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ABSTRACT 

Decentralized Receding Horizon Control with Application to Multiple Vehicle Systems 

Yan Zhao 

Receding horizon control (RHC) has been one of the most popular control 

approaches recently due to its capability to achieve optimal performance in the presence 

of saturation constraints. There have been numerous new research results for RHC (also 

referred to as model predictive control) in the process control community. However, due 

to the high computational cost, associated with the numerical optimization problem, RHC 

has not often been successfully implemented on multiple vehicle systems with fast 

dynamics. 

Decentralized receding horizon control (DRHC) is a new promising approach to 

reduce the computational burden of RHC. It allows the division of the computation 

problem into smaller parts which are solved using a group of computational nodes. This 

results in a substantial reduction in the computational time required for RHC. This thesis 

involves modeling of wheeled and hovercraft vehicles including actuator dynamics. It 

then applies the DRHC approach to the vehicles and implements the DRHC systems in 

virtual reality simulations and an experimental setup. Together, these results establish a 

new and useful framework for applying RHC to multiple vehicle problems. 
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1. Introduction 

The control of multiple vehicle systems has been a popular topic in both the 

scientific and engineering world in recent years. The most commonly researched aspects 

are the online strategies and controller design suitable for multiple vehicle systems in 

different environments. These strategies and controllers have to guarantee a desired 

cooperative performance among the members of the systems. Many fruitful theoretical 

algorithms are created and their implementations can be found in many journals and 

conferences. 

Among those methods, Receding Horizon Control, also known as Model 

Predictive Control (MPC), stands out due to its ability of yielding a superior tracking 

performance [9]. Since its introduction in the process control world, in the early eighties 

[1][2], it has attracted attention of many researchers, and has been successfully applied to 

industrial processes [3][5]. Thus, it is natural to advance a step further by applying RHC 

to the formation control of multi-agent systems. 

However, RHC is also well known for its high computational expenses of solving 

numerical optimization problems involved with it [37], which make it difficult to be 

implemented on fast and/or complex dynamical systems. In addition, for the problems 

involving some subsystems, like formation control of multi-vehicle systems, the 

commonly used method was in centralized fashion, in which one controller had full 

control of the system and calculated all the control inputs for each member in such 

system [47]. This method significantly increased the dimensionality of the optimization 

problem and the computation burden, as a result, which made it nearly impossible to be 

implemented in real-time systems. 
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Thanks to the advent of decentralized RHC, the formation control of multiple 

agent systems becomes possible because of the concept of solving problems among a 

group of solvers. Furthermore, due to the recent development in computer industry, faster 

and more reliable calculation capacities in personal computers and the mass production of 

multi-core CPU and high speed network, solving complicated large-scale numerical 

optimization problems does not anymore rely on extremely powerful computers, which 

makes the study of RHC easier and more affordable. 

1.1. Literature Review 

The literature review is presented in this subsection; however, it is divided into 

different subsections for readers' convenience. Firstly, application of single RHC is 

reviewed. After that, distributed computing and decentralized RHC are considered and 

some of the articles related to the current work are presented. 

1.1.1. Receding Horizon Control and its Implementation 

Receding Horizon Control is essentially a repeated on-line solution of a finite 

horizon open-loop optimal control problem [64]. Based on the current states, the 

controller predicts the states of the system over a period, called optimization horizon, and 

achieves the admissible inputs by solving the cost function associated with the actual 

control problem. However, only a fraction of the calculated inputs will be applied to the 

actual system during a period called execution horizon. Then the process is repeated. 
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This control scheme is capable of controlling linear or nonlinear systems, as long 

as the model of the system is accurate enough to depict the system's behaviour. In 

addition, it can handle the constraints of the system, such as input saturations and state 

constraints, by modifying the cost function associated with the control problem. 

Furthermore, changing the mission of the controller can also be done simply by 

modifying the cost function, and the modification can be done in an online fashion 

according to the mission and environment. 

On the other hand, there are some disadvantages of RHC that holds back the 

researchers from applying it to the fast dynamic systems. The first one is the foresaid 

computation cost. The high computational demand of RHC has created a challenging 

obstruction that makes the employment of RHC to fast dynamic systems, such as 

aerospace or aviation, extremely difficult. The other drawback is in theoretical field. It is 

difficult to deal with the stability and feasibility of RHC, and the stability of its usage in 

decentralized fashion is still left undone. However, these two disadvantages evoke the 

researchers to challenge the problems and improve the performance of RHC. 

Several researchers have already conducted intensive surveys on RHC, for 

example, in [4] the author provided a tutorial for its mathematical background; in [5] the 

authors not only concentrated on RHC theories, but delivered a comprehensive 

comparison among the most commonly used RHC structures; while in [6] the authors 

discussed more about the robustness of this control method. The authors in [37], similar 

to [4], provided a systematic explanation of RHC, and a different numerical optimization 

solver for nonlinear systems with perturbation. 
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Besides the above articles, the efforts of improving RHC usually can be divided 

into three categories: one is to improve the stability of the controller with respect to 

nonlinear systems with uncertainties, such as noise, model uncertainty and delays; 

another one is to reduce the computation time by using different optimization solvers; 

and the last one is to improve the performance of RHC in different applications. 

A. Stability 

In [6], a receding horizon controller for constrained linear time-invariant systems 

with additive uncertainty was introduced. This controller presented better performance in 

terms of robustness and the ability to handle cases with large computational complexity. 

In that method, the control algorithm took the optimization horizon as a tunable 

parameter, which allowed a tradeoff between the performance and the complexity. 

In [9], a robust receding horizon controller for linear systems with model 

uncertainty was proposed. This method was differed from the method in [6], since they 

sought the worst case scenario for the cost function and its upper bound. In addition, they 

extended their method into solving arbitrary reference tracking problems. The authors in 

[12] proposed a relatively simple method to determine the feedback control inputs for 

both linear and nonlinear systems. However, because of the computation complexity, this 

method is only good for slow nonlinear systems. 

To ensure the stability, some basic controllers were embedded into the RHC 

controller. For example, the authors in [8] brought linear quadratic controller into RHC 

for the cases of finite input constraint sets, and proved asymptotical stability. In [10] and 

[11], the authors provided a robust dual-mode receding horizon controller for a wide class 
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of nonlinear systems with state and control constrains and model errors. In these two 

papers, the control inputs were obtained from two algorithms; an optimal control 

algorithm and a P controller. The optimal algorithm was applied when the plant was 

stable, or the states were within a predefined region, while the other was applied when 

the plant was considered unstable, or the states were out of this region. 

In [42], the authors proposed a combination between adaptive control and 

receding horizon control method for nonlinear systems in order to stabilize the plant with 

control constraints. The adaptive controller was used to adjust the model in case of 

modeling errors and/or perturbations in the system. However, a different solution was 

presented in [38] to solve receding horizon control problems for nonlinear systems by 

finding a global Control Lyapunov Function. 

B. Optimization Solvers 

Different solvers were applied and tested to reduce the computation time 

associated with RHC or MPC problems. Usually, the goal is achieved by decreasing the 

number of iterations in an optimization step. 

A Newton's based optimization method was proposed in [20]. It is used for online 

optimization of nonlinear model predictive method. In this method, Newton-type iteration 

is performed per sampling interval, and it provides faster convergence and shorter 

computation time, which is helpful for controlling fast nonlinear systems. 

In [21], the authors proposed a novel method for RHC systems. This method is a 

computational approach to real-time trajectory generation. It uses spline interpolation and 

sequential quadratic programming (SQP). By upgrading this method with the Non-
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Monotone Line Search approaches in [25] and [26], it resulted in faster optimization 

solver, ideal for trajectory tracking problems. 

The computational expenses can be further reduced by using flat outputs, which 

can lower the dimension of an optimal control problem. Based on its definition, if the 

states and control inputs can be recovered by using a set of system outputs and/or 

derivative of the outputs, then we could call the system a flat system, and the set of 

outputs flat outputs [77]. In the rest of the thesis, all the optimal problems are solved by 

using the flat output method. 

C. Implementations of RHC to Systems with Fast Dynamics 

Because of the efforts mentioned briefly in the previous subsection, RHC has 

been successfully applied to some fast dynamic systems, such as an indoor vectored 

thrust flight stabilization experiment [53], simulation results for formation control of 

Unmanned Aerial Vehicles (UAV) [54], and roll control of delta wing vortex-coupled 

systems [73]. 

The use of RHC control method can also be found in other fields, such as, solving 

Markov Games [14] in the area of mathematics, controlling of production plants [39] in 

industrial engineering, controlling of supply chain [40] in logistics, and mine exploration 

planning [41] in oil industry. 
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1.1.2. Distributed Computing Systems 

Distributed computing system is a sub-branch of parallel computing systems, 

which means simultaneous executions of single and/or multiple computing instructions 

and data on multiple processors in order to obtain results faster. A processor refers to the 

CPU of a computer. In this thesis, each computer has one processor, and the computer is 

called a node in the distributed computing system. 

The most commonly accepted classification of parallel computing system was 

proposed by Flynn in [57] and Y. Censor and S. A. Zenois in [58]. There are four 

categories based on the interaction between instruction and data streams: 

• Single instruction stream, single data stream (SISD) 

• Single instruction steam, multiple data streams (SIMD) 

• Multiple instruction steams, single data streams (MISD) 

• Multiple instruction steams, multiple data streams (MIMD) 

In this definition, the instruction streams denote the programs that are running on 

the computer in the network, and data streams denote the data exchange among those 

computers. The distributed computing system falls into the MIMD category, which refers 

to the systems where different parts of a program run simultaneously on two or more 

computers that are communicating with each other through a network. Literally, any 

computer could join in this network and contribute to computation. An example of this 

application is the Screen Saver Science (SSS) [55]. Usually, the members in the network 

are assumed to have same specification, i.e. CPU, RAM, etc, in order to balance the 

computation burden among every node to achieve the most efficient computation [13]. 

An example of this structure is a computer cluster [56]. 
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In [33], an optimization method for data exchange scheme is proposed for parallel 

computers with distributed memory. In [30], the authors proposed an advanced dynamic 

programming method which is especially suitable for parallel computation, implemented 

on distributed memory computers, while [23] contains an example of parallel 

computation method providing facilities for dynamic formation on mobile robots. 

In [32] a parallel asynchronous particle swarm optimization algorithm is proposed 

to dynamically adjust the workload assigned to each processor in a PC cluster, while in 

[35], the authors used parallel computation to solve a similar problem. In [34], the 

authors introduced an application of parallel computation on robot drives. Similar to the 

current popular parallel algorithms, this method estimates states on other computation 

nodes. In [30] a method of dynamic programming is proposed for a general-purpose 

cluster. 

1.1.3. Decentralized RHC Formation Control 

Although, only centralized solutions can theoretically guarantee asymptotic 

stability in many multi-vehicle applications [51][66], the computation cost makes the 

centralized method impractical, if not impossible, to be applied to the control of multi-

agent systems [37]. On the other hand, the decentralized scheme has become popular due 

to lower computational burden associated with it [70][71]. It breaks the large-scale 

optimization problem into small pieces of individual subproblems for each member in the 

system. Therefore, splits the computation burden from one computer to several, and 

reduces the computation requirement. 
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It is a common assumption in most of the Decentralized RHC (DRHC) studies for 

multi-vehicle systems to assume that the subsystems are dynamically decoupled. 

However, they have coupling effects from their cooperative objective and interaction 

constraints. 

In DRHC, the states of the plants should be communicated within the 

computation nodes, or at least with the ones that have coupled objectives. Some 

researchers have suggested that each system should provide its most updated trajectory to 

the other systems, so that the solver on each node could compute according to the most 

up-to-date information. For example, in [48], [50], and [51], the authors proved the 

stability of distributed formation control problems with coupled cooperative cost 

functions on dynamically decoupled subsystems, by using synchronous updating and 

exchanging the most recent optimal control trajectories between the coupled subsystems. 

Others suggest a method that involves an estimator/predictor at each node to 

estimate the states of other nodes, and correct their estimation only at the beginning of 

optimizing iteration. And this method guarantees feasibility as long as the mismatch 

between the estimation and actual cost is within a certain range [60]. 

In [45], the authors investigate the stability of the DRHC controller by studying 

the local variables, costs and constraints of a subsystem and the ones who have direct 

interaction with it. Through an estimator, during every sampling time, the subsystem not 

only solves its own optimization problem, but calculates the states of its neighbors from 

the data received at that time. The authors propose in [46] an algorithm that is able to 

partition a distributed control system into manageable subsystems. Contrary to the other 

articles in this section, the authors in this paper do not concentrate on the control of a 
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group of subsystems and their autonomous control strategies, but provide a division 

method. It has some similarities to the parallel RHC implementations, but differs in the 

way that, in this paper, a p-step prediction algorithm is used to estimate the states on the 

other nodes to reduce the effect from the delay inherited within distributed systems. 

Similar strategies can be found in [29], [47], [49], and [52]. 

In the aspect of improving DRHC performance, the authors in [72] and [75] 

propose an interesting theory that the communication among the computation nodes plays 

an important role in the performance of controller as well. The main concept of their 

theory is to improve the behaviour of the group by manipulating the communication 

bandwidth in order to reduce the mismatch between the estimated and actual trajectory of 

a specific member [74] [76] [43] [44]. 

Another problem in single and distributed RHC systems is delays. In addition to 

the computation delays for a single RHC, the structure of the distributed RHC systems 

adds more delays to the problem, since these systems require time to solve the 

optimization problems and exchange information from one computing node to another. 

In [24] and [63], the authors proposed a new algorithm on real-time RHC 

computation in order to reduce the instability caused by the computation delay inherited 

in the RHC formulations. The solver only needs to solve the premature cost according to 

the introduced criterion, thus the overall computation time is reduced. 

In [27], the authors presented some studies on time-delay systems. This made an 

overview on different types of time-delay systems, and proposed some modifications. In 

[36] and [63], the authors propose a RHC method for constrained linear systems with 

uncertain delays by using a novel artificial Lyapunov function. 
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Even though, the focus of this thesis is discussion and implementation of 

distributed receding horizon control, mentioning some backgrounds and implementations 

of the parallel RHC, enables the reader to compare and distinguish the differences of 

these two approaches. 

The authors in [15] propose a method for evaluating the optimal-control problems 

by using iterative method of dynamic programming. In this paper, the authors 

decomposed the plant model, and assigned each node a decomposed part. By solving the 

cost function of each local optimal problem, the controller integrates the solution of all 

decomposed parts, and finds an optimal solution to the plant. 

In [16], the authors provide a solution to large-scale convex optimal control 

problems in a different aspect from [15]. Instead of model decomposition, their method is 

based on time decomposition. The optimal problem is dispatched to several computing 

nodes. However, this method could not be easily implemented with the presence of time 

delay in the environment of network. 

The authors, in [17], use similar decomposition method as in [15], a hierarchical 

decomposition method. This method focuses on the problem structure, decomposes the 

large problem into small subproblems. 

In [19], the author proposes a hardware implementable parallel computing 

algorithm for general minimum-time control, by using time decomposition technique. In 

addition, this method is applied on hardware setup, based on Very-large-scale integration 

VLSI) array processor technology. In [18], this method is extended to solve receding 

horizon control for constrained nonlinear systems on the basis of VLSI technology. 
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Authors, in [28], propose an on-line task assignment solver for multi-vehicle 

distributed control. The solver is based on a trajectory primitive decomposition approach, 

which could be categorized as time decomposition approach. Before presenting their 

method, the authors also compare several different methods and conduct several 

simulations on Cornell's RoboFlag environment. The author evaluates in [31] not only 

several different programming procedures and algorithms for MPC on real-time 

multiprocessing computing, but the task structures/computation model as well, such as: 

linear array, tree, and mesh. 

1.2. Thesis Objectives and Contributions 

In this thesis, the decentralized receding horizon control method is investigated 

through numerous simulations and experiments. New algorithms and methods for 

trajectory following and formation control of multiple vehicle systems are evaluated and 

compared. Accurate models of both wheeled robots and hovercraft vehicles are 

developed, experimentally identified, and tested. Decentralized RHC is then applied to 

both types of vehicles through simulations and experiments. A virtual reality simulation 

system with a 6 DOF cockpit is combined with the experiments to provide a higher level 

of capability to study more advanced DRHC problems. Together, these results provide a 

new and useful framework for simulation and experimental testing of new decentralized 

RHC algorithms and other types of nonlinear control methods for multi-vehicle systems. 

The remaining parts of this thesis are organized as follows. Chapter 2 reviews the 

receding horizon control method and decentralized RHC in detail. Chapter 3 and Chapter 

4 develop and experimentally test the models for the wheeled and hovercraft vehicles, 
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respectively. Chapter 5 provides a set of simulations for decentralized RHC of wheeled 

vehicles and also provides experimental testing. Chapter 6 presents simulations for 

DRHC of hovercraft vehicles and then develops an upgrade to the system by adding a 

virtual reality system with a 6 DOF cockpit. Conclusions and future work are discussed 

in Chapter 7. 
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2. Overview of RHC and Decentralized RHC 

Basic theoretical background of RHC and DRHC are presented in this chapter. 

Since RHC can be categorized as an optimal control problem, the concept of optimal 

control will be firstly discussed. Then the concept of flat outputs is explained, followed 

by the review of RHC and DRHC. Lastly, an example of angle regulator of two 

hovercrafts is presented as a simple tutorial of how to form cost function for RHC and 

DRHC methods. 

2.1. Optimal Control 

Suppose to have a system with state equation: 

x(t) = f(x(t),u(t),t), (1) 

where x(t) e W is the vector of state variables of the system for Vt > 0 and u(t) e Mm 

is the vector of input variables for Vt > 0, and they both satisfy the following constraints 

u( t )eU 

x(t)eX, ( 2 ) 

where U denotes the allowable set of inputs, X is a set of admissible states, and 

f: R" x Km x R -+ Kn. It also has an initial condition 

x(o) = x0. (3) 

An optimal control problem is to find a control input u*(t), so that minimizes the 

following cost function of the system 
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J(x(4u(t),t f)= {q(x(T),u(x),T)dT + V(x(t f),t f). (4) 
0 

where tf denotes the time when the optimization process finishes, q is usually a 

quadratic cost function, which is responsible for the performance of the system, and V is 

called terminal cost, which is important to ensure the stability of the controller [83]. 

A standard method is to bring in a vector of co-state variables 3i(t)eM°, and 

generate the Hamiltonian of the system as following [79]: 

H(x(t),u(t^(t),t) = q(x(t),u(t),t) + ?,Tf(x(t),u(t),t). (5) 

The optimal input can be obtained by solving the following equations: 

x(t) = f(x(t),u(t),t) 

, r»Y. /a^T (6) 

where the input can be obtained from 

5q 

ax, 

du \dx) 

T / „ \ T 

| J -
subject to 

^(0)=xo 

'avV (8) 

^-Kfl, 
The above problem is also called Two Point Boundary value Problem (TPBVP), 

and there have been many articles about solving this kind of problems, the interested 

readers are referred to [79] [85] for detailed information. 
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2.2. Flat Outputs 

The flat outputs help increase the speed of solving the optimization problem, 

associated with some optimal control problems by reducing the dimension of the problem. 

The definition of flat outputs is as follows [77]: for a dynamic system, if there exists 

output z , where 

z = g(x,u) (9) 

a n d x e l " is the state vector, ueK1" is the input vector, and g :R m xR n , such that the 

states and inputs can be recovered by a function h() using z and/or its derivatives as 

below: 

(x,u) = h(z ,z , - ,z ( r ) ) (10) 

where z*' denotes the Ith time derivative of z . Then, the system is called a flat system. 

Therefore, in a flat system, the states and inputs of the system can be recovered by finite 

number of flat outputs and their derivatives, but no integration by the flat outputs [77]. 

2.3. Receding Horizon Control 

Receding Horizon Control is essentially a repeated on-line solution of a finite 

horizon open-loop optimal control problem [64]. Its scheme is shown in Fig.l. Based on 

the states at time t s , the controller predicts the states of the system over optimization 

horizon T, and achieves the admissible inputs u* by solving the cost function associated 

with the actual control problem. Only the first part of the inputs will be applied to the 

actual system during execution horizon 8 . Then the process is repeated. The process is 
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illustrated in Fig.l, where the thick curve indicates the actual state of the system, and the 

light curves denote the computed or predicted state of the system by the controller, based 

on the model of the system. 

According to the figure, the above procedure can be further explained as follows: 

at time t , the controller samples the state of the system (point 1), and based on the 

sampled state the controller predicts the future state of the system over the optimization 

horizon T (line a), and based on the prediction it obtains the optimal input for the system. 

But only the first part of the input will be applied to the system during the execution 

horizon 8, and the rest will be discarded. Then at time t + 8, the new state of the system 

is sampled and used to predict next trajectory (line b) for optimization. Then the process 

is repeated until the system meets the goal. 

According to the above explanation, the procedure of an RHC controller can be 

summarized as three steps: 

• Form the problem 

• Solve the problem 

• Apply the inputs 

state fCi) 

time 

Fig.l. Illustration of RHC trajectory generation [83] 
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2.3.1. Form the Problem 

The ease of using RHC for a control problem is that the objective of a mission can 

be explicitly and solely formed in a cost function. After that, the controller will be able to 

drive the system to the desired states, provided that the model of the system is accurate 

enough and the sensors are working properly. Furthermore, the cost function can be 

changed during the control process if there is any modification in the objective. Thus, the 

purpose of this section is to illustrate how to generate a cost function according to the 

objective of the control mission. 

Suppose we have a system with state equation: 

x(t) = f(x(t),u(t),t), x(0) = 0 (11) 

where as stated earlier, x(t) e K" is the vector of state variables of the system for Vt > 0 

and u(t) e Rm is the vector of input variables for Vt > 0, and they satisfy the constraints 

in (2), and f: Rn x Rra x R-> ! \ Also define X c l " the set of admissible states and 

U c; Rm the set of admissible inputs of the system respectively: 

x ( t ) e X , u ( t ) e U for t > 0 (12) 

In addition, consider the assumptions A1-A3 in [65] are also satisfied, where: 

• f is twice differentiable; 

• U is compact and convex; 

• System (11) has a unique solution at any given initial condition. 

The first assumption is provided to ensure continuity of the cost function. The second 

assumption ensures the optimization region admits a well defined locally optimal solution. 
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Then the cost function for the system (11) over prediction horizon T is defined as 

follows [79]: 

j(x(t),„(.),T)= '+ | |x( t ;x( t) | ; +||u(tl2
R)dx + ||x(t + T;x(t)|2p (13) 

t 

where P e Knxn, Q e Rnxn, and R € Mraxm are positive definite weighting matrices, and 

x(x;x(t)) denotes the states of the system at time T resulted from the input u(-) when the 

initial condition is x(t); T is a finite optimization horizon, the weighted norms in (13) 

are defined as ||x||p = xTPx. Therefore, the resulted j(x(t),u(),T) is a scalar variable 

denoting the cost of the system. 

Ideally, the choice of the terminal cost is ||x(oo;x(t))(|p such that the mismatch 

between the optimal finite cost and the infinite cost is zero; however, this situation will 

never happen and the nature of the problem is to reduce the mismatch [83]. 

2.3.2. Solve the Problem 

The optimization problem is to find an input u , so that the following equation 

holds: 

J*(x(t),T) = ininj(x(t) ,u() ,T) ( 1 4 ) 

subject to 

x(T) = f(x(x),u(x),Ty 

u(x)eU 

x(x;x(t))eX 

where J* (x(t),T) denotes the optimal cost based on the optimal input. 
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The approach to solve the open-loop optimal control problem in this thesis is 

based on the method introduced in [21]. 

Firstly, check whether the system is a flat system according to the definition 

described in section 2.2, and if the system satisfies the definition, some of the system 

outputs will be selected as the flat outputs in the hope of lowering the dimension of the 

optimal problem; but this step can be skipped if the system is not, however, the time 

consumed to solve the problem is expected to be longer. 

Then an interpolation method is used to characterize and simplify the 

optimization problem. The cubic spline interpolation method is employed in this thesis 

because it is an effective approach that is more simple and computationally inexpensive 

compared to other methods such as B-splines. The degree of each spline is defined by 

setting the control points. This results in a continuous curve and is divided into discrete 

pieces by adding points on the curve. These points are called interpolation points, which 

should be selected close enough to be able to present the behaviour of the curve. Then the 

optimization problem is modified to find a set of inputs that minimizes the cost function 

of the system at the interpolation points. 

The scheme of the above interpolation method is shown in Fig.2, where N ; 

denotes the total number of interpolation points over an optimization horizon T, and N c 

denotes the total number of control points. Using more control points results in more 

optimization parameters and thus increases the computation time. In addition, more 

interpolation points result in a smoother cure and increase computation time, as well. 

Several interpolation methods could be used in this section to parameterize the flat 

outputs (if they exist) selected in the last section, such as linear interpolation method and 
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B-Spline method. However, in this thesis, the cubic spline method is chosen, as stated 

earlier. The interested readers are referred to [86] for detailed explanation of how this 

method works. 

Lastly, the resulted optimization problem can be solved by the numerical 

optimization solvers, such as Sequential Quadratic Programming (SQP) [21], Powell's 

Method [86], and other optimization packages such as SNOPT [87]. 

Estimated States 
Interpolation Points 
Control Points X 

JT 
"%. 

I 

m 
X- •X 

T , T 
t + — k t + — m 

N; R 

t s + T 

Fig.2. Interpolation scheme. 

2.3.3. Apply the Input 

Suppose the solution to (14) is obtained as 

u*(x) = u*(T;x(t)), (16) 

then during a period of time t e (t,t + 8], the optimal input is applied to the plant, where 

5 denotes execution horizon, and 0 < x < T. After applying the control to the system, the 
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resulted states of the system becomes the initial condition for the optimization problem of 

the next step. 

Moreover, the choice of the values of optimization and execution horizon is vital 

to the performance of the controller. Usually, for the stability of the system, the execution 

horizon is chosen much smaller comparing to the optimization horizon [83], because in 

this way, the mismatch between the predicted and actual trajectory in Fig.l is small thus 

the performance can be guaranteed. 

However, the above concept has a crucial constraint in the practical 

implementation. Before we discuss that constraint, we need to define some parameters in 

the first place [84]: 

• Step start time: t s . This is the time when an optimization step starts. This is also 

the time when the controller starts sampling the state of the system. Since the time 

used in sampling is considerably less than the following time periods, we assume 

that the time used to sample is zero, and the controller obtains the states at time ts. 

• Computation start time: tc,. This is the time when the optimization procedure 

starts (for one step). 

• Computation finish time: tc2. This is the time when the optimization procedure 

finishes (for one step). 

• Computation time: tc = tc2 — tcl . This is the time period for how long the 

optimization step takes. 

• Actuation time:ta. This is the time when the calculated input is applied to the 

actuator. This input could be either a newly computed input or an input that has 

been obtained in advance. 
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• Actuation latency: la This is the delay generated in the actuation of the system 

after starting optimization step or sampling the states. 

An illustration of the above parameters is shown in Fig.3. 

4 

* 

8 

la 

to • . 

• 

• 
*c2 t . t , .+8 

Fig.3. RHC time parameters. 

Typically in theoretical discussions, the computation time tc is assumed to be 

zero, but in the implementations in the real world, tc is non-negligible, and rather plays 

an important role in the application. That is because the existence of the non-zero 

computation time prevent us from choosing small execution horizon 5 , that is, 8 must 

be more or equal to the computation time t c . Because of this constraint, the controller is 

unable to apply the input as soon as the current state of the system is sampled, and must 

wait until the input is calculated, which is where the actuation latency la comes from. 

Two methods are created to tackle this problem: Retarded Actuation Method and On-the-

Fly Computation method. 

The Retarded Actuation method, as its name indicates, solves the optimization 

problem for the next step in advance and applies the input at the beginning of that step 

[53]. This method gives the controller sufficient time to finish the calculation. Its scheme 
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is shown in Fig.4. The solid lines in the diagram denote the input is applied to the system, 

the dashed lines denote the input is generated but not applied, and [ts,ts + 8] denotes the 

time interval from ts to ts + 8, so u* [ts, ts + 8] is the optimal input generated for the time 

interval [ts,ts +5] . 

There are two methods to generate the input. In order to better explain the 

difference between these two methods, we will take how the optimal input signal for 

interval [ts + 8,ts + 28] is obtained as an example. 

In the first method, the process takes the states of the system at time t s , x(ts), as 

an initial condition. Based on this initial condition, the controller generated the input for 

[ts + 0,ts + 8] and [ts + S,ts + 28], and only the input for the interval [ts + 8,ts + 28] will 

be applied to the system at time [ts +8,t s +28]; in the second method, instead of using 

x(t), the controller firstly predicts the system states x(ts +8), then uses these states as an 

initial condition, and applies the corresponding input for the interval | t j + 0,ts + 8 | , 

where ts = t s + 8 . 

For Retarded Actuation method, the following equations should be satisfied: 

t. = tcl 

t c 2 ^ t s + 8 

t a = t s + S (17) 

The other method is called On-the-Fly Computation method. In this method, there 

is no prediction involved, and the actuation latency is smaller. Let us take the interval 

[ts + 0,ts + 8] for an example. 
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The controller will start the optimization process at time tswhen the states are 

sampled, and apply the inputs as soon as they are available. However, because of the 

existence of tc in each step, there will be a time interval [ts,ts + t c ] , in which no optimal 

input is available (The input for the last step has finished, and the input for this step is not 

yet available). To solve this problem, instead of applying the last step input till t s , the 

system continues using the input calculated for the last step for the interval [ts,ts + t c ] , 

until the new optimal input is available. When the new input is available, the controller 

will switch to apply the new input to the system at t s+tc . The scheme of this method is 

shown in Fig.5. 

Unlike the Retarded Actuation method, the On-the-Fly Computation method does 

not involve a variation that requires predicting the states of the system [ts,ts + t c ] and 

uses that states as the initial condition. Because the computation time tc of the next step 

is unknown until the optimization is finished and the new input is obtained. 

For On-the-Fly Computation method, the following equations should be satisfied: 

t a < t s + 5 (18) 

The whole process of a complete RHC implementation is shown in the flowchart 

in Fig.6. And the RHC computations in this thesis heavily rely on Receding Horizon 

Control Object-Oriented Library (RHCOOL) in [7]. 
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Fig.4. Control signal for retarded actuation method. 

time 
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Fig.5. Control signal for on-the-fly computation method. 

time 
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Decide the cost function 

i> 

Obtain the states of the 
system 

i r 

Solve the optimization 
problem in (13) and (14) 

i ' 

Apply the solution 
inputs to the system 

Form the problem 

«—| 

Solve the problem 

Apply the input 

Fig.6. RHC flowchart. 

2.4. Decentralized Receding Horizon Control 

Suppose there is a set A with Nv vehicles, which forms a formation, then for the 

ilh vehicle in the system, there is a set A; containing the neighbours of the Ith vehicle, 

thus named the set of neighbours of Ith vehicle. The definition of neighbour can be found 

in [60] and [74]. For example, in the following six vehicle system (Fig.7), vehicle No.l 

has No. 2 and No. 3 as its neighbours, while No. 3 has No. 2, No. 5, No. 6, and No. 1 as 

its neighbours. 

Fig.7. Six-vehicle system. 
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There are two popular approaches in current decentralized RHC formation control 

area [43]. In the first approach, the agent will only estimate its own states, but estimated 

trajectory of each agent will be exchanged among the agents [61]. The second involves 

using the most available states of the agent's neighbour, and calculating the optimal cost 

of that agent by estimating the states of both its neighbours and itself [60]. 

A. The First Approach 

Suppose the following state equation is of the J4 vehicle: 

i i(t)=f,(x1(t),u i(t),t) (19) 

where xi (t) e ]Rni is the vector of state variables of the fh system and u . (t) e W"1 is the 

vector of the input variables of the ith system for V7 > 0. Also define X; c: R"' the set of 

admissible states and Uf e Kmi the set of admissible inputs of the system respectively: 

xi (t) e X;, u, (t) e U; for / > 0 (20) 

Also let x(t) e W and u(t) e Mm be the vectors that store the states and inputs of 

the whole system at time t , where n = ^ n ; and m = V m ; , and the state equation for 

the whole system can be obtained as: 

x(t) = f(x(tj,u(t),t). (21) 

Therefore, the cost function for the whole system is given as: 

J(x(t),u(t),t) = f;j1(x1(t),u,(t),x1(t),u1(t)) (22) 
!=} 
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where Js denotes the cost function for the i vehicle. This cost depends on the behaviour 

of the i' vehicle, as well as the interactive relation to its neighbours' states and inputs, 

which are presented by £j(t) and U;(t). 

Furthermore, J; in (22) can be achieved by: 

Ji{xi(«).»r(»).3lj(t).»j(«)) 

= '0 (*, (').«; (<))+ Z Ju(«,(t).«, « .» ,« , - ,« ) (23) 

i,jeA 

where J;(-) denotes the cost function for the ih vehicle. The admissible input u*j(t) is 

obtained by solving 

Ju* (xu ( 0 ' x u C1)'1) = . J J £ 0
 J* (xu (O^u ( ) ' x ,o ( t ) ' u . j ()>T) (24) 

where the first subscript of x and u indicates the state and input belong to the /' vehicle, 

the second one indicates the location where the state or input is calculated or estimated. 

Let us take x2](t) for an example, x2,(t) stands for the states of the 2n vehicle 

estimated on the Ist vehicle. The input u; i (•) will be applied to the i vehicle at each 

execution horizon. Afterwards, the actual states and inputs of each agent will be 

exchanged among the whole system for the next optimization step. 

The problem certainly can be solved by using the centralized fashion [60]. In 

order to solve the optimization problem associated with the ith vehicle in a decentralized 

way, the /"** vehicle at least needs to know its current states and its neighbours' current 

states. Based on the states, it is possible to predict its optimal inputs and its neighbours' 

optimal inputs. Its own inputs will be applied to the system, while the inputs to its 

neighbours', however, will only be used to predict the neighbours' trajectories, and then 

discarded. So the procedure of DRHC is shown in Fig.8. 
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Each system solves its own 
optimization problem from its 
current states and estimating its 

neighbours' states 

i ' 

Each system implements its own 
inputs 

v 

Exchange current states with its 
neighbours 

* - . 

Fig.8. DRHC flowchart, first approach. 

It is commonly known that the stability of DRHC is not ensured, because the 

prediction of the / * system on i,h vehicle is independent from the actual j ' h vehicle's 

behaviour, and the mismatch between these two values usually causes problems. 

The authors in [60] proposed a solution stating that if the mismatch is within a 

range, then the system is asymptotically stable. Suppose mismatch between the i'h system 

and i'h system's prediction on/A system is given as: 

u = J ( 2 I X JJ( T ) - X J . - ( T 1Q + k J ( T ) - u i , i ( T f R Jdx (25) 

then the mismatch for the whole system, s , is obtained as: 

6 t+T 

j=lpeAj j=UeA J t
 v 

If the following relation holds, then the system is asymptotically stable: 

B . ^ M t f +|x j(tf +|[xi(t)-Xj(tF +|k,(tf + |k(tf 
'•J II • v - H I Q II J v ^ I I Q II ' v ' J v ' I I Q II '•' v - I I R II J-1 v ^ I I R 

(27) 

where Q and R are positive definite matrices if p = 2 , and Q and R are full rank 

matrices if p = 1,QO . The proof of this theory can be found in [60]. 
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This approach delivers outstanding performance in formation control, but will add 

some computation burden to each node since they have to do extra calculation to achieve 

the estimation of the states of their neighbours. Therefore, if being applied into the real 

world, the retarded actuation method is recommended, since that method gives the 

controller sufficient time to predict the states and trajectory of the other vehicles. 

B. The Second Approach 

In this approach, let us still assume (19) is the state equation for the ith vehicle, 

which satisfies the constraints in (20). The resulted cost function, on the other hand, will 

be written in the following form: 

Nv 

Ji(x,-(t),ui(t),xj(t))= £ ^ ( t ) , ! ! ^ ) , ^ ) ) (28) 
•=l ,jeAj 

where Jj (•) denotes the overall cost function for the Ith vehicle. Please note that there is 

no other extra subscript associated with the states and inputs except for the one that 

indicates the number of the agent. The cost function generated by i andy" vehicle can be 

obtained as [61]: 

t+T 2 

M*. W^ M>*J W)= J h M-*J W)L+h M£+lh Mf. * • &) 
t 

where J; =(•) denotes the cost function caused by the formation between /th and 7th vehicle. 

The admissible inputs of the ih agent u*(t) is obtained by the following: 

J.*(x1(t),x j(t)) = minJ1(x1(t),u1(t),xJ(t)) ( 3 0 ) 
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and the input will be applied to the vehicle at each execution horizon. Then the actual 

states and inputs of each agent will be exchanged among the whole system for the next 

optimization step. The flowchart of this approach is shown in Fig.9. 

Each system solve its own 

optimization problem from its 
current states and other's trajectory 

predicted by its neighbours 

I 
Each system implements its own 

inputs 

I 
Exchange estimated states trajectory 

with its neighbours 

Fig.9. DRHC flowchart, second approach. 

This method is not as computationally expensive as the first approach since the 

nodes do not estimate any states other than their own. It is also obvious that, in most 

cases, the ith agent is unable to obtain its input at timet, as the states of its neighbour/* 

agent may not be available at that time. Thus when being used in the real practice, the 

On-the-Fly Computation method is recommended. In the following chapters of this thesis, 

the second approach will be considered, and a method to cancel the effect of delays will 

be introduced. 

2.5. Cooperative Control Example 

In this section, an example of completing a DRHC control of two hovercrafts is 

explained. The example basically involves an angle regulation and tracking of both 

vehicles. A reference angle Gr is set for hovercraft 1 (HI), so that HI will point to that 
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direction. Besides, hovercraft 2 (H2) will follow Hi 's step and point to that direction as 

well (Fig. 10). 

XG 

Fig. 10. Angular regulation example of DRHC 

The dynamic models for both vehicles' angle is shown below 

r c = a i F T , i - V c , i 

rc,2 = a 2 ^ T , 2 ~ "2 rc,2 

®c,2 = fc,2 

(31) 

where rc, and rc2 are the angular velocity of HI and H2, 0 c l and 0 c 2 are angle of HI 

and H2 respectively, a,, a2 , b , , and b2 are the parameters associated with hovercrafts 

rotation, and FT, and FT2 denote the input applied to the motor of HI and H2 

respectively. 

Then the cost function for HI can be formed as: 
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t+T 

Jc , ,M)>T)= J t a t o - e ^ d r + taft + T M j (32) 
t 

and the cost function H2 can be formed as: 

t+T 

= I(0c,.W-0c,2W-eu)2dx+(eCJ(t+T)-eC)2(t)-eu)2 (33) 

where 0,2 denote the desired angle between HI and H2. 0,2 can be set as any number, 

and in this case, it is set to be zero. After these two definitions, the DRHC controller is 

able to follow the procedure discussed in the previous sections and finish the mission. It 

should be noted that the computation time is assumed to be zero in this example. 

In order to simplify the optimization process, the flat outputs method discussed in 

section 2.2 can be used here. From (31), the flat outputs of the system can be selected as: 

z,=eC J 

z - 0 ( 3 4 ) 

Z2 - °c,2 

where z, and z2 denote the flat output of HI and H2, respectively. Using the selected 

flat outputs, the remaining states and inputs of the system can be obtained as: 

rc> = 

rc,2 = 

rT,l 

F = 
XT,2 

Zl 

z2 

Z l 

_ * 2 

+ t>,Z1 

*1 

+ b2z2 

a2 

(35) 

The following parameters are selected for the RHC controller: 
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N c = 3 

N,=50 

8 = 0.1 s 

T = 1.0s 

and the initial conditions for HI and H2 are: 

rci(°) = 0 

rc2(0) = 0 

0C, (0) = 0.5 rad 

0c2(O) = l.Orad 

and the reference angle is set to: 

(36) 

(37) 

0 = - r a d 
1 2 

(38) 

Thereby, the problem is well set up and the simulation result of the above 

problem is shown in Fig.l 1. 

O 0.5 1 1.5 2 2.5 3 
Hme(s) 

Fig.l 1. Simulation result of the angle regulation and tracking example 
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3. Modeling and Identification of Wheeled Vehicles 

A successful receding horizon control implementation is based on the prediction 

of the system's states over the optimization horizon, and reducing the mismatch between 

the predicted states and the actual states (Fig.l) is crucial. A good prediction is primarily 

based on the accuracy of the system model. Thus, in the following two chapters, the 

modeling and identification of the vehicles is discussed in detail. 

3.1. Wheeled Vehicle Model 

The kinematic model of the wheeled vehicle and the dynamic model of the 

actuators are presented in the following subsections. 

3.1.1. Kinematic Model of the Wheeled Vehicle 

The configuration of the wheeled vehicle is illustrated in Fig.12 to Fig.15. 

Although both dynamic models and kinematic models can be used for wheeled vehicles, 

the kinematic model is adopted. Since the vehicle does not move fast and the wheels do 

not slip much the kinematic model is able to accurately describe the motion of the system. 

Also the kinematic model is more computationally simple which is helpful when solving 

the RHC optimization problem. Furthermore, kinematic models have been successfully 

used in similar experiments [67]. 

The kinematic equations for each vehicle expressed in the body attached frame 

(XB,YB) are given as follows [67] (see Fig. 16): 
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* c = ^ w m . R R w h e d + ° W R wbee] ) C 0 S e
c 

Ye = - ( © W m J l R w h e e l + ° W R wheel ) s i n ^ c 

" V03 wn ,R wheel ^ wm 0- wheel / 

(39) 

e = c 21 

where Rwhee) is the radius of each wheel, (owmR and ©„„,,_ denotes the angular velocity 

of the right and left wheel respectively, and lw denotes the distance between the two 

wheels, (x c ,y c) denote the coordinate of the vehicle in the global frame, and 0C denotes 

the angle between the global and the body attached frame. 

-. ' ->' T&*$r& ** ^ " 

Fig. 12. The wheeled vehicle side view Fig. 13. The wheeled vehicle top view 

• M 

Fig. 14. The wheeled vehicle front view Fig. 15. The wheeled vehicle perspective view 
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XG 

Fig. 16. The wheeled vehicle's schematic model 

3.1.2. Dynamic Model of the Vehicle Actuators 

The 3 degree of freedom motion of a wheeled vehicle is controlled by two servo 

motors, which are controlled remotely by a computer via wireless FM radio 

communication links. 

The dynamic equation of each motor is given by the following: 

Jwm^wm = K l v ™ U ™ - ' H w r n © ™ - K b ™ « > » "^wm S g l ^ C D ^ ) (40) 

where cb^ and (ovm represent the angular acceleration and angular velocity of the wheel 

respectively, U ^ represents the voltage applied on the motor, J ^ represents moment 

of inertia of the motor, Klwm and n.^ are constant parameters associated with the motor, 

Kbwm denotes the linear friction coefficient of the motor, and u ^ denotes the Coulomb 

friction coefficient of the motor. 
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3.1.3. Sensor Dynamics and Noises 

All vehicles are placed and controlled under a 9-camera overhead vision system 

(Fig. 17). The vision system is able to track the color targets placed on the vehicles (as 

shown in Fig. 13 and Fig. 19) at a sampling rate of 25Hz. Note that the angular velocity 

and acceleration terms are obtained by using center finite-difference approximations of 

the values of the targets. 

However, the vision system, like most of the other tracking systems, has a sensor 

delay, which alters the performance of controller. The delay is mainly caused by the 

nature of the vision system, which will be fully explained in Chapter 5. In this section, 

only the pattern of the sensor delays (41) will be discussed. 

In the experimental tests performed to investigate the delay, a LED flash light 

bulb was placed under the vision system. It flashed on and off at a constant frequency. A 

timing computer recorded the time when the bulb was turned on, and the vision system 

sent a signal back to the timing computer immediately after capturing the light. The 

timing computer recorded the time at the moment of receiving the signal. Thus, the 

delays were obtained by comparing the two times on the timing computer. The result is 

shown in Fig. 18. Although in Fig. 18, only a small portion of number of samples are 

shown, the figure is adequate enough to show the pattern of the delay, since throughout 

the experiment, the delay has never exceeded the maximum value in Fig. 18. Therefore, 

the upper bound of the delay can be found as: 

tS D<0.06s = TSD (41) 

where tSD denotes the sensor delay and TSD denotes the upper bound of the sensor delay. 

This information will be used in the DRHC implementation in Chapter 6. 
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Fig. 17. Camera Array 
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Sensor noise can be observed in the sensor related diagrams in the coming 

sections. This noise mainly comes from the following three sources: 

• incorrect time measurement for the vision sample, because we are unable to 

control the sampling time, but only put the frequency to its highest possible level; 

• noise from the cameras themselves causes noise in position data; 
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• finite difference error for derivative calculations, which is caused by the above 

two factors combined. 

Although filters, such as low-pass filter, can be used to handle the noise, no filter 

was used in any of our experiments. This is mainly because in the process of parameter 

identification, the curve fit method (to be discussed in the next section) averages the data 

to some extent; while in feedback control, the phase lag from low-pass filters caused the 

system to become less stable. 

3.1.4. State Equations of the Wheeled Vehicles 

The state equations of the wheeled vehicle used in this thesis are obtained in (42) 

by combining the equations in the first two sections. Please note that the subscripts R and 

L indicate the right and left motor on the vehicles respectively. 

*c = ^ ( " W ^ e e ! +<*WRwhcel)C0Sec 

Yc = 2(Wwn.,RRwheel + °WR**eeI 1 ^ ^c 

"c = T j V f f ) wm,R R wheel ~ ^ win , L R wheel / ( 4 2 ) 
wm 

( K l w m , L U w n i , L - 11W I n ;L
G )wm,L ~ K b v ™ , L f f l T O , L ~ MwmJ. S ^ ' ^ w m . L ) ) °W wm,L 

R —
 T \ ^ - l w m , R U w m , R T lwn),R { 0wm,R ^bwm,R C O wm,R M'wm.R S 8 n V ( 0 w m , R )) ^wm,i\. -r 

*'wni,R 

3.2. Parameter Identification 

This subsection will introduce the procedure of how parameters in (42) are 

identified in details. 
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3.2.1. Parameter Identifications of the Actuators 

A cross bar with two coloured targets attached is installed on the wheel (Fig. 19), 

to measure the angular velocity and angular acceleration of the motor. The center of the 

bar was precisely placed on the center of the wheel to ensure the targets were mounted 

with same distance from the center. Before estimation, the motors were balanced by a 

leveller to ensure the accuracy of the measured data. 

Fig. 19. Cross bar assembly 

For the sake of minimizing the number of parameters to be identified, the 

equation in (40) is rearranged as follow: 

< „ , =a,Uwll - a j c o ^ -a3sgn((0wm) (43) 

where a, = ^ ^ , a2 = T lw-"+Kb^" ,33 = ^™ Mv 

J J J 
wm wm wm 

In order to solve (43), it is rearranged into the following equation: 
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[U™ -ro,™ -sgn(cowm)]- =kl (44) 

The parameters in (44) can be solved by performing a least squares curve fit to the 

sets of experimental data. The least squares identification problem can then be formulated 

as an over determined linear system as below: 

Als X l s - "is 

Aft) 
A(t2) 

A(tNp) 

K = 

b(t,) 

b(t2) 

b(tNp) 

(45) 

where Np is the number of points in a given experimental data set. In this case, the 

experimental data sets include step input responses with different magnitudes. In this case, 

the parameters of (45) can be presented in the following and the problem can be solved 

by using pseudo-inverse approach. 

A k=[U w m - w ^ -sgn(rowm)] 

x,„ = (46) 

bis=KJ 

Two sets of experimental data were used in the parameter identification process 

(IC#1 and IC#2). They included step inputs with different magnitudes and similar initial 

conditions of co^ (t) = O.Orad/s and U ^ (t) = 0.0V for all t < 5s . IC#1 had a step input 

of U ^ (t) = 0.2V, and IC#2 had a step input of U ^ (t) = 0.3V for all t > 5s. 

The identified parameters for left and right motors are listed in Table 1 and Table 

2, respectively, along with the nominal parameters obtained from the average numerical 
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values of the identified parameters from IC#1 and IC#2. The estimated error bounds for 

the motor parameters were obtained through completing the identification procedure by 

using other data sets but same parameters, and computing the maximum deviation with 

the estimated parameters. 

Fig.20 shows the time history of the angular acceleration response of the left 

motor for IC#1, and Fig.21 shows the corresponding simulation obtained from the 

identified parameters for IC#1. In addition, the results of the left motor for IC#2 are 

shown in Fig.22 and Fig.23; the results of the right motor for IC#lare presented in Fig.24 

and Fig.25; and the results of the right motor for IC#2 are shown in Fig.26 and Fig.27. 

Parameters 

a i 

a2 

a3 

Table 1. Estimated motor 

Parameters 

a i 

a2 

a3 

IC#1 
60.0045 

5.348 

0.062 

error bounds 
±0.2055 

±0.8258 

±0.003 

IC#2 
61.0320 

5.02 

0.059 

error bounds 
±0.3083 

±1.073 

±0.003 

parameters from linear least square approximation of the left motor 

IC#1 
61.128 

5.01 

0.093 

error bounds 
±0.1982 

±0.195 

±0.032 

IC#2 
62.119 

4.932 

0.061 

error bounds 
±0.2973 

±0.2535 

±0.032 

Table 2. Estimated motor parameters from linear least square approximation of the right motor 

The comparisons in Fig.20 - Fig.24 illustrate that the identified parameters from 

linear least squares method are accurate enough to depict the behaviour of the motors 

under different inputs, although with a small latency in some occasions. 
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Fig.20. Linear square approximation of angular acceleration of the left motor (1C#1) 
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Fig21. Left motor angular velocity response using linear square approximation (IC#1) 
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Fig.22. Linear square approximation of angular acceleration of the left motor (IC#2) 
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Fig.24. Linear square approximation of angular acceleration of the right motor (IC#1) 
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3.2.2. Parameter Identification of Wheeled Vehicles 

Though, the parameters of motor kinematic equations were identified in the last 

section, when the motors are installed on the vehicle, the motor model parameters will 
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need to be adjusted. Because the inertia will increase due to the weight of the vehicle's 

body and the friction will also increase due to rolling resistance. 

Another two sets of experimental data were used in this process of the parameters 

identification of the wheeled vehicle. The first data set (IC#3) had an initial condition, 

where 6c=1.55rad, and UwmL(t)= UwmR(t) = 0V ( U ^ and U _ L denote the 

voltage applied on the right and left motor respectively) for all t < 5s, and had a step 

magnitude of UwmR(t)= U ^ L(t)= 0.4V whent > 5. The other set of step input (IC#4) 

consisted of an initial condition of 6C =0.45rad and UwmL(t) = UwmR(t) = 0V for all 

t < 5s, and a step magnitude of U M R (t) = -0.4V, \JimX (t) = 0.4V for all t > 5s. The 

first set mainly produced translational movement of the wheeled vehicle, while the latter 

caused rotational movement. The parameter identification process would combine the 

results from both types of movements as shown in Table 3. Please note that the first 

subscript refers to the number of parameter in (43), and the second one refers to the 

parameters belong to either left or right motor of the vehicle. 

The simulation results are compared with experiment data in diagrams from 

Fig.28 to Fig.38. It can be seen that the simulation results are close to the experimental 

data in both translational and rotational movements. 

Parameters 

31,L 

32,L 

a 3 , L 

a i ,R 

a2,R 

33,R 

IC#3 
58.15 

20.348 

0.0093 

56.37 

21.008 

0.0097 

error bounds 
±0.946 

±0.237 

±0.0002 

±2.9932 

±0.101 

±0.0001 

1C#4 
60.515 

22.718 

0.0095 

48.887 

22.107 

0.0096 

error bounds 
±0.946 

±3.792 

±0.0002 

±2.9932 

±1.758 

±0.0001 

Table 3. Estimated wheeled vehicle parameters 
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3.3. Model Verification 

The proposed actuator model, identified by the linear least square method, was 

validated by comparing the actual output to the simulation output of the model for a 

different data set IC#5, which was not used in the parameter identification process. IC#5 

had initial conditions of co^ L (t) = o^ R (t) = 0.0 and U ^ (t) = 0.0 for all t < 0 and a 

sinusoidal input of U ^ (t) = 0.5sin(0.3t) V for allt > 0. It was adopted in the validation 

process because it is a standard input and its magnitude is not too big to create saturations. 

It was applied on both left and right motors. The simulations were performed by using 

Euler's method with a step size of 0.05 seconds. Fig.39 and Fig.40 show the angular 

velocity responses of left and right motors versus time, respectively. It is evident that the 

overall response of the linear model is close to the experimental data, except for some 

small deviations. 

actual 

Y , 

actual 

model 

model 
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Same as the motors, the parameters of the vehicle were validated by another set of 

input (IC#6), which was not used in the process of parameter identification, either. IC#6 

had an initial condition where 0 =1.6rad and U m , B ( t ) = U,vml ( 0 = 0 for all t < 5 s 
c wiij,i\ \ / wni,L \ / 

with a step magnitude of UwmR(t) = 0.5V and UwmL(t) = 0.7 V when t > 5 s . The 

simulated results are shown and compared with the experiment data in diagrams from 

Fig.41 to Fig.46. As it is shown in Fig.31, Fig.32, Fig.37, Fig.38, Fig.44 and Fig.45, the 

simulated angle and position value have relatively large deviation from the experimental 

data especially when the simulations were approaching to the end. However, the RHC 

controller used in this thesis does not require a very long optimization horizon (normally 

one second), hence, the model is adequate for our RHC experiment in the latter chapters. 
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4. Modeling and Identification of Hovercraft Vehicles 

The hovercraft vehicles used in the experiments are modified from radio 

controlled (RC) hovercrafts. By adding two powerful ducted fans on both sides, and an 

extra fan on the tail, the new hovercraft becomes dynamically similar to a helicopter in 

2D environment. This will be a preparatory stage for our future research on applying 

RHC to miniature helicopters. 

4.1. Hovercraft Vehicle Model 

The dynamic model of the foresaid modified hovercraft and its actuators are 

presented in this subsection. The pictures of the hovercraft are shown in Fig.47 and 

Fig.48. 

4.1.1. Dynamic Model of the Hovercraft Actuators 

The 3 degree of freedom motion of a hovercraft vehicle is obtained by three 

powerful ducted fans, which are connected to a servo amplifier. Similar to the wheeled 
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vehicles, the hovercraft is controlled remotely by a computer via wireless FM radio 

communication links. 

The servo amplifier is able to transfer the voltage applied to the FM transmitter 

into pulses, changes the pulse width when different voltages applied on the FM radio 

controller, and uses the different duty cycle ratio to change the average voltage applied to 

the fan's motor; thus manipulates the thrust generated by the motor. Duty cycle ratio is 

equal to pulse width divided by the period of the pulse. 

The average voltage on the motor is obtained by multiplying the voltage level and 

duty cycle ratio as: 

'-'level '**• ratio = ^ hMotor ( 4 7 ) 

where Ulevel is the voltage level, Kralj0 is the duty cycle ratio and UhMotor is the resulted 

average voltage the motor sees. 

During the experiments, it is found out that the generated thrust is weaker when 

positive voltage applied on the motor than the thrust when negative voltage is applied. 

This is because the amplifier produces different set of pulse width when positive and 

negative voltages are applied. This discovery can be proved by the following diagram 

Fig.49. 
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It is obvious that when negative voltage applied, the duty cycle ratio increases 

faster than the case when positive voltage applied, accordingly, the average voltage 

grows faster. However, the thrust generated by the motor is unable to be measured, 

therefore in this thesis it is assumed that the thrust is proportional to the average voltage. 

Therefore, the relationship between the input voltage and the thrust can be found, if the 

relationship between the input voltage and the duty cycle ratio is established. By using 5 

order polynomial method, the following equation is able to depict this relationship: 

th 

Kralio=Sb,U'h (48) 

where bf denotes the parameter to be identified, and Uh denotes the input voltage from 

the FM controller. By combining (47) and (48), we can have: 

U hMotor = UIeve,-EbiU; (49) 
i=l 
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4.1.2. Dynamic Model of the Hovercraft 

The dynamic model of the hovercraft is different from the wheeled vehicles in a 

number of respects. This is mainly because of the difference in their actuators and friction 

mechanisms. The hovercraft vehicles are actuated by thrust forces from their fans, so the 

motion is more complicated and unpredictable than the motion of the wheeled vehicles. 

Furthermore, the frictional force is mostly viscous since the vehicle floats on a cushion of 

air. Finally, there are no kinematic constraints due to the low friction air cushion. 

The equations for hovercrafts are also expressed in the body attached frame 

(XB, YB) as shown in Fig.50, which are given by the following equations [68]: 

F h T : 

uc = 

vc = 

~ a hM " '-'level 

- ahT • UIeve, • •ZbiUU 

— ( F h M - b h U u ) + v c r ( 

1 , 
t>hvVc - U J c 

(50) 

f =LIL(F - b r ) - l ^ F 
c T VrhT U h r 1 c ' T

 rhM 

where lhT denotes the distance between the block in which tail rotor is installed and the 

center of the hovercraft, lhM denotes the distance between the two blocks in which main 

rotors are installed, mh denotes the mass of the hovercraft, Jh is the mass moment of 

inertia of the hovercraft, uc and vc are the velocity along XB and YB axes, respectively, 

bhu , bhv , and bto denote the viscous friction coefficients along XB , YB , and ZB 

(pointing out from the diagram, not shown in Fig.50) directions, respectively. ahM and 
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ahT denote the coefficients of the linear relationship between the average voltage on the 

main and tail motors and the produced thrust by the ducted fans, FbM and FhT represents 

the thrust generated by the main and tail rotors respectively, and UhM and UhT represent 

the input voltage applied to the main and tail motors, respectively. 

YB 

\ , - ' (XcYcW 

FT 

• 
XG 

Fig.50. The hovercraft vehicle's schematic model 

4.1.3. State Equations of the Hovercraft Vehicles 

The state equations of the hovercraft vehicles are obtained by combining the 

dynamic equations of the actuators, and the kinematic equations of the hovercraft. 
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^hM ~ a h M ' ^ level / , " j U hM 
i=l 

5 

ĥT - ahT • u,eve, • 2_, bjUhT 
i=l 

u c = — ( F h M - b h u u ) + vcr( 

v„ = — 
m, 

b h v V c - U c r c 

c T V % U h r 1 c / . r I 

x c = u c c o s e c - v c s i n 9 c 

yc =u c s in0 c +v c cos9 c 

©c=rc 

hM 

(51) 

4.2. Parameter Identification 

In this section, the procedure for parameter identification of the hovercraft vehicle 

and its actuators is presented. 

4.2.1. Parameter Identification of the Actuators 

Similar to the process of parameter identification of the actuators of the wheeled 

vehicle, this part will use (45) to find the parameters associated with the motors, and by 

combining (47) and (48), we can change (46) into the following equations: 

A IS=[Uh U* U> U4
h V[] 

X>s=[b) b2 b3 b4 b
5 ] T 

K = 
hMotor 

U level 

(52) 

and through experiment, it is discovered that 
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U,eve1=+7-0V,ifUhMo(or>0.0V 
(53) 

U,eve.=-7-0V,ifUhMotor<0.0V 

Although the identification process is similar to the ones described in previous 

sections, the parameters of the main and tail motors should be calculated by different data 

sets. This is because, in the experiment, both positive and negative inputs will be applied 

to the tail motor for rotational motion of the hovercraft, but only negative voltage will be 

applied to the main motor, since the hovercraft only needs to move forward and the thrust 

is stronger when negative voltage is applied. Also, please note that, for the purpose of 

convenience and tradition, the input for the main motors will multiple -1 after being used, 

so that we could say the hovercraft moves forward when positive voltage is applied. This 

modification is only for the habit of the author, and will not change the dynamics of the 

system. 

There were two sets of data chosen for the tail motor. These two data sets (IC#7 

and IC#8) had the same initial conditions of UhMotor (t) = 0.0 and Uwh(t) = 0.0 for 

a l l t < 5 s . IC#7 had a step input of Uwh(t) = 1.25V , and IC#8 had a step input of 

U ^ (t) = -1.25 V for all when t > 5s. Also for the main motors, there were two sets of 

data employed. One of them was IC#7 and the other one was IC#9, which had the same 

initial conditions of U,^,,,, (t) = 0.0 and U ^ (t) = 0.0 for allt <5s , and a step input of 

uwh(0 = ° - 4 5 V f o r a11 w h e n t > 5 s -

The identified parameters for the tail and main motors are listed in Table 4 and 

Table 5 respectively, along with the nominal parameters obtained from the average 
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numerical values of the identified parameters from IC#7, IC#8 and IC#9, and the 

estimated error bounds. 

Parameters 

b5 

b4 

b3 

b2 

b, 

IC#7 
-0.2958 

0.09188 

2.032 

-0.4095 

0.856 

error bounds 
±0.06265 

±0.0457 

±0.0973 

±0.229 

±0.02907 

IC#8 
-0.31633 

0.07315 

2.0818 

-0.26236 

0.8337 

error bounds 
±0.0.06265 

±0.0475 

±0.0973 

±0.229 

±0.02907 

Table 4. Estimated motor parameters for the hovercraft tail motor 

Fig.51 shows the time history of the average voltage applied on the tail motor for 

IC#7, and Fig.52 shows the result for IC#8. The corresponding cases for the main motor 

for IC#7 and IC#8 are shown in Fig.52 and Fig.53, respectively. In addition, the input-

output relationship of the tail and main motors are obtained by using the identified 

parameters, and illustrated in Fig.55 and Fig.56, respectively. Furthermore, there is no 

need to validate the parameters, since Fig.55 and Fig.56 have proved the accuracy of the 

model. 

Parameters 

b5 

b4 

b3 

b2 

b, 

IC#7 
-0.2981 

1.32 

1.986 

3.892 

-0.07508 

error bounds 
±0.0595 

±0.3173 

±0.2753 

±1.5391 

±0.0074 

1C#9 
-0.3176 

1.45 

1.845 

2.907 

-0.081 

error bounds 
±0.00036 

±0.00533 

±0.0128 

±0.1995 

±0.00266 

Table 5. Estimated motor parameters for the hovercraft main motor 
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4.2.2. Parameter Identification of the Hovercraft Vehicle 

Unlike the actuators for the wheeled vehicle, there is no need to re-identify the 

parameters of the motors, because there are no extra loads or modifications applied on the 

actuators when they are installed on the hovercraft. 

In order to identify the parameters of the hovercraft, equation (50) needs to be 

rewritten for the sake of reducing the number of parameters to be calculated. 

r c=PiU h T -p 2 r c -p 3 U h M 

Uc=P4Uh M-p5u c+v cr c 

v c =-P6V c -u c r c 

(54) 

where p, = hT T , p2 = ^ h r 

h 
P3 = 

' h M a M 
> P 4 = 

l hM hu 

m. 
> P5= » P6 = 

m. 

'hv 

m. 

Following the procedures discussed in the above sections by using least square curve fit 

to the experimental data, (54) can be modified in the form of (55) and solved by using 

pseudoinverse approach. 

A l s X . s 

Als = 

= K 
"U„T 

0 

0 

~ r c 

0 

0 

-u». 
0 

0 

0 

UKM 

0 

0 

- U o 

0 

0 

0 

- v 

u„ — v r 
c c c 
c c c 

(55) 

Xls=[Pl P2 P3 P4 P5 P6] 

Four sets of experimental data with different initial conditions (ICs) are used in 

this process of the parameter identification. They all included step input responses with 

the same initial conditions, whereuc = 0 , vc = 0 , rc = 0 and UhM(t) = UhT(t) = 0V for 

all t < 5 s . The first data set (IC#10) had a step magnitude of 
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UhM(t) = 1.5V,UhT(t) = 0V when t > 5 s , while the second set (IC#11) had 

\Jm (t) = 1.7 V, UhT (t) = 0V when t > 5 s. These two data sets were responsible for the 

translational motion of the hovercraft. The other two sets of step inputs consisted of two 

step inputs, in which UhM(t) = 0V , UhT(t) = 1.2V (1C#12) and UhM(t) = 0V , 

UhT(t) = -1.2V (1C#13) for a l l t > 5 s , and they were responsible for the rotational 

motion of the hovercraft. The identification results are shown in Table 6, and their results 

are shown in Fig.57 to Fig.74. Please note the "0"s in Table 6 indicate either there is not 

enough data to identify that parameter, or the identified parameter is not reliable due to 

lack of information. It is apparent to see from these diagrams that, despite of minor 

disagreement with the experiment data, the overall performance of the system can be 

accurately reflected by the identified parameters. 

Parameters 

Pi 

P2 

P3 

P4 

P5 

P6 

IC#10 
0 

3.0079 

0.4 

13.2313 

1.0891 

2.6117 

IC#11 
0 

2.4731 

0.4 

16.312 

0.1369 

2.6034 

IC#12 
1.6017 

2.5128 

0 

16.5771 

0.1227 

2.6275 

IC#13 
1.5341 

2.2314 

0 

14.7901 

0.1437 

2.7591 

Table 6. Estimated hovercraft parameters 

73 



1.4 

"C 1-2 

I 
V. 0.8 

>^ 
O.fr 

0.4 
13 
S 0-2 

0 

-0.2 

-0.4 
0 

Experiment! 
Sirrulation I 

Y A A .n,/WA 
V w V 

\/v y v y ^ A \A 

i 

M 

V 
2 3 4 

Time(s) 
Fig.57. Acceleration along XB-axis (1C#10) 

0.25, 
Experiment 
Simulation 

3 
T1me(s) 

Fig.58. Acceleration along YB-axis (1C#10) 

74 



V
el

oc
ity

 a
lo

ng
 X

-a
xi

s 
u 

(n
V

s)
 

-V
L

_ 

T
O

 > 3 > O
 

o
 § 

to
 

d 
w

 

O
 

©
 

U
i 0\
k.

 

A
ng

ul
ar

 a
cc

el
er

at
io

n 
dr

/d
t (

ra
d/

s)
 

6 i/>
 

-9-
 

-£
 

V
) 

_1
 

l_
 

-J
 



0.12; 

0.V 
Experiment 
Simulation 

> 
7i 

0.08r 

0.06-

§ 0.04r 

8 0.02r 

2 
Or 

-0.02' 
0 

A i I / \ M / ( W 

* w y V if w 
[At M , A A r, A /' 

7 v\ 
T A1.M , vr 

2 3 4 
Time(s) 

Fig.61. Velocity along YB-axis (IC#10) 

MY-

Y""Ww' 

3 
Time(s) 

Fig.62. Angular Velocity (1C#10) 

76 



1 
1.2: 

^ 0.8 

1 °6 

? 0.4-

•S °-2 

l °: 

I -0.2 
< -0.4 

-0.6; 

Experiment 
Simulation 

M 

0 2 3 4 
Time(s) 

Fig.63. Acceleration along XB-axis (1C#11) 

' 

! 1 

v. ... -A ... 
V - v ^ -

i i 

1 
1 

i i 

0.3 

" I 0.2J-

¥ ! 

Experiment 
Simulation 

M 

-0.3f 

-0-4!: 

/\y\ AM 
J. °rA'V\i ^ - w w 
8 -o.i 

s 
•a -0.2-

" A A.M1 

2 3 4 
Time(s) 

Fig.64. Acceleration along YB-axis (IC#11) 

77 



<> 

2r 

1.5 

Experiment 
Simulation 

t3 0.51-

I A ^ U 
Oi 

-0.5 

i A . f VU! 1 

i l i i i ! /> : i 

i ij f 

o 2 3 4 
Time(s) 

Fig.65. Angular Acceleration (IC#11) 

0.8 

$ 0.7 
1 
^ 0.6 

'§ 0.5 

M °-4 

c? 
•§ o.3 
£» 
"g 0 2 

33 > 0.1 

0 

-

1 

T ^ . ; 

experiment 
Simulation ! 

i • t 

"V
 

I 

/ 

/V -
f7 

' / 
•"/ 
I 

J 
1 

// 

1 1 1 

2 3 4 
Time(s) 

Fig.66. Velocity along XB-axis (1C#11) 

78 



^ 

8P 

0.3 

0.25 

0.2 

0.15 

5 0.1 

8 0.05 

0 

-0.05. 

Experiment 
Simulation 

v~^ ^ ^* 
. A. . 

<V7 V ' 

. /. A / \ . A , 
' \ V / Vs>v ' VN 

0 2 3 4 
Time(s) 

Fig.67. Velocity along YB-axis (1C#11) 

v \ 

0.5 

0.4 

| 0.3 

£> 0.2 

3 
> 0.1 

<! ° 
-0.1 

-0.2 

— Experiment 
Simulation 

r f Y -vyjl" V "T^y- ^/ 

0 2 3 4 
Time(s) 

Fig.68. Angular Velocity (1C#11) 



< > 1 

7--

6h 

3 i 

I ! 
ia o 

-2-

-3 

Experiment 
Simulation 

v/i j \ .AMa 
N >,Tf/"v 

(1 | 
i.l i :! 

M ' | \ \ J \ 
/ ,\f. :'; I ! : i 

0 2 3 4 
Time(s) 

Fig.69. Angular Acceleration (IC#12) 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

» 1 

0.5 

0 

-0.5 

'8 

Bgjerimert j 
Simulation ! 

^ • v V S r A ^ ^ , ^ * A / V 

0 2 3 4 
111116(8) 

Fig.70. Angular Velocity (IC#12) 



3 4 
Time(s) 

Fig.71. Angle (IC#12) 

f3o 

« 2 

S 
1 0 

b 
-2 

^ 

Bqxriment 
Simulation 

3 4 5 6 7 
Time(s) 

Fig.72. Angular Acceleration (JC#13) 

10 

81 



0.5 

0 

-0.5 

* -1.5 

-2 

-2.5 

-3 

• ^ ^ ^ A ^ y - y / y i J>v< ̂ / V Y * \ A 

KA 

Experimentj 
Simulation | 

if i 

0 1 2 3 4 5 6 7 8 9 10 
Time(s) 

Fig.73. Angular Velocity (1C#13) 

0 

CD _2 

-a 

-6 

-8 

Experiment 
Simulation 

0 4 5 6 
Tfime(s) 

Fig.74. Angle (IC# 13) 

10 

4.3. Model Verification 

Similar to the section of wheeled vehicle parameter identification, the nominal 

model is validated by a set of inputs that was not used in the identifying process. 
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However, as stated earlier, the verification of the ducted fan system is not necessary, 

since Fig.55 and Fig.56 have already validated the accuracy. 

The data set used in this section is IC#14, which was not used in the process of 

parameter identification. It included step input responses with the same initial conditions, 

where u c = 0 , v c = 0 , r c = 0 and UhM(t) = UhT(t) = 0V for all t < 5 s , and a step 

magnitude of UhM(t) = 1.4V and UhT(t) = 0.7 V when t > 5 s . The results are shown in 

the diagrams from Fig.75 to Fig.82. Same as the model validation section in the previous 

chapter, the validation process is necessary only for a short time, since the RHC 

experiments in the following chapters do not need very long optimization and execution 

horizons. 
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The open loop control in the previous identification and validation processes are 

not asymptotically, but marginally stable, therefore, some deviations can be observed in 

the previous diagrams, such as Fig.76. 
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5. Application of Decentralized Receding Horizon Control to 

Wheeled Vehicles 

Applying RHC and DRHC on wheeled vehicles is a fairly new concept, since 

there has been other control methods available for these type of nonholonomic systems, 

such as dynamic feedback linearization [88]. These methods have potentially faster 

sampling rates and guarantee stability [89]. However, none of them is able to easily 

handle input saturation and provide optimal performance. The RHC and DRHC methods 

can systematically address those critical issues. 

In this chapter, DRHC will be applied to several simulations and experiments of 

multiple wheeled vehicle systems. The wheeled vehicle model used in this chapter has 

been obtained in (42). The procedure of designing a controller for the formation will 

follow the second method stated in Chapter 2. 

5.1. Controller Design 

In the case of single vehicle trajectory following, the cost function can be 

formulated as: 

t+T 

Jfl(x(t),xD(t),t) = J|x(t)-xD(T)£dT+|x(t + T ) -x D ( f+T) | , (56) 
t 

where according to (42), x(t) = [xc (t) yc (t) 0C (t) ra^x c o ^ R ] denotes the state 

vector of the wheeled vehicle at time t , xD(t) = [xD yD 0D coDL coDRj is the 

vector containing desired states, and Q and R are weighting matrices. Moreover, 
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(xD ,yD) denote the desire position, 9D is the desired angle, coDL and coDR denote the 

desired angular velocity of the left and right motor respectively. 

When Nv (Nv>\) vehicles added in the system, the formation of these NY +1 

vehicles can be kept by the following approach. One of the vehicles is selected as the 

leader of the fleet that only follows the trajectory by using the cost function in (56); the 

rests are selected as followers, which keep certain distance from each other by using the 

cost function discussed below. 

Let Xj (t) be the state vector of the i'h vehicle at time t . For the i,h vehicle there 

exists at least one/* vehicle where j e A ; , the set of /'* vehicle's neighbours. So for the 

vehicle, there is a cost function (57): 

ith 

Jf(X l(t) ,xJ(t) , t )^JpQx1(x)-xJ(tf-ry
> l dx 

+ K |̂x,(t + T)-xJ(t|[-r,J 
(57) 

•th 
where r̂  is a scalar variable which denotes the nominal distance between the i and the 

j ' h vehicle, P and K are weighting matrices and P and K are weighting scalars. How 

the weighting matrices and scalars are defined can be found in the next section. 

The following parameters are selected for the RHC controller: 

N e = 4 

N t =50 

a m ( 5 8 ) 

8 = 0.1 s 
T = 1.0s 
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5.2. Simulations 

This section contains several simulations of trajectory following and formation 

control of wheeled vehicles for different cases. 

Fig.83 shows a simulation of the tracking control of a wheeled vehicle. In this 

case, x(t) = [x c ( t ) yc(t) 9c(t) c o ^ COWTOR] , while xD is chosen as: 

1.6 +0.75 cos(t)" 

1.2 +0.75 sin(t) 

<DW = 0 (59) 
0 

0 

and Q and R are selected as: 

Q = R = *2x2 "2x3 

03*2 03*3 
(60) 

In Fig.84, the formation of two vehicles is presented. The first vehicle follows the 

trajectory as in the first case, while a follower moves behind it and keeps a fixed distance 

from it. In this case, for the leader, x, (t) = [x c , (t) yc, (t) 0C, (t) co^ L, © ^ R , ] T 

and (60) remains unchanged; for the follower, r;j=0.1m , x
2 ( t ) = 

[xc2M yc.2(t) ^ ( 0 °W,2 G W i u X ^ d 

P = K = 
-*2x2 "2x3 

©3x2 0 3 x 3 (61) 

P = K = 1 

In addition, two simulations for three and six vehicles keeping a triangular 

formation, while tracking a trajectory are performed and the results are presented in 
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Fig.86 and Fig.88, respectively. In this two cases, the definitions of x ;(t) and xD(t) 

remain unchanged, (60) and (61) stay the same as the last simulation, r̂  can be set to any 

value, but in the following simulations, it remains 0.1 m. 

Although, it can be observed that in Fig.85, and especially in Fig.87, the 

overshoot formation error (defined in (62)) between two vehicles are high at the 

beginning, due to the choice of initial conditions, but they quickly converge to their 

required steady state values as well. Same result is shown in Fig.89, however, for 

simplicity the figure only illustrates the formation error of the system, which is obtained 

by summing up the formation error between each pair of vehicles. 
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Fig.83. Simulation of trajectory following, for a single wheeled vehicle-
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5.3. Apparatus 

In this section, the experimental apparatus will be briefly introduced. The 

apparatus consists of a vision feedback system and a controller computer. The vision 
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feedback system was introduced in chapter 3. It has nine web cameras pointing down to 

the testbed covering an area of approximately 5m by 5m. Each web camera is connected 

with a computer that processes the images acquired from the camera and sends the 

position of the targets to the controller computer at a frequency of 25Hz. This frequency 

is the maximum frequency the vision system can reach, thus causes the delay discussed in 

Chapter 3. Upon the reception of data from the vision system, the controller system 

calculates admissible inputs for the vehicle via a FM transmitter, which is connected to a 

D/A board. The D/A board is used to convert the digital control signals to analog signals 

need to be sent to the FM transmitter. A structural scheme of the apparatus is shown in 

Fig.90. 

r 
Camera Array 

A 
^V 

Vehicles 

Vision System 

Controller 

FM transmission 

Testbed 

Fig.90. Structure of the apparatus 

5.4. Checking the Constraint and Tuning the Parameters 

A problem that researchers are usually faced is that no matter how perfect the 

output of the system would be in simulation, there would be some problem if the system 

was brought into reality. This problem persists in our RHC experiments as well. 
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Therefore, before moving into validating the previous simulations, we will discuss how to 

tune the parameters and check the constraints in order to obtain superior performance 

from the controller. A simple trajectory of line segments is introduced as an example 

showing how the procedure is undergone. 

The trajectory is defined as: 

xD(t) = 0.25 + 0.05t 

yD ( t ) = 0.6 + 0.05t 

xD ( t ) = 0.25 + 0.05t 

, for all 0 < t < 2 5 s 

(63) 

for all t>25s 
yD(t) = yD(25) 

where as before, (xD(t),yD(t)) denotes the desired position at time t. So if we follow the 

process explained in section 5.1, we can have the desired states for the controller as: 

0.25 + 0.05f 

0.6 + 0.05t 

0 

0 

for all 0 < t < 2 5 s 

(64) 

<o(t) = 

0.25 + 0.05t 

xD2](25) 

0 

0 

0 

, for all t>25s 

and by using the selection of RHC parameters in (60), a RHC controller is successfully 

constructed for this trajectory following problem, and its result is shown in Fig.91. 
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Fig.91. Trajectory following using wheeled vehicle, before tuning RHC 

It is apparent that the performance of the controller is not satisfying, and the 

constraints and/or the parameters needs to be updated. The first step to determine whether 

the constraints or the parameters should be adjusted first is to carefully observe the output 

diagram. In Fig.91, it is obvious that the output trajectory has a trend towards the 

reference trajectory, but the offset is huge. In this case, it is recommended to check if 

there are other constraints that can be added in the controller to make the overall 

constraint strong enough to drive the system to the desired states. 

In this example, it should not be difficult to see that a desired angle will help the 

system point to the desired position (xD(t),.yD(t)) at time t , and if the system is able to 

do that, moving to that position can be easy for the vehicle. Thus, (64) is updated as: 
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'DM = 

0.25 + 0.05t 

0.6 + 0.05t 

eD(t) 
0 

0 

, for all 0<t<25s 

*D(0 = 

0.25 + 0.05t 

XD2,1\ -V 

eD(t) 
o 
o 

(65) 

, for all t > 25 s 

where 

eD(t) = arctan2((yD(t)-yc(t)),(xD(t)-xc(t))) (66) 

is the desired angle for the vehicle. Moreover the parameters associated with the RHC 

controller is updated as: 

Q = R = 1*3 03,2 

. " 2 x 3 " 2 x 2 . 

(67) 

and the result is shown in Fig.92. Please note that the parameters have not been tuned yet, 

and the change of parameters in (67) is just because of the need to bring 0D(t) in the cost 

function. 
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Fig.92. Trajectory following using wheeled vehicle, after adding constraint 

Tuning the parameters can be summarised as increasing the value of the 

parameter corresponding to the most disagreement. For example, the cost function for 

Fig.92 can be derived from (56) as: 

t+T 

j(xc(t),xD(t)) = a, { ( x ^ - x ^ d T + b^x^t + Tj-x^t + T))2 

t 

t+T 

+ a2 J(yc(t)-yD(T))2dx + b2(yc(t + T)-yD(t + T))2 (68) 
t 

t+T 

+ a 3 | (0 c (T)-e D (T)) 2 dT + b3(0c(t + T ) - 0 D ( t + T))2 

t 

where a,,a2,a3,b,,b2,b3 denote the parameters associated with the RHC controller for 

this problem. Since the disagreement between the actual and reference trajectory is 

primarily caused by the offset in Y direction, the first step is to increase the values of a2 

and b 2 . After that, the new output should be checked to see if other parameters also need 

to be changed. The final result of this parameter tuning is 
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Q = R = diag([1.5 2.5 1.0 0.0 0.0]) (69) 

and the final output is shown in Fig.93. Please note that although it is possible to reduce 

huge offset simply by tuning the parameters, it is still recommended to check the missing 

constraints first, since the process of tuning is more complicated when compared with 

adding an important constraint. 
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Fig.93. Trajectory following using wheeled vehicle, after adding constraint and tuning 

2.5 

And the initial condition for the case shown in Fig.91 is: 

x,(0)=[0.1 0.37 0 0 Of, 

for the case shown in Fig.92 is: 

x,(0)= [0.021 0.55 0 0 Of, 

for the case shown in Fig.93 is: 

x,(0) = [0.012 0.41 0 0 Of. 

(70) 

(71) 

(72) 
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5.5. Experimental Verification 

In this section, two single vehicle trajectory following examples are presented to 

validate the algorithm in (56), followed by the triangular formation control of three 

vehicle. The later validation will be performed by using the decentralized RHC controller 

discussed in section 2.4 and a combination of actual experimental vehicle and simulation 

is employed. The experiments were run on the apparatus discussed in section 5.3. 

Two experimental results are shown in Fig.94 and Fig.95, and their corresponding 

simulation result is shown in Fig.83. The initial condition for the first case (Fig.94) is as 

follows: 

x,(0) = [2.051 0.815 0 0 Of. (73) 

and, the initial condition for second case (Fig.95) is: 

x,(0) = [2.1021 1.0364 0 0 Of. (74) 

Please note that the initial positions of the vehicle in this experiment are different from 

the simulation presented in Fig.83. Besides, the selection of Q and R is updated to the 

following, as explained earlier: 

Q = R = diag([1.0 1.2 0.5 0 0]) (75) 

while xD(t) is modified as: 

X D ( t ) : 

1.6 + 0.75 cos(t)' 

1.2 +0.75 sin(t) 

eD(t) 
0 
0 

(76) 

where the definition of 0D(t) can be found in (66). 
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Fig.94. Experimental result of the first trajectory following example with a single wheeled vehicle 
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Fig.95. Experimental result of the second trajectory following example with a single wheeled vehicle 

Then the case of three vehicle triangular formation control is validated. It should 

be indicated that the experimental results shown in Fig.96 to Fig.99 were run in a mixed 

reality fashion, in which only the leader is running in real world and the followers are 
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being simulated. This is an interesting case that real-time simulations are combined with 

the experimental results. However, this arrangement still closely follows the requirement 

of the DRHC environment, the members are under constraints of DRHC, and they need 

to use the second method in 2.4 as DRHC strategy, and On-the-Fly Computation method 

as actuation method. The initial conditions for the experiment shown in Fig.98 and Fig.99 

are: 

x,(o) = x2(o) = x3(o) = [2.37 0.88 0 0 0]T (77) 

while the initial conditions for the experiment shown in Fig. 100 and Fig. 101 are: 

x,(o)=x2(o) = x3(o) = [2.45 1.22 0 0 0]T (78) 

Please note that the selection of Q and R remains as in (75), and xD(t) stays the same 

as in (76). However, the selection of P , K , P , and K are updated as: 

P = K = diag([1.5 1.5 0.0 0.0 0.0]) 
(79) 

P = K = 1.5 
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Fig.96. First formation control experiment with three wheeled vehicles 
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6. Application of Distributed DRHC to Hovercrafts 

In this section, the hovercraft model, identified in the previous chapter, is used to 

implement multiple vehicle simulations and experiments. Similar to the last chapter, the 

goal in this section is also to focus on the performance of a fleet of multiple hovercrafts' 

trajectory following and formation behaviour by using decentralized RHC. By making 

the experiments a higher level, they will also be run in a distributed fashion, which means, 

instead of one computer calculating all the input for every vehicle, several computers 

connected via a high speed LAN share their data and work simultaneously to solve the 

control problem. 

The number of vehicles for the simplest formation control could be as few as 

three. In order to discuss the implementation in this chapter, let us consider the simplest 

case. In this example, one of the hovercrafts is the leader of formation, which follows a 

trajectory resulted from a predefined path, and avoids an obstacle on its way, while the 

other two are followers. Their tasks are following the leader and keeping a specific 

distance from each other. Thus, a triangle formation is achieved as in Fig. 100. Each 

vehicle is controlled by a single computer, and shares its motion data with the other two 

via a high speed LAN network using UDP/IP protocol. Since the model used in this 

implementation is the hovercraft model identified in the previous chapter, the /' vehicle 

notion in chapter 2 will be also changed to i* hovercraft, unless otherwise specified. 
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Fig. 100. Layout of the three agents' formation 

6.1. Distributed RHC System 

The distributed RHC system consists of three computers and a high speed switch. 

As shown in Fig. 100, each computer is responsible for solving the optimal problem of a 

hovercraft. In the following, different parts of this study are briefly explained. 

6.1.1. User Datagram Protocol 

The User Datagram Protocol (UDP) is selected as the data transmission protocol 

in this experiment. It is different from what is commonly used in the Internet today, 

Transmission Control Protocol (TCP). Because in UDP, sockets do not have to be 

connected before being used [59], datagram might arrive out of order, have duplicates, or 

even become missing. It is not a reliable protocol for some specific data transmission 

applications, such as web browsers and email clients. However, despite those properties, 

UDP is fast and ideal for the light communication, especially for the time sensitive 

systems like ours, as well as Voice Over Internet Protocol (VoIP) and online games. 

Position 

2. 
Computer 
Follower Position 

3. 
Computer 
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6.1.2. Data Loss, Data Transmission Delay, Computation Time, and 

Time Synchronization 

A. Data Loss 

Because of the nature of UDP, data loss is inevitable in this process, for example, 

data has been sent from the sender computer, but the receiver computer has not prepared 

to obtain the data yet. 

B. Data Transmission Delay and Computation Time 

Data transmission delay is usually caused by the nature of hardware, such as 

resistance of network cables and the design of the switch circuit. Fig. 101 shows the result 

of an experiment for calculating delays between two computers. In that experiment, 

computer A sent a set of data to computer B; immediately when B received the data it 

sent back a set of data to A. The delay is obtained by dividing the time used in this 

process by two. It seems to be fine, since the average delay is approximately 0.5 xlO-4 

second. But if the number of computer rises, the delay will become relatively large for 

the whole system too. 
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Fig. 101. Data transmission delay between two computers 
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Another main factor that affects the performance of the distributed system is the 

computation time on each individual computer. RHC is relatively time consuming when 

compared with other control methods, as we have discussed before. In the previous 

studies, both zero [82] and non-zero [81] computation time were assumed and studied. In 

this section, a novel method of dealing with computation time is introduced. That is, 

during the implementations, the computation time will be treated as a delay, similar to the 

data transmission delays. Fig. 102 shows the computation time of the case where a 

trajectory following problem was solved on a single computer. Please note that there is 

no formation problem in this computation, and the following parameters are chosen: 

N c = 4 

N,=50 

5 = 0.1s 

T = 1.0s 

(80) 
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However, it should be noted that the computation time will vary if the above parameters 

are changed and/or different optimization methods are employed. 
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Fig. 102. Computation time on a single computer. 
C. Time Synchronization 

Instead of simply exchanging updated position data of the vehicles among the 

computers in the system, local time of the leader computer will also be chosen as global 

time and sent to the follower computers at fixed periods. When they receive the global 

time, the followers will adjust their local time according to the difference between these 

two times. Fig. 103 shows a flowchart of this procedure. 

The synchronization offset among the subsystems can be obtained as follows. Let 

the data transmission time from one computer to another is C,, and the calculation time 

for each simulation step is cp. By recalling the sensor delay tSD and its upper bound TSD 

obtained in (41), we can have the following: 
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G = C, + (p + T SD (81) 

where a denotes the synchronization offset among the subsystems. 
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Fig.103. Flowchart of the distributed RHC simulation. 

6.2. Controller Design 

In this Chapter, the difficulty of controlling the fleet of vehicles is raised by 

adding an obstacle on the path. Combining the leader cost index presented in (56) with a 

penalty term for inputs, the following is assumed as the cost index for the leader without 

considering obstacle avoidance: 

j f(x,( t) ,xD( t) , t ) 
t+T 

= J(lxi(T)-xDW£+hWpdT + lX)(t + T)-xD(t + T)l2R 
(82) 

where C = I2x2 is a positive definite weighting matrix, and 
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x i ( t ) = [ u c vc>1 reJ xCJ yc#1 e J T (83) 

and 

R = Q = diag([0 0 0 1 1 0 ] ) (84) 

In addition, suppose that there is a stationary obstacle with a radius of R 0 at 

(x 0 ,y 0 ) . Let z 0 = [x0 y 0 ] , we could obtain the cost function for obstacle avoidance 

by adding a potential term as follows [80]: 

5? (x, (t),t) = J P^x, (t)-C0z0|[ -R0j dt, 

where C 0 , P, and P are defined in the following: 

(85) 

CD = 
'3x2 

L2x2 

0 1x2 

P = diag([0 0 0 1 1 0]) ,andP = l (86) 

Therefore, by combining (82) and (85), the cost function for the leader is as 

follows: 

t+T 

J I (x I ( t ) ,xD ( t ) , t )= J P | ^ | X 1 ( T ) - C 0 Z 0 | P - R 0 J dx 

t+T 

+ j(hW-^(<+||u1(T)pdT + | x 1 ( t + T ) - X D ( t + T)|; 

(87) 

Therefore, by comparing (57) to (56) and (87), the following is assumed for the 

cost function of the followers: 

J?(*.(t)>*i(t)>t)= j K U l x ^ t + O - O ^ - x ^ T + O - O a J - r J dx 
i=2,3;j=1,2,3;j*i ! V J 

t+T 2 

+ J I n ^ T + O - l J a ^ d T 
t 

where a is defined in (81) and K, C, and K are defined in the following: 

(88) 
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K=diag([0 0 0 1 1 0]), C = I2x2,and K = l (89) 

6.3. Distributed Simulation 

The following terms are set and remain unchanged in the following simulations 

r i j = 0 . 1 , z o = [ l . 5 1.25]T ,Ro=0.4 (90) 

and all the weighting matrices are set to identity matrices and all the weighting scalars are 

set to 1. 

The distributed simulation results are compared with the experimental results on a 

single computer in Fig. 104 to Fig. 107. There are two reference trajectories used in these 

examples. The first one (IC#11) is 

' » « = 
2.5 + O.lt 

2.75 + O.lt 
, for all 0 < t < 2 0 s 

*D ( t ) = 
xD]J(20) 

xD2,,(20)+(t-20) 

(91) 

, for all t>20s 

and the other one (IC#12) is defined as: 

*D(t) = 
2.5 + 1.5cos(0.01t)' 

2.5 + 1.5sin(0.01t) 
, for all t > 0 s (92) 

It is apparent that both single computer case and distributed case show promising results 

in trajectory following and obstacle avoidance. 
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Fig. 104. Trajectory following and obstacle avoidance for distributed simulation case (IC#11). 
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Fig. 106. Trajectory following and obstacle avoidance for distributed simulation case (IC#12). 
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Fig. 107. Trajectory following and obstacle avoidance experimental results for single computer case 
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6.4. Virtual Reality System 

The foresaid distributed RHC system is connected to a virtual reality system. The 

new system is able to render the motion of the simulated hovercrafts. The output of this 

virtual reality system is shown in Fig. 108. Please be advised that this section only 

contains some main ideas of the structure and mechanism of the system. See [69] for 

detailed instructions. 

Fig.108. Screenshot of the virtual reality system rendering. 

6.4.1. Battlefield Scene 

Instead of simply rendering the motion of the hovercrafts, a battlefield scene is 

created. This scene brings more attractive features to the simulation, and makes the whole 

simulation much straightforward. 

In this scene, the foresaid three hovercrafts are rendered as a fleet of helicopters. 

This is mainly due to the need of using land vehicles and buildings in the virtual world, 

and it would be too unusual to have a fleet of hovercrafts moving on land. Also the 
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structure of the hovercrafts are dynamically identical to helicopters in a two dimensional 

environment. 

While patrolling in the virtual world, the fleet identifies an enemy land vehicle. 

Subsequently, they chase the enemy in their combat formation and avoid buildings on the 

way. When the helicopters move in a certain range from the vehicle, the leader of the 

fleet will launch a missile and shoot the enemy. 

6.4.2. Classes Construction 

In the field of virtual reality, Object Oriented Programming (OOP) is considered 

the most effective and suitable programming tool, because of its special way of 

organizing programs. Unlike the way of organizing data in structured programs, OOP is 

organized around data, with the principle of "data controlling access to code" [78]. 

Programs of this virtual reality rendering system are developed to fully take advantage of 

benefits offered by OOP; as a result, objects can be conveniently added, removed and 

modified, hence, considerably reducing maintenance costs. Fig. 109 illustrates the class 

structure of the virtual system. 

1 ' .___ ^ 
World 

Subsystem 

' ' 
Spring 

' ' 
Rigid Body 

i ' 
Chassis 

i 

' 
Fuselage 

r . i 

Wheel 

1 ' 
Rotor 

' 
Missile 

1 ' 
Bounding 
Volume 

Fig. 109. Inheritance of classes in the program. 

117 



The class subsystem is the base class for others that inherit the subsystem either 

directly or indirectly. The class subsystem only defines general variables, and all member 

functions have a prefix virtual which is designed to be overridden by derived classes. 

Although, the class world itself is a derived class of subsystem, it has functions similar to 

a "container" class for other classes that are derived from subsystem. The class rigid body 

includes all variables and functions for simulating a 6-DOF rigid body model in 3D 

environment. State variables involved are translational and rotational velocity, as well as 

quaternion variables due to their convenience. Note that rigid body is also the base class 

for the class chassis, wheel and missile. The class chassis is a derived class from rigid 

body, and it has its own variables which are added for modeling a vehicle dynamics. The 

class chassis has not only features from the rigid body, but it also inherits the class 

subsystem. In this way, multiple inheritances are achieved. The same condition can be 

found in the class wheel and missile. 

6.4.3. Framework of the System 

This subsection describes the framework of the virtual system, and delivers the 

idea about how the program generates a virtual environment. The flowchart in Fig.lll 

explains the major executions in the program, including both, the major function calls 

and communication. 

In the program, the first step is Initialization which runs only once, since all 

variables defined here would not be changed after the simulation starts progressing. After 

the system is successfully initialized, camera setting module defines view points and 
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look-at points, and provides a set of perspectives for users who are allowed to freely 

switch among them as the simulation progresses. The enemy vehicle could not only move 

in a trajectory which is predefined by the user, but arbitrarily according to the data from 

external inputs module. Next, all the states of major models (the ground vehicle and the 

helicopters) are updated in the model dynamic module at each time step, and the Euler 

algorithm is applied for updating states. 

This system adopts the basic bounding volume method for collision detection. It 

first automatically generates virtual spheres for each object, and those spheres should 

cover the object's entire shape. The final Optimized Mesh Rendering module loads all the 

meshes that are needed in the system, and defines some default parameters, such as 

program window size. Those meshes are not only assigned to visualize their 

corresponding objects, but they are also processed by a series of optimization algorithms 

provided by DirectX library. 

6.5. Cockpit Simulator 

The platform has 6 degree of freedom, 3 translational and 3 rotational motions. A 

real vehicle seat is mounted on the platform, which is shown in Fig.l 10. The platform is 

capable of capturing the full dynamics of the ground vehicle in the virtual reality system 

as the simulation progresses. 

The interface has two routines: one is for the real-time hardware, the other is for 

graphics and data received from simulation. As the simulation is progressing, the two 

routines are communicating by the Inter-Process communication via Shared Memory 

provided by RTSS. By creating Shared Memory object, multiple processes can access the 
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region of memory with either a handle or a virtual address [62]. In this application, the 

Euler angles are stored in the shared memory for two routines to access. Thus, it is 

possible for real-time routine to access memory, and then transforms those angles into 

voltage signals as input to the hardware. 

Fig.l 10. A driver seat mounted on the 6-DOF platform. 
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Fig. 111. Flow chart for the virtual reality system and cockpit simulator. 
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7. Conclusions and Future Work 

In this thesis, the decentralized receding horizon control method was investigated 

through numerous simulations and experiments. New algorithms and methods for 

trajectory following and formation control of multiple vehicle systems are evaluated and 

compared. Accurate models are developed, experimentally identified, and tested. It was 

found that the wheeled robot dynamics were best described by a combination of Coloumb 

and viscous friction, whereas the hovercraft dynamics could be adequately described 

using only a viscous friction model. Decentralized RHC is then applied to both types of 

vehicles through simulations and experiments. 

A virtual reality simulation system with a 6 DOF cockpit is combined with the 

experiments to provide a higher level of capability to study more advanced DRHC 

problems. The results from the simulations and experiments indicate that the 

decentralized receding horizon control approach is well suited for meeting the 

requirements of complicated multi-vehicle control problems with low trajectory and 

formation errors. The combination with the virtual reality system brings more 

possibilities and scenarios that can be investigated for both civil and military applications. 

Together, these results provide a new and useful framework for simulation and 

experimental testing of new decentralized RHC algorithms and other types of nonlinear 

control methods for multi-vehicle systems. 

Future work includes generalizing the research for vehicles with senor, actuator 

and communication faults. The future research will also investigate the formulation of 

appropriate cost functions and predictive models for avoidance and interception of fast 

moving objects. Furthermore, the experimental apparatus and dynamic models will be 
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expanded to include more challenging types of vehicles such as model helicopters and 

robotic fish systems, which move significantly faster with more complex three 

dimensional dynamics. 
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