

finding a global Control Lyapunov Function.

B. Optimization Solvers

Different solvers were applied and tested to reduce the computation time

associated with RHC or MPC problems. Usually, the goal is achieved by decreasing the

number of iterations in an optimization step.

A Newton's based optimization method was proposed in [20]. It is used for online

optimization of nonlinear model predictive method. In this method, Newton-type iteration

is performed per sampling interval, and it provides faster convergence and shorter

computation time, which is helpful for controlling fast nonlinear systems.

In [21], the authors proposed a novel method for RHC systems. This method is a

computational approach to real-time trajectory generation. It uses spline interpolation and

sequential quadratic programming (SQP). By upgrading this method with the Non-

5

Monotone Line Search approaches in [25] and [26], it resulted in faster optimization

solver, ideal for trajectory tracking problems.

The computational expenses can be further reduced by using flat outputs, which

can lower the dimension of an optimal control problem. Based on its definition, if the

states and control inputs can be recovered by using a set of system outputs and/or

derivative of the outputs, then we could call the system a flat system, and the set of

outputs flat outputs [77]. In the rest of the thesis, all the optimal problems are solved by

using the flat output method.

C. Implementations of RHC to Systems with Fast Dynamics

Because of the efforts mentioned briefly in the previous subsection, RHC has

been successfully applied to some fast dynamic systems, such as an indoor vectored

thrust flight stabilization experiment [53], simulation results for formation control of

Unmanned Aerial Vehicles (UAV) [54], and roll control of delta wing vortex-coupled

systems [73].

The use of RHC control method can also be found in other fields, such as, solving

Markov Games [14] in the area of mathematics, controlling of production plants [39] in

industrial engineering, controlling of supply chain [40] in logistics, and mine exploration

planning [41] in oil industry.

6

1.1.2. Distributed Computing Systems

Distributed computing system is a sub-branch of parallel computing systems,

which means simultaneous executions of single and/or multiple computing instructions

and data on multiple processors in order to obtain results faster. A processor refers to the

CPU of a computer. In this thesis, each computer has one processor, and the computer is

called a node in the distributed computing system.

The most commonly accepted classification of parallel computing system was

proposed by Flynn in [57] and Y. Censor and S. A. Zenois in [58]. There are four

categories based on the interaction between instruction and data streams:

• Single instruction stream, single data stream (SISD)

• Single instruction steam, multiple data streams (SIMD)

• Multiple instruction steams, single data streams (MISD)

• Multiple instruction steams, multiple data streams (MIMD)

In this definition, the instruction streams denote the programs that are running on

the computer in the network, and data streams denote the data exchange among those

computers. The distributed computing system falls into the MIMD category, which refers

to the systems where different parts of a program run simultaneously on two or more

computers that are communicating with each other through a network. Literally, any

computer could join in this network and contribute to computation. An example of this

application is the Screen Saver Science (SSS) [55]. Usually, the members in the network

are assumed to have same specification, i.e. CPU, RAM, etc, in order to balance the

computation burden among every node to achieve the most efficient computation [13].

An example of this structure is a computer cluster [56].

7

In [33], an optimization method for data exchange scheme is proposed for parallel

computers with distributed memory. In [30], the authors proposed an advanced dynamic

programming method which is especially suitable for parallel computation, implemented

on distributed memory computers, while [23] contains an example of parallel

computation method providing facilities for dynamic formation on mobile robots.

In [32] a parallel asynchronous particle swarm optimization algorithm is proposed

to dynamically adjust the workload assigned to each processor in a PC cluster, while in

[35], the authors used parallel computation to solve a similar problem. In [34], the

authors introduced an application of parallel computation on robot drives. Similar to the

current popular parallel algorithms, this method estimates states on other computation

nodes. In [30] a method of dynamic programming is proposed for a general-purpose

cluster.

1.1.3. Decentralized RHC Formation Control

Although, only centralized solutions can theoretically guarantee asymptotic

stability in many multi-vehicle applications [51][66], the computation cost makes the

centralized method impractical, if not impossible, to be applied to the control of multi-

agent systems [37]. On the other hand, the decentralized scheme has become popular due

to lower computational burden associated with it [70][71]. It breaks the large-scale

optimization problem into small pieces of individual subproblems for each member in the

system. Therefore, splits the computation burden from one computer to several, and

reduces the computation requirement.

8

It is a common assumption in most of the Decentralized RHC (DRHC) studies for

multi-vehicle systems to assume that the subsystems are dynamically decoupled.

However, they have coupling effects from their cooperative objective and interaction

constraints.

In DRHC, the states of the plants should be communicated within the

computation nodes, or at least with the ones that have coupled objectives. Some

researchers have suggested that each system should provide its most updated trajectory to

the other systems, so that the solver on each node could compute according to the most

up-to-date information. For example, in [48], [50], and [51], the authors proved the

stability of distributed formation control problems with coupled cooperative cost

functions on dynamically decoupled subsystems, by using synchronous updating and

exchanging the most recent optimal control trajectories between the coupled subsystems.

Others suggest a method that involves an estimator/predictor at each node to

estimate the states of other nodes, and correct their estimation only at the beginning of

optimizing iteration. And this method guarantees feasibility as long as the mismatch

between the estimation and actual cost is within a certain range [60].

In [45], the authors investigate the stability of the DRHC controller by studying

the local variables, costs and constraints of a subsystem and the ones who have direct

interaction with it. Through an estimator, during every sampling time, the subsystem not

only solves its own optimization problem, but calculates the states of its neighbors from

the data received at that time. The authors propose in [46] an algorithm that is able to

partition a distributed control system into manageable subsystems. Contrary to the other

articles in this section, the authors in this paper do not concentrate on the control of a

9

group of subsystems and their autonomous control strategies, but provide a division

method. It has some similarities to the parallel RHC implementations, but differs in the

way that, in this paper, a p-step prediction algorithm is used to estimate the states on the

other nodes to reduce the effect from the delay inherited within distributed systems.

Similar strategies can be found in [29], [47], [49], and [52].

In the aspect of improving DRHC performance, the authors in [72] and [75]

propose an interesting theory that the communication among the computation nodes plays

an important role in the performance of controller as well. The main concept of their

theory is to improve the behaviour of the group by manipulating the communication

bandwidth in order to reduce the mismatch between the estimated and actual trajectory of

a specific member [74] [76] [43] [44].

Another problem in single and distributed RHC systems is delays. In addition to

the computation delays for a single RHC, the structure of the distributed RHC systems

adds more delays to the problem, since these systems require time to solve the

optimization problems and exchange information from one computing node to another.

In [24] and [63], the authors proposed a new algorithm on real-time RHC

computation in order to reduce the instability caused by the computation delay inherited

in the RHC formulations. The solver only needs to solve the premature cost according to

the introduced criterion, thus the overall computation time is reduced.

In [27], the authors presented some studies on time-delay systems. This made an

overview on different types of time-delay systems, and proposed some modifications. In

[36] and [63], the authors propose a RHC method for constrained linear systems with

uncertain delays by using a novel artificial Lyapunov function.

10

Even though, the focus of this thesis is discussion and implementation of

distributed receding horizon control, mentioning some backgrounds and implementations

of the parallel RHC, enables the reader to compare and distinguish the differences of

these two approaches.

The authors in [15] propose a method for evaluating the optimal-control problems

by using iterative method of dynamic programming. In this paper, the authors

decomposed the plant model, and assigned each node a decomposed part. By solving the

cost function of each local optimal problem, the controller integrates the solution of all

decomposed parts, and finds an optimal solution to the plant.

In [16], the authors provide a solution to large-scale convex optimal control

problems in a different aspect from [15]. Instead of model decomposition, their method is

based on time decomposition. The optimal problem is dispatched to several computing

nodes. However, this method could not be easily implemented with the presence of time

delay in the environment of network.

The authors, in [17], use similar decomposition method as in [15], a hierarchical

decomposition method. This method focuses on the problem structure, decomposes the

large problem into small subproblems.

In [19], the author proposes a hardware implementable parallel computing

algorithm for general minimum-time control, by using time decomposition technique. In

addition, this method is applied on hardware setup, based on Very-large-scale integration

VLSI) array processor technology. In [18], this method is extended to solve receding

horizon control for constrained nonlinear systems on the basis of VLSI technology.

11

Authors, in [28], propose an on-line task assignment solver for multi-vehicle

distributed control. The solver is based on a trajectory primitive decomposition approach,

which could be categorized as time decomposition approach. Before presenting their

method, the authors also compare several different methods and conduct several

simulations on Cornell's RoboFlag environment. The author evaluates in [31] not only

several different programming procedures and algorithms for MPC on real-time

multiprocessing computing, but the task structures/computation model as well, such as:

linear array, tree, and mesh.

1.2. Thesis Objectives and Contributions

In this thesis, the decentralized receding horizon control method is investigated

through numerous simulations and experiments. New algorithms and methods for

trajectory following and formation control of multiple vehicle systems are evaluated and

compared. Accurate models of both wheeled robots and hovercraft vehicles are

developed, experimentally identified, and tested. Decentralized RHC is then applied to

both types of vehicles through simulations and experiments. A virtual reality simulation

system with a 6 DOF cockpit is combined with the experiments to provide a higher level

of capability to study more advanced DRHC problems. Together, these results provide a

new and useful framework for simulation and experimental testing of new decentralized

RHC algorithms and other types of nonlinear control methods for multi-vehicle systems.

The remaining parts of this thesis are organized as follows. Chapter 2 reviews the

receding horizon control method and decentralized RHC in detail. Chapter 3 and Chapter

4 develop and experimentally test the models for the wheeled and hovercraft vehicles,

12

respectively. Chapter 5 provides a set of simulations for decentralized RHC of wheeled

vehicles and also provides experimental testing. Chapter 6 presents simulations for

DRHC of hovercraft vehicles and then develops an upgrade to the system by adding a

virtual reality system with a 6 DOF cockpit. Conclusions and future work are discussed

in Chapter 7.

13

2. Overview of RHC and Decentralized RHC

Basic theoretical background of RHC and DRHC are presented in this chapter.

Since RHC can be categorized as an optimal control problem, the concept of optimal

control will be firstly discussed. Then the concept of flat outputs is explained, followed

by the review of RHC and DRHC. Lastly, an example of angle regulator of two

hovercrafts is presented as a simple tutorial of how to form cost function for RHC and

DRHC methods.

2.1. Optimal Control

Suppose to have a system with state equation:

x(t) = f(x(t),u(t),t), (1)

where x(t) e W is the vector of state variables of the system for Vt > 0 and u(t) e Mm

is the vector of input variables for Vt > 0, and they both satisfy the following constraints

u(t)eU

x(t)eX, (2)

where U denotes the allowable set of inputs, X is a set of admissible states, and

f: R" x Km x R -+ Kn. It also has an initial condition

x(o) = x0. (3)

An optimal control problem is to find a control input u*(t), so that minimizes the

following cost function of the system

14

•f

J(x(4u(t),t f)= {q(x(T),u(x),T)dT + V(x(t f),t f). (4)
0

where tf denotes the time when the optimization process finishes, q is usually a

quadratic cost function, which is responsible for the performance of the system, and V is

called terminal cost, which is important to ensure the stability of the controller [83].

A standard method is to bring in a vector of co-state variables 3i(t)eM°, and

generate the Hamiltonian of the system as following [79]:

H(x(t),u(t^(t),t) = q(x(t),u(t),t) + ?,Tf(x(t),u(t),t). (5)

The optimal input can be obtained by solving the following equations:

x(t) = f(x(t),u(t),t)

, r»Y. /a^T (6)

where the input can be obtained from

5q

ax,

du \dx)

T / „ \ T

| J -
subject to

^(0)=xo

'avV (8)

^-Kfl,
The above problem is also called Two Point Boundary value Problem (TPBVP),

and there have been many articles about solving this kind of problems, the interested

readers are referred to [79] [85] for detailed information.

15

2.2. Flat Outputs

The flat outputs help increase the speed of solving the optimization problem,

associated with some optimal control problems by reducing the dimension of the problem.

The definition of flat outputs is as follows [77]: for a dynamic system, if there exists

output z , where

z = g(x,u) (9)

a n d x e l " is the state vector, ueK1" is the input vector, and g :R m xR n , such that the

states and inputs can be recovered by a function h() using z and/or its derivatives as

below:

(x,u) = h(z ,z , - ,z (r)) (10)

where z*' denotes the Ith time derivative of z . Then, the system is called a flat system.

Therefore, in a flat system, the states and inputs of the system can be recovered by finite

number of flat outputs and their derivatives, but no integration by the flat outputs [77].

2.3. Receding Horizon Control

Receding Horizon Control is essentially a repeated on-line solution of a finite

horizon open-loop optimal control problem [64]. Its scheme is shown in Fig.l. Based on

the states at time t s , the controller predicts the states of the system over optimization

horizon T, and achieves the admissible inputs u* by solving the cost function associated

with the actual control problem. Only the first part of the inputs will be applied to the

actual system during execution horizon 8 . Then the process is repeated. The process is

16

illustrated in Fig.l, where the thick curve indicates the actual state of the system, and the

light curves denote the computed or predicted state of the system by the controller, based

on the model of the system.

According to the figure, the above procedure can be further explained as follows:

at time t , the controller samples the state of the system (point 1), and based on the

sampled state the controller predicts the future state of the system over the optimization

horizon T (line a), and based on the prediction it obtains the optimal input for the system.

But only the first part of the input will be applied to the system during the execution

horizon 8, and the rest will be discarded. Then at time t + 8, the new state of the system

is sampled and used to predict next trajectory (line b) for optimization. Then the process

is repeated until the system meets the goal.

According to the above explanation, the procedure of an RHC controller can be

summarized as three steps:

• Form the problem

• Solve the problem

• Apply the inputs

state fCi)

time

Fig.l. Illustration of RHC trajectory generation [83]

17

2.3.1. Form the Problem

The ease of using RHC for a control problem is that the objective of a mission can

be explicitly and solely formed in a cost function. After that, the controller will be able to

drive the system to the desired states, provided that the model of the system is accurate

enough and the sensors are working properly. Furthermore, the cost function can be

changed during the control process if there is any modification in the objective. Thus, the

purpose of this section is to illustrate how to generate a cost function according to the

objective of the control mission.

Suppose we have a system with state equation:

x(t) = f(x(t),u(t),t), x(0) = 0 (11)

where as stated earlier, x(t) e K" is the vector of state variables of the system for Vt > 0

and u(t) e Rm is the vector of input variables for Vt > 0, and they satisfy the constraints

in (2), and f: Rn x Rra x R-> ! \ Also define X c l " the set of admissible states and

U c; Rm the set of admissible inputs of the system respectively:

x (t) e X , u (t) e U for t > 0 (12)

In addition, consider the assumptions A1-A3 in [65] are also satisfied, where:

• f is twice differentiable;

• U is compact and convex;

• System (11) has a unique solution at any given initial condition.

The first assumption is provided to ensure continuity of the cost function. The second

assumption ensures the optimization region admits a well defined locally optimal solution.

18

Then the cost function for the system (11) over prediction horizon T is defined as

follows [79]:

j(x(t),„(.),T)= '+ | |x(t ;x(t) | ; +||u(tl2
R)dx + ||x(t + T;x(t)|2p (13)

t

where P e Knxn, Q e Rnxn, and R € Mraxm are positive definite weighting matrices, and

x(x;x(t)) denotes the states of the system at time T resulted from the input u(-) when the

initial condition is x(t); T is a finite optimization horizon, the weighted norms in (13)

are defined as ||x||p = xTPx. Therefore, the resulted j(x(t),u(),T) is a scalar variable

denoting the cost of the system.

Ideally, the choice of the terminal cost is ||x(oo;x(t))(|p such that the mismatch

between the optimal finite cost and the infinite cost is zero; however, this situation will

never happen and the nature of the problem is to reduce the mismatch [83].

2.3.2. Solve the Problem

The optimization problem is to find an input u , so that the following equation

holds:

J*(x(t),T) = ininj(x(t) ,u() ,T) (1 4)

subject to

x(T) = f(x(x),u(x),Ty

u(x)eU

x(x;x(t))eX

where J* (x(t),T) denotes the optimal cost based on the optimal input.

19

t e [t,t+T] (15)

The approach to solve the open-loop optimal control problem in this thesis is

based on the method introduced in [21].

Firstly, check whether the system is a flat system according to the definition

described in section 2.2, and if the system satisfies the definition, some of the system

outputs will be selected as the flat outputs in the hope of lowering the dimension of the

optimal problem; but this step can be skipped if the system is not, however, the time

consumed to solve the problem is expected to be longer.

Then an interpolation method is used to characterize and simplify the

optimization problem. The cubic spline interpolation method is employed in this thesis

because it is an effective approach that is more simple and computationally inexpensive

compared to other methods such as B-splines. The degree of each spline is defined by

setting the control points. This results in a continuous curve and is divided into discrete

pieces by adding points on the curve. These points are called interpolation points, which

should be selected close enough to be able to present the behaviour of the curve. Then the

optimization problem is modified to find a set of inputs that minimizes the cost function

of the system at the interpolation points.

The scheme of the above interpolation method is shown in Fig.2, where N ;

denotes the total number of interpolation points over an optimization horizon T, and N c

denotes the total number of control points. Using more control points results in more

optimization parameters and thus increases the computation time. In addition, more

interpolation points result in a smoother cure and increase computation time, as well.

Several interpolation methods could be used in this section to parameterize the flat

outputs (if they exist) selected in the last section, such as linear interpolation method and

20

B-Spline method. However, in this thesis, the cubic spline method is chosen, as stated

earlier. The interested readers are referred to [86] for detailed explanation of how this

method works.

Lastly, the resulted optimization problem can be solved by the numerical

optimization solvers, such as Sequential Quadratic Programming (SQP) [21], Powell's

Method [86], and other optimization packages such as SNOPT [87].

Estimated States
Interpolation Points
Control Points X

JT
"%.

I

m
X- •X

T , T
t + — k t + — m

N; R

t s + T

Fig.2. Interpolation scheme.

2.3.3. Apply the Input

Suppose the solution to (14) is obtained as

u*(x) = u*(T;x(t)), (16)

then during a period of time t e (t,t + 8], the optimal input is applied to the plant, where

5 denotes execution horizon, and 0 < x < T. After applying the control to the system, the

21

resulted states of the system becomes the initial condition for the optimization problem of

the next step.

Moreover, the choice of the values of optimization and execution horizon is vital

to the performance of the controller. Usually, for the stability of the system, the execution

horizon is chosen much smaller comparing to the optimization horizon [83], because in

this way, the mismatch between the predicted and actual trajectory in Fig.l is small thus

the performance can be guaranteed.

However, the above concept has a crucial constraint in the practical

implementation. Before we discuss that constraint, we need to define some parameters in

the first place [84]:

• Step start time: t s . This is the time when an optimization step starts. This is also

the time when the controller starts sampling the state of the system. Since the time

used in sampling is considerably less than the following time periods, we assume

that the time used to sample is zero, and the controller obtains the states at time ts.

• Computation start time: tc,. This is the time when the optimization procedure

starts (for one step).

• Computation finish time: tc2. This is the time when the optimization procedure

finishes (for one step).

• Computation time: tc = tc2 — tcl . This is the time period for how long the

optimization step takes.

• Actuation time:ta. This is the time when the calculated input is applied to the

actuator. This input could be either a newly computed input or an input that has

been obtained in advance.

22

• Actuation latency: la This is the delay generated in the actuation of the system

after starting optimization step or sampling the states.

An illustration of the above parameters is shown in Fig.3.

4

*

8

la

to • .

•

•
*c2 t . t , .+8

Fig.3. RHC time parameters.

Typically in theoretical discussions, the computation time tc is assumed to be

zero, but in the implementations in the real world, tc is non-negligible, and rather plays

an important role in the application. That is because the existence of the non-zero

computation time prevent us from choosing small execution horizon 5 , that is, 8 must

be more or equal to the computation time t c . Because of this constraint, the controller is

unable to apply the input as soon as the current state of the system is sampled, and must

wait until the input is calculated, which is where the actuation latency la comes from.

Two methods are created to tackle this problem: Retarded Actuation Method and On-the-

Fly Computation method.

The Retarded Actuation method, as its name indicates, solves the optimization

problem for the next step in advance and applies the input at the beginning of that step

[53]. This method gives the controller sufficient time to finish the calculation. Its scheme

23

is shown in Fig.4. The solid lines in the diagram denote the input is applied to the system,

the dashed lines denote the input is generated but not applied, and [ts,ts + 8] denotes the

time interval from ts to ts + 8, so u* [ts, ts + 8] is the optimal input generated for the time

interval [ts,ts +5] .

There are two methods to generate the input. In order to better explain the

difference between these two methods, we will take how the optimal input signal for

interval [ts + 8,ts + 28] is obtained as an example.

In the first method, the process takes the states of the system at time t s , x(ts), as

an initial condition. Based on this initial condition, the controller generated the input for

[ts + 0,ts + 8] and [ts + S,ts + 28], and only the input for the interval [ts + 8,ts + 28] will

be applied to the system at time [ts +8,t s +28]; in the second method, instead of using

x(t), the controller firstly predicts the system states x(ts +8), then uses these states as an

initial condition, and applies the corresponding input for the interval | t j + 0,ts + 8 | ,

where ts = t s + 8 .

For Retarded Actuation method, the following equations should be satisfied:

t. = tcl

t c 2 ^ t s + 8

t a = t s + S (17)

The other method is called On-the-Fly Computation method. In this method, there

is no prediction involved, and the actuation latency is smaller. Let us take the interval

[ts + 0,ts + 8] for an example.

24

The controller will start the optimization process at time tswhen the states are

sampled, and apply the inputs as soon as they are available. However, because of the

existence of tc in each step, there will be a time interval [ts,ts + t c] , in which no optimal

input is available (The input for the last step has finished, and the input for this step is not

yet available). To solve this problem, instead of applying the last step input till t s , the

system continues using the input calculated for the last step for the interval [ts,ts + t c] ,

until the new optimal input is available. When the new input is available, the controller

will switch to apply the new input to the system at t s+tc . The scheme of this method is

shown in Fig.5.

Unlike the Retarded Actuation method, the On-the-Fly Computation method does

not involve a variation that requires predicting the states of the system [ts,ts + t c] and

uses that states as the initial condition. Because the computation time tc of the next step

is unknown until the optimization is finished and the new input is obtained.

For On-the-Fly Computation method, the following equations should be satisfied:

t a < t s + 5 (18)

The whole process of a complete RHC implementation is shown in the flowchart

in Fig.6. And the RHC computations in this thesis heavily rely on Receding Horizon

Control Object-Oriented Library (RHCOOL) in [7].

25

t . - 8 t„ t . + 8 t „+2S

Fig.4. Control signal for retarded actuation method.

time

u t .(t .+8)
+*—•>

«*(t.-8)

t, tc2(t) t s + 8

Fig.5. Control signal for on-the-fly computation method.

time

26

Decide the cost function

i>

Obtain the states of the
system

i r

Solve the optimization
problem in (13) and (14)

i '

Apply the solution
inputs to the system

Form the problem

«—|

Solve the problem

Apply the input

Fig.6. RHC flowchart.

2.4. Decentralized Receding Horizon Control

Suppose there is a set A with Nv vehicles, which forms a formation, then for the

ilh vehicle in the system, there is a set A; containing the neighbours of the Ith vehicle,

thus named the set of neighbours of Ith vehicle. The definition of neighbour can be found

in [60] and [74]. For example, in the following six vehicle system (Fig.7), vehicle No.l

has No. 2 and No. 3 as its neighbours, while No. 3 has No. 2, No. 5, No. 6, and No. 1 as

its neighbours.

Fig.7. Six-vehicle system.

27

There are two popular approaches in current decentralized RHC formation control

area [43]. In the first approach, the agent will only estimate its own states, but estimated

trajectory of each agent will be exchanged among the agents [61]. The second involves

using the most available states of the agent's neighbour, and calculating the optimal cost

of that agent by estimating the states of both its neighbours and itself [60].

A. The First Approach

Suppose the following state equation is of the J4 vehicle:

i i(t)=f,(x1(t),u i(t),t) (19)

where xi (t) e]Rni is the vector of state variables of the fh system and u . (t) e W"1 is the

vector of the input variables of the ith system for V7 > 0. Also define X; c: R"' the set of

admissible states and Uf e Kmi the set of admissible inputs of the system respectively:

xi (t) e X;, u, (t) e U; for / > 0 (20)

Also let x(t) e W and u(t) e Mm be the vectors that store the states and inputs of

the whole system at time t , where n = ^ n ; and m = V m ; , and the state equation for

the whole system can be obtained as:

x(t) = f(x(tj,u(t),t). (21)

Therefore, the cost function for the whole system is given as:

J(x(t),u(t),t) = f;j1(x1(t),u,(t),x1(t),u1(t)) (22)
!=}

28

where Js denotes the cost function for the i vehicle. This cost depends on the behaviour

of the i' vehicle, as well as the interactive relation to its neighbours' states and inputs,

which are presented by £j(t) and U;(t).

Furthermore, J; in (22) can be achieved by:

Ji{xi(«).»r(»).3lj(t).»j(«))

= '0 (*, (').«; (<))+ Z Ju(«,(t).«, « .» ,« , - ,«) (23)

i,jeA

where J;(-) denotes the cost function for the ih vehicle. The admissible input u*j(t) is

obtained by solving

Ju* (xu (0 ' x u C1)'1) = . J J £ 0
 J* (xu (O^u () ' x ,o (t) ' u . j ()>T) (24)

where the first subscript of x and u indicates the state and input belong to the /' vehicle,

the second one indicates the location where the state or input is calculated or estimated.

Let us take x2](t) for an example, x2,(t) stands for the states of the 2n vehicle

estimated on the Ist vehicle. The input u; i (•) will be applied to the i vehicle at each

execution horizon. Afterwards, the actual states and inputs of each agent will be

exchanged among the whole system for the next optimization step.

The problem certainly can be solved by using the centralized fashion [60]. In

order to solve the optimization problem associated with the ith vehicle in a decentralized

way, the /"** vehicle at least needs to know its current states and its neighbours' current

states. Based on the states, it is possible to predict its optimal inputs and its neighbours'

optimal inputs. Its own inputs will be applied to the system, while the inputs to its

neighbours', however, will only be used to predict the neighbours' trajectories, and then

discarded. So the procedure of DRHC is shown in Fig.8.

29

Each system solves its own
optimization problem from its
current states and estimating its

neighbours' states

i '

Each system implements its own
inputs

v

Exchange current states with its
neighbours

* - .

Fig.8. DRHC flowchart, first approach.

It is commonly known that the stability of DRHC is not ensured, because the

prediction of the / * system on i,h vehicle is independent from the actual j ' h vehicle's

behaviour, and the mismatch between these two values usually causes problems.

The authors in [60] proposed a solution stating that if the mismatch is within a

range, then the system is asymptotically stable. Suppose mismatch between the i'h system

and i'h system's prediction on/A system is given as:

u = J (2 I X JJ(T) - X J . - (T 1Q + k J (T) - u i , i (T f R Jdx (25)

then the mismatch for the whole system, s , is obtained as:

6 t+T

j=lpeAj j=UeA J t
 v

If the following relation holds, then the system is asymptotically stable:

B . ^ M t f +|x j(tf +|[xi(t)-Xj(tF +|k,(tf + |k(tf
'•J II • v - H I Q II J v ^ I I Q II ' v ' J v ' I I Q II '•' v - I I R II J-1 v ^ I I R

(27)

where Q and R are positive definite matrices if p = 2 , and Q and R are full rank

matrices if p = 1,QO . The proof of this theory can be found in [60].

30

This approach delivers outstanding performance in formation control, but will add

some computation burden to each node since they have to do extra calculation to achieve

the estimation of the states of their neighbours. Therefore, if being applied into the real

world, the retarded actuation method is recommended, since that method gives the

controller sufficient time to predict the states and trajectory of the other vehicles.

B. The Second Approach

In this approach, let us still assume (19) is the state equation for the ith vehicle,

which satisfies the constraints in (20). The resulted cost function, on the other hand, will

be written in the following form:

Nv

Ji(x,-(t),ui(t),xj(t))= £ ^ (t) , ! ! ^) , ^)) (28)
•=l ,jeAj

where Jj (•) denotes the overall cost function for the Ith vehicle. Please note that there is

no other extra subscript associated with the states and inputs except for the one that

indicates the number of the agent. The cost function generated by i andy" vehicle can be

obtained as [61]:

t+T 2

M*. W^ M>*J W)= J h M-*J W)L+h M£+lh Mf. * • &)
t

where J; =(•) denotes the cost function caused by the formation between /th and 7th vehicle.

The admissible inputs of the ih agent u*(t) is obtained by the following:

J.*(x1(t),x j(t)) = minJ1(x1(t),u1(t),xJ(t)) (3 0)

31

and the input will be applied to the vehicle at each execution horizon. Then the actual

states and inputs of each agent will be exchanged among the whole system for the next

optimization step. The flowchart of this approach is shown in Fig.9.

Each system solve its own

optimization problem from its
current states and other's trajectory

predicted by its neighbours

I
Each system implements its own

inputs

I
Exchange estimated states trajectory

with its neighbours

Fig.9. DRHC flowchart, second approach.

This method is not as computationally expensive as the first approach since the

nodes do not estimate any states other than their own. It is also obvious that, in most

cases, the ith agent is unable to obtain its input at timet, as the states of its neighbour/*

agent may not be available at that time. Thus when being used in the real practice, the

On-the-Fly Computation method is recommended. In the following chapters of this thesis,

the second approach will be considered, and a method to cancel the effect of delays will

be introduced.

2.5. Cooperative Control Example

In this section, an example of completing a DRHC control of two hovercrafts is

explained. The example basically involves an angle regulation and tracking of both

vehicles. A reference angle Gr is set for hovercraft 1 (HI), so that HI will point to that

32

direction. Besides, hovercraft 2 (H2) will follow Hi 's step and point to that direction as

well (Fig. 10).

XG

Fig. 10. Angular regulation example of DRHC

The dynamic models for both vehicles' angle is shown below

r c = a i F T , i - V c , i

rc,2 = a 2 ^ T , 2 ~ "2 rc,2

®c,2 = fc,2

(31)

where rc, and rc2 are the angular velocity of HI and H2, 0 c l and 0 c 2 are angle of HI

and H2 respectively, a,, a2 , b , , and b2 are the parameters associated with hovercrafts

rotation, and FT, and FT2 denote the input applied to the motor of HI and H2

respectively.

Then the cost function for HI can be formed as:

33

t+T

Jc , ,M)>T)= J t a t o - e ^ d r + taft + T M j (32)
t

and the cost function H2 can be formed as:

t+T

= I(0c,.W-0c,2W-eu)2dx+(eCJ(t+T)-eC)2(t)-eu)2 (33)

where 0,2 denote the desired angle between HI and H2. 0,2 can be set as any number,

and in this case, it is set to be zero. After these two definitions, the DRHC controller is

able to follow the procedure discussed in the previous sections and finish the mission. It

should be noted that the computation time is assumed to be zero in this example.

In order to simplify the optimization process, the flat outputs method discussed in

section 2.2 can be used here. From (31), the flat outputs of the system can be selected as:

z,=eC J

z - 0 (3 4)

Z2 - °c,2

where z, and z2 denote the flat output of HI and H2, respectively. Using the selected

flat outputs, the remaining states and inputs of the system can be obtained as:

rc> =

rc,2 =

rT,l

F =
XT,2

Zl

z2

Z l

_ * 2

+ t>,Z1

*1

+ b2z2

a2

(35)

The following parameters are selected for the RHC controller:

34

N c = 3

N,=50

8 = 0.1 s

T = 1.0s

and the initial conditions for HI and H2 are:

rci(°) = 0

rc2(0) = 0

0C, (0) = 0.5 rad

0c2(O) = l.Orad

and the reference angle is set to:

(36)

(37)

0 = - r a d
1 2

(38)

Thereby, the problem is well set up and the simulation result of the above

problem is shown in Fig.l 1.

O 0.5 1 1.5 2 2.5 3
Hme(s)

Fig.l 1. Simulation result of the angle regulation and tracking example

35

3. Modeling and Identification of Wheeled Vehicles

A successful receding horizon control implementation is based on the prediction

of the system's states over the optimization horizon, and reducing the mismatch between

the predicted states and the actual states (Fig.l) is crucial. A good prediction is primarily

based on the accuracy of the system model. Thus, in the following two chapters, the

modeling and identification of the vehicles is discussed in detail.

3.1. Wheeled Vehicle Model

The kinematic model of the wheeled vehicle and the dynamic model of the

actuators are presented in the following subsections.

3.1.1. Kinematic Model of the Wheeled Vehicle

The configuration of the wheeled vehicle is illustrated in Fig.12 to Fig.15.

Although both dynamic models and kinematic models can be used for wheeled vehicles,

the kinematic model is adopted. Since the vehicle does not move fast and the wheels do

not slip much the kinematic model is able to accurately describe the motion of the system.

Also the kinematic model is more computationally simple which is helpful when solving

the RHC optimization problem. Furthermore, kinematic models have been successfully

used in similar experiments [67].

The kinematic equations for each vehicle expressed in the body attached frame

(XB,YB) are given as follows [67] (see Fig. 16):

36

* c = ^ w m . R R w h e d + ° W R wbee]) C 0 S e
c

Ye = - (© W m J l R w h e e l + ° W R wheel) s i n ^ c

" V03 wn ,R wheel ^ wm 0- wheel /

(39)

e = c 21

where Rwhee) is the radius of each wheel, (owmR and ©„„,,_ denotes the angular velocity

of the right and left wheel respectively, and lw denotes the distance between the two

wheels, (x c ,y c) denote the coordinate of the vehicle in the global frame, and 0C denotes

the angle between the global and the body attached frame.

-. ' ->' T&*$r& ** ^ "

Fig. 12. The wheeled vehicle side view Fig. 13. The wheeled vehicle top view

• M

Fig. 14. The wheeled vehicle front view Fig. 15. The wheeled vehicle perspective view

37

XG

Fig. 16. The wheeled vehicle's schematic model

3.1.2. Dynamic Model of the Vehicle Actuators

The 3 degree of freedom motion of a wheeled vehicle is controlled by two servo

motors, which are controlled remotely by a computer via wireless FM radio

communication links.

The dynamic equation of each motor is given by the following:

Jwm^wm = K l v ™ U ™ - ' H w r n © ™ - K b ™ « > » "^wm S g l ^ C D ^) (40)

where cb^ and (ovm represent the angular acceleration and angular velocity of the wheel

respectively, U ^ represents the voltage applied on the motor, J ^ represents moment

of inertia of the motor, Klwm and n.^ are constant parameters associated with the motor,

Kbwm denotes the linear friction coefficient of the motor, and u ^ denotes the Coulomb

friction coefficient of the motor.

38

3.1.3. Sensor Dynamics and Noises

All vehicles are placed and controlled under a 9-camera overhead vision system

(Fig. 17). The vision system is able to track the color targets placed on the vehicles (as

shown in Fig. 13 and Fig. 19) at a sampling rate of 25Hz. Note that the angular velocity

and acceleration terms are obtained by using center finite-difference approximations of

the values of the targets.

However, the vision system, like most of the other tracking systems, has a sensor

delay, which alters the performance of controller. The delay is mainly caused by the

nature of the vision system, which will be fully explained in Chapter 5. In this section,

only the pattern of the sensor delays (41) will be discussed.

In the experimental tests performed to investigate the delay, a LED flash light

bulb was placed under the vision system. It flashed on and off at a constant frequency. A

timing computer recorded the time when the bulb was turned on, and the vision system

sent a signal back to the timing computer immediately after capturing the light. The

timing computer recorded the time at the moment of receiving the signal. Thus, the

delays were obtained by comparing the two times on the timing computer. The result is

shown in Fig. 18. Although in Fig. 18, only a small portion of number of samples are

shown, the figure is adequate enough to show the pattern of the delay, since throughout

the experiment, the delay has never exceeded the maximum value in Fig. 18. Therefore,

the upper bound of the delay can be found as:

tS D<0.06s = TSD (41)

where tSD denotes the sensor delay and TSD denotes the upper bound of the sensor delay.

This information will be used in the DRHC implementation in Chapter 6.

39

Fig. 17. Camera Array

u.uu

0.055

0.05
s
J l 0.045
a
£} 0.04

1
0.035

0.03

»

•
•

•

»

- •

1 1 i '• 1 1 1 1

• • • • •
•

. • ~
• •

* . • • -• • • • • • .

* • • % . . • • . .
v • v • * ' . " #* • . • • . # . • . * # • .• * . •

- •
• • • • • •

• • • •
•

• •
1 t 1 | • ; t | | | 0 20 40 60 80 100 120

Nurriber of Sample
Fig. 18. Pattern of the sensor delays

140 160 180 200

Sensor noise can be observed in the sensor related diagrams in the coming

sections. This noise mainly comes from the following three sources:

• incorrect time measurement for the vision sample, because we are unable to

control the sampling time, but only put the frequency to its highest possible level;

• noise from the cameras themselves causes noise in position data;

40

• finite difference error for derivative calculations, which is caused by the above

two factors combined.

Although filters, such as low-pass filter, can be used to handle the noise, no filter

was used in any of our experiments. This is mainly because in the process of parameter

identification, the curve fit method (to be discussed in the next section) averages the data

to some extent; while in feedback control, the phase lag from low-pass filters caused the

system to become less stable.

3.1.4. State Equations of the Wheeled Vehicles

The state equations of the wheeled vehicle used in this thesis are obtained in (42)

by combining the equations in the first two sections. Please note that the subscripts R and

L indicate the right and left motor on the vehicles respectively.

*c = ^ (" W ^ e e ! +<*WRwhcel)C0Sec

Yc = 2(Wwn.,RRwheel + °WR**eeI 1 ^ ^c

"c = T j V f f) wm,R R wheel ~ ^ win , L R wheel / (4 2)
wm

(K l w m , L U w n i , L - 11W I n ;L
G)wm,L ~ K b v ™ , L f f l T O , L ~ MwmJ. S ^ ' ^ w m . L)) °W wm,L

R —
 T \ ^ - l w m , R U w m , R T lwn),R { 0wm,R ^bwm,R C O wm,R M'wm.R S 8 n V (0 w m , R)) ^wm,i\. -r

*'wni,R

3.2. Parameter Identification

This subsection will introduce the procedure of how parameters in (42) are

identified in details.

41

3.2.1. Parameter Identifications of the Actuators

A cross bar with two coloured targets attached is installed on the wheel (Fig. 19),

to measure the angular velocity and angular acceleration of the motor. The center of the

bar was precisely placed on the center of the wheel to ensure the targets were mounted

with same distance from the center. Before estimation, the motors were balanced by a

leveller to ensure the accuracy of the measured data.

Fig. 19. Cross bar assembly

For the sake of minimizing the number of parameters to be identified, the

equation in (40) is rearranged as follow:

< „ , =a,Uwll - a j c o ^ -a3sgn((0wm) (43)

where a, = ^ ^ , a2 = T lw-"+Kb^" ,33 = ^™ Mv

J J J
wm wm wm

In order to solve (43), it is rearranged into the following equation:

42

[U™ -ro,™ -sgn(cowm)]- =kl (44)

The parameters in (44) can be solved by performing a least squares curve fit to the

sets of experimental data. The least squares identification problem can then be formulated

as an over determined linear system as below:

Als X l s - "is

Aft)
A(t2)

A(tNp)

K =

b(t,)

b(t2)

b(tNp)

(45)

where Np is the number of points in a given experimental data set. In this case, the

experimental data sets include step input responses with different magnitudes. In this case,

the parameters of (45) can be presented in the following and the problem can be solved

by using pseudo-inverse approach.

A k=[U w m - w ^ -sgn(rowm)]

x,„ = (46)

bis=KJ

Two sets of experimental data were used in the parameter identification process

(IC#1 and IC#2). They included step inputs with different magnitudes and similar initial

conditions of co^ (t) = O.Orad/s and U ^ (t) = 0.0V for all t < 5s . IC#1 had a step input

of U ^ (t) = 0.2V, and IC#2 had a step input of U ^ (t) = 0.3V for all t > 5s.

The identified parameters for left and right motors are listed in Table 1 and Table

2, respectively, along with the nominal parameters obtained from the average numerical

43

values of the identified parameters from IC#1 and IC#2. The estimated error bounds for

the motor parameters were obtained through completing the identification procedure by

using other data sets but same parameters, and computing the maximum deviation with

the estimated parameters.

Fig.20 shows the time history of the angular acceleration response of the left

motor for IC#1, and Fig.21 shows the corresponding simulation obtained from the

identified parameters for IC#1. In addition, the results of the left motor for IC#2 are

shown in Fig.22 and Fig.23; the results of the right motor for IC#lare presented in Fig.24

and Fig.25; and the results of the right motor for IC#2 are shown in Fig.26 and Fig.27.

Parameters

a i

a2

a3

Table 1. Estimated motor

Parameters

a i

a2

a3

IC#1
60.0045

5.348

0.062

error bounds
±0.2055

±0.8258

±0.003

IC#2
61.0320

5.02

0.059

error bounds
±0.3083

±1.073

±0.003

parameters from linear least square approximation of the left motor

IC#1
61.128

5.01

0.093

error bounds
±0.1982

±0.195

±0.032

IC#2
62.119

4.932

0.061

error bounds
±0.2973

±0.2535

±0.032

Table 2. Estimated motor parameters from linear least square approximation of the right motor

The comparisons in Fig.20 - Fig.24 illustrate that the identified parameters from

linear least squares method are accurate enough to depict the behaviour of the motors

under different inputs, although with a small latency in some occasions.

44

14-
i

12-

I'l
| 4

i , .f, >:
8 2|- ! :1

I !tl ,,'-.i ;,*

-2h

4 'i ',:

m

Experiment
IVbdel

i^ 5

7 tf

1

. ^ 1

fli:|

1 i'lj

.
f
• 1

I
:f

u
it
¥''

1
0 2 4 6 8 10 12 14 16 18 20

Time(s)
Fig.20. Linear square approximation of angular acceleration of the left motor (1C#1)

3

2.5

§ 2

£ 1.5

| ,

I; 0.5

0

-0.5.
0

Experiment
Simulation

M&ty mi
i >i
i

i

1 1 > foMftA jf

20 5 10 15
T1me(s)

Fig21. Left motor angular velocity response using linear square approximation (IC#1)

25

45

<V

20

15-

10

J 5̂

k o- \-/l ".O.'J.M'UW vi.

I

IH

\ii

-5r

-10b

wi

Experiment; !
Model : I

:j if:' I' i I

i

, t i l l !

if '^n

0 2 4 6 8 10 12 14 16 18 20
Time(s)

Fig.22. Linear square approximation of angular acceleration of the left motor (IC#2)

4.5

4

3.5

I 3

£> 2.5^

I 2

it
-0.5

0

... Juli, it.. AI..J. u I. J

I I 1W!!1
«-. n

Experiment
Simulation

20 5 10 15
Tnre(s)

Fig.23. Left motor angular velocity response using linear square approximation (1C#2)

25

46

6[

'So

8 -21

M -4

-6

-8

10

12

&

-14

BqDerirnentj
Model

i s i#*W

0 2 4 6 8 10 12 14 16 18 20
Time(s)

Fig.24. Linear square approximation of angular acceleration of the right motor (IC#1)

0.5

*™H
-0.5

3-15

^ -2.5

-3

-3.5,

-Experiment
Simulation

' 0 20 25 5 10 15
Time(s)

Fig.25. Right motor angular velocity response using linear square approximation (IC#1)

lOr
Experiment
Model

*S»

s

-10
I

-15

-20

I 4 ,l\ A 4 •^.^, SMi*m ,nl J Ji! mpmsm
p ; . T

0 2 4 6 8 10 12 14 16 18 20
Time(s)

Fig.26. Linear square approximation of angular acceleration of the right motor (IC#2)

5 10 15
Time(s)

Fig.27. Left motor angular velocity response (IC#2)

20 25

3.2.2. Parameter Identification of Wheeled Vehicles

Though, the parameters of motor kinematic equations were identified in the last

section, when the motors are installed on the vehicle, the motor model parameters will

48

need to be adjusted. Because the inertia will increase due to the weight of the vehicle's

body and the friction will also increase due to rolling resistance.

Another two sets of experimental data were used in this process of the parameters

identification of the wheeled vehicle. The first data set (IC#3) had an initial condition,

where 6c=1.55rad, and UwmL(t)= UwmR(t) = 0V (U ^ and U _ L denote the

voltage applied on the right and left motor respectively) for all t < 5s, and had a step

magnitude of UwmR(t)= U ^ L(t)= 0.4V whent > 5. The other set of step input (IC#4)

consisted of an initial condition of 6C =0.45rad and UwmL(t) = UwmR(t) = 0V for all

t < 5s, and a step magnitude of U M R (t) = -0.4V, \JimX (t) = 0.4V for all t > 5s. The

first set mainly produced translational movement of the wheeled vehicle, while the latter

caused rotational movement. The parameter identification process would combine the

results from both types of movements as shown in Table 3. Please note that the first

subscript refers to the number of parameter in (43), and the second one refers to the

parameters belong to either left or right motor of the vehicle.

The simulation results are compared with experiment data in diagrams from

Fig.28 to Fig.38. It can be seen that the simulation results are close to the experimental

data in both translational and rotational movements.

Parameters

31,L

32,L

a 3 , L

a i ,R

a2,R

33,R

IC#3
58.15

20.348

0.0093

56.37

21.008

0.0097

error bounds
±0.946

±0.237

±0.0002

±2.9932

±0.101

±0.0001

1C#4
60.515

22.718

0.0095

48.887

22.107

0.0096

error bounds
±0.946

±3.792

±0.0002

±2.9932

±1.758

±0.0001

Table 3. Estimated wheeled vehicle parameters

49

0.06r

/-s 0.05

t
M 0.04

X 0.03

I 0.02
?
% 0.01
8 o-

-0.01

-0.02-

11\ ,,AM/IJ* /I I I
fmw\im V 7*11

i rfi!¥:i .
" i l l l i i f ill?

-Experiment
Simulation

4 6 8
Time(s)

Fig.28. Velocity along X-axis (IC#3)

10 12

0.2r

1 0.15

8?
J 0.05h

'8
3 oh
>

, . . , v v * w 4

E^Deriment
•Simulation

-0.05
0 4 6 8

Time(s)
Fig.29. Velocity along Y-axis (1C#3)

10 12

0.3^

0.2

0.1 i,

*e o

| - 0 . 1

-0.3

-0.4
0

;/
i !

I i. M l ,

/
V I ' I

Ml

lii '

mi

Experiment
Simulation

II
ililiil
MINI
ill!!

4 6 8
Time(s)

Fig.30. Angular velocity (IC#3)

10 12

1.65r

1.6

-Experiment
Simulation

1.55

I.-
CD
<D

] * 1.45-

1.4

rt<rvjyA %'^5

1.35

1.3
0 4 6

Time(s)
Fig.31. Angle vs. time (IC#3)

8 10 12

51

1.6

1.4

S lr

8 0.&

a6H

0.4I

I

0.2]
0 4 6 8

Time(s)

Fig.32. Position vs. time (IC#3)

10 12

1.14 1.16 1.18 1.2
X(m)

Fig.33. Path (IC#3)

1.22 1.24 1.26

52

0.03

?
£ 0.02

!
>$ 0.01

b o

3J -0.01
>

-0.02.

-

i ! 6
1 J) / \ illU :

11\
-

u >

i

"i

\

r Y |

i

l i ,!

« 1
i

' I1!
II 1

V

1

i

i t ' M

; T ^

fcjq^enmerit
Simulation

I, M

ft
II 'I 1

i
I 1
! 1

4 6 8
Time(s)

Fig.34. Velocity along X-axis (1C#4)

10 12

0.04,

& 0.03
1
^ 0.02

>r
A 0.01

.£ -0.01
8
2 -0.02

-0.03

!P
,ivii\\\ A /i1

" f!': i i"'"

Experiment
Simulation

I N

!S I
fc ;J. i

0 4 6 8
Time(s)

Fig.35. Velocity along Y-axis (IC#4)

10 12

53

0.5;
Bqxrimentj
Simulation I

-8 "0-5L

2 :
S3 - 1 . 5 1 -

-2r

^/ l/!U'
'ji: / V '

-2.5i
4 6 8

Time(s)
Fig.36. Angular velocity (IC#4)

10 12

l r

0

-1

-2

-3

-4

-5

-6

-7

-8

Experiment
Simulation

0 4 6
Time(s)

Fig.37. Angle vs. time (1C#4)

8 10 12

54

1.6r

1.5-

1.4-

& 1 . 3 -

I
1.1

1

O.9I 1 1 1 n = 1 :

0 2 4 6 8 10 12
l lrre(s)

Fig.38. Position vs. time (1C#4)

3.3. Model Verification

The proposed actuator model, identified by the linear least square method, was

validated by comparing the actual output to the simulation output of the model for a

different data set IC#5, which was not used in the parameter identification process. IC#5

had initial conditions of co^ L (t) = o^ R (t) = 0.0 and U ^ (t) = 0.0 for all t < 0 and a

sinusoidal input of U ^ (t) = 0.5sin(0.3t) V for allt > 0. It was adopted in the validation

process because it is a standard input and its magnitude is not too big to create saturations.

It was applied on both left and right motors. The simulations were performed by using

Euler's method with a step size of 0.05 seconds. Fig.39 and Fig.40 show the angular

velocity responses of left and right motors versus time, respectively. It is evident that the

overall response of the linear model is close to the experimental data, except for some

small deviations.

actual

Y ,

actual

model

model

55

Same as the motors, the parameters of the vehicle were validated by another set of

input (IC#6), which was not used in the process of parameter identification, either. IC#6

had an initial condition where 0 =1.6rad and U m , B (t) = U,vml (0 = 0 for all t < 5 s
c wiij,i\ \ / wni,L \ /

with a step magnitude of UwmR(t) = 0.5V and UwmL(t) = 0.7 V when t > 5 s . The

simulated results are shown and compared with the experiment data in diagrams from

Fig.41 to Fig.46. As it is shown in Fig.31, Fig.32, Fig.37, Fig.38, Fig.44 and Fig.45, the

simulated angle and position value have relatively large deviation from the experimental

data especially when the simulations were approaching to the end. However, the RHC

controller used in this thesis does not require a very long optimization horizon (normally

one second), hence, the model is adequate for our RHC experiment in the latter chapters.

^ 2
%

i-2

-6

Experiment
Simulation

0 5 10 15 20
Time(s)

Fig.39. Right motor angular velocity response (1C#5)

25

56

8f

4 (<•

$ 2

k-2

mwk

%

%i\j \Ai\iH-k

-Bjperiment! „.&{$
Simulation ! fflf.'-p

0 5 10 15 20
Time(s)

Fig.40. Left motor angular velocity response (1C#5)

25

0.3,

§
^
^z>

dx
/d

t

X

1
9
*
t 1
2

0.25

0.2

0.15

0.1

0.05

0

-0.05

-Experiment
Simulation

4 6 8
Time(s)

Fig.41. Velocity along X-axis (IC#6)

10 12

57

0.25

& 0.2

| 0 , 5

>r
h. 0.1

g1 0.05

f °
2 -0.05

-0.1

I A
ftl ^ \ ,

-Experiment
Simulation

rW\

4 6 8
Time(s)

Fig.42. Velocity along Y-axis (IC#6)

10 12

0.2,

0.1

S oh

CD

•o-o. i I
^-0 .2
>
U-0-3

-0.4

-0.5

jyhJ o.tiiA .i&.. /ka iki* J u

0 4 6 8
Time(s)

Fig.43. Angular velocity (IC#6)

BqDeriment
Simulation

10 12

58

1.5!

CD
M o.5h

o 4 6
Time(s)

Fig.44. Angle vs. time (IC#6)

8 10 12

6
Time(s)

Fig.45. Position vs. time (1C#6)

12

59

1.4

1.3;

1.2-

1.1

1

0.9

o.8

0.1

>
' (
: •!

:/
i l l !

^ - ^ ^ —Experiment
^ - ^ J" Simulation -

-

i i i i

1.3 1.4 1.5 1.6
X(m)

Fig.46. Path (IC#6)

1.7 1.8 1.9

60

4. Modeling and Identification of Hovercraft Vehicles

The hovercraft vehicles used in the experiments are modified from radio

controlled (RC) hovercrafts. By adding two powerful ducted fans on both sides, and an

extra fan on the tail, the new hovercraft becomes dynamically similar to a helicopter in

2D environment. This will be a preparatory stage for our future research on applying

RHC to miniature helicopters.

4.1. Hovercraft Vehicle Model

The dynamic model of the foresaid modified hovercraft and its actuators are

presented in this subsection. The pictures of the hovercraft are shown in Fig.47 and

Fig.48.

4.1.1. Dynamic Model of the Hovercraft Actuators

The 3 degree of freedom motion of a hovercraft vehicle is obtained by three

powerful ducted fans, which are connected to a servo amplifier. Similar to the wheeled

61

vehicles, the hovercraft is controlled remotely by a computer via wireless FM radio

communication links.

The servo amplifier is able to transfer the voltage applied to the FM transmitter

into pulses, changes the pulse width when different voltages applied on the FM radio

controller, and uses the different duty cycle ratio to change the average voltage applied to

the fan's motor; thus manipulates the thrust generated by the motor. Duty cycle ratio is

equal to pulse width divided by the period of the pulse.

The average voltage on the motor is obtained by multiplying the voltage level and

duty cycle ratio as:

'-'level '**• ratio = ^ hMotor (4 7)

where Ulevel is the voltage level, Kralj0 is the duty cycle ratio and UhMotor is the resulted

average voltage the motor sees.

During the experiments, it is found out that the generated thrust is weaker when

positive voltage applied on the motor than the thrust when negative voltage is applied.

This is because the amplifier produces different set of pulse width when positive and

negative voltages are applied. This discovery can be proved by the following diagram

Fig.49.

62

L5r

.3 lr

• Ratio When Positive Voltags implied
Ratio When Negative Voltage Applied
Ratio When Negative Vohag2 Applied (Axial Symmetry Along Inrjut=OV)

5
05r

Oh . . . • ? *
-1.5 -1 -0.5 0 0.5 1

Input on FM Controller (V)
Fig.49. Duty cycle ratio vs. input voltage

1.5

It is obvious that when negative voltage applied, the duty cycle ratio increases

faster than the case when positive voltage applied, accordingly, the average voltage

grows faster. However, the thrust generated by the motor is unable to be measured,

therefore in this thesis it is assumed that the thrust is proportional to the average voltage.

Therefore, the relationship between the input voltage and the thrust can be found, if the

relationship between the input voltage and the duty cycle ratio is established. By using 5

order polynomial method, the following equation is able to depict this relationship:

th

Kralio=Sb,U'h (48)

where bf denotes the parameter to be identified, and Uh denotes the input voltage from

the FM controller. By combining (47) and (48), we can have:

U hMotor = UIeve,-EbiU; (49)
i=l

63

4.1.2. Dynamic Model of the Hovercraft

The dynamic model of the hovercraft is different from the wheeled vehicles in a

number of respects. This is mainly because of the difference in their actuators and friction

mechanisms. The hovercraft vehicles are actuated by thrust forces from their fans, so the

motion is more complicated and unpredictable than the motion of the wheeled vehicles.

Furthermore, the frictional force is mostly viscous since the vehicle floats on a cushion of

air. Finally, there are no kinematic constraints due to the low friction air cushion.

The equations for hovercrafts are also expressed in the body attached frame

(XB, YB) as shown in Fig.50, which are given by the following equations [68]:

F h T :

uc =

vc =

~ a hM " '-'level

- ahT • UIeve, • •ZbiUU

— (F h M - b h U u) + v c r (

1 ,
t>hvVc - U J c

(50)

f =LIL(F - b r) - l ^ F
c T VrhT U h r 1 c ' T

 rhM

where lhT denotes the distance between the block in which tail rotor is installed and the

center of the hovercraft, lhM denotes the distance between the two blocks in which main

rotors are installed, mh denotes the mass of the hovercraft, Jh is the mass moment of

inertia of the hovercraft, uc and vc are the velocity along XB and YB axes, respectively,

bhu , bhv , and bto denote the viscous friction coefficients along XB , YB , and ZB

(pointing out from the diagram, not shown in Fig.50) directions, respectively. ahM and

64

ahT denote the coefficients of the linear relationship between the average voltage on the

main and tail motors and the produced thrust by the ducted fans, FbM and FhT represents

the thrust generated by the main and tail rotors respectively, and UhM and UhT represent

the input voltage applied to the main and tail motors, respectively.

YB

\ , - ' (XcYcW

FT

•
XG

Fig.50. The hovercraft vehicle's schematic model

4.1.3. State Equations of the Hovercraft Vehicles

The state equations of the hovercraft vehicles are obtained by combining the

dynamic equations of the actuators, and the kinematic equations of the hovercraft.

65

^hM ~ a h M ' ^ level / , " j U hM
i=l

5

ĥT - ahT • u,eve, • 2_, bjUhT
i=l

u c = — (F h M - b h u u) + vcr(

v„ = —
m,

b h v V c - U c r c

c T V % U h r 1 c / . r I

x c = u c c o s e c - v c s i n 9 c

yc =u c s in0 c +v c cos9 c

©c=rc

hM

(51)

4.2. Parameter Identification

In this section, the procedure for parameter identification of the hovercraft vehicle

and its actuators is presented.

4.2.1. Parameter Identification of the Actuators

Similar to the process of parameter identification of the actuators of the wheeled

vehicle, this part will use (45) to find the parameters associated with the motors, and by

combining (47) and (48), we can change (46) into the following equations:

A IS=[Uh U* U> U4
h V[]

X>s=[b) b2 b3 b4 b
5] T

K =
hMotor

U level

(52)

and through experiment, it is discovered that

66

U,eve1=+7-0V,ifUhMo(or>0.0V
(53)

U,eve.=-7-0V,ifUhMotor<0.0V

Although the identification process is similar to the ones described in previous

sections, the parameters of the main and tail motors should be calculated by different data

sets. This is because, in the experiment, both positive and negative inputs will be applied

to the tail motor for rotational motion of the hovercraft, but only negative voltage will be

applied to the main motor, since the hovercraft only needs to move forward and the thrust

is stronger when negative voltage is applied. Also, please note that, for the purpose of

convenience and tradition, the input for the main motors will multiple -1 after being used,

so that we could say the hovercraft moves forward when positive voltage is applied. This

modification is only for the habit of the author, and will not change the dynamics of the

system.

There were two sets of data chosen for the tail motor. These two data sets (IC#7

and IC#8) had the same initial conditions of UhMotor (t) = 0.0 and Uwh(t) = 0.0 for

a l l t < 5 s . IC#7 had a step input of Uwh(t) = 1.25V , and IC#8 had a step input of

U ^ (t) = -1.25 V for all when t > 5s. Also for the main motors, there were two sets of

data employed. One of them was IC#7 and the other one was IC#9, which had the same

initial conditions of U,^,,,, (t) = 0.0 and U ^ (t) = 0.0 for allt <5s , and a step input of

uwh(0 = ° - 4 5 V f o r a11 w h e n t > 5 s -

The identified parameters for the tail and main motors are listed in Table 4 and

Table 5 respectively, along with the nominal parameters obtained from the average

67

numerical values of the identified parameters from IC#7, IC#8 and IC#9, and the

estimated error bounds.

Parameters

b5

b4

b3

b2

b,

IC#7
-0.2958

0.09188

2.032

-0.4095

0.856

error bounds
±0.06265

±0.0457

±0.0973

±0.229

±0.02907

IC#8
-0.31633

0.07315

2.0818

-0.26236

0.8337

error bounds
±0.0.06265

±0.0475

±0.0973

±0.229

±0.02907

Table 4. Estimated motor parameters for the hovercraft tail motor

Fig.51 shows the time history of the average voltage applied on the tail motor for

IC#7, and Fig.52 shows the result for IC#8. The corresponding cases for the main motor

for IC#7 and IC#8 are shown in Fig.52 and Fig.53, respectively. In addition, the input-

output relationship of the tail and main motors are obtained by using the identified

parameters, and illustrated in Fig.55 and Fig.56, respectively. Furthermore, there is no

need to validate the parameters, since Fig.55 and Fig.56 have proved the accuracy of the

model.

Parameters

b5

b4

b3

b2

b,

IC#7
-0.2981

1.32

1.986

3.892

-0.07508

error bounds
±0.0595

±0.3173

±0.2753

±1.5391

±0.0074

1C#9
-0.3176

1.45

1.845

2.907

-0.081

error bounds
±0.00036

±0.00533

±0.0128

±0.1995

±0.00266

Table 5. Estimated motor parameters for the hovercraft main motor

68

9
3.5

h 3̂

E?qxrirnert
]Vbdel

B
251-

gLSh

1

0.5

0
0 2 3 4 5 6 7

Time(s)
Fig.51. Average Voltage on the tail motor (IC#7)

10

Or

£...
-Bqjerimenti
MDdel

$4
s

4= _V

9i

<

2 3 4 5 6 7
Time(s)

Fig.52. Average Voltage on the tail motor (1C#8)

9 10

69

4.5r

9

j | — Experiment
4r I Mxiel

h3^
2 3h
& g2.5h

?U

0.5

0 2 3 4 5 6 7
Time(s)

Fig.53. Average Voltage on the main motor (1C#7)

8 10

s

0.7

0.6

0.5

0.4

0.3

0.2

< 0 . 1

%

-Experiment
Mxlel

2 3 4 5 6 7
Time(s)

Fig.54. Average Voltage on the main motor (1C#9)

8 10

70

8;

I Bqjeriirent
Model

Z 2<-
S !
| or

5i
-41-

-2 -1.5 -1 1 1.5 -0.5 0 0.5
Input an FM controller (V)

Fig.55. Average Voltage on tail motor vs. input voltage on FM controller

0 0.2 0.4 1.2 1.4 0.6 0.8 1
Input on FM controller (V)

Fig.56. Average Voltage on main motor vs. input voltage on FM controller

1.6

71

4.2.2. Parameter Identification of the Hovercraft Vehicle

Unlike the actuators for the wheeled vehicle, there is no need to re-identify the

parameters of the motors, because there are no extra loads or modifications applied on the

actuators when they are installed on the hovercraft.

In order to identify the parameters of the hovercraft, equation (50) needs to be

rewritten for the sake of reducing the number of parameters to be calculated.

r c=PiU h T -p 2 r c -p 3 U h M

Uc=P4Uh M-p5u c+v cr c

v c =-P6V c -u c r c

(54)

where p, = hT T , p2 = ^ h r

h
P3 =

' h M a M
> P 4 =

l hM hu

m.
> P5= » P6 =

m.

'hv

m.

Following the procedures discussed in the above sections by using least square curve fit

to the experimental data, (54) can be modified in the form of (55) and solved by using

pseudoinverse approach.

A l s X . s

Als =

= K
"U„T

0

0

~ r c

0

0

-u».
0

0

0

UKM

0

0

- U o

0

0

0

- v

u„ — v r
c c c
c c c

(55)

Xls=[Pl P2 P3 P4 P5 P6]

Four sets of experimental data with different initial conditions (ICs) are used in

this process of the parameter identification. They all included step input responses with

the same initial conditions, whereuc = 0 , vc = 0 , rc = 0 and UhM(t) = UhT(t) = 0V for

all t < 5 s . The first data set (IC#10) had a step magnitude of

72

UhM(t) = 1.5V,UhT(t) = 0V when t > 5 s , while the second set (IC#11) had

\Jm (t) = 1.7 V, UhT (t) = 0V when t > 5 s. These two data sets were responsible for the

translational motion of the hovercraft. The other two sets of step inputs consisted of two

step inputs, in which UhM(t) = 0V , UhT(t) = 1.2V (1C#12) and UhM(t) = 0V ,

UhT(t) = -1.2V (1C#13) for a l l t > 5 s , and they were responsible for the rotational

motion of the hovercraft. The identification results are shown in Table 6, and their results

are shown in Fig.57 to Fig.74. Please note the "0"s in Table 6 indicate either there is not

enough data to identify that parameter, or the identified parameter is not reliable due to

lack of information. It is apparent to see from these diagrams that, despite of minor

disagreement with the experiment data, the overall performance of the system can be

accurately reflected by the identified parameters.

Parameters

Pi

P2

P3

P4

P5

P6

IC#10
0

3.0079

0.4

13.2313

1.0891

2.6117

IC#11
0

2.4731

0.4

16.312

0.1369

2.6034

IC#12
1.6017

2.5128

0

16.5771

0.1227

2.6275

IC#13
1.5341

2.2314

0

14.7901

0.1437

2.7591

Table 6. Estimated hovercraft parameters

73

1.4

"C 1-2

I
V. 0.8

>^
O.fr

0.4
13
S 0-2

0

-0.2

-0.4
0

Experiment!
Sirrulation I

Y A A .n,/WA
V w V

\/v y v y ^ A \A

i

M

V
2 3 4

Time(s)
Fig.57. Acceleration along XB-axis (1C#10)

0.25,
Experiment
Simulation

3
T1me(s)

Fig.58. Acceleration along YB-axis (1C#10)

74

V
el

oc
ity

 a
lo

ng
 X

-a
xi

s
u

(n
V

s)

-V
L

_

T
O

 > 3 > O

o
 §

to

d
w

O

©

U
i 0\
k.

A
ng

ul
ar

 a
cc

el
er

at
io

n
dr

/d
t (

ra
d/

s)

6 i/>

-9-

-£

V
)

_1

l_

-J

0.12;

0.V
Experiment
Simulation

>
7i

0.08r

0.06-

§ 0.04r

8 0.02r

2
Or

-0.02'
0

A i I / \ M / (W

* w y V if w
[At M , A A r, A /'

7 v\
T A1.M , vr

2 3 4
Time(s)

Fig.61. Velocity along YB-axis (IC#10)

MY-

Y""Ww'

3
Time(s)

Fig.62. Angular Velocity (1C#10)

76

1
1.2:

^ 0.8

1 °6

? 0.4-

•S °-2

l °:

I -0.2
< -0.4

-0.6;

Experiment
Simulation

M

0 2 3 4
Time(s)

Fig.63. Acceleration along XB-axis (1C#11)

'

! 1

v. ... -A ...
V - v ^ -

i i

1
1

i i

0.3

" I 0.2J-

¥ !

Experiment
Simulation

M

-0.3f

-0-4!:

/\y\ AM
J. °rA'V\i ^ - w w
8 -o.i

s
•a -0.2-

" A A.M1

2 3 4
Time(s)

Fig.64. Acceleration along YB-axis (IC#11)

77

<>

2r

1.5

Experiment
Simulation

t3 0.51-

I A ^ U
Oi

-0.5

i A . f VU! 1

i l i i i ! /> : i

i ij f

o 2 3 4
Time(s)

Fig.65. Angular Acceleration (IC#11)

0.8

$ 0.7
1
^ 0.6

'§ 0.5

M °-4

c?
•§ o.3
£»
"g 0 2

33 > 0.1

0

-

1

T ^ . ;

experiment
Simulation !

i • t

"V

I

/

/V -
f7

' /
•"/
I

J
1

//

1 1 1

2 3 4
Time(s)

Fig.66. Velocity along XB-axis (1C#11)

78

^

8P

0.3

0.25

0.2

0.15

5 0.1

8 0.05

0

-0.05.

Experiment
Simulation

v~^ ^ ^*
. A. .

<V7 V '

. /. A / \ . A ,
' \ V / Vs>v ' VN

0 2 3 4
Time(s)

Fig.67. Velocity along YB-axis (1C#11)

v \

0.5

0.4

| 0.3

£> 0.2

3
> 0.1

<! °
-0.1

-0.2

— Experiment
Simulation

r f Y -vyjl" V "T^y- ^/

0 2 3 4
Time(s)

Fig.68. Angular Velocity (1C#11)

< > 1

7--

6h

3 i

I !
ia o

-2-

-3

Experiment
Simulation

v/i j \ .AMa
N >,Tf/"v

(1 |
i.l i :!

M ' | \ \ J \
/ ,\f. :'; I ! : i

0 2 3 4
Time(s)

Fig.69. Angular Acceleration (IC#12)

4.5

4

3.5

3

2.5

2

1.5

» 1

0.5

0

-0.5

'8

Bgjerimert j
Simulation !

^ • v V S r A ^ ^ , ^ * A / V

0 2 3 4
111116(8)

Fig.70. Angular Velocity (IC#12)

3 4
Time(s)

Fig.71. Angle (IC#12)

f3o

« 2

S
1 0

b
-2

^

Bqxriment
Simulation

3 4 5 6 7
Time(s)

Fig.72. Angular Acceleration (JC#13)

10

81

0.5

0

-0.5

* -1.5

-2

-2.5

-3

• ^ ^ ^ A ^ y - y / y i J>v< ̂ / V Y * \ A

KA

Experimentj
Simulation |

if i

0 1 2 3 4 5 6 7 8 9 10
Time(s)

Fig.73. Angular Velocity (1C#13)

0

CD _2

-a

-6

-8

Experiment
Simulation

0 4 5 6
Tfime(s)

Fig.74. Angle (IC# 13)

10

4.3. Model Verification

Similar to the section of wheeled vehicle parameter identification, the nominal

model is validated by a set of inputs that was not used in the identifying process.

82

However, as stated earlier, the verification of the ducted fan system is not necessary,

since Fig.55 and Fig.56 have already validated the accuracy.

The data set used in this section is IC#14, which was not used in the process of

parameter identification. It included step input responses with the same initial conditions,

where u c = 0 , v c = 0 , r c = 0 and UhM(t) = UhT(t) = 0V for all t < 5 s , and a step

magnitude of UhM(t) = 1.4V and UhT(t) = 0.7 V when t > 5 s . The results are shown in

the diagrams from Fig.75 to Fig.82. Same as the model validation section in the previous

chapter, the validation process is necessary only for a short time, since the RHC

experiments in the following chapters do not need very long optimization and execution

horizons.

I "
3 a«

tf
0.4

•3
0.2

ol

-0.2

-0.4

Bqxriment
Simulation

^w^V

2 3 4
71me{s)

Fig.75. Acceleration along XB-axis (IC#14)

83

0.3-

rC 0.2-
g
* 0 1

i
sf -0.2

g -0.3-

1 -0.4

< -0.5

Experiment
Simulation

UK/, J
•u

-0.6
0 2 3 4 f

Time(s)
Fig.76. Acceleration along YB-axis (IC#14)

2 3 4
Time(s)

Fig.77. Angular Acceleration (IC#14)

84

0.6.

0.5

0.4

*«
xf
a* s
T3
£
8
s

0.3

0.2

0.1

-0.1

Experiment
Simulation

0--Hr, ^"•V1 ' . A - ^ v ^ - - .-=^7

1 a

o 2 3 4
Time(s)

Fig.78. Velocity along XB-axis (IC#14)

I
> 1
>>

!

V
el

oc
i

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0̂

-0.02

—Experiment
-Simulation

0

W7^ IT w :CS.A, ,.J .A/V..

2 3 4
Time(s)

Fig.79. Velocity along YB-axis (IC#14)

85

1.2r

Experiment
Simulation

£ 0.6r

-0.2

4'

w'
'V " V V

0 2 3 4
Time(s)

Fig.80. Angular velocity (IC#14)

5 . 2 -

5.1-

I
\

4.9h

Experiment
Simulation

® 4 8i-

47^

!
4.6r

!
4.5- ; " V

4 .4 -
2 3 4

Time(s)
Fig.81. Angle vs. time (IC#14)

86

l-8r

l.6j-

.g 1.4

1-21-

0.8

Bq^erimentY
Simulation Y
Experiment X
Simulation X

0 2 3 4
T5me(s)

Fig.82. Position vs. time (IC#14)

The open loop control in the previous identification and validation processes are

not asymptotically, but marginally stable, therefore, some deviations can be observed in

the previous diagrams, such as Fig.76.

87

5. Application of Decentralized Receding Horizon Control to

Wheeled Vehicles

Applying RHC and DRHC on wheeled vehicles is a fairly new concept, since

there has been other control methods available for these type of nonholonomic systems,

such as dynamic feedback linearization [88]. These methods have potentially faster

sampling rates and guarantee stability [89]. However, none of them is able to easily

handle input saturation and provide optimal performance. The RHC and DRHC methods

can systematically address those critical issues.

In this chapter, DRHC will be applied to several simulations and experiments of

multiple wheeled vehicle systems. The wheeled vehicle model used in this chapter has

been obtained in (42). The procedure of designing a controller for the formation will

follow the second method stated in Chapter 2.

5.1. Controller Design

In the case of single vehicle trajectory following, the cost function can be

formulated as:

t+T

Jfl(x(t),xD(t),t) = J|x(t)-xD(T)£dT+|x(t + T) -x D (f+T) | , (56)
t

where according to (42), x(t) = [xc (t) yc (t) 0C (t) ra^x c o ^ R] denotes the state

vector of the wheeled vehicle at time t , xD(t) = [xD yD 0D coDL coDRj is the

vector containing desired states, and Q and R are weighting matrices. Moreover,

88

(xD ,yD) denote the desire position, 9D is the desired angle, coDL and coDR denote the

desired angular velocity of the left and right motor respectively.

When Nv (Nv>\) vehicles added in the system, the formation of these NY +1

vehicles can be kept by the following approach. One of the vehicles is selected as the

leader of the fleet that only follows the trajectory by using the cost function in (56); the

rests are selected as followers, which keep certain distance from each other by using the

cost function discussed below.

Let Xj (t) be the state vector of the i'h vehicle at time t . For the i,h vehicle there

exists at least one/* vehicle where j e A ; , the set of /'* vehicle's neighbours. So for the

vehicle, there is a cost function (57):

ith

Jf(X l(t) ,xJ(t) , t)^JpQx1(x)-xJ(tf-ry
> l dx

+ K |̂x,(t + T)-xJ(t|[-r,J
(57)

•th
where r̂ is a scalar variable which denotes the nominal distance between the i and the

j ' h vehicle, P and K are weighting matrices and P and K are weighting scalars. How

the weighting matrices and scalars are defined can be found in the next section.

The following parameters are selected for the RHC controller:

N e = 4

N t =50

a m (5 8)

8 = 0.1 s
T = 1.0s

89

5.2. Simulations

This section contains several simulations of trajectory following and formation

control of wheeled vehicles for different cases.

Fig.83 shows a simulation of the tracking control of a wheeled vehicle. In this

case, x(t) = [x c (t) yc(t) 9c(t) c o ^ COWTOR] , while xD is chosen as:

1.6 +0.75 cos(t)"

1.2 +0.75 sin(t)

<DW = 0 (59)
0

0

and Q and R are selected as:

Q = R = *2x2 "2x3

03*2 03*3
(60)

In Fig.84, the formation of two vehicles is presented. The first vehicle follows the

trajectory as in the first case, while a follower moves behind it and keeps a fixed distance

from it. In this case, for the leader, x, (t) = [x c , (t) yc, (t) 0C, (t) co^ L, © ^ R ,] T

and (60) remains unchanged; for the follower, r;j=0.1m , x
2 (t) =

[xc2M yc.2(t) ^ (0 °W,2 G W i u X ^ d

P = K =
-*2x2 "2x3

©3x2 0 3 x 3 (61)

P = K = 1

In addition, two simulations for three and six vehicles keeping a triangular

formation, while tracking a trajectory are performed and the results are presented in

90

Fig.86 and Fig.88, respectively. In this two cases, the definitions of x ;(t) and xD(t)

remain unchanged, (60) and (61) stay the same as the last simulation, r̂ can be set to any

value, but in the following simulations, it remains 0.1 m.

Although, it can be observed that in Fig.85, and especially in Fig.87, the

overshoot formation error (defined in (62)) between two vehicles are high at the

beginning, due to the choice of initial conditions, but they quickly converge to their

required steady state values as well. Same result is shown in Fig.89, however, for

simplicity the figure only illustrates the formation error of the system, which is obtained

by summing up the formation error between each pair of vehicles.

n

1.8

1.6

1.4

1.2

1

0.8

0.6

n A

efj(t

/' L /

/
. /

/

" I

\
\

\

) = fab

i

0-*,(

—

i p - ^ j

— ' —- ̂

I

(62)

^ | — RHC sinulation
^ ^ - | Reference Trajectory \

X
\

\

\

\

L

: 1 (

1 2.2 2.4 1.2 1.4 1.6 1.8 2
X(m)

Fig.83. Simulation of trajectory following, for a single wheeled vehicle-

2.6

91

2

1.8

1

1.4

1.2

1

0.8

0.

r tf

0.

or
^

\

i .8 1

^ .

•-Q-

- -e- - B—

\ L

Leader's Trajectory !
FolkMsr's Trajectory
Leader
Follower

>s

1.2 2.2 2.4 2.6 1.4 1.6 1.8 2
X(m)

Fig.84. Simulation of trajectory following and formation control, for 2 wheeled vehicles

16 18 2 4 6 8 10 12 14
Time(s)

Fig.85. Distance between the two vehicles, for the case presented in Fig.84

20

92

1.8

1.6

1 4 ^
11.2-

1

0.8

0.6

0.4

• ^

^ T
£*

rV

0.8 1

< * ^

>

V

>

Reference Trajectory
- Leader
o Follower No.l
o FolkmerNo.2

—Formation

1.2 1.4 22 2.4 2.6 1.6 1.8 2
X(m)

Fig.86. Simulation of trajectory following and formation control, for 3 wheeled vehicles

8 10 12
Time(s)

Fig.87. Distance between two of the three vehicle for the case presented in Fig.86

20

93

2.2 r

iy i

1.4
l.6[

^ 1.4

>,1.2

1

0.8

0.6

0.4

/N <

v>

£>
*r—fr

t>
Reference Trajectory

- 1st vehicle
c 2nd vehicle
- 3rd vehicle
* 4th vehicle

\ * 5th vehicle
: o 6th vehicle
\ — Formation

0.8 1 2.2 2.4 2.6 1.2 1.4 1.6 1.8 2
X(m)

Fig.88. Simulation of trajectory following and formation control, for 6 wheeled vehicles

14 16 2 4 6 8 10 12
T K I E (S)

Fig.89. Formation error of the system for the case presented in Fig.88

18 20

5.3. Apparatus

In this section, the experimental apparatus will be briefly introduced. The

apparatus consists of a vision feedback system and a controller computer. The vision

94

feedback system was introduced in chapter 3. It has nine web cameras pointing down to

the testbed covering an area of approximately 5m by 5m. Each web camera is connected

with a computer that processes the images acquired from the camera and sends the

position of the targets to the controller computer at a frequency of 25Hz. This frequency

is the maximum frequency the vision system can reach, thus causes the delay discussed in

Chapter 3. Upon the reception of data from the vision system, the controller system

calculates admissible inputs for the vehicle via a FM transmitter, which is connected to a

D/A board. The D/A board is used to convert the digital control signals to analog signals

need to be sent to the FM transmitter. A structural scheme of the apparatus is shown in

Fig.90.

r
Camera Array

A
^V

Vehicles

Vision System

Controller

FM transmission

Testbed

Fig.90. Structure of the apparatus

5.4. Checking the Constraint and Tuning the Parameters

A problem that researchers are usually faced is that no matter how perfect the

output of the system would be in simulation, there would be some problem if the system

was brought into reality. This problem persists in our RHC experiments as well.

95

Therefore, before moving into validating the previous simulations, we will discuss how to

tune the parameters and check the constraints in order to obtain superior performance

from the controller. A simple trajectory of line segments is introduced as an example

showing how the procedure is undergone.

The trajectory is defined as:

xD(t) = 0.25 + 0.05t

yD (t) = 0.6 + 0.05t

xD (t) = 0.25 + 0.05t

, for all 0 < t < 2 5 s

(63)

for all t>25s
yD(t) = yD(25)

where as before, (xD(t),yD(t)) denotes the desired position at time t. So if we follow the

process explained in section 5.1, we can have the desired states for the controller as:

0.25 + 0.05f

0.6 + 0.05t

0

0

for all 0 < t < 2 5 s

(64)

<o(t) =

0.25 + 0.05t

xD2](25)

0

0

0

, for all t>25s

and by using the selection of RHC parameters in (60), a RHC controller is successfully

constructed for this trajectory following problem, and its result is shown in Fig.91.

96

2 - -
— Vehicle !

Reference Trajectory j

1.5 ^^-^ — -

o.5|- ^ - ^

0 ! , • , ,
0 0.5 1 1.5 2 2.5

X(m)

Fig.91. Trajectory following using wheeled vehicle, before tuning RHC

It is apparent that the performance of the controller is not satisfying, and the

constraints and/or the parameters needs to be updated. The first step to determine whether

the constraints or the parameters should be adjusted first is to carefully observe the output

diagram. In Fig.91, it is obvious that the output trajectory has a trend towards the

reference trajectory, but the offset is huge. In this case, it is recommended to check if

there are other constraints that can be added in the controller to make the overall

constraint strong enough to drive the system to the desired states.

In this example, it should not be difficult to see that a desired angle will help the

system point to the desired position (xD(t),.yD(t)) at time t , and if the system is able to

do that, moving to that position can be easy for the vehicle. Thus, (64) is updated as:

97

'DM =

0.25 + 0.05t

0.6 + 0.05t

eD(t)
0

0

, for all 0<t<25s

*D(0 =

0.25 + 0.05t

XD2,1\ -V

eD(t)
o
o

(65)

, for all t > 25 s

where

eD(t) = arctan2((yD(t)-yc(t)),(xD(t)-xc(t))) (66)

is the desired angle for the vehicle. Moreover the parameters associated with the RHC

controller is updated as:

Q = R = 1*3 03,2

. " 2 x 3 " 2 x 2 .

(67)

and the result is shown in Fig.92. Please note that the parameters have not been tuned yet,

and the change of parameters in (67) is just because of the need to bring 0D(t) in the cost

function.

98

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

Vehicle
Reference Trajectory

0 0.5 1 1.5 2.5
X(m)

Fig.92. Trajectory following using wheeled vehicle, after adding constraint

Tuning the parameters can be summarised as increasing the value of the

parameter corresponding to the most disagreement. For example, the cost function for

Fig.92 can be derived from (56) as:

t+T

j(xc(t),xD(t)) = a, { (x ^ - x ^ d T + b^x^t + Tj-x^t + T))2

t

t+T

+ a2 J(yc(t)-yD(T))2dx + b2(yc(t + T)-yD(t + T))2 (68)
t

t+T

+ a 3 | (0 c (T)-e D (T)) 2 dT + b3(0c(t + T) - 0 D (t + T))2

t

where a,,a2,a3,b,,b2,b3 denote the parameters associated with the RHC controller for

this problem. Since the disagreement between the actual and reference trajectory is

primarily caused by the offset in Y direction, the first step is to increase the values of a2

and b 2 . After that, the new output should be checked to see if other parameters also need

to be changed. The final result of this parameter tuning is

99

Q = R = diag([1.5 2.5 1.0 0.0 0.0]) (69)

and the final output is shown in Fig.93. Please note that although it is possible to reduce

huge offset simply by tuning the parameters, it is still recommended to check the missing

constraints first, since the process of tuning is more complicated when compared with

adding an important constraint.

>

2r

1.8-

1.6

1.4

1.2

1

0.8

0.6

0.4
0

— Vehicle
Reference Trajectory

/"

?s

' \ i i

.
^ - — - " "

J

i
i

1
i
i

—

-

i
!

0.5 1 1.5 2
X(m)

Fig.93. Trajectory following using wheeled vehicle, after adding constraint and tuning

2.5

And the initial condition for the case shown in Fig.91 is:

x,(0)=[0.1 0.37 0 0 Of,

for the case shown in Fig.92 is:

x,(0)= [0.021 0.55 0 0 Of,

for the case shown in Fig.93 is:

x,(0) = [0.012 0.41 0 0 Of.

(70)

(71)

(72)

100

5.5. Experimental Verification

In this section, two single vehicle trajectory following examples are presented to

validate the algorithm in (56), followed by the triangular formation control of three

vehicle. The later validation will be performed by using the decentralized RHC controller

discussed in section 2.4 and a combination of actual experimental vehicle and simulation

is employed. The experiments were run on the apparatus discussed in section 5.3.

Two experimental results are shown in Fig.94 and Fig.95, and their corresponding

simulation result is shown in Fig.83. The initial condition for the first case (Fig.94) is as

follows:

x,(0) = [2.051 0.815 0 0 Of. (73)

and, the initial condition for second case (Fig.95) is:

x,(0) = [2.1021 1.0364 0 0 Of. (74)

Please note that the initial positions of the vehicle in this experiment are different from

the simulation presented in Fig.83. Besides, the selection of Q and R is updated to the

following, as explained earlier:

Q = R = diag([1.0 1.2 0.5 0 0]) (75)

while xD(t) is modified as:

X D (t) :

1.6 + 0.75 cos(t)'

1.2 +0.75 sin(t)

eD(t)
0
0

(76)

where the definition of 0D(t) can be found in (66).

101

Vehicle
Reference Trajectory

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
X(m)

Fig.94. Experimental result of the first trajectory following example with a single wheeled vehicle

1.8

1.6

1.4

1.2

1

0.8

0.6

n A

' / !
/ i

(/

1
\ 1

^ x —Vehicle
^ \ ^ ' 1 Reference Trajectory

" ^ - ^ _ _ _ _ _ _ _ _ ^ _ _ ^ - ^ "
I > 1 I 1 I 1 1

18 1 1.2 2.2 2.4 2.6 1.4 1.6 1.8 2
X(m)

Fig.95. Experimental result of the second trajectory following example with a single wheeled vehicle

Then the case of three vehicle triangular formation control is validated. It should

be indicated that the experimental results shown in Fig.96 to Fig.99 were run in a mixed

reality fashion, in which only the leader is running in real world and the followers are

102

being simulated. This is an interesting case that real-time simulations are combined with

the experimental results. However, this arrangement still closely follows the requirement

of the DRHC environment, the members are under constraints of DRHC, and they need

to use the second method in 2.4 as DRHC strategy, and On-the-Fly Computation method

as actuation method. The initial conditions for the experiment shown in Fig.98 and Fig.99

are:

x,(o) = x2(o) = x3(o) = [2.37 0.88 0 0 0]T (77)

while the initial conditions for the experiment shown in Fig. 100 and Fig. 101 are:

x,(o)=x2(o) = x3(o) = [2.45 1.22 0 0 0]T (78)

Please note that the selection of Q and R remains as in (75), and xD(t) stays the same

as in (76). However, the selection of P , K , P , and K are updated as:

P = K = diag([1.5 1.5 0.0 0.0 0.0])
(79)

P = K = 1.5

-

-K?

^

- ^

: 1 l

"V*

N "

Reference Trajectory
; D Leader
; o Follower No. 1

o Foflowa-No.2
Formation

0

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
X(m)

Fig.96. First formation control experiment with three wheeled vehicles

103

0.08|

0.06K

0.04r

0.021

60
Time(s)

Fig.97. Formation error of the first formation control experiment

120

>

2-

1.8

1.6

.1.4-

1.2-

1

0.8

0.6

0.4

0 .2 -

P*

<l

^

< ^

Reference Trajectory c Leader
o Follower No. 1
o Folk>w3-No.2

—Formation

0.8 1 2.2 2 4 2.6 1.2 1.4 1.6 1.8 2
X(m)

Fig.98. Second formation control experiment with three wheeled vehicles

0.1

18̂

16-

0 20 40 60 80 100 120
Time(s)

Fig.99. Formation error of the second formation control experiment

105

6. Application of Distributed DRHC to Hovercrafts

In this section, the hovercraft model, identified in the previous chapter, is used to

implement multiple vehicle simulations and experiments. Similar to the last chapter, the

goal in this section is also to focus on the performance of a fleet of multiple hovercrafts'

trajectory following and formation behaviour by using decentralized RHC. By making

the experiments a higher level, they will also be run in a distributed fashion, which means,

instead of one computer calculating all the input for every vehicle, several computers

connected via a high speed LAN share their data and work simultaneously to solve the

control problem.

The number of vehicles for the simplest formation control could be as few as

three. In order to discuss the implementation in this chapter, let us consider the simplest

case. In this example, one of the hovercrafts is the leader of formation, which follows a

trajectory resulted from a predefined path, and avoids an obstacle on its way, while the

other two are followers. Their tasks are following the leader and keeping a specific

distance from each other. Thus, a triangle formation is achieved as in Fig. 100. Each

vehicle is controlled by a single computer, and shares its motion data with the other two

via a high speed LAN network using UDP/IP protocol. Since the model used in this

implementation is the hovercraft model identified in the previous chapter, the /' vehicle

notion in chapter 2 will be also changed to i* hovercraft, unless otherwise specified.

106

^^— ' Position

1.
Computer

Leader

/.

I W

Fig. 100. Layout of the three agents' formation

6.1. Distributed RHC System

The distributed RHC system consists of three computers and a high speed switch.

As shown in Fig. 100, each computer is responsible for solving the optimal problem of a

hovercraft. In the following, different parts of this study are briefly explained.

6.1.1. User Datagram Protocol

The User Datagram Protocol (UDP) is selected as the data transmission protocol

in this experiment. It is different from what is commonly used in the Internet today,

Transmission Control Protocol (TCP). Because in UDP, sockets do not have to be

connected before being used [59], datagram might arrive out of order, have duplicates, or

even become missing. It is not a reliable protocol for some specific data transmission

applications, such as web browsers and email clients. However, despite those properties,

UDP is fast and ideal for the light communication, especially for the time sensitive

systems like ours, as well as Voice Over Internet Protocol (VoIP) and online games.

Position

2.
Computer
Follower Position

3.
Computer
Follower

107

6.1.2. Data Loss, Data Transmission Delay, Computation Time, and

Time Synchronization

A. Data Loss

Because of the nature of UDP, data loss is inevitable in this process, for example,

data has been sent from the sender computer, but the receiver computer has not prepared

to obtain the data yet.

B. Data Transmission Delay and Computation Time

Data transmission delay is usually caused by the nature of hardware, such as

resistance of network cables and the design of the switch circuit. Fig. 101 shows the result

of an experiment for calculating delays between two computers. In that experiment,

computer A sent a set of data to computer B; immediately when B received the data it

sent back a set of data to A. The delay is obtained by dividing the time used in this

process by two. It seems to be fine, since the average delay is approximately 0.5 xlO-4

second. But if the number of computer rises, the delay will become relatively large for

the whole system too.

108

1.8, xlO

l.6f

p 0.8

0.6

0.4
0 10 20 40 30

T1me(s)

Fig. 101. Data transmission delay between two computers

50 60

Another main factor that affects the performance of the distributed system is the

computation time on each individual computer. RHC is relatively time consuming when

compared with other control methods, as we have discussed before. In the previous

studies, both zero [82] and non-zero [81] computation time were assumed and studied. In

this section, a novel method of dealing with computation time is introduced. That is,

during the implementations, the computation time will be treated as a delay, similar to the

data transmission delays. Fig. 102 shows the computation time of the case where a

trajectory following problem was solved on a single computer. Please note that there is

no formation problem in this computation, and the following parameters are chosen:

N c = 4

N,=50

5 = 0.1s

T = 1.0s

(80)

109

However, it should be noted that the computation time will vary if the above parameters

are changed and/or different optimization methods are employed.

0.0501: -• 1 ' 1

; j

s

i [•..-.•.

d

0 0499 ' ' ' ' ' ' •

0 10 20 30 40 50 60 70 80
Time(s)

Fig. 102. Computation time on a single computer.
C. Time Synchronization

Instead of simply exchanging updated position data of the vehicles among the

computers in the system, local time of the leader computer will also be chosen as global

time and sent to the follower computers at fixed periods. When they receive the global

time, the followers will adjust their local time according to the difference between these

two times. Fig. 103 shows a flowchart of this procedure.

The synchronization offset among the subsystems can be obtained as follows. Let

the data transmission time from one computer to another is C,, and the calculation time

for each simulation step is cp. By recalling the sensor delay tSD and its upper bound TSD

obtained in (41), we can have the following:

110

G = C, + (p + T SD (81)

where a denotes the synchronization offset among the subsystems.

•

| Start |
V

Synchronization

*
Leader RHC

I
•

/ Broadcast
/ position to ,

/ followers /

/
f *

Yes
'

Update local time
to global time

No

->

/

hronized?

Followers
RHC

Check global time
and local time

1

No

i '

Update local time to
global time

*
Exchange

position with
each other

-̂i-
~<-~-.

^~~~%Yes

/

^ ^

| End |

Fig.103. Flowchart of the distributed RHC simulation.

6.2. Controller Design

In this Chapter, the difficulty of controlling the fleet of vehicles is raised by

adding an obstacle on the path. Combining the leader cost index presented in (56) with a

penalty term for inputs, the following is assumed as the cost index for the leader without

considering obstacle avoidance:

j f(x,(t) ,xD(t) , t)
t+T

= J(lxi(T)-xDW£+hWpdT + lX)(t + T)-xD(t + T)l2R
(82)

where C = I2x2 is a positive definite weighting matrix, and

111

x i (t) = [u c vc>1 reJ xCJ yc#1 e J T (83)

and

R = Q = diag([0 0 0 1 1 0]) (84)

In addition, suppose that there is a stationary obstacle with a radius of R 0 at

(x 0 ,y 0) . Let z 0 = [x0 y 0] , we could obtain the cost function for obstacle avoidance

by adding a potential term as follows [80]:

5? (x, (t),t) = J P^x, (t)-C0z0|[-R0j dt,

where C 0 , P, and P are defined in the following:

(85)

CD =
'3x2

L2x2

0 1x2

P = diag([0 0 0 1 1 0]) ,andP = l (86)

Therefore, by combining (82) and (85), the cost function for the leader is as

follows:

t+T

J I (x I (t) ,xD (t) , t)= J P | ^ | X 1 (T) - C 0 Z 0 | P - R 0 J dx

t+T

+ j(hW-^(<+||u1(T)pdT + | x 1 (t + T) - X D (t + T)|;

(87)

Therefore, by comparing (57) to (56) and (87), the following is assumed for the

cost function of the followers:

J?(*.(t)>*i(t)>t)= j K U l x ^ t + O - O ^ - x ^ T + O - O a J - r J dx
i=2,3;j=1,2,3;j*i ! V J

t+T 2

+ J I n ^ T + O - l J a ^ d T
t

where a is defined in (81) and K, C, and K are defined in the following:

(88)

112

K=diag([0 0 0 1 1 0]), C = I2x2,and K = l (89)

6.3. Distributed Simulation

The following terms are set and remain unchanged in the following simulations

r i j = 0 . 1 , z o = [l . 5 1.25]T ,Ro=0.4 (90)

and all the weighting matrices are set to identity matrices and all the weighting scalars are

set to 1.

The distributed simulation results are compared with the experimental results on a

single computer in Fig. 104 to Fig. 107. There are two reference trajectories used in these

examples. The first one (IC#11) is

' » « =
2.5 + O.lt

2.75 + O.lt
, for all 0 < t < 2 0 s

*D (t) =
xD]J(20)

xD2,,(20)+(t-20)

(91)

, for all t>20s

and the other one (IC#12) is defined as:

*D(t) =
2.5 + 1.5cos(0.01t)'

2.5 + 1.5sin(0.01t)
, for all t > 0 s (92)

It is apparent that both single computer case and distributed case show promising results

in trajectory following and obstacle avoidance.

113

5,

3l

^

1

4

v*

V

Fleet Trajectory
- Reference Trajectory

Obstacle
D l s ta^nt
0 2ndagaTt
o 3rdagant

0 1

V

2 3 4 5
X(m)

Fig. 104. Trajectory following and obstacle avoidance for distributed simulation case (IC#11).

5

4

3

2

1

0

-1

-2

-

-

1

1

1

1 1

_____ - - " « - = § H

S*-'

^ '

Fleet Trajectory
— Referenoe Trajectory

Obstacle
Q 1st agent
o 2ndagait
o 3rd agent

i

/ '

"

"f. -

k?

-1 0 1 2 3 4 5
X(m)

Fig. 105. Trajectory following and obstacle avoidance experimental results for single computer case
(IC#11).

114

4.5-

4-

3.5

2-5[-

4
1.51-

1

0.5!

Fleet Trajectory
- - Reference Trajectory

Obstacle
D Istagsnt
o 2nda^nt
o 3rd agent

(*

-0 '

* $

ifc^o

a C *

^te

£>e

<£=e

*<£
/

o 0.5 1 2.5 3.5 1.5 2
X(m)

Fig. 106. Trajectory following and obstacle avoidance for distributed simulation case (IC#12).

4

3.5

3

2.5

1 2

> 1.5

1

0.5

0

Fleet Trajectory
- - Reference Trajectory

Obstacle
D lstagent

- o 2ndagent
o 3rd agent

-

-

.J

\

\

^x

V

i i

_j. - -

* ^

> - a ^ - _

1

' * ^ ^

A N-;

-

-

-

(.5 0 0.5 1 2 5 3.5 1.5 2
X(m)

Fig. 107. Trajectory following and obstacle avoidance experimental results for single computer case
(IC#12).

115

6.4. Virtual Reality System

The foresaid distributed RHC system is connected to a virtual reality system. The

new system is able to render the motion of the simulated hovercrafts. The output of this

virtual reality system is shown in Fig. 108. Please be advised that this section only

contains some main ideas of the structure and mechanism of the system. See [69] for

detailed instructions.

Fig.108. Screenshot of the virtual reality system rendering.

6.4.1. Battlefield Scene

Instead of simply rendering the motion of the hovercrafts, a battlefield scene is

created. This scene brings more attractive features to the simulation, and makes the whole

simulation much straightforward.

In this scene, the foresaid three hovercrafts are rendered as a fleet of helicopters.

This is mainly due to the need of using land vehicles and buildings in the virtual world,

and it would be too unusual to have a fleet of hovercrafts moving on land. Also the

116

structure of the hovercrafts are dynamically identical to helicopters in a two dimensional

environment.

While patrolling in the virtual world, the fleet identifies an enemy land vehicle.

Subsequently, they chase the enemy in their combat formation and avoid buildings on the

way. When the helicopters move in a certain range from the vehicle, the leader of the

fleet will launch a missile and shoot the enemy.

6.4.2. Classes Construction

In the field of virtual reality, Object Oriented Programming (OOP) is considered

the most effective and suitable programming tool, because of its special way of

organizing programs. Unlike the way of organizing data in structured programs, OOP is

organized around data, with the principle of "data controlling access to code" [78].

Programs of this virtual reality rendering system are developed to fully take advantage of

benefits offered by OOP; as a result, objects can be conveniently added, removed and

modified, hence, considerably reducing maintenance costs. Fig. 109 illustrates the class

structure of the virtual system.

1 ' .___ ^
World

Subsystem

' '
Spring

' '
Rigid Body

i '
Chassis

i

'
Fuselage

r . i

Wheel

1 '
Rotor

'
Missile

1 '
Bounding
Volume

Fig. 109. Inheritance of classes in the program.

117

The class subsystem is the base class for others that inherit the subsystem either

directly or indirectly. The class subsystem only defines general variables, and all member

functions have a prefix virtual which is designed to be overridden by derived classes.

Although, the class world itself is a derived class of subsystem, it has functions similar to

a "container" class for other classes that are derived from subsystem. The class rigid body

includes all variables and functions for simulating a 6-DOF rigid body model in 3D

environment. State variables involved are translational and rotational velocity, as well as

quaternion variables due to their convenience. Note that rigid body is also the base class

for the class chassis, wheel and missile. The class chassis is a derived class from rigid

body, and it has its own variables which are added for modeling a vehicle dynamics. The

class chassis has not only features from the rigid body, but it also inherits the class

subsystem. In this way, multiple inheritances are achieved. The same condition can be

found in the class wheel and missile.

6.4.3. Framework of the System

This subsection describes the framework of the virtual system, and delivers the

idea about how the program generates a virtual environment. The flowchart in Fig.lll

explains the major executions in the program, including both, the major function calls

and communication.

In the program, the first step is Initialization which runs only once, since all

variables defined here would not be changed after the simulation starts progressing. After

the system is successfully initialized, camera setting module defines view points and

118

look-at points, and provides a set of perspectives for users who are allowed to freely

switch among them as the simulation progresses. The enemy vehicle could not only move

in a trajectory which is predefined by the user, but arbitrarily according to the data from

external inputs module. Next, all the states of major models (the ground vehicle and the

helicopters) are updated in the model dynamic module at each time step, and the Euler

algorithm is applied for updating states.

This system adopts the basic bounding volume method for collision detection. It

first automatically generates virtual spheres for each object, and those spheres should

cover the object's entire shape. The final Optimized Mesh Rendering module loads all the

meshes that are needed in the system, and defines some default parameters, such as

program window size. Those meshes are not only assigned to visualize their

corresponding objects, but they are also processed by a series of optimization algorithms

provided by DirectX library.

6.5. Cockpit Simulator

The platform has 6 degree of freedom, 3 translational and 3 rotational motions. A

real vehicle seat is mounted on the platform, which is shown in Fig.l 10. The platform is

capable of capturing the full dynamics of the ground vehicle in the virtual reality system

as the simulation progresses.

The interface has two routines: one is for the real-time hardware, the other is for

graphics and data received from simulation. As the simulation is progressing, the two

routines are communicating by the Inter-Process communication via Shared Memory

provided by RTSS. By creating Shared Memory object, multiple processes can access the

119

region of memory with either a handle or a virtual address [62]. In this application, the

Euler angles are stored in the shared memory for two routines to access. Thus, it is

possible for real-time routine to access memory, and then transforms those angles into

voltage signals as input to the hardware.

Fig.l 10. A driver seat mounted on the 6-DOF platform.

120

Initialization

No

1—* Camera Settings

' r

External
Inputs

1
r"

Model Dynamics

i '

Collision
Detection

i r
Optimized Mesh

Rendering

Distributed RHC
System

6-DOF Platform

- ^ C J v e i T N

Yes

End

Fig. 111. Flow chart for the virtual reality system and cockpit simulator.

121

7. Conclusions and Future Work

In this thesis, the decentralized receding horizon control method was investigated

through numerous simulations and experiments. New algorithms and methods for

trajectory following and formation control of multiple vehicle systems are evaluated and

compared. Accurate models are developed, experimentally identified, and tested. It was

found that the wheeled robot dynamics were best described by a combination of Coloumb

and viscous friction, whereas the hovercraft dynamics could be adequately described

using only a viscous friction model. Decentralized RHC is then applied to both types of

vehicles through simulations and experiments.

A virtual reality simulation system with a 6 DOF cockpit is combined with the

experiments to provide a higher level of capability to study more advanced DRHC

problems. The results from the simulations and experiments indicate that the

decentralized receding horizon control approach is well suited for meeting the

requirements of complicated multi-vehicle control problems with low trajectory and

formation errors. The combination with the virtual reality system brings more

possibilities and scenarios that can be investigated for both civil and military applications.

Together, these results provide a new and useful framework for simulation and

experimental testing of new decentralized RHC algorithms and other types of nonlinear

control methods for multi-vehicle systems.

Future work includes generalizing the research for vehicles with senor, actuator

and communication faults. The future research will also investigate the formulation of

appropriate cost functions and predictive models for avoidance and interception of fast

moving objects. Furthermore, the experimental apparatus and dynamic models will be

122

expanded to include more challenging types of vehicles such as model helicopters and

robotic fish systems, which move significantly faster with more complex three

dimensional dynamics.

123

References

[1] S. J. Qing and T. A. Badgwell, "An Overview of Industrial Model Predictive

Control Technology," in Chemistry Process Control-V, vol. 93, no. 316, pp.

232-256, 1996.

[2] A. Bemporad and M. Morari, "Robust Model Predictive Control: A Survey,"

in Robustness in identification and control Lecture Notes in Control and

Information Sciences, vol. 245: pp. 207-226,1999.

[3] D. L. Yu, D. Williams, and J. B. Gomm, "On-line Implementation of a

Model Predictive Controller on a Multivariable Chemical Process," IEE

Two-Day Workshop on Model Predictive Control: Techniques and

Applications - Day 2 (Ref No. 1999/096), pp. 2/1 - 2/5, April 1999.

[4] J. B. Rawling, "Tutorial: Model Predictive Control Technology," in Proc. of

the 1999 American Control Conference, vol. 1, pp. 662-676, June 1999.

[5] C. E. Garcia, D. M. Prett, and M. Morari, "Model Predictive Control: Theory

and Practice - a Survey," Automatica, vol. 25, no. 3, pp. 335-348, May

1989.

[6] P. Grieder, P. A. Parrilo, and M. Morari, "Robust Receding Horizon Control

- Analysis & Synthesis," in Proc. of 42ndIEEE Conference on Decision and

Control, vol.1, pp.941-946, December 2003.

[7] A. Azimi, B. Gholami, and B. W. Gordon, "Synthesis and implementation of

single- and multi-vehicle systems guidance based on nonlinear control and

optimization techniques," Technical Report, CIS Lab, Concordia University,

2006.

[8] D. E. Quevedo, J. A. De Dona, and G. C. Goodwin, "On the Dynamics of

Receding Horizon Linear Quadratic Finite Alphabet control Loops," in Proc.

of the 41st IEEE Conference on Decision and Control, vol. 3, pp. 2929-

2934, December 2002.

[9] K. H. Lee, W. H. Kwon, and J. H. Lee, "Robust Receding Horizon Control

for Linear Systems with Model Uncertainties," in Proc. of the 35th IEEE

124

Conference on Decision and Control, vol. 4, pp. 4002-4007, December

1996.

[10] H. Michalska and D. Q. Mayne, "Robust Receding Horizon Control of

Constrained Nonlinear Systems," IEEE Trans. Automatic Control, vol. 38,

no. 11, pp. 1623-1633, November 1993.

[11] D. Q. Mayne and H. Michalska, "An Implementable Receding Horizon

Controller For Stabilization of nonlinear Systems," in Proc. of the 29th IEEE

Conference on Decision and Control, vol. 6, pp.3396-3397, December 1990.

[12] D. Q. Mayne and H. Michalska, "Receding Horizon Control of Nonlinear

Systems," IEEE Trans. Automatic Control, vol. 35, no. 7, pp. 814-824, July

1990.

[13] B. Moerdyk, R. DeCarlo, D. Birdwell, M. Zefran, and J. Chiasson, "Hybrid

Optimal Control for Load Balancing in a Cluster of Computer Nodes," in

Proc. of the 2006 IEEE International Conference on Control Applications,

pp. 1713-1718, October 2006.

[14] H. S. Chang and S. I. Marcus, "Receding Horizon Approach to Markov

Games for Infinite Horizon Discounted Cost," in Proc. of the 41st IEEE

Conference on Decision and Control, vol. 2, pp. 1380-1385, December

2002.

[15] C. Scheel and B. Mclnnis, "Parallel Processing of Optimal Control Problems

by Dynamic Programming," Information Sciences, vol. 25, no.2, pp. 85-114,

November 1981.

[16] T. -S. Chang, X. -X. Jin, P. B. Luh, and X. Miao, "Large-Scale Convex

Optimal Control Problems: Time Decomposition, Incentive Coordination,

and Parallel Algorithm," IEEE Trans. Automatic Control, vol. 35, no. 1,

pp. 108-114, January 1990.

[17] S.-C. Chang, T. -S. Chang, and P. B. Luh, "A Hierarchical Decomposition

for Large-Scale Optimal Control Problems with Parallel Processing

Structure," Automatica, vol. 25, no. 1, pp. 77-86, January 1989.

[18] S. -Y. Lin, "A Hardware Implementable Receding Horizon Controller for

Constrained Nonlinear Systems," IEEE Trans. Automatic Control, vol. 39,

125

no. 9, pp. 1893-1899, September 1994.

[19] S. -Y. Lin, "A Hardware Implementable Two-Level Parallel Computing

Algorithm for General Minimum-Time Control," IEEE Trans. Automatic

Control, vol. 37, no. 5, pp.589-603, May 1992.

[20] M. Diehl, R. Findeisen, F. Allgower, H. G. bock, and J. P. Schloder,

"Nominal Stability of Real-Time Iteration Scheme for Nonlinear Model

Predictive Control," in IEE Proc. of Control Theory and Applications, vol.

152, pp. 296-308, May 2005.

[21] M. B. Milam, K. Mushambi, and R. M. Murray, "A New Computational

Approach to Real-Time Trajectory Generation for Constrained Mechanical

Systems," in Proc. of the 39th IEEE Conference on Decision and Control,

vol. 1, pp. 845-851, December 2000.

[22] Y. Chen, Y. Zhuang, and W. Wang, "Cooperative Control for Formations of

Mobile Robots under the Nonholonomic Constraints," in Proc. of the 6th

World Congress on Intelligent Control and Automation, vol. 2, pp. 9042—

9046, June 2006.

[23] N. Kohata, T. Yamaguchi, M. Takahide, T. Baba, and H. Hashimoto,

"Dynamic Formation on Mobile Agents and its Evolutionary Parallel

Computation," in Proc. of IEEE Conference on Systems, Man and

Cybernetics, vol. 1, pp. 272-277, October 1999.

[24] Dan Henriksson and Johan Akesson, "Flexible Implementation of Model

Predictive Control Using Sub-Optimal Solution," Technical Report ISRN

LUTFD2/TFRT- -7610- -SE, Department of Automatic Control, Lund

Institute of Technology, 2004.

[25] Y. H. Dai and K. Schittkowski, "A Sequential Quadratic programming

Algorithm with Non-Monotone Line Search," Pacific Journal of

Optimization, vol. 4, pp. 335-351,2005.

[26] K. Schittkowski, "NLPQLP: A Fortran implementation of a sequential

quadratic programming algorithm with distributed and non-monotone line

Search - User's guide, Version 2.2," Report, Department of Computer

Science, University of Bayreuth, 2006.

126

[27] J. -P. Richard, "Time-delay systems: an overview of some recent advances

and open problems," Automatica, vol. 39, no. 10, pp. 1667-1694, October

2003.

[28] M. G. Earl and R. D'Andrea, "A decomposition approach to multi-vehicle

cooperative control," Robotics and Autonomous Systems, vol. 55, no. 4, pp.

276-291, April 2007.

[29] M. Mercangoz and F. J. Doyle III, "Distributed model predictive control of

an experimental four-tank system," Journal of Process Control, vol. 17, no.

3, pp. 297-308, March 2007.

[30] S. D. Canto, A. P. de Madrid, and S. Dormido, "Dynamic Programming on

Clusters for Solving Control Problems," 4th Asian Control Conference,

2002.

[31] G. Hassapis, "Implementation of model predictive control using real-time

multiprocessing computing," Microprocessors and Microsystems, vol. 27,

no. 7, pp. 327-340, August 2003.

[32] B. -I. Koh, A. D. George, R. T. Haftka, and B. J. Fregly, "Parallel

asynchronous particle swarm optimization," InternationalJournal for

Numerical Methods in Engineering, vol. 67, no. 4, pp. 578-595, July 2006.

[33] E. V. Adutskevich and N. A. Likhoded, "Optimization of Data Exchange in

Parallel Computers with Distributed Memory," Cybernetics and Systems

Analysis, vol. 42, no. 2, pp. 298-310, March 2006.

[34] J. -P. Jiang, P. L. Ho, and J. C. Hinton, "Parallel Processing in Optimal

Control of Robot Drives," International Conference on Control, vol. 1, no.

332, pp. 376-381, March 1991.

[35] N. Jin and Y. Rahmat-Samii, "Parallel Particle Swarm Optimization and

Finite-difference Time-Domain (PSO/FDTD) Algorithm for Multiband and

Wide-band Patch Antenna Designs," IEEE Trans. Antennas and

Propagation, vol. 53, no. 11, pp. 3459-3468, November 2005.

[36] X. -B. Hu and W. -H. Chen, "Model predictive control for constrained

systems with uncertain state-delays," International Journal of Robust and

Nonlinear Control, vol. 14,no. 17,pp. 1421-1432, November 2004.

127

[37] M. J. Tenny, S. J. Wright, and J. B. Rawlings, "Nonlinear Model Predictive

Control via Feasibility - Perturbed Sequential Quadratic Programming,"

Computational Optimization and Applications, vol. 28, no. 1, pp. 87-121,

April 2004.

[38] A. Jadbabaie, J. Yu, and J. Hauser, "Stabilizing Receding Horizon Control of

Nonlinear Systems: A Control Lyapunov Function Approach," in Proc. of

the American Control Conference, vol. 3, pp. 1535-1539, June 1999.

[39] F. Borrelli, P. Falcone, and C. Del Vecchio, "Event-based receding horizon

control for two-stage multi-product production plants," Control Engineering

Practice, vol. 15, no. 12, pp. 1556-1568, December 2007.

[40] H. Sarimveis, P. Patrinos, C. D. Tarantilis, and C. T. Kiranoudis, "Dynamic

modeling and control of supply chain systems: A review," Computers and

Operations Research, vol. 35, no. 11, pp. 3530-3561, November 2008.

[41] G. C. Goodwin, M. M. Seron, R. H. Middleton, M. Zhang, B. F. Hennessy,

P. M. Stone, and M. Menabde, "Receding horizon control applied to optimal

mine planning," Automatica, vol. 42, no. 8, pp. 1337-1342, August 2006.

[42] D. Q. Mayne and H. Michalska, "Adaptive Receding Horizon Control For

Constrained Nonlinear Systems," in Proc. of the 32nd IEEE Conference on

Decision and Control, vol. 2, pp. 1286-1291, December 1993.

[43] A. Azimi, B. W. Gordon, and C. A. Rabbath, "Dynamic Scheduling of

Decentralized Receding Horizon Controllers on Concurrent Processors for

the Cooperative Control of Unmanned Systems," in Proc. of the 46th IEEE

Conference on Decision and Control, pp. 518-523, December 2007.

[44] A. Azimi, B. W. Gordon, and C. A. Rabbath, "Dynamic Scheduling of

Receding Horizon Controllers with Application to Multiple Unmanned

Hovercraft Systems," American Control Conference, pp. 3324-3329, July

2007.

[45] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, "Distributed Model

Predictive Control," IEEE Control Systems Magazine, vol. 22, no. 1, pp.44-

52, February 2002.

[46] N. Motee and B. Sayyar-Rodsari, "Optimal Partitioning in Distributed Model

128

Predictive Control," in Proc. of the 2003 American Control Conference, vol.

6, pp.5300-5305, June 2003.

[47] D. Jia and B. H. Krogh, "Distributed Model Predictive Control," in Proc. of

the American Control Conference, vol. 4, pp. 2767-2772, June 2001.

[48] W. B. Dunbar, "A Distributed Receding Horizon Control Algorithm for

Dynamically Coupled nonlinear Systems," in Proc. of the 44th IEEE

Conference on Decision and Control and the 2005 European Control

Conference, pp. 6673-6679, December 2005.

[49] A. N. Venkat, J. B. Rawlings, and S. J. Wright, "Stability and optimality of

distributed model predictive control," in Proc. of the 44th IEEE Conference

on Decision and Control and the 2005 European Control Conference, pp.

6680-6685, December 2005.

[50] W. B. Dunbar and R. M. Murray, "Distributed receding horizon control for

multi-vehicle formation stabilization," Automatica, vol. 42, no. 4, pp.549-

558, April 2006.

[51] W. B. Dunbar and R. M. Murray, "Receding Horizon Control of Multi-

Vehicle Formations: A Distributed Implementation," in Proc. of the 33rd

IEEE Conference on Decision and Control, vol. 2, pp. 1995-2002;

December 2004.

[52] X. Du, Y. Xi, and S. Li, "Distributed Model Predictive Control for Large-

Scale Systems," in Proc. of the American Control Conference, vol. 4, pp.

3142-3143, June 2001.

[53] M. B. Milam, R. Franz, J. H. Hauser, and R. M. Murray, "Receding Horizon

Control of Vectored Thrust Flight Experiment," IEE Proc. of Control Theory

and Applications, vol. 152, no. 3, pp. 340-348, May 2005.

[54] L. Singh and J. Fuller, "Trajectory generation for a UAV in urban terrain,

using nonlinear MPC," in Proc. of American Control Conference, vol. 3, pp.

2301-2308, June 2001.

[55] W. L. George and J. Scott, "ScreenSaver Science: Realizing Distributed

Parallel Computing with Jini and JavaSpaces," presented in 11th Conference

on Parallel Architectures and Compilation Techniques, September 2002.

129

[56] J. Lu, "Design of Ethernet Based Real-time Distributed Systems," M.A.Sc

thesis, Dept. Mech. & Ind. Eng., Concordia University, Montreal, Canada,

2004.

[57] M. J. Flynn, Computer Architecture: Pipelined and Parallel Processor

Design, 1st ed.. Boston, MA: Jones and Bartlett, 1995, ch. 3.

[58] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and

Applications. New York: Oxford, 1997, ch. 1.

[59] M. J. Donahoo and K. L. Calvert, TCP/IP Sockets in C: Practical Guide for

Programmers. San Francisco, CA: Morgan Kaufmann, 2001, pp. 35-40.

[60] T. Keviczky, F. Borrelli, and G. J. Balas, "Decentralized receding horizon

control for large scale dynamically decoupled systems," Automatica, vol. 42,

no. 12, pp. 2105-2115, December 2006.

[61] T. Keviczky, "Decentralized Receding Horizon Control of Large Scale

Dynamically Decoupled Systems," Ph.D. dissertation, Control Science and

Dynamical Systems Center, Univ. of Minnesota, Twin Cities, USA, 2005.

[62] RTX 5.0 User's Guide, VenrurCom Inc..

[63] W. H. Kwon, J. W. Kang, Y. S. Lee, and Y. S. Moon, "A simple receding

horizon control for state delayed systems and its stability criterion," Journal

of Process Control, vol. 13, no. 6, pp. 539-551, September 2003.

[64] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,

"Constrained model predictive control: Stability and optimality,"

Automatica, vol. 36, no. 6, pp. 789-814, June 2000.

[65] H. Chen and F. Allgower, "A quasi-infinite horizon nonlinear model

predictive control scheme with guaranteed stability," Automatica, vol. 34, no.

10, pp. 1205-1217, October 1998.

[66] W. B. Dunbar and R. M. Murray, "Distributed receding horizon control for

multi-vehicle formation stabilization," Automatica, vol. 42, no. 6, pp.549-

558, April 2006.

[67] A. Regmi, R. Sandoval, R. Byrne, H. Tanner, and C. T. Abdallah,

"Experimental Implementation of Flocking Algorithms in Wheeled Mobile

Robots," in Proc. of the American Control Conference, vol. 7, pp.4917-4922,

130

June 2005.

[68] A. Azimi, B. Gholami, and B. W. Gordon, "Real-time Scheduling of

Multiple Uncertain Receding Horizon Control Systems," Technical Report,

CIS Lab, Concordia University, 2006.

[69] Y. Zhao, L. Bai, and B. Gordon, "Distributed Simulation and Virtual Reality

Visualization of Multi-Robot Distributed Receding Horizon Control

Systems," IEEE International Conference on Robotics and Biomimetics, pp.

1290-1295, December 2007.

[70] T. Keviczky, F. Borrelli, and G. J. Balas, "Stability Analysis of

Decentralized RHC for the decoupled systems," 44th IEEE Conference on

Decision and Control and the European Control Conference, pp. 1689-1694,

December 2005.

[71] A. Richards and J. How, "A decentralized algorithm for robust constrained

model predictive control," Proc. of American Control Conference, vol. 5, pp.

4261-4266, July 2004.

[72] H. A. Izadi, B. W. Gordon, and C. A. Rabbath, "A variable communication

approach for decentralized receding horizon control of multi-vehicle

systems," American Control Conference, pp. 1781-1786, July 2007.

[73] H. Izadi, M. Pakmehr, and B. Gordon, "A receding horizon control approach

for roll control of delta wing vortex-coupled dynamics," 2007 IEEE

Aerospace Conference, pp. 3377-3383, March 2007.

[74] A. Azimi, B. W. Gordon, and C. A. Rabbath, "Dynamic scheduling of

multiple RHC systems with coupling and computational delay," American

Control Conference, to be published.

[75] H. Izadi, B. W. Gordon, and C. A. Rabbath, "Decentralized control of

multiple vehicles with limited communication bandwidth," 2008 IEEE

International Conference on Systems, Man and Cybernetics, to be published.

[76] H. Izadi, B. W. Gordon, and C. A. Rabbath, "Stability improvement for time

varying decentralized receding horizon control systems," 13th IEEE IF AC

International Conference on Methods and Models in Automation and

Robotics, to be published.

131

[77] M. Milam, "Real-time optimal trajectory generation for constrained

dynamical system," PhD dissertation, Control and Dynamical Systems,

California Inst, of Tech., Pasadena, USA, 2003.

[78] H. Schildt, C++, The Complete Reference, 4th ed. New York: McGraw-Hill,

2003.

[79] B. Gholami, "Receding Horizon Control of Uncertain Systems," M.A.Sc

thesis, Dept. Mech. & Ind. Eng., Concordia University, Montreal, Canada,

2005.

[80] F.J. Lian and R. Murray, "Cooperative task planning of multi-robot systems

with temporal constraints," in Proc. of 2003 IEEE International Conference

on Robotics and Automation, vol. 2, pp. 2504-2509, September 2003.

[81] B. Gholami, B. W. Gordon, and C. A. Rabbath, "Uncertain nonlinear

receding horizon control systems subject to non-zero computation time,"

44th IEEE Conference on Decision and Control, and the 2005 European

Control Conference, pp. 3765-3770, December 2005.

[82] J. Strizzi, I. M. Ross, and F. Fahroo, "Towards real-time computation of

optimal controls for nonlinear systems," AIAA Guidance, Navigation, and

Control Conference and Exhibit, pp. 1967-1976, August 2002.

[83] R. M. Murray, Lecture Note on RHC Analysis, California Institute of

Technology, available:

http://www.cds.caItech.edu/~murrav/courses/cdsllO/wi08/L4-2 rhc.pdf

[84] B. Gholami, B. W. Gordon, and C. A. Rabbath, "Real-time scheduling of

multiple uncertain receding horizon control systems," Optimal Control

Applications and Methods, submitted for publication.

[85] A. E. Bryson and Y. -C. Ho, Applied optimal control, optimization,

estimation and control. Washington: Hemisphere Pub. Corp, 1975.

[86] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipes in C: the Art of Scientific Computing. Cambridge

[England]: Cambridge University Press, 1993.

[87] S. E. Gill, W. Murray, and M. A. Saunders, "User's Guide for SNOPT

Version 7: Software for Large-Scale Nonlinear Programming".

132

http://www.cds.caItech.edu/~murrav/courses/cdsllO/wi08/L4-2

[88] G. Oriolo, A. De Luca, and M. Vendittelli, "WMR control via dynamic

feedback linearization: design, implementation and experimental validation,"

IEEE Trans. Control Systems Technology, vol. 10, no. 6, pp.835-852,

November 2002.

[89] A. De Luca, G. Oriolo, M. Vendittelli, "Control of wheeled mobile robots:

An experimental overview," in RAMSETE - Articulated and Mobile Robotics

for Services and Technologies, Springer-Verlag, 2001

133

