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Abstract
AR and ARMA System Identification Techniques under Heavy Noisy
Conditions and their Applications to Speech Analysis
Shaikh Anowarul Fattah, Ph.D.

Concordia University, 2008

System identification under noisy environment has axiomatic importance in nu-
merous fields, such as communication, control, and signal processing. The system
identification is to estimate and validate the parameters of the system from its out-
put observations, a task that becomes very difficult when the system output is heavily
noise-corrupted. The major objective of this research is to develop novel system iden-
tification techniques for an accurate estimation of the parameters of minimum phase
autoregressive (AR) and autoregressive moving average (ARMA) systems in practical
situations where the system input is not accessible and only noise-corrupted observa-
tions are available. Unlike conventional system identification methods in which only
the white noise excitation is considered, both the white noise and periodic impulse-
train excitations are taken into account in the methodologies developed with an aim
of directly using them in speech analysis.

A new ARMA correlation model is developed, based on which a two-stage correlation-
domain ARMA system identification method is proposed. In the first stage, the new
model in conjunction with a residue based least-squares (RBLS) model-fitting opti-
mization algorithm is used to estimate the AR parameters. In the second stage, the
moving average (MA) parameters are estimated from the residual signal obtained by
filtering the observed data using the estimated AR parameters. With a view to over-

come the adverse affect of noise on the MA part, a noise-compensation scheme using
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an inverse autocorrelation function (IACF) of the residual signal is also proposed.

Cepstrum analysis has been popular in speech and biomedical signal processing.
In this thesis, several cepstral domain techniques are developed to identify AR and
ARMA systems in noisy conditions. First, a ramp-cepstrum model for the one-sided
autocorrelation function (ACF) of the AR and ARMA signals is proposed, which is
then used for the estimation of the parameters of AR or ARMA systems using the
RBLS algorithm. It is shown that for the estimation of the MA parameters of the
ARMA systems, either a direct ramp-cepstrum model-fitting based approach or a
noise-compensation based approach can be adopted. Considering that, in the case of
real signals, discrete cosine transform is more attractive than the Fourier transform
(FT) in terms of the computational complexity, a ramp cosine cepstrum model is also
proposed for the identification of the AR and ARMA systems.

In order to overcome the limitations of the conventional low-order Yule-Walker
methods, a noise-compensated quadratic eigenvalue method utilizing the low-order
lags of the ACF, is proposed for the estimation of the AR parameters of the ARMA
system along with the noise variance. For the estimation of the MA parameters, the
new noise-compensation method,in which, a spectral factorization of the resulting
noise-compensated ACF of the residual signal is used, is employed.

In order to study the effectiveness of the proposed identification techniques, ex-
tensive simulations are carried out by considering synthetic AR and ARMA systems
of various orders under heavy noisy conditions. The results demonstrate the sig-
nificant superiority of the proposed techniques over some of the existing methods
even under very low levels of SNR. Simulation results on the identification of human
vocal-tract systems using natural speech signals are also provided, showing a superior

performance of the new techniques.
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As an illustration of application of the proposed AR and ARMA system iden-
tification techniques to speech analysis, noise robust schemes for the estimation of
formant frequencies are developed. Synthetic and natural phonemes including some
naturally spoken sentences in noisy environments are tested using the new formant
estimation schemes. The experimental results demonstrate a performance superior

to that of some of state-of-the-art methods at low levels of SNR. .
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Chapter 1

Introduction

1.1 General

Estimation of system parameters from given observations is concerned with charac-
terizing the system behavior. Its main tasks are the estimation and validation of
parametric models for the systems. It has axiomatic importance in various fields,
such as signal processing, communication, and control [1]. For example, blind chan-
nel identification, without knowing the input data, offers a way of reducing inter-
symbol interferences in digital communication [2], [3]. Control engineers often use
model-based identification techniques to gain physical insights into the underlying
dynamics of the systems [4]-[6]. In the area of signal processing, system identification
has widespread applications, covering speech processing, biomedical signal process-
ing, image processing, radar and seismic signal processing. For instance, estimation
of speech production system parameters plays an important role in digital speech
analysis/synthesis, modeling, coding, and recognition [7]-[12]. In biomedical signal
processing, it is a common practice to fit physiological systems with some simplified
models for the diagnosis of some physical phenomena [13]-[16]. In the area of radar

signal processing, a model-based spectral analysis is very frequently used {17]-[19],



and in the seismic signal processing, system identification methods are employed to
estimate different parameters, such as the reflection coefficients [20].

A parametric model extracts the important aspects of the dynamic behavior of
the system under test. In many practical applications, discrete-time systems are well
approximated by rational transfer function models, which, in general, can be classified
into three categories: (1) the pole-zero or autoregressive moving average (ARMA)
model containing both poles and zeros, (2) the all-pole or autoregressive (AR) model
containing only poles, and (3) the all-zero or moving average (MA) model containing
only zeros. In comparison to the other two models, the ARMA model provides a
more efficient way of representing the system in terms of the required number of model
parameters and spectral matching characteristics. The AR model is in general suitable
for representing spectra with narrow peaks, which commonly appear in the modeling
of real-life signals,while if using the MA model, a large number of coefficients are
required to represent the narrow spectrum. System parameters are usually estimated
from the given output observations. Fig. 1.1 shows a typical system identification
problem in the presence of noise, where the data available for estimating the system
parameters are the noise-corrupted output observations. This figure helps drawing
our attention to some major issues involved in the parameter estimation problems

that are summarized as follows:

1. In most of the real-life applications, the input data to the system are not avail-
able or not accessible but some of its properties could be conjectured. Obviously,
if the input signal can be accessed, the parameter estimation becomes a more

standard and simpler problem.

2. System transfer function can often be modeled in advance as an ARMA, AR, or
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Figure 1.1: System identification in the presence of noise.

MA models depending on the practical applications, but the model parameters

are unknown in a particular identification test.

3. In the parameter estimation problem, in most of the cases, only the noise-
corrupted output observations are available. Although the noise-only part of
the output is generally not available, some of its statistical properties can be

conjectured.

4. The level of noise corrupting the system output, which is measured in terms of

the signal-to-noise ratio (SNR), significantly affects the estimation performance.

In the real world, it is quite impossible to avoid the inclusion of environmental
noise. As far as real-life applications are concerned, parameter estimation using only
the noise-corrupted observations at a very low SNR is rather difficult. For example, in
the case of speech signals, the identification problem becomes very tough, especially
at a very low SNR level, since the input data are not available or accessible and the
estimation task has to be performed only from a given noisy observation. Thus, the
parameter estimation from a very severe noisy observation is an open problem that

has interested many researchers.



1.2 A Review of Existing Methods of System Iden-
tification

In this section, we will review some of the typical techniques for the estimation of
system parameters. This literature review not only serves as a necessary background
material in understanding the state-of-the-art techniques, but also supports the mo-

tivation of the research work in the thesis.

1.2.1 AR and ARMA System Identification

In most of the application fields, as mentioned in Section 1.1, the parameter estimation
problems mainly consider either the ARMA model (2], [5], [11]-[14], [21]-[23] or the
AR model [3], [4], [6], [9], [10], [16]-[18], [24]. Among several methods of parameter
estimation, the maximum likelihood (ML) or pseudo-ML algorithms were extensively
studied for the identification of AR [25]-[30] and ARMA [31]-[34] systems. Most of
the ML estimation methods only deal with the noise-free condition. The ML methods
are asymptotically consistent but their convergence performance relies heavily on the
initialization process of the methods [33]-[35]. Recently in {35], a genetic algorithm
has been proposed to solve the ML estimation problem in the presence of noise.
In this method, unlike conventional estimation problems, the AR system driven by
chaos has been considered, which results in a better estimation accuracy compared
to that obtained by using the white Gaussian probing signal with the least-squares
estimator [36], [37]. Note that the estimation based on a probing signal requires an
access to the system-input which, as mentioned in the previous section, is not possible
for most of the real-life applications.

Instead of simultaneous estimation of the AR and MA parameters of the ARMA

systems, most of the methods estimate the parameters separately. These two-stage
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methods offer a better controllability on the estimation accuracy. Estimation of the
AR parameters of the ARMA systems, if perfor'med at the first stage, is of crucial
importance for the MA parameter estimation at the second stage, since a poor AR
estimation result would severely affect the estimation accuracy of the MA part. For
the first stage of ARMA system identification, the autocorrelation function (ACF)
based algorithms have been most widely used such as the modified/extended Yule-
Walker (MYW) methods [33], [38]-[47]. The main advantage of this approach is that
it requires only a simple set of linear equations involving sample autocorrelation co-
efficients. In a noisy environment, the estimation performance of the MYW methods
gets significantly degraded due to the presence of errors in all the lags of the ACF of
the noisy signal.

It is to be mentioned that, different variants of Yule-Walker (YW) algorithms
have also been extensively employed to identify the AR systems [33], [48]. The esti-
mation performance of noise compensation based identification schemes, such as the
low-order YW (LOYW) method, strongly depends on the accuracy of the a priori
knowledge of the noise corrupting the signals {33], [49]—[51]. Although the high-order
YW (HOYW) method does not require a priori estimate of the noise variance, it
suffers from a singularity problem and has a large estimation variance [52]-[54]. In
this case, to reduce the estimation variance, a least-squares HOYW (LSYW) method
can be used [33], [55]. However, in the presence of a moderate level of noise, the
estimation variance of the LSYW method is still large {56], [57]. In order to overcome
this problem, a signal/noise subspace YW (SSYW) method has been proposed by
introducing a noise compensation in the LOYW method [58], [59]. The least-squares
(LS) based techniques for the AR parameter estimation have also been frequently

used [60]-[65]. They involve less computation but performs well only at a high level
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of SNR. The methods reported in [66], [67], have claimed a better identification of
AR systems at a low level of SNR. However, the method in [66] involves nonlinear
operation and suffers from a convergence problem. In [67], a pre-filtering of the es-
timated energy density spectrum in the discrete cosine transform (DCT) domain is
utilized to estimate the noise-free autocorrelation function which is used for the AR
parameter estimation. This method strongly suffers from the problem of selecting
the unknown noise level to be subtracted. In addition to this, some assumptions like
linearity of the square DCT coefficients and the uncorrelation between signal and
noise DCT coefficients introduce significant error in the parameter estimation.
Using the estimated AR parameters, one can filter the ARMA signal and obtain
a residual signal that can be utilized to estimate the MA parameters of the ARMA
systems with the help of some suitably chosen MA estimators [33], [68]. There exist
mainly two approaches to estimate the parameters from the MA residual signal: (1)
the spectral factorization [44] and (2) the Durbin’s algorithm [33]. Both of these
approaches severely suffer under noisy conditions, since the observation noise heavily
corrupts the residual signal. The estimation performance of the Durbin’s method of
MA parameter estimation strongly depends on both the accuracy of the estimated
intermediate AR (IAR) parameters and the order chosen for the IAR system [33].
Instead of using the IAR model, in [43] and [45], some direct schemes have been
proposed to estimate the MA parameters using the residual signal. However, the
method described in [43] needs to solve a set of nonlinear equations and the method
in [45] has been tested only in the noise-free condition. Note that the noise-part
corrupting the residual signal is also an MA signal, making the estimation problem
very difficult, especially when the SNR is very low. In order to alleviate the noise

effect on the MA parameter estimation of the residual signal, one possible solution,as



will be seen from this thesis work, is to use an effective noise reduction technique
operating on the noise-corrupted residual signal prior to the MA estimation.

In speech and biomedical signal processing, cepsﬂrum analysis has been proved
to be extremely effective [69]-[72]. Estimating system parameters from the cepstral
coefficients has been attempted by a few researchers [8], [11], [45], [73], [74]. Among
them, methods described in [11}, [45], [74] are proposed for the identification of the
noise-free ARMA systems. In [45], an ARMA-cepstrum recursion (ACR) is proposed
using the estimated cepstral coefficients of the ARMA signal in order to estimate
the MA parameters. The method proposed in [11] involves spectral factorization
and minimization of a convex objective function. Recently in [74], an enhanced
cepstrum is first computed by using the eigen-decomposition of the covariance matrix
of the observed data and then utilized in a conventional method of ARMA parameter
estimation. The cepstrum based noise-free AR estimation technique, proposed in [73],
cannot guarantee the stability of the estimated AR model.

Identification of ARMA systems under noisy conditions, especially using only the
output observations, has been attempted by some researchers [75]-[77]. Among them,
the method presented in [75] is a lattice filter based method, which provides good
estimates for the AR part but fails to accurately identify the MA part in the presence
of noise. Methods proposed in [76], [77] estimate the AR parameters from the ACF
of noisy observations and they estimate the MA parameters from the ACF using an
autocorrelation matching (ACM) technique under the assumption that the excitation
power is known. Furthermore, the estimation accuracy of the ACM method [77] is
affected in the presence of heavy noise due to its requirement of using high order
models equivalent to the noisy ARMA process as well as due to the employment of

the lattice filter based method.



There are some recently developed methods that deal with noisy environments
where the input signal needs to be accessed or designed [13], [14], [78], [79]. In order to
overcome the problem associated with the noisy observed signal, in {78], by designing
input as a chaotic signal, the ergodic property of the dynamical system has been
exploited, while in [80], a sinusoidal probing signal has been used with an appropriate
amplitude estimator. In [79], a technique combining the time and frequency domain
approaches has been used to estimate the ARMA parameters. Methods in [14] and
[13] identify the ARMA systems by minimizing a suitably chosen cost function. In
[14], a better estimation accuracy has been achieved in the noise-free case but the
performance is degraded in the presence of noise. The method proposed in [13],
gives a biased estimation in situations where the number of observed samples or the

signal-to-noise ratio (SNR) is low.

1.2.2 Application of the Parameter Estimation Methods in
Speech Processing
In recent years, there has been an increasing demand for the development of ac-
curate, efficient, and compact representations of speech production systems. Such
representations require the extraction of the characteristics of a vocal-tract system
from speech signals. Thus, vocal-tract SI has received potential applications in many
areas of speech processing, such as speech analysis/synthesis, speech coding, speech
recognition, acoustics phonetics, modeling of speech production process [81]. For-
mants are defined as free resonances of a human vocal-tract system [7]. They serve as
an important acoustic feature and offer phonetic reduction in speech recognition [82].
It also plays an important role in the design of some hearing aids [83]. Further-

more, formant-based speech synthesis analysis is nowadays receiving more and more



research attentions because of its continuity in unit concatenation.

Among different formant estimation techniques, linear predictive coding (LPC)
based methods are most commonly used, where formant frequencies are determined
through the LPC spectral analysis that is normally done by peak picking or pole
finding [7], [84], [85]. However, these methods characteristically offer a moderate
noise immunity only.Cepstrum has also been used in the formant estimation [86],
[87]. In [87], vocal-tract resonances are estimated using the LPC cepstral coeflicients.
In this method, the resonance candidates are obtained by employing a full-space
search of all frequency values in order to fit the measured acoustic data to both
the nonlinear prediction function and the temporal constraint simultaneously. It has
been demonstrated that the LPC cepstrum is advantageous over the LPC spectrum
because it provides a much simpler form of the analytical function. Like most of
the formant estimation methods so far reported, this method has dealt only with
noise-free environments [84], [85], [87]-[92].

In real-life applications, formant estimation from noise-corrupted speech is essen-
tial but a difficult task. As a matter of fact, only a few research results concern-
ing formant estimation from noisy speech are available in literature [93], [94]. The
method in [93] provides a consistent formant frequency estimates at a relatively high
SNR by a pitch-synchronous averaging of the covariance estimates over a number of
consecutive pitch periods. In [94], a peak-picking algorithm was used to a segmented
spectrum to estimate the formant frequencies. This method offers advantage of deter-
mining the segment boundaries sequentially but the segmentation algorithm requires
the ACF of the clean signal which restricted the performance up to an SNR of 5 dB.
Recently, based on the filtering principle proposed in [95], an adaptive filter-bank

(AFB) method was proposed in [83], which estimates a formant frequency from the



corresponding band-pass filtered output observations by using the conventional au-
tocorrelation method. This method provides an incorrect formant estimation if the

initial estimates are far from the actual values or if the SNR is very low.

1.3 Motivation

From the above discussion, the estimation performance of most of the AR and ARMA
system identification methods, whether they have been developed in the correlation
domain or in the cepstral domain, deteriorates drastically in the presence of noise. The
situation becomes worse when the estimation task of an ARMA system identification
has to be performed according to the noise-corrupted output observations. As for
practical applications, there has been a growing demand for the noise-robust system
identification schemes, especially in the area of speech signal processing. Thus, there
is a need of making concerted effort towards the developments of the identification
algorithms that can provide accurate parameter estimation of AR and ARMA systems
in practical situations where there exists noise or even the SNR is very low.

Although some methods have already been proposed to handle the ARMA system
identification problems in noisy environments, they have a common shortcoming of
requiring an access to the input excitation. It is to be mentioned that in many real-
life applications involving speech or biomedical signals, the input excitation is not
available or accessible. Therefore, the applications of the existing system identification
methods are very much limited.

Since most of the system identification methods in literature cannot effectively
deal with natural signals, new methods must be developed that by using appropriate
input signals can create a situation in which the natural signals could be handled more

efficiently. In most of the conventional system identification methods, only the white
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noise excitation is considered. However, in order to handle the problem of human
vocal-tract system identification or speech signal analysis, methods must be devised
by considering both white noise and periodic impulse-train excitations in order to
create a natural-signal-like situation.

One of the criteria used in system identification problems is to minimize, in the
least-square sense, the error between the true data and the noise-corrupted observed
data. Since true data is not available in practice, an appropriate model, if it exists,
to represent the true data will facilitate the least-squares estimation problem. This
idea could be used for developing noise-robust models in the correlation and cepstral
domains, which could then be used to develop the least-squares model-fitting based
identification techniques. In view of the fact that generally white noise or periodic
impulse-train is used as input to naturally excited system, such as human vocal-
tract system, any new system identification must be developed based on both the
excitations. Finally, the performance evaluation and validation of any new system

identification technique must be supported by its real-life applications.

1.4 Scope and Organization of the Thesis

The main objective of this research is to develop effective methodologies for the identi-
fication of AR and ARMA systems, which are able to estimate the system parameters
accurately using the noise-corrupted observations even at a very low level of SNR.
Unlike some state-of-the-art techniques, the input to the system is not assumed to be
accessible or available. In order to show the effectiveness of the proposed techniques
in handling real-life applications, especially in the area of speech signal processing,
both white noise and periodic impulse-train excitations are considered in the system

identification techniques. We intend to develop effective noise-robust methods in the
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correlation- and cepstrum-domains by utilizing their advantageous features. In order
to demonstrate the effectiveness of the proposed methods, extensive simulations are
performed by considering synthetic AR and ARMA systems of different orders under
noisy conditions and the results are compared with those from some of the existing
methods. Simulation results are also provided for the identification of human vocal-
tract systems using natural speech signals. As a practical application of the system
identification techniques proposed in this thesis, experimental results on the formant
frequency estimation of different synthetic and natural speech signals are presented.
The thesis is organized as follows.

In Chapter 2, a new correlation model for the ARMA signal is proposed, based
on which an ARMA system identification method is developed. With a view to
achieve the suitability of the proposed model in speech processing applications, in the
derivation of the ARMA correlation (ARMAC) model, both the periodic impulse-train
and the white Gaussian noise inputs are taken into consideration. The ARMAC model
is then employed in developing a two-stage ARMA system identification scheme. In
the first stage, a residue-based least-squares (RBLS) correlation fitting optimization
algorithm is presented for the estimation of the AR parameters. Identification of
the MA part of the ARMA system under a heavy noisy condition is a very difficult
task. With a view to solve this problem, in the second stage, the noise in the residual
signal is first reduced by using a new noise-reduction scheme and then, the problem of
the MA parameter estimation is converted into a correlation fitting scheme by using
the inverse ACF (IACF) corresponding to the resulting noise-compensated residual
signal.

In Chapter 3, a cepstral-domain system identification method is proposed based

on a new ramp-cepstrum model for the one-sided autocorrelation function (OSACF)
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of the observed signal. Considering that very few cepstral-domain system identifi-
cation methods are available in literature, we first present the proposed AR system
identification technique and then extend it for ARMA systems. With regard to the
AR system identification, a ramp-cepstrum (RC) model for the OSACF of the AR
signal is first proposed by considering both types of inputs. As an extension of this
new idea, an ARMA ramp-cepstrum model is also derived. A ramp-cepstral model
fitting approach with the RBLS algorithm developed in Chapter 1 is then proposed
to estimate the AR parameters of the AR or ARMA system from the noisy output
observations. For the identification of the MA part of the ARMA system, we propose
two methods. The first method directly estimates the MA parameters using the RC
model in a similar manner as the AR parameter are estimated. In the second method,
the MA parameters are estimated from the residual signal by using a noise-reduction
scheme.

In Chapter 4, another cepstral-domain system identification method is developed
based on cosine cepstrum, where a new ramp-cosine cepstrum (RCC) model for the
OSACF of the observed signal, considering both types of inputs, is proposed. At
first, we present the proposed RCC based method for the AR system identification
and then extend it for the ARMA system. In order to estimate the AR parameters,
the RBLS algorithm, which guarantees the stability of the system, is employed in
conjunction with the RCC model. For the purpose of implementation, the discrete
cosine transform (DCT), which can efficiently handle the phase unwrapping problem
and offer computational advantages over the discrete Fourier transform, is employed.

Apart from the model-fitting based identification techniques developed in the pre-
vious chapters, in Chapter 5, we propose a new noise-compensated quadratic eigen-

value method for the estimation of the AR parameters of the ARMA system in order
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to overcome the limitations of the conventional low-order Yule-Walker methods. At
the first stage, the AR parameters along with the noise variance are estimated by solv-
ing a quadratic eigenvalue problem corresponding to a set of equations containing the
lower lags of the ACF of the observed data. The MA parameters are then estimated
at the second stage by using the spectral factorization of a noise-compensated ACF
of the residual signal.

Chapter 6 is concerned with formant estimation based on the proposed system
identification techniques. First, we present a general framework for formant frequency
estimation which consists of some functional blocks such as windowing, preprocessing,
pre-filtering etc. We then propose some robust formant estimation methods which
can efficiently tackle the adverse effect of observation noise, including (1) ARMA
correlation method, (2) ramp-cepstrum (RC)method, and (3) ramp cosine cepstrum
(RCC)method. In the ARMA correlation method we use the ARMAC model in
conjunction with an adaptive RBLS algorithm to extract first few formant frequencies
from the observed noise-corrupted speech. The RC method estimates the formant
frequencies from noisy speech by employing the proposed RC model in the adaptive
RBLS algorithm. The RCC method is developed based on the ramp cosine cepstrum
of the once repeated ACF (ORACF). In comparison with the OSACF, the ORACF
offers more noise robustness which enhances the estimation performance of the RCC
based formant estimation method.

Finally, some concluding remarks highlighting the contributions of the thesis and

suggestions for future work are provided in Chapter 7.
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Chapter 2

ARMA Correlation Model Based
System Identification

2.1 Introduction

Identification of ARMA systems under a heavy noisy condition, especially when using
only the output observations, is a very difficult but essential task for many practical
applications. In a noisy environment, the performance of the correlation based meth-
ods gets significantly degraded due to the presence of errors in all the lags of the auto-
correlation function (ACF) of the noisy signal. In this chapter, a novel technique for
the identification of minimum-phase autoregressive moving average (ARMA) systems
from the output observations heavily corrupted by noise is presented [96], [97]. First,
starting from the conventional correlation estimator, a simple yet accurate ARMA
correlation (ARMAC) model in terms of the poles of the ARMA system is presented
in a unified manner for white noise and impulse-train excitations. The AR parameters
of the ARMA system are then obtained from the noisy observations by developing
and using a residue-based least-squares (RBLS) correlation-fitting optimization algo-
rithm that employs the proposed ARMAC model. As for the estimation of the MA

parameters, it is preceded by the application of a new technique intended to reduce
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the noise present in the residual signal that is obtained by filtering the noisy ARMA
signal via the estimated AR parameters. A scheme is then devised whereby the task
of MA parameter estimation is transformed into a problem of correlation-fitting of
the inverse autocorrelation function (IACF) corresponding to the noise-compensated
residual signal. In order to demonstrate the effectiveness of the proposed method,
extensive simulations are performed by considering synthetic ARMA systems of dif-
ferent orders in the presence of additive white noise and the results are compared with
those of some of the existing methods. It is shown that the proposed method is capa-
ble of estimating the ARMA parameters accurately and consistently with guaranteed
stability for signal-to-noise ratio (SNR) levels as low as —5 dB. Simulation results for
the identification of a human vocal-tract system using natural speech signals are also
provided showing a superior performance of the proposed technique in terms of the
power spectral density of the synthesized speech signal.

The rest of the chapter is organized as follows. In Section 2.2, we first present
the derivation of the ARMAC model for the two types of input excitations. Then, a
scheme for the estimation of the AR parameters of the ARMA system in the presence
of noise is proposed. Section 2.3 presents a methodology to estimate the MA parame-
ters of the ARMA system. The performance of the proposed method is demonstrated
in Section 2.4 through extensive computer simulations for both synthetic and natural
speech signals. Finally, in Section 2.5, the salient features of this investigation are

summarized.
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2.2 Estimation of AR Parameters

2.2.1 Problem Statement

A causal, stable and linear time-invariant (LTI) ARMA (P, Q) system can be char-

acterized by

M~

Q
a;z(n —1i) =Y _bju(n - j) (2.1)
j=0

=0

where u(n) and z(n) are, respectively, the excitation and the response of the system,
a; and b; the corresponding AR and MA parameters with ap = 1 and without loss
of generality we can assume by = 1. The orders of the ARMA model P and @ are
assumed to be known. If the orders are not known, before starting the task of system
identification, an estimate of the system order must be obtained. Different standard
techniques are available in the literature [98], [99] that can be employed to estimate
the order of an ARMA system. It is also assumed that P > Q). Note that, for real-life
data, such as speech signal, it is sufficient to use an ARMA model with less number
of zeros than the number of poles [7]. Moreover, since the presence of an additive
noise directly affects the system zeros, modeling real data with less number of zeros
would be helpful in reducing the estimation error. In most of the system identification
problems, u(n) is considered to be a stationary, zero-mean white Gaussian noise with
variance o2. For some practical applications, however, the excitation can have other
forms [7], [100]. For example, in speech processing, an impulse-train is often used
as the excitation of the vocal-tract system [7]. In our identification scheme, both

white noise and impulse-train excitations are considered. The transfer function of the
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ARMA(P, Q) system described by (2.1) can be written as

Q
H (1 =2z~ P
H(z) = ig = Z kz_l (2.2)

Hl—pkz 1

=1

Eed

where A(2) = Sb_ 2% and B(z) = 1 + E?zl b;jz77 are, respectively, the AR and
MA polynomial, pi’s and z;’s denote, respectively, the poles and the zeros of the
ARMA system, and 7 the partial fraction coefficient corresponding to the kth pole.
As in most of the ARMA system identification methods, it is assumed that all poles
and zeros are of the first-order, no further pole-zero cancelation possible, and the
ARMA(P, Q) process is minimum phase and stationary. It is to be mentioned that
the higher order poles and zeros deal with the cases having sharp peaks or notches
in their frequency responses. However, in the presence of noise, modeling with high-
order poles and zeros may lead to an ambiguous identification results. In order to
avoid this problem and still deal with situations of sharp responses, one can use first-
order poles and zeros with appropriate distribution of their locations. Since in many
applications dealing with real-life data, only the amplitude response of the system or
the corresponding PSD is a major concern, the assumption of minimum phase would

not be critical. The impulse response of the ARMA system can be easily obtained

from (2.2) as
P
n) =Y mp} (2.3)
The ACF of z(n) is given by
pz(7) = Elz(n)z(n + 7)] (2.4)
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Given a finite set of observations {z(n)}=}, the ACF of 2(n) can be estimated as [33]

N-1~|r|
r(7) = = Z z(n)z(n+|7)),7=0,1,...,. M —1 (2.5)

. n=0

In the correlation-based system identification methods, (2.5), hereafter referred to
as the conventional estimator, is generally used to estimate the AR parameters. In
practical applications, where data length N is finite, (2.5) offers an efficient way to
obtain an accurate estimate of the true ACF p,(7) for AR and ARMA signals. In
(2.5), a small number, M, of ACF lags is sufficient to represent an accurate estimate
of pz(7).

In the presence of additive white Gaussian noise v(n), the observed signal y(n)

can be written as

y(n) = z(n) + v(n) (2.6)

where v(n) is a stationary process with zero-mean and variance o2, and is independent
of u(n). The estimated ACF ry(7) of the noisy observation y(n) can be computed
using (2.5) as

ry(T) = 12 (1) + 1o (7) + 7(7) (2.7)

where r.(7) represents the cross-correlation terms. Assuming that x(n) and v(n) are

uncorrelated, one can obtain an estimate of r,(7) from r,(7) using the relation

S rr)=9¢2 =0
rz(T) = { Ty(T) , T#0 (2.8)

It is worth mentioning that in a heavy noisy condition, the cross-correlation between
the signal and noise may not be equal to zero, and the deviation from zero may be large
in the case of a very low SNR. Thus, the estimation of r,(7) using (2.8) may result in
a significant error at all lags. This is the reason as to why the autocorrelation based

methods provide poor estimates of the AR parameters in a heavy noisy environment.
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In order to alleviate this problem, in this section a new correlation model for the
ARMA signal is first derived. This model is then used as the target function for
the noisy ACF in a correlation-fitting technique that employs an effective residual
least-squares optimization method for obtaining quite an accurate estimate of r;(7)
from r,(7) even at a very low SNR. The correlation model for the ARMA signals is
presented for white noise as well as periodic impulse train excitations with both finite

or infinite durations.

2.2.2 ARMAC Model for a White Noise Excitation

For a white noise excitation u(n), the output of an initially relaxed ARMA system

can be obtained using (2.3) as

z(n) = u(n) * hin) = Z neu(m)py ™ (2.9)

where * denotes the convolution operation. Substituting (2.9) into (2.5), () for

T > 0 can be expressed as

1 N~-i-1 P n n+T
() =5 D DD M ¢ (2.10)
k=

n=0 1 j=1 =0 m=0

£= u(l)u(m)p;+"“mp?'l, 7=0,1,...,.M -1

As the ACF is a decaying function of 7, it is sufficient to consider a small value
for the ACF lags M irrespective of the duration N of the excitation as being finite
or infinite [33]. We have found through an extensive experimentation that in the
case of a finite-duration excitation, it is sufficient to choose the M as N/4. Since the
magnitude of the poles of a stable ARMA system is less than unity, the product terms

containing larger powers of the poles in (2.10), can, therefore, be neglected and the
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expression for ACF given by (2.10) can be simplified as (see Appendix A for details)

P
ro(r) = Ywpp 7=0,1, ...... L M—1 (2.11)
k=1
ey
bw, = X L (2.12)
e ; 1 — pkp;
1 N-7-1
— 2
X=N Z u(l) (2.13)

Note that for N — oo, x can be treated as the variance of u(n). It is seen from the
above equation that the ARMA correlation (ARMAC) model as given by (2.11) is
expressed explicitly in terms of the poles of the ARMA system for both finite- and

infinite-duration excitations.

2.2.3 ARMAC Model for a Periodic Impulse-train Excitation

The periodic impulse-train excitation {u;(n)}. =} with a period T can be expressed
as

=Y §(n—mT), A=[N/T] (2.14)

where [(] represents the smallest integer greater than or equal to ¢, and thus, A is
the total number of impulses in the excitation. Using (2.3) and (2.14), for an initially

relaxed ARMA system, the output can be obtained as

z(n) = ul(n)*h n)

P k- P
= > > ™ = ppGia (2.15)
k=1 m=0 k=1
1, n_0,1,...T—1
1+p T n=1,...,2T -1
Zp”’”T— : (2.16)

1+...+p CleeDT

n—(/{~1)T,...,/{T—1
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where k = [ ﬁ”_;ﬁll-l In the periodic impulse-train excited systems, all the necessary
information required to identify the system parameters lies within the first 7" lags
of 72(7), and hence, it is sufficient to consider M = T'/2 ACF lags. In most of the
system identification applications, the data length can be chosen as N > T'/2. The
objective here is to develop a correlation model as it was done for the case of white
noise excitation.

Due to the complicated form of the signal model (2.15), which, depending on the
observation period, has different expressions for G, as given by (2.16), the derivation
of the new correlation model is more involved than in the case of the white noise
excitation. To this end, in Appendix B, we compute and simplify r,(7) for each lag
separately. By observing the patterns of the correlation functions for individual lags,

a general expression for r,(7) can be obtained as

1 L
Zznknj@p;, ©=06;+0,, (2.17)
k:l j=1
o, = 1 - (ppy)” ]
(1—pka 1—pf)(1~p])
x [(A-1)- = 9(p;) + g(pxp;)]

-+

1 — (pxp;) )(1_pk> 1_?T
l—pkpg 1—pf J\1=-pF )’

T=0
O = p) TSy (oepy) ™

0= gl 720

In the above expressions, g(a) and A are given by

1_a(A—1)T
— T
gla) = « (T‘;f“)

0,
A = {R—T, R—712>0



where R > 0 is the number of remaining samples after the last period and is given by
R=N-(AX-1T (2.18)

In practical applications, the value of T is sufficiently large such that the expressions
in 7.(7) corresponding to the high powers of poles can be neglected. In such a case,

the expression for r,(7) given by (2.17) can be simplified as

T

P
ro(7) = ;¢Tpkp;,7=0,1,...,M—1;M< 5 (2.19)

P
1
Yrr, = NZﬂkﬁjef,

J=1
A- (pkp')A — -

0, = { T=pw _Tefo; l 7=0
O + (A= 1pj 2ima(peps)™,  7>0

When the excitation is of infinite-duration, i.e., N tends to infinity, A in (2.14) can

be approximated as %; then in this case, (2.19) can be simplified as

P
T
ra(r) = Dol T=01,.. M-LM <3, (2.20)
k=1
1 P
Yrr, = TZUWg’@i,
Jj=1
1 = . =
o = {‘17%";@10’ | r=0
Oi + P 211 (Pkps) ™ 7>0

2.2.4 Estimation of AR Parameters of Noisy ARMA System
Using ARMAC Model

Using a common notation . to represent Yy, , ¥rr, or Y7y, the correlation models
of an ARMA signal for the white noise and impulse-train excitations, as obtained in

the last two subsections and given by (2.11), (2.19), and (2.20) can be expressed in a
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unified manner given by
P
re(r) =Y pf, T7=0,1,..., M —1 (2.21)
k=1
Although v, may vary slightly as 7 increases, within the range of M mentioned in
Section 2.2.2 and 2.2.3, this variation is negligible and therefore, within this range
it can be treated as a constant. Note that 1, can be real or complex depending on
whether the poles are real or complex. As the ARMA signal under consideration is
real, complex poles always appear in complex conjugate pairs. Letting py = rye/**,
Yr = (xe’"*, and 6 be the number of real poles plus the number of pairs of complex

conjugate poles, (2.21) can be rewritten as
]
r(T) = Zr [y cos(wiT) + By sin(wT)], 7 =0,1,...,M =1 (2.22)
=1

where o; = (cos vy, § = —(;sinv;. Each of the # terms in the summation of (2.22),
namely F(7) = r][a; cos (w;T) + §;sin (w;7)], can be estimated sequentially from the
M lags of r,(7), which is available from the noisy observations. In r,(7), the effect of
noise is dominant mainly at 7 = 0. Hence, in order to reduce the noise effect, 7 > 0 is
considered. The parameters 7}, w;, ; and [, of each component Fi(7), with 7 > 0, are
determined such that the total squared error between the (I — 1)th residual function

and F;(7) is minimized. We define the [th residual function as

Ri(r) = Ra(r)—-F(r);1=1,2,...,0—1; (2.23)

Ro(r) = ry(7)
Then, the total squared error for the minimization problem can be expressed as

Zl%u M, 1=1,2...,0 (2.24)
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Our objective is to find the optimum solution for r;,w;,; and [, using a search
algorithm. In order to solve this optimization problem, we first equate the partial

derivatives of J; with respect to 7; and w; to zero, yielding

M-1

Z 77" cos® (wiT) Zi‘i—ll 2 sc(wT) i
7=1 Q
M-1 5
7‘12750(“17') fo;]l % sinz(wlr) -
T=1
M-1 -
T
- 2 Ri_1(7)r" cos(w;T) (2.25)
T=
Ziw:_ll Ri1 ()7 sin(wy) |

where sc(w;T) = sin(w;7) cos(w;7). Now, we can formulate an optimization problem
for minimizing J; given by (2.24) with respect to r; and w; subject to the constraint
given by (2.25), and within some specified domain of values for r; and w; in the
range 0 < 7 < 1 and 0 < w; < 7, respectively. The values of r, = 7 and w; =
w; corresponding to the global minimum of J;, are chosen as the estimate of the
pole locations. If the estimated &y has a value of 0 or m, this estimate represents
a real pole. It is to be noted that the stability of the estimated ARMA model is
guaranteed because of the constraint imposed on r; in the process of minimization of
Ji. Proceeding in this manner, all the P poles of the ARMA system can be estimated,
and then, the AR parameters of the ARMA model can be determined easily by using
(2.2).

The correlation model proposed in this section offers a two-fold advantage. Firstly,
unlike the conventional recursive relation [33], the proposed model provides with a
direct non-recursive relationship between the poles of the ARMA system and the
ACF. Secondly, the proposed ARMAC model can be used in a correlation-fitting

approach to estimate the AR parameters. The novelty of the proposed scheme for
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ARMA
system
B(z)/A(2)

u(n)

Hn)

Figure 2.1: Filtering ARMA signal in noise by the estimated AR polynomial.

the AR parameter estimation lies in its ability to extract a noise-free correlation
function from a noisy one through a model fitting-based approach instead of using
the noisy one directly. Hence, the proposed technique can be expected to provide a

more accurate AR parameter estimation even at a very low SNR.

2.3 Estimation of M A Parameters

2.3.1 Problems Statement

Identification of the zeros of the underlying ARMA system from the noise-corrupted
observations is a difficult problem, since the additive noise directly affects the esti-
mation of the system zeros. In a two-step ARMA identification method, a residual
signal can be obtained by filtering the noisy ARMA signal y(n) with the estimated

AR polynomial A(z), giving

-
fyn) =y(n) + > axy(n — k) (2.26)
k=1

Fig. 2.1 shows the filtering process in the presence of noise v(n). We assume that
an accurate AR estimate of the ARMA system has already been obtained in the first

step, i.e., A(z) ~ A(z). Then, (2.26) can be rewritten as

-

fu(n) = B(z)u(n) + A(2)v(n) = foln) + fu(n) (2.27)

where f.(n) represents the residual signal with respect to the noise-free ARMA signal

z(n) and f,(n) corresponds to the noisy part due to the additive white Gaussian
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noise v(n). It is evident that f,(n) is a colored MA(P) sequence, even if the original
noise v(n), which corrupts the ARMA system, is white. Thus, f,(n) can be treated
as an MA sequence of order P. In this section, we propose a new algorithm that
first eliminates the noise effect in the correlation domain and then determines the
MA parameters from the inverse autocorrelation function (IACF). Similar to the
problem of AR identification, both the white noise and impulse-train excitations are

considered.

2.3.2 White Noise Excitation

The ACF of f,(n) can be obtained as

r,(1) = Efy(n)fy(n+ 1)} =7£(7) + 75, (7) + 71.(7) (2.28)

where 7y,(7) and 7y, (7) are, the ACFs of f;(n) and f,(n), respectively, and 7y (7)
represents the terms of cross-correlation between f,(n) and f,(n), which after some

manipulation, can be expressed as

T4 () = Tuu(T) +7ou(T) —I—Z&k{rw(f — k) + ro (7 +k)}
k=1

Q P Q
Y be{ru(r T B) + ro(r = )} DD axbir’ (7,1, k) (2.29)
k=1

k=11=1
with 7/(7,1,k) = 7y (7 — k + 1) + 70 (7 + k — {). Note that the last term, r;,(7), in
(2.28) is expressed in terms of the cross-correlations between the excitation noise u(n)
and the additive noise v(n). Due to the fact that both u(n) and v(n) are white noise,
their cross-correlations can be neglected. As f.(n) can be treated as the output of

the MA(Q) system B(z) excited by a white noise input u(n) with variance o2, re.(T)
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can be expressed in terms of the MA parameters b, as

Q-7
S
T.fz(’r) — Uu ~ blbl‘i"f'? IT‘ S Q (230)
0, otherwise
Similarly, r4,(7) can be obtained as
P
T5,(T) = o - &by TSP (2.31)
0, otherwise
Thus, using (2.30) and (2.31) in (2.28), 74,(7) can be expressed as
Q-7
Z blbl+7' + oy Z Qg Qg |T| <@
5,(T) = ) (2.32)
qu 0 akak+-rv Q < ITI < P
0, |r|>P

In order to evaluate the noise variance, we can use (2.32) for @ < |7| < P provided
that an estimate of ry, (7), denoted as 7, (7), has already been obtained. Using (2.32)

for @ < |7| < P, an estimate of the noise variance can be obtained as
=7y (7 )/Zk o Gklryr, Q< |7| <P (2.33)

Thus, with 62 and A(z) already known, the noise-compensated r4,(T) or an estimate
of 74,(7) can be obtained using (2.32) for |7| < Q. As seen from (2.30), the MA
parameters {b;} can then be estimated from 7y, (7). In order to compute ry, (7), we
employ the scheme proposed in [101], where F, additional lags after |7| = P have
been used. Once the estimates 62 and 7y, (1) are determined, ry, () can be estimated

as

N 22 P—7 Ao &
o (r) = { P (1) = 63 hm0 Gkliar, 7| < Q (2.34)

10, otherwise
With the estimate 7y, (7) computed, it is seen from (2.30) that the estimation of the

MA parameters is a nonlinear problem. Recall that we have proposed in the previous
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section an LS model-fitting based approach for the estimation of the AR parameters,
which is capable of providing with a better estimate even in a heavy noisy condition.
We now devise a scheme whereby the proposed model-fitting method of Section 2.2
can also be employed for the estimation of the MA parameters.

It is known that the inverse ACF (IACF) of an MA(Q) process is of the same
form as the ACF of the corresponding AR(Q) process [102]. The IACF of f,(n) can

be computed from the estimate 7, (7) as
SR T iy P — (2.35)
Oy, (e7v) 2im=—gq T (m)e=7m

where F~! denotes the operation of the inverse Fourier transform and & £.(€7¥) is the

s, (1) = F!

estimated PSD of the MA(Q) signal f;(n). Then, the IACF can be associated with

the corresponding AR(Q) system by

S - 1 _ 63
2 e = s = R (236)

where G, = 671 It is seen that the IACF ¢y, (r) corresponds to the ACF of the
AR(Q) system B(z) excited by the white noise d(n) with variance 62. Noting that
the ARMA correlation model proposed in Section 2.2 is also valid for AR systems,
the LS model-fitting based approach described in Section 2.2 can be readily applied
to the estimation of the parameters {b;} of B(z) from ¢, ().

Since the given system is assumed to be minimum-phase, in the above MA esti-
mation, only a valid MA(Q) correlation sequence 7, (7) (i.e., the correlation sequence
that gives exactly @ zeros inside the unit circle) should be used for the computation
of the IACF. The validity of #,(7) needs to be checked before computing &y, (7).
This can be done easily by using the polynomial rooting described in [33]. It is clear
from (2.34) that the estimation accuracy of the noise variance o2 would affect the va-

lidity of the estimated correlation sequence 4, (7). For a better estimation accuracy,
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the values of 62 resulting from the different choices of lags 7 (see (2.33)) are aver-
aged and used in (2.34). If the averaged noise variance estimate, denoted by gi, still
does not produce a valid MA(Q) correlation sequence, a small neighborhood of 512, is
searched to find a valid correlation sequence. Alternatively, validation schemes such
as the over-parameterized algorithm of [101] can be used to obtain a valid correlation

sequence.
2.3.3 Impulse-train Excitation

In the case of impulse-train excitation u;(n) with a period of T as given by (2.14),

(2.27) can be rewritten as

~

Fu(n) = B(2)ui(n) + A(2)v(n) = fu,(n) + fu(n) (2.37)

where f;,(n) represents the residual signal with respect to the noise-free ARMA signal
z(n) and f,(n) corresponds to the noisy part due to the additive noise v(n). Thus,
fz;(n) is the output of an MA(Q) system B (z) excited by the periodic impulse-train
u;(n) and f,(n) is an MA(P) sequence excited by the white noise v(n). Since the
impulse response of an MA(Q) system, say ho(n), vanishes beyond n = @Q samples,
fzi(n) is a periodic repetition of hg(n) without overlaps when T > Q. The autocor-

relation of f,(n) can be expressed as

T (T) =715 (1) +75,(7) (2.38)

where 7y, (7) is the ACF of f;,(n) and 7y, (7) is given by (2.31). Note that, similar
to the case of white noise excitation (see (2.28)), the crosscorrelation terms between
fz:(n) and f,(n) in (2.38) has been neglected since, they consist of crosscorrelations

between u;(n) and v(n), which can be considered to be uncorrelated. The expression
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for ry,, (7) can be derived as

(A-1)

r ()= Y (A= k) rhe(r — KT) (2.39)
k=—(A~1)
_ S b, |71 <Q
Ta(T) = { 0, otherwise (2.40)

Recall that X is the total number of impulses in the impulse-train excitation defined
in (2.14). It is to be mentioned that 7, (7) is periodic with period T, and therefore,
in order to avoid aliasing in the correlation domain, one must choose 7" > 2Q + 1. In

the region |7| <T — Q, s, (7) reduces to

A by, TI<Q
T (T) —{ 0, =0 TP+ Q<lr<T-0 (2.41)

As seen from (2.38), the component 7y, (7) is a periodically repeated scaled version
of 7ho(7) (see (2.39)), and the component ry,(7) vanishes beyond 7 = P samples.

Using (2.31) and (2.41), for T > P+ @ + 1, (2.38) can be rewritten as

( Q-7 P-r

A 6181+T + 03 Z dkdk-f-r’ lTl < Q
I= k=0
P TA R (2'42)
02 ) Gk, Q <|T| <P
k=0
\ szi(T)a ITI >P

| ©

T (T) = S

Note that the format for 74, (7) as given above is similar to that of r¢,(7) given by
(2.32). It is seen from (2.39) and (2.42) that a non-zero value of ry, () beyond 7 = P
appears only after 7 = T'— (). Hence, the number of additional lags (P,) to be used in
the computation of ry, (7) is restricted to P, <T — (P +Q +1). In practice, T > P
and thus, the condition T > P + @ + 1 will be automatically satisfied. Similar to
the case of white noise excitation, an accurate estimation of ry, (7) is first obtained

and the estimate 77, (7) can then be used to calculate o2 according to the method
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described at the end of Section 2.3.2. Finally an estimate of 7z, (7) can be obtained

as

A 72 —-T a A
#p (r) = 71, (1) — 6, Sy tklirr, 171 <Q (2.43)
fas 0, otherwise

in which 7, (7) has been set to zero for 7 > Q. In the original expression for ry, (7)

as given by (2.39), when ry, (7) is set to zero beyond 7 = @, it can be written as
T (1) = A0 bibir = Mrag (7), 17 £ Q (2.44)

It is clear from (2.42), (2.43) and (2.44) that 7, (7) is the estimate of ry, (), which
is a scaled version of r,,(7) given by (2.40). Hence, as in the case of white noise
excitation (see (2.36)), the IACF J’fz,.(T) computed from 7, (), can be considered
as the ACF of the AR(Q) system B(z) excited by a white noise with variance 1/.
Therefore, the LS model-fitting based approach can be employed to determine the
MA parameters from ¢A>f1i (7), once the validity check for 77, (7) has been carried out.

The complete algorithm, whose development started in the previous section and
completed in this one, will hereafter be referred to as ARMAC method. The main

steps of this algorithm are summarized as Algorithm I.

Algorithm I: The Proposed ARMAC Method
1. Compute the autocorrelation r,(7) from noisy observation y(n) using (2.5).

2. Determine the poles using the residue-based least-squares (RBLS) technique (Sec-

tion 2.2.4) comprising the steps:

i. Obtain the initial estimates of the pole locations from the peaks of the smoothed

FFT of y(n).

32



ii. For each value of [, calculate J; using (2.23)—(2.25) and determine the desired

pole p; corresponding to the global minimum value of J;.
iii. Repeat (ii) until all the P poles are obtained.

iv. Compute the AR parameters from the estimated poles.

3. Determine the residual signal f,(n) by filtering y(n) using the estimated AR poly-

nomial obtained in Step 2 and estimate its autocorrelation ry, (7).

4. Obtain the estimate of the noise variance o2 using (2.33) and the noise-compensated
ACF #4,(7) of the residual signal using (2.34) and the method described in Section
2.3.2.

5. Compute IACF éfx('r) corresponding to ¢, (7) using (2.35).

6. Determine zeros from ¢ #.(7) using Step 2 and obtain the required MA parameters

from estimated zeros.

2.4 Simulation Results

In this section, we perform a number of simulations for the identification of ARMA
systems in the presence of noise. We consider synthetic ARMA signals as well as
natural speech signals corrupted by additive noise. First, in order to show the ac-
curacy of the proposed ARMAC model, we compute the correlation function using
the proposed model and the conventional correlation estimator given by (2.5). The
purpose here is to show that the values of the correlation function computed with the
known parameter values of the proposed model and the conventional estimator that

uses only the system output are reasonably close. For the proposed models we use
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(2.11) for the white noise excitation and (2.19) and (2.20) for the impulse-train exci-
tation. In this simulation, an ARMA(4, 3) system with parameters as given in Table
2.1 is used. We have considered N = 512 as an example for smaller data length [79]
and N = 10,000 for a relatively large data length. For the purpose of comparison,
the correlation sequences are normalized to unity and we have chosen M = 40 and
T = 94. The correlation results using the conventional estimator and the proposed
models are shown in Fig. 2.2. The close match between the two correlation functions
obtained by the conventional estimator and the proposed model clearly shows the
accuracy of the proposed model. Next, the performance in terms of the accuracy
and consistency of the estimated parameters of the proposed method is obtained and
compared with that of the conditional maximum-likelihood (ML) method [34], also
referred to as the prediction error method, the ARMA cepstrum recursion (ACR)
method [45], and a method (abbreviated as DYW method) in which the Durbin’s
scheme for the MA parameter estimation is combined with the least-squares modified
Yule-Walker (LSMYW) equations for the AR parameter estimation [33]. We have
also considered the autocorrelation matching (ACM) method proposed in [77] and
comparative results are shown for some systems. In the ACM method the AR pa-
rameters are estimated from the ACF of noisy observations and it also estimates the
MA parameters from the ACF using an autocorrelation matching technique under

the assumption that the excitation power is known.

2.4.1 Results on Synthetic ARMA Systems

(a) White Noise Excitation: A noisy ARMA signal is generated according to (2.1)

and (2.6) with N = 4,000 and o2 = 1, where the variance of the white Gaussian noise
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Figure 2.2: ACFs generated by using the conventional estimator (2.5) and the
proposed ARMAC model for the white noise excitation with (a) N = 512 and

(b) N = 10,000, and for the impulse-train excitation with (¢) N = 512 and (d)
N = 10, 000.
can be appropriately set according to the desired SNR defined as

SNR = 10log,o[P:/P,] dB (2.45)

where P, = Zf;ol z(n)?) and P, = 22:01 v(n)?. The ARMAC model parameters are
then determined using the RBLS optimization technique described in Section 2.2. In
our simulation, the search range for r; is chosen in the range 0.5 < 7, < 0.99, that

allows the identification of even those systems whose autocorrelations decay very

fast. The initial estimates of w, are chosen from the location of the peaks of the
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smoothed FFT [33] of the noisy signal y(n). The search range for w; is chosen as 0.17
around the neighborhood of the initial estimates. Search resolutions of Ar = 0.01 and
Aw = 0.017 are used for r; and w;, respectively. The number of lags for the ACF is
set to be M = 10P. In the estimation of the MA parameters, P, = 60 additional lags
of 77, (7) is used. In the case, gi cannot produce a valid MA(Q) correlation sequence,
as described in Section 2.3, a neighborhood search, say in the region of 5% of gi with
a resolution of 0.01 is performed. As a matter of fact, in our extensive simulations,
it has been observed that in most of the cases, less than 10 searches are sufficient to
obtain a valid correlation sequence. Next, the IACF is computed using the Ny-point
FFT and IFFT operation, where Ny is chosen as the smallest power of 2 greater than
or equal to V. As mentioned in Section 2.3, the RBLS optimization technique is used
to extract the parameters b, of B(z). In this case, the number of lags for the ACF
is set to be M = 10Q and an initial estimate is obtained from the smoothed FFT of
the IACF. Other search parameters, such as the search range and the resolution, are
kept the same as used above for the AR case. Each experiment contains Nr = 100
independent trials. We have conducted the experiments for the noisy cases, where the
SNR varies from —10 dB to 15 dB at steps of 2.5 dB. The performance measurement
criteria considered in our simulation study are (1) estimation mean, (2) the standard
deviation from the mean (SDM), (3) the standard deviation from the given value (or

the true value) (SDT), and (4) the average sum-squared error (ASSE) given by

1 Ak
ASSE = ) :{‘] (E, + Eb) (2.46)

where B, = Y, [ax(m) — ail®, By = Y7, 1b;(m) — b}, and ax(m) and b;(m) are
the estimated parameters at the mth trial, and a; and b; the true values of the

parameters.

36



Table 2.1: Estimated parameters along with standard deviations (SDM and SDT) for
white noise excited ARMA(4, 3) system at SNR = 10 dB

Methods Estimated parameters ASSE

ai ar a3 a4 by bo b3 (dB)

ARMAC —2.5745 3.3385 —2.2372 0.7540 -1.9909 1.7250 —0.6046 | —22.78
(Proposed) | (+0.0473) | (£0.0961) | (£0.0849) | (£0.0356) | (£0.0654) | (£0.0716) | (40.0660)
(£0.0515) | (£0.0961) | (£0.0927) | (£0.0424) | (£0.0704) | (£0.0716) | (£0.0675)

ARMAX —1.7592 2.0615 —1.3021 0.5421 —1.2484 1.0844 —0.5688 1.04
(£0.8973) | (£1.3002) | (£0.8527) | (£0.1635) | (£0.8014) | (£0.8092) | (40.1218)
(£1.2263) | (£1.8228) | (£1.2383) | (+0.2498) | (+1.1770) | (£1.0301) | (40.1237)

ACR —2.2888 2.6758 —1.6265 0.5336 —-1.8076 1.5132 -0.6678 | —7.98
(£0.0877) | (£0.1963) | (£0.1730) | (£0.0631) | (£0.0887) | (£0.1563) | (£0.0867)
(£0.3185) | (+£0.6917) | (£0.50990) | (£0.2072) | (£0.2274) | (£0.2607) | (0.1162)

DYW —2.2888 2.6758 —1.6265 0.5336 —1.5694 1.1192 —0.3351 -5.09
(£0.0877) | (£0.1963) | (£0.1730) | (£0.0631) | (£0.4183) | (+£0.5454) | (20.2914)
(+0.3185) | (£0.6917) | (£0.5990) | (£0.2072) | (+0.6127) | (£0.8127) | (40.3874)

True | -2.5950 | 3.3390 | -2.2000 |  0.7310 | —2.0i70 |  1.7218 | —0.5004 |

Table 2.2: Estimated parameters along with standard deviations (SDM and SDT) for
white noise excited ARMA(4, 3) system at SNR = —-5 dB

Methods Estimated parameters ASSE
a) az as a4 b1 b2 b3 (dB)
ARMAC —2.5691 3.3268 —~2.2216 0.7444 —1.9656 1.7066 —-0.5632 | —15.26
(Proposed) | (£0.0982) | (+0.1979) | (+0.1836) | (£0.0827) | (£0.2314) | (£0.2309) | (£0.0842)
(£0.1016) | (£0.1983) | (£0.1849) | (£0.0838) | (£0.2371) | (£0.2314) | (£0.0884)
ARMAX —0.9604 0.0950 —0.3906 —0.0352 —0.8425 —0.0273 0.3144 5.88
(£0.5135) | (+0.5893) | (£0.3419) | (£0.0591) | (£0.5164) | (£0.5411) | (£0.2917)
(£1.7133) | (4£3.2971) | (£2.6131) | (£0.7685) | (£1.2830) | (£1.8308) | (+0.9507)
ACR —0.6151 0.0435 0.1732 0.1717 -0.5020 —-0.0336 0.0824 5.81
(£0.1199) | (20.1623) | (+£0.1430) | (£0.0925) | (+£0.1204) | (+0.1492) | (+0.1286)
(£1.9835) | (£3.2995) | (£2.3775) | (£0.5669) | (+1.5198) | (£1.7616) | (+0.6850)
DYW —0.6151 0.0435 —-0.1732 0.1717 —0.4627 0.0312 0.0869 5.87
(£0.1199) | (£0.1623) | (+0.1430) | (£0.0925) | (40.5043) | (+0.4049) | (£0.2994)
(£1.9835) | (£3.2995) | (£2.3775) | (£0.5669) | (+1.6341) | (+1.7384) | (0.7405)
True | —2.5950 | 3.3390 | —2.2000 | _ 0.7310 | —2.0170 | _ 1.7218 | —0.5004 |

Tables 2.1 and 2.2 show the estimation results for the ARMA(4, 3) system where
the SNR values are set to 10 dB and —5 dB, respectively. Tables 2.3 and 2.4 pro-
vide the corresponding estimation results for the ARMA(3,2) system. Different
ARMA systems are investigated in order to cover a wide range of possible combi-
nations of pole-zero locations as well as types (i.e., real or complex conjugate). In the
ARMAC(3,2) and ARMA(4, 3) systems the zeros and poles are closely spaced in order

to demonstrate the estimation performance of the proposed scheme in dealing with
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Table 2.3: Estimated parameters along with standard deviations (SDM and SDT) for

white noise excited ARMA(3,2) system at SNR = 10 dB

Methods Estimated parameters ASSE

ai az as b1 bo (dB)

ARMAC —2.2898 2.0340 —0.7229 —1.4843 0.6053 | —26.86
(Proposed) | (£0.0286) | (£0.0523) | (£0.0277) | (+0.0405) | (+0.0399)
(£0.0288) | (0.0525) | (£0.0300) | (£0.0551) | (+0.0528)

ARMAX —2.2685 1.9479 —0.6503 —1.6087 0.7196 [ —20.73
(£0.0172) | (£0.0268) | (£0.0124) | (£0.0191) | (£0.0180)
(+£0.0300) | (+0.0851) | (£0.0624) | (£0.0891) | (£0.0816)

ACR —2.2569 1.9749 —0.6880 —-1.6289 0.8594 | —18.35
(£0.0298) | (£0.0506) | (£0.0228) | (£0.0394) | (+0.0561)
(£0.0468) | (+0.0739) | (4£0.0327) | (40.1143) | (£0.2265)

DYW (—2.2569 1.9749 —0.6880 —-1.4187 0.5920 | —13.14
(£0.0298) | (+0.0506) | (£0.0228) | (£0.3593) | (£0.3038)
(40.0468) | (+0.0739) | (£0.0327) | (£0.3737) | (£0.3076)
True | —2.2930 | 2.0287 | —0.7115 | ~1.5217 | 0.6400 |

Table 2.4: Estimated parameters along with standard deviations (SDM and SDT) for
white noise excited ARMA(3,2) system at SNR = —5 dB

Methods Estimated parameters ASSE

a) a2 as b] bz (dB)

ARMAC —2.2529 1.9826 —0.6858 —1.4449 0.6112 —-17.45
(Proposed) | (£0.1059) | (£0.1517) | (£0.0979) | (£0.1317) | (£0.1350)
(40.1133) | (£0.1585) | (£0.1012) | (+0.1525) | (£0.1380)

ARMAX —1.0125 0.6472 —0.0442 —0.8593 0.5524 0.33
(£0.5493) | (£0.4505) | (£0.0570) | (£0.5504) | (£0.3851)
(+1.3934) | (£1.4531) | (£0.6697) | (£0.8612) | (+0.3949)

ACR —1.0902 0.2907 0.0283 0.9490 0.1985 0.67
(£0.2145) | (£0.3187) | (£0.1445) | (+0.2178) | (£0.2909)
(41.2218) | (£1.7670) | (£0.7538) | (£0.6127) | (£0.5287)

DYW —1.0902 0.2907 0.0283 —0.7582 0.1555 1.09
(£0.2145) | (£0.3187) | (£0.1445) | (£0.5263) | (£0.4005)
(£1.2218) | (£1.7670) | (£0.7538) | (£0.9273) | (£0.6286)

True | -2.2930 |  2.0287 | —0.7115 | —1.5217 | _ 0.6400 |

such a difficult identification situation. In each table, the last row gives the true pa-
rameter values. The estimated values of the corresponding parameters obtained from
the proposed and the three other methods are given in the preceding four rows. The
corresponding values for the SDM and SDT are shown within the parentheses below
the each estimated parameter value. The last column of each table provides the ASSE
in dB. It is to be mentioned that to implement the ML method the ‘armaz’ command

from the MATLAB System Identification Toolbox is used [34]. In the DYW method,
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Figure 2.3: Effect of noise on the estimation accuracy for white noise excited
ARMA(3,2) system.
the LSMYW equations are used for the AR as well as the intermediate AR param-
eter estimation [33]. It is seen from these tables that the proposed method exhibits
superior performance with respect to all the four performance indices at both levels
of SNR. Very small values of SDM and SDT obtained from the proposed technique
indicate a high degree of estimation consistency and accuracy. It is seen from Tables
2.1 and 2.3 that at SNR = 10 dB, although some of the other methods provide an
acceptable performances, the estimation accuracy achieved by the proposed method
is much higher. Tables 2.2 and 2.4 show that even at SNR = —5 dB, when the other
methods fail to identify the system, the proposed method successfully estimates the
parameters with sufficient accuracy.

Fig. 2.3 shows the ASSE values as a function of SNR levels for the four methods

for the ARMA(3, 2) system with the true parameters given in Table 2.3. It is observed
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from Fig. 2.3 that the ML and the ACR methods give estimation accuracy comparable
to that provided by the proposed ARMAC method for SNR levels above 10 dB.
However, the proposed method performs much better for levels of SNR as low as —5
dB.

Fig. 2.4 depicts the superimposed plots of the estimated poles and zeros from
25 realizations obtained by using the different methods at SNR = —5 dB for the

ARMA(5,4) system whose parameters are given as

ar = {1,-2.0825,2.267, —2.1997,1.8563, —0.811}

b; = {1,-1.6379,1.5279, ~1.2989,0.6281}

For the purpose of comparison, the true poles and zeros are also plotted. Clearly,
the estimated values obtained by using the proposed ARMAC method are much
less scattered around the true values indicating a very high estimation accuracy in
comparison to that achieved by the other methods.

The effect of data length on the estimation accuracy at different levels of SNR has
also been investigated. In Fig. 2.5, the effect of data length on the ASSE (dB) at
SNR = 10 dB and —5 dB for the same ARMA(3,2) system as the one used in Fig.
2.3 is shown. An important observation that can be made from this figure is that the
proposed ARMAC method provides quite an accurate estimation results even at a
data length as small as N = 500 samples. Similar to the other methods, the proposed
method shows consistency of the results throughout most of the data length.

In order to show the effectiveness of the proposed technique, we carry out another
comparison by providing the estimation results obtained by using the ARMAC and
ACM [77] methods in Tables 2.5. For this purpose, an ARMA(3,2) system used

in [77] is considered. As seen from the table, the proposed ARMAC method gives a
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Figure 2.5: Effect of data length on the estimation accuracy for white noise excited
ARMA(3, 2) system.

lower estimation variance even at a very low SNR of —5 dB. The estimation accuracy
of the ACM method is affected in the presence of heavy noise due to its requirement
of using high order models equivalent to the noisy ARMA process as well as due to

the employment of the lattice filter based method.

(b) Impulse-Train Excitation:

We have also considered the problem of ARMA system identification with the
periodic impulse-train excitations of different periods for various levels of noise. An
impulse-train is generated using (2.14) with a known value of . A noisy ARMA
signal is generated according to (2.1) and (2.6) with N = 4,000. The simulations are
run over Ny = 100 independent trials and the results averaged.

Tables 2.6 and 2.7 provide the estimation results for the impulse-train excited
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Table 2.5: Estimated parameters along with standard deviations (SDM and SDT) for
white noise excited another ARMA(3,2) system

True SNR=-5 dB SNR=0 dB
values ARMAC ACM ARMAC ACM
[77] (Proposed) [77] (Proposed) [77]
a1 —2.2990 —2.3059 —2.2694 —2.2998 —2.3329

(£0.0299) | (+0.1628) | (&0.0234) | (£0.0269)
(40.0307) | (+0.1639) | (£0.0234) | (£0.0433)
az 2.1262 2.1133 2.0521 2.1186 2.1334
(40.0454) | (£0.3708) | (&0.0310) | (40.0434)
(£0.0472) | (£0.3776) | (40.0327) | (20.0440)
a3 | —0.7604 —0.7423 ~0.7219 —0.7589 —0.7447
(40.0292) | (£0.3260) | (£0.0206) | (0.0350)
(£0.0408) | (£0.3266) | (40.0266) | (40.0357)
by | —0.8700 —0.8351 ~0.9866 ~0.8410 ~0.9708
(£0.1770) | (£0.5441) | (£0.1072) | (40.5485)
(£0.1867) | (£0.5664) | (40.1187) | (+0.5577)
ba 0.9200 0.8903 0.7673 0.9080 0.8235
(£0.1310) | (£0.1755) | (£0.0427) | (+0.0873)
(£0.1344) | (£0.2263) | (:0.0443) | (40.1301)

ASSE(dB) | _ -16.58 —-895 | —18.81 | —11.77

ARMA (4, 3) system with 7" = 70 at SNR levels of 10 dB and —5 dB, respectively. It is
seen from these tables that the proposed method provides quite an accurate estimation
of the ARMA parameters, whereas the other methods are unable to identify the
system at SNR = —5 dB and their performance is relatively poor at SNR = 10 dB.

The ASSE resulting from using various methods under the impulse-train excitation
with T' = 70 for the estimation of the same ARMA(3, 2) system as the one considered
for the white noise excitation is shown in Fig. 2.6. As seen, the proposed ARMAC
method provides a significantly better performance even at a very low SNR, whereas
the performance of other methods deteriorates at SNR level below 10 dB.

Fig. 2.7 shows the effect of excitation period (7") on the estimation accuracy for
the ARMA(4,3) system used in Table 2.1 at SNR levels of 10 dB and —5 dB. It is
seen from this figure that at SNR = —5 dB, all other methods give an ASSE value
greater than 0 dB, whereas the ASSE of the proposed method is smaller even at SNR

= —5 dB than that of the other method at SNR = 10 dB.

43



Table 2.6: Estimated parameters along with standard deviations (SDM and SDT) for

impulse-train excited ARMA(4, 3) system at SNR = 10 dB

Methods Estimated parameters ASSE

a1 as a3 a4 by ba b3 (dB)

ARMAC —2.5924 3.3733 —2.2670 0.7772 —1.9767 1.6819 -0.5376 | —24.09
(Proposed) | (£0.0088) | (£0.0209) | (£0.0198) | (£0.0076) | (£0.0626) | (+0.0748) | (0.0544)
(£0.0002) | (40.0402) | (£0.0699) | (£0.0468) | (£0.0744) | (+0.0848) | (£0.0758)

ARMAX —1.8613 2.1511 —1.3227 0.5088 —-1.3528 1.1452 ~0.5523 -0.28
(£0.6839) | (£1.0494) | (20.7195) | (£0.1514) | (20.6801) | (£0.6577) | (£0.0996)
(+1.0030) | (+1.5851) | (+1.1346) | (+£0.2688) | (£0.9507) | (£0.8746) | (£0.1066)

ACR —2.4617 3.0202 —1.9078 0.6302 —-1.7292 1.5352 -0.6718 | —12.54
(£0.0560) | (£0.1302) | (£0.1172) | (£0.0417) | (£0.0621) | (£0.0904) | (+0.0556)
(£0.1446) | (+0.3443) | (£0.3148) | (£0.1001) | (+£0.2944) | (£0.2073) | (£0.0986)

DYW (—2.2888 2.6758 —1.6265 0.5336 —1.9233 1.6487 -0.5098 | —11.57
(£0.0877) | (£0.1963) | (£0.1730) | (£0.0631) | (£0.2390) | (£0.3400) | (0.2088)
(£0.3185) | (£0.6017) | (£0.5990) | (£0.2072) | (£0.2567) | (£0.3478) | (&0.2238)

True | -25050 | 3.3390 | —2.2000 | _ 0.7310 | —2.0170 | 17218 | —0.5904 ]

Table 2.7: Estimated parameters along with standard deviations (SDM and SDT) for
impulse-train excited ARMA(4, 3) system at SNR = —5 dB

Methods Estimated parameters ASSE

ay as as aq by bo b3 (dB)

ARMAC —2.6121 3.3956 —2.2730 0.7691 —1.9908 1.6703 —0.5178 | —15.76
(Proposed) | (£0.0804) | (£0.1566) | (£0.1534) | (£0.0762) | (£0.2297) | (£0.2217) | (£0.0660)
(£0.0822) | (£0.1665) | (£0.1699) | (£0.0852) | (£0.2312) { (+0.2276) | (£0.0981)

ARMAX —1.0803 0.1863 —0.4200 ~0.0336 —0.9809 0.0720 0.3831 5.86
(£0.5686) | (£0.8792) | (+0.5690) | (+£0.0638) | (+0.5724) | (£0.8272) | (+0.4796)
(£1.6179) | (£3.2730) | (£2.6810) | (£0.7673) | (£1.1836) | (£1.8456) | (£1.0852)

ACR (—0.8804 0.2321 0.1681 0.1032 —0.8566 0.2047 0.1535 5.52
(£0.1862) | (+0.2821) | (£0.2357) | (+0.1232) +0.1865) | (£0.2792) | (£0.2303)
(£1.7247) | (£3.1197) | (£2.3798) | (£0.6398) | =+1.1753) | (£1.5425 | (£0.7787)

DYW (—0.8804 0.2321 0.1681 0.1032 —0.4830 0.0272 —0.0863 5.63
(£0.1862) | (£0.2821) | (£0.2357) | (40.1232) +0.4861) | (£0.3943) | (£0.2441)
(£1.7247) | (£3.1197) | (£2.3798) | (+0.6398) +1.6092) | (+1.7398) | (£0.5601)

True ] —2.5950 3.3390 —2.2000 | 0.7310 |  —2.0170 1.7218 | —0.5904 |

2.4.2 An Application for Vocal-tract System Identification

As an application of the proposed method, the identification of a vocal-tract system is
performed using natural speech signals. Since, in this case, the true system parameters
are not known, for the purpose of evaluating the estimation accuracy, non-parametric
PSD is used. In order to estimate the vocal-tract system parameters, some English
nasal sounds (voiced phonemes) from the TIMIT standard database with a sampling

frequency of 16 KHz are used as the noise-free output observations. Instances of the
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Figure 2.6: Effect of noise on the estimation accuracy for impulse-train excited
ARMA(3, 2) system.
phonemes are extracted from the database according to the given transcriptions. No
pre-filtering is performed in order to observe the accuracy of the pole-zero estimation
over the entire range of frequency. With the estimated parameters of the vocal-
tract considered as an ARMA system and the pitch-period, a speech phoneme can be
synthesized using a value of the vocal-tract filter gain appropriately determined based
on the RMS power level and the peak PSD of the natural speech frames [7]. In order
to verify the estimation accuracy, the PSD of the synthesized speech is compared with
that of the noise-free natural speech. It is to be mentioned that the synthesized sounds
obtained by different methods were also played back in order to test the subjective
quality.

Fig. 2.8 shows a comparison of the PSDs of the vocal-tract system obtained from

different methods in noisy environments with respect to noise-free PSD. Considering
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Figure 2.7: Effect of variation of excitation period (7") on the estimation accuracy
for ARMA(4, 3) system.

the fact that the choice of the order of the vocal-tract filter depends on the character-
istic of the specific phoneme, an ARMA(12,4) model is used for a naturally spoken
nasal sound /m/ of the word ‘him’ uttered by a female speaker. The estimated pole-
zero locations of the vocal-tract system are averaged over 25 independent realizations
of noisy environments and used to obtain the synthesized speech.

In our experiments, we consider the ACF lags in the range of 0 to T'/2, where the
excitation period or pitch (7") is estimated using the scheme of [103]. According to the
general behavior of the vocal tract parameter, r; is searched in the range [0.8, 0.99] [93].
The search range for w; can be narrowed down based on the knowledge of the pole-zero
locations of a particular phoneme [7], {93]. Fig. 2.8 shows the PSD of the synthesized
speech using the various methods along with that of noise-free speech. In order to

have a better understanding of the level of noise, the PSD of one of the 25 noisy
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Figure 2.8: Spectrurh comparison for the speech phoneme /m/ taken from an utter-
ance ‘him’ under noisy conditions at SNR levels of (a) 10 dB and (b) -5 dB.
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signals is also included in the same figure. It is seen from this figure that the PSD of
the synthesized signal obtained by using the estimated vocal-tact system parameters
resulting from the proposed scheme is quite accurate. On the other hand, the PSDs
resulting from the other methods simply follow the PSD of the corresponding noisy
observations, and thus, fail to estimate the parameters of the vocal-tract system.
Quality of the synthesized sounds obtained by the proposed method under such a
noisy condition were found far superior than that obtained by the other methods.
The proposed ARMAC method provides a satisfactory identification performance of

the vocal-tract system even at a very low SNR level of —5 dB.

2.5 Conclusion

In this Chapter, an effective methodology for the identification of ARMA systems
using the observed output signal in the presence of heavy additive noise has been
presented. The proposed method is based on developing a simple but accurate model,
called the ARMAC model, in terms of the poles of the ARMA system. A significant
feature of the new model is that it has been presented in a unified form in terms
of the poles of the ARMA systems for both white noise and periodic impulse-train
excitations of finite or infinite durations.

A residue-based least-squares (RBLS) correlation fitting optimization scheme that
employs the ARMAC model has been presented for the estimation of the AR param-
eters. The proposed RBLS scheme has an advantage in the sense that it provides the
flexibility of incorporating some a prior: knowledge of the parameters, if available, to
the process of parameter estimation. Since the presence of the noise in the residual

signal in a two-stage ARMA system identification makes the problem of MA param-

eter estimation difficult, an efficient scheme using the estimated AR parameters and
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output noise variance has been presented in order to reduce the effect of the noise in
the correlation function of the residual signal. Then, for the identification of the MA
part of the ARMA system, the estimation task has been transformed into a problem
of correlation fitting of the inverse of the noise-compensated correlation function and
solved again by employing the proposed RBLS scheme.

One of the assumptions made in the derivation of the proposed method is that the
order of the ARMA model is known as done in most of the existing techniques [13],
[43]-[45], [75]-[79], [96] for the ARMA system identification. In addition to this
assumption of known ARMA(P, @)) model order with P > @, it is assumed that the
system has minimum phase and only the first-order poles and zeros. Eventhough
these assumptions, as made in many other similar works in the literature, have been
used in this paper to simplify the theoretical development of the proposed technique,
they in fact do not impose undesirable limitations in dealing with most of the real-life
situations. In the case of real-life data (i.e., the data in the presence of noise) a bad
choice of the model order would affect the estimation accuracy of the parameters for
all the methods. However, in the proposed algorithm, the AR estimation part works
independent of the MA estimation part, and the poles are determined successively, a
simple one or a pair of complex ones at a time. Thus, the accuracy of at least those
poles which are estimated using the proposed method is not affected if the model
order is chosen wrongly as (P',Q’) for an ARMA(P, Q) model for the case when
Q<P <P.

In order to investigate the estimation performance of the proposed method for
systems with different pole-zero locations as well as types (i.e., real or complex con-
jugate), in our simulation, different ARMA systems are considered. It is a common

practice in modeling real data examples that zeros are placed between poles to char-
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acterize the spectral notches. Identification problems when the zeros and poles are
closely spaced have been considered in our simulation to demonstrate the efficacy of
the proposed scheme in dealing with such a difficult situation. System pole locations
also affect the decay in ACF. Generally, for natural signals, the ACF shows a moder-
ate or very less decay which results more of its lags suitable for employing in the task
of system identification. The proposed method has been tested for different systems
having different pole locations. As the real and complex types of zeros or poles exhibit
quite different behaviors, in our experiments various combinations of real and com-
plex poles and zeros are considered to show the capability of the proposed algorithm
in dealing with real life situations.

The effect of the data length on the derivation of the proposed model has also
been addressed. It has been found that the autocorrelation function obtained by the
proposed model is quite accurate even for a smaller data length. The estimation
accuracy obtained by the proposed method is consistent throughout most of the data
length. However, at a very low SNR, it is possible to achieve a significant improvement
in the estimation accuracy at the expense of large data length by using the proposed
ARMAC method.

In the proposed method, the RBLS optimization algorithm is employed for the
estimation of AR and MA parameters. The computational complexity in terms of
the arithmetic operations, namely, multiplication and addition, therefore, depends on
the number of search points used in the RBLS optimization process. Consequently,
the computational complexity of the proposed method is comparatively higher than
that of the ACR or DYW method. The amount of computation for the ML method
depends on the nonlinear optimization method, such as a Gauss-Newton type of

algorithm. As mentioned earlier, in the proposed method, a significant reduction
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in the frequency search space is achieved by restricting the search domain in the
neighborhood of the initial frequency estimate. A further reduction in the search
complexity has been achieved by employing a two-stage coarse and fine search scheme
for the magnitude estimation, providing quite an accurate estimate of the parameters.
The computational time required by the proposed method is found quite reasonable
for practical applications where the objective is to achieve an accurate estimation of
the ARMA system parameters at very low levels of SNR.

Extensive simulations have been carried out to demonstrate the performance of
the proposed technique. It has been shown that the scheme outperforms the other
existing methods that have been considered for comparison and is able to identify the
ARMA parameters with sufficient accuracy and consistency in noisy environments
ranging from very low to high levels of SNR. As a practical application of the proposed
technique, the identification of human vocal-tract system in the presence of noise has
been considered and shown to perform much better in comparison to other existing
techniques in terms of the power spectral density of the resulting synthesized speech.

Some of the distinctive features of the proposed ARMAC method reinforced by

the experimental results can be summarized as follows.

1. It is capable of handling the problem of ARMA system identification under heavy
noisy conditions for both white noise and impulse-train input excitations. This
feature makes the method readily applicable to speech signals, where either type

of input excitations may occur.

2. The proposed noise-compensation scheme reduces the effect of additive noise in

the MA parameter estimation, thus increasing the accuracy of the zero estimation.

3. In the proposed method, the input excitation power need not be assumed to be
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known.
4. The proposed method estimates the ARMA parameters with guaranteed stability.

5. A byproduct of the proposed method is its availability of the estimated observation

noise variance once the AR parameters have been obtained.
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Chapter 3

Ramp Cepstrum Model Based
System Identification

3.1 Introduction

In this chapter, cepstral domain approaches for the identification of a minimum-
phase AR and ARMA systems in the presence of heavy noise are presented. First,
two ramp-cepstrum models valid for both white noise and periodic impulse-train
excitations are proposed for the one-sided autocorrelation function of AR and ARMA
signals. The residue-based least-squares (RBLS) optimization technique, as described
in Chapter 2, is then employed in conjunction with the ramp-cepstrum model to
estimate the AR parameters of the AR or ARMA system from the noisy output
observations, with a guaranteed system stability. The proposed ramp-cepstral model
fitting combines the good features of both the correlation and cepstral domains, and
thus provides a more accurate estimate of the parameters in a noisy environment
[104]-[107]. In order to estimate the MA parameters of the ARMA system, two
different approaches are developed. In the first approach, a one-step (OS) or direct
scheme is proposed to estimate the MA parameters using the ramp-cepstrum model

together with the RBLS algorithm in a similar manner as the AR parameter are
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estimated. In the second approach, a two-stage (TS) scheme is proposed where a
residual signal is first obtained by filtering the observed data via the estimated AR
parameters. Then, the MA parameters are estimated from the residual signal by using
the noise-compensated scheme proposed in Chapter 2. Extensive simulations are
carried out on synthetic AR and ARMA systems of different orders in the presence of
noise. Simulation results demonstrate quite a satisfactory identification performance
even for an SNR of —5 dB, a level at which most of the existing methods fail to
provide accurate estimation. To illustrate the suitability of the proposed technique
in practical applications, the human vocal-tract system identification is also carried
out using natural speech signals.

The rest of the chapter is organized as follows. In Section 3.2, the proposed
AR system identification method based on the ramp-cesptrum model is described.
First, a ramp-cepstrum model of a OSACF of an AR signal for the two types of input
excitations is derived. AR parameter estimation scheme under noisy conditions is then
describéd which utilizes the RBLS optimization algorithm in conjunction with the
proposed ramp-cepstrum model. Simulation results on different synthetic AR systems
and natural speech signal are presented in Section 3.3. In Section 3.4, the proposed
ARMA system identification methods are presented. First, the ramp-cepstrum model
of the OSACF of ARMA signal is developed and then two different approaches for
the estimation of the ARMA system parameters are introduced. The estimation
performance of the proposed ARMA system identification method is demonstrated
in Section 3.5 through simulations for both synthetic and natural speech signals.
Finally, in Section 3.6, some features of the proposed methods are summarized with

some concluding remarks.
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3.2 AR System Identification

3.2.1 Background

A causal stable linear time-invariant AR system can be characterized by

x(n) = —-Zaix(n— i) + u(n) (3.1)

=1
where u(n) and z(n) are, respectively, the excitation and response of the system, {a;}
the AR parameters to be estimated, and P the system order assumed to be known.

The transfer function of the AR(P) system can be written as

1 1 1

A(z) - r (32)

= P
1+ Z a;z”" H(l —piz7h)
i=1

i=1

where p; represents the ith pole. The complex cepstrum (CC) of the impulse response

h(n) is defined as [8]
ca(n) = F7{In[F{h(n)}]} = F~{In[H (e™)]} (3:3)

where F~! denotes the inverse Fourier transform (FT). Since h(n) is real and mini-
mum phase, c(n) is a sequence that is real and causal. From (3.2), In [H(z)] can be

expanded as

P 00 g
- Y2
In[H()]=~-) In(l-pz7!) = —=z" (3.4)
'L=ZI ( ) ; n=1 n
where |z| > |p;|. Thus, c;(n) can be expressed as
P g
en(n) = ; =, n>0 (3.5)
Noting that z(n) = h(n) * u(n), c;(n) can be written as
cz(n) = ca(n) + cu(n) (3.6)
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Based on (3.6), a cepstrum domain AR SI method has been proposed in [73] for a
noise-free environment. In the presence of additive noise v(n), the observed signal
y(n) is given by

y(n) = z(n) +v(n) (3.7)

where v(n) is assumed to be zero mean stationary and inde-pendent of u(n). The CC

of y(n) can then be expressed as

cy(n) = F‘l{ln[X(ej“’)]}+F_l{ln [HXEZJH}

= cln) + culn) (3.8)

where ¢, (n) arises from the presence of v(n), and vanishes in its absence. The AR
SI method faces a problem of obtaining an accurate estimate of c;(n) from cy(n),
since the cepstrum decomposition techniques [71] are very sensitive to the noise level.
In order to overcome the problem of observation noise and identify the AR system
accurately under noisy condition, in what follows first, we propose a ramp cepstrum
model and then based on the new model a residue based least-squares algorithm is

developed to estimate the system parameters.

3.2.2 Proposed AR Ramp Cepstrum Model

(a) White Noise Excitation: In order to compute the cepstral coefficients, we

propose to utilize the one-sided ACF (OSACF) given by

p(T), >0
rz(r) =< 0.5p:(r), 7=0 (3.9)
0, T<0

where p,(7) is the two-sided ACF of z(n). Note that r () is real and retains the
pole-preserving property of p,(7), implying that all the information contained in p,(7)

is maintained by r.(7). Moreover, r,(7) exhibits a higher noise immunity than p,(7)

56



does [108]. Since, p.(7) = ro(7) + r2(=7), the FT of p.(7), i.e., the PSD of z(n) can
be expressed in terms of R,(e’*), the FT of r,(7), as
P.(e’) = 2Re[R,(e™)] (3.10)
and the CC corresponding to P,(e/”) can be written as
cp,(n) = F~{In(RelRu(e)]) + In(2)} (3.11)
On the other hand, P,(e’*) is related to H(e’*) as
Po(e) = |H(e)| Pu(e™) (3.12)

Thus, cp,(n) given by (3.11) can be expressed as

ca(n) +cp(n), n>0
cp,(n) =< 2¢,(0) +cp,(n), n=0 (3.13)
ca(—n) +cp,(n), n<0

Note that in (3.11), the inverse FT of the term In(2) vanishes for n > 0, and from
(3.11) and (3.13) for n > 0 we can have

pe(n) = F~H{In(Re[R. (™))} = cu(n) + cp,(n),n >0 (3.14)

For n > 0, cp,(n) is now explicitly termed as u,(n) given by (3.14). In a fashion
similar to (3.6), we have been able to establish a relation between the CC of the
OSACF of z(n) and cy(n). When u(n) is a white Gaussian noise with P,(e’*) = o2,

cp, (n) vanishes except for n = 0, and then (3.14) reduces to

P 7
pz(n) = cp(n) = Z %,n >0 (3.15)

It is seen that u,(n) decays rapidly with n, which makes it difficult to estimate the
system poles from p.(n). In order to overcome this problem, we propose an easy-to-

handle ramp-cepstrum (RC) for the OSACF which is defined as
P
¥e(n) = npe(n) = Zp?, n>0 (3.16)
i=1
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Note that the system can have poles that are real or complex conjugate. Thus, in
(3.16), each real pole or complex pole pair produces one exponentially decaying term,

leading to

1/}1:(77’) = Zﬂ(wz)rzn Cos(win),n >0 (317)

i=1

where - is the number of real poles plus the number of complex conjugate pole pairs,
r; and w; are, respectively, the magnitude and the argument of p;, and G(w;) is given

by

Blws) (3.18)

1, wy=0o0rw,=m
2, O<wy <

which is introduced to distinguish between real and complex poles. The model given

by (3.17) is termed as the AR ramp-cepstrum (ARRC) model for the OSACF of z(n),

which will be used to form an objective function for the LS fitting. In this case, an

estimate of p,(7) can be obtained, in general, as

N-1-|r
p(T) = % ;I |x(n)x(n+ [),0< 7| < N (3.19)
where N is the data length [33]. This equation provides an accurate estimate of p;(7)
when N is sufficiently large.
(b) Periodic Impulse-train Excitation: A periodic impulse-train excitation of

length N {u;(n),n € (0: N — 1)} with period T can be expressed as

A-1 N

i(n) = oln—-kT),A=|—= 3.20

wim = atn = k1), 3= | | (3.20)

where [(] represents the lowest integer greater than or equal to ¢ and A is the total

number of impulses within the excitation. Using (3.19), an estimate of the ACF of

u;(n) is obtained as
A-1

pulr) = 2 |25 | dlirl = kD)0 < < (321)

k=0
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It can be shown that (3.21) can be rewritten as

(r/T), |r|=0,T,2T,..., (A= 1)T
, otherwise

Ppui(T) = { g (3.22)

where
9(n) = { (A—=In))/N, In]<A-1 (3.23)

0, otherwise
It is evident that p,,(7) can be obtained by upsampling g(7) with a factor 7. The

FT of p,,(7) can be expressed as
B, (e™) = G(*T) (3.24)

where G(e’?) is the FT of g(n) given by

G(e) = H%] (3.25)

Since, P,,(e’*) and In[P,,(e’*)] are periodic with a period 27 /T, the CC corresponding

to P,,(e’¥) can be written as

ce(n/T), n=0,T,2T,...,(A\-1)T

0, otherwise (3.26)

cp,(n) = {

where cg(m) is the CC of g(m). Thus, it is clear from (3.14) and (3.26) that cp, (n)
contributes to u,(n) only at the origin or when n > T. Therefore, (3.14) can be

reduced to

P T
pe(n) = cu(n) :Z%,o <n<T (3.27)

i=1

From (3.15) and (3.27), it can be observed that the ARRC model derived for the white

noise excitation is also valid for the case of impulse-train excitation when 0 < n < 7.
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3.2.3 Ramp Cepstral Fitting: Residue Based Least-Squares
Minimization
In the presence of noise v(n), the ACF of the noisy observation y(n) can be expressed

py(T) = pa(7) + pu(7) + Pzo(T) + puz(T) (3.28)

Thus, we can see that the component due to the noise, p,(7) = pu(7) + pzo(T) + poz(7),
corrupts p.(7). This effect cannot be neglected, especially when the SNR is very low.
Hence, the conventional correlation based methods using p,(7), cannot provide a good
estimation performance. As in the case of the cepstrum in the signal domain (see
(3.8)), we can have the cepstrum representation of (3.28) in the correlation domain

as

cp,(n) = F{In[P,(e™)]} + F! {ln [1 + %] }

= cp,(n)+cp,(n) (3.29)

where cp,(n) is the CC introduced due to the noise. By using the OSACF 7,(7) of

y(n), defined in a manner similar to (3.9), (3.29) can be modified as
py(n) = F~{In(Re[Ry()])} = pa(n) + cp, (n),n > 0 (3.30)
Therefore, the RC of 7,(7) can be expressed as

Yy(n) = ¥e(n) + u(n),n >0 (3.31)

Here, 1,,(n) is the error introduced due to the noise. When the additive noise is
white Gaussian, the zero lag of the noisy ACF is most severely corrupted. One way
of reducing the effect of noise is to replace the actual value p,(0) by a smaller value

while computing v, (n) from r,(7). Note that p,(0) > |p,(7)| for 7 # 0. In order to
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reduce the effect of noise, we replace p,(0) by np,(0) with {|p,(1)|/py(0)} < n < 1.
The process can efficiently suppress the level of i,,(n) while leaving the shape of
¥y (n) similar to that of y;(n).

The AR parameters can be determined by estimating the parameters {r;} and
{w;} of the ARRC model given in (3.17). Each of the v component functions in
(3.17) is estimated sequentially from M, instances of 1,(n), where M, < T for the
impulse-train excitation. The objective function is defined as the total squared error
between the (/—1)th residual function ®;_;(n) and the {th component of the model,
that is

M.
Ji=_ [Ri_i(n) = Blw)r cos(wm)|® 1 =1,...,7 (3.32)
n=1

where the residual function is updated as follows

Ro(n) = Py(n)

Ri(n) Ri—1(n) = Bw)rfcos(wmn), L =1,...,v =1 (3.33)

Il

We would like to find the optimal solution for {r;} and {w;} by a search algorithm.
For each set of the chosen values of {r;} and {w;}, the values corresponding to the
global minimum of J; are selected as the estimate of the desired poles. Proceeding this
way, the AR parameters can be determined using (3.2) once all the P poles have been
estimated. In the proposed search scheme, restricting the search range of r; within
the stable region inherently guarantees the stability of the estimated AR system. In
order to reduce the computational burden, a two-step search algorithm can be used.
In the first step, only a coarse-search based on the fast FT (FFT) is employed to
find out the initial estimate of {w;} and {r;}, and in the second step, a fine-search is
carried out around the initial estimate with a higher resolution to obtain an accurate

estimate.
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3.3 Simulation Results on AR System Identifica-
tion

Computer simulations are carried out on several synthetic AR and ARMA systems
as well as on the natural speech signals. In this section, first, some simulation results
on AR system identification are presented and the estimation performance of the
proposed method is compared with that of some of the existing methods, namely,
improved least-squares with direct implementation (ILSD) structure giving a faster
convergence [62], signal/sub-space Yule-Walker (SSYW) [58], modified least-squares
YW (MLSYW) [33], and the spectral all-pole estimation (SAPE) [109] considering
AR systems of different orders and pole locations. Then we present some simulation
results to compare the performance of the proposed ARMA system identification
method with that of the order-selective Durbin’s (OSD) method [110] and the ACR
method [45]. In the OSD and ACR methods, AR parameters are estimated using the
LSMYW method [33]. For the estimation of MA part, the ACR method employs the
so-called ARMA-cepstrum recursion while the OSD method pursues the intermediate

AR parameter estimation using the LSMYW equations.

3.3.1 White Noise Excitation

A noisy signal is generated according to (3.1) and (3.7) with N = 4,000 and 02 = 1,
where the noise variance o2 is appropriately determined according to a specified level

of SNR. defined as
SNR = 10log,o( > z(n)?/ ) wv(n)?) dB (3.34)

An initial estimate of w; is obtained from the location of the peaks of the smoothed

FFT of the OSACF of y(n). In our simulation, the search range for w; is chosen
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Table 3.1: Performance comparison at SNR = —5 dB for AR(3) system

True Proposed ILSD SSYW | MLSYW SAPE
a1= —2.3149 ~1.2619 | —0.6259 —1.0445 —1.9181
—2.2990 +0.0841 +0.6346 | +0.3086 +0.0923 +0.1432
10.0856 +1.2158 | +1.6859 +1.2579 +0.4018
az= 2.1493 0.6324 | —0.2562 0.4682 1.1196
2.1262 40.1318 +1.0318 | +0.0611 +0.1136 | +0.1666
30.1338 +1.8155 | +2.3832 +1.6619 +0.9719
az= —0.7676 —0.0638 0.3425 | —-0.4232 | —-0.2217
—0.7604 | +0.0816 +0.5959 | +0.0613 | +0.5910 | +0.0566
+0.0819 +0.9167 | +1.1715 | *0.6804 | £0.6804
ASSE -19.73 2.72 4.21 3.36 —2.60

as £0.057 of the initial estimate and that for r; as 0.5 < r;, < 0.99, with search
resolutions of Aw = 0.01 and Ar = 0.01. We take M, = 20P and 7 = |p,(1)|/py(0).
Each experiment contains Ny = 100 independent trials, where the SNR varies from
—10 dB to 15 dB. The criteria used for the performance measurement are (1) the
mean of estimated parameters, (2) the standard deviation from the mean (SDM), (3)
the SD from the true value (SDT), and (4) the average sum-squared error (ASSE)

given by

1 Nr P
ASSE = NP > " lar(m) — ax? (3.35)

m=1 k=1

where ax(m) represents the estimated parameter at the mth trial.

The estimation results for the AR(3) and AR(4) systems at SNR = —5dB are
shown, respectively, in Tables 3.1 and 3.2, where each row, following the true value
of a parameter, lists the mean, SDM, and SDT of the estimated values for differ-
ent methods. The last row provides the ASSE in dB. It is seen from these tables
that the proposed method exhibits superior performance with respect to all the four
performance indices. Clearly, the small values of SDM and SDT obtained from the
proposed technique indicate a high degree of estimation consistency and accuracy.

The effect of SNR on the estimation error is shown in Fig. 3.1 for the AR(3) sys-
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Table 3.2: Performance comparison at SNR = —5 dB for AR(4) system

True Proposed ILSD SSYw MLSYW SAPE
a1= 0.5937 0.5656 0.4967 0.0393 0.0452
0.6349 +0.0598 | £0.1787 | +£0.3969 | +0.0745 | +£0.0336
+0.0687 | +0.1823 | +0.4097 | +0.6783 | +0.5907

as= —0.0631 —0.0671 —0.1043 0.0386 —-0.1762
—0.0416 | £0.0425 | £0.0434 | +0.2746 | £0.0528 | £0.0139
+0.0513 | +0.0491 | +0.2816 | +0.0960 | +0.1354

az= ~0.8105 | —0.7734 | —0.6806 | —0.8482 | —0.0419
-0.8100 +0.0503 +0.0802 | £0.2675 +0.0310 +0.0329
+0.0503 | £0.0819 | £0.2971 | +£0.0492 | +0.7688

ag= —0.6904 | —0.6579 | —0.5523 | —0.0717 [ —0.2863
—0.7219 | 40.0498 | +0.1922 | £0.2941 | +0.0383 | +0.0105
+0.0871 +0.1972 | 40.3058 +0.6513 +0.4357
ASSE —~22.99 —-16.47 - 9.15 — 6.49 — 4.42

tem used in Table 3.1. It is observed from this figure that in comparison to the
proposed method, ILSD and SSYW methods exhibit a similar estimation perfor-
mance for SNR over 10 dB. Note that the SAPE method is for the identification of
AR systems in the noise-free case and thus not expected to perform well under a
low level of SNR. The proposed method performs significantly better even for the
low levels of SNR. In Fig. 3.2, the average estimated poles obtained from the pro-
posed method at SNR= —5dB along with their true locations are plotted for an
AR(4) system with a; = {1,-2.595,3.339,—-2.2,0.731} and for an AR(6) system
with a; = {1,—2.0825,2.267,—2.1997,1.8563, —0.811,0.8563}. It is seen from these
plots that the proposed method provides a very high estimation accuracy. It may
be pointed out that the estimation results of the other methods for these systems at

SNR = —5dB are not as accurate.

3.3.2 Impulse-Train Excitation

An impulse-train is generated using (3.20) with N = 4,000. We choose M, = min(T—

1,20P). Fig. 3.3 shows the ASSE-SNR plots for the same AR(3) system as considered
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Figure 3.1: Effect of noise level on the ASSE for a white noise excited system.

above with 7" = 120. As seen, the proposed method provides a significantly better
performance even at SNR = —5 dB, whereas the performance of other methods
deteriorates below SNR = 7.5 dB. Similar results are observed for other systems

considered for the white noise excitation.

3.3.3 Application for Vocal-tract System Identification

Some English natural phonemes from the TIMIT standard database have been tested
with a view to identify the vocal-tract (VT) system in the presence of additive noise.
With the estimated VT AR parameters, the pitch-period (for voiced speech), and
the AR filter gain, a speech phoneme can be synthesized [7]. It is to be mentioned
that the synthesized sounds obtained by different methods were also played back in
order to test the subjective quality. Fig. 3.4(a) shows the PSD of the synthesized

speech obtained by using different methods along with that of the noise-free speech,
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Figure 3.2: True and estimated poles at SNR = —5 dB for (a) AR(4) system, and
(b) AR(6) system. (o : true poles, x : estimated poles).

and that obtained from one of the 20 noisy signals under a white Gaussian noise of
SNR = —5 dB. In this case, an AR(10) model is used for a female sound /a/ of the
word ‘Rob’. According to the general behavior of the VT parameter, r; is searched
in the range [0.8,0.99] [93] and the search range for w; can be narrowed down based
on the knowledge of the locations of the VT resonances [7], {93]. Quality of the
synthesized sounds obtained by the proposed method under such a noisy condition
were found far superior than that obtained by the other methods. Fig. 3.4(b) gives
the corresponding PSD results for the case of a multi-talker babble noise (multiple
background competing speakers) with SNR = —5 dB. It is observed that the proposed
method provides satisfactory performance for both the white noise and babble noise

under very low levels of SNR.
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Figure 3.3: Effect of noise level on the ASSE for an impulse-train excited system.

3.4 ARMA System Identification

In this section, we are going to develop the ramp-cepstrum model corresponding
to the ARMA system. For the purpose of development, we follow a similar way
which is adopted to obtain the ARRC model from the OSACF keeping in mind some
obvious changes due to the presence of zeros apart from the poles. An ARMA system

identification scheme is then developed based on the model-fitting approach.

3.4.1 Background

As described in Chapter 2, a causal stable and LTI ARMA (P, Q) system is charac-

terized by
bju(n — 7) (3.36)

]
£

ﬁ!\

3

|

-

I
[1]e

i=0 §=0

where u(n) and z(n) are, respectively, the excitation and the response of the system,

a; and b; the corresponding AR and MA parameters with ap = 1 and by = 1, and
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Figure 3.4: PSD obtained for a natural speech phoneme /a/ at SNR = —5 dB for the
case of (a) white noise, and (b) multi-talker babble noise.

P and @ are the orders of the ARMA model, which are assumed to be knownThe
corresponding system transfer function is given by
Q
B(2) fHomem
H(z) = i) - kg kz_l (3.37)

Hl—pkz 1

—

Ead
—

where A(z) = Sf_ axz7% and B(2) = 1 + E;’?:l b;jz77 are, respectively, the AR and
MA polynomial, px’s and z;’s denote, respectively, the poles and the zeros of the
ARMA system. It is assumed that all poles and zeros are of the first-order and the

the ARMA(P, Q) process is minimum phase and stationary. From (3.37), In[H(2)]
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can be expanded as

Q
m(HE)] = =3 W (1-pe?)+3 In(1-227)

P Q .n
. 27
ch(n)zz%—Z—é—, n>0 (3.39)

As mentioned for the case of AR parameter estimation under noise-free condition,
based on (3.6), an AR SI method was proposed in [73]. However, in the case of
ARMA SI, ¢,(n) contains terms with system zeros along with poles, making the
identification problem difficult. As an alternative, some recursive cepstral domain
methods are proposed in [11], [45], where a priori estimate of parameters of one part of
the ARMA system (either AR or MA) is required in order to estimate the other part.
Hence, it is a challenging issue to extract both AR and MA parameters of the ARMA
system from cepstral coefficients. The problem becomes more difficult in the presence
of noise, as explained after (3.8) that the cepstrum decomposition techniques [71] are
very sensitive to the noise level. With a view to estimate the system parameters
under noisy condition, in what follows we propose a ramp cepstrum model and based

on which an ARMA system identification method will be developed.

3.4.2 Proposed ARMA Ramp Cepstrum Model

In order to develop an ARMA cepstrum model of the one-sided ACF (OSACF) of the

observed data, a similar approach as presented in the previous section is adopted. It

is to be mentioned that the basic difference in the case of ARMA system with respect
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to that involved in the AR system is the introduction of the terms corresponding to
the system zeros as shown in (3.5) and (3.39).
For the ARMA signal with a white Gaussian noise u(n) excitation, u,(n) in (3.15)

can be obtained as

(3.40)

3 |$g
3 |u3

P Q
palr) = enlm) = D Z
For a periodic impulse-train excitation {u;(n)}5=} with period T, as derived above
for the AR system, it can be shown that cp, (n) contributes to u,(n) only at the
origin or when n > T. Thus, p,(n) can be written as
R
i j
tz(n) = cp(n) = = - . 0<n<T (3.41)
(n) = cn(n) ; ~ ; "
It can be observed from (3.40) and (3.41) that the expressions for u.(n) differ only
in terms of the range of n. In what follows, although only n > 0 is written, it should

be considered as 0 < n < T for the case of impulse-train excitation. Corresponding

ramp-cepstrum can be written as

Yo (n) = npg(n) = sz Zz n>0 (3.42)

For a real-valued z(n), complex poles (zeros) will always appear as conjugate pairs.
In (3.42), the complex pole (zero) pairs and real poles (zeros) will each contribute one

decaying exponential, which can be written as a decaying cosine function, yielding

Q

Yz(n) = ZP B(wp;)Tpr cos(wp,n) — Zﬁ(wzj)rz? cos(w;;n),n >0 (3.43)

i=1 Jj=1
where yp(7g) represents the number of real poles (zeros) plus the number of complex
conjugate pole (zero) pairs, 7, and wp, are, respectively, the magnitude and the

argument of the ith pole p;, and r,; and 7,; and w,; are, respectively, the magnitude
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and the argument of the jth zero 2;. In (3.43), B(w) is introduced to distinguish the
real and complex zeros and poles, namely, 3(w) = 1 if w = 0 or 7, otherwise f(w) = 2.

As a result, (3.43) can be expressed as

¥ =vp+7q

U(n) = Z Blwg)ry" cos(wxn), n >0 (3.44)

k=1
where ({wy) can be written as

(1), wpy=0o0rwp=m

Blwr) = { (—=1)"2, O<wp<m (349)
with m given by
_ 07 k S YP
m = { 1 k> qp (3.46)

The model given by (3.44) is termed as the ARMA ramp-cepstrum (ARMARC) model
for the OSACF of z(n) which will be used to form an objective function for the LS
fitting. Note that in case of impulse-train excitation as we mentioned in (3.44),
0 < n < T has to be considered instead of n > 0.

It is clear from (3.44) that the ARMA system parameters can be estimated by
conducting the estimation of the ARMARC model parameters {r;} and {wx}. Each
of the 4’ component functions in (3.44) is estimated sequentially from M. nonzero
instances of ¥,(n), where M, < T for the impulse-train excitation. The objective
function can be formulated in a similar fashion as it is done for the AR system iden-
tification. Therefore, the total squared error between the ({—1)th residual function

R,-1(n) and the [th component of the model is given by
Me

Jp = Z IRi-1(n) — Bw)rPcos(wm)?,1=1,...,7 (3.47)

n=1

where the residual function is updated as follows
%o(n) = "py(n)
Rin) = Ri_1(n) — Blw)rfcos(wn), L =1,...,4 =1 (3.48)
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We would like to find the optimal solution for {r} and {w;} by a search algorithm
similar to one that is described for the case of AR systems. For each set of the chosen
values of {r;} and {w;}, the values corresponding to the global minimum of J; are
selected as the estimate of the desired poles. Proceeding this way, the AR parameters
can be determined using (3.2) once all the P poles have been estimated. In the
proposed search scheme, restricting the search range of r, within the stable region
inherently guarantees the stability of the system. The major difference that has to
be carefully noticed is that, as seen from (3.44), when | < yp, the estimated values
of values of {r;} and {w;} correspond to a pole, otherwise when [ > vp, a zero can
be estimated. The two-step search algorithm described before can be also employed
to reduce the computational burden. Since, ACF is a pole-preserving function and
the effect of additive noise is more pronounced on system zeros rather than system
poles, a better estimate of pole-locations is expected. Hence, the search operation
can be restricted around the initial estimates insfead of the entire domain of w;. On
the other hand, search for zeros can be performed using a coarse search to obtain an
initial estimate followed by finer search around the initial estimate. The stability of
the estimated ARMA model can easily be guaranteed by restricting the search range
of r;.

It is to be mentioned that the residual ramp-cepstrum at the beginning of the

estimation of zeros, namely,

P

Ryp(n) = [Wa(n) = Y Blw)r} coswin] + n(n) (3.49)

=1
contains low energy in the signal part as a bulk of energy has already been removed
by the component functions associated with the poles. This might cause error in

the estimation of MA parameters at a very low SNR as observed in (3.49). As

72



an alternate of the above one-step (OS) method, a two-step (TS) MA parameter
estimation algorithm proposed in Chapter 2 can easily be employed once the AR
parameters are obtained using the ARMA ramp-cepstral least-square minimization.
In this case, first, a residual signal f,(n) is obtained by filtering the noisy observed
signal y(n) via the estimated AR parameters. Then the zeros are computed from
the IACF J)fx(r) corresponding to the noise-compensated ACF #,(7) of the residual

signal using the RBLS algorithm.

3.5 Simulation Results on ARMA System Identi-
fication

Simulations are carried out for the identification of ARMA systems under noisy con-
ditions, and results along with some comparative analysis are investigated in this
section. Different ARMA systems with various pole-zero locations within the unit
circle are considered. Next, the performance in terms of the accuracy and consis-
tency of the estimated parameters of the proposed method is obtained and compared
with that of the ARMA cepstrum recursion (ACR) method [45], and an order-selective
Durbin’s (OSD) method in which the Durbin’s scheme for the MA parameter estima-
tion is combined with the least-squares modified Yule-Walker (LSMYW) equations
for the AR parameter estimation [33]. In the ACR method, AR parameters are also
estimated using the LSMYW equations. For the estimation of MA part, the ACR
method employs the so-called ARMA-cepstrum recursion while the OSD method pur-
sues the intermediate AR parameter estimation using the LSMYW equations [97].
An ARMA signal is generated according to (3.7) and (3.36) with N = 4,000
and o2 = 1, where the noise variance o2 is appropriately determined according to a

specified level of SNR defined in (3.34). The search range w; and r, are kept same
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Table 3.3: Estimated parameters along with standard deviations (SDM and SDT) for
white noise excited ARMA(4, 3) system at SNR = —5 dB

Methods Estimated parameters ASSE
ay az asz as b bo b3 (dB)
Proposed —2.5771 3.33859 —2.2829 0.7945 —1.9851 1.8624 ~0.6758 | —15.15

(TS) (£0.1269) | (£0.2536) | (£0.2246) | (£0.0853) | (£0.0928) | (+0.1027) | (&0.0759)
(4£0.1281) | (+£0.2579) | (£0.2470) | (40.1126) | (£0.01037) | (+0.1051) | (+0.0782)
Proposed | —2.5771 33859 | —2.2829 0.7945 ~1.9748 1.7028 | —0.5986 | —12.33
(0S) (£0.1269) | (£0.2536) | (£0.2246) | (£0.0853) | (£0.2316) | (£0.2841) | (£0.0959)
(£0.1281) | (£0.2579) | (£0.2470) | (+0.1126) | (£0.2689) | (£0.211) | (40.0985)
0SD ~0.6300 0.0914 01801 [ —0.1116 20.4909 0.1258 0.0701 | 5.88
(£0.1185) | (£0.1580) | (+0.1384) | (+0.0922) | (+0.5152) | (£0.4191) | (20.2625)
(£1.9685) | (£3.2514) | (£2.3931) | (+0.6263) | (+1.6821) | (+1.7683) | (+0.7646)
ACR ~0.6300 0.0014 0.1801 | —0.1116 ~0.5234 0.0068 0.1076 | 5.87
(£0.1185) | (£0.1580) | (£0.1384) | (£0.0922) | (+0.1188) | (£0.1462) | (£0.1247)
(£1.9685) | (+3.2514) | (£2.3931) | (£0.6263) | (+1.5732) | (£1.8428) | (£0.7659)

True | —25950 |  3.38390 [ —2.2000 |  0.7310 [  —2.0922 | 1.8438 | —0.6480 |

as that used for the AR system identification. Each experiment contains Ny = 100
independent realizations and we compute the estimation mean, SDM, SDT, and ASSE
as defined before. An initial estimate of w; is obtained from the location of the peaks
of the smoothed FFT of the OSACF of y(n).

Table 3.3 shows the estimation results for an ARMA(4, 3) system at SNR —5 dB.
In this table, the last row gives the true parameter values. The estimated values of
the corresponding parameters obtained from the proposed one-step (OS) and two-
step (TS) methods and two other methods are given in the preceding four rows. The
corresponding values for the SDM and SDT are shown within the parentheses below
the each estimated parameter value. It is found that both TS and OS methods are
capable of providing quite satisfactory parameter estimation performance in compar-
ison to the other methods which at such a low level of SNR completely fail to identify
the system. The small values of SDM and SDT obtained by the proposed techniques
indicate respectively a high estimation consistency and accuracy. It is to be noted

that in the two-step ARMA identification technique, if the estimation error of AR
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Figure 3.5: Effect of SNR on the estimation accuracy for the white noise excited
ARMA(3, 2) system.

parameters in the first step is large, it will propagate in the next step and deteriorates
MA estimation accuracy. This is one of the reasons behind the complete failure of the
other two methods at very low SNRs. It is observed from our experimentation that
the performance of the TS method is slightly superior than that of the OS method
which supports the explanation given before.

Fig. 3.5 presents the variation of ASSE values with respect to the level of
SNR for all four methods for an ARMA(3,2) system with true parameters ay =
{1,-2.5712,2.5218,—0.9460} and b; = {1, —1.6909,0.81}. The OSD and ACR meth-
ods give a comparable estimation accuracy only at high levels of SNR. However, they
show a poor performance when the SNR is low. The proposed TS and OS methods
exhibit excellent performance even at a low level of SNR of 0 dB or even lower than

that.
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Figure 3.6: Estimated pole-zero plot of ARMA(6, 4) system obtained by the TS
method at SNR = —5 dB; (Poles: x: true, O: proposed; Zeros: O: true, { :proposed).

In Figs. 3.6 and 3.7, the average estimated poles and zeros of an ARMA(6,4)
system obtained by the proposed TS and OS methods at SNR = —5 dB are shown

respectively. The ARMA(6,4) system parameters are

ax {1,-1.2174,1.2225, —1.0537,1.1167, —1.0253, 0.85}

b.

; {1, —1.1354,0.9399, —0.4974, 0.2198}.

i

In this figure the true poles and zeros are also shown for the purpose of comparison.
From this figure it can be observed that the proposed methods are also able estimate
the poles and zeros quite accurately at a low level of SNR.

Identification performance of the proposed methods are also tested for the impulse-
train excited systems under noisy conditions. A periodic impulse train with a known
value of T is generated in a same manner as done for the AR part. In Fig. 3.8,
the ASSE plots as a function of levels of SNR obtained by different methods for the
same ARMA(3,2) system as considered in Fig. 3.5 under the impulse-train excita-

tion are shown. Here T is chosen as 68 and number of ramp-cepstral coefficients
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Figure 3.7: Estimated pole-zero plot of ARMA(6, 4) system obtained by the OS
method at SNR = —5 dB; (Poles: x: true, O: proposed; Zeros: O: true, < :proposed).
M, = min(T/2,10P). As seen, the proposed methods provide a significantly superior
performance at a very low SNR in comparison to the other two methods.

As an application of the proposed ramp-cepstrum based ARMA system identifi-
cation method, the estimation of a vocal tract system parameters is performed using
natural speech signal in a similar manner as it was presented in Chapter 2. Some
English nasal sounds (voiced phonemes) from the TIMIT standard database are used
for testing. No pre-filtering is performed in order to observe the accuracy of the
pole-zero estimation over the entire range of frequency. In order to verify the es-
timation accuracy, the PSD of the synthesized speech is compared with that of the
noise-free natural speech. The synthesized sounds obtained by different methods were
also played back and the quality of the synthesized sounds obtained by the proposed
method under such a noisy condition were found far superior than that obtained by
the other methods. Fig. 3.9 shows the PSD of the synthesized speech obtained by

using different methods along with that of the noise-free speech, and that obtained

7



€ Proposed (TS) Method
B Proposed (OS) Method
< OSD Method
& ACR Method

ASSE (dB)

5 10 15
SNR (dB)

Figure 3.8: Effect of SNR on the estimation accuracy for the impulse-train excited
ARMA(3, 2) system.

from one of the 20 noisy signals under a white Gaussian noise of SNR = —5 dB.
Here we consider an ARMA(12,6) model, for a naturally spoken nasal sound /m/ of
the word “him”, uttered by a female speaker. The ARMARC samples are considered
up to T/2 where the excitation period or pitch (T) can be estimated using available
techniques. It is seen from Fig. 3.9 even at an SNR of = —5 dB, where the PSD of
noise-free speech is completely covered by that of noisy speech, the proposed method

exhibits a satisfactory performance in comparison to other methods.

3.6 Conclusion

In this chapter, new schemes for the identification of AR and ARMA systems from

noise-corrupted output observations have been presented. A simple yet accurate AR

ramp cepstrum (ARRC) model of the OSACF of an AR signal has been developed
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Figure 3.9: PSD obtained by using different methods for a speech phoneme /m/ taken
from a female utterance “him” at SNR = 0 dB.

in terms of the poles of the AR systems in a unified fashion for white noise as well
as periodic impulse-train excitations. The ARRC model has been extended for the
ARMA system resulting an ARMA ramp cepstrum (ARMARC) model which is also
valid for the both type of excitations. The residue-based LS ramp-cepstral fitting
scheme that employs the proposed RC model has been presented in order to esti-
mate the AR and MA parameters. The proposed system identification methods can
estimate the desired system parameters with suflicient accuracy under noisy environ-
ments. The new algorithm using the ARMARC model directly computes both AR
and MA parameters of the ARMA systems in accordance with a proper optimization
technique even from noise-corrupted observations. On the other hand, the two-stage

(TS) algorithm uses a residual signal to estimate the MA parameters with the help
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of an TACF and provides comparatively better MA estimates than that obtained by
the two-step (OS) method. Even though a priori knowledge of the pole strength and
location is not necessary for the proposed method to perform, such a knowledge, if
available, could easily be incorporated in the proposed scheme to reduce the search
range.

In the proposed ramp-cepstrum methods, the system order is assumed to be
known. As mentioned in Chapter 2, in the case of real-life data (i.e., the data in
the presence of noise) a bad choice of the model order would affect the estimation
accuracy of the parameters for all the methods. In the proposed ramp-cepstrum
model-fitting based AR estimation algorithm, the poles are determined successively,
a simple one or a pair of complex ones at a time. Thus, the accuracy of estimated
poles obtained by the proposed method is not at all affected if the chosen AR model
order (P’) is less than the true order (P). However, if P’ > P, the accuracy of the first
P poles will not be affected. For the ARMA system identification, the AR estimation
part works independent of the MA estimation part, and the poles are determined
successively, a simple one or a pair of complex ones at a time. Thus, the accuracy of
at least those poles which are estimated using the proposed method is not affected if
the model order is chosen wrongly as (P, Q') for an ARMA(P, @) model for the case
when Q' < P’ < P.

As described in Chapter 2, similar to the case of ARMAC mode-fitting based
method, the computational complexity of the proposed ramp-cepstrum model-fitting
based methods depends on the number of search points used in the RBLS optimization
process. As mentioned earlier, in the proposed methods, a significant reduction in
the computational complexity is obtained based on the neighborhood search of the

initial frequency estimates and a two-stage coarse and fine search scheme for the
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magnitude estimation. The computational time required by the proposed methods is
also found quite reasonable for practical applications where the objective is to achieve
an accurate estimation of the system parameters at very low levels of SNR.

From an extensive simulation on different synthetic systems, it has been shown
that the proposed method is able to estimate the system parameters with sufficient
accuracy and consistency for signals, at very low levels of SNR, in the presence of
noise. As an application of the proposed method the vocal-tract system identifica-
tion in the presence of white noise is performed using both AR and ARMA model
demonstrating a superior estimation performance.

Some of the distinctive features of the proposed ramp-cepstrum method of system

identification reinforced by the experimental results can be summarized as follows.

1. In the proposed identification methods, the advantageous features of the correla-

tion and cepstrum have been utilized to obtain a better estimation accuracy.

2. Because of the noise-compensation from the ACF of the residual signal, a better

accuracy in the MA parameter estimation is obtained.

3. In the proposed method, the input excitation power need not be assumed to be

known.

4. It is capable of handling the problem of AR or ARMA system identification under
severe noisy conditions for both white noise and impulse-train input excitations.

This feature makes the method readily applicable to speech signals.

5. The proposed method estimates the system parameters with guaranteed stability.
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Chapter 4

Ramp Cosine Cepstrum Model
Based System Identification

4.1 Introduction

In this Chapter, new schemes based on the ramp cosine cepstrum (RCC) of the one-
sided autocorrelation function (OSACF') are proposed for the parameter estimation of
minimum-phase AR and ARMA systems under low levels of SNR. Two ramp cosine
cepstrum models valid for both white noise and periodic impulse-train excitations are
proposed for the OSACF of AR and ARMA signals [111], [112]. In order to estimate
the AR parameters of the AR or ARMA system from the noise-corrupted output
observations with a guaranteed system stability, the residue-based least-squares op-
timization algorithm as described in Chapter 2 is employed in conjunction with the
RCC model. Since the proposed RCC model-fitting approach makes use of the at-
tractive features of both the correlation- and cepstral-domain representations of the
signal, a more accurate parameter estimation is obtained in the presence of heavy
noise. In order to estimate the MA parameters of the ARMA system, two different
approaches are developed in a manner similar to that proposed in Chapter 3. In

the first approach, a one-step (OS) or direct scheme is proposed to estimate the MA
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parameters using the RCC model together with the RBLS algorithm. In the second
approach, a two-stage (TS) scheme is proposed where a residual signal is first ob-
tained by filtering the observed data via the estimated AR parameters. Then, the
MA parameters are estimated from the residual signal by using the noise-compensated
scheme proposed in Chapter 2. For the purpose of implementation, the discrete cosine
transform (DCT), which can efficiently handle the phase unwrapping problem and
offer computational advantages over the discrete Fourier transform, is employed. Ex-
tensive simulations are carried out on synthetic AR and ARMA systems of different
orders in the presence of noise. Simulation results demonstrate quite a satisfactory
identification performance even for an SNR of —5 dB. To illustrate the suitability
of the proposed technique in practical applications, the human vocal-tract system
identification is also carried out using natural speech signals.

The rest of the chapter is organized as follows. In Section 4.2, the AR system iden-
tification method is described. In this section, first, an RCC model for the OSACF
of an AR signal for the two types of input excitations is derived and then the DCT
is employed for the realization of the derived model. An AR parameter estimation
scheme under noisy conditions is then described. Simulation results on different syn-
thetic AR systems and natural speech signal are presented in Section 4.3. In Section
4.4, the proposed ARMA system identification methods is described. Here, the RCC
model of the OSACF of ARMA signal is first developed and then two different ap-
proaches for the estimation of the system parameters are introduced. The estimation
performance of the proposed ARMA system identification method is demonstrated
in Section 4.5 through simulations for both synthetic and natural speech signals. Fi-
nally, in Section 4.6, some key features of the proposed methods are summarized with

concluding remarks.
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4.2 AR System Identification

4.2.1 Problem Statement

The input-output relationship of a real causal stable linear time-invariant autoregres-

sive (AR) system can be described as

z(n) = — z arz(n — k) + u(n) (4.1)

where u(n) and z(n) are, respectively, the excitation and the response of the AR
system, {ax} the AR parameters to be estimated, and P the system order assumed
to be known. Note that when the system order is unknown, different standard tech-
niques, available in the literature [33], [98], can be employed to estimate the order.
The system output in (4.1) can be considered as a convolution of the input u(n) and

the impulse-response h(n) of the system, represented as
z(n) = h(n) * u{n) (4.2)

The transfer function of the AR(P) system described by (4.1) can be written as

H(z) = A(lz): — (43)
(1—-prz™)

k=1

where A(z) = Zle arz~* is the AR polynomial and px = rye/“* represents the kth
pole with a magnitude r, and angle wg. It is assumed that the AR process is wide

sense stationary. In most of the system identification problems, u(n) is modeled

2
w

to be a stationary zero-mean white Gaussian noise with an unknown variance o
For some practical applications, such as speech signal processing, seismology, and
communication, however, the excitation may have other forms [7], [8], [100]. For

example, in speech signal processing, a periodic impulse-train is often used as an
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excitation of the vocal-tract system [7], [8]. As such, both the white Gaussian noise
and the periodic impulse-train excitations are considered as input to the AR system.
Cepstrum analysis has become a very important tool in signal processing, espe-
cially in different speech processing applications. It has been proposed as a method
for separating signals that have been combined through convolution [7], [8]. For an
N-point real sequence {s(n)})4, in general, the cepstrum of s(n) can be defined

as [113]
Ys(n) = T~ [In[T [s(n)] (4.4)

where 7|[-] and 77![-], respectively, represent a transform and its inverse operator.
As usual, the natural logarithm is used. When 7 is a z-transform, for example,

T[s(n)] = S(2) = |9(2)]|e45), and the natural logarithm yields
In[S(2)] = In[|S(2)|] + j£5(2) (4.5)

Note that, the sequence s(n) has a real, stable, and uniquely defined cepstrum if
In[S(z)] has a convergence power series representation. This implies that In[S(z)]
should be an analytical function within a region of convergence including the unit
circle. Hence, both In[|S(2)|] and arg[S(z)] must be a continuous function of w.
When S(z) does not have zeros on the unit circle, the continuity of In[|S(2)|] is
guaranteed. However, since, a numerical computation of (4.5) provides only the
principal or wrapped phase, a phase unwrapping algorithm is necessary to restore the
phase continuity (8}, [114]-[116].

In the current system identification problem, the system response z(n), as de-
scribed in (4.2), is a convolution of the input and the impulse-response of the system,

and its cepstrum, which can be expressed as a sum of the two corresponding cep-
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strums, is given by
Ve(n) = (1) + Yu(n) (4.6)

where y,(n) and 7,(n) are the cepstrum of the impulse response h(n) and the input
signal u(n), respectively. Utilizing such an advantage of homomorphic deconvolu-
tion, cepstrum domain methods have been proposed for system identification in {73],
[86], [117], [118]. For example, in [73], in order to estimate the AR parameters, a
mean-squared error minimization involving (4.6) is used by employing the Cholesky
decomposition. However, as mentioned in [73], the problem of this method is that the
stability of the estimated AR model is not guaranteed. It is to be noted that all the
cepstral domain methods mentioned above deal only with the noise-free environment.

In the presence of additive noise v(n), the observed signal y(n) is given by
y(n) = z(n) +v(n) (4.7)

where v(n) is assumed to be a zero mean stationary process and is independent of
u(n). In [119], the behavior of the cepstral coeflicients affected by additive noise has
been investigated for the purpose of speech recognition by assuming that the noise
spectrum can be obtained during the experiment, and it has been shown that the
cepstral vector of noisy data can be expressed as the sum of the cepstral vector of its
clean version and a scaled deviation vector. In our identification problem, however,
we consider a more common and critical situation where only noisy observations are
available. Using the definition given in (4.4), the complex cepstrum of y(n) can be

expressed as

vy (n) = T=H{In[T|z(n)))} + T~} {h’ [1 + %} }

= 71('”) + ’Vw(n) (4'8)
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where the term 7,,(n) arises from the presence of v(n), and vanishes in its absence. It
can be observed from (4.8) that in the cepstral domain the effect of noise is additive.
In order to estimate the AR system parameters from -, (n), the effect of 7,,(n) has to
be reduced. It is difficult to obtain an accurate estimate of v,(n) from 7,(n), since,
the cepstrum decomposition techniques are very sensitive to the noise level [71], [119].
In order to reduce the effect of noise in extracting the AR parameters, first, we avoid
computing cepstrum directly from the noise-corrupted observations, by using a one-
sided ACF and then develop a ramp cosine cepstrum (RCC) model and carrying out
a model-fitting based least-squares optimization. Moreover, in the proposed method,
the DCT, instead of the conventional DFT, is employed for computing the cepstrum
so as to overcome the problem of phase unwrapping. Another advantage of the DCT

over the DFT is the computational efficiency in dealing with real signals.

4.2.2 Proposed Ramp Cosine Cepstrum (RCC) Model of One-
Sided ACF of AR signal

In the cepstral analysis, cepstral coefficients are, generally, computed from an ob-

served signal or from an estimate of its non-parametric power spectral density (PSD)

[11], [33]. In this section we propose to develop a ramp cosine cepstrum model utiliz-

ing a one-sided ACF (OSACF) of z(n), which can be defined as

(]51(7'), T>0
Ye(1) = 0.5¢:(7), 7=0 (4.9)
0, 7<0

where ¢(7) is the conventional two-sided ACF of z(n) which, in general, is estimated

as [33] .
bo(r) = % S wm)a(nt|r), 0< 7| < N (4.10)

n=0
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where N is the data length. This equation provides an accurate estimate of ¢,(7)
when N is sufficiently large. Some important properties of the OSACF of z(n) relevant

to the development of the proposed model can be summarized as follows

1. Since, ¢,(7) is a symmetric two-sided sequence, the OSACF 1, (7) is related to
¢:(7) as
¢2(7) = V() + Ya(—7). (4.11)

2. For a real signal z(n), its OSACF v, (7) is also real.
3. The function 1, (7) retains the pole-preserving property of ¢, (7).

4. The OSACF exhibits a higher noise immunity than the conventional ACF does

[108].
Taking the z-transform of the both sides of (4.11) results in
D.(2) =V (2) + ¥,.(1/2) (4.12)
The Fourier domain representation of (4.11) is given by
Fl¢a(7)] = 2Re[F e (7)]] (4.13)

where F| -] represents the Fourier transform and the operator Re| - | gives the real part
of a complex number. As we are interested to perform cepstrum domain computation
with 1,(7), the relation in (4.13) favors the use of the cosine transform, which is the
real part of the Fourier transform. As discussed in Section 4.2.1, the introduction
of cosine transform not only provides advantage for its realization, it also helps in

overcoming the phase unwrapping problem. The Fourier cosine transform is the real
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part of the full complex Fourier transform and is denoted as F,[-]. Thus, the Fourier

cosine transform of a real signal {1,(7)}2! can be written as

N-1

Ve (w) = Flu.(7)] = Re[Fly.(1)]] = Z Yo (T)coswT (4.14)

T7=0
From (4.4) and (4.14), one can define the cosine cepstrum of a real signal {1, (m)}2 3

ey, (m) = F ' In[Fe[thz (m)]]] (4.15)

where F.[-] denotes the inverse operator for the cosine transform, i.e., for a given

frequency domain spectrum W¢(w), the inverse cosine transform can be defined as

1 w
FIHPE(w)] = 2—/ U (w)coswm dw (4.16)

™ -
In the following, we will develop a ramp cosine cepstrum model for the estimation
of the AR parameters under the white Gaussian noise and a periodic impulse-train
excitations. To this end, we first show that the cosine cepstrum ¢y (m) can be

expressed in terms of the system poles. Using (4.13) and (4.14), ¢y, (m) in (4.15) can

be expressed as

1
cortm) = 5 Il Flou(ml] + 2 1 ]| (@17)
Here F[¢(m)] = ®,(w) is by definition the PSD of the real signal z(n), and it can
be shown that ®,(w) is real, even, and non-negative. From (4.2), PSD of the output

z(n) for a linear time-invariant system with a transfer function H(z) can be expressed

as

®o(2) = H(2)H(z™)Pul(2) = |H(2)[* @u(2) (4.18)
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where ®,(z) is the PSD of the input signal. Using (4.18), cy,(m) in (4.17) can be

written as

cye(m) = F ' In[H (w)]] + F. [In[H (-w)]]

+72 i )]+ 77 n 5| (419)

It is observed from (4.19) that the effect of input excitation w(n) has been made
additive by using the homomorphic deconvolution. Now, we consider each of the four

terms in (4.19) individually. From (4.3), In[H(z)] can be expanded as

P P oo
In[H(z)] = — Z]n (1-pi7t) = Z Z %z"” (4.20)

i=1 n=1

Using (4.16), the inverse cosine transform of In[F[h(n)]], with h(n) being real and

minimum phase, can be obtained as

1 LS
FHn[HW))] = —é——/ Zzﬁe"wmcoswm dw
TJr i mat
= ——1—/7r iiﬁ[lﬁ-cos&um] dw
dm T =1 m=1 m
1 r P oo m
_jE Z Z %—[sin 2wm)] dw
T =1 m=1
1 M m
= 522%,77»0 (4.21)
i=1 m=1
Similarly, the inverse cosine transform of In[H (—w)] can be obtained as
1 x P [e’s} pm
FIn[H(-w)]] = —/ Z LM coswm dw
27T T =1 m=1 m
1 P o m
- -Z-ZZ%,nwo (4.22)
i=1 m=1

It is observed from (4.16) that for a constant value of U¢(w), F, }{¥¢(w)] = 0 for all

m > 0. Thus for m > 0, the last term on the right side of (4.19) vanishes. Let us
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now consider the remaining third term of (4.19) that depends on the characteristics
of the input excitation w(n). In the following we consider separately (a) the white
Gaussian noise and (b) a periodic impulse-train as an input excitation.
(a) White Noise Excitation

For a zero mean white Gaussian noise with a variance 02, ®,,(z) = 02. Thus the

third term on the right side of (4.19) reduces to
F In[@y, ()] = F in[e2)) =0, m >0 (4.23)

Hence, for the white noise excitation, the cosine cepstrum cy, (m) in (4.19) can finally

be expressed as
M o
Cy, (M) = - m>0 4.24
sm =35 (424
It can be observed from this equation that c,,_ (m) decays rapidly with increasing m,

thus making it difficult to use ¢y, (m) for the estimation of the system poles. In order

to overcome this problem, we propose an easy-to-handle ramp cosine cepstrum (RCC)

for the OSACF of z(n), defined as
P
Xz(m) = mey, (m) =Y pl*, m>0 (4.25)
i=]

Since, the poles in a system could appear as real or as complex conjugate pair, (4.25)

can be rewritten as

Xz(m) = i:a(wi)r?cos(wz-m),m>0 (4.26)

i=1
where « is the number of real poles plus the number of complex conjugate pole pairs,

7; and w; are, respectively, the magnitude and the argument of p;, and a(w;) is given

by -

1, wi=0orw;=m
alw) = {2, O<w<m (4.27)
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is introduced to distinguish real and complex poles. The model given by (4.26) is
termed as the AR ramp cosine cepstrum (RCC) model for the OSACF of z(n). This
model will be used in the next section to formulate an objective function for the
least-squares fitting problem in a noisy environment.
(b) Periodic Impulse-train Excitation

In the derivation of the RCC model with the white noise excitation, it was ob-
served that the term containing the effect of white noise excitation becomes zero for
m > 0, since the PSD of the input w(n) is a constant. However, the situation is
more complicated in the case of a periodic impulse-train excitation w;(n) where the
corresponding PSD is no longer a constant. Next, we analyze the effect of the third
term F,?[In[®,, (w)]] of (4.19), that is now denoted as é,,,(m), on cg, (m).

A periodic impulse-train excitation {u;(n)}"=} with a period T can be expressed
-1

w(n) =Y dn—kT), (4.28)

R~

x
i

where = [N/T7, [-] denoting the ceiling operator, is the total number of impulses
within the finite duration of excitation. Using (4.10), an estimate of the ACF of u;(n)
is obtained as

u—1

6u(r) = Su =il =T, 0.< |r| < N (4.29)

It is observed from (4.29) that ¢,,(7) decays with increasing values of 7 and has
nonzero values at 7 = 0 and at integer multiples of T for the case of finite data

operation with 0 < |7| < N. Thus, ¢,,(7) can be expressed alternately as

bu,(r) = { £(7) =0Tl (u=1)T (4.30)

0, otherwise
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where

p— 7]
f(r) = { N se-l (431)
0, otherwise

Note that f(7) is an even symmetric triangular sequence and from (4.30) and (4.31),
it is evident that f(7) can be obtained by down-sampling ¢,,(7) with a factor T.

Thus the z transform of ¢, (7) can be expressed as
8, (2) = F(T) (4.32)

where F(z) is the z transform of f(n) and the sequence N f(n) can be generated
through a convolution between a rectangular pulse train of width p and its time

reversal sequence. An expression for F'(z) can be obtained as

1 (*—1)?

Fe)=§aag—

2 40,1 (4.33)

Based on the relation between ¢,,(7) and f(7), as described in (4.30), (4.31) and

(4.32), it can be shown that

. [m

s (m) = c,(—T—), m=0,T,2T,..., (n—1)T (.34

¢‘U1 .
0, otherwise

where

¢(m) = 7. In[F(w)]]

It is evident from (4.34) that é,,,(m) assumes non-zero values at m = 0 and at integral

multiples of T" for m > 0. Thus, the third term on the right side of (4.19) reduces to
F In[@, (w)]] =0, 0<m<T (4.35)

Note that the RCC given by (4.25) for the white noise excitation can be modified for

the impulse-train excitation as

P
Xz(m) = mey, (m) = ZPT, O<m<T (4.36)

=1
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From (4.25) and (4.36), it is observed that the RCC model derived for the white
noise excitation is also valid for the case of periodic impulse-train excitation when

0<m<T.
4.2.3 Computation of RCC Model Via DCT/IDCT

The RCC model derived in the previous subsections is obtained from the cosine
cepstrum of the OSACF of z(n), where the logarithm operation is performed on the
cosine transform of 1,(m). As explained earlier, the difficulty in the complex cepstral
analysis is the necessity to unwrap the phase to make it a continuous function of w.
A major advantage of using cosine transform lies in its binary phase information, i.e.,
0 or 7 which, as shown later, can significantly simplify the phase unwrapping process.
From the implementation point of view, different types of discrete cosine-transforms
(DCTs) can be employed. It is known that the DCT is far superior to the DFT for
the transformation of real signals. For a real signal, DFT gives complex spectrum and
leaves nearly one-half of data unused. In contrast, the DCT generates real spectrum
of real signals and thereby makes the computation of redundant data unnecessary.
Being a real function, the DCT offers an added advantage that it reduces only a
simple phase unwrapping algorithm. Also, as the DCT is derived from the DFT, all
the desirable properties of DFT are preserved, and fast algorithms for its computation
exist. As a result, using a DCT and inverse DCT (IDCT) pair, a complex-cepstrum

corresponding to (4.15) can be implemented as follows

Xz(m) = mey,(m), m >0

¢o.(m) = IDCT[In(DCT[we(m)])], m > 0 (4.37)
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For a real sequence 9,(m) with m = 0,1,--- , N — 1, the most commonly used DCT-

IDCT pair is defined as

DOT(n)] = Ta(k) = <(k) 3 tha(n) cos ((z—n%)ﬁ>
n=0
Ot N1 (4.38)
N-1
IDCT{\I]x(k)] =1.(n) = S(k) W (k) cos <%>
kzo:o,L--.,N—l (4.39)

where (k) is a normalization coefficient defined as

_ [ V/1/N, fork=0
g(k)_{ V2/N, fork=1,2,...,N—1 (4.40)

Since the bases of the cosine transform are real functions, the principal phases of DCT
coefficients can only be 0 or w. Accordingly, we can represent the phase as exp(—jm)
when the cosine transform is negative sign and as exp(—j0) when it is positive. With
this representation, the logarithm operation in (4.37) can be easily carried out on and

(4.37) can be expressed as
se(n) = Re [IDCTIn |V, (k)| + jng]],n >0 (4.41)

where

- { 0, if U (k) > g (4.42)

-1, ¥, (k) <0
Thus, this representation clearly supports a simple phase unwrapping. On the other
hand, in the case of using DFT for the computation of cepstrum, complicated phase

unwrapping algorithms as proposed in literature (8], [114]-[116] need to be used, since

the phase in this case has no longer binary values.
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4.2.4 Ramp Cosine Cepstral Fitting: Residue Based Least-
Squares Minimization
In the presence of noise, the observed signal gets heavily corrupted especially when
the signal-to-noise ratio (SNR) is very low. In Section 4.2.1, the effect of noise on
cepstral coefficients has been described for the case when cepstrum is computed in
the signal domain. It is well-known that the autocorrelation of a noisy signal offers
more noise-robustness in comparison to the noisy signal itself [108]. Thus, the RCC
model that we have developed based on the OSACF .(7) of noise-free signal can be
used as a target function even when RCC is computed based on the OSACF of the
noisy observation of the signal. In what follows, our objective is to investigate the
effect of the noise on the RCC computed from noisy observations. In the presence of

an additive noise v(n), the ACF of the noisy observation y(n) can be expressed as

¢y(T) = @2(7) + Pn(T) (4.43)

where
(Z)n(T) = ¢v(7-) + ¢mv(7) + ¢v1(7') (444)

Here ¢,(7) is the ACF of noise v(n), and ¢, (7) and ¢,,(7) are crosscorrelation terms.
It can be observed that ¢,(7) corrupts ¢.(7) in an additive fashion like the signal.
The effect of ¢,(7) cannot be neglected, especially when the SNR is very low. Note
that, the effect of crosscorrelation terms on v, (7) is negligible when v(n) and w(n)
are assumed to be uncorrelated. However, at a very low SNR, this is is not so when
the length of the observed data is finite. Even for an uncorrelated additive white
Gaussian noise, all the lags of the noisy ACF are corrupted at a very low SNR. Under
such a noisy condition, the conventional correlation based methods employing directly

¢,(7) cannot provide a good estimation performance. This motivates us to switch to
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the cepstral domain where the logarithmic smoothing would help in preserving the
RCC model under heavy noisy conditions. The OSACF #,(7) of noisy observations

y(n) can be obtained as

&, (), 7>0
Yy(1) = 0.5¢y(7), T=0 (4.45)
0, 7<0

From (4.43) and (4.45), the OSACF of y(n) can be written as
Py(7) = Y2(7) + ¢a(7) (4:46)

where 1,,(7) indicates an effect of noise on 1, (7) and it can be expressed in a form
similar to that of ¢¥,(7) given by (4.9). Thus, in the presence of noise, the cosine

cepstrum of 1,(7) can be expressed as

ey, (m) = F In[F by (m)]]] = ey, (m) + ey, (m), n>0 (4.47)
where
Cy, (m) = F1 {m [1 + %] } (4.48)

Therefore, the ramp cosine cepstrum of ¥, (7) can be expressed as

Xy(n) = Xx(n) + Xe(n)v n>0 (449)

Here, x.(n) is the error introduced due to the noise. It is to be noted that the effect
of noise, which is additive in the observed noisy signal given by (4.7) or its ACF
given by (4.43), can also be treated as additive in the proposed ramp cosine cepstrum
domain. Now, the RCC model derived in Section 4.2.2 can be used in (4.49) for a
ramp cosine cepstral model fitting to minimize the error between x,(n) and x(n). By
this approach the RCC model parameters, and thus the AR parameters are estimated.

Since, in the presence of additive white Gaussian noise, the zero lag of the noisy

ACF ¢,(n) is most severely corrupted in comparison to other lags, one way of reducing
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the effect of noise is to compensate the amount of noise from ¢,(0). In this case the
noise variance must be known or estimated. However, in most practical applications,
the noise variance is a prior: not known or very difficult to obtain. One possible
way of estimating the noise variance is to utilize the noise-only data, if available.
This technique is employed in speech signal processing when the observed noisy data
contains noise-only (pause) segments. In the proposed identification scheme, a more
general noisy environment is considered where it is assumed that the noise variance
is unknown and noise-only data is not available. If the zero lag is kept as it is
during the computation of the RCC of the OSACEF, it may result in a more erroneous
value of RCC. On the other hand, by excluding the zero lag one may reduce the
effect of noise. However, in this case, the average power of the observed data y(n)
will be removed. Since ¢,(0) > |¢,(7)| for 7 # 0, we replace ¢,(0) by n¢,(0) with
{l#64(1)|/0y(0)} < n < 1 in order to reduce the effect of noise, instead of discarding
the zero lag altogether. The process can efficiently suppress the level of ¢y, (m) while
leaving the shape of ¢y, (m) similar to that of ¢y, (m).

As discussed in the previous sub-section following (4.49) that a ramp cosine cep-
stral fitting approach can be employed to determine the RCC model parameters from
the RCC of the OSACF of noisy observations. Then, the AR parameters can be
obtained from the RCC model parameters {r;} and {w;}. Each of the x component
terms in (4.26) contains a pair (r;,w;). In order to estimate each of the x such pairs,
N, values of x,(n) are used, where N, < T for the periodic impulse-train excita-
tion. The objective function to determine the values of one pair (r;,w;) is defined as

the total squared error between the (I — 1)th residual function ®,_;(n) and the I/th
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component of the RCC model, that is
A
Ji=Y_ |Rii(n) = alw)rf cos(wm)®, 1= 1,2,... & (4.50)
n=1

where the residual function is updated as follows

Ro(n) = xy(n)
Ri(n) = Ri_i(n) —a(w)rlcos{wn), {=1,...,k—1

(4.51)

Note that {r;} and {w;} are independent variables and a depends on {w;} as given
by (4.27) and it is not an independent variable. We would like to find the optimal
solution for {r;} and {w;} by a search algorithm based on the computation of (4.50)
and (4.51) in which different sets of values for {r;} and {w;} in a bounded region are
tested for a possible solution. In order to estimate each of the « such pairs, J; given
by (4.50) is computed for different trial values of {r;} and {w;}. The values of one
pair (r;,w;) corresponding to the global minimum of J; are selected as the estimate
of the desired poles. It can be observed from (4.51) that, in order to determine the
[-th residual function $;(n), already computed values of {r;} and {w;} are utilized.
Proceeding in this manner, the AR parameters can be determined using (4.3) once
all the P poles have been estimated. In the proposed search scheme, restricting
the search range of r; within the stable region inherently guarantees the stability of
the estimated AR system. Note that instead of the entire RCC model with all &
constituent terms, each such term is estimated sequentially in (4.50). This is done
with a view to convert a multi-dimensional optimization problem into a set of two-

dimensional optimization scheme which makes the problem much simpler. In order

to reduce the computational burden, a two-step search algorithm can be used. In
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the first step, only a coarse-search based on the DCT spectrum of the OSACF of the
observed data is employed to find out the initial estimate of {w;} and {r;}, and in
the second step, a fine-search is carried out around the initial estimate with a higher
resolution to obtain a more accurate estimate. Once the magnitudes and angles of the
desired poles are obtained, the AR parameters can be computed using the relation

given by (4.3).

4.3 Simulation Results on AR System Identifica-
tion

In this section, extensive simulations are carried out in order to demonstrate the
effectiveness of the proposed technique in identifying the AR systems in the presence
of noise. We investigate the identification performance for synthetic AR signals as well
as natural speech signals corrupted by additive noise. The estimation performance
of the proposed method in terms of the accuracy and consistency of the estimated
parameters is obtained and compared with that of the existing improved least-squares
algorithm with a faster convergence (ILSF) or ILSD method [62], signal/sub-space
Yule-Walker (SSYW) method [58], and modified least-squares YW (MLSYW) [33]

method.

4.3.1 Results on Synthetic AR Systems

(a) White Noise Excitation: A noisy signal is generated according to (4.1) and

(4.7) with N = 4,000 and o2 = 1, where the variance of the white Gaussian noise o2
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is appropriately set based on a specified level of SNR defined as

> ()

SNR = 10log;y 2=—— dB (4.52)

> v(n)?

n=0

From the noisy observations, first, the OSACF ,(7) is computed using (4.45) and
(4.10). As given in (4.37) for the noise-free observations, DCT-IDCT based ramp-
cosine cepstrum (RCC) is computed using ,(7). The RCC model parameters are
then determined using the residue-based least-squares optimization technique de-
scribed in Section 4.2.4. In the proposed optimization scheme, the search range for
7, is chosen in the range [0.5,0.99], that allows the identification of even for systems
with a very fast decaying autocorrelations. The initial estimates of w; is obtained from
the location of the peaks of the smoothed DCT of the OSACF of y(n). The search
range for w; is in a range of 0.1 chosen symmetrically around the neighborhood of
the initial estimates. Search resolutions of Ar = 0.01 and Aw = 0.017 are used for
r; and wy, respectively. It has been experimentally found that, in order to obtain a
better estimate of the P unknown AR coefficients, the number of RCC samples to be
considered in the model-fitting operation should be higher than P. In our experiment,
the number of RCC samples is taken as N, = 10P.

In order to reduce the effect of the most corrupted zero lag on the OSACF of the
noisy observations, the value of 7 is chosen as |¢,(1)|/¢,(0). An experiment consists
of Ny = 100 independent trials to find the means and variances of the estimated AR
parameters. The experiments are conducted for noisy observations in which the SNR
varies from —5 dB to 15 dB at steps of 2.5 dB. The performance measurement criteria
considered in our simulation study are (1) the mean of estimated parameters, (2) the

standard deviation from the mean (SDM), (3) the standard deviation from the given
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value, i.e., the true value (SDT), and (4) the average sum-squared error (ASSE) given

by
ASSE = — f i [ax(m) — ag)? (4.53)
NrP m=1 k=1

where ax(m) represents the estimated parameter at the mth trial and ay the true
value of the parameters.

Different AR systems are investigated in order to cover a wide range of possible
locations of poles, their numbers and types (i.e., real or complex conjugate). Tables
4.1 and 4.2 show the estimation results for the AR(3) and AR(4) systems at an SNR
level of —5 dB, respectively. The AR(3) system contains a real pole and a pair of
complex conjugate pole, and the AR(4) system contains two real poles and a pair
of complex conjugate pole. As the real and complex types of poles exhibit quite
different behaviors, in our experiments various combinations of real and complex
poles are considered to show the capability of the proposed algorithm in dealing with
real life situations. In each table, the second column lists the true values of the AR
parameters and the remaining four columns list the estimated values of corresponding
parameters obtained from the proposed and the three other methods. The values for
the SDM and SDT corresponding to estimated AR coefficients are also given below
the estimated parameter value. The last row of each table provides the ASSE measure
in dB. Table 4.1 shows that at SNR = —5 dB, when the other methods fail to identify
the system, the proposed method successfully estimates the parameters with quite
accurately. It is seen from Table 4.2, although some of the other methods provide an
acceptable performances, the estimation accuracy achieved by the proposed method is
much higher. It is seen from these tables that the proposed method exhibits superior

estimation performance with respect to all the four performance indices at such a
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Table 4.1: Estimated parameters at SNR = —5 dB for AR(3) system with white noise
excitation

True Estimated parameters

parameters Proposed TILSF SSYW MLSYW
Method Method Method Method
a; | —2.6770 —2.6658 —1.3437 —0.9891 -1.0753

(£0.0349) | (£0.5077) | (£0.6716) | (£0.1074)
(£0.0367) | (+1.4267) | (£1.8166) | (+1.6053)
ay | 2.5894 35517 0.4403 | ~0.1136 0.1118
(£0.0760) | (£1.0037) | (£0.7117) | (£0.1799)
(40.0859) | (£2.3719) | (+2.5760) | (£2.7071)
a3 | —0.8970 | —0.8763 0.0868 0.2214 0.5107
(40.0439) | (£0.6053) | (40.3641) | (+0.1013)
(£0.0496) | (£1.1551) | (£1.1762) | (£1.4114)

ASSE (dB) | —24.93 | 425 | 5.13 6.05

Table 4.2: Estimated parameters at SNR = —5 dB for AR(4) system with white noise
excitation

True Estimated parameters
parameters Proposed ILSF SSYW MLSYW
Method Method Method Method
a 0.4998 0.5042 0.3655 0.3830 1.0445

(££0.0289) | (£0.2595) | (40.3086) | (£0.0923)
(£0.0203) | (40.2922) | (£1.6859) | (+1.2579)
as | —0.0100 | —0.0283 | —0.0066 0.0040 0.0452
(£0.0219) | (&£0.0600) | (40.0651) | (£0.0704)
(££0.0285) | (4+0.0601) | (£0.0672) | (£0.0747)
a3 | —0.7853 | —0.7580 | —0.7759 | —0.8221 | —0.7550
(£0.0507) | (40.0898) | (0.0857) | (£0.0956)
(2£0.0665) | (40.0899) | (+0.0882) | (£0.0972)
a7 | —05999 | ~05648 | —0.4597 | —0.4211 | -—0.3229
(£0.0374) | (£0.2732) | (£0.2874) | (+0.3113)
(£0.0513) | (40.3071) | (40.2982) | (£0.3257)

ASSE (dB) —24.95 -13.27 —12.71 —9.13

low level of SNR. Very small values of SDM and SDT obtained from the proposed

technique indicate a high degree of estimation consistency and accuracy.

Fig. 4.1 shows the ASSE values as a function of SNR levels for the AR(3) system
obtained by each of the four methods with the true parameters as specified in Table
4.1. It is observed from Fig. 4.1 that the ILSF and the SSYW methods give estimation

accuracy comparable to that provided by the proposed method for SNR levels above
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Figure 4.1: Effect of noise level on the ASSE for a white noise excited system.

10 dB. However, the proposed method performs significantly better for levels of SNR
as low as —5 dB.

Fig. 4.2 depicts the superimposed plots of the estimated poles from 20 independent
realizations obtained by the four methods at SNR = —5 dB along with their true

locations for an AR(5) system with parameters given by
a, = {1,—3.2229, 5.2862, —5.0095, 2.7875, —0.7362}.

Clearly, the estimated values obtained using the proposed method in comparison to
that achieved by the other methods are much less scattered around the true values

indicating a very high estimation accuracy.

(b) Impulse-Train Excitation: We now consider the problem of AR system iden-
tification with periodic impulse-train excitations of different periods for various levels

of noise. An impulse-train is generated using (4.28) with a known value of T. We
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Figure 4.2: Superimposed pole plot of AR(5) system at SNR = —5 dB. x : true
poles and * : estimated poles. (a) Proposed, (b) ILSF, (c) SSYW, and (d) MLSYW
method.
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Table 4.3: Estimated parameters at SNR = —5 dB for AR(3) system with impulse
train excitation

True Estimated parameters
parameters Proposed ILSF SSYW MLSYW
Method Method Method Method
a1 | —2.6770 —2.6816 —0.9615 —1.0776 —1.0588

(£0.0311) | (+1.0657) | (+0.6890) | (-0.0962)
(40.0200) | (+2.0196) | (+1.7414) | (£1.6211)
az | 2.5894 25644 | —0.2284 0.1767 | —0.1307
(£0.0702) | (&1.7218) | (&0.7101) | (£0.1728)
(£0.0671) | (£3.3022) | (£2.5150) | (+£2.7256)
a3 | —0.8970 | —0.8732 0.4773 0.2489 0.5269
(+£0.0398) | (+0.8970) | (+0.3625) | (+0.0087)
(£0.0387) | (+1.6411) | (£1.2019) | (£1.4273)

ASSE (@B) | -—25.14 5.23 | 6.27 5.87

choose the number of RCC samples less than T'; thus, N, = min(T' —1,10P). A noisy
AR signal is generated according to (4.1) and (4.7) with N = 4,000. The simulations
are carried out for Ny = 100 independent trials and the results averaged.

Tables 4.3 and 4.4 provide the estimation results for the impulse-train excited
AR(3) and AR(4) systems with 7" = 220 at SNR = —5 dB, respectively. It is seen
from these tables that the proposed method provides quite an accurate estimation
of the AR parameters with very small values of SDM and SDT, whereas the other
methods are unable to identify the systems at SNR = —5 dB. Similar result is observed
for the AR(5) system that was considered for the white noise excitation.

The ASSE resulting from using the various methods under the impulse-train ex-
citation for the estimation of the same AR(3) system as the one considered for the
white noise excitation is shown in Fig. 4.3. It is seen from the figure that, the pro-
posed RCC method provides a significantly better performance even at a very low

SNR, whereas the performance of other methods deteriorates at low levels of SNR.
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Table 4.4: Estimated parameters at SNR = —5 dB for AR(4) system with impulse
train excitation

True Estimated parameters
parameters Proposed ILSF SSYW | MLSYW
Method Method Method Method
a 0.4998 0.4822 0.3845 0.3719 0.1483

(40.0432) | (0.2824) | (£0.3122) | (+0.4145)
(40.0456) | (+0.2014) | (+£0.3134) | (+£0.4225)
az | —0.0100 | —0.0591 0.0151 0.0247 0.0608
(£0.0501) | (£0.0705) | (£0.0607) | (£0.0615)
(2£0.0540) | (+0.0743) | (£0.0699) | (£0.0938)
a3 | —0.7853 | —0.7483 | —0.8134 | —0.8428 | —0.7973
(2£0.0651) | (£0.0602) | (£0.0402) | (+0.0387)
(2£0.0730) | (40.0664) | (£0.0701) | (+0.0407)
as | —0.5999 | —0.5568 | —0.4196 | —0.4663 | -0.2065
(££0.0658) | (£0.2953) | (£0.2885) | (+0.1842)
(££0.0660) | (+0.3107) | (£0.2992) | (£0.3549)

ASSE (dB) —22.84 —11.35 —10.71 —8.27

4.3.2 An Application for Vocal-tract System Identification

As a practical application of the proposed method, the identification of a vocal-tract
system is performed from natural speech signals. Since, in this case, the true system
parameters are not known, for the purpose of evaluating the estimation accuracy,
non-parametric PSD is used. In addition, an estimate of the poles under a noise-
free condition is also obtained by using some commonly used technique for the LPC
analysis, such as, the MLSYW method. The corresponding wide-band spectrogram
of the noise-free speech gives information on possible pole locations. In order to
estimate the vocal-tract system parameters, some English natural voiced phonemes
from the TIMIT and the North-Texas standard databases [120], [121] with a sampling
frequency of 16 KHz are used as the noise-free output observations. Instances of
the phonemes for the TIMIT database are extracted from the database according
to the given transcriptions, and the North-Texas is a database containing natural

vowels. Low-pass filtering up to a certain high frequency range, such as 6 KHz, is
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Figure 4.3: Effect of noise level on the ASSE for an impulse-train excited system.

not performed in order to observe the accuracy of the pole estimation over the entire
range of frequency. With the estimated parameters of the vocal-tract considered as
an AR system and the pitch-period (or the excitation signal), a speech phoneme
can be synthesized using an appropriate value of the vocal-tract filter gain, which is
determined based on the RMS power level and the peak PSD of the natural speech
frames [7]. For computing synthesized speech signals by different methods, same
excitation signal is used for a particular phoneme. It is to be mentioned that the
synthesized sounds obtained by different methods were also played back in order to
test the subjective quality. In order to verify the estimation accuracy, first, the PSD of
the synthesized speech is compared with that of the noise-free natural speech, and then
the estimated poles at a noisy condition is compared with that obtained in a noise-free
condition by using the MLSYW method. Quality of the synthesized sounds obtained
by the proposed method under such a noisy condition were found far superior than

that obtained by the other methods. Fig. 4.4(a) shows a comparison of the PSDs
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of the vocal-tract system obtained from the different methods considered in noisy
environments with respect to noise-free PSD. Considering the fact that the choice of
the order of the vocal-tract filter depends on the spectral characteristics of the specific
phoneme, an AR(10) model is used for a naturally spoken sound /a/ of the word ‘Rob’
uttered by a male speaker. The estimated pole locations of the vocal-tract system are
averaged over 20 independent noisy realizations and used to obtain the synthesized
speech. We choose the number of RCC samples N, less than the pitch period T'; thus,
N, = min(T-1,10P). According to the general behavior of the vocal tract parameter,
r; is searched in the range [0.8,0.99] [93]. The search range for w; can be narrowed
down based on the knowledge of the pole locations of a particular phoneme [7], [93].
In order to have a better understanding of the level of noise, the PSD of one of the 20
noisy signals is also included in obtaining the results of Fig 4.4(a). It is seen from this
figure that the PSD of the synthesized signal obtained by using the estimated vocal-
tact system parameters resulting from the proposed scheme is quite accurate relative
to that obtained by the other methods. The estimated average poles are also shown in
Fig. 4.4(b) along with the noise-free estimates obtained by the MLSYW method. In
Fig. 4.4(b), the noise-free wide-band spectrogram and the noise-free non-parametric
PSD are included in order to clearly visualize the pole locations and strength in the
natural phoneme. The pole-plot clearly shows a high estimation accuracy of the
proposed method even at a low level of SNR. In a similar fashion, using an AR(10)
model, PSD results are obtained by employing different schemes under a real noisy
environment of a multi-talker babble noise (multiple background competing speakers)
taken from the Noisex92 database [122]. In Fig. 4.5(a), the results obtained at an SNR

of —5 dB for a naturally spoken sound /e/ of the word ‘head’ uttered by a female

speaker are presented. The multiplicity of speakers produces a flatter short-term
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Figure 4.4: Estimation results for a natural speech phoneme /¢/ in the presence
of white noise at SNR = —5 dB. (a) PSD obtained by using different methods,
(b) Average estimated poles (x) obtained from noise-corrupted speech by using the
proposed method along with the noise-free estimates (o) obtained by the MLSYW
method, spectrogram of the noise-free speech, and noise-free PSD.
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Figure 4.5: Estimation results for a natural speech phoneme /a/ in the presence of
a multi-talker babble noise at SNR = —5 dB. (a) PSD obtained by using different
methods, (b) Average estimated poles (x) obtained from noise-corrupted speech by
using the proposed method along with the noise-free estimates (o) obtained by the
MLSYW method, wide-band spectrogram of the noise-free speech, and noise-free
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spectrum which has greater spectral and temporal modulation than a white Gaussian
noise. It is observed from Fig. 4.5(a) that the PSD obtained using the proposed
method closely matches the noise-free PSD, and all pole locations are accurately
estimated. The pole estimation accuracy of the proposed method is better revealed
in Fig. 4.5 (b). In this figure the estimated average poles along with the noise-free
pole estimates, the wide-band spectrogram, and the non-parametric PSD are shown.
Fig. 4.5 clearly shows that the proposed method is capable of providing a satisfactory

estimation performance also in the presence of babble noise at a very low level of SNR.

4.4 ARMA System Identification

In this section, a ramp cosine cepstrum model corresponding to the ARMA system is
developed. It is to be mentioned that in Chapter 3, based on the principle of derivation
of the ARRC model, an ARMARC model is derived and implemented for the ARMA
system identification. It can be realized from the detail derivation of the ARRCC
model as described in the previous section that, an RCC model corresponding to
the ARMA system needs to be derived based on a similar procedure by taking into
account some necessary changes due to the presence of zeros apart from the poles.
An ARMA system identification scheme is then developed based on the model-fitting

approach.
4.4.1 Problem Formulation

According to the system description given in Chapter 2, the input u(n) and the output
z(n) of a causal stable and LTT ARMA (P, Q) system are characterized by

P Q
D am(n—i) = bju(n - j) (4.54)
=0

=0
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where a; and b; are the AR and MA parameters with ap = 1 and by = 1, and P and @
are the orders of the ARMA model, which are assumed to be knownThe corresponding

system transfer function is given by

Q

1—2z;27
_B(z) H
P

1—
H 1—sz h=

(4.55)
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>>
N

I
Mw

o
—

where A(z) = S _ axz™* and B(z) = 1 + Z?zl b;j2~7 are, respectively, the AR and
MA polynomial, pi’s and z;’s denote, respectively, the poles and the zeros of the
ARMA system. It is assumed that all poles and zeros are of the first-order and the
the ARMA(P, Q) process is minimum phase and stationary.

From an OSACF ,(m) of the ARMA signal z(n), according to the definition

given in (4.15), the cosine cepstrum of ¥,(m) can be expressed as

ey, (m) = F. In[H ()]} + 77 [In[H (—w)]]

+F By ()] + F! [m EH (4.56)

For the case of an ARMA system described by (4.55), In [H(z)] can be expanded as

P

Q
In[H(z)] = =) n(1-pz?) +Zln (1-227")

i=1
_ i i PL o _ EQ: i Z n (4.57)

=1 n=1 " i=1n=1 "
It can easily be observed from (4.57) that, in comparison to (4.20) for the case of
ARMA system additional terms appear due to the presence of system zeros. In order

to develop an identification algorithm for the ARMA system, our objective is now to

determine all four parts of (4.56) and then develop a ramp-cosine cepstrum model.
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4.4.2 Proposed RCC Model of OSACF of ARMA Signal and

Parameter Estimation

Based on the definition given in (4.16), with the impulse response of the ARMA

system h(n) being real and minimum phase, ¥ ![In[H (w)]] in (4.56) can be obtained

as
I R A o O S E
Fin[H( - 2 p—jum __ L eg=m | coswm dw
R 27 J L:l me1 j=1m=1 m ]
1 T P o pm Q oo Zm
= & _W{z;zlﬁ—X;Z:l;];] (14 cos2wm) dw
i=1 m= j=1 m=
1 s [P o pm Q oo zm
—]Z;/_,r [;mzz;;{ —;;—E} (sin 2wm) dw
P m m
- L DR o) SE- PN (4.58)

Similarly, the inverse cosine transform of In[H (—w)] can be obtained as

FnH(-w)] = 1 [Z Z P —ewm — Z Z efwm} coswm dw

i=1 m=1 j=1 m=1
—1M°°p‘ LSRN B 4.59)
=l XTIkl S
It can be shown in a similar way as stated above for the AR system that, for the

white noise excitation, the cosine cepstrum ¢y, (m) can be expressed as

Q

ey, (m) = sz —Z-zz m >0 (4.60)

j=1

A ramp cosine cepstrum (RCC) for the OSACF of z(n) is thus obtained as

P
Xa(m) = mcy, (m) = sz Z ] (4.61)

i=1

N-

For a periodic impulse-train excitation {u;(n)}} = with period T, as derived above

for the AR system, it can be shown that é,,,(m) assumes non-zero values at m = 0
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and at integral multiples of T for m > 0. Thus, ¢y, (m) can be written as

p Q
Xe(m) =mey, (m)=>_pl'=> pft, 0<m<T (4.62)
i=1

=1
which is same as (4.61) except the range is now 0 < m < T instead of m > 0. For
a real-valued z(n), complex poles (zeros) will always appear as conjugate pairs. In
(4.61), the complex pole (zero) pairs and real poles (zeros) will each contribute one

decaying exponential, which can be written as a decaying cosine function, yielding

Kp KQ

Xz(m) = Z a(wp; )Tp; " cos(wp,m) — Za(wzj)rz;” cos(wz;m),m >0 (4.63)
i=1 =1

where kp(kg) represents the number of real poles (zeros) plus the number of complex
conjugate pole (zero) pairs, 7,, and wp, are, respectively, the magnitude and the
argument of the ith pole p;, and 7,; and r,; and w,; are, respectively, the magnitude
and the argument of the jth zero z;. In (4.63), a(w) is introduced to distinguish the
real and complex zeros and poles, namely, a(w) = 1 if w = 0 or 7, otherwise a(w) = 2.
As a result, (4.63) can be expressed as

K =kp+Kg

xz(m) = Z a(wg)r™ cos(wxgm), m >0 (4.64)

k=1

where o(wy) can be written as

_ (-1)", wp=0o0rwp=m
o(wr) = { (-1)"2, O<uwp<m (4.65)

with 7 given by

_ O, k S Kp
= { L k> (4.66)

The model given by (4.64) is termed as the ARMA ramp cosine cepstrum (AR-
MARCC) model for the OSACF of z(n) which will be used to form an objective
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function for the LS fitting. Note that in case of impulse-train excitation as we men-
tioned in (4.64), 0 < m < T has to be considered instead of m > 0. For the purpose
of implementation, like the case of AR system identification, DCT-IDCT can be em-
ployed.

A ramp cosine cepstral fitting approach can be employed to determine the RCC
model parameters {ry} and {wx} from the RCC of the OSACF of noisy observa-
tions. Each of the x’ component functions in (4.64) is estimated sequentially from
N, nonzero instances of x,(m), where N, < T for the impulse-train excitation. The
objective function can be formulated in a similar fashion as it is done for the AR sys-
tem identification. Therefore, the total squared error between the (/—1)th residual

function R;_;(n) and the {th component of the model is given by
Ne
Jp = Z IRi—1(m) — a(w)r™ cos(wm))*,l=1,...,& (4.67)
m=1
where the residual function is updated as follows

Ro(m) = y(m)

Ri(m) = Ri_i(m) — a(w)r} cos(wym), I =1,...,&" =1 (4.68)

The optimal solution for {r;} and {w;} are then obtained through the search algorithm
described in Chapter 3. The two-step search algorithm described before can be also
employed to reduce the computational burden. In the first step, only a coarse-search
based on the DCT spectrum of the OSVACF of the observed data is employed to find
out the initial estimate of {w;} and {r;}, and in the second step, a fine-search is carried
out around the initial estimate with a higher resolution to obtain a more accurate
estimate. Once the magnitudes and angles of the desired poles are obtained, the

AR parameters can be computed using the relation given by (4.55). In the proposed
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search scheme, restricting the search range of r; within the stable region inherently
guarantees the stability of the system.

As an alternate of the above one-step (OS) method, a two-step (T'S) MA parameter
estimation algorithm proposed in Chapter 2 can easily be employed once the AR
parameters are obtained using the ARMA ramp-cepstral least-square minimization.
In this case, first, a residual signal is obtained by filtering the noisy observed signal
via the estimated AR parameters. Then the zeros are computed from the IACF
corresponding to the noise-compensated ACF of the residual signal using the RBLS
algorithm.

The residue-based LS ramp-cepstral fitting scheme that employs the proposed RC
model has been presented in order to estimate the AR and MA parameters. The
proposed system identification methods can estimate the desired system parameters
with sufficient accuracy under noisy environments. Using the ARMARC model, the
proposed OS algorithm directly computes both AR and MA parameters of the ARMA
systems in accordance with a proper optimization technique even from noise-corrupted
observations. On the other hand, the TS algorithm uses a residual signal to estimate
the MA parameters with the help of an IACF and provides comparatively better MA
estimates than that obtained by the OS method. Even though a priori knowledge of
the pole strength and location is not necessary for the proposed method to perform,
such a knowledge, if available, could easily be incorporated in the proposed scheme to
reduce the search range. From an extensive simulation on different synthetic systems,
it has been shown that the proposed method is able to estimate the system parameters
with sufficient accuracy and consistency for signals, at very low levels of SNR, in the
presence of noise. As an application of the proposed method the vocal-tract system

identification in the presence of white noise is performed using both AR and ARMA
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model demonstrating a superior estimation performance.

4.5 Simulation Results on ARMA System Identi-
fication

In this section, the estimation performance of the proposed OS and TS methods
under noisy conditions is evaluated and compared with that of the ARMA cepstrum
recursion (ACR) method [45], and the order-selective Durbin’s (OSD) method [33]
considered for the purpose of comparison in Chapter 3. An ARMA signal is generated

according to (4.7) and (4.54) with a data length of N = 4, 000 and excitation variance

2
v

02 = 1, where the noise variance o2 is appropriately determined according to a
specified level of SNR defined in (4.52). The RCC model parameters are determined
using the RBLS optimization algorithm where the search ranges and resolutions for
w; and 7; and initial estimates of w; are kept same as that used for the RCC model
based AR system identification. Each experiment contains N7y = 100 independent
trials and we compute the estimation mean, SDM, SDT, and ASSE as defined before.

In Tabie 4.5, estimation results for an ARMA(4, 3) system is presented at SNR —5
dB. In this table, the last row gives the true parameter values. The estimated values of
the corresponding parameters obtained by different methods including the proposed
OS and TS methods are given in the preceding four rows. The corresponding values
for the SDM and SDT are shown within the parentheses below the each estimated
parameter value. It is found that both TS and OS methods provide quite an accurate
parameter estimation performance in the presence of noise in comparison to the other
methods. The small values of standard deviations SDM and SDT obtained by the

proposed techniques indicate respectively a high estimation consistency and accuracy.

It is observed from our experimentation that the performance of the TS method is
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Table 4.5: Estimated parameters along with standard deviations (SDM and SDT) for
white noise excited ARMA(4, 3) system at SNR = —5 dB

Methods Estimated parameters ASSE
a1 a2 a3 as b1 b2 bs | (dB)
Proposed —2.5771 3.33559 —2.2429 0.7645 —2.0272 1.8558 —0.6569 | —17.41

(TS) | (£0.1064) | (£0.1974) | (£0.1928) | (40.0949) | (0.0863) | (£0.1036) | (:£0.0545)
(40.1076) | (20.1935) | (£0.1970) | (20.1027) | (+0.1080) | (£0.1043) | (£0.0552)
Proposed | —2.5771 33559 | —2.2429 0.7645 | —1.9875 1.8019 | <0.6145 | —14.48
(0S)y | (£0.1084) | (£0.1974) | (£0.1928) | (£0.0049) | (£0.2122) | (£0.2072) | (&0.0902)
(£0.1076) | (£0.1935) | (£0.1970) | (&0.1027) | (£0.2159) | (£0.2083) | (£0.0928)
OSD —0.6300 0.0914 0.1801 | —0.1116 | —0.4909 0.1258 0.0701 | 5.88
(£0.1185) | (40.1580) | (£0.1384) | (£0.0922) | (£0.5152) | (£0.4191) | (40.2625)
(£1.9685) | (&3.2514) | (£2.3931) | (40.6263) | (£1.6821) | (£1.7683) | (&0.7646)
ACR ~0.6300 0.0914 0.1801 | -—0.1116 | —0.5234 0.0068 0.1076 | 5.87
(£0.1185) | (40.1580) | (+0.1384) | (£0.0922) | (+£0.1188) | (£0.1462) | (£0.1247)
(£1.9685) | (£3.2514) | (£2.3931) | (£0.6263) | (+1.5732) | (£1.8428) | (£0.7659)

True [ —2.5950 3.3390 —2.2000 0.7310 —2.0922 | 1.8438 -0.6480

slightly better than that of the OS method which supports the explanation given
before.
Fig. 4.6 presents the ASSE values as a function of the level of SNR for all four

methods for an ARMA(3, 2) system with true parameters given below

a; = {1,-2.5712,2.5218,-0.9460}

b, = {1,-1.6909,0.81}.

From this figure it can be observed that the proposed TS and OS methods exhibit
consistently better estimation performance over the range of SNR considered in com-
parison to the other two methods. The estimation error obtained by the OSD and
ACR methods are very high at low levels of SNR. The proposed TS and OS methods
exhibit excellent performance even at a low level of SNR.

Figs. 4.7 and 4.8 present the average estimated poles and zeros of an ARMA(6,4)
system obtained by the proposed TS and OS methods at SNR = —5 dB. The
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Figure 4.6: Effect of SNR on the estimation accuracy for the white noise excited
ARMA(3, 2) system.

ARMA(6,4) system considered in this figure has following parameters

a; = {1,-1.2174,1.2225,—1.0537,1.1167, —1.0253,0.85}

b = {1,—1.1354,0.9399,—0.4974,0.2198}.

In this figure the true poles and zeros are also included for the purpose of comparison.
From this figure it can be observed that the proposed methods are able estimate the
poles and zeros quite accurately at a very low level of SNR.

Identification performance of the proposed methods are also tested for the impulse-
train excited systems in the presence of noise. A periodic impulse train with a known
value of T is generated in a same manner as done for the RCC based AR system
identification. Fig. 4.9 shows, the ASSE values are plotted as a function of levels of

SNR obtained by different methods for the same ARMA(3,2) system as considered
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Figure 4.7: Superimposed pole-zero plot of ARMA(5, 4) system obtained by the TS
method at SNR = —5 dB; (Poles: x: true, O: proposed; Zeros: O: true, <) :proposed).
in Fig. 4.6 under an impulse-train excitation. Here the period T of the impulse train
is chosen as 68 and number of ramp-cepstral instances M, = min(7/2,10P). It is
clearly observed that the proposed method provides a significant performance at a
very low SNR while the performance of the other two methods deteriorates at low
levels of SNR.

As an application of the proposed RCC based ARMA system identification method,
the estimation of a vocal tract system parameters is performed using natural speech
signal in a similar manner as it was presented in Chapter 2. For the purpose of testing
some English nasal sounds (voiced phonemes) from the TIMIT standard database are
used. No pre-filtering is performed in order to observe the accuracy of the pole-zero
estimation over the entire range of frequency. The PSD of the synthesized speech
signal obtained by different methods from the estimated vocal-tract system parame-
ters is compared with that of the noise-free natural speech. The synthesized sounds

obtained by different methods were also played back and the quality of the synthe-
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Figure 4.8: Superimposed pole-zero plot of ARMA(5, 4) system obtained by the OS
method at SNR = —5 dB; (Poles: x: true, O: proposed; Zeros: O: true, <> :proposed).
sized sounds obtained by the proposed method under such a noisy condition were
found far superior than that obtained by the other methods. Fig. 4.10 shows the
PSD of the synthesized speech obtained by using different methods along with that
of the noise-free speech, and that obtained from one of the 20 noisy signals under a
white Gaussian noise of SNR = —5 dB. Here we consider an ARMA(12,6) model,
for a naturally spoken female nasal sound /m/ of the word “him”. It is seen from
Fig. 4.10 even at a very low level of SNR, the proposed method exhibits a superior

identification performance in comparison to other methods.

4.6 Conclusion

In this chapter, new techniques for the parameter estimation of AR and ARMA sys-
tems from noise-corrupted output observations, have been proposed. Comprehensive

and accurate ramp cosine cepstrum (RCC) models for the one-sided ACF of an AR

and ARMA signals, valid for both white noise and periodic impulse-train excitations,
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Figure 4.9: Effect of SNR on the estimation accuracy for the impulse-train excited
ARMA(3, 2) system.
have been developed in a unified fashion for the identification of the AR or ARMA
systems. A residue-based least-squares ramp cosine cepstral fitting scheme employing
the RCC model has been presented for a more accurate estimation of the AR parame-
ters of the AR or ARMA system. For the purpose of implementation, the DCT, which
is capable of handling the phase unwrapping problem and offers computational advan-
tages over the DFT, is employed in the proposed method. The proposed method has
the advantage of providing the flexibility in incorporating some a priori knowledge
of the parameters, if available, to facilitate the process of parameter estimation.

In the proposed ramp cosine cepstrum methods, the system order is assumed to
be known. As mentioned in Chapters 2 and 3, in the case of real-life data (i.e.,
the data in the presence of noise) a bad choice of the model order would affect the

estimation accuracy of the parameters for all the methods. Like the ramp-cepstrum
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Figure 4.10: PSD obtained by using different methods for a speech phoneme /m/
taken from a female utterance “him” at SNR = —5 dB.

method, in the proposed ramp cosine cepstrum model-fitting based AR estimation
algorithm, the poles are determined successively, a simple one or a pair of complex
ones at a time. Thus, the accuracy of the estimated poles obtained by the proposed
method is not at all affected if the chosen AR model order (P’) is less than the true
order (P). However, if P’ > P, the accuracy of the first P poles will not be affected.
For the ARMA system identification, the AR estimation part works independent of
the MA estimation part, and the poles are determined successively, a simple one or
a pair of complex ones at a time. Thus, the accuracy of at least those poles which
are estimated using the proposed method is not affected if the model order is chosen
wrongly as (P, Q') for an ARMA(P, Q) model for the case when Q' < P’ < P.

As described in Chapter 3, similar to the case of ramp-cepstrum mode-fitting based
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method, the computational complexity of the proposed ramp cosine cepstrum model-
fitting based methods depends on the number of search points used in the RBLS
optimization process. As mentioned earlier, in the proposed methods, a significant
reduction in the computational complexity is obtained based on the neighborhood
search of the initial frequency estimates and a two-stage coarse and fine search scheme
for the magnitude estimation. The computational time required by the proposed
methods is also found quite reasonable for practical applications where the objective
is to achieve an accurate estimation of the system parameters at very low levels of
SNR.

A comprehensive simulation study performed on different AR and ARMA systems
has demonstrated that the proposed method is sufficiently accurate and consistent
in estimating the system parameters at very low levels of SNR. The method has also
been applied to noise-corrupted natural speech signals for the estimation of human
vocal-tract system parameters. The simulation results have revealed that the pro-
posed method is superior to some of the existing methods in handling the parameter
estimation problem of natural speech signals corrupted by white or real-life babble
noise.

Some of the distinctive features of the proposed ramp cosine cepstrum method
of system identification reinforced by the experimental results can be summarized as

follows.

1. The proposed method combines the attractive features of the correlation- and
cepstral-domain system identifications in order to obtain a better estimation ac-

curacy.

2. For the purpose of implementation, unlike the ramp-cepstrum method, in the
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proposed ramp cosine cepstrum method, the DCT is employed which is capable
of handling the phase unwrapping problem and offers computational advantages

over the DFT.

. Because of the noise-compensation from the ACF of the residual signal, a better

accuracy in the MA parameter estimation is obtained.

. In the proposed method, the input excitation power need not be assumed to be

known.

. It is capable of handling the problem of AR or ARMA system identification under
severe noisy conditions for both white noise and impulse-train input excitations.

This feature makes the method readily applicable to speech signals.

. The proposed method estimates the system parameters with guaranteed stability.
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Chapter 5

ARMA System Identification
Based on Noise-Compensation in
the Correlation Domain

5.1 Introduction

For the estimation of the AR parameters of the ARMA system, correlation-domain
Yule-Walker (YW) methods are most widely employed. In a noisy environment, the
performance of these methods gets degraded. One way to overcome this problem, is
the zero-lag combensation of the ACF in the low-order YW methods,which require
a prior estimate of the noise variance that is not available in most of the practical
applications. An alternate solution could be zero-lag exclusion, but it would affect
the parameter estimation accuracy in the case of finite data length, since the lower
lags of the ACF are more reliable in terms of information contents than the higher
lags. Our target is to perform the identification task accurately even in noise, without
discarding the zero lag and at the same time without requiring a prior knowledge of
the noise vafiance.

In this chapter, a new scheme for the identification of minimum-phase autore-

gressive moving average (ARMA) systems from noise-corrupted observations is pre-
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sented [123]-[125]. From the autocorrelation function (ACF) of the observed data, by
exploiting the characteristics of the zero lag, a set of equations containing the lower
lags of the ACF is established to form a quadratic eigenvalue problem in order to esti-
mate simultaneously the AR parameters and the observation noise variance [126]. In
the proposed identification technique, both the white noise and the periodic impulse-
train excitations are considered for the purpose of practical applications. In order
to estimate the MA parameters, first, a residual signal is obtained by filtering the
noisy observations via the estimated AR parameters. A noise-subtraction algorithm
is proposed utilizing the estimated noise variance together with the AR parameters
to reduce the effect of noise from the ACF of the residual signal. The MA parameters
are then estimated by using the spectral factorization corresponding to the noise-
compensated ACF of the residual signal [127], [128]. In order to demonstrate the
effectiveness of the proposed method, extensive simulations are performed by consid-
ering synthetic ARMA systems of different orders in the presence of additive white
noise and the results are compared with those from some of the existing methods.
Computer simulations demonstrating superior identification results in terms of esti-
mation accuracy and consistency even under a heavy noisy condition are conducted.
Simulation results for the identification of a human vocal-tract system using natural
speech signals are also provided showing a superior estimation performance as per
system pole location.

The rest of the chapter is organized as follows. In Section 5.2, we demonstrate
the problem of AR and MA parameter estimation in the presence of noise. Section
5.3 presents the proposed methodology to estimate the AR parameters of the ARMA
system first for the case of white noise excitation and then for the periodic impulse

train excitation. In Section 5.4, we describe a technique to estimate the MA parame-
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ters of the ARMA system for white noise and the periodic impulse train excitations.
The performance of the proposed method is demonstrated in Section 5.5 through ex-
tensive computer simulations for both synthetic and natural speech signals. Finally,

in Section 5.6, the salient features of this investigation are summarized.

5.2 Problem Statement

5.2.1 Estimation of AR Parameters

A causal, stable and LTT ARMA(P, Q) system can be characterized by
P Q
Zaix(n—i) = iju(n—j) (5.1)
i=0 =0

where u(n) and z(n) are, respectively, the excitation and the response of the system,
a; and b; the corresponding AR and MA parameters which are real with ap = 1 and
bo = 1, and P and @ (P > Q) are orders of the ARMA model, which are assumed
to be known. In the proposed identification scheme, both white noise and periodic
impulse-train excitations are considered. The system output in (5.1) can be written

as
o0
z(n) = h(n) xu(n) = Y _ h(k)u(n — k) (5.2)
k=0
where the impulse-response h(n) is causal and the ARMA system is assumed to be

initially relaxed. The system transfer function is given by

Q

H(l —zz™h) P
1—ppzt k=1

kI;[l( pez”)

where pi and z; denote, respectively, the poles and the zeros of the ARMA system, 7

the partial fraction coefficient corresponding to the kth pole.Then the corresponding

129



system impulse response is readily given by

R
h(n) = mpp (5.4)
k=1

As in most of the ARMA system identification methods, it is assumed that all poles
and zeros are of the first-order, no further pole-zero cancelation is possible, and the
ARMA(P, Q) process is minimum phase. It is assumed that z(n) is a wide sense
stationary and second order ergodic process, which means the time average can be
used to replace the statistical expectation.

The autocorrelation function (ACF) of z(n) is defined as [129]
r:(7) = Elz(n)z(n — 7)] (5.5)

where 7 indicates the ACF lag and r.(7) is even-symmetric with respect to zero lag
(7 = 0). Given a finite set of observations {z(n)}. =}, the ACF of z(n) is commonly

estimated as [33]

N-1—|7|
o) _—_% S a(m)s(n+ ), 0< |l < N (5.6)

n=0
In the correlation-based system identification methods, generally the first few lags
(or commonly termed as lower lags) of r,(7) are used in the estimation of the AR
parameters. In practical applications, observation data length N is finite and (5.6)
offers an efficient way to obtain an accurate estimate of the ACF defined in (5.5).
For notational convenience, same symbols are used for the estimated ACF obtained
by (5.6) and the ACF defined in (5.5). Multiplying (5.1) by z(n — 7) and taking
expectation, one can obtain

P Q
re(T) = = Y _aira(t — i) + Y _ bjBlu(n — j)z(n — 7)] (5.7)
i=1

j=0
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where the last term can be rewritten as

Q Q 1)
> biElu(n - jzn— 1)) => b Y hk)ru(k—7—7) (5.8)
Jj=0 j=0 k=0

In conventional system identification problems, only the white noise input is consid-

ered and in this case, the ACF of the input signal u(n) is given by
ro(7) = 026(7) (5.9)

Thus, the inner sum in the right hand side of (5.8) reduces to o2h(7 — j) which forces
the last term in (5.7) to vanish for 7 > @ due to the causality of h(n). As a result,

(5.7) can be rewritten as

P

Z T—z)+azzbh3—7)O<T<Q
=0 (5.10)

;
Z (r—19), 7>Q

The above equation clearly indicates that the AR parameters of the ARMA system

T:L‘(T) =

can be obtained with an estimate of the ACF of observed data for 7 > @ by solving a
set of simple linear equations. This is the basic principle of estimating AR parameters
of the ARMA system using the correlation based methods, such as, different variants
of Yule-Walker methods [33]. Note that in these methods, as described above, only
the white noise excitation is considered and the statistical estimator defined in (5.5) is
used to obtain the ACF in the basic formulation. However, in practical applications,
an estimate of the ACF is required where the conventional correlation estimator given
by (5.6) is used most commonly. In view of dealing with the practical applications,
we develop an estimation algorithm for the case of white noise as well as periodic
impulse-train excitation based on the conventional estimator, instead of the statistical

estimator of the ACF of the observed data.
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Figure 5.1: Filtering ARMA signal in noise by the estimated AR polynomial.

In the presence of additive white Gaussian noise (AWGN) v(n), the observed

signal y(n) can be written as
y(n) = z(n) + v(n) (5.11)

where v(n) is a stationary process with zero-mean and variance o2, and is independent
of u(n). Estimation of the AR parameters of the ARMA system using Yule-Walker
methods results a high variance in the estimation error at a low level of SNR. Es-
pecially, the situation is more difficult in the low-order Yule-Walker method where a
noise-compensation at the zero lag of the ACF is required, and in conventional meth-
ods, it is assumed that the noise-variance is known or a priori knowledge about the
noise is available. In the high-order Yule-Walker method, in order to avoid the zero
lag of the ACF, some equations containing lower lags of the ACF may have to be ex-
cluded which eventually affects the estimation accuracy as mentioned earlier that the
lower lags of the ACF, in comparison to the higher lags, contain more system informa-
tion. One of the objectives is to develop an AR parameter estimation algorithm from
output observations by utilizing the lower lags of the ACF and a noise-compensation

strategy without requiring a prior knowledge of the noise variance.
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5.2.2 Estimation of MA Parameters

In order to identify the MA part, one can filter the ARMA signal using the estimated

AR polynomial A(z) to obtain a residual signal given by

P
fz(n) = z(n) + Z&kx(n - k) (5.12)
k=1

Durbin’s method of MA parameter estimation has been most commonly used in which,
first, the intermediate AR system equivalent to the MA residual is identified and
then the MA parameters are obtained from these intermediate AR parameters. This
method strongly depends on the accuracy of the estimated intermediate AR model
parameters. In a noisy environment, identification of the zeros of the ARMA system
from output observations is a difficult problem, since the additive noise directly affects
the estimation of the system zeros. In this case, the residual signal is obtained by
filtering the noisy ARMA signal y(n) with the estimated AR polynomial A(z), giving
P
fy(n) = y(n) + D dwy(n— k) (5.13)
k=1
Clearly, fy(n) is also noise-corrupted, making the MA estimation problem difficult.
Fig. 5.1 shows the filtering process in the presence of noise v(n). Generally it is as-
sumed that an accurate AR estimate of the ARMA system has already been obtained

in the first step, i.e., A(z) ~ A(z). Then, (5.13) can be rewritten as
fy(n) = B(2)u(n) + A(z)v(n) = fo(n) + fu(n) (5.14)

where f.(n) is given by (5.12), which is the residual signal with respect to the noise-
free ARMA signal z(n), and f,(n) is the noisy part due to the additive white Gaussian
noise v(n). It is evident that f,(n) is a colored MA(P) sequence, even if the original

noise v(n) is white. Thus, f,(n) can be treated as an MA sequence of order P.
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If Durbin’s method or any other residual signal based MA estimation methods are
employed under noisy condition, the resulting MA estimates will not correspond to
fz(n) due to the presence of f,(n). The situation becomes worse when the SNR is
low. Our target is to propose a new algorithm that first eliminates the noise effect
and then determines the MA parameters from the noise-compensated ACF of the

residual function.

5.3 Proposed Method of AR Parameter Estima-
tion

5.3.1 White Noise Excitation

It can be observed from (5.10) that the AR parameters of the ARMA system can be
obtained with an estimate of the ACF of the observed data for 7 > @ by solving a

set of linear equations as given by

(@) r(@-1) ... m(Q—P+1) ay

(Q+1) 71(Q) ... r(Q—P+2) as
-1 . r(S—P) N
m2(Q + 1)
= - TI(Q”) (5.15)
ra(9)

where S governs the number of equations. In general, (5.15) corresponds to an over-
determined linear problem, which can be solved by a constrained least-squares algo-
rithm. In the presence of additive white Gaussian noise (AWGN) v(n), the estimated
ACF ry(7) of the noisy observation y(n), which is given by (5.11), can be computed
using (5.6) as

Ty(T) = 12(7) + 1o(7) + 7(7) (5.16)
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where 7¢(7) = rz(T) + 752(7) represents the cross-correlation terms. For an AWGN,
() is mostly pronounced at the zero lag and its effect on r,(7) at other lags is
negligible. Since v(n) is uncorrelated with u(n) and z(n) is generated from u(n), the
effect of the cross-correlation term r () on r,(7) can be neglected. Thus, one can

obtain an estimate of 7.(7) from r,(7) using the relation

74ﬂ={:ﬁ3j* e (5.17)

where A = r,(0) = 02. Clearly, when (5.15) is applied to noisy AR system identifica-
tion, r.(7) should be replaced by 7,(7) except for 7 = 0. It is seen from (5.17) that
the zero lag of () could be compensated provided that the noise variance A can
be estimated. In most of the practical applications, however, estimation of the noise
variance is a difficult task. Even if it can be estimated, the estimation accuracy could
directly affect the solutions of the linear equations (5.15). In the proposed method
we are not explicitly estimating the noise variance A. Instead we will determine the
desired AR parameters by formulating a quadratic eigenvalue problem with respect
to unknown A.

Using (5.17), (5.15) can be expressed in the following form

7, (Q + 1) - ry(0) — A « ry(Q@+1—P)]
ry(Q+2) - (1) - ry(@+2—-P)| [1]
: : : : : a
Ty(P) - ry(P -Q+1) - Ty(o) —A a2
ry(P+1) ~ r(P-Q+2) - Ty(1) :
: : : : : p |
r(P+S) - ry(P=Q+S+1)~ 1,8 |
=0 (5.18)

It can be observed that the first P — @ equations in (5.18) include unknown noise

variance A. Considering 7 > P in (5.18), the zero lag and the unknown noise variance
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term can be excluded in the estimation of the AR parameters by deleting the first
P — (@ equations. However, deletion of these equations would neglect the lower lags of
the ACF, which eventually affects the system identification accuracy, since less data
remains available to compute the higher lags. We now develop an AR parameter
estimation algorithm based on (5.18) without omitting these equations.

By separating the unknown noise variance from the first P — @ equations, (5.18)

can be formulated as the following eigenvalue problem,

(Ry — AG)a = 0(p_qy4s) (5.19)

where O(p_g.s) is a zero column vector of dimension (P — @ + S), and

-Ty(Q'-F 1) - ry(0) - ry(Q +‘1 — P)]
R, = Ty(:P) . ry(P —:Q+1) . TyQO)
_ry(P:-i- S) -:- ry(P — Q:+ S+ 1)-:- ry(:S') ]
G- [g I(P(;c» }
a=[lajay...ap)"

Note that R, and G are (P — @ + S) x (P + 1) real matrices, and Ip_g is a (P —
Q@) % (P — Q) identity matrix. Considering that there is a total of p 4+ 1 unknowns
a;(t = 1,2,---,P) and ), in addition to the first (P — Q) nonlinear equations in
(5.19), the next S > P linear equations are chosen. Since R, and G are not square
matrices, it is difficult to solve (5.19) by using the standard techniques available for the
generalized eigenvalue problem. One way to deal with the rectangular matrix pencil

(Ry — AG) is to convert it into a square one and solve it as a standard generalized

eigenvalue problem [130]. However, squaring methods are in general complicated
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[130]. As an alternative, pre-multiplying both sides of (5.19) by (R, — AG)T, we can

convert it into a quadratic eigenvalue problem as given below
(@2/\2 + O A + @0)a = O(p+1) (5.20)

where _
0, =G’G, ©; = -(R]G+G'R,), © = R]R,

Each of ©¢, ©; and ©, is real and has a dimension (P+1) x (P +1). The quadratic
eigenvalue problem has been receiving much attention because of its extensive appli-
cations in different areas, for example, the dynamic analysis of mechanical systems
in acoustics and signal processing in automatic elements of an electric power sys-
tem [131]. In our quadratic eigenvalue problem (5.20), there are 2(P + 1) eigenvalues
(finite or infinite). However, our goal is to find the eigenvalue giving the noise vari-
ance and the corresponding eigenvector which will provide the desired AR parameters.
The problem in (5.20) can be solved directly or by employing linearization. Gener-
ally speaking, direct methods do not guarantee that the method will converge to the
desired eigenvalue. We now solve (5.20) by employing linearization as it transforms
(5.20) into an equivalent square linear matrix pencil which can be solved easily by us-
ing efficient standard techniques. Substituting ¢ = Aa into (5.20) yields the following

linearized form,

l: —@0 0(p+1) :I [ a :l _ Al: @1 @2 a -0
Op+1y Ipyy) a Ips1y Opyr o
which can be rewritten as

Note that E and F are 2(P + 1) x 2(P + 1) real square matrices. The problem in
(5.21) can be solved by the most widely used QZ algorithm [132]. The QZ method is
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numerically stable and can handle the infinite eigenvalue case. Then the eigenvalue
Amin having the minimum modulus is chosen as the estimate of the noise variance.
The idea of estimating the noise variance by the eigenvalue of minimum magnitude
is similar to Pisarenko harmonic retrieval method [33]. In order to obtain estimates
of the AR parameters, the eigenvector a,,;, corresponding to A, is selected. Note
that the first coefficient should be one, which can easily be made by the following
normalization

= % f 93 P+l (5.22)

Aming
where Gpin, is the kthe component of the chosen eigenvector a,mp,.
As the AR parameters have been estimated together with the estimation of the
noise variance in the above process, i.e., the noise compensation has been already
implemented implicitly, a better AR estimation accuracy is expected as confirmed in

the simulation section.

5.3.2 Impulse-train Excitation

N-1
n=0

The periodic impulse-train excitation {u;(n) with a period T can be expressed

as
p—1
w(n) = 6(n—mT), p=[N/T] (5.23)
m=0
where [(] represents the smallest integer greater than or equal to ¢, and thus, y is
the total number of impulses in the excitation. Generally, the number of impulses
is much smaller than the number of samples within an observation period N, i.e.,
p <K N. The system response z(n) due to a periodic impulse-train excitation is also

periodic and can be expressed as

z(n) = h(n) * u;(n) = h{n — mT) (5.24)



Next, we want to obtain an expression for the ACF r,(7) of z(n). Similar to the
white noise excitation, we start with multiplying the characteristic equation (5.1) by

z{n — 7) and taking a time average, yielding

n=r =1 n=r
N-
+;b] N; ((n— )z —7)} (5.25)
Also, the ACF defined in (5.6) can be equivalently computed as
=
re(r) = % —Z<| Ix(n)x(n —|),0< 7| < N (5.26)

Using (5.25) and (5.26), one can obtain

P
- Z aiTo (7 — 1) + re(7) (5.27)
where
P P
Z a;if (T —1) = Z a;re(T — 1)
i=1 i=1
P T, '
- ; a; I:N k=N—i:c(k)a:(k -7+ z)} (5.28)
and
Z b; { u(n — z(n — T):l (5.29)

Note that there are only i product terms in the inner sum of the last term of (5.28)
as opposed to N terms in 7,(7 — 1), and the maximum value of 7 is P. Recalling that
P < T < N, 7z(r — i) can be approximated with r,(7 — ¢). Thus, (5.27) can be

rewritten as

P
- Z a;re(T — 1) + ro(7) (5.30)
=1
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For a finite length of observation, this is valid for both the white noise and the periodic
impulse-train excitations.

In the following, we analyze the effect of r.(1) on r,(7) and show that only a certain
number of lags of r.(7) over its period have a significant impact on the computation
of r.(7). Clearly, r.(r) is generated through a cross-correlation between some delayed

versions of z(n) and u(n). Substituting (5.2) into (5.29) gives

Q N-1 oo
Te(T) = Z b; l:]—b- Z u(n — 7) {Z h(k)u(n — 7 — k)}] (5.31)

Replacing (7 + k) with { and changing the relevant limit for the sum, we obtain

Q oo N-1
re(r) =3 b3 h(l - 7) [%/,— S uln — ju(n — z)] (5.32)
7=1 l=7 n=0

Noting that r,(7) = (1/N) Zf;l u(n)u(n — 7), by replacing further (n — j) with k&

in the last sum of (5.32), one has

Q 0
re(r) = b > h(l=7) [ru(l = 5) = Tuc] (5.33)

J=1 l=7
where the error term r,. can be expressed as

Fae = % S ukulk ~ 1+ ) (5.34)
k=N—j

Since j < @ < T, there are a maximum of @) samples in u(k) which are used in
(5.34). Obviously, there can only be at most one impulse in the sum of (5.34). As
such, 7. can easily be neglected compared with r,(l — j). Therefore, r.(7) can be

rewritten as
Q oo

re(7) = Z b > k(L= T)ru(l - §) (5.35)

=T

Given the finite duration impulse-train excitation {u;(n)}2=} with period T, its ACF

can be calculated as

[y

=

1
5 2 (u=k)6(r—kT), 0< T <N (5.36)
0

Ty, (T) =

x>
i
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Obviously, r,(7) is an even symmetric decaying function of 7 with respect to 7 = 0
and has non-zero values only at 7 = 0 and multiples of T for a finite data length

(0 <7 < N). Using (5.36) into (5.35), yields

Q #—1 oo ( _ k)
re(r) =Y _"b; > > h(l—7) [ 0 -j- kT)] (5.37)
j=1 k=0 l=1
Finally, r.(7) can be expressed as
Q p=1
w—k .
ro(T) = ij ( ¥ )h(kT+ j—7) (5.38)

Clearly, .(7) depends on the characteristics of the system impulse response i(n). It
can be observed from (5.4) that h(n) is a decaying function as [p| < 1. In most of the
cases, h(n) decays significantly within a period, and thus values of h(n) for n > T
can be neglected. Note that in (5.38), except for the case k = 0, the system impulse
response appears in the form of A(kT + j — 7) which is a time reversed sequence with
respect to h(7). Thus, for £ > 0 in (5.38), a first few lags of r.(7) are contributed
by the inner sum due to the presence of some tailing values of the shifted sequences
like (T +j — 7),h(2T + j — 7),.... The trailing values of these impulse responses
residing beyond the first period are generally very small in comparison to the leading
values. On the other hand, for k£ = 0, r.(7) exhibits significant values for 0 < 7 < @
and vanishes for any other values of 7 because of the causality of the system impulse
response. In comparison to these values of r.(7) for £ = 0, the tailing values, as
mentioned before for £ > 0, can be neglected. When h(r) decays sufficiently at a
distance Ly, from the origin with L, < T, in (5.27), the effect of r.() on r,(7) within
a period is pronounced at the beginning for 7 = 0,1,...Q and at the end region for
7 > T — Ly. Hence, in the region Q@ < 7 < T — Ly, the effect of r.(7) on 7.(7) can be

neglected. The above discussion shows that in the case of impulse train excitation,
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(5.27) can be simplified as
P
ro(m) ==Y ame(r—1i), Q<7 <T Ly (5.39)
t=1

which can be regarded as the modified version of the ACF obtained in the white noise
excitation case as seen from (5.10). As a result, the method proposed in the previous
subsection can be readily used to estimate the AR parameters for the impulse train
excitation case as long as the value of S is properly chosen such that P < .S < T — L,
due to the restricted range of r;(7) in (5.39).

The AR parameter estimation scheme proposed in this section offers an advan-
tage of utilizing low-order lags of the ACF which contains more information than
the high-order lags. The novelty of the proposed scheme lies in its ability to extract
simultaneously the AR parameters and the noise variance from a finite number of ob-
servations for white noise or periodic impulse-train excitations. Since, the amount of
noise present at the zero lag is treated as an unknown variable instead of depending on
noise-subtraction schemes which are very sensitive to the level of noise, the proposed
technique can be expected to provide a more accurate AR parameter estimation even

at a very low SNR.

5.4 Proposed Method of MA Parameter Estima-
tion

5.4.1 White Noise Excitation
It has been explained in Section 5.2.3 that the MA parameters of the ARMA system
can be estimated from the residual signal which is obtained by filtering the observed

data via the estimated AR polynomial. In the presence of noise, if the residual

signal is directly used without noise-compensation, the estimation performance will
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be severely degraded. In what follows, we develop an MA parameter estimation
scheme, for which a correlation-domain noise reduction technique is first proposed.

The ACF of the noisy residual signal f,(n) described in (5.14) can be obtained as

r1,(1) = Elfy(n)fy(n+7)]

= ’I‘fz(T)+7"fw(7')+7‘f:fw(7')+7'fwfz(7') (540)

where 74, (7) and r, (7) are, the ACFs of f;(n) and f,(n), respectively, and the last
two terms ry,s,(7) and ry,s,(7) represent the cross-correlation between f;(n) and

fw(n). One can express the cross-correlation terms as

Ttofw(T) + Thufe (T) = Tun(7) + Tou(T)
+> " a{ru(r — k) + ro(r + K)}
Q
+ ) be{rus(T + ) + Tou(T — K)}
k=1

Q
akbl{ruv T—k+l)+’f‘vu(7'+k—-l)} (541)

M‘u

Clearly, the above terms are expressed in terms of the shifted cross-correlations be-
tween the excitation u(n) and the additive noise v(n). Due to the fact that both u(n)
and v(n) are white noise, their cross-correlation values at all lags can be neglected.
Thus neglecting the effect of cross-correlation terms on 7, (7), (5.40) can be rewritten

as
r5,(T) = 15.(7) + 74, (7) (5.42)

Now we will investigate each of the terms ry,(7) and ry, (7). From (5.14), fz(n) can

be written as

Q
foln) = u(n) + 3 bu(n - ) (5.43)
I=1
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It indicates that f,(n) can be treated as the output of the MA(Q) system B(z) excited
by a white noise input u(n) with variance o2. Thus, r4,(7) can be expressed in terms
of the MA parameters 13, as
Q-7
ry(7) = o Z bibiyr, 7| SQ (5.44)

1=0
0, otherwise

Similarly, from (5.14), f,(n) can be written as

P
fuw(n) =v(n) + Z axv(n — k) (5.45)
k=1
and 7y, (7) can be expressed in terms of the MA parameters a; as
P-r
o? a0y T|<P
rr.(m) =4 " ; eIl S (5.46)
0, otherwise

Thus, using (5.44) and (5.46) into (5.42), r¢,(7) can be expressed as

( Q- P—r

o2 Z bibiyr + 02 Z Aklpyr, [T £ Q

l k=0
re(r)=< BT
’ 02> drliyr, Q< || < P
k=
\ O: |

Y

Pl
4 ©

(5.47)

> P

o

In order to estimate the MA parameters, we need to extract an estimate of rs (7)
from r4,(7). It can be observed from (5.47) that, as the estimates of noise variance
02 and AR parameters {a;} are already obtained (in the previous section), a noise-
compensated 7y, (7) or an estimate of 7y, (7), denoted as 7, (7), can be obtained using

(5.47) for |7| < Q as

P-r
A _ A2 A A <
Fr(r) = TR = ; Blier 7] < Q (5.48)
0, otherwise
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As seen from (5.44), the MA parameters {b;} can then be estimated from 7, (7),
and in this case the estimation of the MA parameters is a nonlinear problem. This
problem can be solved by factorizing the polynomial which is constructed using the
estimates obtained in (5.48) and given by

=Q
Sp(2)= Y fr(r)z" = &2B(2)B(z™) (5.49)
=—Q

In order to compute 7y, (), we employ the scheme proposed in [101], where P, ad-
ditional lags after |7| = P have been used. From a given ACF, the extracted MA
parameters can be made unique only by restricting the process to be causal and/or
invertible. It is well-known that the minimum phase system guarantees a causal
inverse process. Since the given system is assumed to be minimum-phase, only a
valid MA(Q) correlation sequence 7y, (7) (i.e., the correlation sequence that gives ex-
actly @ zeros inside the unit circle) is used. In order to obtain the MA parameters,
the spectral factorization is performed if the estimated ACF sequence belongs to a
set of valid MA(Q) correlation sequence. The validity can be checked by using the
polynomial-rooting described in [33]. It is clear from (5.48) that the estimation ac-
curacy of the noise variance o2 would affect the validity of the estimated correlation
sequence 7y, (7). For a better estimation accuracy, a small neighborhood of 62 is
searched to find a valid correlation sequence. Alternatively, validation schemes such
as the over-parameterized algorithm of [101] can be used to obtain a valid correlation

sequence.

145



5.4.2 Impulse-train Excitation

In the case of impulse-train excitation u;(n) with a period T, the noisy residual signal

as given by (5.14) can be rewritten as
Fu(n) = B()ui(n) + A(2)v(n) = fu,(n) + fu(n) (5.50)

where f;,(n), the noise-free residual signal can be expressed as
Q A
fe(n) = Zbﬂbi(n —1), bp=1

Q
= > > b(n— kT -1) (5.51)

0
and f,(n) is given by (5.45). It can be observed from (5.50) that f;,(n) is the output
of an MA(Q) system B(z) excited by u;(n), and f,(n) is an MA(P) sequence excited
by v(n). Since the impulse response of an MA(Q) system, say hg(n), vanishes beyond
n = @ samples, f,,(n) is a periodic repetition of hg(n) without overlaps when T > Q.

Using (5.6) and (5.51), an expression for ry, (7) can be derived as

(A-1)

ra (M= > (A= |k)rag(r —&T) (5.52)
k=—(A-1)
where
Q-
<
The(T) = {;bzb’”’ Irl<Q (5.53)
0, otherwise

Recall that A is the total number of impulses in the impulse-train excitation defined in
(5.23). It can be observed from (5.52) and (5.53) that ry, (1) is periodic with period
T, and therefore, there will be no aliasing in the correlation domain if T > 2Q) + 1.

In the region |7| < T — @, ry, (7) reduces to

Q-1
A bibitr, 7 < Q
0

) Q<|T|<T_Q
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The autocorrelation of the noisy residual signal f,,(n) can be expressed as
T, (T) =15, (T) +74,(7) (5.55)

where 7y, (7) is given by (5.46). Note that, as described in the white noise excitation
case (see (5.41)), the cross-correlation terms between f,,(n) and f,(n) in (5.55) has
been neglected, since they consist of cross-correlations between u;(n) and v(n), which
can be considered to be uncorrelated. As seen from (5.55), the component 7y, (7) is a
periodically repeated scaled version of r4,(7) (see (5.52)), and the component ry,(7)
vanishes beyond 7 = P samples. Using (5.46) and (5.54), for T > P+ Q + 1, (5.55)

can be rewritten as

-1 P-r
A Z)li)H.-,- + 0'5 Z flkflk_{_T, ITI < Q
=0 k=0
ry (1) = J —r (5.56)
i 012) é\Lk:&k+‘r7 Q < IT| S P

\ rf:ri( )? ‘TI > ‘P

( Q

ol

bt
[}

Note that the above form of 7y, (7) is similar to that of 7, (7) given by (5.47). As the
effect of 7y, (7) vanishes after 7 = @, only 7y, (7) exists after 7 = P. From (5.52) and
(5.56) it can be observed that a non-zero value of ry, (1) beyond 7 = P appears only
after 7 =T — @Q due to 4, (7). The number of additional lags (F,) to be used in the
computation of 7y, (7) is restricted to P, < T — (P+@Q+1). In practice, T > P and
thus, the condition 7" > P + @ + 1 will be automatically satisfied. Thus, an estimate

of 74, (1) can be obtained as

-
a

~2 e

P —5 axd <

Pt (1) = Pr, (1) = 6, - Aklrtr, |T| < Q (5.57)
0, otherwise

ol
il

in which 77, () has been set to zero for 7 > Q. In the original expression for ry, (7)
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as given by (5.52), when r¢, (7) is set to zero beyond 7 = @), it can be written as

Q-1
Py (1) =AY bibir = Mg (7), 171 < Q (5.58)
=0

It is clear from (5.56), (5.57) and (5.58) that 7y, (7) is the estimate of ry, (), which
is a scaled version of 7, (7) given by (5.53). Using the estimates 7, (7), similar to
(5.49) that is obtained for the case of white noise excitation, a polynomial can be
constructed as o
8= Y (e = ABRBE) (5.59)
7=-Q
Thus, the MA parameters can be estimated using spectral factorization once the

validity check for 77, (7) has been carried out.
The main steps of the complete algorithm are summarized as Algorithm I.

Algorithm I: The Proposed NCCD Method
1. Compute the autocorrelation ry(7) from noisy observation y(n) using (5.6).

2. Determine the AR parameters and the noise variance using the technique (Section

5.3) comprising the following steps:
i. Compute ©, ©; and ©, which are required in the quadratic eigenvalue prob-
lem (5.21).
ii. Calculate real square matrices E and F using (5.21).
ili. Solve (5.21) using the QZ algorithm [132].
iv. From the solution of (5.21), find the minimum eigenvalue and use the corre-
sponding eigenvector in (5.22) to estimate the AR parameters.
3. Determine the residual signal f,(n) by filtering y(n) using the estimated AR poly-
nomial obtained in Step 2 and estimate its autocorrelation 7y, (7).
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4. Obtain the noise-compensated ACF 7, (1) of the residual signal using (5.48).

5. Estimate the MA parameters from 7, (7) using spectral factorization based on

(5.49).

5.5 Simulation Results

A number of simulations is carried out for the identification of ARMA systems under
noisy conditions, and results along with some comparative analysis are investigated
in this section. We consider synthetic signals generated from ARMA systems of dif-
ferent orders as well as natural speech signals corrupted by additive noise. Next,
the performance in terms of the accuracy and consistency of the estimated param-
eters of the proposed method is obtained and compared with that of the condi-
tional maximum-likelihood (ML) method [34], also referred to as the prediction error
method, the ARMA cepstrum recursion (ACR) method [45], and the reduced statis-

tics (RS) method [33], [133].
5.5.1 Results on Synthetic ARMA Systems

(a) White Noise Excitation: A noisy ARMA signal is generated according to (5.1)
and (5.11) with N = 4,000 and ¢2 = 1, where the variance of the white Gaussian

noise can be appropriately set according to the desired SNR defined as

_ > o £(n)?
SNR = 10log,, {22;_01 v(n)Q] dB (5.60)

The number of equations in (5.19) is governed by S, and we have chosen S = 2P
in order to avoid very high order lags of the ACF in the computation of the AR

parameters. The QZ algorithm which is required to solve (5.21) is implemented

through MATLAB built-in command ‘eig’. In the estimation of the MA parameters,
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P, = 60 additional lags of 77,(7) is used. In the case, gz cannot produce a valid
MA(Q) correlation sequence, a neighborhood search, say in the region of 5% of 5: with
a resolution of 0.01 is performed. As a matter of fact, in our extensive simulations,
it has been observed that in most of the cases, less than 10 searches are sufficient to
obtain a valid correlation sequence.

Each experiment contains Nt = 100 independent trials. We have conducted the
experiments for the noisy cases, where the SNR varies from —5 dB to 15 dB at steps
of 2.5 dB. The performance measurement criteria considered in our simulation study
are (1) estimation mean, (2) the standard deviation from the mean (SDM), (3) the
standard deviation from the given value (or the true value) (SDT), and (4) the average

sum-squared error (ASSE) given by

Nr

1
ASSE = RE) > (eaten) (5.61)

m=1
where e, = 3F_; [ax(m) — ax]?, €b=}:?=1[l;j(m) — b;]%, and 4x(m) and b;(m) are the
estimated parameters at the mth trial, and ay and b; the true values of the parameters.
Different ARMA systems are investigated in order to cover a wide range of possible
combinations of pole-zero locations as well as types (i.e., real or complex conjugate).
Moreover, since the real and complex types of zeros or poles exhibit quite different
behaviors, in our experiments various combinations of real and complex poles and
zeros are considered to show the capability of the proposed algorithm in dealing with
real life situations.

In Table 5.1, the estimation results for the ARMA(3,2) system in terms of the
four performance measurement criteria are shown at SNR= 0 dB. In this table, the
last row gives the true parameter values. The estimated values of the corresponding

parameters obtained from the proposed and the three other methods are given in
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Table 5.1: Estimated parameters along with standard deviations (SDM and SDT) for
white noise excited ARMA(3, 2) system at SNR = 0 dB

Methods Estimated parameters ASSE
ay a2 a3 b1 by (dB)
Proposed —2.5938 2.5592 —0.9689 ~1.6379 0.8394 | —18.27

(40.0182) | (0.0321) | (£0.0217) | (4+0.0562) | (0.0639)
(4£0.0187) | (£0.0384) | (£0.0241) | (+0.0584) | (+0.0657)
ML —1.7840 13414 | —0.2546 | —1.3236 0.6665 | —2.38
(4£0.3452) | (£0.2662) | (£+0.0487) | (£0.3447) | (£0.1970)
(£0.7509) | (£1.2100) | (£0.6924) | (£0.4362) | (40.2241)
RS —1.8944 15783 | —0.4057 | ~—1.2960 0.5777 | —b5.098
(£0.0017) | (£0.1516) | (0.0625) | (£0.0760) | (0.0767)
(£0.7456) | (£0.9012) | (+£0.5427) | (40.4287) | (40.2801)
ACR —2.2734 21750 | —0.6652 | —1.2052 0.8521 | ~10.73
(£0.1164) | (0.1542) | (£0.1798) | (£0.0492) | (+0.0512)
(£0.3259) | (2£0.4795) | (£0.2968) | (+0.4882) | (+0.0554)

| True —2.5712 | 2.5218 |  —0.9460 ~1.6909 | 0.8100

the preceding four rows. The corresponding values for the SDM and SDT are shown
within the parentheses below the each estimated parameter value. The last column
of each table provides the ASSE in dB. It is to be mentioned that to implement the
ML method the ‘armaz’ command from the MATLAB System Identification Toolbox
is used [34]. It is seen from the table that the proposed method exhibits superior
performance with respect to all the four performance indices. Very small values
of SDM and SDT obtained from the proposed technique indicate a high degree of
estimation consistency and accuracy.

Fig. 5.2 shows the ASSE values as a function of SNR levels for the four methods
for the ARMA(4, 3) system with parameters a; = 1, —2.7303, 3.7012, —2.5906, 0.9036
and b; = 1,—-2.0739,1.7219, —0.6167. It is observed from Fig. 5.2 that the estimation
error occurred in case of the proposed method is significantly lower throughout the
whole range of SNR.

Fig. 5.3 shows the superimposed plots of the estimated poles and zeros from 20 re-

alizations obtained by using the different methods at SNR = 0 dB for the ARMA(5, 4)
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Figure 5.2: Effect of SNR on the estimation accuracy for the white noise excited
ARMA(4, 3) system.

system whose parameters are {ax} = {1, -2.0825,2.267, —2.1997,1.8563, —0.811} and
{b;} = {1,-1.6379,1.5279, —1.2989, 0.6281}. For the purpose of comparison, the true
poles and zeros are also plotted. A major advantage of the proposed method as clearly
observed from the figure is that the estimated pole-zero values are much less scattered
around the true values indicating a very high estimation accuracy in comparison to
that achieved by the other methods.

(b) Impulse-Train Excitation: We have also considered the problem of ARMA
SI with the periodic impulse-train excitations of different periods for various levels
of noise. An impulse-train is generated using (5.23) with a known value of 7. A
noisy ARMA signal is generated according to (5.1) and (5.11) with N = 4,000. The
simulations are run over Ny = 100 independent trials and the results averaged.

The ASSE resulting from using various methods under the impulse-train excitation
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Figure 5.3: Superimposed pole-zero plot of ARMA(5,4) system at SNR = 0 dB
obtained by the proposed method. + : true poles, X : true zeros, * : estimated poles,
$ : estimated zeros.

with T' = 70 for the estimation of the same ARMA(3, 2) system as the one considered
for the white noise excitation is shown in Fig. 5.4. As seen, the proposed method
provides a significantly better performance even at a very low SNR, whereas the

performance of other methods deteriorates at SNR level below 10 dB.
5.5.2 An Application for Vocal-tract System Identification

Proposed identification scheme has been tested for the purpose of pole-zero estimation
of the vocal-tract system with natural speech signals in the presence of noise. In Fig.
5.5(a), average estimated values of poles and zeros obtained from 20 independent
trials are shown for a speech phoneme /m/ of the word ‘him’ uttered by a female

speaker and taken from TIMIT standard database. Here the estimation is carried
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Figure 5.4: Effect of SNR on the estimation accuracy for the impulse-train excited
ARMA(4, 3) system.

out in the presence of AWGN at SNR = 0 dB considering an ARMA(8,4) system.
In this implementation, hamming window is employed and an FFT pre-filtering is
performed. No pre-emphasis is done. In Fig. 5.5(a), for reference values, pole-zero
locations estimated by the ML method at a noise-free condition are plotted. In Fig.
5.5(b) the spectrogram and the PSD of the clean speech are presented to indicate
the pole-zero (P, Z;) locations. This figure clearly exhibits the estimation accuracy

of the proposed method in the case of natural signals.

5.6 Conclusion

In this chapter, a new scheme for the identification of the ARMA systems under noisy
conditions has been presented. It has been shown that the proposed identification

scheme has the ability to estimate the ARMA system parameters with sufficient
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Figure 5.5: For natural sound /m/, (a) pole-zero estimates of the Proposed method
at SNR = 5 dB are overlaid on that of the ML method at clean condition (Poles:
x: Clean, O: proposed; Zeros: O: clean, ¢ :proposed). (b) Spectrogram and PSD of
noise-free speech.

accuracy and consistency using only the noise-corrupted observations, without the
need for accessing the input or noise-free output data. In order to overcome the
limitations of the conventional Yule-Walker methods, by separating the noise variance
from the zero lag of the ACF, a quadratic eigenvalue problem is formulated and solved
for joint estimation of the AR parameters as well as the observation noise variance.
The estimation accuracy of the proposed AR estimation technique is increased as a
result of utilizing all possible low-order lags of the ACF which contain more system
information than the high-order lags. A significant feature of the new technique is that
it has been presented in a unified manner for both white noise and periodic impulse-
train excitations. Unlike conventional methods, noise-compensation is performed for

the identification of both the AR and MA parts. For the AR part, since the AR
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parameters have been estimated together with the noise variance, no separate noise
compensation has been performed. For the MA part, an explicit noise-compensation
algorithm has been proposed based on the estimated noise variance and the AR
parameters, which efficiently reduces the effect of noise on the correlation function of
the residual signal.

In the proposed method, the system order is assumed to be known. As mentioned
in Chapter 2, in the case of real-life data (i.e., the data in the presence of noise) a bad
choice of the model order would affect the estimation accuracy of the parameters for all
the methods. Unlike model-fitting based methods described in Chapters 2, 3, and 4,
the proposed method does not involve search operations for the parameter estimation.
Thus, the computational complexity of the proposed method, in comparison to the
model-fitting based methods, is low and the computational time required is also found
quite low for practical applications where the objective is to achieve an accurate
estimation of the system parameters at very low levels of SNR.

Extensive simulations have been carried out to demonstrate the performance of
the proposed technique. It has been shown that the new scheme outperforms the
other existing methods considered for comparison. As a practical application of the
proposed technique, the identification of human vocal-tract system in the presence of
noise has been attempted, yielding quite accurate system parameters or poles.

Some of the distinctive features of the proposed method reinforced by the experi-

mental results can be summarized as follows.

1. The proposed method utilizes all possible low-order lags of the ACF, which contain
more system information than the high-order lags, in order to obtain a better AR

parameter estimation accuracy.

156



. An important advantage of the proposed method is that it can estimate the AR

parameters together with the unknown additive noise variance.

. In the proposed method, the input excitation power need not be assumed to be

known.

. Because of the noise-compensation from the ACF of the residual signal, a better

accuracy in the MA parameter estimation is obtained.

. It is capable of handling the problem of ARMA system identification under severe
noisy conditions for both white noise and impulse-train input excitations. This

feature makes the method readily applicable to speech signals.
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Chapter 6

Formant Frequency Estimation of
Speech Signals

6.1 Introduction

Formant is one of the most informative speech features used in interpretation of the
mechanism of human speech production. Formant frequency estimation has found a
wide range of applications in speech analysis/synthesis, coding, and recognition [82].
Most of the formant frequency estimation methods so far reported, are capable of
handling only the noise-free environments [84], [85], [87]-[92]. In view of real-life
applications, formant frequency estimation from noise-corrupted speech is an essential
but difficult task. Only a few formant estimation methods are available in literature
which deal with noisy environments [93], [94]. However, these methods give very high
errors in the estimation of higher formants.(i.e. other than the first formant).

In this chapter, new methods for the estimation of formant frequencies from noise-
corrupted speech signals are presented. The main target is to develop formant esti-
mation schemes based on our new system identification methods which can efficiently
tackle the adverse effect of observation noise and provide an accurate estimate of

formant frequencies of speech signals. Since vocal-tract resonances correspond to
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formants, the task of formant frequency estimation can be treated mainly as a vocal-
tract system identification. The formant estimation schemes proposed in this thesis
can be classified into three groups depending on the main principle of formant fre-
quency estimation: (1) Correlation based methods [134]-[138], (2) Ramp cepstrum
based methods [139]-[142], and (3) Ramp cosine cepstrum based methods [143]-[145].

Among different formant estimation techniques, correlation based methods, such
as different variants of linear predictive coding (LPC) methods, are most commonly
used [7], [84], [85]. However, under a noisy condition, the estimation performance
of the LPC based formant estimation methods deteriorates significantly. Recently
in [134], [138], correlation model based formant frequency estimation methods has
been proposed in order to tackle very severe noisy environments. In these methods
the overall vocal-tract system is considered as an ARMA model and based on the
correlation model proposed in Chapter 2, a correlation model-fitting approach is pro-
posed in conjunction with an adaptive residue based least square (RBLS) optimization
algorithm. In [135], a correlation domain method is developed wherein formant fre-
quencies are estimated from noise-compensated speech signals using a modified form
of least-squares Yule-Walker (LSYW) method along with an effective formant selec-
tion criterion. In [137], a once-repeated autocorrelation function (ORACF) of the
observed noisy signal is employed in a modified form of least-squares Yule-Walker
(LSYW) equations which provides a better formant frequency estimates. Moreover,
instead of directly using the estimated poles for extracting the desired formant fre-
quencies, a frequency-domain peak-picking algorithm within a certain band is intro-
duced which enables the proposed scheme to avoid estimation errors that may occur

in the case of weak formants.

159



Cepstral domain formant estimation methods available in literature mostly deal
with noise-free environments [87], [86]. In [139], a new technique for the formant
frequency estimation from noise-corrupted speech data is presented based on the
ramp-cepstrum model for the OSACF of AR signals proposed in Chapter 3. In this
method, the voiced speech signal is considered as the the output of the AR model with
a periodic impulse-train excitation. A ramp-cepstrum model-fitting based approach
is proposed where the adaptive RBLS optimization algorithm is used in order to
obtain an accurate estimate of the ramp-cepstrum model parameters which gives the
desired formant frequencies in the presence of significant noise. Recently, in [140], a
ramp cepstrum model of a once-repeated autocorrelation function (ORACF) of the
voiced speech signal in terms of formant parameters is proposed and ramp-cepstrum

model-fitting is used to obtain formant frequencies from noisy observations.

In Chapter 4, we proposed a ramp cosine cepstrum (RCC) model for the OSACF
of AR signals. In order to obtain an accurate estimate of formant frequencies under a
heavy noisy condition, we now develop a model for the RCC of the ORACF of speech
signals [143], [144]. Since the proposed RCC model provides a direct relationship
with formant frequencies, the RBLS optimization algorithm is used to solve the model-
fitting problem of formant estimation in the presence of severe noise. The DCT-IDCT
is then employed for the purpose of RCC implementation.

The rest of the chapter is organized as follows. In Section 6.2, first, a background
of formant estimation is presented. Then, a framework that is used to develop the
new formant estimation methods is proposed in 6.3. In Section 6.4, the ARMA
correlation model-fitting based formant estimation method is presented. In Section

6.5, a ramp-cepstrum model-fitting based formant estimation method is described.
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In section 6.6, a ramp cosine cepstrum model for once-repeated ACF of the observed
speech is first proposed, based on which a formant estimation method based on the
RCC model-fitting approach is then developed. Finally, some concluding remarks are

given in 6.7.

6.2 Speech Production System and Formant Esti-
mation

Formant is one of the most useful speech features used in interpretation of the mech-
anism of human speech production. It is also well related to the articulatory activity
and the perception of speech signals.

Fig. 6.1(a) represents a human speech production system which is basically com-
posed of the excitation model, the vocal-tract filter, and the radiation filter. For an
unvoiced (U) speech, the excitation can be considered as a flat spectrum noise source
normally modeled by a random noise generator. For a voiced (V) speech, the exci-
tation model contains an impulse generator producing the impulse-train at the pitch
period and a glottal pulse shaping filter driven by the impulse-train to generate the
excitation signal. In a simplified or widely used working model of speech production
system, the glottal pulse shaping filter, the vocal-tract filter, and the radiation filter
are combined to form a single overall vocal-tract system as shown in Fig. 6.1(b) [7], [8].
Then, the overall system is driven by the periodic impulse train generator resulting in
voiced speech. In this model, obviously, the glottal pulse shaping filter is not required
for the unvoiced sound and the excitation source is the random noise generator gen-
erally modeled as a white Gaussian noise. In general, the overall vocal-tract system
can be treated as an acoustic resonator, where the resonance frequencies are given

by system poles. Formants of speech signals are usually attributed to the resonance
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Voiced/ Unvoiced
switch

Speech Signal

Figure 6.1: Discrete-time speech production model. (a) Detailed model and (b)
working model.

frequencies of the vocal tract. The resonant frequency of each significant pole of
the vocal-tract system is a formant candidate. For the formant frequency estimation
it is sufficient to restrict the analysis to the voiced speech where the excitation for
the VT can be modeled as the output of a glottal filter whose input is the periodic
impulse-train.

The overall vocal-tract filter of a human speech production system can be repre-

sented by an AR (all-pole) or ARMA (pole-zero) model depending on the character-
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istics of a particular phoneme. For example, vowel sounds are well represented by AR
model, whereas some nasal sounds like /m/ or /n/ require ARMA models [7]. The

transfer function of a VT system represented by an AR(P) model is given by

G G

H(z) = A0 = (6.1)
[T -pz)
k=1
and that of the corresponding ARMA(P, Q)) system is given by
Il
(1-2z7")
B(z) . _ — Mk
&= 306) = e 62

£
i

:
H (1 —ppz? !
where G is the gain, A(z) = 211;1 axz~* is the AR polynomial with AR parameters
{a;}, B(2) = 1+ Z?:x bj2~7 gives the MA part of the ARMA system with MA
parameters {b;}, px’s and z;’s denote, respectively, the poles and the zeros, and 7
the partial fraction coefficient corresponding to the kth pole. Here, P and @ are,
respectively, AR and MA orders. In the case of ARMA(P, Q) model generally it is
assumed that P > ). Note that, for real-life data, such as speech signal, it is sufficient
to use an ARMA model with less number of zeros than the number of poles [7]. The
number of poles and zeros, which is required to represent different speech phonemes,
has been investigated by several researchers [146]. Although the standard techniques
for order estimation are available in the literature [98], [99], the method we are going
to develop does not require the a priori knowledge of orders, since it attempts to
estimate only a few formants from certain range of poles. In order to model each
formant, a pair of complex conjugate poles is required. Formant frequency (Fy) and

bandwidth (By) can be computed from the system pole, py = rre’“* and the sampling
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frequency F; as [93]

K

Fp = %wk;
£y
Bk = ——7;- ln(rk) (63)

The pole angle wy, relates to the resonant frequency and the pole radius ry is related to
the concentration of local energy and the bandwidth of spectral resonance of a formant
candidate. Depending on the speaker characteristics and the phonemes, typically
first few (three to five) formants are required in practical applications and also these
formant locations are specified within a frequency range of 0 — 5 kHz [7], [88]. Hence,
by identifying the poles of vocal tract system, formant frequencies can be estimated.
Estimating formants accurately from natural speech is not so easy because of the
variety of speech sounds. Some major problems involved in formant estimation are

summarized below:

1. Time-varying characteristics in the glottal open phase of the vocal-tract system.
2. The size, position, and shape of the analysis frame.

3. Low spacing between the adjacent formants, which in the worst case may cause

one broad spectral peak instead of two distinct peaks
4. Very high values of the fundamental frequency (or pitch).

5. The presence of observation noise corrupting the speech.

The first four problems can be treated as some inherent problems,which exist no
matter whether the formant estimation is performed in the presence of observation
noise or not. However, in the proposed formant estimation methods, the effect of these

problems can be significantly reduced since our methods do not work directly in the
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Figure 6.2: Block diagram of the proposed framework for the formant frequency
estimation method.

signal domain, rather they work in the correlation domain or in the cepstral domain
which is computed from a correlation function. The problem of the observation noise
is the most crucial one and the proposed methods are targeted to tackle this problem
through new correlation and cepstral domain model fitting approaches to be developed

in the next sections.

6.3 Proposed Framework for Formant Estimation
Methods

A general block diagram showing some common steps involved in all of our proposed
formant estimation methods is shown in Fig. 6.2. First, the observed noisy signal
is pre-processed with sampling and windowing. Then the windowed speech frame
is pre-emphasized. A pre-filtering for very low frequencies is also performed. Note
that all of the proposed formant frequency estimation methods need to perform the
autocorrelation of the speech signal z(n) at the first stage which can be computed,in
general, as

ro(m) = % s(n)z(n + m|), 0 < [m| < N (6.4)

n=

where N is the data length [134].

(=]

Then, the correlation values are used in different algorithms. Also, an initial

estimate of the formant frequencies is required in the adaptive RBLS algorithm to
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reduce the search space. In what follows, we are first going to describe the pre-
processing and initial frequency estimation steps in detail. In the next sections, we
will describe three formant estimation methods based on the proposed models, namely
(1) ARMA correlation model, (2) ramp-cepstrum model, and (3) ramp cosine cepstral

model.

6.3.1 Preprocessing

In the proposed method, formant estimation is performed on a frame by frame basis.
In order to carry out the short-time analysis on the observed speech signals, first,
windowing is performed so as to reduce the edge effects at the beginning and the end
of the frame. A Hamming window of length NV is used with a certain percentage of
overlap. For the purpose of analysis, the speech signal is considered to be stationary
over the short observation interval. Since voiced speech spectra normally have a
roll-off of about -6 dB/Octave, they are tilted into a slightly low-pass form [7]. In
order to reduce the natural spectral tilt of the windowed speech signal, a high-pass

pre-emphasis filter with the following input-output relation is employed
s(n) = 5'(n) — 7' (n — 1) (6.5)

where s(n) is the filtered output with respect to the input s'(n) with a pre-emphasis
factor v, < 1. The effect of applying pre-emphasis filter can be viewed as introduc-
ing an extra zero into the transfer function of the vocal tract filter. Note that the
introduction of such a zero neither alters the pole locations in the transfer function
plane, nor affects their resonance center frequencies and bandwidths in the associated
frequency response. In Figs. 6.3 and 6.4, the effect of windowing and pre-emphasis

is demonstrated in the time- and frequency-domain, respectively. Fig. 6.3(a) shows
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Figure 6.3: Effect of windowing and pre-emphasis on the observed speech signal in
time domain. (a) clean speech, (b) windowed speech obtained from (a) using hamming
window, (c) pre-emphasized speech obtained from (b).

the clean speech, Fig. 6.3(b) displays the corresponding hamming windowed speech
and Fig. 6.3(c) gives the pre-emphasized version of the windowed speech. Fig. 6.4(a)
to 6.4(c) demonstrate the power spectral density plots corresponding to Fig. 6.3. In
Fig. 6.4, the first three formant frequencies are prominent with a natural spectral
tilt. It is clearly observed from Fig. 6.4(c) that the spectral tilt is reduced, and the

second and third formant frequencies are significantly lifted due to the pre-emphasis

operation.

6.3.2 Pre-filtering and Initial Formant Estimation

In order to obtain an initial estimate of formant frequencies from observed speech
signals, generally, a peak-picking operation is performed on the spectral domain. For
correlation domain methods, peaks from the smoothed power spectral density plot

are computed. In the case of using cepstral domain methods, an initial estimate of
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Figure 6.4: Effect of windowing and pre-emphasis on the observed speech signal in
frequency domain. (a) clean speech, (b) windowed speech obtained from (a) using
hamming window, (c) pre-emphasized speech obtained from (b).

the most dominant formants can be obtained from the peaks of the smoothed DCT
magnitude spectrum. These possible candidates of the formant frequencies are used
in the least-square optimization process. Note that, it is described later on that in
the presence of heavy noise, instead of the ACF of noisy observations, its ORACF
offers more noise robustness. In addition to signal pre-emphasis, a pre-filtering is
performed to remove the effect of very low frequencies (< 100 Hz) which are not

of our interest. In fact, this will also- suppress the effects of the pitch from the
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first-formant estimation. Pre-filtering can be either performed in the spectral domain
using FFT-IFFT or in the case of cepstral domain using DCT/IDCT. The signal z(n)
obtained after the preprocessing and pre-filtering is used for the next step of least-
square model-fitting. Next, we will first develop the desired model and then describe

the least-square model fitting approach to estimate the formant frequencies.

6.4 ARMA Correlation Model Based Formant Es-
timation

6.4.1 Proposed Method

In Chapter 2, a correlation model for the output of an ARMA system excited by a
periodic impulse-train has been derived. Since, within a short duration of time, the
speech can be considered as the output of an ARMA system excited by a periodic
impulse-train (with pitch period) for a voiced speech segment, the proposed ARMA
correlation (ARMAC) model can be used to extract the poles of the overall vocal tract
system. As discussed in the previous section, formant frequencies can be estimated
from the poles of the overall vocal-tract system. Hence, the main task is now reduced
to the accurate estimation of the ARMAC model parameters giving the system poles.
Unlike conventional correlation based methods, a correlation-fitting based approach
is proposed where an adaptive RBLS optimization algorithm is introduced in order to
obtain an accurate estimation of the model parameters from noise-corrupted output
observations even in the presence of significant noise.

During a short duration of time (frame), a given speech signal z(n) is generally
assumed to be stationary. Hence, the overall vocal-tract transfer function H(z) given
by (6.2) can be modeled with constant coefficients within a short-time window of

speech. The input excitation for voiced sounds is modeled as the periodic impulse-
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train {u;(n)}"=} with period T as given by

A-1

w(n) =Y _ &(n—mT), A=[N/T] (6.6)

m=0

where [(] represents the smallest integer greater than or equal to ¢, and thus, A is
the total number of impulses in the excitation. The ARMA correlation model that

we have derived in Chapter 2 is given by

9
(7)) = Zr,’[al cos(w;7) + G sin{wr)},7=0,1,..., M -1 (6.7)
1=1

where o = (jcosv, §; = —(;sinv;. As mentioned before, since each formant cor-
responds to a pair of complex conjugate poles py = et/ for the case of formant
analysis it is sufficient to consider only the complex conjugate poles. Thus, € in
(6.7) is the number of pairs of complex conjugate poles. Each of the 8 terms in the
summation of (6.7), namely Fi(7) = 7] [0y cos (w;T) + Fysin (w;7)], can be estimated
sequentially from the M lags of r,(7), which is available from the noisy observations.

Considering the observation noise v(n) as an additive white Gaussian, the noise-

corrupted speech signal y(n) is given by
y(n) =z(n) + v(n) (6.8)

where v(n) has zero-mean with variance 2, and is independent of u(n). The estimated

ACF ry(7) of the noisy observation y(n) can be computed as
Ty(T) = 72(7) + 1o (T) + Toz(T) + T20(T) (6.9)

where the effect of cross-correlation terms are generally neglected considering that
z(n) and v(n) are uncorrelated, therefore an estimate of r;(7) from r,(7) is obtained

as

ra(r) = { :zgg ST (6.10)
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Figure 6.5: Block diagram of the proposed ARMA correlation model based formant
estimation method.

However, under heavy noisy condition, estimation of r,(7) may cause significant
error at all lags, resulting in poor pole estimates in the conventional correlation based
methods. To alleviate this problem, the correlation-fitting based approach proposed
in Chapter 2 is employed along with an adaptive RBLS algorithm for the estimation
under a heavy noisy condition.

Fig. 6.5 shows a block-diagram explaining the the formant estimation method
using the ARMAC model. In comparison to the block-diagram of the general frame-
work involved in the proposed method as shown in Fig. 6.2, the main difference in
Fig. 6.5 is the block that estimates the formant frequencies from the ACF r,(7) of
the noisy observations. In r,(7), the effect of noise is severe mainly at 7 = 0. Hence,
in order to reduce the effect of noise, 7 > 0 is considered.

The parameters of each component Fi(7) of (6.7) with 7 > 0, are determined

such that the total squared error between the (I — 1)th residual function and Fi(7) is
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(Fkk=1,2,3)

Figure 6.6: Adaptive RBLS algorithm involved in the proposed ARMA correlation
model based formant estimation method.

minimized. We define the [th residual function as

Ri(r) = Ri(r)—Fr);l=1,2,...,6-1; (6.11)

Ro(r) = ry(7)
Then, the objective function for the minimization problem becomes
M-1
Jo=Y |Ra(r) - R, 1=1,2,...,0 (6.12)
T=1

The values for 7, and w; in the range 0 < r; < 1 corresponding to the global
minimum of J; are chosen as the estimate of the pole locations. Note that, in order
to suppress the effects of the pitch from the first-formant estimation, an FFT pre-
filtering is performed at the beginning of formant estimation. Fig. 6.6 shows a flow
diagram explaining the adaptive RBLS algorithm estimating first three formants. In
the adaptive RBLS method, K formant frequencies are sequentially determined from
the K stages. The possible extreme ranges of the formants (ROF) are available in

literature and are utilized to restrict the search space [7], [87]. The RBLS algorithm is
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made adaptive with each stage by using the updated initial frequency estimates. At
the first step (I = 0 in Fig. 6.6) of pre-filtering, frequency candidates for first formant
(F1) are estimated from the smoothed spectral peaks. Candidates inside the desired
region specified by the ROF are taken as the initial estimates and the frequency search
is performed in their neighborhoods. For the initial estimates at the remaining steps
(I=1,2,...) of the adaptive RBLS algorithm, smoothed spectral peaks of the residue
functions obtained for the corresponding steps are used. Pole magnitude can also be
updated in each stage depending on the relative energy of residue function and the

practical knowledge about the bandwidths of the different formants (7], [87].

6.4.2 Simulation Results

The proposed formant frequency estimation algorithm based on the ARMAC model
is tested using various synthetic and natural vowels from the North-Texas vowel
database [121] as well as some natural sentences from the TIMIT speech database
[120]. Recently, a reliable reference database for the vocal-tract resonances of a large
number of TIMIT sentences is reported in [147]. This vocal-tract resonances database
is carefully used (keeping in mind the differences between VTR and formant frequen-
cies [87]) to test the proposed method. For the performance comparison, we consider
the LPC of order 14 [7] and the adaptive filter-bank (AFB) methods [83].

At first, results for three synthetic vowels /a/, /u/, and /i/ corrupted by additive
white Gaussian noise are presented. Vowels are synthesized using the Klatt synthe-
sizer with male and female pitch values, respectively, 120 Hz and 220 Hz, and 200
ms of duration. The formant estimation in the proposed method is conducted every
10 ms with a 20 ms window only for voiced frames. For the purpose of ARMAC
model-fitting by using the RBLS algorithm, 7; is searched in the range [0.8,0.99]
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Table 6.1: Average RMSE (Hz) for synthetic vowels (Male)

Vowels 0 dB 5 dB

Prop. | LPC | AFB | Prop | LPC | AFB
/a/ | F1 44.3 | 1281 | 244.7 36.7 | 104.9 98.5
F2 75.2 | 358.6 | 458.8 33.4 | 1774 | 1405
F3 | 198.2 | 403.3 | 461.9 | 128.9 { 305.6 | 182.1
/u/ | F1 109.3 | 2904.2 | 292.1 50.6 96.2 [ 143.4
F2 205.4 | 711.2 { 720.1 57.4 | 232.2 | 204.1
F3 | 252.1 | 774.7 | 620.2 | 176.0 | 376.8 | 317.0
Ji/ | F1 | 129.8 | 254.8 | 282.3 57.7 | 127.1 | 149.6
F2 77.1 | 156.2 53.8 38.2 | 130.1 47.2
F3 | 100.2 | 268.5 | 164.8 71.8 | 144.5 71.6

Table 6.2: Average RMSE (Hz) for synthetic vowels (Female)

Vowels 0 dB 5 dB

Prop. | LPC | AFB [ Prop | LPC | AFB
/a/ | F1 98.6 | 185.2 | 265.5 | 100.0 | 122.9 | 278.3
F2 77.4 | 186.0 | 205.0 60.3 | 124.3 | 116.2
F3 80.3 | 92.16 80.7 73.8 81.3 | 72.9
/u/ | F1 134.9 ] 396.1 | 379.2 93.3 | 117.9 | 132.0
F2 140.3 | 599.6 | 356.1 | 125.5 | 241.5 | 201.1
F3 163.8 | 519.5 | 259.4 | 115.4 | 287.1 | 152.9
/i/ 1 F1 | 153.2 | 329.8 | 490.2 77.7 | 203.0 | 233.8
F2 | 179.3 | 537.4 | 319.2 | 107.1 | 119.2 | 142.6
F3 51.7 | 244.3 47.5 34.2 75.7 | 25.4

for F3 and [0.85,0.99] for F2 and F1, and the search range for w; is chosen as 0.17
around the neighborhood of the initial estimates [93]. An acceptable level of esti-
mation accuracy can be achieved with a search resolution of Ar = 0.01 for r; and
Aw = 0.017 for w; with 0 < w; < 7. The number of lags for the ACF is set to be
M = min(0.2N,T/2). Formant estimation error rate is calculated for voiced sounds
only. We have computed the root-mean-square error (RMSE) at different noise levels,
and in each level 20 independent trials are considered. Tables 6.1 and 6.2 show the
average of RMSE values (Hz) obtained by different methods at SNR = 0 dB and
5 dB. Clearly, the performance of the proposed (Prop.) method is superior to that
of the other two methods at both levels of SNR, and the RMSE for other methods

increases significantly at SNR = 0 dB.
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Next, four natural vowels /a/, /u/, /i/, and /e/ are taken from the North-Texas
vowel database [121] with reference formant values. The vowels were contained in the
words “hod”, “hood”, “heed”, and “head”. For the purpose of analysis, pitch periods
are determined from the noise-free speech signals using autocorrelation method [7].
Estimated formant frequencies for a male vowel /a/ is considered as a white Gaussian
noise are plotted in Fig. 6.7 at SNR = 20 and SNR = 0 dB. Similarly, estimated
formant frequencies for a female vowel /i/ under white Gaussian noise are plotted
in Fig. 6.8 at SNR = 20 and SNR = 0 dB. It is evident that the proposed method
can track the formant frequencies quite accurately even at levels of SNR as low as 0
dB. Due to the high energy at the first formant (F1) level, F1 can be tracked well by
all three methods even at 0 dB. However, due to the low energy at F3, presence of
strong background noise makes F3-tracking very difficult. But the proposed method
is still able to overcome this difficulty by employing the adaptive RBLS algorithm to
extract the correlation model parameters giving the formant frequencies.

In Fig. 6.9 the effect of change in noise level (SNR) on average root-mean-square
error (RMSE) is plotted for male natural vowel /a/ from SNR = 0 dB to 40 dB. The
difference in RMSE values obtained by the proposed and other methods is quite high
for F2 and F3. The result in the presence of multiple background competing speakers
(Babble noise) is also presented in Fig. 6.10 to demonstrate the ability of the proposed
method to deal with the environmental noise. The multiplicity of speakers produces
a flatter short-term spectrum which has greater spectral and temporal modulation
than white noise. Fig. 6.10 shows that the proposed method works well for both male
and female speakers in background babble noise even at SNR = 0 dB.

Finally, we present the estimation results for a natural male utterance “Rob sat by

the pond” which is taken from the TIMIT database (sampling frequency = 16 KHz).
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Figure 6.7: Formant tracks for male vowel /a/ in the presence of white noise at SNR
levels of (a) 20 dB and (b) 0 dB.
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Figure 6.8: Formant tracks for female vowel /i/ in the presence of white noise at SNR
levels of (a) 20 dB and (b) 0 dB.
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Figure 6.9: Effect of SNR on average RMSE (Hz) in the estimation of different
formants (F1, F2, and F3).

First we perform the pre-emphasis operation on the FFT-filtered speech signal. Then
every 10 ms, a 20 ms hamming window is applied to overlapping speech segment. In
Fig. 6.11 (a), the reference formant frequencies are plotted on the spectrogram of
noise-free speech [120]. The estimated formants by different methods at SNR = 5 dB
in the presence of white Gaussian noise are plotted on the spectrogram of the noise-
free signal to clearly show the formant trajectory during the voiced regions. For fair
comparison voicing decisions are taken from the AFB method. Formant frequencies
are estimated only in these voiced frames (dark line in the spectrogram) and in the
spectrogram the interval between the two voiced frames are just end-point connected
(dotted line) for Figs. 6.11(a) to 6.11(c). Since the AFB method works on sample

by sample, it provides values also for those intervals. If we compare the estimation
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Figure 6.10: Formant tracks at SNR = 0 dB in the presence of multi-talker babble
noise for (a) male vowel /u/ and (b) female vowel /e/.
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Figure 6.11: Formant estimation results for a male utterance “Rob sat by the pond”

at SNR = 5 dB plotted on clean speech spectrogram. (a) Reference, (b) Proposed
ARMAC model based method, (c) LPC method, and (d) AFB method.
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accuracy in the voiced regions, it is evident that the proposed method can track the
rise-fall pattern of different formants almost accurately except in the last segment

accuracy in F3 tracking degrades, the reason is the same as explained earlier.

6.5 Ramp Cepstrum Model Based Formant Esti-
mation

6.5.1 Proposed Method

In Chapter 3, a ramp-cepstrum model of OSACF of the output of an AR system ex-
cited by a periodic impulse-train has been derived. For a voiced speech segment within
a short duration of time, the proposed AR ramp-cepstrum (ARRC) model can be used
to extract the poles of the overall vocal tract system. Since formant frequencies can
be estimated from the poles of the overall vocal-tract system, an accurate estimate of
the ARRC model parameters from noise-corrupted speech signal is essential to obtain
formant frequencies. In this section a ramp-cepstrum model-fitting based approach
is employed in conjunction with the adaptive RBLS optimization algorithm in or-
der to obtain an accurate formant frequency estimation from noise-corrupted output
observations.

The OSACF of noise-free speech can be obtained as

pz(T), >0
ro(7) =< 0.5p,(r), 7=0 (6.13)
0, T<0

where p,(7) is the two-sided ACF of z(n). From the Fourier transform R,(e’*) of

rz(7), in Chapter 3, the complex cepstrum for n > 0 has been obtained as

P 7
pe(n) = F~{In(Re[R,(e)])} = Z %n >0 (6.14)
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Figure 6.12: Block diagram of the proposed ramp-cepstrum model based formant
estimation method.

The ramp-cepstrum (RC) model that was proposed in Chapter 3 is given by

i

Yz(n) = nug(n) = Z B(w;)r} cos(win),0 <n < T (6.15)

=1
Note that v in (6.15) is the number of pairs of complex conjugate poles with G(w;) = 2.

In the presence of noise, the RC of r,(7) can be expressed as

%(") = d)z(n) + ww(n)70 <n<T (6'16)

Here, ,,(n) is the error introduced due to the noise. Each of the vy component
functions in (6.15) is estimated sequentially from M, instances of ¥, (n), with M, < T
by using the adaptive RBLS algorithm as described in 6.4.2.

In Fig. 6.12, a block-diagram explaining the the formant estimation method using
the ARRC model is presented. In comparison to the block-diagram of the general

framework involved in the proposed method as shown in Fig. 6.2, the main difference
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Figure 6.13: Adaptive RBLS algorithm involved in the proposed ramp-cepstrum
model based formant estimation method.

in Fig. 6.12 is the block that estimates the formant frequencies from the ACF r,(7) of
the noisy observations. In r,(7), the effect of noise is severe mainly at 7 = 0. Hence,
in order to reduce the effect of noise, we exclude r,(0) to compute ¢y(n) at a low
SNR, which significantly reduces the effect of noise. The objective function is defined
as

M.
Ji= [Rima(n) = Blw)rf cos(wn)* 1 =1,...,7 (6.17)
n=1

where the residual function ;(n) is updated as follows

Ro(n) = y(n)

Ri(n) = Ri-i(n) — Blw)rfcos(wmn), I =1,...,y—1 (6.18)
Fig. 6.13 presents a block diagram explaining the adaptive RBLS algorithm in order
to estimate the first three formants based on the ARRC model. The values for r;

and w; in the range 0 < 7, < 1 corresponding to the global minimum of J; are

chosen as the estimate of the pole locations. In the adaptive RBLS method, formant
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frequencies are sequentially determined, giving one formant in each step. At the
first step (! = 0 in Fig. 6.13), frequency candidates for F1 are estimated from the
smoothed sectral peaks of the noisy OSACF. Candidates inside the desired region
specified by the ROF are taken as the initial estimates and the frequency search is
performed in their neighborhoods. For the initial estimates at the remaining steps
(I =1,2,...) of the adaptive RBLS algorithm, smoothed spectral peaks of the residue

functions of corresponding steps are used.

6.5.2 Simulation Results

The proposed method of formant frequency estimation based on the ARRC model
is tested using various synthetic and natural vowels from the North-Texas vowel
database [121], and some natural sentences from the TIMIT speech database [120].
[147]. For the performance comparison we consider the LPC of order 14 [7] and adap-
tive filter-bank (AFB) methods [83]. In the proposed method, the formant estimation
is conducted every 10 ms with a 20 ms window only for voiced frames. Moreover,
formant estimation error is computed for voiced sounds only. We have computed the
root-mean-square error (RMSE) at different noise levels, and in each level 20 indepen-
dent trials are considered. For the purpose of ramp-cepstral model-fitting by using
the RBLS algorithm, r; is searched in the range [0.8,0.99] for F3 and [0.85,0.99] for
F2 and F1, and the search range for w; is chosen as 0.17 around the neighborhood of
the initial estimates [93]. Search resolutions are set to Ar = 0.01 and Aw = 0.017.
The number of ramp-cepstral instances is set to be N, = min(0.2N,T/2).

In Tables 6.3 and 6.4, the estimation performance for three synthetic vowels /a/,

/u/, and /i/ in the presence of white Gaussian noise is presented. Tables 6.3 and

6.4 shows the average of RMSE values (Hz) obtained by different methods at SNR
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Table 6.3: Average RMSE (Hz) for synthetic vowels (Male)

Vowels 0 dB 5 dB

Prop. | LPC | AFB | Prop | LPC | AFB
/a/ | F1 64.1 | 128.1 | 244.7 55.2 | 104.9 98.5
F2 | 1022 | 358.6 | 458.8 44.1 | 177.4 | 140.5
F3 | 209.2 | 403.3 | 461.9 | 185.9 | 305.6 | 182.1
Ju/ | F1 112.3 | 294.2 | 292.1 55.3 96.2 | 143.4
F2 ] 2634 | 711.2 | 720.1 | 106.5 | 232.2 | 204.1
F3 1 2521 | 7747 | 620.2 | 179.5 | 376.8 | 317.0
/i/ | F1 } 131.7 | 254.8 | 282.3 77.4 | 127.1 | 149.6
F2 109.1 | 156.2 53.8 39.7 | 130.1 47.2
F3 | 119.2 | 268.5 | 164.8 73.2 | 1445 71.6

Table 6.4: Average RMSE (Hz) for synthetic vowels (Female)

Vowels 0 dB 5 dB

Prop. | LPC| AFB | Prop [ LPC | AFB
/a/ | F1 99.7 | 185.2 | 265.5 83.9 | 122.9 | 278.3
F2 98.2 | 186.0 | 205.0 61.6 | 124.3 | 116.2
F3 80.3 | 92.16 80.7 72.2 81.3 72.9
/u/ | F1 58.5 | 396.1 | 379.2 97.4 | 117.9 | 132.0
F2 160.3 | 599.6 | 356.1 | 135.8 | 241.5 | 201.1
F3 189.8 | 519.5 | 259.4 | 145.4 | 287.1 | 152.9
/i/ | F1 196.2 | 329.8 | 490.2 | 133.7 | 203.0 | 233.8
F2 | 201.3 | 5374 { 319.2 | 109.1 | 119.2 | 142.6
F3 53.1 | 244.3 47.5 37.4 75.7 25.4

= 0 dB and 5 dB. It is observed that the RMSE values obtained by other methods
increase significantly at SNR = 0 dB. The formant frequency estimation performance
of the proposed (Prop.) method is significantly better than that of the other two
methods for both levels of SNR.

The estimation performance of the proposed method is tested for different natural
vowels uttered by several speakers taken from the North-Texas vowel database [121]
with reference formant values. In Table 6.5, the estimation performance of different
methods for a male vowel /a/ and a female vowel /i/ in the presence of white Gaussian
noise is presented in terms of mean and standard deviation (shown in the parenthesis)
at SNR = 5 dB. It can be seen that the formant frequency estimated by the proposed

method, as compared to that by other methods, is more accurate and consistent for
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Table 6.5: Estimated mean and standard deviation for natural vowels

Fi Male (/a/) Female (/i/)

Rel [ Prop. | LPC | AFB | Rel. | Prop | LPC | AFB
F1 754 789 815 826 435 427 422 451

)] @ | | 0| @) 9| an| e
F2 | 1369 | 13.89 | 14.16 | 1401 } 2638 | 2584 1990 | 2284
(22) (67) (85) (72) | (35) (81) | (126) | (141)
F3 | 2402 2447 2551 2516 | 3250 3317 2831 2976
(29) (96) | (123) | (101) | (70) | (116) | (128) | (1186)

both male and female speakers. As mentioned before, the low level of energy in the
F'3 band and the presence of strong background noise make F3-estimation difficult.
However, by employing the adaptive RBLS algorithm in ramp-cepstrum model-fitting,
the proposed method overcome such problems.

In Fig. 6.14, the effect of noise on the estimation errors in terms of average RMSE
is plotted for a male natural vowel /a/ from SNR = 0 dB to 40 dB. The difference in
the RMSE values obtained by the proposed and other methods is quite high for F3.

The estimation accuracy of different methods in the presence Babble noise is
shown in Fig. 6.15. It is observed that the proposed method works well for both male
and female speakers in background babble noise even at SNR = 0 dB.

In Fig. 6.16, the formant estimation results are presented in a similar fashion as it
has been shown in Section 6.4.2. In this figure, a natural male utterance “Rob sat by
the pond” which is extracted from the TIMIT database is considered in the presence
of white noise at SNR = 5 dB. In Fig. 6.16 (a) the reference formant frequencies
are plotted on the spectrogram of noise-free speech. As explained in Section 6.4.2,
formant frequencies are estimated only in the voiced frames. From this figure, it is
clearly observed that the proposed method yields a better estimation accuracy even

in some difficult regions where the formant energy is very low (e.g., F'3) or a rise-fall
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Figure 6.14: Effect of SNR on average RMSE (Hz) in the estimation of different
formants (F1, F2, and F3).

pattern appears.

6.6 Ramp Cosine Cepstrum Model Based Formant
Estimation

In Chapter 4, a ramp cosine cepstrum (RCC) model of OSACF of the output of
an AR system excited by a periodic impulse-train has been derived. Since, formant
frequencies can be estimated from the poles of the overall vocal-tract system, an
accurate estimate of the RCC model parameters from noise-corrupted speech signal
is essential to obtain formant frequencies. Recently, it has been reported that instead

of conventional ACF, if repeated ACF is employed under a heavy noisy condition, a

better identification performance is obtained [126], [128], [137], [148]-[150]. In this
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Figure 6.15: Formant tracks at SNR = 0 dB in the presence of babble noise for (a)
male vowel /u/ and (b) female vowel /e/.
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Figure 6.16: Formant estimation results for a male utterance “Rob sat by the pond”

at SNR = 5 dB plotted on clean speech spectrogram; (a)Reference, (b) Proposed
ramp cepstrum model based method, (¢} LPC method, and (d) AFB method.
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Figure 6.17: Block diagram of the proposed ramp cosine cepstrum model based for-
mant estimation method.

section, we intend to employ a once-repeated ACF in the development of an RCC
model. The effect of repeating the ACF is also addressed in this section. A new model
is developed for the the ramp cosine cepstrum of the once repeated ACF (ORACF).
In comparison to the OSACF, the ORACF offers more noise robustness. Based on
the new model, a ramp-cepstrum model-fitting using the adaptive RBLS optimization
algorithm is performed in order to obtain an accurate formant frequency estimation

from noise-corrupted output observations.

6.6.1 Proposed Method

A block diagram showing the main steps of the proposed ramp cosine cepstrum model
based formant estimation scheme is shown in Fig. 6.17. In comparison to the block-

diagram of the general framework involved in the proposed method as shown in Fig.
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6.2, the main difference in Fig. 6.17 is the block that estimates the formant frequencies
from the ACF r,(7) of the noisy observations. Here, an RCC model is developed in
a manner similar to that obtained in Chapter 4. In order to obtain a better noise
immunity, instead of conventional ACF, a once-repeated ACF (ORACF) of noise-free

speech z(n), defined as

éz(m), m >0
Ye(m) =< 0.5¢;(m), m=0 (6.19)
0, m <0

is employed where ¢,(m) is obtained by repeating the autocorrelation operation on

a conventional ACF r;(m) defined in (6.4). Now ¢.(m) can be expressed as

It can be shown that ¥, (m) retains the pole-preserving property of r;(m). Moreover,
under a noisy condition, the ORACF of the observed data offers an advantage of
higher noise immunity than the conventional ACF. Using the definition given in (4.15),

the cosine transform of a real signal {¢(m)}> -3 is obtained as

ey, (m) = F. ' [In[Fe[ipz(m)] (6.21)

where F1[-] denotes the inverse operator of the cosine transform defined in (4.16).
Since r,(m) is the ACF of z(n), the Fourier transform of r,(m), say R;(e’), equals
|X (e7%)|* and for the linear time-invariant system with the transfer function H(z),

R.(e’) can be written as

Ro(e/) = |H(e™)|" Ry(e?) (6.22)
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where R, (e’*) is the Fourier transform of r,,(7). Similarly, the ORACF ¢(m) has a
Fourier transform ®(e#*) = [R(e/)|”. Hence, ¢y, (m) in (6.21) can be expressed as
ey (m) = 27" In[H (e™)]] + 277" [In[H (™))
+F ]| Ru () *)) + F7 [m B” (6.23)
It can be observed from (6.23) that the effect of the input excitation w(n) can be

made additive by using the homomorphic deconvolution, no matter which type of

input excites the system. From (6.1), In[H(z)] can be expanded as

M M oo o,
mHEE ==Y h1-pzY) =33 %—z”" (6.24)
=1 i=1 n=1

where |z| > |p;|. For a real and minimum phase h(n), the inverse cosine transform of

In[F[h(n)]] can be obtained as

m M oo o,
F U in[H ()] = 51—/ ZZ B gdomioswm dw
TJn i=1 m=1 m
L on o=
= §ZZ—,m>o (6.25)
=1 m=1 "
Similarly, for In[H (e77*)] we obtain
. 1 & &
FIin[H(e™))) = 5 35 -, m>0 (6.26)
=1 m=1

For voiced segments, the excitation is the periodic impulse-train {w;(n)}"=} with
a period T'. It can be shown that the third term on the right side of (6.23) for w;(n)
exhibits non-zero values at the origin and at multiples of T" for m > 0. It then reduces
to

Fo IRy (™)) =0, 0<m < T (6.27)
Hence, ¢y, (m) in (4.19) can be expressed as

M om
cwz(m)=2z%, O<m<T (6.28)
i=1
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In order to overcome the rapid decay in ¢y, (m), we propose an easy-to-handle ramp

cosine cepstrum (RCC) for the ORACF of z(n) which is defined as

M
Xz(m) = mey, (m) = 22});”, 0<m<T (6.29)
i=1

Considering the complex conjugate poles, (6.29) can be expressed as

Xz(m) = i: a(w)rl cos(w;m),0 <m < T (6.30)

i=1
where « is the number of complex conjugate pole pairs and a(w;) = 4. The ramp
cosine cepstrum (RCC) model of the ORACF of z(n) can be implemented using
DCT-IDCT as

¢y, (m) = IDCTIn(DCT 5 (m)])], m >0 (6.31)

The detailed implementation of RCC for OSACF as described in Section 4.2.3 can be
readily applicable for the case of ORACF.
In the presence of additive noise v(n), the ACF of the noisy observation y(n) can

be expressed as
ry(m) = 1o(m)+ra(m) =1(m) + {ro(m) + rou(m) + roz(m)}  (6.32)

For a finite data length, the effect of r,(m) cannot be neglected, especially when the
SNR is very low. In order to reduce the effect of noise, we propose to use the ORACF
¥y (m) computed from r,(m). In this case, the strength of the ACF of r,(m) as well
as the cross-correlation terms (between r,(m) and r;(m)) is significantly reduced in
comparison to the ACF of r,(m). In Fig. 6.18, normalized ACFs of a noise-free
and noisy AR signal are plotted together with the ORACF of the noisy signal. In

the presence of noise, the ACF of the noisy signal is severely degraded at all lags.
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Figure 6.18: Effect of once-repeated ACF in noise.

However, it is clearly observed that the ORACF closely matches with the noise-free
ACF. Hence, some system identification methods have been proposed which employ
the repeated ACF for the identification of the AR part [126], [128], [137], [148]-[150].
In order to further reduce the effect of noise, the zero lag of r,(m) is made to zero
before computing the ORACF. Finally, we switch to the cepstral domain where the
logarithmic smoothing helps in retaining the shape of the RCC model under heavy

noisy conditions. The RCC of the ORACF of noisy speech y(n) can be expressed as
Xy(m) = Xz(m) + xe(m), m >0 (6.33)

Here, x.(m) is the error due to the noise that must be significantly reduced.
Fig. 6.19 presents a block diagram explaining the adaptive RBLS algorithm in
order to estimate the first three formants based on the new RCC model. The values

for r; and w; in the range 0 < 7, < 1 corresponding to the global minimum of J; are
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(Fk,k=1,2,3)

Figure 6.19: Adaptive RBLS algorithm involved in the proposed ramp cosine cep-
strum model based formant estimation method.

chosen in a similar fashion as explained before. Each of the x component functions
is estimated sequentially from N, (< T') instances of x,(m). The objective function

is defined as
Ne
Ji=>_|Ri_1(n) — a(w)r] cos(wm)®, 1=1,2,...,5 (6.34)
n=1
where the residual function ®;(n) is updated as follows

Ro(n) = xy(n)

Ri(n) = Ri-1(n) —a(w)rfecos(wn), l=1,...,k—1 (6.35)

The values of {r;} and {w;}, corresponding to the global minimum of J;, are se-
lected to compute the estimate of [th formant. Thus, different formant frequencies
are sequentially determined employing the adaptive RBLS as described in the ramp

cepstrum model based formant estimation method.
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6.6.2 Simulation Results

In this section, a number of simulations is carried out in order to demonstrate the
effectiveness of the proposed method of estimating formant frequencies in the presence
of noise. The proposed algorithm has been tested using different synthetic vowels
synthesized using the Klatt synthesizer [7], natural vowels from the North-Texas vowel
database [121], and some natural sentences from the TIMIT speech database with
their reported formant references [147]. For the purpose of performance comparison
in terms of formant estimation accuracy, the 14th order LPC and the adaptive filter-
bank (AFB) methods have been considered [83].

In the adaptive RBLS algorithm, r; is searched in the range [0.8,0.99] . The search
range for w; is chosen as 0.17 around the neighborhood of the initial estimates [93].
The initial estimates of w; are obtained from the location of the peaks of the smoothed
DCT of the ORACEF of y(n) with r,(0) = 0. The search range for w; can be narrowed
down based on the knowledge of the pole-zero locations of a particular phoneme [7],
[93]. Search resolutions of Ar = 0.01 and Aw = 0.017 are used for r; and wy,
respectively. The number of ramp-cepstrum samples is taken as N, = min(4P,T/2)
where the pitch (T') can be estimated using the autocorrelation method [7].

First, the results for three synthetic vowels /a/, /u/, and /i/ under white Gaussian
noise are presented. Vowels with duration of 200 ms are synthesized using the Klatt
synthesizer considering the pitch values of 120 Hz and 220 Hz, respectively, for male
and female speakers. Formant estimation is performed in every 10 ms with a 20 ms
window only for voiced frames. In Tables 6.6 and 6.7, the estimated %RMSE (Hz)
is shown for the three synthesized vowels at SNR = 0 dB and 5 dB for male and

female sounds, respectively. It is clearly observed that the proposed method is able
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Table 6.6: %RMSE (Hz) for synthetic vowels (Male)

Vowels 0dB 5dB

Prop. | LPC | AFB | Prop | LPC | AFB
/af | F1 7.17 | 16.98 | 36.05 5.37 | 12.93 | 12.23
F2 6.53 | 23.82 | 41.28 2.23 | 12.36 | 10.87
F3 5.81 | 14.43 | 18.61 3.49 | 10.54 | 8.33
/u/ | Fi1 17.29 | 42.36 | 51.49 | 11.81 | 23.99 | 27.64
F2 10.51 | 36.61 | 34.46 7.35 | 15.25 | 12.81
F3 10.62 | 23.59 | 21.27 6.46 | 13.92 | 11.31
/i/ | F1 | 15.74 | 24.83 | 31.58 | 10.61 | 17.01 | 16.25
F2 3.84 | 06.46 4.18 2.06 443 | 3.33
F3 4.59 | 10.17 7.75 3.15 6.39 3.97

to reduce %YRMSE significantly at both levels of SNR. The RMSE for other methods
increases significantly at SNR = 0 dB.

Some natural vowels /a/, /u/, /i/, and /e/, contained in words “hod”, “hood”,
“heed”, and “head” respectively, are taken from the North-Texas database [121].
Estimated fqrmant frequencies at different time instances are plotted in Figs. 6.20(a)
and 6.20(b), respectively, for a male sound /a/ and a female sound /e/ at SNR = 0
dB. It is observed that the proposed method is capable of estimating all three formants
quite accurately for both male and female speakers. In Fig. 6.21, the effect of the
change in noise level (SNR) on the average RMSE is plotted for a male natural vowel
/a/ from SNR = 0 to 40 dB at steps of 5 dB. The difference in RMSE values between
the proposed and other methods is quite high for F'3.

The performance in the presence of Babble noise is presented in Fig. 6.22 to
demonstrate the ability of the proposed method to deal with the environmental noise.
It is observed that the proposed method works well for both male and female speakers
in background babble noise even at SNR = 0 dB.

In Fig. 6.23, estimation results for a natural utterance “Rob sat by the pond”
uttered by an adult male are given. In Fig. 6.23 (a) the reference formant frequencies

are plotted on the spectrogram of noise-free speech [147]. The formants estimated

197



Table 6.7: %RMSE (Hz) for synthetic vowels (Female)

Vowels 0 dB 5 dB

Prop. | LPC | AFB | Prop | LPC | AFB
/a/ | F1 7.84 | 11.97 | 17.19 3.51 5.27 | 15.67
F2 5.15 | 15.69 | 15.21 3.17 8.76 7.49
F3 2.78 4.58 3.97 2.02 2.35 2.28
/u/ | F1 10.02 | 21.51 | 27.26 9.46 | 15.97 | 18.28
F2 8.28 | 24.04 | 18.53 6.21 | 12.05 | 10.37
F3 5.94 | 12.97 9.51 4.12 7.57 5.18
/i/ | F1 ] 1659 | 37.81 | 35.19 | 10.18 | 18.69 | 20.08
F2 7.43 | 19.65 | 14.05 3.52 9.51 6.28
F3 2.54 7.93 3.54 1.97 2.46 2.41

by different methods at SNR = 5 dB in the presence of white Gaussian noise are
plotted on the spectrogram. In comparison to the estimation performance of the other
methods, the proposed method can track the rise-fall pattern of different formants

almost accurately.

6.7 Conclusion

In this Chapter, based on the proposed system identification techniques, formant fre-
quency estimation methods have been presented. All of the proposed methods are
capable of providing an accurate estimate of formant frequencies in the presence of
noise. It is worth mentioning that in these methods, some of the previously pro-
posed models have been effectively used jointly with the least-square model-fitting
approach to extract the formant frequencies. The ARMA correlation model pro-
posed in Chapter 2 has first been used to develop a formant estimation scheme. In
a similar fashion, the AR ramp-cepstrum model that were proposed in Chapter 3
has then be used to develop another formant frequency estimation method. A ramp
cosine cepstrum model for the once-repeated ACF of speech signals has been devel-
oped as a new principle, leading to a RCC model based formant frequency estimation

method. The new method can effectively handle the noisy environment due to the
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Figure 6.20: Formant tracks at SNR = 0 dB in the presence of white noise for (a)
male vowel /a/ and (b) female vowel /e/.
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Figure 6.21: Effect of SNR on average RMSE (Hz) in the estimation of different
formants (F1, F2, and F3).

combined advantages of the ramp-cepstrum model-fitting and the once-repeated cor-
relation operations. An important feature of this method is its DCT/IDCT based
implementation which offers several advantages including simple phase unwrapping.
From extensive experimentations on synthetic and natural speech signals under noisy
conditions, it has been found that the proposed method provides an accurate formant

frequency estimate at a moderate to low levels of SNR.
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Figure 6.22: Formant tracks at SNR = 0 dB in the presence of babble noise. (a) male
vowel /u/ and (b) female vowel /e/.
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Chapter 7

Conclusion

7.1 Concluding Remarks

Estimation of system parameters from given noisy observations has very important
applications in various fields, such as signal processing, communication, and con-
trol. As far as real-life applications are concerned, parameter estimation using only
the noise-corrupted observations at a very low SNR is a very difficult problem; yet
there is a strong demand for noise-robust estimation methods. For example, formant
estimation from noise-corrupted speech is essential in speech processing, but only
a few research results are available in literature. In this dissertation, some effective
methodologies for the identification of AR and ARMA systems, which are able to esti-
mate accurately the parameters of AR and ARMA systems using the noise-corrupted
observations at very low levels of SNR, have been developed. .

In the development of the proposed system identification methods, the input to the
system need not be accessible, and both white noise and periodic impulse-train inputs
are taken into account in order to handle speech applications. A new correlation
model for the ARMA signal has been proposed and then employed in a residue-

based least-squares (RBLS) model-fitting optimization algorithm to estimate the AR
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parameters of the ARMA system. To overcome the difficulty in identifying the MA
part of the ARMA system under a heavy noisy condition, a new algorithm, which
employs a noise-compensation in the ACF of the residual signal and then estimates
the MA parameters from the noise-compensated ACF or from the inverse ACF, has
been developed.

The ramp-cepstrum models of a one-sided autocorrelation function (OSACF) of
the AR as well as ARMA signals have been proposed. The parameter estimation from
noisy observations is then carried out by employing a ramp-cepstral model-fitting
based approach. It has been shown that, once the AR parameters are obtained, the
MA parameters can be successfully estimated using the MA estimation algorithm
given in this thesis. Considering the implementation related advantages of the DCT,
the ramp cosine cepstrum models of the OSACF of AR and ARMA signals have
also been developed and these models are then used for the estimation of the system
parameters through a process refer to as ramp cosine cepstral fitting.

In order to overcome the limitations of the conventional low-order Yule-Walker
methods, a new noise-compensated quadratic eigenvalue method has been developed
giving the estimate of the AR parameters of the ARMA system along with that of
the noise variance. The MA parameters are then estimated by using the spectral
factorization of a noise-compensated ACF of the residual signal.

As an application of the proposed system identification algorithms to speech anal-
ysis, some robust formant estimation methods have been developed which can effi-
ciently handle the adverse effect of very noisy observations on the estimation. Based
on the ARMA correlation, ramp-cepstrum and ramp cosine cepstrum models proposed
in thesis, formant frequencies have been estimated from the observed noise-corrupted

speech by employing an adaptive RBLS model-fitting algorithm. Estimation perfor-
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mance of the proposed methods has been studied through extensive experimenta-
tions under heavy noisy conditions, and the results demonstrate the effectiveness in
the system administration and superiority in terms of the estimation accuracy and
consistency of the methods.

Some of the key contributes of the investigation undertaken in this thesis can be

summarized as follows:

1. All the system identification methods have been developed with a target to
obtain an accurate and consistent estimate of system parameters under heavy
noisy conditions. The estimation accuracy of the system identification methods
available in literatures, including those proposed to handle a noisy environment,
deteriorates drastically with the increase of the level of noise. The identification
methods proposed in this thesis provide a much superior performance even at

very low levels of SNR.

2. Unlike many of the existing system identification methods, the proposed meth-
ods do not require an access to the input signal of the system. The parameters
can be estimated accurately by considering the system excitations as a white

Gaussian noise or periodic impulse-train.

3. The proposed identification techniques are readily applicable to both AR and
ARMA gystems.

4. Because of a better noise immunity of the new models, developed in the cor-
relation and cepstral domains, the proposed methods by using these models
in the least-squares model fitting framework provide a superior identification

performance in the presence of heavy noise.
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5. The development of the proposed models as well as the estimation algorithms
using both white noise and periodic impulse-train excitations, which respec-
tively correspond to the unvoiced and voiced speech sounds, make these models
readily applicable to speech analysis. The relevance of this feature has been
demonstrated for vocal-tract system identification and formant frequency esti-

mation problems.

7.2 Scope for Further Work

The research work undertaken in this thesis can be extended in several aspects. One
interesting area of investigation could be the handling of colored noise in the identifi-
cation problem. In this research, we have carried out the identification process under
a white noise observation of the system output. We have also successfully used the
babble noise in the system identification as an illustration of the proposed techniques
in a practical situation. A colored noise is very much application dependent and
generally is not possible to have a single unified model for all the different types of
colored noises. Usually, they are modeled as the output of a particular system driven
by a white noise. One possible way is to identify the colored noise generating system.
Then, an inverse filtering operation can be performed on noisy observations to whiten
the noise and reduce the problem into a standard system identification task in the
presence of white noise. The main problem will be the availability of noise informa-
tion for its parametric identification. A further solution could be the application of
an adaptive filter technique.

It has been shown that the proposed method can accurately extract formant fre-
quencies, the most important speech feature, even under severe noisy conditions. This

important feature of the proposed method creates room for its wide applications in the
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various speech processing tasks, such as speech recognition and synthesis. Incorpo-
ration of formant features into a speech recognition system increases the recognition
accuracy. Therefore, a noise-robust formant frequency estimator is in a great de-
mand. In order to incorporate some additional acoustical information in the speech
recognition system, formant tracking is sometimes helpful in addition to the specific
formant values. Hence, a complete formant tracking system incorporating pitch de-
tector, voicing detector, gender detector, and some logic blocks for proper tracking

could be an interesting topic of future investigation.
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Appendix A

Derivation of the ARMAC Model
for the White Noise Excitation

Equation (2.10) can be rewritten easily as

P P
=3 mmy(h+L);7=01,...,M~1; (A1)
k=1 j=1
1 Q
Il— Zzu 2'r+nlnly (A2)
n=0 =0
1 Q n n+T
L=223 3 utu(mppe (A3)
n=0 [=0 m=0,m#l

with @ = N — 7 — 1. By regrouping the terms in (A3), it can be shown that I,
depends on the non-zero lags of the time-domain autocorrelation of the white noise
u(n), which can be neglected. Expanding the first summation, the expression for I

given by (A2) can be rewritten as

1 2
N AT D2prti-iptt 4 1)2pp gt
L = Nu(O)pk+—j\7§u P; Z; (D°py, o
1 &

l

I
)
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Further expanding the summations in (A4), I; can be written as

L = —[U(O)zpkpj] [ (0)°p; ' pj + u(1)?pip))
+ %{uw)z £+ (1)) + w2 R +

+ [U(O)2 PP + u(1)?p P + -+ u(Q)?pip)) (A5)
The above expression for I; can be rearranged as

L = %pﬁp?[u(O)z-i-u(l)z-i-~-~+u(Q—1)2+u(Q)2]

+ AP0 4 u(D? 4+ u(@ - 1)
b w0 + (1))
£ R0 (A6)

Thus, I; can be expressed in a compact form as given by

Qi
== Zpi“p} [ZZ; 0] } (A7)
With increasing i, the terms in the ﬁrst sum of the above equation, which correspond
to higher powers of the poles decrease rapidly. Accordingly, it is sufficient to retain
only the first ¢ terms in the first summation of (A7), where ¢ <« € and since in
the range 1 = 0,1,...,¢, 2 — i =~ Q for the inner sum within the square brackets.
Therefore, (A7) can be simplified as

T4, 4 1- (pkpj)‘P-*_l T
XE P = x——— ] (A8)
P 1 — prp;

where x = & [ZlQ:o u(l)z]. For a reasonably large value of ¢, (pkp;)¥*! can be
neglected and (A8) reduces to (2.11).
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Appendix B

Derivation of the ARMAC Model

for the Periodic Impulse-train

Excitation

Consider first r,(0) which can be expanded using (2.5) as

ro(0) = [y (0) + -+

where

P& 1-plpt
A1) =35 2
: J

. l_pg\—l):r 1__p§_r\—1)T
1-pf 1-pf
k 7
—1DTP 4+ 4+ 2{A-1)T+R-1)
> men L rep;
T\ 1—pepy
1-p7\ (1=p"
x 1-—pf 1-—pf
k p]
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Using the expression for r,, (0), r,,(0) ete. as obtained above, (B1) can be expressed

as

rz(0) = i Z Z TN PRO1, (B2)
k=1 j=1
0 = [%’i%—)} (A =1) = g(pe) — 9(ps) + 9(pxp;)]
L-pipf) (1=mT) (1=p)"
+<1~pkpj) (1—19{) (1—1)?')7
g(@) = (1 - D7) /(1 - aT) (B3)

Similarly, 7,(1) can be expanded as

ra(1) = [ (D) + -+ + oy (1) + an (D] (/W) (B4)

s (1) = z(0)x(1) + - +~’C( — 1)z(T)

P P T T
J
= —-——+
> > mensph . T (pkps)~ }

k=1 j=1
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+z{(A— )T — 1}z{(A - 1T}
P

P
= > mmpklgr + 92),

k=1 j=1
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A= D)T)e{(A =T +1} +---

{
+ 2{(A=1)T+R—-2}z{(A\ - )T+ R—1}

P P _p 1-p
k J
= E E nwbpk[ T] [ _ T}
k=1 j=1 Pk 1-p;
y [1 — (pepy)®~ 1}
1 — pkp;

It is to be noted in r,(1), the product terms containing two different expressions of
Gin, such as z(T — 1)z(T) in 74, (1), require special attention for their manipulation
in comparison to the other terms. Using the expression for rz, (1), 74,(1) etc. in (B4)

one can show that
P P
Z Z wk©, © =0+ 0, (B5)
k: =

o = L=PpillA—1) — g(p) — 9(p;) + g(prp;)]
(1= pepy) (1= pR) (1 = p)

I

4|z (pkpj)(R‘”] <1-p2T> 1-p"
1 — pxp; 1-pf 1—pl

_r

T Al
O = BB 11y o)

1— pJT
Note that in comparison with the expression for r,(0), an extra term ©;; appears
in 7;(1). Similar to the derivation of r,(0) and r;(1), an expression for r;(2) can be

obtained as

P P
& Z Z nknjpie, 0= @I + @II? (B6)
k=13=1
(1 —pEpf1[(A = 1) — g(pe) — 9(p;) + 9(pxp;)]
(1= peps)(1 = p{)(1 = p))

N [1 - (pkpj)(R‘z’} (1 - piT) 1-p)T
1 — prp; 1—pf )\ 1-p]
PT [(oxp) ™t + (oxpy) 7] N1
J

O =

O = ~ g(ps)]
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with g(-) being given in (B3). Finally, by observing the pattern that emerges in the
expression for 7,(0), r,(1), and r,(2), a general expression for 7;(7) can be obtained

as given by (2.17).
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