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ABSTRACT

Decentralized Receding Horizon Control with Application to Multiple Vehicle Systems

Yan Zhao

Receding horizon control (RHC) has been one of the most popular control
approaches recently due to its capability to achieve optimal performance in the presence
of saturation constraints. There have been numerous new research results for RHC (also
referred to as model predictive control) in the process control community. However, due
to the high computational cost, associated with the numerical optimization problem, RHC
has not often been successfully implemented on multiple vehicle systems with fast
dynamics.

Decentralized receding horizon control (DRHC) is a new promising approach to
reduce the computational burden of RHC. It allows the division of the computation
problem into smaller parts which are solved using a group of computational nodes. This
results in a substantial reduction in tﬁe computational time required for RHC. This thesis
involves modeling of wheeled and hovercraft vehicles including actuator dynamics. It
then applies the DRHC approach to the vehicles and implements the DRHC systems in

virtual reality simulations and an experimental setup. Together, these results establish a

new and useful framework for applying RHC to multiple vehicle problems.
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1. Introduction

The control of multiple vehicle systems has been a popular topic in both the
scientific and engineering world in recent years. The most commonly researched aspects
are the online strategies and controller design suitable for multiple vehicle systems in
different environments. These strategies and controllers have to guarantee a desired
cooperative performance among the members bf the systems. .Many fruitful theoretical
algorithms are created aﬁd their implementations can be found in many journals and
conferences.

Among those methods, Receding Horizon Control, also known as Model
Predictive Control (MPC), stands out due to its ability of yielding a superior tracking
performance [9]. Since its introduction in the process control world, in the early eighties
[1][2], it has attracted attention of many researchers, and has been successfully applied to
industrial processes [3][5]. Thus, it is natural to advance a step further by applying RHC
to the formation control of multi-agent systems.

However, RHC is also well known for its high computational expenses of solving
numerical optimization problems involved with it [37], which make it difficult to be
implemented on fast and/or.complex dynamical systems. In addition, for the problems
involving some subsystems, like formation control of multi-vehicle systems, the
- commonly used method was in centralized fashion, in which one controller had full
control of the system and calculated all the control inputs for each member in such
system [47]. This method significantly increased the dimensionality of the optimization
problem and the computation burden, as a result, which made it nearly impossible to be

implemented in real-time systems.



Thanks to the advent of decentralized RHC, the formation control of multiple
agent systems becomes possible because of the concept of solving problems among a:
group of solvers. Furthermore, due to the recent development in computer industry, faster
and more reliable calculation capacities in personal computers and the mass production of
multi-core CPU and high speed network, solving complicated large-scale numerical
optimization problems does not anymore rely on extremely powerful computers, which

makes the study of RHC easier and more affordable.

1.1. Literature Review

The literature review is presented in this subsection; however, it is divided into
different subsections for readers’ convenience. Firstly, application of single RHC is
reviewed. After that, distributed computing and decentralized RHC are considered and

some of the articles related to the current work are presented.

1.1.1. Receding Horizon Control and its Implementation

Receding Horizon Control is essentially a repeated on-line solution of a finite
horizon open-loop optimal control problem [64]. Based on the current states, the
“controller predicts the states of the systém over a period, called optimization horizon, and
achieves the admissible inputs by solving the cost function associated with the actual
control problem. However, only a fraction of the calculated inputs will be applied to the

actual system during a period called execution horizon. Then the process is repeated.



This control scheme is capable of controlling linear or nonlinear systems, as long
as the model of the system is accurate enough to depict the system’s behaviour. In
addition, it can handle the constraints of the system, such as input saturations and state
constraints, by modifying the cost function associated with the control problem.
Furthermore, changing the mission of the controller can also be done simply by
modifying the cost function, and the modification can be done in an online fashion
according to the mission and environment.

On the other hand, there are some disadvantages of RHC that holds back the
researchers from applying it to the fast dynamic systems. The first one is the foresaid
computation cost. The high computational demand of RHC has created a challenging
obstruction that makes the employment of RHC to fast dynamic systems, such as
aerospace or aviation, extremely difficult. The other drawback is in theoretical field. It is
difficult to deal with the stability and feasibility of RHC, and the stability of its usage in
decentralized fashion is still left undone. However, these two disadvantages evoke the
researchers to challenge the problems and improve the performance of RHC.

Several researchers have already conducted intensive surveys on RHC, for
example, in [4] the author provided a tutorial for its mathematical background; in [5] the
authors not only concentrated on RHC theories, but delivered a comprehensive
comparison among the most commonly used RHC structures; while in [6] the authors
discussed more about the robustness of this control method. The authors in [37], similar
to [4], provided a systematic explanation of RHC, and a different numerical optimization

solver for nonlinear systems with perturbation.



Besides the above articles, the efforts of improving RHC usually can be divided
into three categories: one is to improve the stability of the controller with respect to‘
nonlinear systems with uncertainties, such as noise, model uncertainty and delays;
another one is to reduce the computation time by using different optimization solvers;

and the last one is to improve the performance of RHC in different applications.

A.  Stability

In [6], a receding horizon controller for constrained linear time-invariant systems
with additive uncertainty was introduced. This controller presented better performance in
terms of robustness and the ability to handle cases with large computational complexity.
In that method, the control algorithm took the optimization horizon as a tunable
parameter, which allowed a tradeoff between the performance and the complexity.

In [9], a robust receding horizon controller for linear systems with model
uncertainty was proposed. This method was differed from the method in [6], since they
sought the worst case scenario for the cost function and its upper bound. In addition, they
extended their method into solving arbitrary reference tracking problems. The authors in
[12] proposed a relatively simple method to determine the feedback control inputs for
both linear and nonlinear systems. However, because of the computation complexity, this
method is only good for slow nonlinear systems. -

To ensure the stability, some basic controllers were embedded into the RHC
controller. For example, the authors in [8] brought linear quadratic controller into RHC
for the cases of finite input constraint sets, and proved asymptotical stability. In [10] and

[11], the authors provided a robust dual-mode receding horizon controller for a wide class
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of nonlinear systems with state and control constrains and model errors. In these two
papers, the control inputs were obtained from two algorithms; an optimal control
algorithm and a P controller. The optimal algorithm was applied when the plant was
stable, or the states were within a predefined region, while the other was applied when
the plant was considered unstable, or the states were out of this region.

In [42], the authors proposed a combination between adaptive control and
receding horizon control method for nonlinear systems in order to stabilize the plant with
control constraints. The adaptive controller was used to adjust the model in case of
modeling errors and/or perturbations in the system. However, a different solution was
presented in [38] to solve receding horizon control problems for nonlinear systems by

finding a global Control Lyapunov Function.

B. Optimization Solvers

Different solvers were applied and tested to reduce the computation time
associated with RHC or MPC problems. Usually, the goal is achieved by decreasing the
number of iterations in an optimization step.

A Newton’s based optimization method was proposed in [20]. It is used for online
optimization of nonlinear model predictive method. In this method, Newton-type iteration
is performed per sampling interval, and it provides faster convergencé and shorter
computation time, which is helpful for controlling fast nonlinear systems.

In [21], the authors proposed a novel method for RHC systems. This method is a
computational approach to real-time trajectory generation. It uses spline interpo‘]ation and

sequential quadratic programming (SQP). By upgrading this method with the Non-



Monotone Line Search approaches in [25] and [26], it resulted in faster optimization
solver, ideal for trajectory tracking problems.

The computational expenses can be further reduced by using flat outputs, which
can lower the dimension of an optimal control problem. Based on its definition, if the
states and control inputs can be recovered by using a set of system outputs and/or
derivative of the outputs, then we could call the system a flat system, and the set of
outputs flat outputs [77]. In the rest of the thesis, all the optimal problems are solved by

using the flat output method.

C. Implementations of RHC to Systems with Fast Dynamics

Because of the efforts mentioned briefly in the previous subsection, RHC has
been successfully applied to some fast dynamic systems, such as an indoor vectored
thrust flight stabilization experiment [53], simulation results for formation control of
Unmanned Aerial Vehicles (UAV) [54], and roll control of delta wing vortex-coupled
systems [73].

The use of RHC control method can also be found in other fields, such as, solving
Markov Games [14] in the area of mathematics, controlling of production plants [39] in
industrial engineering, controlling of supply chain [40] in logistics, and mine exploration

planning [41] in oil industry.



1.1.2. Distributed Computing Systems

Distributed computing system is a sub-branch of parallel computing systems,
which means simultaneous executions of single and/or multiple computing instructions
and data on multiple processors in order to obtain results faster. A processor refers to the
CPU of a computer. In this thesis, each computer has one processor, and the computer is
called a node in the distributed computing system.

The most commonly accepted classification of parallel computing system was
proposed by Flynn in [57] and Y. Censor and S. A. Zenois in [58]. There are four
categories based on the interaction between instruction and data streams:

¢ Single instruction stream, single data stream (SISD)

¢ Single instruction steam, multiple data streams (SIMD)

e Multiple instruction steams, single data streams (MISD)

e Multiple instruction steams, multiple data streams (MIMD)

In this definition, the instruction streams denote the programs that are running on
the computer in the network, and data streams denote the data exchange among those
computers. The distributed computing system falls into the MIMD category, which refers
to the systems where different parts of a program run simultaneously on two or more
computers that are communicating with each other through a network. Literally, any
computer could join in this network and contribute to computation. An example of this
application is the Screen Saver Science (SSS) [55]. Usually, the members in the network
are assumed to have same specification, 1.e. CPU, RAM, etc, in order to balance the
computation burden among every node to achieve the most efficient computation [13].

An example of this structure is a computer cluster [56}].



In [33], an optimization method for data exchange scheme is proposed for parallel
computers with distributed memory. In [30], the authors proposed an advanced dynamic
progréﬁlming method which is especially suitable for parallel computation, implemented
on distributed memory computers, while [23] contains an example of parallel
computation method providing facilities for dynamic formation on mobile robots.

In [32] a parallel asynchronous paﬁicle swarm optimization algorithm is proposed
to dynamically adjust the worklbad assigned to each processor in a PC cluster, while in
[35]; the authors used parallel computation to solve a similar problem. In [34], the
authors introduced an application of parallel computation on robot drives. Similar to the
current popular parallel algorithms, this method estimates states on other computation
nodes. In [30] a method of dynamic programming is proposed for a general-purpose

cluster.

1.1.3. Decentralized RHC Formation Control

Although, only centralized solutions can theoretically guarantee asymptotic
stability in many multi-vehicle applications [51][66], the computation cost makes the
centralized method impractical, if not impossible, to be applied to the control of multi-
agent systems [37]. On the other hand, the decentralized scheme has become popular due
to lower computational burden associated with it [70][71]. It breaks the large-scale
optimization problem into small pieces of individual subproblems for each member in the
system. Therefore, splits the computation burden from one computer to several, and

reduces the computation requirement.



It is a common assumption in most of the Decentralized RHC (DRHC) studies for
multi-vehicle systems to assume that the subsystems are dynamically decoupled.
However, they have coupling effects from their cooperative objective and interaction
constraints.

In DRHC, the states of the plants should be communicated within the
computation nodes, or at least with the ones that have coupled objéctives. Some
researchers have suggested that each system should provide its most updated trajectory to
the other systems, so that the solver on each node could compute according to the most
up-to-date information. For example, in [48], [50], and [51], the authors proved the
stability of distributed formation control problems with coupled cooperative cost
functions on dynamically decoupled subsystems, by using synchronous updating and
exchanging the most recent optimal control trajectories between the coupled subsystems.

Others suggest a method that involves an estimator/predictor at each node to
estimate the states éf other nodes, and correct their estimation only at the beginning of
optimizing iteration. And this method guarantees feasibility as long as the mismatch
between the estimation and actual cost is within a certain range [60].

In [45], the authors investigate the stability of the DRHC controller by studying
the local variables, costs and constraints of a subsystem and the ones who have direct
interaction with it. Through an estimator, during every sampling time, the subsystem not
only solves its own optimization problem, but calculates the states of its neighbors from
the data received at that time. The authors propose in [46] an algorithm that is able to
partition a distributed control system into manageable subsystems. Contrary to the other

articles in this section, the authors in this paper do not concentrate on the control of a



group of subsystems and their autonomous control strategies, but provide a division
method. It has some similarities to the parallel RHC implementations, but differs in the
way that, in this paper, a p-step prediction algorithm is used to estimate the states on the
other nodes to reduce the effect from the delay inherited within distributed systems.
Similar strategies can be found in [29], [47], [49], and [52].

In the aspect of improving DRHC performance, the authors in [72] and [75]
propose an interesting théory that the communication among the computation nodes plays
an important role in the performance of controller as well. The main concept of their
theory is to improve the behaviour of the group by manipulating the communication
bandwidth in order to reduce the mismatch between the estimated and actual trajectory of
a specific member [74][76][43][44].

Another problem in single and distributed RHC systems is delays. In addition to
the computation delays for a single RHC, the structure of the distributed RHC systems
adds more delays to the problem, since these systems require time to solve the
optimization problems and exchange information from one computing node to another.

In [24] and [63], the authors proposed a new algorithm on real-time RHC
computation in order to reduce the instability caused by the computation delay inherited
in the RHC formulations. The solver only needs to solve the premature cost according to
the introduced criterion, thus the overall computation time is reduced.

In [27], the authors presented some studies on time-delay systems. This made an
overview on different types of time-delay systems, and proposed some modifications. In
[36] and [63], the authors propose a RHC method for constrained linear systems with

uncertain delays by using a novel artificial Lyapunov function.
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Even though, the focus of this thesis is discussion and implementation of
distributed receding horizon control, mentioning some backgrounds and implementations
of the parallel RHC, enables the reader to compare and distinguish the differences of
these two approaches.

The authors in [15] propose a method for evaluating the optimai-control problems
by using iterative method of dynamic programming. In this paper, the authors
decomposed the plant model, and assigned each node a decomposed part. By solving the
cost function of each local optimal problem,_the controller integrates the solution of all
decomposed parts, and finds an optimal solution to the plant.

In [16], the authors provide a solution to large-scale convex optimal control
problems in a different aspect from [15]. Instead of model decomposition, their method is
based on time decomposition. The optimal problem is dispatched to several computing
nodes. However, this method could not be easily implemented with the presence of time
delay in the environment of network.

The authors, in [17] , use similar decomposition method as in [15], a hierarchical
decomposition method. This method focuses on the problem structure, decomposes the
large problem into small subproblems.

In [19], the author proposes a hardware implementable parallel computing
algorithm for general minimum-time control, by using time decomposition technique. In
addition, this method is applied on hardware setup, based on Very-large-scale integration
VLSI) array processor technology. In [18], this method is extended to solve receding

horizon control for constrained nonlinear systems on the basis of VLSI technology.
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Authors, in [28], propose an on-line task assignment solver for multi-vehicle
distributed control. The solver is based on a trajectory primitive decomposition approach,
which could be categorized as time decomposition approach. Before presenting their
method, the authors also compare several different methods and conduct several
simulations on Cornell’s RoboFlag environment. The author evaluates in [31] not only
several different programming procedures and algorithms for MPC on real-time
multiprocessing computing, but the task structures/computation model as well, such as:

linear array, tree, and mesh.

1.2. Thesis Objectives and Contributions

In this thesis, the decentralized receding horizon control method is investigated
through numerous simulations and experiments. New algorithms and methods for
trajectory following and formation control of multiple vehicle systems are evaluated and
compared. Accurate models of both wheeled robots and hovercraft vehicles are
developed, experimentally identified, and tested. Decentralized RHC is then applied to
both types of vehicles through simulations and experiments. A virtual reality simulation
system with a 6 DOF cockpit is combined with the experiments to provide a higher level
of capability to study more advanced DRHC problems. Together, these results provide a
new and useful framework for simulation and experimental testing of new decentralized
RHC algorithms and other types of nonlinear control methods for multi-vehicle systems.

The remaining parts of this thesis are organized as follows. Chapter 2 reviews the
receding horizon control method and decentralized RHC in detail. Chapter 3 and Chapter
4 develop and experimentally test th¢ models for the wheeled and hovercraft vehicles,

12



respectively. Chapter 5 provides a set of simulations for decentralized RHC of wheeled
vehicles and also provides experimental testing. Chapter 6 presents simulations for
DRHC of hovercraft vehicles and then develops an upgrade to the system by adding a
virtual reality system with a 6 DOF cockpit. Conclusions and future work are discussed

in Chapter 7.
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2. Overview of RHC and Decentralized RHC

Basic theoretical background of RHC and DRHC are presented in this chapter.
Since RHC can be categorized as an optimal control problem, the concept of optimal
control will be firstly discussed. Then the concept of flat outputs is exblained, followed
by the review of RHC and DRHC. Lastly, an example of angle regulator of two
hovercrafts is presented as a simple tutorial of how to form cost function for RHC and

DRHC methods.

2.1. Optimal Control

Suppose to have a system with state equation:
x(t) = £(x(t) u(t) 1), (1)
where x(t) e R" is the vector of state variables of the system for Vt >0 and u(t)e R"

is the vector of input variables for Vt > 0, and they both satisfy the following constraints

u(t) eU
x(t) e X,

)
where U denotes the allowable set of inputs, X is a set of admissible states, and
f:R"xR™ xR — R". It also has an initial condition

x(0)=x0. v 3)

An optimal control problem is to find a control input u’ (t) , SO that minimizes the

following cost function of the system
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where t, denotes the time when the optimization process finishes, q is usually a

quadratic cost function, which is responsible for the performance of the system, and V is

called terminal cost, which is important to ensure the stability of the controller [83].

A standard method is to bring in a vector of co-state variables l(t)e R", and

generate the Hamiltonian of the system as following [79]:

H(x(t), u(t), A(t), t) = q(x(t), u(t), )+ A" (x(t), u(t), 1). (5)
The optimal input can be obtained by solving the following equations:

x(t) = £(x(t). u(t).1)

T T (6)
SORE
ox ox

where the input can be obtained from

QE:(QE) p{é’ﬂ) ~0 ™
ou ox ox
subject to
x(O) =X,
A (®)
A’(tf) - (g)m[

The above problem is also called Two Point Boundary value Problem (TPBVP),
and there have been many articles about solving this kind of problems, the interested

readers are referred to [79][85] for detailed information.
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2.2. Flat Outputs

The flat outputs help increase the speed of solving the optimization problem,
associated with some optimal control problems by reducing the dimension of the problem.
The definition of flat outputs is as follows [77]: for a dynamic system, if there exists
output z , where

z=g(x.n) )
and x e R" is the state vector, ue R™ is the input vector, and g:R™ xR", such that the
states and inputs can be recovered by a function h() using z and/or its derivatives as
below:
(x,u)=h(z,z,-,z") (10)
where z) denotes the 7* time derivative of z . Then, the system is called a flat system.

Therefore, in a flat system, the states and inputs of the system can be recovered by finite

number of flat outputs and their derivatives, but no integration by the flat outputs [77].

2.3. Receding Horizon Control

Receding Horizon Control is essentially a repeated on-line solution of a finite
horizon open-loop optimal control problem [64]. Its scheme is shown in Fig.1. Based on

the states at time t_, the controller predicts the states of the system over optimization

horizon T, and achieves the admissible inputs u’ by solving the cost function associated
with the actual control problem. Only the first part of the inputs will be applied to the

actual system during execution horizon & . Then the process is repeated. The process is
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illustrated in Fig.1, where the thick curve indicates the actual state of the system, and the
light curves denote the computed or predicted state of the system by the controller, based
on the model of the system.

According to the figure, the above procedure can be further explained as follows:
at time t, the controller samples the state of the system (point 1), and based on the
sampled state the controller predicts the future state of the system over the optimization
horizon T (line a), and based on the prediction it obtains the optimal input for the system.
But only the first part of the input will be applied to the system during the execution
horizon &, and the rest will be discarded. Then at time t+ 6, the new state of the system
is sampled and used to predict next trajectory (line b) for optimization. Then the process
is repeated until the system meets the goal.

According to the above explanation, the procedure of an RHC controller can be
summarized as three steps:

e Form the problem
. Sqlve the problem

e Apply the inputs
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Fig.1. Illustration of RHC trajectory generation {83]
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2.3.1. Form the Problem

The ease of using RHC for a control problem is that the objective of a mission can
be explicitly and solely formed in a cost fuﬁction. After that, the controller will be able to
drive the system to the desired states, provided that the model of the system is accurate
enough and the sensors are working properly. Furthermore, the cost function can be
changed during the control process if there is any modification in the objective. Thus, the
purpose of this section is to illustrate how to generate a cost function according to the
objective of the control mission.

Suppose we have a system with state equation:

(t) = £(x(t),u(t),t), x(0)=0 (11)

where as stated earlier, x(t) e R” is the vector of state variables of the system for Vt >0
and u(t)e R™ is the vector of input variables for Vt >0, and they satisfy the constraints

in (2), and f:R"xR™ xR — R". Also define X c R" the set of admissible states and
Uc R™ the set of admissible inputs of the system respectively:
x(t)eX, u(t)eU for 1>0 (12)
In addition, consider the assumptions A1-A3 in [65] are also satisfied, where:
; f is twice differentiable;
e U is compact and convex;
e System (11) has a unique solution at any given initial condition.

The first assumption is provided to ensure continuity of the cost function. The second

assumption ensures the optimization region admits a well defined locally optimal solution.
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Then the cost function for the system (11) over prediction horizon T is defined as

follows [79]:

t+T,

J(x(t),u(), T)= I(“x(t;x(t)mf) + "ll(’tll; )i‘t +[x(t + T;x(t)mi (13)

t
where Pe R, Qe R™", and Re R™™ are positive definite weighting matrices, and

x(t; x(t)) denotes the states of the system at time 1 resulted from the input u(-) when the
initial condition is x(t); T is a finite optimization horizon, the weighted norms in (13)

are defined as ”x"i = x"Px. Therefore, the resulted J(x(t)u(-),T) is a scalar variable
denoting the cost of the system.
Ideally, the choice of the terminal cost is ux(oo;x(t)mi such that the mismatch

between the optimal finite cost and the infinite cost is zero; however, this situation will

never happen and the nature of the problem is to reduce the mismatch [83].

2.3.2. Solve the Problem

The optimization problem is to find an input u, so that the following equation

holds:
T (x(1). 1) = minJ(x(t),u().T) (14)

subject to

X(‘L‘) =f (X(‘L‘), ll(‘t), T)
u(t)e U telt,t+T] (15)
X(‘L‘; x(t)) e X

where J° (x(t) ,T) denotes the optimal cost based on the optimal input.
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The approach to solve the open-loop optimal control problem in this thesis is
based on the method introduced in [21].

Firstly, check whether the system is a flat system according to the definition
described in section 2.2, and if the system satisfies the definition, some of the system
outputs will be selected as the flat outputs in the hope of lowering the dimension of the
optimal problem; but this step can be skipped if the system is not, however, the time
consumed to solve the problem is expected to be longer.

Then an interpolation method is used to characterize and simplify the
optimization problem. The cubic spline interpolation method is employed in this thesis
because it is an effective approach that is more simple and computationally inexpensive
compared to other methods such as B-splines. The degree of each spline is defined by
setting the control points. This results in a continuous curve and is divided into discrete
pieces by adding points on the curve. These points are called interpolation points, which
should be selected close enough to be able to present the behaviour of the curve. Then the
optimization problem is modified to find a set of inputs that minimizes the cost function
of the system at the interpolation points.

The scheme of the above interpolation method is shown in Fig.2, where N,
denotes the total number of interpolation points over an optimization horizon T, and N

denotes the total number of control points. Using more control points results in more
optimization parameters and thus increases the computation time. In addition, more
interpolation points result in a smoother cure and increase computation time, as well.
Several interpolation methods could be used in this section to parameterize the flat

outputs (if they exist) selected in the last section, such as linear interpolation method and

20



B-Spline method. However, in this thesis, the cubic spline method is chosen, as stated

earlier. The interested readers are referred to [86] for detailed explanation of how this

method works.

Lastly, the resulted optimization problem can be solved by the numerical

optimization solvers, such as Sequential Quadratic Programming (SQP) [21], Powell’s -

Method [86], and other optimization packages such as SNOPT [87].

Estimated States
Interpolation Points

x Control Points X
A
T
J N
/X’I'— T e
/ Xk N
Ng,v/ \'\ m i
/ LT e X
S : : ‘N,
g : : .
t ts+—T—k t +—m to+T
N, N,
Fig.2. Interpolation scheme.
2.3.3. Apply the Input
Suppose the solution to (14) is obtained as
u'(t)=u'(1;x(1)), 16)

then during a period of time 7 € (t,t + 6], the optimal input is applied to the plant, where

& denotes execution horizon, and 0 <t < T. After applying the control to the system, the
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resulted states of the system becomes the initial condition for the optimization problem of
the next step.

Moreover, the choice of the values of optimization and execution horizon is vital
to the performance of the controller. Usually, for the stability of the system, the execution
horizon is chosen much smaller comparing to the optimization horizon [83], because in
this way, the mismatch between the predicted and actual trajectory in Fig.1 is small thus
the performance can be guaranteed.

However, the above concept has a crucial constraint in the practical
implementation. Before we discuss that constraint, we need to define some parameters in
the first place [84]:

o Step start time: t_. This is the time when an optimization step starts. This is also

the time when the controller starts sampling the state of the system. Since the time
used in sampling is considerably less than the following time periods, we assume
that the time used to sample is zero, and the controller obtains the states at time t,.

o Computation start time: t . This is the time when the optimization procedure
starts (for one step).

o Computation finish time: t_,. This is the time when the optimization procedure
finishes (for one step).

o Computation time: t,=t_,—t, . This is the time period for how long the
optimization step takes.

e Actuation time:t_. This is the time when the calculated input is applied to the

actuator. This input could be either a newly computed input or an input that has

been obtained in advance.
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e Actuation latency: 1, This is the delay generated in the actuation of the system

after starting optimization step or sampling the states.

An illustration of the above parameters is shown in Fig.3.
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Fig.3. RHC time parameters.

Typically in theoretical discussions, the computation time t_ is assumed to be
zero, but in the implementations in the real world, t, is non-negligible, and rather plays
an important role in the application. That is because the existence of the non-zero
computation time prevent us from choosing small execution horizon &, that is, 8 must
be more or equal to the computation time t_. Because of this constraint, the controller is
unable to apply the input as soon as the current state of the systemi is sampled, and must
wait until the input is calculated, which is where the actuation latency 1, comes from.
Two methods are created to tackle this problem: Retarded Actuation Method and On-the-
Fly Computation method.

The Retarded Actuation method, as its name indicates, solves the optimization -

problem for the next step in advance and applies the input at the beginning of that step

[53]. This method gives the controller sufficient time to finish the calculation. Its scheme
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is shown in Fig.4. The solid lines in the diagram denote the input is applied to the system,
the dashed lines denote the input is generated but not applied, and [ts ot + 8] denotes the
time interval from t_ to t,+8,s0 u’[t,,t, + 8] is the optimal input generated for the time
interval [t_,t, +3].

There are two methods to generate the input. In order to better explain the
difference between these two methods, we will take how the optimal input signal for
interval [t, +8,t, +28] is obtained as an example.

In the first method, the process takes the states of the system at time t_, x(t,), as
an initial condition. Based on this initial condition, the controller generated the input for
[t +0.t, +8] and [t, +8,t, + 25, and only the input for the interval [t, +,t_ + 28] will
be applied to the system at time [t, +8,t_ +28]; in the second method, instead of using
x(t), the controller firstly predicts the system states x(t, + ), then uses these states as an
initial condition, and applies the corresponding input for the interval I:ts +0,t + 6] ,
where t_ =t_+35.

For Retarded Actuation method, the following equations should be satisfied:

t. =t

s cl

t, <t +3

t, =t +96 a7n
t. <9
1, =8

The other method is called On-the-Fly Computation method. In this method, there
is no prediction involved, and the actuation latency is smaller. Let us take the interval

[t, +0,t, + 8] for an example.
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The controller will start the optimization process at time t, when the states are

sampled, and apply the inputs as soon as they are available. However, because of the

existence of t_ in each step, there will be a time interval [t,,t, +t_], in which no optimal

input is available (The input for the last step has finished, and the input for this step is not

yet available). To solve this problem, instead of applying the last step input till is , the
system continues using the input calculated for the last step for the interval [t,,t, +t.],

until the new optimal input is available. When the new input is available, the controller

will switch to apply the new input to the system at t_+t_. The scheme of this method is

shown in Fig.5.
Unlike the Retarded Actuation method, the On-the-Fly Computation method does

not involve a variation that requires predicting the states of the system [’ts,ts + tc] and
uses that states as the initial condition. Because the computation time t_ of the next step

is unknown until the optimization is finished and the new input is obtained.
For On-the-Fly Computation method, the following equations should be satisfied:

t.=t

s cl

t,<t +0

c2 —

t,<t +8 (18)
t. <5

1 =t

The whole process of a complete RHC implementation is shown in the flowchart

in Fig.6. And the RHC computations in this thesis heavily rely on Receding Horizon

Control Object-Oriehted Library (RHCOOL) in [7].
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Decide the cost function

Form the problem

Obtain the states of the
system

A

Solve the problem
v
Solve the optimization
problem in (13) and (14)

Apply the solution Apply the input
inputs to the system ’

Fig.6. RHC flowchart.

2.4. Decentralized Receding Horizon Control

Suppose there is a set A with N vehicles, which forms a formation, then for the

i™ vehicle in the system, there is a set A containing the neighbours of the i vehicle,
thus named the set of neighbours of i vehicle. The definition of neighbour can be found
in [60] and [74]. For example, in the following six vehicle system (Fig.7), vehicle No.1

has No. 2 and No. 3 as its neighbours, while No. 3 has No. 2, No. 5, No. 6, and No. 1 as

its neighbours.

Fig.7. Six-vehicle system.
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There are two popular approaches in current decentralized RHC formation control
area [43]. In the first approach, the agent will only estimate its own states, but estimated
trajectory of each agent will be exchanged among the agents [61]. The second involves
using the most available states of the agent’s neighbour, and calculating the optimal cost

of that agent by estimating the states of both its neighbours and itself [60].

A. The First Approach

Suppose the following state equation is of the i™ vehicle:

% () =1, (x; () u,(t).1) (19)
where x, (t) € R™ is the vector of state variables of the i” system and u (t)eR™ is the
vector of the input variables of the i/ system for V¢ > 0. Also define X, c R™ the set of
admissible states and U; — R™ the set of admissible inputs of the system respectively:

x,(t)eX,, u (t)eU, for t>0 (20)

Also let %(t)e R" and @i(t) e R™ be the vectors that store the states and inputs of

N, N,
the whole system at time t, where n = Z:ni and m = Z:mi , and the state equation for

1=} m=1

the whole system can be obtained as:

i(t) = F(x(t) a(t),1). 1)

Therefore, the cost function for the whole system is given as:

J(ﬁ(t),a(t),t){ga(x.- (O, (0),(0) &, (1) @)
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where J; denotes the cost function for the i* vehicle. This cost depends on the behaviour
of the i"" vehicle, as well as the interactive relation to its neighbours’ states and inputs,
which are presented by %, (t) and a,(t).

Furthermore, J; in (22) can be achieved by:

(% (1) 0 (1), %, (), u;(1))
=35 (% (0w, () + 2 3,5 (% (05w, (1), %, (1), (1)) (23)

i,JeA
where J, () denotes the cost function for the i® vehicle. The admissible input u;j (t) is

obtained by solving
i (3 (1), (1), T) = min 3, (x,, (1), 0, ()%, (0, ().7) (24)

where the first subscript of x and u indicates the state and input belong to the i vehicle,
the second one indicates the location where the state or input is calculated or estimated.

Let us take x,, (t) for an example, X, (t) stands for the states of the 2™ vehicle

estimated on the /* vehicle. The input u;; () will be applied to the i vehicle at each

execution horizon. Afterwards, the actual states and inputs of each agent will be
exchanged among the whole system for the next optimization step.

The problem certainly can be solved by using the centralized fashion [60]. In
order to solve the optimization problem associated with the i vehicle in a decentralized
way, the i yehicle at least needs to know its current states and its neighbours’ current
states. Based on the states, it is possible to predict its optimal inputs and its neighbours’
optimal inputs. Its own inputs will be applied to the system, while the inputs to its
neighbours’, however, will only be used to predict the neighbours’ trajectories, and then
discarded. So the procedure of DRHC is shown in Fig.8.
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Each system solves its own
optimization problem from its
current states and estimating its
neighbours' states

A

A 4
Each system implements its own
inputs

A 4
Exchange current states with its
neighbours

Fig.8. DRHC flowchart, first approach.

It is commonly known that the stability of DRHC is not ensured, because the
prediction of the j* system on i vehicle is independent from the actual j* vehicle’s
behaviour, and the mismatch between these two values usually causes problems.

The authors in [60] proposed a solution stating that if the mismatch is within a
range, then the system is asymptotically stable. Suppose mismatch between the i system
and i system’s prediction on j™ system is given as:

t+T
N IE MOEEHG (8 WORTHO 25)
t

then the mismatch for the whole system, ¢, is obtained as:
t+T

&= iE;,J: 26: j

=1ieA,; jLieA; 1

(25,0 -x, G+, -, G, Yo 26)
If the following relation holds, then the system is asymptotically stable:

o < O + b O+ 0, O, o, O, +]

u, () @7
where Q and R are positive definite matrices if p=2, and Q and R are full rank

matrices if p =1,00 . The proof of this theory can be found in [60].
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| This approach delivers outstanding performance in formation control, but will add
some computation burden to each node since they have to do extra calculation to achieve
the estimation of the states of their neighbours. Therefore, if being applied into the real
world, the retarded actuation method is recommended, since that method gives the

controller sufficient time to predict the states and trajectory of the other vehicles.

B.  The Second Approach

In this approach, let us still assume (19) is the state equation for the i vehicle,
which satisfies the constraints in (20). The resulted cost function, on the other hand, will

be written in the following form:
N

J; (xi (t)>“i (t)sxj (t)) = Z J; (xi (t)’“i (t)’xj (t)) (28)

i=1,jeA;
where J.(-) denotes the overall cost function for the i vehicle. Please note that there is

no other extra subscript associated with the states and inputs except for the one that
indicates the number of the agent. The cost function generated by i and j vehicle can be

obtained as [61]:

+T

3 (x (0,05, (0)= [J(x (0)-x,())

t

RGN0 L T—e

where J | (-) denotes the cost function caused by the formation between i and 7™ vehicle.

The admissible inputs of the i agent u; (t) is obtained by the following:

37 (x (1), () = minJ, (x,(t).m,(1).%,(1)) (30)
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and the input will be applied to the vehicle at each execution horizon. Then the actual
states and inputs of each agent will be exchanged among the whole system for the next

optimization step. The flowchart of this approach is shown in Fig.9.

Each system solve its own
optimization problem from its
current states and other’s trajectory <
predicted by its neighbours

A 4
Each system implements its own
inputs

\ 4
Exchange estimated states trajectory
with its neighbours

Fig.9. DRHC flowchart, second approach.

This method is not as computationally expensive as the first approach since the
nodes do not estimate any states other than their own. It is also obvious that, in most
cases, the i agent is unable to obtain its input at timet, as the states of its neighbour ;"
agent may not be available at that time. Thus when being used in the real practice, the
On-the-Fly Computation method is recommended. In the following chapters of this thesis,
the second approach will be considered, and a method to cancel the effect of delays will

be introduced.

2.5. Cooperative Control Example

In this section, an example of completing a DRHC control of two hovercrafts is
explained. The example basically involves an angle regulation and tracking of both

vehicles. A reference angle 0, is set for hovercraft 1 (H1), so that H1 will point to that
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direction. Besides, hovercraft 2 (H2) will follow H1’s step and point to that direction as

well (Fig.10).

A YG

Fig.10. Angular regulation example of DRHC

The dynamic models for both vehicles’ angle is shown below
T, =aF, -br,

I, = azFT,z - bzrc,z

. 31
ec,] = r&:,1 ( )
éc,2 =X

where 1., and 1, are the angular velocity of H1 and H2, 0, and 0_, are angle of HI

and H2 respectively, a,, a,, b;, and b, are the parameters associated with hovercrafts

rotation, and F;;, and F;, denote the input applied to the motor of Hl1 and H2

respectively.

Then the cost function for H1 can be formed as:
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=+T

Jc,l (ec,l (t)’ T) = _[(ec,l (T)— er )2 dT + (ec,] (t + T) - 0r )Z (32)
; .
and the cost function H2 can be formed as:

Jea (8.4 (1).6.,(1).T)

= ":[ (ec,l (T)—ec,z (‘lf)—-el,2 )2 dr+ (OCJ (t + T)_ec,z (t)—-Gu )2 (33)

t

where 0, , denote the desired angle between H1 and H2. 0,, can be set as any number,

and in this case, it is set to be zero. After these two definitions, the DRHC controller is
able to follow the procedure discussed in the previbus sections and finish the mission. It
should be noted that the computation time is assumed to be zero in this example.

In order to simplify the optimization process, the flat outputs method discussed in

section 2.2 can be used here. From (31), the flat outputs of the system can be selected as:
(34

where z, and z, denote the flat output of H1 and H2, respectively. Using the selected

flat outputs, the remaining states and inputs of the system can be obtained as:

rc,l = Zl
I, =2,
Z,+bz
_4 141
R, =aths (35)
a,
Z,+b,z
_ % 247
FT,2 =
a,

The following parameters are selected for the RHC controller:
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N, =3

N, =50 36
86=0.1s (36)
T=10s
and the initial conditions for H1 and H2 are:
I, 0) =0
rc 2 O) = 0
g 37
8, 0) =0.5 rad 37
0., (0) =1.0 rad
and the reference angle is set to:
7
0 =—rad 38
=3 38)

Thereby, the problem is well set up and the simulation result of the above

problem is shown in Fig.11.
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Fig.11. Simulation result of the angle regulation and tracking example
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3. Modeling and Identification of Wheeled Vehicles

A successful receding horizon control implementation is based on the prediction
of the system’s states over the optimization horizon, and reducing the mismatch between
the predicted states and the actual states (Fig.1) is crucial. A good prediction is primarily
based on the accuracy of the system model. Thus, in the following two chapters, the

modeling and identification of the vehicles is discussed in detail.

3.1. Wheeled Vehicle Model

The kinematic model of the wheeled vehicle and the dynamic model of the

actuators are presented in the following subsections.

3.1.1. Kinematic Model of the Wheeled Vehicle

The configuration of the wheeled vehicle is illustrated in Fig.12 to Fig.15.
Although both dynamic models and kinematic models can be used for wheeled vehicles,
the kinematic model 1s adopted. Since the vehicle does not move fast and the wheels do
not slip much the kinematic model is able to accurately describe the motion of the system.
Also the kinematic model is more computationally simple which is helpful when solving
the RHC optimization problem. Furthermore, kinematic models have been successfully
used in similar experiments [67].

The kinematic equations for each vehicle expressed in the body attached frame

(XB ,YB) are given as follows [67] (see Fig.16):
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) 1

X = 'Q_(mwm,RRwheel + mvwn,LRwheel )COSGC

} 1 .

YC = E (a)wm,RRwheel + wwm,LRwheel )S]n 9c (39)
1

90 = ET((Dwm,RRwheel - (me,LRwheel)

where R . is the radius of each wheel, o, , and ©, , denotes the angular velocity
of the right and left wheel respectively, and 1, denotes the distance between the two

wheels, (x,,y. ) denote the coordinate of the vehicle in the global frame, and 0. denotes

the angle between the global and the body attached frame.

Fig.12. The wheeled vehicle side view Fig.13. The wheeled vehicle top view

Fig.14. The wheeled vehicle front view
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Fig.16. The wheeled vehicle’s schematic model

3.1.2. Dynamic Model of the Vehicle Actuators

The 3 degree of freedom motion of a wheeled vehicle is controlled by two servo
motors, which are controlled remotely by a computer via wireless FM radio
communication links,

The dynamic equation of each motor is given by the following:

Jom®om = Kim Ui = Mom @ — K@ ~Homsgn(0,,.,) (40)
where o, and © ‘represent the angular acceleration and angular velocity of the wheel
respectively, U represents the voltage applied on the motor, J represents moment
of inertia of the motor, K, and n,_ are constant parameters associated with the motor,

K,.» denotes the linear friction coefficient of the motor, and p,  denotes the Coulomb

friction coefficient of the motor.
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3.1.3. Sensor Dynamics and Noises

All vehicles are placed and controlled under a 9-camera overhead vision system
(Fig.17). The vision system is able to track the color targets placed on the vehicles (as
shown in Fig.13 and Fig.19) at a sampling rate of 25Hz. Note that the angular velocity
and acceleration terms are obtained by using center finite-difference approximations of
the values of the targets.

However, the vision system, like most of the other tracking systems, has a sensor
delay, which alters the performance of controller. The delay is mainly caused by the
nature of the vision system, which will be fully explained in Chapter 5. In this section,
only the pattern of the sensor delays (41) will be discussed.

In the experimental tests performed to investigate the delay, a LED flash light
bulb was placed under the vision system. It flashed on and off at a constant frequency. A
timing computer recorded the time when the bulb was turned on, and the vision system
sent a signal back to the timing computer immediately after capturing the light. The
timing computer recorded the time at the moment of receiving the signal. Thus, the
delays were obtained by comparing the two times on the timing computer. The result is
shown in Fig.18. Although in Fig.18, only a small portion of number of samples are
shown, the figure is adequate enough to show the pattern of the delay, since throughout
the experiment, the delay has never exceeded the maximum value in Fig.18. Therefore,
‘the upper bound of the delay can be found as:

tsp £0.06 s=Tg, 41)
where tg, denotes the sensor delay and T, denotes the upper bound of the sensor delay.

This information will be used in the DRHC implementation in Chapter 6.
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Fig.18. Pattern of the sensor delays

Sensor noise can be observed in the sensor related diagrams in the coming
sections. This noise mainly comes from the following three sources:
e incorrect time measurement for the vision sample, because we are unable to
control the sampling time, but only put the frequency to its highest possible level;
e noise from the cameras themselves causes noise in position data;
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e finite difference error for derivative calculations, which is caused by the above
two factors combined.

Although filters, such as low-pass filter, can be used to handle the noise, no filter
was used in any of our experiments. This is mainly because in the process of parameter
identification, the curve fit method (to be discussed in the next section) averages the data
to some extent; while in feedback control, the phase lag from low-pass filters caused the

system to become less stable.

3.1.4. State Equations of the Wheeled Vehicles

The state equations of the wheeled vehicle used in this thesis are obtained in (42)
by combining the equations in the first two sections. Please note that the subscripts R and

L indicate the right and left motor on the vehicles respectively.

Xc = %((Dwm,RRwheel + (Dwm,LRwhee] )COSBC
yc = %((Dwm,RRwheel + (Dwm,LRwheel )Sin 9(:
. 1
ec = m(mwm,RRwheel - (Dwm,LRwheel) (42)
. 1
O)wm,L = J (Klwm,Lme,L _.nwm,L(Dwm,L _wam,L(Dwm,L —l‘l’wm,L Sgn((’owm,L ))
wm,L
. 1
(Dwm,R = J (K]wm,Rme,R —nwm,R(Dwm,R —wam,R(Dwm,R —pwm,R Sgn(wwm,k ))
wm, R

3.2. Parameter ldentification

- This subsection will introduce the procedure of how parameters in (42) are

identified in details.
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3.2.1. Parameter Identifications of the Actuators

A cross bar with two coloured targets attached is installed on the wheel (Fig.19),
to measure the angular velocity and angular acceleration of the motor. The center of the
bar was precisely placed on the center of the wheel to ensure the targets were mounted
with same distance from the center. Before estimation, the motors were balanced by a

leveller to ensure the accuracy of the measured data.

F ig9. ross bar assembly

For the sake of minimizing the number of parameters to be identified, the

equation in (40) is rearranged as follow:

o,,=a,U, —-a,0,  —a, sgn((owm) (43)
K +K
where a, =—D2 a = T\me . a, =—~;1‘"“

In order to solve (43), it is rearranged into the following equation:
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a

U -0 —senlo,.))a; |=[0.m] (44)
a;

The parameters in (44) can be solved by performing a least squares curve fit to the

sets of experimental data. The least squares identification problem can then be formulated

as an over determined linear system as below:

Ax, =by
A(t) b(t,)
A(tz) b(t2) 45)
Is . Is .
A(ty,) b(ty,)

where N is the number of points in a given experimental data set. In this case, the

experimental data sets include step input responses with different magnitudes. In this case,
the parameters of (45) can be presented in the following and the problem can be solved

by using pseudo-inverse approach.

A,sz[me -Q,,, —sgn(mwm)]

a,

X, =|a, (46)
a,

bls = [d)wm ]

Two sets of experimental data were used in the parameter identification process
(IC#1 and IC#2). They included step inputs with different magnitudes and similar initial

conditions of @,_(t)=0.0rad/s and U,_(t)= 0.0V for allt < 5s. IC#1 had a step input
of U, (t)=0.2V, and IC#2 had a step input of U__(t)=0.3V forall t > 5s.

The identified parameters for left and right motors are listed in Table 1 and Table

2, respectively, along with the nominal parameters obtained from the average numerical
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values of the identified parameters from IC#1 and IC#2. The estimated error bounds for
the motor parameters were obtained through completing the identification procedure by
using other data sets but same parameters, and computing the maximum deviation with
the estimated parameters.

Fig.20 shows the time history of the angular acceleration response of the left
motor for IC#1, and Fig.21 shows the corresponding simulation obtained from the
identified parameters for IC#1. In addition, the results of the left motor for IC#2 are
shown in Fig.22 and Fig.23; the results of the right motor for IC#1are presented in Fig.24

and Fig.25; and the results of the right motor for IC#2 are shown in Fig.26 and Fig.27.

Parameters IC#1 error bounds IC#2 error bounds
a, 60.0045 +0.2055 61.0320 +0.3083
a, 5.348 +0.8258 5.02 +1.073
a, 0.062 +0.003 0.059 +0.003

Table 1. Estimated motor parameters from linear least square approximation of the left motor

Parameters IC#1 error bounds IC#2 error bounds
a, 61.128 +0.1982 62.119 +0.2973
a, 5.01 +0.195 4.932 +0.2535
a, 0.093 +0.032 0.061 +0.032

Table 2. Estimated motor parameters from linear least square approximation of the right motor

The comparisons in Fig.20 - Fig.24 illustrate that the identified parameters from
linear least squares method are accurate enough to depict the behaviour of the motors

under different inputs, although with a small latency in some occasions.
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Fig.20. Linear square approximation of angular acceleration of the left motor (IC#1)
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Fig.21. Left motor angular velocity response using linear square approximation (IC#1)
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Fig.24. Linear square approximation of angular acceleration of the right motor (IC#1)
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Fig.25. Right motor angular velocity response using linear square approximation (IC#1)
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3.2.2. Parameter Identification of Wheeled Vehicles

Though, the parameters of motor kinematic equations were identified in the last
section, when the motors are installed on the vehicle, the motor model parameters will
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need to be adjusted. Because the inertia will increase due to the weight of the vehicle’s
body and the friction will also increase due to rolling resistance.
Another two sets of experimental data were used in this process of the parameters

identification of the wheeled vehicle. The first data set (IC#3) had an initial condition,

where 0, =1.55rad , and me’L(t)zme,R(t)=OV (U,nr and U . denote the

voltage applied on the right and left motor respectively) for all t <5s, and had a step

magnitude of U, (t)= Ui (t)= 0.4V whent > 5. The other set of step input (IC#4)
consisted of an initial condition of 8, =0.45rad and me,L(t)=me,R (t)=0V for all
t<5s, and a step magnitude of U . V)= -04V, U, . (t)=0.4V for allt >5s. The

first set mainly produced translational movement of the wheeled vehicle, while the latter
caused rotational movement. The parameter identification process would combine the
results from both types of movements as shown in Table 3. Please note that the first
subscript refers to the number of parameter in (43), and the second one refers to the
parameters belong to either left or right motor of the vehicle.

The simulation results are compared with experiment data in diagrains from
Fig.28 to Fig.38. It can be seen that the simulation results are close to the experimental

data in both translational and rotational movements.

Parameters IC#3 error bounds 1C#4 error bounds
a,, 58.15 +0.946 60.515 +0.946
a,, 20.348 +0.237 22.718 +3.792
a,, 0.0093 +0.0002 0.0095 +0.0002
a]:R 56.37 +2.9932 48.887 +2.9932
a,x 21.008 +0.101 22.107 +1.758
asp 0.0097 +0.0001 0.0096 +0.0001

Table 3. Estimated wheeled vehicle parameters
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Fig.28. Velocity along X-axis (IC#3)
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3.3. Model Verification

The proposed actuator model, identified by the linear least square method, was
validated by comparing the actual output to the simulation output of the model for a

different data set IC#5, which was not used in the parameter identification process. IC#5

had initial conditions of @,,,; (t)=w,,z(t)=0.0 and U, (t)=0.0 for all t<0 and a
sinusoidal input of U, () =0.5sin(0.3t) V forallt > 0. It was adopted in the validation

process because it is a standard input and its magnitude is not too big to create saturations.
It was applied on both left and right motors. The simulations were performed by using
Euler’s method with a step size of 0_.05 seconds. Fig.39 and Fig.40 sh0\;v the angular
velocity responses of left and right motors versus time, respectively. It is evident that the
overall response‘ of the linear model is close to the experimental data, except for some

small deviations.
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Same as the motors, the parameters of the vehicle were validated by another set of

input (IC#6), which was not used in the process of parameter identification, either. IC#6

had an initial condition where 8, =1.6rad and U, . (t)=U,,, (t)=0 for all t<5s

with a step magnitude of U, ,(t)=05V and U, (1)=0.7V when t>5s. The

simulated results are shown and compared with the experiment data in diagrams from
Fig.41 to Fig.46. As it is shown in Fig.31, Fig.32, Fig.37, Fig.38, Fig.44 and Fig.45, the
simulated angle and position value have relatively large deviation from the experimental
data especially when the simulations were approaching to the end. However, the RHC
controller used in this thesis does not require a very long optimization horizon (normally

one second), hence, the model is adequate for our RHC experiment in the latter chapters.
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4. Modeling and Identification of Hovercraft Vehicles

The hovercraft vehicles used in the experiments are modified from radio
controlled (RC) hovercrafts. By adding two powerful ducted fans on both sides, and an
extra fan on the tail, the new hovercraft becomes dynamically similar to a helicopter in
2D environment. This will be a preparatory stage for our future research on applying

RHC to miniature helicopters.

4.1. Hovercraft Vehicle Model

The dynamic model of the foresaid modified hovercraft and its actuators are

presented in this subsection. The pictures of the hovercraft are shown in Fig.47 and

Fig.48.

F’i.4.e hovercraft vehicle top view Fig.48. The hovercraft vehicle perspective view

4.1.1. Dynamic Model of the Hovercraft Actuators

The 3 degree of freedom motion of a hovercraft vehicle is obtained by three

powerful ducted fans, which are connected to a servo amplifier. Similar to the wheeled
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vehicles, the hovercraft is controlled remotely by a computer via wireless FM radio
communication links.

The servo amplifier is able to transfer the voltage applied to the FM transmitter
into pulses, changes the pulse width when different voltages applied on the FM radio
controller, and uses the different duty cycle ratio to change the average voltage applied to
the fan’s motor; thus manipulates the thrust generated by the motor. Duty cycle ratio is
equal to pulse width divided by the period of the pulse.

The average voltage on the motor is obtained by multiplying the voltage level and
duty cycle ratio as:

U]evel : Kran'o = UhMotor (47)

where U, is the voltage level, K . is the duty cycle ratio and U,,,,,, is the resulted

ratio
average voltage the motor sees.
During the experiments, it is found out that the generated thrust is weaker when
positive voltage applied on the motor than the thrust when negative voltage is applied.
This is because the amplifier produces different set of pulse width when positive and
negative voltages are applied. This discovery can be proved by the following diagram

Fig.49.
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It is obvious that when negative voltage applied, the duty cycle ratio increases
faster than the case when positive voltage applied, accordingly, the average voltage
grows faster. Ho‘wever, the thrust generated by the motor is unable to be measured,
therefore in this thesis it is assumed that the thrust is prbportional to the average voltage.
Therefore, the relationship between the input voltage and the thrust can be found, if the
relationship between the input voltage and the duty cycle ratio is established. By using 5™

order polynomial method, the following equation is able to depict this relationship:
5 -
Kratio = beU;: (48)
i=1

where b, denotes the parameter to be identified, and U, denotes the input voltage from

the FM controller. By combining (47) and (48), we can have:

5 .
UhMotor = Ulevel ’ ZblU;I (49)
i=1
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4.1.2. Dynamic Model of the Hovercraft

The dynamic model of the hovercraft is different from the wheeled vehicles in a
number of respects. This is mainly because of the difference in their actuators and friction
mechanisms. The hovercraft vehicles are actuated by thrust fbrCes from their fans, so the |
motion is more complicated and unpredictable than the motion of the wheeled vehicles.
Furthermore, the frictional force is mostly viscous since the vehicle floats on a cushion of
air. Finally, there are no kinematic constraints due to the low friction air cushion.

The equations for hovercrafts are also expressed in the body attached frame

(XB ,YB) as shown in Fig.50, which are given by the following equations [68]:

5
_ i
Fm =y Ul 'zbiUhM
i

5 N
Fp=ay Upa- zbiU;ﬁ
i

. 1
uc = “(FhM —bhuu)+vcrc (50)
mh
vc = _Lbhvvc _ucrc
m,,
1
e = Jh: (FhT "bhrrc) 'JL:d‘FhM

where 1,; denotes the distance between the block in which tail rotor is installed and the
center of the hovercraft, 1,,, denotes the distance between the two blocks in which main
rotors are installed, m, denotes the mass of the hovercraft, J, is the mass moment of
inertia of the hovercraft, .uc and v_ are the vélocity along X, and Y, axes, respectively,
b,,, b,,, and b, denote the viscous friction coefficients along X;, Yz, and Z;

(poinﬁng out from the diagram, not shown in Fig.50) directions, respectively. a,,, and
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a,; denote the coefficients of the linear relationship between the average voltage on the
main and tail motors and the produced thrust by the ducted fans, F,,, and F,; represents

the thrust generated by the main and tail rotors respectively, and U,,, and U, represent

the input voltage applied to the main and tail motors, respectively.

Fr

———
Xe

Fig.50. The hovercraft vehicle’s schematic model

4.1.3. State Equations of the Hovercraft Vehicles

The state equations of the hovercraft vehicles are obtained by combining the

dynamic equations of the actuators, and the kinematic equations of the hovercraft.
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5 .
Fim =2 - Upe 'ZbiU;xM
i=1
5 .
Fir =ay U 'zbiU]hT
i=1

l:lc = _L(FhM —bhuu)+ Vcrc
m,

vc =_"._—1—_thVC _ucrc (51)

mh
i —li(F -b )——-—th F
I, = hT ~ Onele j M
h h
X, =u_cosf, —v sinO_
y.=u,sin@_ +v_cosb,

0, =r

< <

4.2. Parameter Identification

In this section, the procedure for parameter identification of the hovercraft vehicle

and its actuators is presented.

4.2.1. Parameter Identification of the Actuators

Similar to the process of parameter identification of the actuators of the wheeled
vehicle, this part will use (45) to find the parameters associated with the motors, and by
combining (47) and (48), we can change (46) into the following equations:

A.=[U, U U; U, U]
x,=[b, b, b, b, b
b = [y_w__]

Ulevel

and through experiment, it is discovered that

(52)
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U ,=+70V,if U >0.0V

level hMotor

(33)

Uy ==170V ,if U,,,, <0.0V

level

Although the identification process is similar to the ones described in previous
sections, the parameters of the main and tail motors should be calculated by different data
sets. This is because, in the experiment, both positive and negative inputs will be applied
to the tail motor for rotational motion of the hovercraft, but only negative voltage will be
applied to the main motor, since the hovercraft only needs to move forward and the thrust
is stronger when negative voltage is applied. Also, please note that, for the purpose of
convenience and tradition, the input for the main motors will multiple -1 after being used,
so that we could say the hovercraft moves forward when positive voltage is applied. This
modification is only for the habit of the author, and will not change the dynamics of the
system.

There were two sets of data chosen for the tail motor. These two data sets (IC#7

and IC#8) had the same initial conditions of U, (t)=0.0 and U, (t)=0.0 for
allt<5s. IC#7 had a step input of U, (t)=1.25V, and IC#8 had a step input of

U,.(t)=-1.25V for all when t>5s. Also for the main motors, there were two sets of
data employed. One of them was IC#7 and the other one was IC#9, which had the same

initial conditions of Uy, (t)=0.0 and U, (t)=0.0 for allt<5s, and a step input of

U, (t)=0.45V for all when t>5s.

The identified parameters for the tail and main motors are listed in Table 4 and

Table 5 respectively, along with the nominal parameters obtained from the average
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numerical values of the identified parameters from IC#7, IC#8 and IC#9, and the

estimated error bounds.

Parameters 1C#7 error bounds IC#8 error bounds
b, -0.2958 10.06265 -0.31633 10.0.06265
b, 0.09188 +0.0457 0.07315 +0.0475
b, 2.032 +0.0973 2.0818 +0.0973
b, -0.4095 +0.229 -0.26236 +0.229
b 0.856 +0.02907 0.8337 +0.02907

Table 4. Estimated motor parameters for the hovercraft tail motor

Fig.51 shows the time history of the average voltage applied on the tail motor for
IC#7, and Fig.52 shows the result for IC#8. The corresponding cases for the main motor
for IC#7 and IC#8 are shown in Fig.52 and Fig.53, respectively. In addition, the input-
output relationship of the tail and main motors are obtained by using the identified
parameters, and illustrated in Fig.55 and Fig.56, respectively. Furthermore, there is no

need to validate the parameters, since Fig.55 and Fig.56 have proved the accuracy of the

model.
Parameters IC#7 error bounds IC#9 error bounds
b, -0.2981 +0.0595 -0.3176 +0.00036
b4 132 +0.3173 1.45 +0.00533
b, 1.986 +0.2753 1.845 +0.0128
b, 3.892 +1.5391 2.907 +0.1995
b, -0.07508 +0.0074 -0.081 +0.00266

Table 5. Estimated motor parameters for the hovercraft main motor
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4.2.2. Parameter Identification of the Hovercraft Vehicle

Unlike the actuators for the wheeled vehicle, there is no need to re-identify the
parameters of the motors, because there are no extra loads or modifications applied on the
actuators when they are installed on the hovercraft.

In order to identify the parameters of the hovercraft, equation (50) needs to be

rewritten for the sake of reducing the number of parameters to be calculated.

I, =p,Uyr =Pt —P3Uyy
ﬁc =p4UhM —psuc +vcrc (54)
vc = -—pﬁvc —ucrc

liray lirbae limay _ by, by,

Jh > p2_ Jh s p3_ Jh > p4 mh > p5 mh > p6—'mh

where p, =

Following the procedures discussed in the above sections by using least square curve fit
to the experimental data, (54) can be modified in the form of (55) and solved by using
pseudoinverse approach.

Alsx]s = b

Is

A=l0o 0o o U, -u o],
o 0 0 0 0 -v,
;i (55)
bls= l'lc VI

v, +ur
T
xs=[P, P, P Py Ps P
Four sets of experimental data with different initial conditions (ICs) are used in
this process of the parameter identification. They all included step input responses with
the same initial conditions, whereu, =0, v, =0, 1, =0 and Uy, (1)=U; (t)=0V for
all t<5s . The first data set (IC#10) had a step magnitude of
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U (t)=15V, U, (t)=0V when t>5s , while the second set (IC#11) had

U (1)=1.7V,U; (t)=0V when t >5s. These two data sets were responsible for the

translational motion of the hovercraft. The other two sets of step inputs consisted of two

step inputs, in which U, (t)=0V , U, (t)=12V (IC#12) and U, (t)=0V ,
U,; (t)=-1.2V (IC#13) for allt>5s, and they were responsible for the rotational

motion of the hovercraft. The identification results are shown in Table 6, and their resuits
are shown in Fig.57 to Fig.74. Please note the “0”’s in Table 6 indicate either there is not
enough data to identify that parameter, or the identified parameter is not reliable due to
lack of information. It is apparent to see from these diagrams that, despite of minor
disagreement with the experiment data, the overall performance of the system can be

accurately reflected by the identified parameters.

Parameters 1C#10 ICH11 IC#12 IC#13
P, 0 0 1.6017 1.5341
D, 3.0079 24731 2.5128 22314
P, 04 04 0 0
P, 13.2313 16,312 16.5771 14.7901
D, 1.0891 0.1369 0.1227 0.1437
Pe 26117 2.6034 2.6275 2.7591

Table 6. Estimated hovercraft parameters
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Model Veriﬁcation

Similar to the section of wheeled vehicle parameter identification, the nominal

model is validated by a set of inputs that was not used in the identifying process.
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However, as stated earlier, the verification of the ducted fan system is not necessary,
since Fig.55 and Fig.56 have already validated the accuracy.
The data set used in this section is IC#14, which was not used in the process of

parameter identification. It included step input responses with the same initial conditions,

whereu, =0, v =0, r, =0 and U, (t)=U,;(t)=0V for all t<5s, and a step
magnitude of Uy, (t)=1.4V and U, (t)=0.7V when t >5s. The results are shown in

the diagrams from Fig.75 to Fig.82. Same as the model validation section in the previous
chapter, the validation process is necessary only for a short time, since the RHC
experiments in the following chapters do not need very long optimization and execution

horizons.

" Erperinen L

o
=

=)
L*))
T

©
=

=
-

=)

I \/\/\\/\/AVI\/\/‘/MAV\/\/\/\«v/ v/"'v/\“\]\ At Moy

Acceleration along X qaxis d/dt '

&
oS
L

i i H t H

2 3 4 5 6
Time (s)

Fig.75. Acceleration along Xp-axis (IC#14)

o
PR
—L

83



03

-1

— Experiment
f%\ 0.2 | - Simulation |
= 01t |
g N
5 o- A \/l'. !\4 AW A" '
g \/ an /
o 0.1+
g 02
d
§ -03r "
E 04+
g. 0.5 \
0% 1 2 3 4 5 6
Time (s)
Fig.76. Acceleration along Yg-axis (IC#14)
4 T T T T T T
— Experiment
% 3l ~- Simuilation |
: |
8 ol The
| 4
&’ i Wil
TRy |

2 3 4 5

Time (s)
Fig.77. Angular Acceleration (1C#14)

84



o

— Experiment

0.5 - Simulation |
w
E
3 0.4~
¢ ol
%

0.2
<
&
g 01
°

O_ ',\’\{,/\V'ﬁ\," PR NCIGN -, \/\/M . \»_/.\..\,'v/\\\y\/kv-~/\w.—~—»~f\,- AT e el

s

0 1 2 3 4 5 6
Tire (s)
Fig.78. Velocity along Xg-axis (IC#14)
0.14 T T . . T
s J
0.12r ~peri]
. - Siralation |
[77]
g o1t -
>
g 0.08" .
)
§ O.'%_ -~
<
0.04-
2
% 0.02}
> =
O‘
-0.020

Fig.79. Velocity along Yp-axis (IC#14)

85



1.2; ‘ ‘ .
|~ Experiment
1- 1  Simulation | .
— .
E 0.8 i
Pl
2 0.6 4
g
[V] .
> 04~ .
g8
g” 0.2 .
N —~ /\1 \ N f\;'
0_ e \/V,\V \/IJ \jv'\/\v —‘/ _‘ \/\4\_/,/\ V‘\//\VI\/\/\/\/\“\//\/\V\/—\VN "
% 1 2 3 4 5 6
Time (s)
Fig.80. Angular velocity (1C#14)

5.2| T T ¥ ¥ T T

517 1. Simulation
g 4.9}
% 4.8

? 4.7-

4.4

Time (s)
Fig.81. Angle vs. time (IC#14)

86



o
o

¢~ Experiment Y
-~ - Simulation Y
]6%— . Experiment X
—_ Stmaalation X
g
§14
g
1.2+
il 1 H 1 | 3 1
0'80 1 2 3 4 5 6

Time (8)
Fig.82. Position vs. time (IC#14)

The open loop control in the previous identification and validation processes are

not asymptotically, but marginally stable, therefore, some deviations can be observed in

the previous diagrams, such as Fig.76.
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5. Application of Decentralized Receding Horizon Control to

Wheeled Vehicles

Applying RHC and DRHC on wheeled vehicles is a fairly new concept, since
there has been other control methods available for these type of nonholonomic systems,
such as dynamic feedback linearization [88]. These methods have potentially faster
sampling rates and guarantee stability [89]. However, none of them is able to easily
handle input saturation and provide optimal berformance. The RHC and DRHC methods
can systematically address those critical issues.

In this chapter, DRHC will be applied to several simulations and experiments of
multiple wheeled vehicle systems. The wheeled vehicle model used in this chapter has
been obtained in (42). The procedure of designing a controller for the formation will

follow the second method stated in Chapter 2.

5.1. Controller Design

In the case of single vehicle trajectory following, the cost function can be

formulated as:
1 (x(1),xp (1), 1) _”lx('c (1:)”2 d'c+[|x(t+T)—xD (t'i-T)“i , (56)

where according to (42), x(t)=[x.(t) y.(t) 6.(t) Oumi Oumr ]T denotes the state

vector of the wheeled vehicle at time t, xD(t)=[xD Y, 0, ©p, Opp] is the

vector containing desired states, and Q and R are weighting matrices. Moreover,
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(Xp,Yp ) denote the desire position, 8, is the desired angle, op, and oy, denote the

desired angular velocity of the left and right motor respectively.

When N, (N, >1) vehicles added in the system, the formation of these N +1
vehicles can be kept by the following approach. One of the vehicles is selected as the
leader of the fleet that only follows the trajectory by using the cost function in (56); the

rests are selected as followers, which keep certain distance from each other by using the

cost function discussed below.
Let x,(t) be the state vector of the i vehicle at time t. For the i* vehicle there
exists at least one j” vehicle where j € A, the set of i vehicle’s neighbours. So for the i

vehicle, there is a cost function (57):

32,0 5,(1h1)= j p(\/”x,. O, _rﬁ)z &
+K(‘/l[xi(t+T)—xj(tj'i ~rﬁ)2

cA;
’ (57)
where r;; is a scalar variable which denotes the nominal distance between the i" and the

j™ vehicle, P and K are weighting matrices and P and K are weighting scalars. How
the weighting matrices and scalars are defined can be found in the next section.
The following parameters are selected for the RHC controller:

N =4
N, =50
0=0.1s
T=1.0s

&1
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5.2. Simulations

This section contains several simulations of trajectory following and formation
control of wheeled vehicles for different cases.

Fig.83 shows a simulation of the tracking control of a wheeled vehicle. In this
case, x(t):[xc(t) v.(1) 6.(t) o, o, ]T, while x, is chosen as:

1.6+ 0.75cos(t)]
1.2+0.75sin(t)
x,(t)= 0 (59

and Q and R are selected as:

I 0
— R — 2x2 2x3
Q [0 3x2 0 3x3 (60)

In Fig.84, the formation of two vehicles is presented. The first vehicle follows the
trajectory as in the first case, while a follower moves behind it and keeps a fixed distance

from it. In this case, for the leader, x, (t)= [xc’] () yo(t) 6,(1) Oury Ounr; ]T

and (60) remains unchanged; for the follower, r;=0Im , x,(t)=
T
[xc,z (t) Yeo (t) ec,z (t) Oym 2 (’owm,R,Z:' , and

P=K ZI:IZXZ 02x3i|

03x2 03x3 (6 1 )

P=K=1
In addition, two simulations for three and six vehicles keeping a triangular

formation, while tracking a trajectory are performed and the results are presented in
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Fig.86 and Fig.88, respectively. In this two cases, the definitions of x;(t) and x(t)
remain unchanged, (60) and (61) stay the same as the last simulation. r; can be set to any

value, but in the following simulations, it remains 0.1 m.

Although, it can be observed that in Fig.85, and especially in Fig.87, the
overshoot formation error (defined in (62)) between two vehicles are high at the
beginning, due to the choice of initial conditions, but they_quickly converge to their
required steady state values as well. Same result is shown in Fig.89, however, for
simplicity the figure only illustrates the formation error of the system, which is obtained

by summing up the formation error between each pair of vehicles.

2
eij(t)= \”Ixi(‘[)_xj(tllp - (62)
2 — [ . : ,
T T~ — RHCsimullation |
1.8 5 N T Reference Trajectory |
v ~
1.6L // AN _
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— ' / )
g4 | L
> \
I .
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Fig.83. Simulation of trajectory following, for a single wheeled vehicle—
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In this section, the experimental apparatus will be briefly introduced. The

apparatus consists of a vision feedback system and a controller computer. The vision
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feedback system was introduced in chapter 3. It has nine web cameras pointing down to
thé testbed covering an area of approximately 5m by 5m. Each web camera is connected
with a computer that processes the images acquired from the camera and sends the
position of the targets to the controller computer at a frequency of 25Hz. This frequency
is the maximum frequency the vision system can reach, thus causes the delay discussed in
Chapter 3. Upon the reception of data from the vision systerh, the controller system
calculates admissible inputs for the vehicle via a FM transmitter, which is connected to a
D/A board. The D/A board is used to convert the digital control signals to analog signals
need to be sent to the FM transmitter. A structural scheme of the apparatus is‘shown in

Fig.90.

Camera Array

Vision System

Controller

FM transmission

Testbed

Fig.90. Structure of the apparatus

5.4. Checking the Constraint and Tuhing the Parameters

A problem that researchers are usually faced is that no matter how perfect the
output of the system would be in simulation, there would be some problem if the system

was brought into reality. This problem persists in our RHC experiments as well.
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Therefore, before moving into validating the previous simulations, we will discuss how to
tune the parameters and check the constraints in order to obtain superior performance -
from the controller. A simple trajectory of line segments is introduced as an example
showing how the procedure is undergone.

The trajectory is defined as:

xp(t) = 0.25+0.05t
,forall 0<t<25s
Yo (t)=0.6+0.05t

(63)
xp{t)=0.25+0.05t

forall t>25s
y])(t)= YD(25)

where as before, (x,,(t),y,(t)) denotes the desired position at time t. So if we follow the

process explained in section 5.1, we can have the desired states for the controller as:

[0.25+0.05t |
0.6+ 0.05t
xp(t)= 0 ,forall 0<t<25s
0
0

(64)
0.25+0.05t
Xpai (25) :

xD(t)= 0 , forall t>25s
0
0

and by using the selection of RHC parameters in (60), a RHC controller is successfully

constructed for this trajectory following problem, and its result is shown in Fig.91.
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Fig.91. Trajectory following using wl(lee)led vehicle, before tuning RHC

It is apparent that the performance of the controller is not satisfying, and the
constraints and/or the parameters needs to be updated. The first step to determine whether
the constraints or the parameters should be adjusted first is to carefully observe the output
diagram. In Fig.91, it is obvious that the output trajectory has a trend towards the
reference trajectory, but the offset is huge. In this case, it is recommended to check if
there are other constraints that can be added in the controller to make the overall
constraint strong enough to drive the system to the desired states.

In this example, it should not be difficult to see that a desired angle will help the

system point to the desired position (x,(t),y,(t)) at time t, and if the system is able to

do that, moving to that position can be easy for the vehicle. Thus, (64) is updated as:
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[0.25+0.05t |
0.6 + 0.05t
xp()=] 6,(t) |, forall 0<t<25s

0

0

(65)
[0.25 + 0.05t ]

Xp,,(25)
x5 (t)= 0,(t) |, forall t>25s
0

0
where
0y, () =arctan 2((y, (1) - v. (1)), (%5 (1) - x. (1)) (66)

is the desired angle for the vehicle. Moreover the parameters associated with the RHC

controller is updated as:

I 0
Q =R _—__[ 3x3 3x2:| (67)
02x3 02x2

and the result is shown in Fig.92. Please note that the parameters have not been tuned yet,
and the change of parameters in (67) is just because of the need to bring 0, (t) in the cost

function.
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Fig.92. Trajectory following using wheeled vehicle, after adding constraint

Tuning the parameters can be summarised as increasing the value of the
parameter corresponding to the most disagreement. For example, the cost function for

Fig.92 can be derived from (56) as:

t+T

I (0 xp () =2, f(x.(c)=xp () do+b, (e (t+T)- x5 (t+ T

t+T

+a, J(y.(0)-yo ) dr+b,(y (14 T) -y, 1+ T (68)

t+T

+a; [(0.(c)-05(x)f dr+b,(8,(t+T)-0,(t+T)

where a,,a,,a;,b,,b,,b, denote the parameters associated with the RHC controller for

this problem. Since the disagreement- between the actual and reference trajectory is

primarily caused by the offset in Y direction, the first step is to increase the values of a,
and b,. After that, the new output should be checked to see if other parameters also need

to be changed. The final result of this parameter tuning is
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Q=R=diag(fl.5 2.5 1.0 0.0 0.0]) (69)

and the final output is shown in Fig.93. Please note that although it is possible to reduce
huge offset simply by tuning the parameters, it is still recommended to check the missing
constraints first, since the process of tuning is more complicated when compared with

adding an important constraint.

—- Vehicle
1.8~ Reference Trajectory

o
<

L i 1 +

1 1.5 2 2.5
X(m)

Fig.93. Trajectory following using wheeled vehicle, after adding constraint and tuning

And the initial condition for the case shown in Fig.91 is:
x,(0)=[0.1 037 o o of, (70)
for the case shown in Fig.92 is:

x,(0)=[0.021 055 0 0 of, (71)
for the case shown in Fig.93 is:

x,(0)=[0.012 041 0 0 of. (72)
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5.5. Experimental Veriﬁcation

In this section, two single vehicle trajectory following examples are presented to
validate the algorithm in (56), followed by the triangular formation control of three
vehicle. The later validation will be performed by using the decentralized RHC controller
discussed in section 2.4 and a combination of actual experimental vehicle and simulation
is employed. The experiments were run on the apparatus discussed in section 5.3.

Two experimental results are shown in Fig.94 and Fig.95, and their corresponding
simulation result is shown in Fig.83. The initial condition for the first case (Fig.94) is as

follows:
x,(0)=[2.051 0.815 0 0 of. (73)

and, the initial condition for second case (Fig.95) is:

x,(0)=[2.1021 1.0364 0 0 of. (74)
Please note that the initial positions of the vehicle in this experiment are different from
the simulation presented in Fig.83. Besides, the selection of Q and R is updated to the
following, as explained earlier:

Q=R=diag([10 1.2 05 0 0] @5)

while x(t) is modified as:

1.6+ 0.75cos(t)]
1.2+0.75sin(t)

wO)=| 0,0 (76)
0

0

where the definition of 6, (t) can be found in (66).
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Fig.94. Experimental result of the first trajectory following example with a single wheeled vehicle
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Fig.95. Experimental result of the second trajectory following example with a single wheeled vehicle
Then the case of three vehicle triangular formation control is validated. It should

be indicated that the experimental results shown-in Fig.96 to Fig.99 were run in a mixed

reality fashion, in which only the leader is running in real world and the followers are
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being simulated. This is an interesting case that real-time simulations are combined with

the experimental results. However, this arrangement still closely follows the requirement

of the DRHC environment, the members are under constraints of DRHC, and they need

to use the second method in 2.4 as DRHC strategy, and On-the-Fly Computation method

as actuation method. The initial conditions for the experiment shown in Fig.98 and Fig.99

are:

x,(0)=x,(0)=x,(0)=[2.37 0.88

0 0 of

(77

while the initial conditions for the experiment shown in Fig.100 and Fig.101 are:

x,(0)=x,(0)=x,(0)=[245 1.22

0 0 of

(78)

Please note that the selection of Q and R remains as in (75), and x, (t) stays the same

as in (76). However, the selection of P, K, P, and K are updated as:

P=K =diag((1.5 1.5 0.0 0.0 0.0))

(79
P=K=1.5
2F ad) 1
1.5 i.: i
g
S
1+ 4
e
I - Reference Trajectory |
i o Followa No2 ]
0.5 P~ _© Follover No. |
0.8 i 1 :2 1 14 1 i6 1.8 2 212 2l.4 26
X (m)

Fig.96. First formation control experiment with three wheeled vehicles
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6. Application of Distributed DRHC to Hovercrafts

In this section, the hovercraft model, identified in the previous chapter, is used to
implement multiple vehicle simulations and experiments. Similar to the last chapter, the
goal in this section is also to focus on the performance of a fleet of multiple hovercrafts’
trajectory following and formation behaviour by using decentralized RHC. By making
the experiments a higher level, they will also be run in a distributed fashion, which means,
instead of one computer calculating all the input for every vehicle, several computers
connected via a high speed LAN share their data and work simultaneously to solve the
control problem.

The number of vehicles for the simplest formation control could be as few as
three. In order to discuss the implementation in this chapter, let us consider the simplest
case. In this example, one of the hovercrafts is the leader of formation, which follows a
trajectory resulted from a predefined path, and avoids an obstacle on its way, while the
other two are followers. Their tasks are following the leader and keeping a specific
distance from each other. Thus, a triangle formation is achieved as in Fig.100. Each
vehicle is controlled by a single computer, and shares its motion data with the other two

‘via a high speed LAN network using UDP/IP protocol. Since the model used in this
implementation is the hoYercraﬂ model identified in the previous chapter, the i™ vehicle

notion in chapter 2 will be also changed to i™ hovercraft, unless otherwise specified.
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6.1. Distributed RHC System.

The distributed RHC system consists of three computers and a high speed switch.
As shown in Fig.100, each computer is responsible for solving the optimal problem of a

hovercraft. In the following, different parts of this study are briefly explained.

6.1.1. User Datagram Protocol

The User Datagram Protocol (UDP) is selected as the data transmission protocol
in this experiment. It is different from what is commonly used in the Internet today,
Transmission Control Protocol (TCP). Because in UDP, sockets do not have to be
connected before being used [59], datagram might arrive out of order, have duplicates, or
even become missing. It is not a reliable f)rotocol for some specific data transmission
applications, such as web browsers and email clients. However, despite those properties,
UDP is fast and ideal for the light communication, especially for the time sensitive

systems like ours, as well as Voice Over Internet Protocol (VoIP) and online games.
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6.1.2. Data Loss, Data Transmission Delay, Computation Time, and

Time Synchronization

A. Data Loss

Because of the nature of UDP, data loss is inevitable in this process, for example,
data has been sent from the sender computer, but the receiver computer has not prepared

to obtain the data yet.

B. Data Transmission Delay and Computation Time

Data transmission delay is usually caused by the nature of hardware, such as
resistance of network cables and the design of the switch circuit. Fig.101 shows the result
of an experiment for calculating delays between two computers. In that experiment,
computer A sent a set of data to computer B; immediately when B received the data it

sent back a set of data to A. The delay is obtained by dividing the time used in this

process by two. It seems to be fine, since the average delay is approximately 0.5x10™
second. But if the number of computer rises, the delay will become relatively large for

the whole system too.
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Another main factor that affects the performance of the distributed system is the
computation time on each individual computer. RHC is relatively time consuming when
compared with other control methods, as we have discussed before. In the. previous
studies, both zero [82] and non-zero [81] computation time were assumed and studied. In
this section, a novel method of dealing with computation time is introduced. That is,
during the implementations, the computation time will be treated as a delay, similar to the
data transmission delays. Fig.102 shows the computation time of the case where a
trajectory following problem was solved on a single computer. Please note that there is
no formation problem in this computation, and the following parameters are chosen:

N, =4
N, =50
3=0.1s
T=10s

(80)
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However, it should be noted that the computation time will vary if the above parameters

are changed and/or different optimization methods are employed.
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Time ()
Fig.102. Computation time on a single computer.
C. Time Synchronization

Instead of simply exchanging updated position data of the vehicles among the
computers in the system, local time of the leader computer will also be chosen as global
time and sent to the follower computers at fixed periods. When they receive the global
time, the followers will adjust their local tfme according to the difference between these
two times. Fig.103 shows a flowchart of this procedure.

The synchronization offset among the subsystems can be obtained as follows. Let

the data transmission time from one computer to another is &, and the calculation time
for each simulation step is ¢ . By recalling the sensor delay tg, and its upper bound T,

obtained in (41), we can have the following:
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c=C+0+Tg, (81)

where ¢ denotes the synchronization offset among the subsystems.

Start
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» N |

N
. Synchronized? 2
Yes
h 4
Update local time N Followers Update local time to
to global time RHC global time

Exchange
position with
each other

Fig.103. Flowchart of the distributed RHC simulation.

6.2. Controller Design

In this Chapter, the difficulty of controlling the fleet of vehicles is raised by
adding an obstacle on the path. Combining the leader cost index presented in (56) with a -
penalty term for inputs, the following is assumed as the cost index for the leader without

considering obstacle avoidance:

i (xl (t)’xD (t)’t)
= [ @)% @, +Jn O Jar+ o (14 1) =0 (14,

(82)
where C =1, , is a positive definite weighting matrix, and
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x](t)=[uc,] Vear T X1 Y 9c,1]T (83)
and
R=Q=diag([0 0 0 1 1 0] (84)

In addition, suppose that there is a stationary obstacle with a radius of R at

(Xo5¥o)- Let z, = [xo yO]T, we could obtain the cost function for obstacle avoidance

by adding a potential term as follows [80]:

t+T

17 (%, (1)) (\/"x, 7)-Cozol, - ) (85)

where C,,, P, and P are defined in the following:

3x2

C,=|La|, P=diag(0 0 0 1 1 0]),and P=1 (86)

o - o

Ix2

Therefore, by combining (82) and (85), the cost function for the leader is as

follows:

5, (%, (£) 3 (1).1) (J{lx, ()-Cozol, - )
I (I ®)-x I, +|lu1 @ Jar+lp (14 7) =50 (14,

@37)

Therefore, by comparing (57) to (56) and (87), the following is assumed for the

cost function of the followers:

t+T

Jf'(*i(t),xj(t.) IK(\/uxl (z+(i-1)0)- (1:+(1 o N - )Zdr
e (88)

t+T

+ ”[ (t+(i-1)o M

where ¢ is defined in (81) and K, C, and K are defined in the following:
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K=diag0 0 0 1 1 0]),C=1I,,,and K =1 (89)

6.3. Distributed Simulation

The following terms are set and remain unchanged in the following simulations
r,=0.1,z,=[.5 125]', R, =04 (90)
and all the weighting matrices are set to identity matrices and all the weighting scalars are
setto 1.
The distributed simulation results are compared with the experimental results on a

single computer in Fig.104 to Fig.107. There are two reference trajectories used in these

examples. The first one (IC#11) is

x,(t)= 25+0.1t ,forall 0<t<20s

2.75+0.1t
) 1))

Xp1s (20

x,(t)= ; ,forall t>20s
o) [XDU (20)+(t - 20)]
and the other one (IC#12) is defined as:
)= 2.5+1.5c0s(0.01t) corall 120 o

W= se1ssin(001) |0 0 o ©2)

It is apparent that both single computer case and distributed case show promising results

in trajectory following and obstacle avoidance.
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6.4. Virtual Reality System

The foresaid distributed RHC system is connected to a virtual reality system. The
new system is able to render the motion of the simulated hovercrafts. The output of this
virtual reality system is shown in Fig.108. Please be advised that this section only
contains some main ideas of the structure and mechanism of the system. See [69] for

detailed instructions.

Fig.108. Screenshot of the virtual reality system rendering.

6.4.1. Battlefield Scene

Instead of simply rendering the motion of the hovercrafts, a battlefield scene is
created. This scene brings more attractive features to the simulation, and makes the whole
simulation much straightforward.

In this scene, the foresaid three hovercrafts are rendered as a fleet of helicopters.
This is mainly due to the need of using land vehicles and buildings in the virtual world,

and it would be too unusual to have a fleet of hovercrafts moving on land. Also the
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structure of the hovercrafts are dynamically identical to helicopters in a two dimensional
environment.

While patrolling in the virtual world, the fleet identifies an enemy land vehicle.
Subsequently, they chase the enemy in their combat formation and avoid buildings on the
way. When the helicopters move in a certain range from the vehicle, the leader of the

fleet will launch a missile and shoot the enemy.

6.4.2. Classes Construction

In the field of virtual reality, Object Oriented Programming (OOP) is considered
the most effective and suitable programming tool, because of its special way of
organizing programs. Unlike the way of organizing data in structured programs, OOP is
organized around data, with the principle of “data controlling access to code™ [78].
Programs of this virtual reality rendering system are developed to fully take advantage of
benefits offered by OOP; as a result, objects can be conveniently added, removed and
modiﬁed, hence, considerably reducing maintenance costs. Fig.109 illustrates the class

structure of the virtual system.

Subsystem
| .
v v v v ' v
World Spring Rigid Body Fuselage Rotor Bounding

Volume

Ch;;sis W}‘lree] Mi;;ile
[ Chassis |

Fig.109. Inheritance of classes in the program.
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The class subsystem is the base class for others that inherit the subsystem either
directly or indirectly. The class subsystem only defines general vaniables, and all member
~ functions have a prefix virtual which is designed to be overridden by derived classes.
Although, the class world itself is a derived class of subsystem, it has functions similar to
a “container” class for other classes that are derived from subsystem. The class rigid body
includes all variables and functions for simulating a 6-DOF rigid body model in 3D
environment. State variables involved are translational and rotational velocity, as well as
quaternion variables due to their convenience. Note that rigid body is also the base class
for the class chassis, wheel and missile. The class chassis is a derived class from rigid
body, and it has its own variables which are added for modeling a vehicle dynamics. The
class chassis has not only features from the rigid body, but it also inherits the class
subsystem. In this way, multiple inheritances are achieved. The same condition can be

found in the class wheel and missile.

6.4.3. Framework of the System

This subsection describes the framework of the virtual system, and delivers the
idea about how the program generates a virtual environment. The flowchart in Fig.111
explains the major executions in the program, including both, tl;e major function calls
and communication.

In the program, the first step is Initialization which runs only once, since all
variaB]es defined here would not be changed after the simulation starts progressing. After

the system is successfully initialized, camera setting module defines view points and
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look-at points, and provides a set of perspectives for users who are allowed to freely
switch among them as the simulation progresses. The enemy vehicle could not only move
in a trajectory which is predefined by the user, but arbitrarily according to the data from
external inputs module. Next, all the states of major models (the ground vehicle and the
helicopters) are updated in the model dynamic module at each time step, and the Euler
algorithm is applied for updating states.

This system adopts the basic bounding volume method for collision detection. It
first automatically generates virtual spheres for each object, and those spheres should
cover the object’s entire shape. The final Optimized Mesh Rendering module loads all the
meshes that are needed in the system, and deﬁhes some default parameters, such as
program window size. Those meshes are not only assigned to visualize their
corresponding objects, but they are also processed by a series of optimization algorithms

provided by DirectX library.

6.5. Cockpit Simulator

The platform has 6 degree of freedom, 3 translational and 3 rotational motions. A
real vehicle seat is mounted on the platform, which is shown in Fig.110. The platform is
capable of capturing the full dynamics of the ground vehicle in the virtual reality system
as the simulation progresses.

The interface has two routines: one is for the real-time hardware, the other is for
graphics and data received from simulation. As the simulation is progressing, the two
routines are communicating by the Inter-Process communication via Shared Memory
provided by RTSS. By creating Shared Memory object, multiple processes can access the
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region of memory with either a handle or a virtual address [62]. In this application, the
Euler angles are stored in the shared memory for two routines to access. Thus, it is
possible for real-time routine to access memory, and then transforms those angles into

voltage signals as input to the hardware.

Fig.1 10. A driver seat mounted on the 6-DOF platform.
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7. Conclusions and Future Work

In this thesis, the decentralized receding horizon control method was investigated
through numerous simulations and experiments. New algorithms and methods for
trajectory following and formation control of multiple vehicle systems are evaluated and
compared. Accurate models are developed, experimentally identified, and tested. It was
found that the wheeled robot dynamics were best described by a combination of Coloumb
and viscous friction, whereas the hovercraft dynamics could be adequately described
using only a viscous friction model. Decentralized RHC is then applied to both types of
vehicles through simulations and experiments.

A virtual reality simulation system with a 6 DOF cockpit is combined with the
experiments to provide a higher level of capability to study more advanced DRHC
problems. The results from the simulations and experiments indicate that the
decentralized receding horizon control approach is well suited for meeting the
requirements of complicated multi-vehicle control problems with low trajectory and
formation errors. The combination with the virtual reality system brings more
possibilities and scenarios that can be investigated for both civil and military applications.

Together, these results provide a new and _useful framework for simulation and
experimental testing of new decentralized RHC algorithms and other types of nonlinear
control methods for multi-vehicle systems.

Future work includes generalizing the research for vehicles with senor, actuator
and communication faults. The future research will also investigate the formulation of
appropriate cost functions and predictive models for avoidance and interception of fast

moving objects. Furthermore, the experimental apparatus and dynamic models will be
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expanded to include more challenging types of vehicles such as model helicopters and
robotic fish systems, which move significantly faster with more complex three

dimensional dynamics.
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