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Abstract 

Biochemical and Biophysical Characterization of a Prephenate Dehydrogenase from the 

Hyperthermophilic Bacterium Aquifex aeolicus 

Julie Bonvin. Ph. D. 

Prephenate dehydrogenase is a key enzyme from the TyrA protein family 

responsible for catalyzing the NAD^-dependent oxidative decarboxylation of prephenate 

to hydroxylphenylpyruvate, one of the terminal steps in the biosynthesis of tyrosine 

(Tyr). To gain structural and biophysical information on this protein, PD from the 

thermophilic bacterium Aquifex aeolicus was expressed as a His-tagged protein in 

Escherichia coli and was purified by nickel affinity chromatography. The enzyme is 

susceptible to proteolysis at the N-terminal region of the protein and the exact site of 

cleavage was determined by mass spectrometry. Crystallography trials on several N-

terminally truncated variants performed by our collaborators at the University of Toronto 

indicated that only the PD variant missing the first 19 amino acids (A19PD) yielded 

quality diffraction crystals. The biochemical and biophysical properties of the full-length 

PD were compared to A19PD also expressed recombinantly in E. coli. The enzyme 

functions as a cyclohexadienyl dehydrogenase, accepting prephenate (effectively) and L-

arogenate (poorly) as substrates. Both forms of the enzyme are thermally stable and show 

maximal activity only at high temperatures, although A19PD is less stable but more 

active than the full-length protein. Low concentrations of the denaturant guanidinium 

hydrochloride (Gdn-HCl) activate the activity of A19PD, but at higher concentrations 

activity is lost concomitant with a multi-state pathway of denaturation which proceeds 
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through unfolding of the dimer. oligomerization. then unfolding of monomers. 

Measurements of steady-state fluorescence intensity and its quenching by acrylamide in 

the presence of Gdn-HCl suggest that of the two tryptophan (Trp) residues per monomer, 

one is buried in a hydrophobic pocket and does not become solvent exposed until the 

protein unfolds, while the less buried Trp is at the active site. These findings are in 

accordance with the crystal structure of A19PD. 

Site-directed mutagenesis and steady-state kinetic analyses of variant proteins 

were used to probe the roles of conserved residues. In accord with the crystal structure of 

the enzyme bound with NAD+ plus product and product analogues, His 147 acted as a 

catalytic hydrogen bond acceptor while Ser216 was responsible for coordinating NAD 

and Hisl47 to facilitate hydride transfer. Arg250 and His217 were responsible for 

binding prephenate in the active site. Additionally and most importantly, His217 in A. 

aeolicus PD and the homologous residue in E. coli CM-PD (His257) was shown to be 

critical for inhibition of activity by Tyr. Two assays were developed to assess Tyr 

binding to wild-type and variant enzymes. Our results are placed in context of crystal 

structures of PD bound with Tyr and indicate how TyrA proteins can accept 

hydroxyphenylpuruvate and Tyr in the active site of the enzyme. 
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General Introduction 
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1.0 AROMATIC AMINO ACID BIOSYNTHESIS 

The aromatic amino acids. L-tyrosine (Tyr). L-tryptophan (Trp) and L-

phenylalanine (Phe) are of critical importance for the growth and maintenance of all 

living organisms. These amino acids act both as products and precursors. In the former 

case, they can be used for protein synthesis, whereas in the latter case, they can be 

substrates for enzymes in the downstream pathways. They also produce aromatic 

metabolites which are involved in primary biological processes, making them 

indispensable for survival. This includes compounds such as flavonoids (7), quinones (2, 

3), cyanogenic glycosides (4) and alkaloids (5, 6). In archae, eubacteria, plants and fungi, 

the three aromatic amino acids are synthesized via the shikimate pathway. This pathway, 

which links the metabolism of carbohydrates to the biosynthesis of aromatic compounds, 

was elucidated mainly through the work of Davis (7) and Sprinson (<?). It encompasses 

seven metabolic steps initiated by the condensation of erythrose-4-phosphate and 

phosphoenol-pyruvate to give a 7-carbon compound, 3-deoxy-D-tfra6z'wo-heprulosonate 

7-phosphate (DAHP) (Fig. 1.1). This step is catalyzed by the highly regulated 3-deoxy-

D-araWno-heptuIosonate 7-phosphate synthases (DAHP synthases) of which there are 

three isoenzyme forms: DAHP synthase (Phe), (Trp) and (Tyr) (9, 10). Each form is 

classified according to the amino acid which serves as a feedback inhibitor. The pathway 

ends with the synthesis of the branch point intermediate of the pathway, chorismate, 

which serves in turn not only as a precursor for the biosynthesis of the three aromatic 

amino acids, but also a number of other aromatic compounds such as vitamins, quinones 

or folates (77, 12). 

2 



Figure 1.1: The shikimate pathway. The shikimate pathway consists of seven enzyme-

catalyzed steps. Metabolites symbols: DHAP. 3-deoxy-D-ara&r>7oheptulosonate 7-

phosphate; DHQ, 3-dehydroquinate; SH, shikimate; EPSP, 5-enoIpyruvateshikimate 3-

phosphate and CHO. chorismate. 
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Chorismate is then converted to L-Tyr or L-Phe via the "common pathway" (Fig. 1.2). In 

this pathway, chorismate undergoes a Claisen rearrangement to prephenate. catalyzed by 

chorismate mutase (CM), then prephenate is either oxidatively decarboxylated by the 

NADT-dependent prephenate dehydrogenase (PD) to form /7-hydroxyphenylpyruvate 

(HPP) or is dehydrated and decarboxylated by prephenate dehydratase (PDT) to 

phenylpyruvate (PP). These aromatic precursors are then transaminated appropriately to 

either L-Tyr or L- Phe. The biosynthesis of the third amino acid. L-Trp. also originates 

from chorismate but involves six steps from a separate pathway (Fig. 1.3). The first two 

and last two reactions are catalyzed by enzyme complexes, namely the anthranilate 

synthase-phosphoribosyl transferase complex and the tryptophan synthase complex, 

respectively. 

Both the shikimate and the "common" pathways are not present in mammals, 

consequently, these enzymes are attractive targets for the design of inhibitors which can 

act as herbicides, fungicides and antimicrobial agents (75, 14). One of the best known 

examples is the herbicide, glyphosate (Roundup®), which inhibits 5-ewo/pyruvyl 

shikimate 3-phosphate synthase {15). Moreover, these enzymes are well recognized in 

bioengineering as targets for aromatic amino acid and secondary metabolites production 

(16). The use of metabolic engineering to produce Phe and Trp has gained considerable 

attention due to the commercial value of these aromatic amino acids (and their synthetic 

intermediates) in the food, pharmaceutical and agricultural industries. For example, the 

Trp biosynthetic pathway has been exploited in E. coli for the production of aromatic 

compounds such as bio-indigo (17, 18) and shikimic acid (19): Trp is also used as 
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Figure 1.3: Tryptophan biosynthesis. The pathway consists of six enzyme-catalyzed 

steps. 1, anthranilate synthase, 2, anthranilate phosphoribosyltransferase. 3, 

phosphoribosylanthranilate isomerase, 4, indole-3-glyceroI-phosphate synthase. 5-6, 

tryptophan synthase enzyme complex. PRPP: 5-phosphoribosyI-a-pyrophosphate 
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an animal feed. Similarly. Phe is one of the major constituents of the sweetner aspartame, 

also known as NutraSweet® (20). In the past. Tyr was supplied mainly by chemical 

synthesis and protein hydrolysis since only small volume applications were required. 

More recently however. Tyr has been identified as a valuable precursor in the synthesis 

of melanin (21), anti-Parkinson ?s drugs L-dopa (22, 23) and 3,4-dihydroxyphenyl-L-

alanine (19) and biodegradable polymers (24). In order to support the demands for large 

scale production of Tyr and intermediates in the common pathway, strategies to 

manipulate its biosynthetic route are now being explored (25, 26). Hence, there is 

considerable interest in understanding the catalytic mechanism and modes of regulation 

of aromatic amino acid-producing enzymes in a number of organisms. 

The aromatic amino acid biosynthesis pathway is regulated at both the genetic and 

protein level. Many of the genes encoding the biosynthetic enzymes for aromatic amino 

acids are organized in operons. The operons are regulated by three regulatory genes tyrR, 

trpR or pheR. The protein products of these genes combine with the appropriate amino 

acid co-repressor, resulting in the formation of complexes that bind at the operator loci. 

Additional regulation is achieved through attenuation at the level of charged tRNA(s) 

(27), although, the major form of control is achieved through feedback inhibition by Phe, 

Tyr or Trp of enzymes at the start (DHAP synthase) and at the branch point in the 

biosynthetic pathways leading to these products. Interestingly, bacterial enzymes are 

controlled mainly by feedback inhibition while in higher plants regulation occurs at the 

genetic level and physiological feedback inhibition is absent (28). Accordingly, research 

efforts are now being directed towards engineering strains of organisms that lack tyrR 

and/or are resistant to feedback inhibition in order to modulate Tyr production (29). 
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1.1 ALTERNATE BIOSVNTHETIC ROUTES TO TYROSINE AND 

PHENYLALANINE 

We have outlined previously how L-Tyr and L-Phe can be synthesized from HPP 

and PP, respectively (Fig. 1.2). However, an alternate pathway to Tyr and Phe production 

exists that utilizes L-arogenate as an intermediate (Fig. 1.4). L-arogenate possesses many 

of the same structural features as prephenate but it is a cyclohexadienyl amino acid: an 

alanyl group replaces the pyruvyl side chain at C-l. In the arogenate route, prephenate is 

first transaminated into L-arogenate which then is converted to L-Tyr or L-Phe by 

arogenate dehydrogenase (AD) or arogenate dehydratase (ADT). The arogenate pathway 

was discovered in cyanobacteria by Stenmark e1 al.{30) about 40 years ago. While kinetic 

assays failed to reveal prephenate dehydrogenase activity (30), they noted the 

consumption of an amino acid in addition to prephenate. This finding signified that 

transamination could occur prior to decarboxylation. Stenmark and coworkers then went 

on to isolate the novel dehydrogenase and named the aromatic compound pretyrosine. 

Only when it was discovered that pretyrosine could be a precursor of L-Phe was it 

renamed L-arogenate (37). 

The ubiquitous combination of the two routes, the HPP/PP and the arogenate 

routes, results in widespread diversity in the biosynthesis of Tyr and Phe. In most plants 

and some bacteria (ie. cyanobacteria) both Tyr and Phe are synthesized using the 

arogenate pathway, while in E. coli and yeast, this pathway is reportedly absent (32-36). 

In cyanobacteria and several other microorganisms such as Brevibacterium flavum, the 

arogenate pathway is used to produce Tyr while Phe is synthesized from PP (35, 37). 
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Figure 1.4: L-tyrosine and L-phenylalanine biosynthesis via the arogenate route 
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In other bacterial species, such as Zymomonas mobilis and Pseudomonas aeruginosa, the 

HPP and L-arogenate routes coexist (38, 39). Distinct enzyme combinations allow for 

considerable regulatory control over the type and amount of end products that accumulate 

in a pathway. For example in plants, arogenate is the sole branch point for the 

biosynthesis of Tyr and Phe, hence ADs must be "accurately" regulated to balance the 

flux of intermediates between these aromatic end products. Phe and its myriad of 

secondary metabolites are of great importance for plant survival. When required, 30% of 

the carbon fixed during photosynthesis is shunted to Phe for the synthesis of 

phenylpropanoids such as lignins, hydroxycinnamic amides, flavonoid phytoalexins, and 

pigments; much less carbon is incorporated into the production of Tyr. AD in plants is 

very sensitive to feed feedback inhibition by Tyr (40, 41) whereas ADT is stimulated by 

Tyr (42). In contrast, in Synechocyslis where Tyr is synthesized by the arogenate route, 

AD is not at a branch point since Phe is synthesized via the PP route (32-35). 

Accordingly, AD from this organism is reported to be less sensitive to Tyr (43). 

1.2 TYRA PROTEIN FAMILY 

The TyrA protein family is dedicated to Tyr biosynthesis and consists of 

homologous dehydrogenases that are classified into three categories depending upon their 

specificities for the cyclohexadienyl substrate; prephenate dehydrogenases are specific 

for prephenate, arogenate dehydrogenases (AD) for L-arogenate and cyclohexadienyl 

dehydrogenases can accept both substrates. In addition to their specificity for the 

cyclohexadienyl substrate, these dehydrogenases may be specific for NAD+ or NADP+ or 

may use both (36). Absolute specificity for prephenate tends to be accompanied by 
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absolute specificity for NAD and the reverse relationship is also observed, whereby 

absolute specificity for L-arogenate is usually accompanied by absolute specificity for 

NADP* (44, 45). 

In all three domains of life, these proteins catalyze an irreversible oxidative step 

in Tyr biosynthesis. They share a catalytic core region of about 30 kDa and maintain a 

common scaffold of fundamental reaction chemistry (46). Many exist as monofunctional 

enzymes, but some are linked to other enzymes or fused to regulatory domain(s). To cite 

several examples, TyrA from Z mobilis, N. gonorrhoeae or Synechocystis sp. are 

structurally the simplest proteins belonging to the TyrA family; they contain only a core 

catalytic domain (36). Interestingly, TyrA from Z mobilis is insensitive to feedback 

inhibition. In the enteric lineage (ie. E. coli, H. influenza. P. agglomerans) however, tyrA 

is fused with aroO (encoding chorismate mutase). Additionally, the aroF gene encoding 

enolpyruvylshikimate-3-P synthase is fused to tyrA in at least two clades of Bacteria such 

as Ps. stutzeri, P. aeruginosa and Burkholderia pseudomallei. Song et al. reported that in 

a single organism, Rhodobacter sphaeroides, tyrA is fused to hisH\, which encodes an 

aromatic aminotransferase (47). Other examples are cited by Sun et al. (48). Another type 

of fusion partner found in several other organisms are regulatory domains. For example, 

the well-characterized TyrA from B. subtilis possesses a carboxy-terminal fusion domain 

denoted ATC, after the first letters of three of the proteins possessing this domain 

(Aspartate kinase-Chorismate mutase-TyrA), which is capable of binding small 

regulatory molecules. In Archaea, a putative regulatory domain. REG, has been identified 

(47). 
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The TyrA protein family has been extensively studied in a 

phylogenetic/bioinformatics context (two excellent review has been very recently 

published by Jensen and co-workers (36, 45)). While enzymes from a variety or 

organisms have been (tentatively) classified in terms of their substrate specificity and 

mode of regulation through in silico analyses, only a few TyrA proteins have been 

purified and characterized. These include arogenate dehydrogenases from Synechocystis 

sp. (36) and A. thaliana (40, 49), two cyclohexadienyl dehydrogenases (from Z. mobilis 

and Ps. stutzeri) and the genetically engineered monofunctional PDs from E. coli (50) 

and E. herbicola (51). Extensive biochemical and biophysical studies have been 

conducted only on the bifunctional E. coli enzyme CM-PD (52, 53) however, the findings 

of which have provided valuable insight into the catalytic mechanism of the PD enzyme. 

1.3 THE BIFUNCTIONAL E. COLI ENZYME, CM-PD: THE STRUCTURAL 

RELATIONSHIP BETWEEN THE TWO ACTIVITIES 

In E. coli the pathway for Tyr biosynthesis involves two sequential reactions 

catalyzed by the bifunctional enzyme chorismate mutase-prephenate dehydrogenase 

(CM-PD) (54, 55) known as the T-protein. L-Tyr, the end product of the pathway is a 

feedback inhibitor of both the mutase and dehydrogenase activities (54). 

Solution studies indicate that the E. coli enzyme is homodimeric with a molecular 

weight of about 84 kDa (56, 57). The enzyme is considered bifunctional however, since 

both activities are associated with each of the polypeptide chains. Primary sequence 

alignment of CM-PD with the bifunctional enzyme CM-PDT leading to L-Phe indicates 

that of the 373 residues per monomer, the N-terminal 100 residues encode the mutase 
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domain while the remaining 273 residues are responsible for the dehydrogenase activity 

(58). The structural organization of the sites which catalyze the two activities within the 

bifunctional enzyme has not been firmly established. 

Evidence supporting a unique site combining both activities comes from studies 

on the enzyme from Aerobacter aerogenes and E. coli. Subjecting the enzyme to a 

variety of treatments such as urea, heat, extreme pH. limited proteolysis (59, 60) or 

cysteine-modifying agents (56, 61) has led to the coordinate loss of both activities. 

Furthermore, inactivation by alkylation of both activities was prevented by prephenate, 

NAD", and NAD+ plus L-Tyr (56, 61). Further evidence stems from the results of studies 

of the inhibition of both activities with compounds that are clearly analogues of either 

chorismate or prephenate; these analogues bound with equal affinity to inhibit both CM 

and PD activities (62). Additionally, prephenate binds with similar affinity to the enzyme 

when acting as a substrate of the dehydrogenase reaction or as an inhibitor of the mutase 

reaction (59). Lastly, kinetic studies show that the two reactions are catalyzed with 

comparable turnover number (63). 

There is also evidence in favor of two distinct sites or of specific residues 

involved in catalyzing each of the two reactions. The two enzymes display markedly 

different pH rate profiles (64) and both activities are inhibited to different degrees by L-

Tyr (56, 65) and by the dicarboxylic acid malonic acid and several of its derivatives (56). 

Additionally, site-specific inhibitory compounds have been identified. A putative 

transition-state analog (era/o-oxabicyclic diacid) of CM has been shown to competitively 

inhibit the mutase reaction without affecting dehydrogenase activity (56), while trans-

2,3-pleiadanedicarboxylic acid reportedly inhibited PD without impairing the mutase 
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activity (66). This hypothesis has been supported by Christendat and Turnbull (67) whose 

peptide mass mapping experiments revealed the selective modification of mutase or 

dehydrogenase residues. Additionally, they demonstrated through site-directed 

mutagenesis studies that an amino acid substitution introduced in the CM domain 

(Lys37Gln) could totally eliminate mutase activity without affecting the dehydrogenase 

activity (52). Similarly, substitutions in the PD portion of the enzyme abolished only 

dehydrogenase activity (Hisl97Asn) (52) orprephenate binding (Arg294Asn) (53). 

Kinetic evidence also supports the idea that if the enzyme possesses two active 

sites, they must be in close proximity or in some way structurally dependent. Results of 

the inhibition of the enzyme by malonate or citrate by Christopherson (62) indicated that 

the binding of either analogue with prephenate was mutually exclusive but that malonate 

(or citrate) and chorismate could be on the enzyme at the same time, thus suggestive of 

overlapping active sites. Some prephenate from chorismate is converted directly to HPP, 

as would be expected if prephenate was channeled from one active site to the other (68). 

Lastly, further mutagenesis studies in the Turnbull lab have identified protein variants 

whose single substitutions (Lysl78Arg. Hisl89Asn. Cys215Ala. Arg286Ala) impaired 

both CM and PD activities (52, 67). 

There have been efforts to separate the activities of the T-protein into discrete 

monofunctional domains. Jensen and coworkers initially reported the successful 

expression of a PD derived from E. herbicola CM-PD. but only when a large portion of 

the mutase domain remained intact (69). More recent work by Ganem and colleagues 

(50) and by our lab (Bonvin, unpublished data) showed that independently expressed CM 

and PD domains of the E. coli enzyme have reduced activity and are highly unstable or 
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insoluble, highlighting the structural interrelationship of the different regions of the 

polypeptide chain. In contrast, the related bifunctional enzyme CM-PDT involved in Phe 

biosynthesis, has been shown to possess two distinct non-interacting catalytic sites (70-

72) and a separate inhibitory Phe binding domain (the ATC domain) at the C-terminal 

portion of each polypeptide (73). All of these domains found within CM-PDT can be 

separately expressed and are fully functional (70, 74). Additionally, Zhang et al. 

genetically linked the genes encoding the CM and Phe binding domains (75). Kinetic 

analysis of the fusion protein showed that Phe activated CM activity (although did not 

inhibit as expected), indicating nevertheless that allosteric control could be transmitted 

through the domain contacts. 

1.4 CHORISMATE MUTASE MECHANISM 

CM catalyzes the only pericyclic Claisen rearrangement reaction reported in 

nature (76). While the reaction can occur in the absence of the enzyme, the mutase 

accelerates the reaction by over a million-fold (77, 78) Both the uncatalyzed (79, 80) and 

enzyme catalyzed rearrangements (77, 81, 82) are thought to proceed via a chair-like 

transition state following selection of chorismaters less stable diaxial form. 

17 



dtequitorial Irsnssisnnstil'c&nakimsr prepftcfl31e 
(chorisnwte) (endp-oKititcyetic inhttHtor} 

Figure 1.5: Rearrangement of chorismate through a transition-state complex. 

Adapted from Christendat et ah (67). Proton NMR studies indicate that 10 to 20% of 

chorismate is found in the diaxial conformer in equilibrium with the more stable 

diequatorial form. 

Numerous isotope effect studies have been performed, which show that in the non-

enzymatic reaction, bond-breaking preceds bond-making (83) although in the presence of 

CM, it was hypothesized that a conformational change might initiate the chemical 

rearrangement. While several chorismate analogues have been synthesized to delineate 

the structural features required for catalysis (84), an ewc/o-oxabicyclic diacid inhibitor 

(85), with its bridged ether oxygen and endo conformation of the bridged carboxylate, 

appears to mimic the bicyclic structure of the transition state most effectively; the 

analogue binds about 300 times more tightly to the E. coli enzyme than chorismate (56). 

Several natural monofunctional CMs have been crystallized such as those of B. 

subtilis (79), S. cervisiae (86), T. thermophilics (87), C. thermocellum (88), M. 
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tuberculosis (89). as well as the engineered mutase domain of the bifunctional E. coli 

CM-PDT (72), the "mini-mutase". complexed with the mutase transition-state analogue. 

CMs generally belong to one of two structurally distinct classes denoted AroH and AroQ 

(see Fig. 1.6). The less abundant AroH class comprises mainly trimeric aJfi proteins 

while the protein scaffold of the more abundant AroQ class, which is adopted by the E. 

coli "mini-mutase" (72). is mainly a-helical and dimeric. The dimeric yeast CM is larger 

and more elaborate than E. coli CM. and contains a regulatory domain where allosteric 

effectors can bind (86). In both classes an active site is shared at the subunit interfaces. 

With expection, the dimeric M. tuberculosis CM is part of the AroQ protein family that 

exhibits a novel fold topology and houses a separate active site within each of the 

monomers (89). Interestingly, alignment of the primary sequences of all five mutases 

shows little similarity and their crystal structures reveal that they adopt unique folds, 

however the electronic environment and the geometry of the active site appears well 

conserved. 
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Figure 1.6: Ribbon diagram representations of the AroQ and AroH folds. The AroQ 

class (left) is completely helical and includes CMs from E. coli and S. cerevisiae The 

AroH class (right) is organized as a trimeric a/p-barrel fold; B. subtilis and C. 

thermocellum CMs are representative of this class. 

The structures of CM from the B. subtilis (90), S. cerevisiae (76) and the E. coli 

"mini-mutase" (72) enzymes, in complex with erccfo-oxabicyclic acid, have provided the 

template for the design of extensive mutagenesis experiments, through site-directed 

approaches (91, 92) and by directed evolution (93). The results of mutagenesis in 

combination with the structural data revealed the importance of the active groups Lys39 

and Gln88 in stabilizing the ether oxygen and of Lys39 and Argl 1' in positioning the C-

11 carboxylate 
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Figure 1.7: Schematic diagram of the crystal structure of the active site of yeast 

chorismate mutase and E .coli "mini-mutase" complexed with ewtfo-oxabicyclic 

diacid. Residues from E. coli "mini-mutase" (black) and S. cerevisiae (green) were 

determined by X-ray crystallography while those from E. coli CM-PD (red) were 

elucidated through sequence alignments. 
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group in the highly charged region of the active site (Fig. 1.7). Undeniably Lys39 (Lys37 

in E. coli CM-PD) is the key cationic residue. The activity of the mutase reaction from E. 

coli CM-PD is very pH dependent, indicating the participation of three groups (two 

protonated and one deprotonated) in substrate binding and/or catalysis; Lys37 may be one 

of these residues, poised to protonate the ether oxygen of chorismate in the transition 

state of the reaction(6/). Additionally. pH-dependent activity profiles described for a 

variant (Gln88Glu) of the mini-mutase and for wild-type CM from yeast (contains GIu at 

position 246) indicated the importance of a protonated side chain at this position. There 

have been a number of chemical mechanisms proposed for the CM-catalyzed reactions: 

acid/base catalysis, a nucleophile-assisted dissociative mechanism (80), and transition 

state stabilization through conformational trapping. As expected, the catalytic mechanism 

of the CM-catalyzed reaction continues to be under intense study. 

1.5 PREPHENATE DEHYDROGENASE MECHANISM AND ITS INHIBITION 

BY L-TYROSINE 

The oxidative decarboxylation of prephenate to HPP in the presence of the 

cofactor NAD" is catalyzed by prephenate dehydrogenase. Since the subsequent product 

of this reaction is aromatic, this reaction is essentially irreversible. The non-enzymatic 

reaction has not been observed, nevertheless, under acidic conditions, prephenate can 

rapidly undergo decarboxylation to give phenylpyruvate. The acid-assisted 

decarboxylation occurs via a stepwise mechanism; protonation of the hydroxyl group of 

the prephenate Jeads to the formation of a resonance stabilized carbonium ion with 

subsequent decarboxylation. By contrast in the enzyme-catalyzed reaction, 
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decarboxylation and hydride transfer are concomitant (94). This mechanism was revealed 

through isotope effect studies performed by Hermes e1 al. (94). Using the substrate 

analogue deoxoprephenate. deuterated at C-4, they observed an isotope effect for the 

hydride transfer to NAD~ (94). Furthermore, using the natural abundance of ljC in the 

substrate, they observed a carbon isotope effect for the cleavage of the C-C bond between 

the cyclohexadiene ring and the ring carboxylate. Interestingly, the carbon isotope effect 

obtained with the deuterium versus the hydrogen at position C-4 was smaller than with 

the natural ,3C indicating that both the deuterium and the 1jC isotope effects are in the 

same transition state; that is. deuterium made the IjC-sensitive step more rate-limiting by 

slowing it down (94). 

It has been determined by the analysis of initial velocity patterns using steady-

state kinetic techniques that the E. coli PD reaction follows a sequential mechanism(57). 

Furthermore, product and dead-end inhibition studies have established that PD conforms 

to a rapid-equilibrium, random kinetic mechanism with two dead end complexes, 

enzyme-NADH-prephenate and enzyme-NAD-hydroxyphenylpyruvate (63). Isotope 

trapping with the enzyme-NAD"1 complex suggested that catalysis is the rate-limiting step 

since only a small proportion of the enzyme was trapped as [l4C]NADH (63). Similar 

reaction mechanism has been reported for CM-PD from A. aerogenes (95). 

The pH dependence of the log VEt of the PD-catalyzed reaction showed that a 

single ionizing group (pK 6.5) was titrating in the rate profile and it had to be 

deprotonated for maximum activity (64). In contrast, the log(T/K)prephenate pH profile 

displayed, in addition to the deprotonated group, a second ionizing group with a pK 

value of about 8.4 which must be protonated for maximum activity. This group was not 
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observed in the V profile and since prephenate does not possess a group titrating in this 

region, they proposed that this enzyme residue was involved in prephenate binding (64). 

Similar results for the (̂ //Qprephenaie profile were obtained by Hermes el al. (94), who also 

identified through temperature and solvent perturbation studies that the deprotonated 

catalytic group was likely a histidine. 

Studies by Christendat and Turnbull. using the results of sequence alignments, 

site-directed mutagenesis and pH-rate profiles, identified the conserved Hisl97 as an 

essential catalytic residue. Replacement of the histidine by an asparagine reduced the 

dehydrogenase activity 5 orders of magnitude (52). Furthermore, the Hisl97Asn 

substitution rendered the log V profile pH-independent suggesting that Hisl97 might be 

the residue titrating in the acid limb that is essential for catalysis (52) or that the 

substitution had resulted in the change of the rate-determining step of the reaction. 

Hisl97 acts as an hydrogen bond acceptor and is believed to polarize the 4-hydroxyl 

group of prephenate, lowering the activation barrier to facilitate decarboxylation and 

hydride transfer of prephenate to NAD+ (52). The two chemical steps occur 

simultaneously, driven by the aromatic nature of the product and also because the ring 

carboxylate is likely near and/or in a hydrophobic pocket promoting decarboxylation 

(53). 

Although attempts to identify the the prephenate binding residue with a pK value 

of about 8.4 have failed, Christendat and Turnbull noted Arg294 was critical for 

prephenate binding as suggested by the 120-fold increase in Km for prephenate for an 

Arg294Qln variant (53). From their inhibition studies, they proposed that Arg294 
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interacted electrostatically with the ring carboxylate of prephenate (Fig. 1.8). They 

characterized 

Figure 1.8: Proposed mechanism for the prephenate dehydrogenase-catalyzed 

reaction. A deprotonated group (:x). identified as Hisl97 in E. coli CM-PD (Hisl47 in A. 

aeolicus PD). helps polarize the 4-hydroxyl group of prephenate while an arginine, likely 

Arg294. is involved in prephenate binding. 
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Figure 1.9: Multiple sequence alignment of TyrA proteins. Sequences from 

monofunctional PDs (A. aeolicus, B. subtilis, N. enropaea, S. cerevisiae and M. 

tuberculosis) and Afunctional CM-PDs (E. coli and H. influenzae). Conserved residues 

are indicated by an asterisk and are bolded and highlighted in gray. Sequences from A. 

aeolicus, B. subtilis and M. tuberculosis contain the R/KxxxR motif (underlined) 

described by Bonner et al. (45). The multiple sequence alignment was performed with 

ClustalW. 
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aeolicus MAILSSMFNPSPPOGFCKKNIIKILKSLSMQNVLIVGVGFMGGSFAKSLRRSGFKGKIYG 60 
coli WIVGGGGQMGRLFEKMLTLSG 22 
influenza FGFKTINSDIHKIVIVGGYGKLGGLFARYLRASG 34 
subtil is MNQMKDTILLAGLGLIGGSIALAIKKNHPGKRIIG 35 
europaea MAFPAISKLVWGVGL1GGSFALALRRAGLVDRWG 36 
cerevisiae MVSEDKIEQWKATKVIGIIGLGDMGLLYANKFTDAGWGVICCD 4 3 
tubercul. MRAAAAAGREVFG- -YNRSVEGAHG 23 

A. 
E. 
H. 
B. 
N. 
S. 
M. 

aeolicus 
coli 
influenza 
subtilis 
europaea 
cerevisiae 
tubercul. 

YDINPESISKAVDLGIIDEGTTSIAKVEDFSPDFVMLSSPVRTFREIAKKLSYILSEDAT 120 
YQVRILEQHDWDRAADIVADAGMVIVSVPIHVTEQVIGKLPP-LPKDCI 70 
YPISILDREDWAVAESILANADWIVSVPINLTLETIERLKPYLTENML 83 

IDISDEOAVAALKLGVIDDRADSFISGVKEAATVIIATPVEQTLVMLEELAHSGIEHELL 95 
MGRSPENMQRALELGIIDEQTSDFAAALSG-ADFVLLAIPVKQTAGVMQQMAPHLKAHTI 95 
REEYYDELKEKYASAKFELVKNGHLVSRQS- -DYIIYSVEASNISKIVATYGPSSKVGTI 101 

ARSDGFDAITDLNQTLTRAAAT-EALIVLAVPMPALPGMLAHIRK-SAPGCP 73 

A. 
E. 
H. 
B. 
N. 
S. 
M. 

aeolicus 
coli 
influenza 
subtilis 
europaea 
cerevisiae 
tubercul. 

VTDQGSVKGKLVYDLENILGKR FVGGHPIAGTEKSGVEYSLDNLYEGKKVILTPTKK 177 
LVDLASVKN GPLQAMLVAHDGPVLGLHPMFGPDSGSLAKQ\AAWCDGR 118 
LADLTSVKR EPLAKMLEVHTGAVLGLHPMFGADIASMAKQVWRCDGR 131 
ITDVGSTKQKWDYADQVLPSRYQ-FVGGHPMAGSHKSGVAAAKEFLFENAFY1LTPGQK 154 
ISDVGSTKQIWVHAARANLGKRIERFIPAHPIAGTEFNGAEAAFPDLFQDKPVILTPLQE 155 
VGGQTSCKLPEIEAFEKYLPKDCD-11TVHSLHGPKVNTEGQPLVIINHRS 151 
LTDVTSVKCAVLDEVTAAGLQAR--YVGGHPMTGTAHSGWTAGHGGLFNRAPWVVSVDDH 131 

* * * • * 

A. 
E. 
H. 
B. 
N. 
S. 
M. 

aeolicus 
coli 
influenza 
subtilis 
europaea 
cerevisiae 
tubercul. 

TDKKRLKLVKRVWEDVGGWEYMSPELHDYVFGWSHLPHAVAFALVDTL1HMSTPEV- - 235 
-KPEAYQWFLEQIQVWGARLHRISAVEHDQNMAFIQALRHFATFAYGLHLAEENVQLEQL 177 
-FPERYEWLLEQIQIWGAKIYQTNATEHDHNMTYIQAJLRHFSTFANGLHLSKQPINLANL 190 
TDKQAVEQLKNLLKGTNAHFVEMSPEEHDGVTSVISHFPHIVAASLVHQTHHSENLYP- - 212 
NDQQ1VDRVADLWQHCGASVSSMLPEQHDQLLAAISHLPHMLAFSLMQHIRTLSHTLSEG 215 
QYPESFEFVNSVMACLKSKQVYLTYEEHDKITADTQAVTHAAFLSMGSAWAKIKIYPWTL 211 
VDPTVWSMVMTLALDCGAMWPAKSDEHDAAAAAVSHLPHLLAEALAVTAAEVP 185 

** * 

A. aeolicus DLFKYPGGGFKDFTRIAKSDPIMWRDIFLENKENVMKAIEGFEKSLNHLKELIVRE 291 
E. coli -LALSSPIYR-LELAMVGRLFAQDPQLYADIIMS-SERNLALIKRYYKRFGEAIELLEQG 234 
H. influenza -LALSSPIYR-LELAMIGRLFAQDAELYADIIMD-KSENLAVIETLKQTYDEALTFFENN 247 
B. subtilis LVKRFAAGGFRDITRIASSSPAMWRDILLHNKDKILDRFDEWIREIDKIRTYVEQE 268 
W. europaea -DPLALLRFAGSSLNDMTRITASSPEMWRDICLENRAALLAQIEAYQQELSGLQQMLADH 274 
S. cerevisiae GVNKWYGGLENVKVNISLR1YSNKWHVYAGLAITNPSAHQQILQYATSATELFSLMIDNK 271 
M. tubercul. LAFALAAGSFRDATRVAATAPDLVRAMCEANTGQLAPAADRIIDLLSRARDSLQSH 241 

A. aeolicus -AEEELVEYLKEVK1KRMEID 311 
E. coli -DKQAFIDSFRKVEHWFGDYAQRFQSESRVLLRQANDNRQ 273 
H. influenza -DRQGFIDAFHKVTtDWFGDYSEQFLKESRQLLQQANDLKQG 287 
B. subtilis -DAENLFRYFKTAKDYRDGLPLRQKGA1PAFYDLYVDVPDHPGVISEITAILAAERISIT 327 
W. europaea -DGESLEKLFAEARAIRQAWSAFRNQS 300 
S. cerevisiae --EQELTDRLLKAKQFVFGKHTGLLLLDDTILEKYSLSKSSIGNSNNCKPVPNSHLSLLA 329 
M. tubercul. GSIADLADAGHAARTRYDSFPRSDIVTWIGADKWREQLAAAGRAGGVITSALPSLDSPQ 301 
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several substrate analogues, all lacking the ring carboxylate group at C-l relative to 

prephenate. and found that the dissociation constant obtained with Arg294Gln for these 

substrate analogues were similar to those found with wild-type enzyme. Multiple 

sequence alignment with a number of prephenate dehydrogenase shows these residues are 

conserved as well as others (Fig. 1.9). 

Any structural information for TyrA proteins was unavailable until very recently. 

In 2006 Christendat and coworkers (48) solved the first crystal structure of a TyrA 

protein, a monofunctional prephenate dehydrogenase from the hyperthermophilic 

bacterium Aquifex aeolicus. The structure of this enzyme in complex with NAD+ has 

provided valuable insight into the location of the conserved residues in the active site. As 

expected. Hisl47, the residue analogous to Hisl97 in the E. coli enzyme, was positioned 

adjacent to NAD" and prephenate (the latter substrate modeled in the active site) to 

participate in catalysis. Similarly, Arg250, the residue homologous to Arg294 in the E. 

coli enzyme, was placed in the highly charged environment within in the active site of the 

enzyme, but the electron map density of this side chain was too poorly ordered to 

ascertain the residue's exact position. {48). 

1.6 AROGENATE DEHYDROGENASES 

In most plants, cyanobacteria, algae and several other microorganisms, both Tyr 

and Phe are synthesized from a common precursor, L-arogenate, via the arogenate route. 

As previously mentioned, in this pathway, prephenate is first converted to L-arogenate by 

a prephenate transaminase, then an arogenate dehydratase (ADT) or arogenate 

dehydrogenase (AD) converts L-arogenate into Phe or Tyr, respectively. Depending upon 
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the organism. ADs may be specific for NAD . NADP" or use both as co-factors(3<5). For 

the past 30 years, a large number of ADs have been studied and most work focused on 

substrates and cofactors specificities (32, 33, 40, 49, 96-98). feedback inhibition (97, 98). 

evolutionary perspective (47, 99) but only a few mechanistic studies were reported. 

Recently. Legrand et al. published the crystal structure of AD from Synechocystis 

sp.. complexed with its co-factor NADP" and with the substrate. L-arogenate. modeled in 

the active site (43). Examination of the crystal structure revealed that Synechocystis sp.. 

AD and Aquifex aeolicus PD possess similar quaternary structure; both enzymes are 

homodimeric with each monomer housing a nucleotide binding domain and a 

dimerization domain (see Fig. 1.10). Furthermore, analysis of the PD and AD active sites 

reveals that functionally important residues are conserved. For example, the catalytic 

histidine. His 147 in PD. and the important binding group. Arg250 in PD, are equivalently 

positioned in both structures. Moreover, the serine residues which are shown in modeled 

structures to bind to the C4-hydroxyl group of the cyclohexadienyl substrate are also 

spatially conserved. Other common active site residues include Glyl51. Thrl52, His205. 

Ser213. and His214 (numbering corresponds to the PD structure). The conservation of 

key functionally important residues indicates that L-arogenate may bind to the AD active 

site in a similar manner to that of prephenate in PD. In addition, analysis of sequence 

alignments of ADs shows that an Asp residue at position 138 (E. coli numbering) is a 

reliable indicator for NAD" specificity since NADP" is repelled by the negative charge of 

Asp. The Asn at the corresponding position in other ADs likely indicates NADP 

specificity as demonstrated by Bonner et al. (36). 
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1.7 REGULATION BV FEEDBACK INHIBITION 

TyrA proteins influence the flux of metabolites between Tyr and Phe; hence, the 

activities of these enzymes must be very well regulated. End-product inhibition of PD 

and AD provides major regulatory control in Tyr biosynthesis but the mechanism 

involved is still unclear. Some kinetic studies on E. coli CM-PD suggest that L-Tyr, the 

end product of the pathway, and HPP. the direct product of the PD reaction, act as 

competitive inhibitors with respect to prephenate {100): other studies suggest the 

presence of a distinct allosteric site for L-Tyr to interact (10]). It is clearly documented in 

the E. coli enzyme that L-Tyr enhances the cooperativity between subunits in the binding 

of prephenate (100). Biophysical investigations have led to the interpretation that this 

enzyme interconverts from an active dimer to an inactive tetramer upon the binding of L-

Tyr plus NAD+ (65). Additionally, the effects of L-Tyr are dependent on the enzyme's 

interactions with NAD and vice-versa. Recent work by Song et al. (44) P. aeruginosa 

have shown that some bacteria possess a C-terminal fusion domain. Aspartate kinase-

Chorismate mutase-TyrA (ACT domain), that is responsible for the binding of the end 

product of the pathway. This domain exists in the monofunctional PD from B. subtilis as 

well as in the Afunctional CM-PDT from E. coli, but it is not found in E. coli CM-PD 

(73), although recent work by Stephanopoulos and Luktke-Eversloh (102) suggests that 

two residues located at the C-terminus off. coli CM-PD are involved in Tyr inhibition. 

1.8 ALLOSTERIC REGULATION 

Allosteric enzymes are widely distributed in living organisms and their 

interactions are important in many biological processes. The term allosteiy derived from 
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the Greek albs, '"others", and stereos, "shape" and it is hypothesized that direct control 

of protein function through allosteric regulation is usually achieved via conformational 

changes of a given protein structure induced by the binding of an effector at another site 

than the orthosteric site. The conformational changes are transmitted through the bulk of 

the protein to the catalytic site and modulate the rate of the reaction with the substrate: as 

a consequence the v vs. S plot is no longer hyperbolic but sigmoidal. For the past fifty 

years, allosteric enzymes have captivated many famous researchers and have been 

extensively studied. ]n 1965, Monod and coworkers reviewed a dozen of allosteric 

enzymes and suggested that allostery control in proteins displays cooperative functional 

behavior along with feedback inhibition (103). Most of allosteric enzymes are oligomeric 

and are often found at key branch point in metabolism pathways. The Monod. Wyman 

and Changeux concerted model (103) (MWC model) was applied to understand kinetic 

results obtained with hemoglobin, aspartate transcarbamylase (ATCase), threonine 

desaminase and many other well known enzymes. In this model, binding of the effector 

brings about the change in all protein subunits. By contrast, Koshland, Nemethy and 

Filmer (104) invoked a sequential (KNF model) rather than a concerted model, whereby a 

conformational change in one subunit does not necessarily induce a change in other 

subunits. Each subunit is allowed to change its tertiary structure on substrate binding 

permitting alteration of the chemical activities of its neighbors. In both theories, the 

enzyme subunits exist in a tense or relaxed conformation. 

In the past, drug discovery scientists have focused on identifying compounds that 

interact directly with the orthosteric site to activate or block the enzyme of interest. This 

simplistic approach was significantly helped by computer assisted drug-design and has 
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resulted in excellent drugs, however those active site-directed compounds may not offer 

the selectivity required and could lead to undesirable side effects. Currently, 

pharmaceutical companies are focussing on allosteric sites since they offer the 

opportunities for discovering new drugs for enzymes for which designing an active site 

directed drug has been challenging. Furthermore, allosteric modulators are thought to be 

less harmful! since they are less likely to produce dangerous side effects. 

As previously mentioned, kinetic studies on E. coli CM-PD suggest that the 

enzyme is allosterically inhibited by Tyr. although the exact mechanism of inhibition 

remains unclear (101). Hence, understanding the effects of Tyr on TyrA enzymes would 

help delineate the mode by which allosteric regulation is achieved and add to the body of 

knowledge which is being gathered on these fascinating enzymes. 

1.9 THE MODEL CHOSEN: AQUJFEXAEOLICUS PD 

Aquifex aeolicus was isolated from the thermal vents in Yellowstone National 

Park and the entire genome was sequenced by Deckert et al. (105). This organism 

belongs to the Aquificaceae which represent the most deeply branching family within the 

Bacterial domain and is one of the earliest diverging bacteria known. A. aeolicus is a 

microaerophilic, hydrogen-oxidizing, obligate chernolitbautotroph (obtains its energy 

from inorganic compounds) organism. Organic substrates such as sugar, amino acids or 

meat extract cannot be used by A. aeolicus for its growth. As previously pointed out by 

Aponte (106). no gene for a monofunctional CM was identified, but a putative tyrA 

encoding a 311 residue PD was recognized. Additionally, the genome revealed the 

existence ofzpheA gene encoding for a CM-PDT. Interestingly, tyrA from A. aeolicus is 
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found as an orphan gene since, contrary to the E. coli tyrA gene, it is not part of an 

operon. Sequence alignment of A. aeolicus PD and the PD domain of the Afunctional E. 

coli CM-PD revealed only about 18% sequence homology. Nevertheless, all residues 

which have been identified to be important for binding and/or catalysis in E. coli CM-PD 

are conserved in A. aeolicus PD (Fig. 1.9). 

To date, all the efforts to obtain a three-dimensional structure of E. coli CM-PD 

have failed. Additionally, there had been no reported structure of any TyrA protein 

although, a host of monofunctional CMs have been successfully crystallized and their 

structures have been solved. The peculiar intrinsic physical properties of thermophilic 

enzymes (highly charged surface {107-109)) and increased packing density (109, 110) are 

known to render them better candidates for crystallization studies. Hence, our lab and our 

collaborators from U. of Toronto selected the monofunctional PD from the 

hyperthermophilic bacterium A. aeolicus to perform our biochemical, biophysical and 

crystallographic studies. An N-terminally deleted A19PD liganded with its cosubstrate 

NAD , yielded diffraction quality crystal and the three-dimensional structure was solved 

to a resolution of 1.9 A (48). As depicted in Figure 3.10, the enzyme is homodimeric. 

Each monomer consists of a N-terminal domain, containing a Rossman fold and a C-

terminal domain believed to participate in the dimerization (48) (Fig. 1.11). The X-ray 

structure revealed that the active site is at the located at the inter domain cleft of the two 

domains and that residues from both subunits contribute to a complete active site. 
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Figure 1.10: Structure of Aquifex aeolicus A19PD. Cartoon diagram of dimeric A19PD 

from co-crystallization studies with NAD+ performed at pH 3.2. Monomer A and B are 

shown in pale green and green, respectively. The figure illustrates the two domains 

associated with each monomer: the N-terminal domain (dinucleotide-binding domain) 

and the C-terminal domain (dimerization domain). NAD+ is represented as yellow sticks. 

Prephenate, modeled in the active site, is represented as blue sticks. The atomic 

coordinates and structure factors of A19PD in complex with NAD+ are available in the 

Protein Data Bank, accession number 2g5c. Diagram was produced with PyMOL 

(http://pymol .sourceforge.net/) {111). 
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Figure 1.11: Cartoon diagram representation of the structure of one monomer of 

Aquifex aeolicus A19PD in complex with NAD+. The N-terminal and the C-terminal 

domains are colored in pink and in blue, respectively. The N-terminus of A19PD is in 

green while its C-terminus is colored in red. The NAD+-binding site is contained within 

the N-terminal domain. NAD interacts with the residues of the loop between pi and al 

which comprises the highly conserved motif (GXGXXG), signature of the NAD(P)-

dependent oxidoreductases. The active site is located at the interdomain interface of the 

two domains. However, the majority of the prephenate binding pocket is contained within 

one subunit and includes regions of 06, a8 and a l 0 and the coil regions between 05 and 

oc5 and between p6 and oc6. A connecting loop between P6 and P7 caps the active site. 

Prephenate, modeled in the active site, is represented in blue sticks and NAD+ in yellow 

sticks. Chain D of A19PD, shown here, was resolved from residue 30 to residue 307. The 

figure was generated using PyMOL. 
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Figure 1.12: Selected active site residues of Aquifex aeolicus A19PD in complex 

with NAD+. The active site, formed at the interdomain interface of the NAD+-binding 

domain and C-terminal domain, contains residues which are shared between 

monomers; Glul53 and Arg250 from one subunit (gray-green) and Asp247' from the 

other subunit (green). These residues form an ionic network believed to help 

prephenate access into the active site. His 147, conserved through all species, is the 

catalytic residue. Hydrogen bonds are represented as dots. 
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1.10 SCOPE AND ORGANIZATION OF THESIS 

In chapter two, full-length PD and an N-terminally truncated protein variant 

(A19PD) expressed recombinantly in E. coli, were purified to homogeneity with Ni-NTA 

affinity chromatography. Circular dichroism and fluorescence spectroscopies were 

employed to assess the stability of A19PD to Gdn-HCl denaturation. and together with 

size exclusion chromatography, allowed elucidation of the pathway of unfolding in the 

presence of the denaturant. Additionally, the quenching of intrinsic fluorescence emission 

was used to gain structural insight into the environment of two Trp residues in the 

protein. Concomitant with these biophysical studies, A19PD in complex with NAD+ 

yielded crystals that diffracted to a high resolution and our results are correlated with this 

structure. This chapter also demonstrated the benefits of mass spectrometry in identifying 

proteolytic fragments of PD which facilitated the construction of the crystallizable form 

of the enzyme. A19PD. 

In chapter three, the temperature dependence of the reactions catalyzed by PD and 

A19PD were assessed as well as their ability to utilize L-arogenate as a substrate. 

Additionally, the importance of putative active site residues involved in the catalytic 

mechanism of A19PD was assigned from the results of the kinetic analysis of site-

directed variants. Our findings are correlated with the most recent structure of A19PD in 

complex with NAD+ plus HPP (manuscript submitted). 

In chapter four, the inhibition of wild-type and variant forms of A19PD by L-Tyr 

was examined. This is achieved using kinetic analysis, thermodynamic radiolabeled Tyr 

binding experiments and fluorescence spectroscopy using anilino-naphtalene sulfonic 
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acid (ANS) as a probe of conformational changes induced by ligand binding. Our 

findings for the recombinant PDs from A. aeolicus are compared with results obtained 

with the bifunctional CM-PD from E. coll. We identified a residue which is critical for 

feedback inhibition by L-Tyr for both TyrA proteins. Additionally, our results are 

interpreted in light of the crystal structure of A. aeolicus A19PD in complex with NAD" 

plus L-Tyr as well as a structure of E. coli PD modeled from a structural template of H. 

influenza PD. 
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Chapter 2 

Purification and Biophysical Properties of Full-Length PD and 

the Crystallizable Variant A19PD 
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2.0 INTRODUCTION 

In previous studies. PD from Aquifex aeolicus was expressed in Escherichia coli 

with a removable N-terminal hexa-His tag by cloning of the tyrA gene into a pET-15b 

expression vector. The fusion protein was then purified by nickel affinity 

chromatography. Results of the overexpression, purification and the preliminary 

biophysical and kinetic characterization of PD have been reported by Aponte (J06). Both 

Aponte and our collaborator D. Christendat noted unexpectantly that the His-tagged 

monomer purified as full-length and shortened forms. Aponte proposed that the truncated 

form of the enzyme resulted from an in-vivo N-terminal proteolytic cleavage as judged by 

SDS-PAGE analysis of fractions eluting from the Ni-NTA affinity column, although the 

exact site of cleavage was never firmly established. The biochemical or structural 

relevance of the proteolysis was not clear at this time. The behavior of the full-length PD 

on Ni-affinity and size exclusion resins indicated that the recombinant protein could form 

dimers in solution. Aponte also established that PD was resistant to chemical 

denaturation, however, the strength of the dimer interaction or the pathway of unfolding 

was never investigated fully. 

In this chapter we report the development of a reliable protocol for ESI-MS 

analysis of PD and its degradation products which allowed the exact identification of the 

proteolytic cleavage site at the protein's N-terminal region. The overexpression and 

purification of A19PD, an N-terminal deletion construct, are described and its biophysical 

properties are compared with those of wild-type PD. We show that A19PD is very 

resistant to thermal and chemical denaturation and have established the pathway of 

unfolding of A19PD as directed by the chemical denaturant guanidine hydrochloride 
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(Gdn-HCl). Lastly. A19PD yields diffraction quality crystals. Thus, in this chapter our 

biophysical findings are correlated with those of the recently solved crystal structure of 

the enzyme(48). Material in this chapter has been published in Protein Science {112). 

2.1 EXPERIMENTAL PROCEDURES 

2.1.1 Materials 

Prephenate (sodium salt) was obtained as previously described by Dudzinski and 

Morrison (113) while chorismate (free acid) was isolated from Klebsiella pneumonia 

(114). Thrombin and NAD+ were obtained from Roche. High purity of the substrates was 

confirmed by either mass spectrometry or NMR. Concentrations of stock substrate 

solutions were determined using published extinction coefficients (115) and/or enzymatic 

end-point analysis. N-Acetyl-L-tryptophanamide (NATA), N-acetyl-L-tyrosinamide 

(NAYA) and 1 -anilino-8-naphthalene sulfonic acid (ANS) were purchased from Sigma, 

and concentrations of stock solutions were determined spectrophotometrically (116). All 

acids and organic solvents for mass spectrometry were HPLC grade. Trifluoroacetic acid 

(TFA) and a-cyano-4-hydroxycinnamic acid (HCCA) were obtained from Sigma. CJ8 

ZipTip cartridges were from Millipore Corp. Trypsin powder, for in-solution tryptic 

digestion, was sequencing grade modified and was purchased from Roche. Ni-NTA or 

Superflow™ chromatography resin was supplied by Qiagen; a binding capacity of 7.5 mg 

of hexa-His protein/mL of resin was assumed. Dialysis membrane (12-14 K cutoff) was 

from Spectrapor and ultrafiltration units (30 K or 10 K cutoff) were obtained from 

Amicon and were washed according to manufacturers instructions. All other chemical 

reagents were obtained commercially and were of the highest quality available. 
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E. coli strains DH5a (Life Technologies Inc.) [supE44 AlacU169 (4>80 lacZ 

AM 15) hsdR17 recAl endAl gyrA96 thi-1 relAl] and BL21(DE3) Gold (Stratagene) [F 

dcirf Hte ompT hsdS(re' ITIB") gal X (DE3) endA Tetr] were used for plasmid production 

and for protein expression, respectively. The expression plasmid (A19PD) encoding 

residues 20-311 of the A. aeolicus VF5 PDH protein (girl 52 82445) and a hexa-histidine 

tag at the N-terminus were prepared as described elsewhere (117). Dr. A. Edwards at the 

Ontario Cancer Institute, University of Toronto, kindly donated the helper plasmid 

pMagik encoding three rare tRNAs (AGG and AGA for Arg, ATA for He). Recombinant 

E. coli CM-PD was expressed and purified as described elsewhere (53) and was 

generously provided by J. Manioudakis. 

2.1.2 Production and Purification of Recombinant PD and A19PD of A. aeolicus 

Recombinant A. aeolicus PD and A19PD were overexpressed in E. coli 

BL21(DE3) Gold cells and purified according to the protocol of Aponte (106) but with 

minor modifications. Briefly, E. coli BL21(DE3) Gold cells harbouring pMagik and the 

expression plasmid (pRA-PD-3 or pA19PD) were grown in 50 mL of LB medium 

supplemented with 100 ug/mL ampicillin and 50 ug/mL kanamycin at 30°C for 15 h with 

shaking, and diluted into 1.5 L of the same medium. After growth to an OD&oo of 0.6. 0.4 

mM 1-thio-f3-D-ga]actopyranoside was added. The cells were incubated further with 

shaking for an additional 5 h at room temperature and then overnight at 18°C. Cells were 

harvested by centrifugation and resuspended in 15 mL/L culture of ice-cold buffer A (50 

mM Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), 0.5 M NaCl, 5% 

glycerol (v/v) at pH 7.5) supplemented with 5 mM imidazole. Complete™ (Roche 

43 



protease inhibitor cocktail, one tablet per 50 mL suspension). 1 mM benzamidine. and 0.5 

mM phenylmethyl sulfony] fluoride (PMSF). The cells were disrupted by two passages 

through a Thermo Specrronic French Press at 18,000 psi (instead of one cited by Aponte 

(106)). with additional benzamidine added after the first passage. Insoluble material was 

removed by centrifugation at ]00,000g for 40 min at 4°C. The cell-free extract was 

incubated in an 85°C water bath for 10 min and centrifuged again, and the supernatant 

was directly applied to a 15 mL Superflow™ Ni-NTA column (Qiagen) at a flow rate of 

1 mL/min equilibrated with buffer A containing 5 mM imidazole. Nickel resin was 

washed extensively with 400 mL of buffer A containing 30 mM imidazole (three times 

the volume used by Aponte (106)) and bound protein was eluted with buffer A containing 

300 mM imidazole. Fractions were supplemented with 1 mM EDTA and 0.5 mM 

dithiothreitol (DTT). Those containing PD activity were pooled, and thrombin was added 

at a final proteinrthrombin ratio of 1000:1 (w/w). To increase efficiency of thrombin, the 

sample was first dialyzed (Spectrapore, 12 K cutoff) for 2 h at room temperature, then 

overnight at 4°C against buffer A with 0.5 mM Tris(2-carboxyethyl) phosphine 

hydrochloride (TCEP-HC1). The sample was reapplied onto the Ni-NTA column. In the 

initial experiment, unbound PD was then rechromatographed on a 1 mL Hi-Trap 

benzamidine FF column (Amersham Bioscience) to remove any trace amounts of 

thrombin. However, this addition step afforded no advantage and was later omitted. PD 

was concentrated to 2-10 mg/mL (Amicon Ultra-15), and stored at -86°C in buffer A 

containing 5 mM DTT (storage buffer) and 1 mM benzamidine. A19PD was purified as 

described for PD, except thiol reducing agents were omitted in the purification procedure. 

PD and A19PD were detected in fractions by enzymatic assay and SDS-15% PAGE with 
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Coomassie Blue staining. Both forms of the enzyme were further purified by size 

exclusion chromatography (section 2.1.5.3) prior to spectroscopic studies. 

2.1.3 SDS-Polyacrylamide Gel Electrophoresis 

Denaturing SDS-PAGE was performed with either a 12% or 15% polyacrylamide 

gel following the method of Laemmli {118). Protein samples were diluted 1:2 (v/v) into 2 

times SDS sample loading buffer (1.5 M Tris-HCL 4% SDS, 20% glycerol (v/v), 0.002% 

Bromophenol Blue, pH 6.8) and incubated in a boiling water bath to 3 min then kept on 

ice 2 min prior to loading on a gel. The gel was electrophoresed at 80 V as samples 

migrated through the stacking gel. and then the voltage was increased to 180 to 200 V as 

the samples migrated to the resolving gel. Electrophoresis continued until the 

Bromophenol Blue tracking dye migrated off the resolving gel. Bio-Rad broad range 

molecular weight proteins standards were used to estimate the molecular weight of 

proteins in the samples. Protein was visualized by staining the gel with Coomassie 

Brilliant Blue R-250. 

2.1.4 Determination of Enzyme Activity and Protein Concentration 

The oxidative decarboxylation of prephenate in the presence of NAD was 

followed at 340 nm as described by Turnbull e1 al. {119). The reactions (total volume 1 

mL) were monitored continuously by using a Varian Cary 50 spectrophotometer 

equipped with a thermostated cuvette holder. 

Standard activity assay for^l aeolicus PD and A19PD was measured at 55°C in a 

reaction buffer of 50 mM HEPES, 150 mM NaCl, (pH 7.5), at saturating concentrations 
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of NAD" (2 mM) and prephenate (1 mM). Buffer was incubated at 55°C (2 min). 

followed by the addition of an appropriate amount of enzyme (2 min) and NAD (30 s). 

and then the reaction was initiated with prephenate. At each step, components were 

mixed by inversion of the cuvette. All substrates were at room temperature prior to their 

addition. E. coli CM-PD activity was assayed as described previously (119). 

Reaction rates were calculated from the linear portion of the progress curve using 

the software supplied by the spectrophotometer. Values of steady-state kinetic parameters 

kcax and Km were obtained by fitting initial velocity data to the appropriate rate equations 

using nonlinear least-squares analysis provided by Grafit Software version 5.0 (Erathicus 

Software) or the programs of Cleland (120) (see also Chapter 3). Substrate saturation 

curves were fitted using the Michaelis-Menten equation. Specific activity was calculated 

from the amount of enzyme required for the conversion of 1 u.mol of product per minute 

permg of protein at the desired temperature. 

Protein concentration was estimated using the Bio-Rad Protein Assay Kit (Bio-

Rad Laboratories) with bovine serum albumin (Sigma) as a standard. 

2.1.5 Molecular Weight Determination 

2.1.5.1 Mass Spectrometry 

2.1.5.1.1 Determination of Subunit Molecular Weights 

Subunit molecular weight of PD and A19PD was determined by electrospray 

ionizing mass spectrometry (ESI-MS). Sample preparation was adapted by J. 

Manioudakis from a protocol for the analysis of membrane-associated proteins (121). An 

aliquot of 100 uL of enzyme (50 to 100 (Ig) in storage buffer was resuspended with 300 
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(iL of methanol and 100 (JL of chloroform. The sample was gently vortexed. then 200 (iL 

of MilliQ water was added and the solution was vortexed again. The sample was 

centrifuged for 2 min at 14.000g, the top layer (methanol/water) was discarded and the 

protein precipitate (above chloroform layer) was washed twice with at least 300 jiL of 

methanol, centrifuging each time after washing and decanting the aqueous layer. The 

resulting precipitate was solubilized by vortexing in 0.5-1 mL of a solution of 30% 

methanol and 0.2% formic acid (FA) (v/v). The solution was centrifuged immediately 

prior to injection. Analysis was carried out on a Waters Micromass Q-ToF-2 mass 

spectrometer operating in positive-ion mode following direct infusion of samples into the 

Z-spray ion source. Instrument parameters were as follows: source block temperature. 

80°C; capillary voltage, 3.6 kV; cone voltage, 45 V; ToF 9.1 kV; MC, 2.1 kV. Data 

analysis and deconvolution were performed using MassLynx 4.0 software (Waters 

Micromass). Calibration of the instrument was checked with [Glu]-fibrinopeptide B (MW 

1570.5) (Sigma). Mass shifts of ± 2 mass units for PD are within the expected 

experimental error. 

2.1.5.1.2 Matrix-Assisted Laser Desorption/lonization Mass Spectrometry Analysis 

of Tryptic Generated Peptides from A. aeolicus PD 

In-solution tryptic digestion: An aliquot of thrombin-treated PD (5 mg/mL in 

storage buffer) was buffer exchanged with a NAP-5 column in 50 mM ammonium 

bicarbonate at pH 7.4 and concentrated to 5 mg/mL using a Millipore ultracentrifugation 

filter device (30 K cutoff). Trypsin was added to the sample to a final protease to protein 

ratio of 1:20 (w/w). Samples were incubated 16 h at 37°C and the reaction was stopped 

47 



by addition of 50 |iL of 1 M HCI. Desalting of the samples was performed using reverse 

phase C]g Millipore ZipTip® tips (ZipTipcis)- ZipTipcis was pre-equilibrated with 60% 

acetonitrile (ACN) and 0.1% trifluoroacetic acid (TFA) (v/v) and washed three times 

with 5% ACN/0.1% TFA (v/v). The diluted sample was drawn into the tip to allow 

peptide binding, and the resin was washed five times (-50 uJL total volume) with 5% 

ACN/0.1% TFA. The peptides were eluted from the ZipTipcis ' n a wash of 1.5 uL of 

60% ACN/0.1% TFA. A saturated matrix solution was prepared in 40% ACN/0.1% TFA. 

One p.L of the desalted protein solution was mixed with 1 (J.L of HCCA matrix and then 1 

flL of the mixture was deposited on the sample probe. Samples were dried at room 

temperature prior to MS analysis. 

In-gel tryptic digestion: Purified PD (before thrombin treatment) was dialyzed 

overnight (10 K cutoff) at 4°C against storage buffer with trypsin (20:1. w/w). An aliquot 

(~15 \lg) of the protein sample resulting from the overnight digestion was resolved by 

SDS-PAGE and visualized by Coomassie Blue staining. The band containing the protein 

of interest was excised from the gel and destained completely with 50% ACN in 25 mM 

NH4HCO3. The excised gel pieces were cut into smaller particles (<1 mm"), placed in 

eppendorf tubes, washed with several aliquots of 100 uL of ACN and dried completely in 

a SpeedVac at room temperature. Gel particles were rehydrated with 25 uL of 0.5 ng/uL 

trypsin in a solution of 25 mM NH4HCO3. The gel pieces were covered by 30 uL of 25 

mM NH4HCO3 to keep them immersed throughout the digestion. Protein was digested for 

16 h at 37°C then the reactions were stopped by adding 5 uL of 5% TFA. Tubes were 

shaken gently for 10 min, centrifuged to remove debris and the liquid was collected. The 

48 



supernatants were diluted, desalted and concentrated using Cig ZipTips (see below) and 

subjected to MALD1-MS analysis as described in the previous paragraph. 

Sample analysis: Analysis was carried out on a MALDl-ToF mass spectrometer 

(Micromass Manchester. England) with a flight tube length of 1.0 m (linear mode) 

equipped with a N2 UV laser (337 nm wavelength) and was set to deliver pulses at a rate 

of 5 Hz, with 25 shots per scan for linear mode. Peptides were analyzed in positive ion 

mode with a pulse voltage varying from 1800 to 2000 V. Theoretical maximum 

resolution in reflectron and linear modes is 10 000 and 100, respectively. Each spectrum 

represents the average of a minimum of 10 scans. MALDI-ToF-MS spectra were 

analyzed using the MassLynx 4.0 software (Waters Micromass). Calibration of the 

instrument was checked using a peptide mix containing angiotensin 1 (MW 1296.5), 

renin (MW 1759.0) and adrenocorticotropic hormone (MW 2465.7). 

2.1.5.2 Analytical Ultracentrifugation 

Native molecular weight and shape of PD and A19PD were determined by 

sedimentation velocity experiments performed at 30°C in a Beckman XL-1 analytical 

ultracentrifuge and an An60Ti rotor using absorbance detection. Purified thrombin-

cleaved enzymes were exchanged into a buffer containing 50 mM potassium phosphate 

buffer, 0.3 M NaCl and 0.5 mM TCEP (pH 7.5) using a NAP-5 size exclusion column 

(Amersham), diluted in the same buffer to give a final OD280 of 0.65 (PD) and 0.97 

(A19PD), and loaded into 1.2 cm path-length double sector charcoal-filled epon 

centerpieces. Samples were spun at 35,000 rpm and 30°C for 10 h. Absorbance (280 nm) 

was collected in continuous mode with a step size of 0.005 cm and five replicate readings 
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at each point. Values for the sedimentation coefficient (s) and an average molar mass 

were calculated from the velocity and shape of the sedimenting boundary by fitting the 

time-dependent concentration profiles calculated with the Lamm equation {122) to the 

measured data. Calculations were performed on 200 scans for each protein using the 

program Sedfit (Sedfit). The program Sednterp {123) was used to calculate buffer density 

and the protein partial specific volume (1.0153 and 0.74. respectively, at 20°C, neglecting 

contributions due to TCEP) and to normalize the obtained sedimentation coefficient 

values in water at 20°C, S2o.w 

2.1.5.3 Analytical Size Exclusion Chromatography 

The native molecular weight of A. aeolicus PD and A19PD was determined at 

ambient temperature by a Pharmacia Akta FPLC system fitted with a Superdex G-200 

column (HR 10/30. Pharmacia). Chromatography was performed with mobile phases 

containing 50 mM potassium phosphate, 150 mM NaCl (pH 7.5) at a flow rate of 0.75 

mL/min and injection volume of 500 p.L. Elution was monitored at 256, 280 and 290 nm, 

and fractions (1 mL each) were assayed for enzyme activity. Bio-Rad gel filtration 

protein standards included vitamin B12 (1.35 kDa), equine myoglobin (17 kDa), chicken 

ovalbumin (44 kDa), bovine y-globulin (158 kDa) and thyroglobulin (670 kDa). Void 

volume and total bed volume were evaluated with Blue Dextran and DTT, respectively. 

When further purification was required prior to spectroscopic analysis, A19PD and PD 

were subject to gel filtration chromatography as described above. When chromatography 

was conducted in the presence of Gdn-HCl-containing buffers, PD or protein standards 

(0.1 mg/mL) were incubated for 20 h at ambient temperature in a buffer of 50 mM 
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potassium phosphate. 150 mM NaCl and various Gdn-HCl concentrations (pH 7.5). and 

then isocratically separated in the same buffer at a flow rate of 0.4 mL/min. 

2.1.6 Denaturation Studies 

2.1.6.1 Circular Dichroism 

Far-UV CD spectra of PD. A19PD and CM-PD (21 \iM and 18 |iM monomer, 

respectively) were recorded on a Jasco-710 spectropolarimeter in either a 0.05-cm or 0.1-

cm path-length circular cell connected to a thermostated circulating water bath. Protein 

was exchanged into 50 mM potassium phosphate, 75 mM NaCl (pH 7.5) (PPS buffer), 

using a NAP-5 column and then diluted to the appropriate concentration in the same 

buffer. For studies with CM-PD, 25% glycerol (v/v) was added to the buffer. Spectra 

were recorded at 25°C by averaging 10 wavelength scans from 260 to 200 run (1 nm 

bandwidth) in 0.2-nm steps at a rate of 50 nm/min, and 0.25 s response. The ellipticity at 

222 nm (1 nm bandwidth) was measured from 25 to 95°C by using the instrument 

software controlled temperature ramping program and the following parameters: AT of 

20°C/h, 0.2°C step resolution, and 1 s response. 

Equilibrium denaturation of A19PD induced by Gdn-HCl was followed by 

measuring the ellipticity of the sample at 222 nm in a 0.1-cm path-length cell at 30°C. 

Samples at each Gdn-HCl concentration were obtained by mixing PPS and 8 M Gdn-HCl 

in PPS (pH 7.5) in the appropriate ratio and adding enzyme to 2.8 |XM. Samples (1 mL) 

were equilibrated at ambient temperature for 20 h in capped Eppendorf tubes, and then 

ellipticities were measured from 210 to 230 nm using the instrument parameters listed 

above. The values at 222 nm (average of five readings) were corrected for background 
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signal from the buffer. The accurate concentration of 8 M Gdn-HCl in PPS was 

calculated from its refractive index {124). 

2.1.6.2 Steady-State Fluorescence 

Gdn-HCl-induced unfolding of A19PD was followed by fluorescence at 30°C 

using an Aminco Bowman Series 2 Luminescence Spectrometer equipped with a 

temperature-controlled cell holder. Excitation wavelengths were set to 280 nm or 295 nm, 

and emission scans were recorded from 300 to 400 nm. Excitation and emission slits 

were set to 4 run. Measurements were performed in PPS buffer (reaction volume 2 mL) 

using a 1 cm x 1 cm cuvette. Incubation of A19PD (3 |iM monomer) in Gdn-HCl-

containing PPS were performed as outlined for CD experiments. Fluorescence intensities 

were compared with that of a solution containing NATA (6 |iM) and NAYA (30 fiM) 

having the same concentration of Trp and Tyr as the protein solution. Emission spectra 

were corrected for buffer blank and for the inner filter effect {125) using the equation 2.1: 

Fcorr=Fobs x anti]og[(Aex+Aem)/2] (2.1) 

Fobs and FcorT represent observed fluorescence intensities and those corrected for the inner 

filter effect respectively. Absorbance readings (A), (cell plus sample blanked on air), 

were determined both at excitation (ex) and emission (em) wavelengths. 

To determine if denaturation was reversible, 30 jiM A19PD in 0 M, 3 M and 5 M 

Gdn-HCl were incubated for 20 h at room temperature. An aliquot of the denatured 

sample was then diluted 10-fold then incubated at room temperature for 2 h. Fluorescence 
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spectra and enzyme activities were recorded for each sample and compared to a protein 

incubated for the same time in the absence of denaturant. Measurements at 20. 24 and 36 

h gave the same values. 

2.1.6.3 ANS Fluorescence Experiments 

A19PD (3 jiM monomer) prepared in different concentrations of PPS-buffered 

Gdn-HCl (as described above) were incubated with 30 uM 1-anilino-8-naphthalene 

sulfonic acid (ANS) in the dark at 30°C. The total reaction volume was 2 mL. 

Fluorescence emission spectra were recorded from 400 to 600 nm with excitation at 370 

nm and using bandwidths of 4 nm using an Aminco Bowman Series 2 Luminescence 

Spectrometer equipped with a temperature-controlled cell holder. The net fluorescence 

enhancement due to ANS binding to the protein was obtained by subtracting appropriate 

blank spectra of ANS in the corresponding denaturation buffer and corrected for inner 

filter effects as described above. ANS did not alter enzyme activity. 

2.1.7 Determination of Dissociation Constants for Substrates 

Values for the dissociation of NAD" or prephenate from the complex with Al 9PD 

were determined at 30°C by monitoring the quenching of protein intrinsic fluorescence. 

Excitation and emission wavelengths were set at 295 nm and 333 nm respectively, with 

bandwidths of 4 nm. Enzyme. NAD", and prephenate were prepared in PPS buffer. 

Titrations were performed by the progressive addition of NAD+ (0.2-20 jiM) or 

prephenate (2-480 u,M) to PPS (2 mL) containing 0.24 n.M or 1.6 |iM monomer. Samples 

were mixed by gentle inversion and the reaction was allowed to equilibrate for 2 min 
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prior to recording measurements. The fluorescence data were corrected for inner filter 

effects, as well as for dilution and background fluorescence. A dissociation constant was 

determined by fitting the data to the Michaelis-Menten equation or the quadratic equation 

(]26) (Equation 2.2) using Grafit 5.0: 

AF=AF,T)(([I1]+[£i]+^dH([i]t+[£I]+^d)2-4[I,][£.])05)/(2[i?,]) (2.2) 

AFis the difference in fluorescence intensities in presence and absence of the titrant, AFm 

is the maximum change in fluorescence intensity, [I,] is the total concentration of titrant, 

[£,] is the total enzyme concentration and K$ is the dissociation constant. 

2.1.8 Fluorescence Quenching 

The titration of A19PD with acrylamide and KI were performed at 30°C in PPS 

buffer. Excitation and emission wavelengths were set at 295 run and 340. respectively, 

with bandwidths of 4 nm each. Sodium thiosulfate (100 u,M) was added to solutions of 

Kl to prevent I3" formation, which interferes with Trp fluorescence. Defined amounts of 

quencher (2-5 U.L) were added from a stock of 5.0 M to a 2 mL (3 (iM monomer) protein 

solution. Acrylamide and Kl did not significantly inhibit enzyme activity (<5% loss of 

activity) at the amounts used in the quenching experiments. To determine if substrates 

protected against quenching, 3 |iM monomer was incubated either with NAD+ or 

prephenate (also in PPS) prior to the addition of acrylamide or KI. The effect of Gdn-HCl 

on fluorescence quenching was examined at 30°C by the addition of acrylamide to a 

reaction mixture containing 3 (J.M monomer and 0-6 M Gdn-HCl in PPS. Samples were 
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incubated for 20 h at room temperature prior to measurements. Emission spectra 

represented the average of three scans (2 nm/s). and were corrected for background and 

protein dilution, and when appropriate, the inner filter effect (125). 

Fluorescence quenching data were analyzed by the Stern-Volmer equation 2.3 

where static quenching is neglected (127): 

F0/F=l+Ksv[Q] (2.3) 

F0 and F are the fluorescence intensities in the absence and presence of the quencher, 

respectively; [Q] is the concentration of the quencher; and Ksv is the collisional Stern-

Volmer constant, which is a direct measure of the quenching efficiency. In a protein 

containing multiple Trp residues, the presence of different classes of Trp residues is 

reflected by a downward curvature in the Stern-Volmer plot. The fraction of total 

fluorophore accessible to the quencher in a heterogeneous system was determined using 

equation 2.4. a modified Stern-Volmer plot (127): 

F0/(F0-F) = 1 //, + 1 /[Q]Kofa (2.4) 

KQ is the modified quenching constant and fa is the fraction of the initial fluorescence 

accessible to the quencher. Values for KQ andfa can be determined from a plot of FJ(F0-

F) versus 1/[Q]. 
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2.2 RESULTS 

2.2.1 Protein Purification and Subunit Composition of Full-Length PD 

The recombinant form of PD from A. aeolicus expressed in E. coli contained a 20-

residues N-terminal extension that included a hexa-His tag to facilitate purification by Ni-

NTA affinity chromatography and a thrombin recognition site. Although it was expected 

that the 311 amino acid His-tagged PD purified to homogeneity would yield a single band 

on a denaturing polyacrylamide gel. previous work reported by Aponte (JOS) and later by 

Sun et al. (48) showed that purified His-tagged PD yielded two distinct bands 

representing full-length (-37 kDa) and shortened (-34 kDa) forms of the protein (106). 

We have reproduced these studies by Aponte on the expression and purification of PD 

and obtained the same results. Figure 2.1 lane 2 shows that the His-tagged PD, purified 

according to the procedure outlined in material and methods is resolved as a doublet by 

15% SDS-PAGE. Moreover, treatment of the sample from lane 2 with thrombin yielded 

protein (lane 4) that appeared by Coomassie staining as a single band of about 34 kDa. 

This pattern was also observed by Aponte: the longer form appeared to be converted into 

the shorter form prompting the assumption that the cleavage site was at the thrombin 

recognition sequence. Also in keeping with the previous studies by Aponte(706) and Sun 

et al. (48), it was observed that the smaller sized protein flowed through the Ni-NTA 

column whereas the larger species bound to the column (data not shown), indicating that 

the lower molecular species is a C-terminal fragment that lacked the N-terminal hexa-His 

tag. Thus, under native conditions, PD appeared to chromatograph on affinity resin as a 

heterodimer (a monomer each of full-length His-tagged and shortened non-tagged forms). 
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(kDa) 1 2 3 4 5 6 7 

Figure 2.1: SDS-poIyacrylamide gel electrophoresis of purified A. aeolicus PD. 

Lanes 1 and 6, broad range protein molecular weight makers (Fermentas). Lane 2, pooled 

fractions of His-tagged PD after Ni-NTA affinity chromatography. Two distinct bands 

representing full-length (—37 kDa) and shortened non-tagged (—34 kDa) forms of the 

protein are observed. Lane 3, His-tagged PD treated with trypsin (final ratio 20:1 (w/w)). 

Lane 4, His-tagged PD treated with thrombin (final ratio 1000:1 (w/w)). Lane 5. His-

tagged PD treated with both thrombin and trypsin. Lane 7, aged thrombin-cleaved PD 

(one year at 4°C in storage buffer). 
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Interestingly, treatment of either full-length or thrombin-treated PD with the protease 

trypsin (lanes 3 and 5, respectively) or prolonged storage of the protein at 4°C (lane 7) 

resulted in further cleavage of the monomer to a 32 kDa fragment as judged by SDS-

PAGE analysis. 

Development of a reliable protocol for ES1-MS analysis of PD confirmed the 

identity of each protein. In addition, the results supported the idea that the shortened form 

was produced by cleavage at the N-terminal region of PD. Figure 2.2 shows a schematic 

representation of the expression and primary sequence of PD. For clarity, amino acids are 

numbered for PD from 1-311, beginning with PD's authentic Met as annotated from the 

database; the residues of the tag are not numbered. For heterodimeric PD, analysis 

showed that the His-tagged subunit was post-translationally modified as it lacked the first 

Met at the tag's N-terminus (expected [M+H+], 36 881.6 Da; observed, 36 880.5 Da). 

The smaller 34 kDa subunit commenced at Ser5 in PD (expected [M+H+], 34 419.9 Da; 

observed, 34 419.5 Da) and indicated that the shortened form was generated by cleavage 

at a site downstream of the thrombin recognition site. As expected results for the purified 

thrombin-treated PD verified cleavage at the thrombin recognition site, between Arg and 

Gly within the N-terminal tag (expected [M+H+], 35 130.8 Da; observed, 35 130.6 Da) 

(Fig. 2.3 A). The sample also contained the 34 kDa product as a minor species (-15%) 

(Fig. 2.3 B). In summary, the shortened form of the recombinant PD was not produced by 

cleavage at the thrombin recognition site as suggested by Aponte {106), nor was it 

produced by translation starting at positions 1, 7, 30, 38 or 41 of PD (the latter two would 

result in truncation of the NAD4-binding domain). Moreover, none of the peaks resolved 

58 



Thrombin recognition and 
cleavage site 

Start methionine 
from pET-15b vector 

His-tag 

T7 promoter M lac operator rbs hMGSS HKHh'HH LVPRGSH 
Prephenate 

Dehydrogenase 

Treatment with thrombin 

10 15 20 25 311 

MGSS HHHHHH LVPR GSHMAILSSMFNPSPPQGFCKKNIIKILKSLSM KRMEID 

Figure 2.2: Schematic representation of the organization of the expression/cloning 

region of pET-15b vector containing A aeolicus tyrA. Amino acids are numbered from 

1 to 311, starting at PD's authentic methionine. Amino acids from the tag are not 

numbered. 
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by ESI- MS matched mass values predicted for cleavage within the protein's C-terminal 

region. 

We found that purified thrombin-treated PD (1-10 mg/mL) remained stable and 

fully active when stored at -86°C. As mentioned previously however, the enzyme was 

susceptible to further N-terminal degradation if kept for extended periods of time at 4°C, 

or if purified in the absence of insufficient amounts of protease inhibitors. For example, 

when either His-tagged or thrombin-cleaved PD stored at 4°C for one year was subjected 

to ESI-MS, a major single peak was observed at 32 313 Da. ES1-MS data for His-tagged 

PD is shown Figure 2.3 C while SDS-PAGE analysis of the same sample is shown Figure 

2.1 lane 7. This peak matched the mass predicted for a shortened protein resulting from 

the proteolytic cleavage at the N-terminus of the recombinant PD at Lys23 (expected 

[M+H+], 32 315.4 Da; observed, 32 313.0 Da). Additionally, SDS-PAGE analysis of 

purified PD treated with trypsin (Figure 2.1 lanes 3 and 5) revealed further cleavage at 

the protein's N-terminal region, although ESI-MS analysis on this stable fragment was 

not performed to confirm the exact site of cleavage. 

Additional evidence strengthening our hypothesis of a truncation at the N-

terminal region of PD comes from the results of MALDl-ToF-MS analysis of in-solution 

and in-gel tryptic digestions. Table 2.1 summarizes the calculated masses of the peptides 

from in-silico digestion of PD along with the peptides observed by MALDl-ToF-MS 

analysis. It is worth noting that these experiments were conducted prior to ESI-MS 
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Figure 2.3: Deconvolved electrospray ionization mass spectra of PD (A) intact A. 

aeolicm thrombin-treated PD, expected [M+H+] of 35 130 Da. (B) Minor species of a 

shortened form of PD; observed [M+H ] of 34 419 Da. (C) A year-old sample of His-

tagged PD showing a major peak at [M+H+] of 32 313 Da and corresponding to a 

cleavage at Lys23. The enzymes (2-5 ^M monomer) were prepared as described in 

section 2.1.5.1.1 then resuspended in 0.5-1 mL of a solution of 30% methanol/0.2% 

formic acid (v/v) immediately prior to direct injection. 
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analysis of the protein during which time the development of a reliable protocol for direct 

injection was underway. 

The combined results from in-gel and insolation tryptic digestion resulted in 73% 

coverage for thrombin-treated PD. with 13 peptides detected out of the 17 that would be 

theoretically generated by trypsin activity with no miscleavages. Using HCCA as the 

matrix, the detection range of the MALD1 cannot resolve fragments with high or low 

molecular weights (above 5 kDa and below 700 Da. respectively). Additionally worth 

noting, the high percentage coverage could only be obtained by analyzing multiple 

samples of PD. each trial yielding about 10-20% sequence coverage but presumably 

exposing different regions of the protein. 

As shown in Figure 2.4, the predicted C-terminal fragments were detected but 

none of the peptides belonging to the N-terminal region were observed, confirming that 

the truncation might have occurred between residues 1-30. Surprisingly, MALDI-ToF-

MS analysis of several insolution tryptic digests failed to reveal the fragment comprising 

PD's amino acid 1-21 (see Table 2.1). Additionally, residues 192-242 were not detected. 

Presumably, this large peptide fragment could not be resolved using the HCCA matrix. A 

similar although not identical pattern was also reported by Christendaf s lab (48); only 

peptides commencing at position 61 in the primary sequence could be identified. Based 

on the findings from MALDI-ToF-MS and the results from secondary structure 

prediction, six protein variants lacking the first 19, 25, 28, 36, 52 and 55 amino acids 

were constructed and expressed by Christendat and coworkers for crystallography trials 

(numbered here from PD's Met starting site) and one of them, A19PD, yielded crystals 

diffracting to a high resolution (48). 

63 



2.2.2 Purification and Monomer Molecular Weight Determination of A19PD 

The expression and purification of A19PD was performed as described for PD 

with minor modifications (see section 2.].2). The results of the purification are 

summarized in Table 2.2 and Figure 2.5 and indicated that heat treatment (Fig. 2.5. lane 

3) and affinity chromatography (Fig. 2.5, lane 6) were effective purification steps. The 

yield of A19PD is routinely -14 mg/L of culture, and neither the His-tagged nor 

thrombin-treated forms showed heterogeneity during purification. The mass of A19PD 

was verified by ESI-MS (expected [M+TT] of His-tagged and thrombin-treated forms. 35 

078.5 Da and 33 196.5 Da, respectively; observed, 35 077.1 Da and 33 196.3 Da, 

respectively) (Fig. 2.6), and was checked routinely throughout our studies. We noted, as 

with PD, that with prolonged storage at 4°C in the absence of sufficient amount of fresh 

protease inhibitors, A19PD also degraded to a A23 fragment (expected [M+PT], 32 315.4 

Da; observed 32 313.0 Da). Some studies presented in this thesis have been performed 

only on PD, while others on both PD and A19PD. Detailed spectroscopic studies were 

pursued on the homogeneous, crystallizable A19PD form. 
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Figure 2.4: Sequence coverage obtained by MALDI analysis of peptides generated 

by tryptic digestion of thrombin-treated A aeolicus PD. 
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Figure 2.5: SDS-poIyacrylamide gel electrophoresis of purified A. aeolicus A19PD. 

Lane 1, cell lysate (1/10 dilution). Lane 2, cell-free extract (supernatant). Lane 3, 

supernatant after heat treatment. Lane 4, flow through from Ni-NTA column. Lane 5. 

final wash from Ni-NTA column. Lane 6. pooled fractions of His-tagged A19PD after Ni-

NTA affinity chromatography. Lane 7. A19PD treated with thrombin (1000:1 (w/w)). 

Lane 8, protein molecular weight markers. 
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33180.4 

| 33213.7 

33138.3! 32733.2 ^ ^ 38887.* 

Figure 2.6: Electrospray ionization mass spectra of intact A. aeolicus thrombin 

treated A19PD. The enzyme (~5 ]iM monomer) was resuspended in 0.5-1 mL of a 

solution of 30% methanol/0.2% FA (v/v) immediately prior to direct injection. ES1-MS 

method is described in Section 2.1.5.1. Expected [M+JHT] was 33 196.5 Da. 
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2.2.3 Native Molecular Weight 

Analysis of PD and A19PD by size exclusion FPLC from 0.1 to 2 mg/mL yielded 

values of 54 kDa and 52 kDa. respectively (Appendix 2A). These values were less than 

those predicted for dimeric forms. -70 kDa and ~66 kDa. However, masses calculated 

from the primary sequence more closely matched those obtained using sedimentation 

velocity analytical ultracentrifugation. Average molecular masses of proteins and 

sedimentation coefficients corrected to 20°C in water are summarized in Table 2.3. Data 

obtained for PD with both FPLC and AUC are in good agreement with Aponte's previous 

findings {106). Our results were consistent with the thermophilic PDs being dimeric in 

solution but more compact than the commercially available globular proteins used to 

calibrate size exclusion columns (J28). Occasionally our PD and A19PD preparations 

contained a catalytically active oligomer of-160 kDa (less than 10% of the sample peak 

on FPLC). which could be detected in the sedimentation velocity analyses (see Appendix 

2B). For PD we attributed this oligomer, in part, to disulfide linked subunits (there is one 

cysteine/monomer). Heterogeneity was removed by size exclusion chromatography prior 

to spectroscopic analysis. 
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Table 2.3: Results from sedimentation velocity experiments for PD and AI9PD. 

Average molecular weight (kDa) 

S20,w 

PD A19PD 

67.9 62.5 

4.72 4.9 

Purified thrombin-cleaved enzymes were exchanged into a buffer containing 50 raM 

potassium phosphate buffer, 0.3 M NaCl and 0.5 mM TCEP (pH 7.5). PD and A19PD (25 

pjvl and 37 \iM, respectively) were centrifuged for 10 h at 35.000 rpm and 30°C. 

Absorbance (280 ran) was collected in continuous mode with a step size of 0.005 cm and 

five replicate readings at each point. Raw sedimentation data and best-fit c(s) 

distributions are presented in Appendix 2B. 
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2.2.4 Thermal Stability 

The room temperature far-UV CD spectra for PD. A19PD. and CM-PD exhibited 

two local minima at 208 nm and 222 nm (Fig. 2.7) and are typical for proteins that 

contain a significant content of ot-helical structure Helical contents predicted from the 

primary sequences off . coli CM-PD and A. aeolicus PD (or A19PD). using several 

commercially available programs (PredictProtein (129) and Antheprot (130)) were -60% 

and 50%, respectively. We attempted to obtain values for the apparent melting 

temperatures (Tm) for the proteins by measuring the ellipticity at 222 nm of the samples 

when heated from 25° to 95°C. However, under conditions that yielded a very 

cooperative and irreversible temperature dependent unfolding curve for E. coli CM-PD 

(Tm = 57°C) (Fig. 2.8). the thermostable PDs showed a gradual but steady loss of signal, 

and post transition baselines could not be established (Tm values >95°C). Aponte reported 

that most of the CD signal (>95%) from PD could be regained upon cooling (106). 

However, activity measurements at 30° and 55°C that we performed on such a sample 

showed that Km values for prephenate were increased twofold and k^, -20% and implied 

that refolding to the native structure was not complete. 
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200 220 240 

Wavelength (nm) 

260 

Figure 2.7: Far-UV CD spectra of E. coli and A. aeolicus enzymes. CM-PD (solid 

line), PD (dashed) and A19PD (dotted), (18 nM (CM-PD) and 21 p.M monomer, 

respectively). [9] denotes mean residue ellipticity. Spectra were recorded in 0.05 cm path 

length circular cell connected to a thermostated circulating water bath. Proteins were in 

50 mM potassium phosphate, 75 mM NaCl, pH 7.5. For CM-PD, 25% glycerol (v/v) was 

added to the buffer. Spectra were recorded at 25°C by averaging 10 wavelength scans 

from 260 to 200 nm (1 nm bandwidth) in 0.2 run steps at a rate of 50 nm/min, and 0.25 s 

response. 
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Figure 2.8: Thermal denaturations monitored by CD spectroscopy at 222 nm. 

Thermal denaturations with 0.75 mg/mL of CM-PD (solid line), PD (dashed) and A19PD 

(dotted) were carried out by following the ellipticity at 222 nm from 25 to 95°C under the 

same conditions except that for CM-PD, buffer was supplemented with 25% (v/v) 

glycerol. 
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2.2.5 Denaturation Studies with Gdn-HCl 

The stability of A19PD was further addressed by monitoring Gdn-HCl-induced 

protein unfolding using the CD signal at 222 nm as a probe of a-helical secondary 

structure and using Trp fluorescence as a probe of tertian' structure. Gdn-HCl was 

selected as the denaturant after noting that PD did not fully unfold in urea, even at 

concentrations up to 10 M. as observed by Aponte (106). 

As shown in Figure 2.9A. the intensity of the CD signal diminished with 

increasing concentration of Gdn-HCl. When the data was plotted as percent fraction 

folded as a function of denaturant concentration (Fig. 2.9B), a multistate transition was 

observed with a distinct plateau between 3 and 4 M Gdn-HCl. and a sharp decrease in 

fraction folded from 4 to 5 M denaturant. A value for the midpoint in the transition from 

folded to unfolded conformation (D1/2) of 4.8 M was estimated from the plot. 

Dehydrogenase specific activity increased 220% at 0.5 M Gdn-HCl but was markedly 

reduced by 3 M denaturant (Fig. 2.10). The presence of 0.5 M Gdn-HCl also had inverse 

effects on the affinity for prephenate and NAD+, causing a fourfold increase in Km for 

prephenate (to 154 ^M) and a twofold reduction for NAD" (to 21 u\M). relative to the 

values in the absence of Gdn-HCl (41 uJVf and 53 U.M, respectively). The increase in 

specific activity in the presence of 0.5 M Gdn-HCl did not overcome the decrease in 

affinity for prephenate. 
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2 4 
Gdn-HCI (M) 

Figure 2.9: The effect of Gdn-HCI on CD signal of A aeolicus A19PD. Plot of fraction 

folded as a function of Gdn-HCI concentration probed by CD at 222 ran (A). Fraction 

unfolded (Fu) was calculated as described by Pace and Scholtz {124). Measurements were 

recorded in 0.05 cm path length circular cell connected to a thermostated circulating 

water bath. Protein (2.8 p:M monomer) was incubated in 50 mM potassium phosphate, 75 

mM NaCl and different concentrations of Gdn-HCI at pH 7.5 for 24 h prior to collecting 

spectra. 
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Intrinsic Trp fluorescence is very sensitive to the hydrophobic or hydrophilic 

environments of a folded protein and is a good probe of changes in the accessibility of 

fluorophores as a function of denarurant. A19PD contains two Trp residues per monomer, 

at positions 190 and 259. which can contribute to the fluorescence spectrum of the 

protein. Excitation at either 280 or 295 nm (Fig. 2.11) resulted in an unusual emission 

spectrum, with two maxima at 317 nm and 330 nm. The two maxima were observed in 

the spectrum even in the presence of three times the protein concentration: therefore the 

peaks were not an artifact due to a Raman band. These results suggested that the 

fluorescence emission is dominated by Trp residues residing in hydrophobic 

environments, one very hydrophobic. The bimodal emission spectra decreased and 

shifted to a single peak at 350 nm in the presence of 6 M Gdn-HCl as the Trp side chains 

became solvent-exposed, and resonance energy transfer from one or more of the 10 Tyr 

molecules per monomer were alleviated in the unfolded protein. A spectrum of 6 pJVI 

NATA yielded an emission maximum of 355 nm and indicated that, even at 6 M Gdn-

HCl, one or more of the protein Trp residues were not completely solvent-exposed (Fig. 

2.12). Although low concentrations of Gdn-HCl had a significant effect on kinetic 

parameters of the reaction, inspection of the fluorescence emission spectra between 0 and 

1 M Gdn-HCl indicated, surprisingly, no shift in the emission maximum at either 317 or 

330 nm. When the results from both fluorescence and CD measurements were replotted 

as percent folded versus Gdn-HCl concentration, the two data sets were similar but not 

coincident (Fig. 2.13). 
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2 3 4 

Gdn-HCI(M) 

Figure 2J0: The effect of Gdn-HCl on enzyme activity of A. aeolicus A19PD. 

Dehydrogenase activity in the presence of increasing concentrations of Gdn-HCI was 

determined at 30°C using 1 mM prephenate and 2 mM NADT as described section 2.1.4. 

Specific activity was expressed as a percentage of the value obtained in the absence of 

denaturant. 

78 



400 

350 
3 

3~ 
>> 

• * - * 

a> 
•** e 
d> 
o 

ce
n 

(A 

o 

Fl
u 

300 

250 

200 

150 

100 

/ 

- / 
- / 
- / 
/ 

50 

300 320 340 360 

Wavelength (nm) 

380 400 

Figure 2.11: Fluorescence emission spectra of A19PD. Excitation wavelength was set 

at 280 nm (solid line) or 295 nm (dashed line). Emission spectra of 2.8 \lM monomer 

A19PD in 50 mM potassium phosphate. 75 mM NaCl at pH 7.5 were recorded from 300 

to 400 nm in a 3 mL cuvette. Both emission and excitation bandwidths were set at 4 nm. 

Fluorescence intensity is shown in arbitrary units (a.u.) 
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300 320 340 360 380 400 

Wavelength (nm) 

Figure 2.12: Selected fluorescence emission spectra of A19PD during Gdn-HCl-

induced unfolding. Excitation was at 295 nm. Emission spectra were taken after 20 h 

incubation of the sample (3 |iM monomer A19PD) in 50 mM potassium phosphate. 75 

mM NaCl at pH 7.5 with increasing concentrations of Gdn-HCl. Denaturant 

concentrations were 0 M (thick solid line). 1 M (small-dashed line), 2 M (large-dashed 

line), 2.9 M (dotted line), 3 M (dashed/dotted line), 4 M (large-dashed line), 4.7 M 

(dashed/dotted/dotted line), 5 M (thick dotted line) and 6 M (thick dotted/dashed line) of 

Gdn-HCl. The standards (6 n.M NATA/ 30 îM NAYA) in 6 M Gdn-HCl are shown as 

triangles. Fluorescence intensity is shown in arbitrary units (a.u.). 
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Gdn-HCl-induced unfolding of A19PD appeared reversible, as determined 

spectroscopically and enzymatically (data not shown). Refolded protein yielded 

fluorescence spectra similar if not identical to those obtained prior to unfolding, after 

correction for enzyme concentration differences. Moreover. >95% of the enzyme activity 

was recovered after refolding by dilution. 

To determine if dimeric AI9PD denatured via a pathway involving a compact 

folded monomer and/or a more loosely folded dimer, size exclusion chromatography was 

performed in the presence of 0-5 M Gdn-HCl at 25°C (Fig. 2.14). A single peak (dimeric 

enzyme) was observed up to 2 M Gdn-HCl. which then shifted steadily to shorter 

retention times at higher denaturant concentrations, indicating progressive unfolding of 

the dimer. By 5 M Gdn-HCl, a second peak with a long retention time (that we 

interpreted as unfolded monomers) was also resolved. At 3 M Gdn-HCl and above, 

however, a high molecular weight form of the enzyme (not in the void volume) appeared. 

Taken together with the spectroscopic results, the data suggest that the quaternary 

structure of A19PD is very stable: dimeric A19PD unfolds prior to subunit separation, but 

this unfolding accompanies the formation of an oligomeric form. All species then 

denature to unfolded monomers. The complexity of this pathway precludes fitting data to 

a model, which would yield thermodynamic parameters for the unfolding reaction. 
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Figure 2.13: Overlay of the effect of Gdn-HCI on intrinsic fluorescence, CD signal, 

and enzyme activity of A. aeolicus A19PD. Plot of fraction folded as a function of Gdn-

HCI concentration probed by CD at 222 nm (A) and by Trp fluorescence emission at 317 

nm (•). Fraction unfolded (Fu) was calculated as described by Pace (124). Enzymatic 

activity in the presence of Gdn-HCI was determined at 30°C using 1 mM prephenate and 

2 mM NAD+. The right axis represents the percent residual activity (o). 
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Figure 2.14: Gdn-HCl-induced unfolding of PD monitored by Fast Protein Liquid 

Chromatography. PD (0.1 mg/mL) was incubated for 20 h at ambient temperature in a 

buffer containing 50 mM potassium phosphate, 150 mM NaCl at pH 7.5 with increasing 

concentrations of Gdn-HCI prior to injection. Chromatography was performed with 

mobile phases containing the buffer with the appropriate concentration of denaturant at a 

flow rate of 0.4 mL/min and injection volume of 500 uL. Denaturant concentrations were 

0 M (blue line), 2 M (grey line), 3 M (black line), 4 M (red line) and 5 M (green line) of 

Gdn-HCI. Elution was monitored at 256, 280 and 290 nm (here shown is the absorbance 

at 280 nm). 
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The binding of ]-anilino-8-napthalene sulfonic acid (ANS) to A19PD was 

performed in the presence of increasing concentrations of Gdn-HCl. Results agreed with 

our findings above and also showed that none of the partially unfolded subunits 

resembled a molten globule state, which is characterized by a partial loss of tertiary 

structure while still retaining significant secondary structure {131). ANS is reported to 

bind well to this form to yield a large increase in fluorescence intensity and a blue shift in 

emission maximum. A blue shift in emission maximum occurred from 0 to 2 M Gdn-HCl 

(Fig. 2.15): however, this did not coincide with a large increase in fluorescence intensity. 

Above 2 M Gdn-HCl fluorescence intensity decreased, and this was accompanied by a 

gradual red shift in emission maximum (2-8 nm) until large changes were observed by 5 

and 6 M denaturant (16 and 30 run, respectively) with protein unfolding. 

2.2.6 Quenching of Fluorescence Emission: Assessment of Trp Accessibility 

The folded state and the degree of accessibility of the two Trp residues in A19PD 

were probed further by acrylamide fluorescence quenching experiments, performed in the 

presence of different concentrations of Gdn-HCl. Acrylamide is a polar non-ionic agent 

that can access both surface and buried Trp side chains, except those that are deeply 

buried within the protein core (132). A plot of increasing concentrations of acrylamide 

versus fluorescence intensity appeared biphasic, indicating that the two Trp residues do 

not reside in the same environment (Fig. 2.16). Modified Stern-Volmer plots enabled 

determination of the fraction of fluorescence accessible to quenching (fa) and the 

quenching constant KQ at the different concentrations of Gdn-HCl (see Appendix 2C). 
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420 440 460 480 500 520 540 

Wavelength (nm) 

Figure 2.15: Emission spectra of ANS in the presence of A19PD at different Gdn-

HCI concentrations. Excitation wavelength was set at 370 nm. The fluorescence spectra 

of the extrinsic fluorophore ANS in complex with A19PD were recorded from 400 to 580 

nm (410-540 nm shown) as monitored in the presence of Gdn-HCl at 0 (thick solid line), 

1 (dashed line). 2 (thick dashed/dotted line). 3 (dotted line), 4 (dashed/dotted line), 5 

(thick dashed line), or 6 M (solid line). Fluorescence intensity is shown in arbitrary units 

(a.u.). 
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Acrylamide (M) 

Figure 2.16: Stern-Volmer analysis of A. aeolicus A19PD fluorescence quenching by 

acrylamide. Defined amounts of quencher were added to a 2 mL protein solution (3 uM 

monomer) in PPS buffer (pH 7.5) at 30°C. Excitation wavelength was set at 295 nm and 

the intrinsic fluorescence emission spectra of protein Trp residues were recorded from 

300 to 400 nm after each addition of acrylamide. F0 and Fare the fluorescence intensities 

in the absence and presence of the quencher, respectively. The equation used to generate 

the plot is described in section 2.1.7. 
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Table 2.4: Stern-Volmer quenching constants and percentage of Trp fluorescence 

quenched by acrylamide and KI in the presence of denaturant or substrates at 30°C. 

Gdn-HCI (M) KQ (M ') fa (%) 

0 

1 

2 

3 

4 

6 

Substrate 

0.68(0.125) 

0.99 

0.94 

1.23 

1.55 

7.34 

tfQ(M-') 

0.48 (0.05) 

0.4 

0.4 

0.4 

0.5 

0.98 

/a (%) 

0.5uMNAD+ 0.71 0.45 

300 HM Pre 0.135 0.06 

Acrylamide and KI concentrations were varied from 0-0.35 M. Values for 

constants for KI are shown in parentheses. NATA (6 pJVl) was used as a control and gave 

a KQ value of 13.6 M"1 and zf3 of 1 with acrylamide. When 5 u\M NAD+ was added to the 

sample, afa of 0 was obtained using acrylamide as a quencher. 
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The results (Table 2.4 and Appendix 2C) revealed -50% quenching of Trp 

fluorescence by acrylamide (fa = 0.5). consistent with the accessibility of one of the two 

Trp residues per monomer in A19PD. Only in the presence of 6 M Gdn-HCl does the 

second Trp become accessible. A quenching experiment was then performed in the 

absence of denaturant but with iodide, a large polar anion that can access surface Trp 

residues. A value of/, of 0.05 was obtained and indicated that the Trp that was accessible 

to acrylamide in the native protein was not accessible to iodide. 

Steady-state fluorescence measurements (Figs. 2.17 and 2.18) and acrylamide 

quenching experiments (Table 2.4 and Appendix 2C) were performed in the presence of 

NAD+ or prephenate, in order to determine if one of more Trp residues were in or near 

the active site and, if so, to obtain a binding constant for the ligand. NAD itself is a 

strong quenching agent of intrinsic Trp fluorescence of A19PD, which is illustrated in 

Figure 2.17. Thus, titration of the change in fluorescence intensity as a function of NAD 

concentration (Fig. 2.18) yielded a dissociation constant for NAD^ from the binary 

complex {Ka) of 1.42 ± 0.12 jiM. Additionally, quenching of Trp fluorescence intensity 

by acrylamide in the presence of 0.5 |iM {<KA) and 5 njvl {>Ka) NADT yielded values of 

fa of 0.45 and ~0, respectively. These data were consistent with bound NAD+ offering 

complete protection against acrylamide quenching. Prephenate quenched Trp 

fluorescence intensity only slightly, although the small change in intensity could be fit to 

a Kd of 32.6 ± 1.94 njvl (Fig. 2.18). Again, binding to the active site was verified by the 

observation that 300 (jM prephenate offered significant protection against quenching of 

fluorescence intensity by acrylamide (fa = 0.06). Taken together these results indicate that 
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the two Tip residues are buried in the protein and one Trp is located in the prephenate 

binding site. 
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Figure 2.17: Emission fluorescence spectra of A19PD in the presence and absence of 

prephenate and NAD+. Emission spectra were of Al 9PD (] .6 (J.M monomer) recorded in 

PPS buffer (pH 7.5), in the absence (thick line) and the presence of 300 |iM prephenate 

(dashed/dotted line) or 20 pjvl NAD+ (dotted line) using an excitation wavelength of 295 

nm. All spectra were corrected for inner filter effect and appropriate blanks were 

subtracted. Fluorescence intensity is shown in arbitrary units (a.u.). 
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Figure 2.18: Changes in fluorescence intensity of A19PD upon binding NAD+ or 

prephenate. (A) NAD+ was varied from 0.2 to 20 |ilM and A19PD fixed at 0.24 [lM 

monomer in PPS buffer (pH 7.5). Only 13 of 25 data points are plotted for clarity. (B) 

Prephenate was varied from 0 to 480 pjvl and A19PD fixed at 1.6 (tM monomer. The 

intrinsic Trp fluorescence was observed by excitation at 295 nm and measuring the 

emission from 300 to 400 nm. Change of fluorescence intensities (AF) at 333 nm was 

corrected and plotted vs. concentration. The dissociation constants (Ka) for NAD+ and 

prephenate were determined by fitting the data to the Michaelis-Menten or the quadratic 

equations (similar results obtained). Similar results were also obtained with NAD+ using 

1.6 pJVI or 0.24 u,M monomer. 
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2.3 DISCUSSION 

This chapter reports the biophysical characterization of recombinantly expressed 

PD and A19PD. the N-termina]]y deleted variant of PD. from the hyperthermophilic 

bacterium A. aeolicus. During the completion of these experiments, the crystal structure 

of A19PD in complex with its cosubstrate NAD"1 was refined to 1.9 A resolution(^S), 

yielding the first reported structure for a TyrA protein from any organism. Our 

biophysical findings, now published in Protein Science(l 12) will be discussed in light of 

this crystal structure as both bodies of work were prepared as companion papers. 

Identification of stable domains ofPD 

PD from A. aeolicus was heterologously expressed in E. coli as a fusion protein 

with a 20-residue N-terminal extension that included a hexa-His tag to facilitate 

purification by Ni-NTA affinity chromatography and a thrombin recognition site to allow 

removal of the tag. In agreement with the studies by Aponte (7 06) and later by Sun et al. 

(48) SDS-PAGE analysis of dimeric His-tagged PD as monitored during the course of 

protein purification revealed two distinct species, a doublet comprising a full-length form 

and shortened form resulting from an N-terminal cleavage. Aponte {106) proposed that 

cleavage may have occurred in the absence of exogenously supplied thrombin by the 

action of cellular proteases such as protein I] or protein Fa at the thrombin recognition 

sequence (LVPRGS) within the fusion protein's tag (106). ES1-MS analysis of the 

shortened form isolated in the present study however, revealed that the site of proteolysis 

was instead downstream from the thrombin recognition site between Leu4 and Ser5 in the 

TyrA sequence (Fig. 2.2). Additionally, it was shown that full-length PD could be 
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cleaved further, at Lys23 to an even smaller fragment of ~32 kDa when stored for an 

extended period at 4°C or treated with trypsin —an outcome which also plagued the 

variant Al 9PD. Thus, our findings are in agreement with those of Sun et al. (48) who 

observed the same stable fragment by SDS-PAGE analysis following limited tryptic 

digestion of PD. although they attributed the shortened form detected during protein 

purification to this species as well. The insensitivity of the 32 kDa polypeptide to 

complete tryptic digestion (Figure 2.1. and Sun et al. (48)) indicated that the residual 

domain was likely tightly folded and its protease recognition motifs are not easily 

accessible. 

MALDl-ToF MS analyses of in-solution and in-gel tryptic digests of PD are also 

consistent with the observation of an N-terminal deletion. The relatively high sequence 

coverage afforded by our study (73%, Table 2.1) allowed assignment of the protease 

susceptible region between residues 18 and 26 (numbered from PD's predicted start site). 

We propose that cleavage by trypsin or by non-specific proteolysis could occur if 

residues at the N-terminal region of PD are exposed and/or within regions of secondary 

structure that adopt a mostly random conformation. As supporting evidence. Appendix 

2D shows that the first 30 amino acids are confined to a polypeptide region predicted to 

be rich in loops/unordered structure and. more importantly, precedes a structurally 

conserved nucleotide binding motif (GXGXXG) commencing at amino acid 37. 

Alternatively, as the N-terminus of PD expressed in the native organism has not been 

demonstrated directly, it is possible that the authentic start site that can translate 

functional protein is actually located further downstream (i.e. Met30) than that annotated 

in the database. If so, the sensitive proteolytic targets might belong to an unstructured N-
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terminal extension of PD. As expected, full-length PD did not yield quality diffraction 

crystals no doubt because of its unstructured flexible N-terminal region. Nevertheless the 

engineered A19PD. a construct which lacked the first 19 residues, yielded crystals 

diffracting to a high resolution and was shown to be fully active. The later finding proved 

serendipitous as purified variants A25PD and A28PD did not produce well ordered 

crystals (48). 

In-solution tryptic treatment of PD did not result in a complete digestion of the 

protein as shown by SDS-PAGE analysis agreeing with results found by Christendat (48). 

Better sequence coverage was obtained for both our group and Christendat's group when 

using in-gel tryptic digestion (48) reported that but we failed to resolve the fragment 

corresponding to residues 192-242. This fragment (>5 kDa) would likely be resolved 

using sinapinic acid as a matrix for MALDI-MS analysis. 

The architecture ofTyrA proteins: the importance of the dimer 

Aponte reported earlier that A. aeolicus PD is dimeric (106). It is not surprising 

then that an N-terminal deletion construct A19PD is also dimeric in its native state. This 

conclusion, drawn from the results of sedimentation velocity centrifugation and size 

exclusion chromatography (Table 2.3). agrees with the quaternary structure established 

by solution studies for other purified monofunctional TyrA proteins, including arogenate 

dehydrogenase from Synechocyslis (36), cyclohexadienyl dehydrogenases from P. 

stutzeri (46), Z mobilis (39) and the genetically engineered monofunctional PDs from E. 

coli (50) and E. herbicola (51). This arrangement is in contrast to that of E. coli CM-PDT 

for which it has been established through gel filtration experiments of independently 
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expressed domains that dimerization is only through adjacent subunits within the mutase 

portion of this bifunctional enzyme (70). 

Our solution studies are in keeping with the crystal structure of dimeric A19PD 

complexed with NAD (Chapter 1, Fig. 1.10). Each A19PD monomer consists of an N-

terminal domain which comprises the a/p dinucleotide-binding domain (represented by a 

Rossman fold) and a novel a-helical C-terminal domain which is involved in subunit 

dimerization (Chapter 1. Fig. 1.11). Quaternary structure is a biological necessity if the 

active site of the enzyme comprises residues contributed by adjacent monomers. Indeed, 

the crystal structure shows that the active site associated with each monomer is formed at 

the interdomain cleft of the NAD -binding domain and C-terminal domain and contains 

residues which are shared between monomers (Fig. 2.12). The dimerization domain is 

held by criss-cross and pair-wise interactions of helical pairs from the C-terminal domain 

(48). This configuration has also been reported for AD from Synechocystis, a structure 

whose protein in complex with NADP+ was published shortly after that of PD. Although 

the primary sequence of the two enzymes are significantly different (only 27% identity), 

and their crystal growth conditions unique (AD was crystallized at neutral pH while PD 

was crystallized at pH 3.2 and represents a catalytically inactive form of the enzyme (data 

not shown)), their overall global architecture is remarkably similar (See Figure 3, 

Legrand et al .{43)) and likely common amongst all TyrA proteins. 

The pathway of unfolding 

The crystal structure of A19PD reveals that the dimerization interface is supported mainly 

by hydrophobic interactions between monomers (Chapter 1, Fig. 1.10). The helical pair 
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formed by helices a8 and a8 : found at the core of the dimer interface is highly buried 

and provides most of the these hydrophobic contacts (48). Accordingly, the results of 

tryptic digests of PD as analyzed by MALDl-ToF MS could be interpreted in light of this 

structural feature. Our inability to resolve the fragment corresponding to residues 192-

242 is in keeping with the observation that these residues are located on helix Cc8 of each 

monomer and at the core of the dimer interface (48) rendering them inaccessible to 

proteases. 

The site of dimerization should contribute greatly to the stability of the dimer. 

Accordingly, Gdn-HCl-induced denaturation commences with the unfolding of the dimer 

as monitored by the noncoincidence of changes in tertiary and secondary structure (Fig. 

2.13) and by size exclusion chromatography (Fig. 2.14) performed in the presence of 

increasing concentrations of denarurant. This pathway of unfolding is in contrast to that 

reported for many other dimeric enzymes, for example enolase (133), for which 

dissociation of the dimer precedes denaturation. Interestingly, E. coli CM-PD is also 

predicted to contain an a-helical rich dimerization domain within the C-terminal region 

of the protein (PredictProtein (129)) (Appendix 2D) and has been reported previously to 

unfold significantly before dissociation into monomers (53). Results in the present study 

suggest that the a-helical structure of A19PD is very stable to Gdn-HCl denaturation; A/2 

of 4.8 M is about twice that reported for E. coli CM-PD under similar conditions (53). 

However, size exclusion chromatography revealed that this increased stabilization stems 

from, in part, retention of PD's secondary structure as an oligomeric species at the higher 

concentrations of denarurant (Figure 2.14). No stability studies have been reported for 

mesophilic monofunctional PDs. For comparison, however, a report contrasting 

96 



monofunctional CMs from E. coli and from the thermophilic archae Methanococctis 

jannaschii (both of which are highly a-helical) also showed that the dimeric proteins 

unfolded substantially before dissociation into unfolded monomers in the presence of 

Gdn-HCl (134). Thermophilic CM, with a D]l2 of -4.8 M. was calculated to be more 

stable than the mesophilic protein by ~5 kcal/mol, by fitting coincident CD and 

fluorescence data to a 2-state model. 

Even low concentrations of chemical denaturant cause marked changes in protein 

structure. It has been reported that thermophilic enzymes display a very low catalytic rate 

at ambient temperatures due to insufficient flexibility in their active sites (135). Addition 

of low concentrations of Gdn-HCl to A19PD resulted in over a twofold increase in 

specific activity at ambient temperature (Figure 2.10), and a fourfold increase in Km for 

prephenate, perhaps due to increased flexibility at the active site. Similar results have 

been reported for other thermophilic enzymes upon the addition of low concentrations of 

urea or Gdn-HCl (136-141). Moreover, changes in protein conformation within the 

hydrophobic NAD+-binding pocket of PD, induced by low denaturant concentrations, can 

be illustrated by the coincidence of a decrease in Km for NAD+ with an increase binding 

of the amphiphilic dye ANS (Figure 2.15); it has been reported previously that ANS has 

affinity for such nucleotide-binding sites (142, 143). 

A. aeolicus PD is thermally stable 

When considering A. aeolicus' classification as a hyperthermophiiic bacterium 

(144), it is not surprising then that the melting temperatures (Tm) of PD and A19PD were 

greater than 100°C as deduced by CD spectropolarimetry. Even the addition of 3 M Gd-
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HC1 to the enzyme preparation, during variable temperature (VT) CD experiments did 

not lower the Tm value (data not shown), as the presence of the denaturant likely 

promoted protein aggregation (Figure 2.14), precluding a cooperative thermal transition 

at a lower temperature. However. Aponte reported a Tm value of 108°C in the absence of 

denaturant for PD using variable pressure-capillary differential scanning calorimetry 

(DSC) {106}. For comparison, an apparent Tm of 57°C was obtained for E. coli CM-PD 

{106). Differences in 7^ values of the same magnitude have also been reported using 

DSC for a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii 

versus its mesophilic counterparts {135). Of note, the Tm obtained for CM-PD by DSC 

was in agreement with values of ~56CC determined by VT-CD measurements reported in 

this study and ~57°C by VT-Fourier transformed infrared (VT-FTIR) spectroscopy {106), 

even though the experimental conditions were markedly different. 

What is the basis for the thermal stability of A. aeolicusl Analysis of many 

thermophilic proteins and their corresponding mesophilic homologues have highlighted 

such differences as enhanced packing, additional salt bridges and hydrogen bonds or a 

better arrangement of ionic interactions, abbreviated loops, and restriction of 

conformational freedom introduced by proline residues {145, 146). However, a more 

recent analysis of structures and sequences of several hyperthermostable proteins indicate 

that some proteins employ a "structure-based" mechanism for thermostabilization; they 

are significantly more compact and hydrophobic than their mesophilic homologs, and 

come from organisms such as hyperthermophilic archaea that originated in an extreme 

environment. In contrast, other proteins use a "sequence-based" mechanism; instead of 

showing significant structural differences from mesophile, they show a defined number 
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of strong interactions, such as ion-pair or H-bonding networks. These protein come from 

mesophilic organisms that later recolonized hot environment (109). Their ultimate 

strategy depends on evolutionary history of the organism. A. aeolicus is unusual in that it 

is a deeply branched hyperthermophilic bacterium, separated from the rest of bacteria 

kingdom at early stages of evolution and located closer to archaea. 

An extensive analysis of proteins from hyperthermophilic and mesophilic 

organisms showed that a larger proportion of charged versus polar (uncharged) amino 

acids is a signature of many hyperthermophilic organisms (108, 145, 146). Moreover, the 

proportion of solvent accessible charged residues at the protein surface markedly 

increased at the expense of polar residues. A. aeolicus PD houses a significantly higher 

proportion of lysine and glutamate residues (10.6% and 8%, respectively) than found in 

the PD portion of is. coli CM-PD (3.7% and 5.9%. respectively, for example). In fact, the 

crystal structure of A19PD complexed with NAD+ (48) reveals a large ionic network 

formed by Glu275, Glu278 and Lys285 from one subunit and the same residues from the 

other subunit, a structural feature which Christendat and coworkers speculate may 

contribute to the thermostability of the enzyme. Other parameters noted with elevated 

thermostability and thermal activity of proteins are an increased number of strategically 

located proline residues, as seen CM from T. thermophilics (87). or a number of leucine to 

isoleucine substitutions, noted for M. jannaschii CM (134). However, sequence analysis 

of A. aeolicus PD does not appear to support these strategies. Interestingly, our 

sedimentation velocity data from AUC yield a low frictional coefficient of 1.22 for A. 

aeolicus PD suggestive of a compact protein core. Moreover, VT-FTIR results (106) 

support this observation in showing slow H/D exchange at high temperatures, which 
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would have likely continued well past 95CC degrees except for instrument limitations. It 

would be interesting to speculate that A. aeolicus PD might have adopted elements of 

"sequenced-based" (ion pairs. H-bonding) and "structure-based" (packing) mechanisms 

for its thermostabilization of PD (109). 

Quenching of fluorescence emission corroborates crystallographic data 

Results from fluorescence experiments have provided important structural 

information concerning A. aeolicus PD prior to the availability of crystallographic data. 

Now our findings can be interpreted in terms of the structure of A19PD complexed with 

NAD+ (48). although it should be considered that the conformation of the free protein 

may be different than in its liganded state. Trpl90, on helix-7, is part of a fr-ai-fig motif 

which is appended to the central P-sheet of the NAD'-binding site, and its side chain is 

buried in the core of the main Rossman fold. Trp259, on helix-] 1 in the C-terminal 

domain, is one of several residues lining the wall of the prephenate binding pocket in the 

shared active site, and is -16 A from Trpl90. Neither Trp259 nor Tip] 90 are surface-

exposed within the dimer (Fig. 2.19). in keeping with the substantially blue-shifted 

emission maxima relative to Trp free in solution and their inaccessibility to quenching by 

KI. Of the two, Trpl90 is completely buried and is not accessible to quenching by 

acrylamide. Furthermore, Gdn-HCl-induced oligomerization may prevent Trp 190 from 

becoming solvent-accessible until substantia] protein unfolding at 6 M denaturant (Table 

2.4). As expected, catalytically relevant portions of prephenate and NAD+ are in close 

proximity. The side chain of Trp259 is within 5 A of either substrate, and that of Trp] 90 

about ~8 A and ]2 A from NAD" and prephenate. respectively (Fig. 2.20). Accordingly, 
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changes in fluorescence intensity emission occur with the binding of either NAD" or 

prephenate to the free enzyme. This characteristic has allowed the calculation of 

dissociation constants of substrates from the enzyme-substrate binary complex, the 

importance of which will be discussed in Chapter 3. It is likely that the binding of either 

substrate can prevent quenching of Trp259 emission by acrylamide. Deciphering the 

contributions of individual Trp residues awaits analysis of site-directed variants. 

In the next chapter, we will explore further the effects of temperature on enzyme 

function and have extended our structure-function studies to the active site of the enzyme. 

Key targets for site-directed mutagenesis were identified using the crystal structure as a 

guide, as well as the results from biophysical studies presented above and from sequence 

alignments of several mono- and Afunctional TyrA proteins. Our studies will show that 

kinetic and biophysical characterization of these variant proteins help to establish the 

importance of selected residues in PDTs catalytic mechanism (binding or catalysis) or/and 

in the mode of regulation by L-Tyr. 
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Figure 2.19: Space filled model of A. aeolicus A19PD. One subunit is colored blue, the 

other grey. Trpl90 and Trp259 from each subunit are colored red and yellow, 

respectively. This model was generated using PyMOL. 
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Figure 2.20: Aquifex aeolicus A19PD active site. Both Trpl90 and Trp259 (yellow 

sticks) are in close proximity of both substrates (prephenate, gray sticks, is modeled in 

the active site). The side chain nitrogen of Trp259 is within 5 A of C4 hydroxyl group of 

prephenate and the nicotinamide ring of NAD+. The side chain of Trpl90 is within 8 A 

and 12 A of the nicotinamide ring of NAD+ and the pyruvyl side chain of prephenate, 

respectively. 
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Chapter 3 

Kinetic Characterization of WT and Variant PDs 

from Aquifex aeolicus 
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3.0 INTRODUCTION 

Only few monofunctional TyrA proteins have been characterized in the purified 

form. These include dehydrogenases from Zymomonas mobilis (39). Pseudomonas (46, 

147). Synechocystis sp. PCC 6803 (36). Arabidopsis thaliana (49) and Neisseria 

gonorrhoeae (99). These studies have centered mainly on delineation of their substrate 

specificity, as some utilize both L-arogenate and prephenate as a substrate while others 

use only L-arogenate or only prephenate. However, biochemical analyses of PD from E. 

coli CM-PD have provided the basic framework for understanding the molecular 

mechanism of the TyrA enzymes (52, 53). Initial velocity, product and dead-end 

inhibition studies and isotope trapping studies have established that the kinetic 

mechanism of E. coli PD conforms to a rapid equilibrium, random kinetic mechanism 

with catalysis as the rate-limiting step (63). Similar kinetic mechanisms have been 

proposed for ADs from A. thaliana (40) and Synechocystis sp. (43). although through the 

analysis of less rigorous experiments. In contrast, a steady-state random kinetic 

mechanism, with preferred order (L-arogenate binding first) has also been suggested for 

AD from Synechocystis sp. by Bonner et al. (36). A model for the catalytic mechanism of 

the E. coli PD activity has been put forward (refer to Fig. 1.8) based on the results of pH 

profiles and inhibition studies on wild-type and variant proteins (52, 53). Briefly, the 

guanidino group of Arg294 interacts electrostatically with the ring carboxylate of 

prephenate in the enzyme-NAD+ binary complex, while Hisl97, the key catalytic group 

of the reaction, polarizes the 4-hydroxyl group of prephenate by lowering the activation 

barrier to assist hydride transfer to NAD+ and concomitant decarboxylation (53). 
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The structures of PD from Aquifex aeolicus (48) and AD from Synechocystis sp. 

(43) have been reported, both proteins in complex with their preferred nucleotide 

cosubstrate and modeled with the appropriate cyclohexadienyl substrate in the active site. 

Analyses of these structures have provided positional information on the conserved 

histidine and arginine residues, although in some cases contradict the findings of the 

solution studies on the E. coli enzyme. The results of structural analysis must be 

corroborated by solution studies on site-specific variants on PD from A. aeolicus and 

Synechocystis. The structure of A. aeolicus PD has also led to the identification of other 

active site residues, that might play important mechanistic roles, most notably Serl26, 

which Sun et al. proposes promotes catalysis by orienting the catalytic histidine and the 

nicotinamide moiety of NAD+ in their most catalytically efficient conformations (48). 

Moreover, these authors proposed that access to the active site is regulated by a gated 

mechanism, which involved an ionic network consisting of Glul53-Arg250-Asp247' of 

which both Arg and Glu residues are conserved amongst all species. There is a pressing 

need to obtain structural data with prephenate or prephenate analogues bound in the 

active site as the full complement of interactions between prephenate and TyrA proteins 

are still largely unknown, 

Preliminarily kinetic studies of PD from A. aeolicus have been reported by R. 

Aponte (106). We have extended Aponte's work in this present chapter and report the 

kinetic parameters of the reaction catalyzed by A19PD, the crystallizable form of the 

enzyme. We have established whether the enzyme from A. aeolicus can utilize L-

arogenate as a substrate in addition to prephenate and we compare the variation of the 

kinetic parameters with temperature for both the Al 9 and full-length forms of PD. 
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Another goal of this study was to investigate the role of active site residues as a 

step towards further understanding of the PD-catalyzed reaction. Accordingly, our 

collaborators have carried out cocrystallization studies of A. aeolicus A19PD-NAD in 

complex with HPP, with 4-hydroxyphenylpropionate (HPpropionate). a product 

analogue, and with Tyr (manuscript submitted). Structures were solved at neutral pH and 

at a resolution of 2.15 A. 2.25 A and 2 A, respectively. These three-dimensional 

structures of A19PD have served as guides to target active site residues, which we 

consider important for the PD mechanism. We have investigated the role of Serl26, 

Hisl47. Glul53. His217. Asp247 and Arg250 through the kinetic analysis of site-directed 

variants correlated with structural analysis of the cocrystal complexes. 

3.1 EXPERIMENTAL PROCEDURES 

3.1.1 Materials 

Prephenate and chorismate were obtained as outlined section 2.1.1 while L-

arogenate (barium salt) was a generous gift from Dr. C. Bonner. NAD+ and NADP+ (free 

acid) were obtained from Roche. Hydroxyphenylpropionate and 4-hydroxyphenylpyruvic 

acid were from Sigma. High purity of the substrates was confirmed by either mass 

spectrometry or NMR. Concentrations of stock substrate solutions were determined using 

published extinction coefficients (115) and/or enzymatic end-point analysis. All other 

chemical reagents were obtained commercially and were of the highest quality available. 

Reagents and enzymes for molecular biology were provided by Stratagene, New England 

Biolabs, and Promega. E. coli strains DH5a (Life Technologies Inc.) and BL21(DE3) 

Gold (Stratagene) were used for plasmid production and for protein expression, 
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respectively. All relevant portions of constructed plasmids were confirmed by DNA 

sequencing through the facilities at Bio S & T, (Montreal, Canada). Recombinant E. coli 

CM-PD was generously provided by J. Manioudakis (refer to section 2.1.1). 

3.1.2 Preparation of a Stock Solution of 4-Hydroxyphenylpyruvate 

Solution of the keto form of 4-hydroxyphenylpyruvate was prepared as described 

by Lindblad et al. {148) but with slight modifications. Briefly, a solution of 0.1 M of 4-

hydroxyphenylpyruvic acid in methanol was purified by shaking with activated charcoal. 

The solution was filtered through a 0.22 u_m syringe filter (Millipore). An equal volume 

of ] M potassium hydroxide (KOH) in methanol was added to the solution, and then 

supplemented with activated charcoal. The solution was kept on ice with gentle stirring 

for 30 min then filtered again. The filtrate was left to crystallize for 4 h on ice. The 

resulting crystals were washed four times with 2 mL methanol then dried overnight at 

4°C in a dessicator in vacuo over P2O5. The crystals were resuspended in 50 mM HEPES, 

150 mM NaCl at pH 7.5 (reaction buffer). When the crystals were dissolved in the 

reaction buffer, an ultra-violet spectrum of the keto form of 4-hydroxyphenylpyruvate 

and the concentration of the solution were obtained (£276™= 2 mM"1. cm"1) (149). A stock 

solution of HPPropionate was prepared in 50 mM HEPES, 150 mM NaCl at pH 7.5 

(reaction buffer) just prior to use and its concentration was determined 

spectrophotometrically. 
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3.1.3 Source of Variants Al 9PD of Aquifex aeolicus 

The expression plasmid (pA19PD) encoding residues 20-311 of the A. aeolicus 

VF5 PDH protein (gi: 15282445: NP) was provided by Dr. D. Christendat from the 

University of Toronto, and its construction has been previously described (777). This 

plasmid was used for protein expression and mutagenesis studies. Site-directed 

mutagenesis was carried out using the QuikChange™ Site-Directed Mutagenesis Kit 

(Stratagene), whereby complimentary oligonucleotides containing the desired mutations 

for A19PD were used. Table 3.1 summarizes the mutants generated and the respective 

oligonucleotides used for mutagenesis. Residues Serl26, Glul53, Asp247 were 

substituted by an alanine and Hisl47 was replaced by an asparagine. These plasmids 

containing the desired mutation were generously provided by D. Christendat, while 

mutants encoding Arg250Gln, His217Asn/Ala were produced in our laboratory by W. 

Hou and J. Bonvin. All mutants were verified by DNA sequencing. 

Table 3.1. Forward primers used to generate active site variants 

Variants Forward Primers (5'—>3') 

Serl26Ala GGATCAGGGAGCGGTTAAGGGGA 

Hisl47Asn GTTGGAGGGAACCCGATAGCAGGAACGGAG 

Glul53Ala AGCAGGAACGGCGAAATCTGGGG 

His217Ala GTTTCTCACCTTCCCGCCGCGGTTGCGTTTGCACTCG 

His217Asn GTTTCTCACCTTCCCAACGCGGTTGCGTTTGCACT 

Asp247Ala CCCCGGAGGAGGTTTTAAGGCGTTCACGAGGATTGCAAAGAG 

Arg250Gln GTTTTAAGGACTTCACGCAGATTGCAAAGAGCGACC 
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3.1.4 Expression and Purification of Recombinant and Variant Enzymes 

Recombinant A. aeolicm PD and A19PD (-10 U/mg and 27 U/mg respectively) 

were expressed and purified as described section 2.1.2. Variant proteins were expressed 

as for A19PD and were purified as described section 2.1.2 with slight modifications. The 

heat step was omitted to minimize possible thermally induced denaturation of variant 

proteins. Samples loaded onto a 15 mL Superflow™ Ni-NTA column were washed with 

at least 400 mL of buffer A containing 30 mM imidazole. The eluate was analysed 

spectrophotometrically at OD280 and by Bio-Rad Protein Assay Kit (Bio-Rad 

Laboratories) to confirm that all undesired proteins were removed from the column. 

Bound protein was eluted with buffer A containing 300 mM imidazole and the remaining 

steps of purification and storage of the enzymes were as described in section 2.1.2. All 

protein purification steps were carried out at 4°C. Purified proteins were examined by 

SDS-PAGE to monitor any proteolysis of the protein variants during purification. The 

exact masses of variant proteins from A. aeolicus A19PD were confirmed by ESI-MS 

analysis and samples were prepared and analyzed as described in section 2.1.5.1.1 

3.1.5 Determination of Enzyme Activity and Protein Concentration 

The oxidative decarboxylation of prephenate or L-arogenate in the presence of 

NAD^ was followed at 340 nm as outlined in section 2.1.4, while the conversion of 

chorismate to prephenate was monitored at 274 nm (119). The reactions (total volume 1.0 

mL) were monitored continuously by using a Varian Cary 50 spectrophotometer, 

equipped with a thermostated cuvette holder. When performed at 30°C and 55°C, the 

standard activity assays were performed as outlined in section 2.1.4. For assays 
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performed at 80°C and 95°C. the preincubation times for the enzyme and NAD were 

reduced to I min and 15 s. respectively. 

Steady-state kinetic parameters ka, and Km were calculated at 30°C. 55°C and 

80°C for the WT enzyme from the initial rates using a minimum.of six substrate 

concentrations ranging from one-half up to at least 7-fold Km. Concentrations of 

prephenate (seven times Km) and NAD" (2 mM) were present when used as the fixed 

substrate. Protein ranged from 1 to 30 |ig. Reactions with L-arogenate were initiated with 

enzyme after preincubation of reaction buffer and substrates at the desired temperature 

for 2 min. Values of steady-state kinetic parameters k^, and Km were obtained by fitting 

initial velocity data to the appropriate rate equations as outlined section 2.1.4. 

Turnover numbers were calculated using subunit molecular weights (kDa) of 

37.01 (full-length PD), 35.13 (thrombin-cleaved PD), 36.88 (heterodimeric PD), and 

33.19 (A19PD) and the corresponding molecular weight for each variant proteins, 

assuming one active site per monomer. 

Enzyme half-life was determined by incubating enzyme (1 mg/mL in assay 

buffer) in capped Eppendorf tubes at 95 °C and 70°C {A. aeolicus PD and A19PD) or at 

40°C (E. coli CM-PD). For CM-PD, buffer was supplemented with 25% glycerol (v/v). 

Samples were removed at different time intervals, cooled on ice, centrifuged for 5 min, 

and residual activity of the supernatant was determined by the standard assay at 55°C 

(PD) or 30°C (CM-PD). Protein concentration was determined after centrifugation in 

order to calculate specific activities. 

Protein concentration was estimated using the Bio-Rad Protein Assay Kit (Bio-

Rad Laboratories) with bovine serum albumin (Sigma) as a standard. 
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3.1.6 Effect of Temperature on Dehydrogenase Activity of A. aeolicus PD, A19PD 

and E. coli CM-PD 

Assays were performed in the standard reaction mixture using 2.5 tol 5 ug/mL of 

A. aeolicus PD or A19PD, and reaction rates were recorded from 30°C to 95°C with 1 

mM prephenate and 2 mM NAD^. E. coli CM-PD was examined between ] 7°C and 56°C 

in 3-component buffer (pH 7.5) containing ] mM DTT. ) mM prephenate and 2 mM 

NAD+. From the data, Arrhenius plots were obtained; activation energy (E3) values were 

calculated from the slop and kca, deduced by linear extrapolation using the following 

equation: 

*=A * exp(-£a/RT) (3.1) 

where k is the rate constant, £a is the activation energy (kJ-mof'), R is the universal gas 

constant (8.314 x 10"3 kJ.moP'.K"1) and T is the temperature in Kelvin. Activity 

measurements and spectra] scans performed on 50, 500 and 1000 uM samples of 

prephenate and NAD+, heat-treated for up to 5 min, verified that there was not significant 

decomposition of the substrates (~2% at 95°C) during recording of initial rates. 

3.1.7 Effects of pH, NaCl and Divalent Metal Ions on the PD Activity 

The effect of NaCl on the PD activity was monitored using 10 solutions of 2X 

reaction buffer containing increasing concentrations of salt (0-2 M). The pH of each 

buffer was checked and adjusted to pH 7.5 with NaOH as necessary. Reactions were 

performed at 55°C as described in section 3.1.4, but with both substrates added in the 
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second step at fixed concentrations of 4 mM NAD and 0.8 mM prephenate. The reaction 

was initiated with 10 ug of A19PD. 

The pH optimum for A. aeolicus PD and A19PD activities was determined at 

55°C by measuring specific activity between pH 3.2 and 9.8. Assays were performed in a 

3-component buffer system of 0.05 M 2-morpholinoethanesuIfonic acid (MES). 0.05 N-

ethylmorpholine (NEM). 0.1 M diethanolamine containing 0.15 M NaCl. NAD+ and 

prephenate concentrations were kept fixed at 4 mM and 0.8 mM. respectively. 

The effect of divalent metal ions on the PD activity for both A. aeolicus PD and 

A19PD was measured at 55°C as outlined section 2.1.4 using either EDTA (0-1 mM), 

MgCh and ZnCb (0-25 mM) or 2 mM C0CI2 NAD+ and prephenate concentrations were 

kept fixed at 4 mM and 0.8 mM, respectively. 

3.1.8 Steady-State Velocity Patterns of the A. aeolicus PD-Catalyzed Reaction 

Variation of initial velocity of A. aeolicus PD reaction as a function of the 

concentration of prephenate and NAD+ was investigated. Initial rates were recorded at 

55°C in a reaction buffer of 50 mM HEPES, 150 mM NaCl, (pH 7.5) as outlined section 

2.1.4. Prephenate was varied from 49-493 \iM at fixed concentrations of NAD+ of 35, 70. 

140 and 350 uM. Similarly, NAD+ was varied from 30-495 p.M at fixed concentrations of 

prephenate of: 49, 102, 145 and 495 (iM. Experimental conditions for D19PD are 

described in Appendix 3E. The data were fit to the equation describing a sequential 

kinetic mechanism, v = VAB/(KizKb + KzB + KbA + AB), to yield values for V the 

maximum velocity, Ka and K\,, the Michaelis constants for the substrates A and B, and K™ 

is the dissociation constant from the enzyme-A complex. 
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Initial velocities recorded in the presence of HPP and HPpropionate were 

measured at 55°C in reaction buffer as previously described in section 2.1.4. Prephenate 

was varied from one-half to 5 x Km at fixed concentrations of HPP (107. 535 and 1070 

pJVJ) or HPpropionate (250? 500 and 1000 U.M). NAD~ was kept constant at 2 mM. 

The data were plotted in double reciprocal and were fitted to the equations to 

obtain values for inhibition constants using the computer program Cleland (120). The 

model of inhibition (competitive or non-competitive) was established by identifying 

which equation gave the lowest standard error of kinetic constants. 

3.1.9 pH-dependence of the Dehydrogenase-Catalyzed Reaction 

The activity of A19PD was recorded at 55°C over the pH range from 6.08 to 9.79 

in a buffer containing 25 mM HEPES, 25 mM 3-(N-morphoIino)propanesulfonic acid 

(MES). 25 mM Tris-HCl with 150 mM NaCl. The concentration of NAD+ was kept fixed 

at 4 mM while prephenate was varied from 28 U.M to 840 jiM. For the data set at pH 

6.08, prephenate concentrations were varied from 560 uM to 5.6 mM. The pH of the 

assay mixture was determined at 55°C before and after the reaction using a Fisher 

Scientific accumet® 15 pH meter standardized with appropriate reference standard 

buffers. 

The kinetic data were fitted to the appropriate equations using the computer 

programs of Cleland or Grafit Software version 5.0 (Erathicus Software) as described 

section 2.1.4. Values for the maximum velocity (V), the Michaelis constant (K), and the 

apparent first-order rate constant for the interaction of enzyme and substrate (V/K) were 

deduced from the plots. For the determination of V/K values, the concentration of the 
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fixed substrate was saturating at the pH of the assay. The variation of the values of V and 

V/K as a function of pH was fitted to the log form of eqs 3.2 and 3.3 as described by 

Christendat et al. (53): 

y = CI{\+HIKf) (3.2) 

y=C/(l+ HIKA + KQ/H) (3.3) 

Where y represents the value of V or V/K at a particular pH value, C is the pH-

independent value of the parameter, H is the hydrogen ion concentration, and KA and ̂ B 

are acid dissociation constants for groups on the enzyme or substrate: 

3.1.10 Determination of KA for Prephenate of Serl26Ala and Hisl47Asn A19PD 

Variants 

Values for the dissociation of prephenate from its complex with Serl26Ala and 

Hisl47Asn A19PD were determined at 30°C by monitoring the quenching of protein 

intrinsic fluorescence as described in section 2.1.7. Titrations were performed by the 

progressive addition of prephenate (0-700 p;M and 0-200 (J.M for Serl26Ala and 

Hisl47Asn, respectively) to PPS buffer (2 mL) containing 0.3 fiM monomer. 

3.2 RESULTS 

3.2.1 Determination of the Kinetic Parameters of the Reaction Catalyzed by A. 

aeolicus PD and A19PD at 30, 55 and 80°C. 
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Enzyme assays with purified PD and A19PD confirmed expectations that tyrA 

specifies an NAD"-dependent prephenate dehydrogenase. The enzymes followed 

Michaelis-Menten kinetics, although substrate inhibition was noted at very high 

concentrations of prephenate (but not NAD+). The kinetic parameters for the PD reaction 

for both enzymes at three different temperatures are shown in Table 3.2. Values obtained 

at 55°C for &cat and Km for PD agreed with previous findings (106). Values of kcs\/Km 

increased only ~7- to ] 0-fold between 30° and 80°C; the dramatic increase in kcaX (-30-

fold) was offset by a decrease in the apparent binding affinity for substrates. For the most 

part. PD and A19PD were equally effective catalysts, as indicated by comparison of 

kca/Km values. However, N-terminal extensions appeared to cause small but reproducible 

effects on the values for kinetic parameters; both the &cat and Km for prephenate for 

A19PD were twice that for PD, notably at 80°C. The purified enzymes did not possess 

CM activity when assayed at 55°C with 1 mM chorismate, nor were the activities 

inhibited by the mutase transition state analogue, eWo-oxabicyclic diacid (120 U.M), or 

by 1 mM chorismate when assayed with 0.1 mM prephenate and 2 mM NAD+ (data not 

shown). 

Preliminary studies indicated that A19PD did not efficiently utilize L-arogenate 

(NAD as a cosubstrate), primarily due to a poor affinity for this substrate (Table 3.2). 

Values of kcax/Km with L-arogenate increased with temperature, but were reduced ~2.5 

orders of magnitude compared to those with prephenate. E. coli CM-PD (300 u.g) did not 

yield a measurable reaction rate at 30°C in the presence of 44 mM L-arogenate and 4 mM 

NAD+. This finding is in contrast to the detectable, albeit poor rates reported for E. coli 

CM-PD with racemic or L-arogenate {101, 150). In the present study, negligible rates 
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(<0.5%) were obtained for either enzyme using NADP" (1 mM) as a cosubstrate with 

prephenate (0.5 mM) or L-arogenate (44 mM). 

The activities of PD and A19PD appeared to decrease exponentially with time 

(Fig. 3.1) and yielded half-lives at 95°C of 2 h and 55 min; respectively. Both proteins, 

however, retained full activity even after 20 h at 70°C. By comparison, E. coli CM-PD 

exhibited a half-life of 6 min at 40°C (Appendix 3A). Our values are within the range 

reported for other proteins isolated from thermophilic organisms {151-153), although 

results are dependent on protein concentration and buffer components. 
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100 200 
Time (min) 

Figure 3.1: Irreversible thermal inactivation of A. aeolicus PD and A19PD. Enzymes 

(1 mg/mL in assay buffer) were incubated in capped Eppendorf tubes at 95°C. Samples 

were removed at different time intervals, cooled on ice, centrifuged for 5 min, and 

residual activity of the supernatant was determined by the standard assay at 55°C as 

described section 3.1.5. Data were fitted to a single-exponential decay described by the 

following equation: A=Ao e ~ . where A is the specific activity at time t, AQ is the activity 

at time zero, k is the rate constant and t the time. Half-life, the time it takes for the 

enzyme to loose 50% of its activity (/)/2) was determined by the following equation: 

tm=0.693/k 
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Both PD and Al 9PD were very sluggish enzymes at temperatures below 45°C and 

yielded a temperature optimum of ~95°C (PD shown in Fig. 3.2). This is near the 

physiological optimum growth temperature of the organism (105). An Arrhenius plot for 

PD was linear between 30° and 85°C. indicating a single rate-limiting step with an 

activation energy (Ea) of 61.8 kcal/mol (Inset in Fig. 3.2). An activation energy (£a) of 

47.4 kJ/mol between 17-56°C was estimated and a &cat of 88.3 s"1 at 63°C was obtained. 

A19PD also yielded a linear plot and its parameters are given in Fig. 3.2. Interestingly, 

when PD activities of either enzyme were determined using low protein concentrations 

(<10 pg/mL) and at lower assay temperatures (30°C and 55CC), progress curves were 

punctuated by a significant lag (30 s) before initial velocities were attained. This lag was 

observed whether enzyme was preincubated with either substrate, or the reaction was 

initiated with enzyme. This observation could suggest that the enzyme undergoes a 

conformational change after 30 s in presence of both substrates. The lag was minimized 

by increasing the protein concentration or conducting assays at high temperatures, and 

was somewhat reduced by adding 0.2 mg/mL bovine serum albumin. Interestingly, no lag 

was observed when L-arogenate was the substrate, although product (Tyr) inhibition was 

apparent. 
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Figure 3.2: Effect of temperature on PD activity of A. aeolicus. Assays were 

performed in the standard reaction mixture using 2.5-15 ug/mL of enzyme, and reaction 

rates were recorded from 30-95 °C. The inset shows the Arrhenius plot of the same data 

(30-85°C). From the slope in the Arrhenius plot, an activation energy (E3) of 61.8 kJ/mol 

was calculated and £cal estimated as -88 s"1 at 98°C by linear extrapolation. For A19PD 

an activation energy (£a) of 62 kJ/mol and £ca, of-210 s"1 at 98°C were obtained. E. coli 

CM-PD was examined between 17°C and 56°C in 3-component buffer (pH 7.4), 

containing 1 mM DTT. 1 mM prephenate and 2 mM NAD+. An activation energy {Ea) of 

47.4 kJ/mol between 17-56°C was estimated and a Acatof 88.3 s"1 at 63°C was obtained. 
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3.2.2 Effects of pH, Salt and Divalent Metal Ions on the PD Activity 

PD and A19PD demonstrated high specific activity within a very narrow pH 

range. The optimal pH was 7.5 at 55°C (Appendix 3B) when tested between pH 3.2-9.8. 

using the 3-component buffer system together with 0.8 mM prephenate and 4 mM NAD 

as outlined in section 3.1.7. 

The enzymes were most active when assayed in buffer containing 100-250 mM 

NaCl; 48% of maximal activity was observed at 2 M NaCl (Appendix 3CJ. The proteins 

precipitated slightly when stored in the absence of salt. Hence, a concentration of 75 mM 

NaCl or above and a pH of 7.5 were adopted for all buffers used in enzyme purification 

and for all spectroscopic and enzymatic measurements. Reaction rates of purified PD 

recorded at 55°C were identical whether using 50 mM potassium phosphate. 50 mM 

HEPES, or the 3-component buffer system (all buffers contained 0.15 M NaCl). 

No effect on enzymatic activity was observed upon the addition of EDTA (1 

mM), MgCb and ZnCb (25 mM) to standard reaction mixtures at 55°C. However, the 

enzymes were weakly inhibited by cobalt, decreasing to a limiting value of 65% of the 

maximal activity at 0.1 mM CoCl? (Appendix 3D). 

3.2.3 Studies of the Initial Velocity and Product/Product Analogue Inhibition on PD 

from A. aeolicus 

Initial velocity patterns constructed for PD at 55°C with either prephenate or 

NAD as the variable substrate over the concentration range examined, yielded plots that 

intersected to the left of the v axis (Figs. 3.3 A and B). Kinetic parameters obtained from 
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Figure 3.3: Variation of initial velocity of A. aeolicus PD reaction as a function of the 

concentration of prephenate (A) and NAD (B). In (A) prephenate was varied from 49-

493 uM at fixed concentrations of NAD+of: 35 (•), 70 (•), 140 (A) and 350 (•) pjvl. In 

(B) NAD+ was varied from 30-495 uJV] at fixed concentrations of prephenate of: 49 (•), 

102 (•), 145 (A) and 495 (•) (iM. The data were fit to the equation describing a 

sequential kinetic mechanism, v = VABI(KzKb + K&B + KbA + AB), to generate the lines 

shown in the figure, v is the initial velocity, V is the maximum velocity, A and B are 

concentrations of reactants, Ka and Kb are Michaelis constants for A and B, and Ku is the 

dissociation constant from the binary complex. The following kinetic parameters when 

prephenate was the variable substrate, were calculated as 92 s' (V), 105.3 ± 13.14 (Ka), 

66.6 ± 8.95 uM (Kb), 129.8 ± 30.6 nM(Kia). Results for A19PD are shown in Appendix 

3E. 
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the fit of these data were in reasonable agreement with those obtained using the 

Michaelis-Menten equation (see Table 3.2). These results are consistent with a sequential 

kinetic mechanism resulting from the formation of the ternary complex before product 

release. Furthermore, over a concentration range of substrates which reportedly yielded 

concave upward kinetic plots for the PD activity of E. colt CM-PD {119), the initial 

velocity patterns for the A. aeolicus PD-catalyzed reaction were linear. Similar results 

were also obtained for A19PD and kinetic parameters are provided in the figure legend 

(see Appendix 3E). 

Both HPP and HPPropionate. the immediate product of the reaction and a product 

analogue, respectively, (see structures in Fig. 3.6) behaved as linear competitive 

inhibitors with respect to prephenate for the A19PD-catalyzed reaction under the 

experimental conditions described in section 3. The inhibition plots and the values for the 

inhibition constants {KK) are shown in Appendix 3F. Values for the Km for prephenate 

calculated from these data sets are also shown in Table 3.2 and were in agreement with 

values obtained in Table in Appendix 3F. 

3.2.4 pH-dependency of the Al 9PD-Catalyzed Reaction 

The pH dependency of VIEX and F/̂ prephenaie£t of the A19PD-catalyzed reaction 

was established over a range of pH values from 6.08 to 9.79 at 55°C, by varying the 

prephenate concentration at a fixed, high concentration of NAD+ (see section 3.1.9). 

Analysis of the results indicates that the VIE, rate profile differs than VIKp^ph^^E 

profile. The V/KEt profile is bell-shaped with limiting slopes of -1 on both acid and 

alkaline sides (Fig. 3.4). Fitting of the data yielded pK values of 6.51± 0.15 and 9.57 ± 
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0.17 which are comparable than those found for the dehydrogenase reaction of £ coli 

CM-PD (64). Results from the VE, rate profile indicate that a single ionizing group with a 

pK of 6.5 must be deprotonated for catalysis and/or product release. 
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Figure 3.4: Variation with pH of log VIK for prephenate dehydrogenase reaction 

catalyzed. Dehydrogenase activity was recorded at 55°C over the pH range from 6.08 to 

9.79 in a buffer containing 25 raM HEPES, 25 mM 3-(N-morpholino)propanesulfonic 

acid (MES) with 150 mM NaCl. NAD+ concentration was kept fixed at 4 mM while 

prephenate was varied from 28 |iM-840 |iM. For the data set at pH 6.08, prephenate was 

varied from 560 jiM to 5.6 mM. The curve V/KE represents the best fit of the data to 

equation y=C/[\+(H/KA)+ (KBH)l using Graphit 5.0. Fit of the log V/KE, yielded a pKa 

value of 6.5 ± 0.3. 
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3.2.5 Expression, Purification and Determination of Molecular Weights of Variant 

Proteins Al 9PD A. aeolicus 

Serl26Ala. His]47Asn. Glul53Ala. His217Asn, Asp247Ala. and Arg250Gln 

were well expressed as judged by SDS-PAGE analysis (data not shown) and yielded 

amounts of protein comparable to that obtained for A19PD. His217Ala was poorly 

expressed with a yield of 4 mg/mL and was not stable over time as judged by the 

appearance of protein precipitate during storage at 4°C for three weeks. ES1-MS was used 

to confirm that the correct amino acid substitution was made in A19PD. Table 3.3 

summarizes the expected and calculated masses for selected protein variants. The results 

are in agreement with the idea that each protein variant analyzed carried the desired 

amino acid substitution. 

Table 3.3: Predicted and observed molecular weights of A. aeolicus A19PD variants 

after cleavage of the His-tag by thrombin. 

Variants Predicted |M+HJ+ Observed [M+H]+ 

Serl26Ala 33 180.5 33 180.5 

Hisl47Asn 33 173.5 33 172.6 

Glul53Ala 33 138.4 33 137.5 

His217Ala 33 130.4 33 130.1 

His217Asn 33 173.5 33 172.9 

Asp247Ala 33 152.5 33 152.3 

Arg250Gln 33 168.4 ND 
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3.2.6 Determination of Kinetic Parameters of the Protein Variants 

]n the crystal structure of A19PD-NAD" complex (48). both Asp247 and Glul53 

are near the prephenate binding site and are shown to be interacting with Arg250. In 

order to determine the importance of Asp247: and Glul53 in the mechanism, the two 

aforementioned residues were substituted to alanine residues, eliminating the potential for 

ionic interactions. Their kinetic parameters (Km and kat) are in Table 3.4. Glul53Ala and 

Asp247Ala substitutions resulted in a 5- and 2-fold decrease in kat, respectively, but did 

not markedly affect prephenate binding as judged by their Km values. The substitution of 

Arg250 by a glutamine resulted in a 10-fold increase in Km for prephenate. while the 

enzyme's affinity for NAD+ and its turnover rate were almost unchanged. This result is 

consistent with Arg250 being important for prephenate binding. 

To evaluate Serl26's participation in the reaction mechanism, this residue was 

replaced by an alanine to eliminate the coordinated effect of His! 47 and NAD+ observed 

in the crystal structure^). The kinetic parameters of the Serl26Ala-catalyzed reaction 

were determined. The turnover number of the reaction catalyzed by Serl26Ala was 

reduced by ~12-fold. The enzyme also exhibited a 10-fold increase in the Km value for 

prephenate (Table 3.4), although the Km for NAD+ was only slightly elevated. 

Substitution of His 147 to an asparagine in A. aeolicus A19PD resulted in a variant that 

was essentially inactive, however, by adding a large amount of enzyme, a reaction rate 

could be determined and values for ka{ and Km were calculated. The value for Km for 

prephenate was similar to that of wild-type enzyme however, the turnover number was 

reduced by over three orders of magnitude. This verified the importance of Hisl47 in 

catalysis. Values for kcsl appeared pH independent when activity measurements were 
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recorded in the presence of 850 jag of enzyme. 2 mM NAD' and 600 ^M prephenate. At 

pH 6.2 and pH 7.2 kcat values were identical, at ~3 x 10"" s~\ A thermodynamic 

measurement for the binding of prephenate to unliganded Hisl47Asn was recorded to 

corroborate the Km value for prephenate. Result from titration of the change in 

fluorescence intensity as a function of prephenate concentration yielded a K$ value of 22 

± 1.4 U.M at 30°C which is comparable with the Km value of A19PD (-41 nJVl) also 

determined at 30°C. To test the reliability of our fluorescence assay, we determined the 

dissociation constant of Serl26Ala. A K& value of 336 ± 11 jiM (Fig. 3.5) was obtained 

for Serl26Ala variant protein which is comparable to its Km value at 30°C (-300 |lM, 

data not shown). 
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Figure 3.5: Fluorescence emission spectra of Hisl47Asn and Ser]26Ala A aeolicus 

A19PD variants in the presence of increasing concentrations of prephenate. 

Titrations were performed at 30°C by the progressive addition of prephenate (0-200 uJVf 

and 0-680 (J.M for Hisl47Asn and Serl26Ala, respectively) to PPS (2 mL) containing 0.3 

\\M monomer. Excitation and emission wavelengths were set at 295 nm and 333 nm, 

respectively. Bandwidths were set at 4 nm. The inset shows the changes in fluorescence 

upon prephenate binding. A dissociation constant of prephenate from its complex with 

Hisl47Asn or Serl26Ala were determined to be 22 ± 1.4 \sM and 336 ± 11 U.M 

respectively, by fitting the data to the quadratic equation as described in section 2.1.7. 
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Replacement of the conserved histidine at position 217 by either an alanine or an 

asparagine led to dramatic change in kinetic parameters. The Michaelis constants for 

His2I7Ala and His217Asn were increased by 40- and 30-fold, respectively (see Table 

3.4). Thus, these results strongly suggest that this residue is important for prephenate 

binding. In addition, decrease of the ka\ values by 10 to 20-fold indicate that His217 was 

also important for catalysis. 

3.3 DISCUSSION 

The heterologously expressed TyrA protein from the hyperthermophilic bacterium 

A. aeolicus functions in vitro as an NAD+-dependent cyclohexadienyl dehydrogenase, but 

very poorly. Hence, its annotation as a PD in this report is to reflect the much preferred 

substrate, prephenate. Those TyrA proteins that effectively utilize both L-arogenate and 

prephenate, such as from Ps. stutzeri {46), Z. mobilis (39) and Ps. aeruginosa (147), do 

so with values of kQJKm for L-arogenate and prephenate that are within an order of 

magnitude of one another. 

In addition to being more resistant to heat denaturation than their mesophilic 

counterparts, thermophilic enzymes generally exhibit low activity at ambient 

temperatures and higher activity at elevated temperatures (154). A. aeolicus PD fulfills 

these criteria as its maximal activity is achieved at 95°C or higher, with a 33-fold increase 

in kax relative to that at 30°C, a half-life at 95°C of ~2 h and an estimated Tm value of 

about 108°C (106). PD, to our knowledge, is the most thermal stable enzyme from A. 

aeolicus reported to date. In contrast, significantly lower temperature optima (155) and 

only moderate half-lives at 40°C have been found for E. coli CM-PD (Appendix 3A) and 



for other TyrA proteins (36, 46, 147). The half-life of AJ9PD is about half that of PD. at 

95CC indicating that A19PD is globally more unstable or "looser". This is surprising, as 

the results from the protein purification, gel filtration, and secondary structure prediction 

(Chapter 2 in the present study) and those of tryptic proteolysis of PD yielding a 

crystallizable domain (Chapter 2 in this study and Sun et al. (48)). together, are consistent 

with PD adopting a compact structure with a floppy N-terminal region. In further support, 

the kinetic parameters of PD and A19PD-catalyzed reactions are similar but not identical, 

particularly at the high temperatures (Table 3.2). The N-terminal region appears to 

provide some structural benefits, although its role is not apparent from the crystal 

structure; the N-terminal residues A19PD (denoted 20-29 in PD) are unordered (they 

display weak electron densities in the crystal structure) and far removed from the central 

core of the active site (48). They immediately precede the structurally important 

GXGXXG motif of the NAD+ binding domain however (Appendix 2D), so perhaps small 

structural perturbations transmitted to the active site are magnified at the higher 

temperatures. Increased flexibility has been proposed to account for the changes in 

kinetic parameters of the enzyme in the presence of low concentrations of Gdn-HCI 

(Chapter 2); this same mechanism likely accounts for the small but reproducible 

differences in kinetic parameters between PD and A19PD. 

It is well known that metal ions play an important role in maintaining stable and 

active enzymes. It has already been reported that some thermophilic and 

hyperthermophilic enzymes contain metal ions that are absent in their mesophilic 

homologs (156, 157). In general extremozymes possess unusual properties at solvent-

exposed surface areas which increase stability; they often require higher salt 
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concentrations than mesophilic enzymes to be fully active. In agreement, maximum 

catalytic activity was achieved with concentrations of NaCl or KC1 concentrations 

between 100-250 mM suggesting that A. aeolicus PD activity is sensitive to the ionic 

strength of the medium. Presence of salt might increase the enzyme flexibility rendering 

it more active. The crystal structure did not reveal the presence of bound metal (48), nor 

is PD predicted to require metals for catalysis or structure. Accordingly, addition of the 

chelating agent EDTA or divalent metal ions Mg2+ and Zn ^ did not alter the 

dehydrogenase activity. Interestingly, slight inhibition was observed in the presence of 

Co2+. 

The intersecting initial velocity patterns obtained at 55°C for .4. aeolicus PD (Fig. 

3.3), and changes in tryptophan fluorescence noted at 30°C from the combination of 

NAD+ or prephenate with A19PD (section 2.2.5, Figs. 2.18 A and B), indicate that the 

reaction follows a sequential kinetic mechanism with substrates adding to the enzyme in 

either order. However, the possibility exists that substrate binding may not be in rapid 

equilibrium. In such a mechanism, the Michaelis constants for substrates (Km) are true 

dissociation constants of substrates (JO) and should yield the same value. Our finding that 

the K& for NAD' (~1.4 uJvl) determined thermodynamically is over an order of magnitude 

lower than the kinetically derived Km value (~25 U.M), suggests that a step other than 

catalysis may be rate-limiting, at least at temperatures lower than optimum for the 

enzyme. The results would also be consistent with NAD+ binding in an altered 

conformation to the enzyme under our experimental conditions. In support of either case, 

a significant lag in attaining linear initial velocity conditions was noted at the lower 

temperatures, and is consistent with a slow conformational change upon the binding of 
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substrates. Surprisingly, the Arrhenius plot showed no break at temperatures between 30° 

and 85°C. which would typically indicate a change in the rate-limiting step (J58). 

Although a rapid equilibrium random kinetic mechanism has been reported for CM-PD 

from E. coli (63) and A. aerogenes (95). and AD from A. thaliana (40). a steady-state 

random mechanism, but with a preferred order for L-arogenate binding first, has been 

proposed for the monofunctional AD from Synechocystis (36). 

Hypotheses concerning the kinetic mechanism have also been formulated based 

on recently available structural data. Al 9PD has been cocrystallized at pH 7.5 with NAD" 

and with NAD+ plus prephenate, HPProprionate or with L-Tyr. (The presence of HPP in 

the structure indicates that prephenate was enzymatically converted to HPP during the co-

crystallization studies). Christendat and colleagues noted that although two molecules of 

NAD were associated with the enzyme (one on each monomer), only one molecule of 

the product or product analogue was identified per dimer. This could result if substrate 

binding and product release were ordered with NAD+ binding first and NADH released 

last, or if the binding of prephenate to one monomer inhibited its binding to the second 

monomer. Our solution studies do not support an ordered kinetic mechanism 

hypothesized from the crystallographic data for several reasons. First, an ordered 

mechanism as described above is contrary to our thermodynamic binding studies on 

A19PD which indicate that prephenate can bind to the free enzyme (Chapter 2). Both the 

prephenate and NAD' binding pockets appear independently accessible as judged by the 

structures of liganded protein(Chapter 1, Figure 1.10) although the possibility does exist 

that prephenate may block access to the NAD^ binding pocket in the unliganded enzyme. 

Regrettably, there is no structurally data available for the apoenzyme; NAD+ binding 
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appears to promote protein crystallization. Second, the initial velocity patterns obtained at 

55°C were linear indicating that the binding of prephenate (or NAD') to each monomer 

of the dimer is independent of one other (Chapter 2). A full understanding of this kinetic 

mechanism awaits the results from comprehensive product and dead-end inhibition 

studies at different temperatures including one close to the optimum for the enzyme. 

Additionally, experiments will be conducted using microcalorimetry or equilibrium 

dialysis methods which are designed to address the stoichiometry of binding of either 

substrate to the free enzyme and to HPP with the enzyme-NAD complex. 

In this chapter we have also endeavored to clarify the roles of selected active site 

residues of A. aeolicus through kinetic and biophysical analysis of protein variants. 

Additionally, we have compared our findings with previous mutagenesis results and have 

correlated these with the current structures of the enzyme—mainly that of A19PD-NAD' 

alone and in complex with the immediate product HPP. There are some notable 

differences between the structures of prephenate and HPP; HPP is aromatic rather than a 

cyclohexadiene and lacks the ring carboxyl group associated with prephenate. However, 

HPP acts as a linear competitive inhibitor with respect to prephenate and binds to the 

enzyme NAD+ complex with the same apparent affinity as does prephenate (Appendix 

3F) so interactions between HPP and active site residues in PD should closely reflect 

those with prephenate. Of the six residues chosen for mutagenesis studies, Serl26, 

Hisl47 and Arg250 are conserved in the sequences all TyrA proteins identified to date 

while Glul53,His217 and Asp247 show moderate to high conservation (Fig. 1.9). 
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Prephenate HPpropionate HPP Tyrosine 

Figure 3.6: Structures of the substrate and product and product analogues of the 

PD-catalyzed reaction. AH these structures possess a C4-hydroxyl group. The primary 

difference between the ligands resides the Cl-sidechain; HPP has a keto group in 

addition to the conserved carboxyl, Tyr has an amino group and HPpropionate is lacking 

a group at the corresponding position. Prephenate is the only non aromatic compound. 
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As shown in Figure 3.7 the imidazole ring of His 147 interacts with the C-4 

hydroxy! of HPP and participates in a hydrogen bonding network between Serl26. 

Ser213 and a bound water molecule (WAT 1). Additionally. C4 of the ligand resides 

within 2.5 A from the Nl portion of the nicotinamide ring of NAD4. These interactions 

support the kinetic data from E. coli CM-PD (52) which identifies the invariant Hisl97 

(corresponding to the A. aeolicus Hisl47) as a key catalytic group. 

The results for the pH dependence of VEl/Kpiephemte and VEt reaction catalyzed by 

A19PD indicated that a single ionizing group with a p̂ Ta value of about 6.5 was 

deprotonated for catalysis while a second group with a pZa of about 9.5 was protonated 

and likely involved in binding prephenate to the enzyme-NAD+ complex. As our results 

are consistent with the pH activity profiles observed for E. coli CM-PD (52), we assigned 

this deprotonated group to Hisl47. Kinetic analysis was also performed on the A. 

aeolicus PD variant Hisl47Asn to confirm its role solely in catalysis. Hisl47Asn is 

essentially inactive, but binds prephenate with an apparent affinity similar to that of the 

wild-type enzyme, as determined by its kinetic parameters (Table 3.4), and as determined 

by thermodynamic measurements which monitor the quenching of tryptophan 

fluorescence emission by prephenate yielding a true dissociation constant (Fig. 2.18). 

Additionally, we showed that the activity of the variant was pH independent thus 

permitting assignment of this titrating group to His 147. Together, our findings further 

support the catalytic function of His] 47 in directly polarizing the C4-hydroxyl group of 

prephenate or perhaps helping the bound water molecule to carry out this function to 

facilitate hydride transfer from prephenate to NAD+. In the crystal structure of AD from 
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Synechocystis the residue equivalent to Hisl47 (His 112) is also shown to hydrogen bond 

with the C-4 hydroxyl group of L-arogenate (43). 

Serl26 participates in a H-bonding network with His 147, the Nl atom of NAD" 

and C4-hydroxyl group of HPP (Fig. 3.7). To test the importance of these H-bonding 

interactions in the catalytic mechanism, Serl26 was substituted with Ala to eliminate the 

H-bonding capabilities of the side chain. This substitution reduced the turnover number 

by 16-fold and increased the Michaelis constant for prephenate by 10-fold, while the Km 

for NAD+ remained unchanged (Table 3.4). As both Km and £cat are affected, our findings 

suggest that Serl26 likely coordinates the relevant functional groups on His 147, NAD+ 

and prephenate (or HPP) in a catalytically competent conformation. Additionally, Serl26 

may help to bind prephenate or HPP in the active site. 

Arg250 in A. aeolicus PD which was also under investigation; the corresponding 

residue Arg294 in E. coli CM-PD was identified as a key binding residue for the PD 

reaction(55) as deduced through kinetic analysis of Arg294Gln. Kinetic analysis of A. 

aeolicus Arg250Gln revealed that the Michaelis constant for prephenate was increased 

10-fold relative to the value for wild-type enzyme without a significant change in the 

enzyme's apparent affinity for NAD+ or its turnover number (Table 3.4). This indicates 

that this residue is important in prephenate binding and is in accordance with the crystal 

structures of A19PD-NAD+ bound with HPP or any of the product analogues that the 

carboxylate of the pyruvyl side chain of the ligand(s) interact with the guanidinium group 

of Arg250 (HPP bound structure shown in Figure 3.8). The magnitude of the 
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R250' 

Figure 3.7: Active site representation of A19PD in complex with HPP and NAD+. 
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apparent binding affinity (~].4 kcal/mol or a H-bond) however, is lower than expected 

for the loss of an ionic interaction in this relatively buried active site. It may be that for 

this variant, a water molecule or perhaps another cationic residue such as Lys246 which 

occupies a position close to the side chain pyruvyl group, can fulfill this role (see Figure 

5 in Sun et al. (48)). By comparison with previous findings on the E. coli Arg294Gln 

enzyme, the Km for prephenate was an order of magnitude higher than we observed for 

Arg250Gln from A. aeolicus suggesting a variation in the active site architecture between 

the two proteins. (Note that the E. coli enzyme lacks the equivalent residue of Lys246 in 

this binding motif (see Figure 1.9 in Chapter 1, motif R/KxxxR as described by Bonner et 

al. (45)). Additionally, studies examining the binding of product and product analogues 

to wild-type and Arg294Gln CM-PD suggested that prephenate interacts with the ring 

carboxylate (53), a finding which is not supported by these current crystal structures. 

Coordinated with its role in prephenate binding, the crystal structure of the 

enzyme-NAD4 complex shows that Arg250 is involved in an ionic network with Glul53 

from one subunit and with Asp247' from the adjacent monomer. These residues are 

located on the loop region between 06 and ct6, and on the alO and alO' helices that 

collectively cap the active site and shift in conformation upon the binding of HPP. Sun et 

al. describes this triad as a "gate" that modulates substrate access to the active site (48). 

The most notable shift occurs in the loop located between P6 and a6 (residues 149-156), 

a region which defines the hydrophobic region, a wall, of the active site. Glyl51 shifts 

2.46 - 3.36 A away from this pocket upon ligand binding to avoid a steric clash between 

it and the side chain of HPP or product analogues, bringing Glul53 along with it. 

Additionally, the side chain of Arg250 is shifted 1.25 A closer to the active site pocket. 
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Thus Arg250 and Glu]53 adopt different positions in the unliganded and bound 

structures while Asp247 maintains interactions with Arg250 in both states (Chapter 3, 

Fig. 3.8). 

To probe these ionic interactions on substrate binding. Glul53 and Asp247 were 

individually changed to alanine residues. These substitutions effectively eliminate the 

ionic interactions between these residues and we predicted that these should have an 

effect on the kinetic parameters of the reaction, notably prephenate binding. The 

Glul53Ala and Asp247Ala substitutions reduced the turnover rate by 5-fold and 2-fold, 

respectively, although they did not have a marked affect on the Michaelis constants for 

prephenate (Table 3.4). These effects on kca\ are not large, and might reflect small 

differences in the electronic environment associated with these residues, or small 

perturbations in the position of catalytically important residues. In both of these variants 

the Michaelis constant for NAD+ is significantly lowered; such an effect has also been 

observed for wild-type enzyme in the presence of low concentrations of guanidine-HCl 

(112), and highlights the sensitivity of the active site to its environment. 

If the Michaelis constant was considered as a true dissociation constant then its 

value would depend on the "on" and "off; rate constants of prephenate from the enzyme 

As ko,t is reduced in the variants but not Km, it may be that the release of product from the 

enzyme (reflected in the kat term) and substrate association are reduced equally by the 

amino acid substitutions. As such, these diffusion processes would be subject to the 

effects of a viscogens and could be tested. These types of experiments have been 

performed for the chorismate mutase reaction from B. subtilis {159). Additionally, a 

series of double mutants and a triple mutants could be generated and the variants 
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expressed and characterized in order to test the additivity of the changes in the kinetic 

parameters. 

The structure of the A19PD-N AD~-HPP complex shows that the imidazole group 

of His217 along with the main chain carbonyl of Gly243 makes important interactions 

with the keto group on the pyruvyl side chain of the ligand (Fig. 3.7). Thus it was 

predicted that substitutions of His217 to either alanine or asparagine would produce 

significant changes in the kinetic parameters for the A19PD-cataIyzed reaction. The 

Michaelis constant for prephenate was increased by 40-fold and 30-fold for His217Ala 

and His217Asn respectively thus indicating the importance of His217 in prephenate 

binding. However these substitutions also coincided with a 10 to 20-fold decrease in &ca, 

thus indicating that this interaction with the keto group of the substrate may assist in 

positioning prephenate in a catalytically competent conformation. Alternatively, the 

His217Ala and His217Asn substitutions might have perturbed the structure of the active 

site, presumably due to the disruption of the hydrophobic stacking of His217 with the 

neighbouring Trp259 and Ile251. Evidence for this latter statement comes from stability 

studies with Gdn-HCI (W. Hou, unpublished) which indicate that the variant His217Ala 

is less stable than WT enzyme. Additionally, the Km for NAD+ was lowered by 7-fold for 

both variants (Table 3.4), a characteristic that is noted with a few other variants and with 

the addition of Gdn-HCI. As mentioned previously, these results are in keeping with 

structural perturbations of the active site which might allow for altered or non-productive 

binding of NAD+. 

Christendat and coworkers have further illustrated the importance of His217 in 

maintaining ligand conformation. Superimposition of the crystal structures of the 
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enzyme-NAD" complex bound with HPP or HPpropionate clearly shows that the 

propanoyl side chains are not superimposable: the HPpropionate side chain is shifted 

more, by 2 A. towards His217 (Fig. 3.8). HPpropionate, lacks the side chain keto group 

and as such cannot participate in the hydrogen bonding interaction with His217 and the 

carbonyl of Gly243. One would predict then that binding energy contributed by the 

interaction of the keto group with its H-bonding partners would be significant. The 

differences in K\ values (Table in Appendix 3F), which describe the binding of HPP and 

HPpropionate to A19PD-NAD+ complex, is relatively small, however, about 4-fold or a 

AG of-0.8 kcal/mol; a comparable AG value (~1.5 kcal/mol) was calculated for the same 

interaction in E. coir CM-PD (53). 

Christendat and coworkers (unpublished) have compared structures of NADP 

bound AD from Synechocystis and NAD" bound PD from A. aeolicus and have modeled 

in HPP in AD's active site. They noted that the active site of AD is more open and 

accessible, relative to that of PD; cclO and the fj6-a6 loop region, which comprise the base 

and wall of the pocket, respectively, are shifted -3.1-6.5 A away from the active site. 

Nevertheless, from the modeling studies they show that L-arogenate can interact with 

Ser92, Hisl 12 and Arg217, which correspond to Serl26, Hisl47 and Arg250 in A19PD. 

This proposed interaction with Arg217 contradicts Legrand et al. {160) who have 

suggested that this arginine is too far from the active site pocket to play a role in substrate 

binding. The most notably difference in the active site of AD is the presence of a large 
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Figure 3.8: Illustration of substrate superimposition in the active site. 

Superimposition of HPP (green) and HPpropionate (yellow) indicates the twist in 

HPpropionate. The keto group of HPP mediates an interaction with His217. 
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pocket results from the absence of bulk}' Trp and His residues (Trp259 and His217 in 

PD). These missing residues likely help bind prephenate. Additionally. Legrand el a!. 

(43) has identified a series of hydrophobic side chains near the ring carboxylate of L-

arogenate modeled into the AD active site that Cleland and others (94) have speculated 

may promote its decarboxylation. This structural feature would be in keeping with 

solution studies on E. coli CM-PD using heavy atom isotope effects which show 

decarboxylation and hydride transfer are concomitant reactions (94). As this structural 

feature has not been readily identified in the model of prephenate modeled with A. 

aeolicus PD (48) it may be that the thermophilic enzyme follows a different catalytic 

mechanism in this regard. Further mechanistic studies will include site-directed 

mutagenesis on AD from Synechocystis in our laboratory. 
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Chapter 4 

Investigation of the Mechanism of Feedback Inhibition 
by L-Tyrosine 
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4.0 INTRODUCTION 

Within the metabolic pathways dictated by TyrA proteins. L-Tyr can function as a 

direct product product of a reaction (as with dehydrogenases which use L-arogenate as a 

substrate) or can act as an end product of a pathway. In many cases. L-Tyr is reported to 

compete directly with the substrate at the active site, be it prephenate or L-arogenate. 

These inhibition studies include those performed on the bi functional PD from E. coli (65, 

100), E. herbicola (51) and on the monofunctional B. subtilis PD (767). Additionally, 

Bonner et al. suggested that L-Tyr act as a competitive inhibitor with respect to L-

arogenate in AD from Synechocystis (36) while Legrand et al. reported that the same 

enzyme was insensitive to feedback inhibition by Tyr (43). Interestingly, some TyrA 

proteins such as Z. mobilis, N. europaea, N. gonorrhoeae or Acidovorax facilis are not 

sensitive at all to Tyr inhibition (39, 45). 

The E. coli Afunctional enzyme has received considerable attention since Tyr 

modulates both the mutase and the dehydrogenase activities (56). This enzyme also 

exhibits kinetics suggestive of positive cooperativity in the binding of prephenate in the 

PD-catalyzed reaction and that this cooperativiry is enhanced in the presence of L-Tyr. 

Several models have been proposed for the mechanism of allosteric inhibition by L-Tyr. 

One mode] has been proposed derived from sedimentation velocity and equilibrium 

experiments that indicate the enzyme can undergo an allosteric transformation from 

dimer to tetramer; L-Tyr binding preferentially to the inactive tetramer but at the same 

site that prephenate can bind. In contrast, Christopherson (100) and TurnbuII et al. (101) 

have proposed through fitting of kinetic models for inhibition, the effects of L-Tyr are 

manifested through tertiary structural changes transmitted through the dimer without any 
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changes in quaternary structure. Thus the binding of L-Tyr to one subunit positively 

influences the binding of L-Tyr to the second subunit. Turnbull suggested that L-Tyr 

must illicit its effects however, by binding to a separate allosteric site since L-arogenate 

is a very poor substrate in the E. coli PD-catalyzed reaction. 

The residues involved in the interaction between TyrA proteins and L-Tyr are 

largely unknown. Using a directed evolution approach Liiktke-Eversloh and 

Stephanopoulos (102) introduced random mutations in the E. coli tyrA gene by error-

prone PCR (nucleotide analogue mutagenesis) then selected for growth on media 

containing a Tyr analogue m-fluoro-DL-Tyr. They identified, for the first time, Tyr-

insensitive variants. Sequencing of the tyrA gene of the feedback-inhibition-resistant 

variants revealed that the residues Tyr263, Ala354 and Phe357 of E. coli CM-PD were 

likely involved in the mechanism of Tyr inhibition. The structural significance of these 

results are unclear. 

In this chapter, we have extended Aponte's work, investigating the effect of L-Tyr 

on A. aeolicus PD and A19PD activities over a broad range of temperatures. Protein 

variants from A. aeolicus AI9PD characterized in the previous chapter and one variant 

from E. coli CM-PD were assayed for Tyr inhibition to determine which of the residues 

might be involved in the inhbition. To monitor the binding of L-Tyr by thermodynamic 

methods, two rapid assays were developed. Analytical size exclusion chromatography 

and analytical ultracentrifugation were performed to determine whether or not the 

binding of Tyr is accompanied by quaternary structural changes as reported for the WT 

E. coli enzyme. 
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To gain more insight into the catalytic and regulatory mechanism of the E. coli 

enzyme, our results will be interpreted in the context of of the crystal structure of A19PD 

in complex with NAD+ and L-Tyr reported by our collaborators, and additionally of a 

genetically engineered monofunctional PD from H. influenzae CM-PD also in complex 

with NAD* plus L-Tyr (unpublished structure by JCSG, www.jcsg.org). As a primilary 

study, the monomeric structure of the PD domain of E. coli CM-PD was modeled using 

as a template the liganded form of the dimeric PD domain of H. influenza. These two 

dehydrogenase-containing domains share a sequence identity of only 55% but residues 

shown to be important for the activity of the E. coli enzyme are all conserved. Important 

groups involved in Tyr inhibition were identified. 

4.1 EXPERIMENTAL PROCEDURES 

4.1.1 Materials 

Prephenate (sodium salt) was obtained as previously described by Dudzinski and 

Morrison (7/5). L-tyrosine was obtained from ICN while NAD+ (Grade I) was from 

Roche. 1-anilino-naphatlene sulfonic acid (ANS) was purchased from Sigma. High purity 

of the substrates was confirmed by either mass spectrometry or NMR. Concentrations of 

stock substrate solutions were determined using published extinction coefficients (115) 

and/or enzymatic end-point analysis. All other chemical reagents were obtained 

commercially and were of the highest quality available. 
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4.1.2 Source of Enzymes 

Purified thrombin-treated A. aeolicus PD, A19PD and Serl26AIa. Glul53Ala. 

His217Ala Asp247Ala and Arg250Gln variants were expressed and purified as described 

in sections 2.1.3 and 3.1.3. respectively, and stored at -20°C at a concentration >3 mg/mL 

in storage buffer. Plasmid DNA of pVIVl {tyrA in pSE380) carrying the mutation 

encoding His257Ala was prepared by D. Christendat(J2). E. coli CM-PD (-30 U/mg) 

and His257Ala CM-PD variant were expressed and purified by J. Manioudakis as 

previously described (53). CM-PD enzymes were stored at -86°C at a concentration > 2 

mg/mL in 0.1 M N-ethylmorpholine (pH 7.5), 1 mM EDTA, 20% (v/v) glycerol, 5 mM 

DTT. 

4.1.3 Effect of L-Tyr on PD Activity of WT and variants of E. coli and A. aeolicus 

enzymes 

Standard activity assays fox A. aeolicus PD and A19PD were measured at 30, 55 

and 80°C as described previously (section 2.1.4). Standard assays for the mutase and 

dehydrogenase activities E. coli CM-PD were performed at 30°C as previously described 

(53). CM activity is usually monitored by following the disappearance of chorismate at 

273 run. The effect of L-Tyr on mutase activity however, was measured in the presence 

of NAD (required to help Tyr bind) and at 290 run (due to the high absorbance of Tyr at 

280 nm) and by taking into the account the contribution of NADH and HPP at 340 nm. 

The initial rates were calculated as described by Heyde and Morrison (95). 

Inhibition by Tyr (0-1 mM) on the dehydrogenase activity of PD and A19PD was 

recorded at 30, 55 and 80°C using concentrations of 2 mM NAD+ and ~4 x Km for 
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prephenate. Tyr inhibition on A. aeolicus PD and A19PD activity were also monitored 

with prephenate as the variable substrate keeping NAD" fixed, and with increasing 

concentrations of L-Tyr (see figure legends for details). When appropriate, the Hill 

coefficient was obtained from the slope of a plot of log[v/(Fmax - v)] versus Jog 

[substrate], using values of v (initial velocity) between 10% and 90% Fmax (maximum 

velocity). 

The different variants of A. aeolicus A19PD were screened for inhibition by Tyr 

(0-1 mM) at 55°C. using concentrations of 2 mM NAD+ and ~4 x Km for prephenate for 

each enzyme, except for His217AIa and Arg250Gln, where prephenate concentrations 

were kept at ~2 x Km for prephenate and the variants were assayed up to 8 mM L-Tyr. 

For the mesophiiic E. coli WT and His257Ala CM-PDs, assays in the presence of Tyr (0-

0.8 mM) were performed at 30°C using concentrations of 2 mM NAD+ and ~4 x Km for 

prephenate or chorismate for each enzyme. 

4.1.4 Monitoring L-[3,5-3H]Tyrosine Binding in the Presence and the Absence of 

Ligands 

The ability of WT and variant proteins from E. coli CM-PD and A. aeolicus 

A19PD to bind L-Tyr was assessed by radiolabeling experiments. MicroSpin™ G-50 

Columns (Amersham Biosciences) were equilibrated in 25 mM Tris (pH 7.4). 75 mM 

NaCI, (25 mM NaCl for CM-PD and His257Ala), 1 mM DTT and 2 mM NAD+. Proteins 

were buffer exchanged using a NAP M 5 column (Amersham Biosciences) in the same 

buffer and concentrated using Ultrafree® -0.5 Centrifugal Filter Device (Millipore). Each 

protein (~2 wJVl monomer) was incubated with the same molar ratio of L-[3,5-

153 



"HJTyrosine (53.0 mCi/mmol. Amersham Biosciences). The entire reaction volume (36 

uL) was then gently transferred to the center of a MicroSpin G-50 Column. Proteins 

were eluted by spinning the columns at 2000g for 1 min at room temperature. Then, the 

resin was gently washed 4 times with 36 |iL of cold buffer by the same means, careful to 

deliver the sample and washes to the center of the column. Elution fraction and washes 

were collected and JO U.L aliquots were added to 4 mL of scintillation fluid (ICN). 

Radioactivity was monitored using a 1414 WinSpectral liquid scintillator counter 

(Wallac). Protein concentration of each fraction was estimated using the Bio-Rad Protein 

Assay Kit (Bio-Rad laboratories) using Bovine Serum Albumin (Sigma) as a standard. 

Control experiments were done as described above using BSA (ICN). 

4.1.5 Monitoring ANS Fluorescence Emission in the Presence and the Absence of 

Ligands 

The binding of ligand (L-Tyr and/or NAD+) was followed by fluorescence at 30°C 

using an Aminco Series 2 Luminescence Spectrometer equipped with a thermostated 

holder connected to a circulating water bath. WT CM-PD, A19PD and their respective 

variants His257Ala and His214Ala (2 p.M monomer each) prepared with the different 

ligands and were incubated with 50 U.M l-anilino-8-naphtalene sulfonic acid (ANS) in 

the dark at 30°C in either 50 mM potassium phosphate, 75 mM NaCl (pH 7.5) for the A. 

aeolicus enzymes or 50 mM potassium phosphate and 1 mM DTT (pH 7.5) for the E. coli 

enzymes. The ANS/protein mixture contained either no ligand. 0.5 mM NAD+, 1 mM 

Tyr or 0.5 mM NAD+/1 mM Tyr, all in their respective buffers. Measurements were 

performed using a 1 cm path-length cuvette (reaction volume 2 mL). Excitation 
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wavelength was set at 370 nm and emission spectra were recorded from 400 to 600 nm 

with bandwidths of 4 nm each. Fluorescence spectra were obtained by subtracting the 

appropriate blank and were corrected for inner filter effect(/25). 

4.1.6 Determination of Molecular Weight in the Presence and the Absence of 

Ligands 

4.1.6.1 Analytical Size Exclusion Chromatography 

The native molecular weights of A. aeolicus A19PD and E. coli CM-PD and 

selected mutants were determined in the absence and presence of 0.5 mM NAD" and 1 

raM L-Tyr at ambient temperature by a Pharmacia Akta FPLC system fitted with a 

Superdex G-200 column (HR ] 0/30, Pharmacia). Chromatography was performed with 

mobile phases containing PPS (pH 7.5) for A. aeolicus A19PD and 50 mM potassium 

phosphate, 25 mM NaCl (pH 7.5) and 1 mM DTT for the E. coli enzymes, with and 

without ligands. Flow rate was set at 0.75 mL/min and injection volume was 500 pJL. 

Elution was monitored at 290, 300 and 310 nm, and fractions (1 mL) were assayed for 

enzyme activity and inhibition by L-Tyr. Bio-Rad gel filtration protein standards included 

vitamin Bn (1.35 kDa), equine myoglobin (17 kDa), chicken ovalbumin (44 kDa), bovine 

y-globulin (158 kDa), thyroglobulin (670 kDa). Void volume and total bed volume were 

evaluated with Blue Dextran and DTT, respectively. 

4.1.6.2 Analytical Ultracentrifugation 

Native molecular weight of A19PD in the absence and the presence of 1 mM L-

Tyr/NAD+ was investigated by sedimentation velocity experiments. Samples were 
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prepared as outlined in section 2.1.5.2 and the sedimentation data were acquired with the 

interference optical scanning system of the Beckman XL-I analytical ultracentrifuge. 

Values for the sedimentation coefficient (s) and an average molar mass were calculated 

as previously described (see section 2.1.5.2). 

4.1.7 Modeling of the PD domain ofE. coli CM-PD 

Modeller 9v3 was used to model the monomeric PD domain of CM-PD against 

the known structure of//, influenzae CM-PD (PDB access code 2pv7). A structure-based 

alignment of E. coli CM-PD with the H. influenzae protein was obtained using the 

FFAS03 server (http://ffas.ljcrf.edu/ffas-cei-cgi/ffas.pl). The FFAS03-generated 

alignment was used as input for Modeller 9v3. which generated a 3 D model of E. coli 

PD on this input. 

4.2 RESULTS 

4.2.1 Effects of Tyr on PD Activity at Different Temperatures 

Inhibition studies were performed on both A. aeolicus PD and A19PD at 30. 55 

and 80°C using varying amounts of L-Tyr (0-1.0 mM) at fixed concentrations of 

prephenate and NAD+. PD was inhibited up to 60% by 1 mM L-Tyr (Figure 4.1), when 

assayed at 30°C or 55°C in the presence of 2 mM NAD+ and at a prephenate 

concentration 4 x Km at each temperature. This value increased to 90% inhibition at 80°C. 

which is similar to the pattern for E. coli CM-PD at 30°C obtained using similar ratios of 

substrate concentration to Km(56). These trends were also noted for A19PD, although the 

degree of inhibition was lower. When the data were plotted as specific activity as a 
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function of Tyr concentration, however, activity decreased to a limiting value of ~4 U/mg 

(PD) or -26 U/mg (A19PD) at 55°C and 80°C. respectively (Fig. 4.1). This indicates that 

the apparent increase in inhibition at the higher temperature is only relative. Hudson ei al. 

(65) reported that the binding of Tyr to E. coli CM-PD is enhanced by NAD+ and vice-

versa. Nevertheless, doubling the concentration of NAD+ to 4 mM did not result in any 

further inhibition of activity by L-Tyr at any of the three temperatures tested (data not 

shown). Inhibition of the PD reaction by L-Tyr was also examined with prephenate as the 

variable substrate at fixed concentrations of NAD+ of 1 mM and 2 mM (Fig. 4.2). Double 

reciprocal plots were concave upward in the presence of L-Tyr. Deviations from linearity 

were more pronounced at the higher concentrations of NAD+ and lowest concentrations 

of prephenate. Similar results have also been reported for PD of E. coli CM-PD by 

Turnbull et al. (101), Hudson et al. (65) and Christopherson (100), and are consistent 

with Tyr promoting cooperative interactions between the subunits. This is evidenced by a 

fit of the velocity data in Figure 4.2 (2 mM NAD+) to the Hill equation to yield Hill 

coefficients of 1.0. 1.2 and 1.8 with 0. 0.1 and 0.5 mM Tyr. respectively. A value of 2 is 

consistent with two molecules of L-Tyr binding per dimer. One set of lines in the double 

reciprocal plot did not appear to intersect on the y axis indicating that at this assay 

temperature, L-Tyr might be binding to an allosteric site. Phe (] mM) did not inhibit PD 

activity at any of the three temperatures. 

Inhibition of the A19PD reaction by L-Tyr was monitored under conditions which 

allowed us to examine closely the y-intercept of a double reciprocal plot. The data fit well 

to the equation describing linear competitive inhibition, yielding a value for K\ of 15.9 ± 

1.3 jtM. The Michaelis constant derived from this plot (122 ± 15 |^M) agreed well with 
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the value given in Table 3.2. It is noteworthy that the double reciprocal plots generated 

for A19PD also displayed some non-linear behaviour at the highest concentration of L-

Tyr (0.2 mM) and the lowest concentration of prephenate. 

0 0.2 0.4 0.6 0.8 1 

Tyrosine (mM) 

Figure 4.1: Effects of Tyr on PD activity. Inhibition of dehydrogenase activity of A. 

aeolicus PD (squares). A19PD (small squares, broken lines) and E. coli CM-PD (circles) 

by Tyr. Reactions with PD and A19PD were performed at 30 (0). 55 (D) and 80°C (•) 

using ~4 x Km for prephenate for each temperature and NAD+ was fixed at 2 mM. The pH 

of the buffer was adjusted to the desired values at 55°C and 80°C. Data for CM-PD were 

obtained at 30°C in the presence of 160 u;M prephenate. Assays were performed as 

described in section 4.1.3 
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10 15 

1/[PrephenateJ (mM1) 

Figure 4.2: Double reciprocal plots of the inhibition of PD by Tyr at 55°C. PD 

activity was assayed at Tyr concentrations of 0 (•). O.l (•) and 0.5 mM (A) with NAD+ 

kept at 2 mM. and at 0.5 mM Tyr with l mM NAD* (x). l/v is expressed as (imol NADH 

formed/min/mg. 
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Figure 4.3: Double reciprocal plot of the inhibition of A. aeolicus A19PD by L-Tyr at 

55°C. PD activity was recorded by varying prephenate concentrations from 102-680 jiM, 

keeping NAD+ fixed at 2 mM and in the presence of L-Tyr from 0 (•), 50 (•), 100 (A) 

and 200 (•) |i]Vl. The data were fit to the equation describing linear competitive inhibition 

to generate the family of lines shown in the figure. 
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4.2.2 Effects of L-Tyr on the PD Activity of WT Enzymes and Variants from A. 

aeolkus Al 9PD and E. coli CM-PD 

Aquifex aeolicus enzymes 

The PD activity of WT and variant E. coli and A. aeolicus enzymes were examined in the 

presence of increasing concentration of L-Tyr and the results are shown in Figures 4.3. 

4.5 and 4.6. As previously shown, the activity of A19PD appears only partially inhibited, 

up to about 70% by 1 mM Tyr at 55°C. Under the same experimental conditions, the 

activity of the variants Serl26Ala. Asp247Ala and Glul53Ala were also inhibited by L-

Tyr, however with the ranking of WT = Serl26Ala < Glul53Ala « Asp246Ala (at the 

higher Tyr concentrations). The most striking result is that His217Ala activity is not 

inhibited at all by L-Tyr. Extending the Tyr concentration up to 8 mM produced the same 

results (see Figure 4.4). The effect of L-Tyr on Arg250Gln activity was also tested, 

revealing that this variant is clearly less sensitive to feedback inhibition by Tyr than the 

WT protein. His217Ala or Arg250Gln displayed Km values for NAD+ that were 

comparable to WT enzyme (see Chapter 3 Table 3.4), hence the feedback resistance was 

not due to poor binding of the cofactor. 
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120 r 

Figure 4.4: Effects of L-Tyr on PD activity of WT and Variants. 

A. aeolicus A19PD (•) and Serl26Ala (m% Glul53Ala (*), His217Ala ( • ) and 

Asp247Ala (A) variant proteins were assayed in the presence of Tyr (0-1.0 mM). 

Reactions were carried out in reaction buffer using ~4 x Km for prephenate and NAD+ 

concentration was fixed at 2 mM at 55°C. Due to the high Km value of His217Ala for 

prephenate, ~2 x Km was used instead, keeping NAD+ concentration at 2 mM. 
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Figure 4.5: Effect of high concentrations of L-Tyr on PD activity of WT and 

Selected Variants of A19PD. 

A. aeolicus A19PD (•). His217Ala (V) and Arg250Gln (•) variant proteins were assayed 

in the presence of Tyr (0-8.5 mM). Reactions were carried out in reaction buffer using ~4 

x Km for prephenate and NAD+ concentration was fixed at 2 mM at 55°C. Due to the high 

Km values of His217Ala and Arg250Gln for prephenate, ~2 x Km was used instead, 

keeping NAD+ concentration at 2 mM. 
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E. coli enzymes 

The effect of L-Tyr on the CM and PD activities off. coli CM-PD and His257Ala was 

also investigated. Under the experimental conditions given in the text, both mutase and 

dehydrogenase activities were inhibited by L-Tyr to the same extent, and hence contrasts 

previous reports that PD was more sensitive to inhibition than CM (101). His257Ala 

exhibited kinetic parameters for the PD reaction in the absence of L-Tyr that were 

comparable to the values obtained for WT enzyme, although kcaX/Km value for the mutase 

reaction was reduced by over an order of magnitude by the mutation (see Table 4.1). 

Under conditions that yielded almost complete inhibition of WT CM-PD activities, the 

variant was insensitive to the effects of L-Tyr. These results are in agreement with 

previous work done in our lab by T. Lee. 
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Figure 4.6: The effect of L-Tyr on the mutase and dehydrogenase activities of WT 

and His257Ala E. coli CM-PD. All activity assays were performed at 30°C. Prephenate 

concentration was fixed at 0.2 mM to follow the dehydrogenase activity of WT (•) and 

His217Ala (A), while chorismate as held at 0.3 mM to measure mutase activity of WT 

(o) and His257Ala (A). NAD+ was held constant at 4 mM in all assays. 
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4.2.3 Binding of L-Tyr to the WT and Variant Enzymes Assessed by Radiolabeling 

Experiments 

We have established a qualitative method to rapidly monitor L-Tyr binding. This 

method follows the elution pattern of a radiolabeled small molecule as it passes through 

a size exclusion column. Briefly, if the radiolabeled Tyr (small molecule) binds to a 

protein (large molecule) then it will travel faster through size exclusion media, whereas 

unbound Tyr is more easily trapped within the beads of the column media and the elution 

of the radiolabel is retarded. The eluate is assayed during different time periods for 

radioactivity (scintillation counting) and protein content (Bio-Rad protein assay) as the 

column is washed in order to detect the presence of a protein-ligand complex. In the 

experiments presented here, the binding of L-[3.5-;>H]Tyrosine to A. aeolicus A19PD or 

E. coli CM-PD (1:1 molar ratio) was monitored as these species traveled through 

MicroSpin™ G-50 size exclusion columns. NAD (2 mM) was present in all solutions 

since NAD+ has been reported previously to promote Tyr binding^). The results are 

presented in Table 4.2. WT protein (either E. coli CM-PD or A. aeolicus A19PD) co-

eluted with radiolabel in the first fraction signifying that these proteins could bind L-Tyr. 

In contrast, results for the variant proteins (either His257Ala CM-PD or His217Ala 

A19PD) showed that the highest amount of radioactivity was associated with the protein-

free fraction, indicating that these variants did not bind Tyr or possessed a much weaker 

affinity for the ligand compared to their wild-type counterparts. A control experiment 

was performed with BSA (a protein that does not bind Tyr) which clearly shows 
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radioactivity in the latter fractions. A similar result was obtained when the experiment 

was performed in the absence of protein (data not shown). 

Table 4.2: Radiolabelling experiments3. 

BSA WTCM-PD His257Ala 

Fractions 

Elution 

Wash 1 

Wash II 

cpm 

301 

1014 

2729 

OD595nro 

0.395 

0.0092 

0.0027 

cpm 

9512 

942 

3143 

OD595„m 

0.295 

0.0053 

0.0028 

cpm 

195 

2701 

2528 

OD595„„, 

0.306 

0.0087 

0.0017 

WTA19PD His217Ala 

Fractions 

Elution 

Wash I 

Wash II 

cpm 

1693 

889 

1127 

OD59,m 

0.185 

0.007 

-

cpm 

90 

718 

1059 

OD595nm 

0.197 

0.0051 

-

"Radiolabelling experiments were carried out as described in section 4.1.4. BSA was used as a 
control in both experiments. 
brepresents counts per minute 
Represents the absorbance obtained at 595 nm from the mixture of an aliquot (10 uL) of 
collected fraction with 1 mL of Bradford reagent allowing protein content determination. 

4.2.4 ANS Binding Experiments 

A fluorimetric assay was developed to monitor Tyr binding and/or conformational 

changes which may occur upon the interaction of L-Tyr with WT and His257Ala E. coli 

CM-PD and the corresponding A19PD enzymes of A. aeolicus. The fluorescent dye 1-

anilinonaphtalene-8-suIphonic acid (ANS) has been widely used to study protein 

conformational changes. The assay is based on the intrinsic increase in ANS fluorescence 

quantum yield upon noncovalent binding to hydrophobic region of proteins(76~2). ANS is 

also reported to bind to pockets of charged residues within proteins to illicit similar 
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effects. Upon addition of NAD+ to all the proteins the fluorescence intensities decreased 

(Fig. 4.7). consistent with a conformational change that reduces either the hydrophobic 

surface area or alters the surface charge distribution of the proteins, or with the 

displacement of ANS by NAD+ since the dye has been reported to bind at nucleotide-

binding sites(742, 141). Upon the addition of Tyr in the presence of NAD+. the 

fluorescence intensity for WT CM-PD E. coli and A. aeolicus A19PD decreased further 

which signifie s Tyr binding. Interestingly, His257Ala of E. coli CM-PD and His217Ala 

A19PD of A. aeolicus, whose activities were not inhibited by Tyr, exhibited only very 

small changes in ANS fluorescence intensity in the presence of Tyr and/or NAD 

(Figures 4.7). 

4.2.5 Molecular Weight of WT and Variant Proteins in the Presence and Absence of 

Ligands 

To determine if inhibition by L-Tyr is accompanied by tetramer formation as 

previously noted for CM-PD((5J), size exclusion FPLC was performed at ambient 

temperature with a mobile phase containing 0.5 mM NAD+ and 1 mM L-Tyr, and the 

results were compared with those in the absence of ligands. This assay was performed on 

WT and variant E. coli CM-PDs and A. aeolicus PDs (50-60 u;M monomer). The 

mobilities of the standards were essentially identical in the presence and absence of 

ligands (data not shown). In the presence of 1 mM L-Tyr and 0.5 mM NAD+, WT CM-

PD underwent a shift in retention time corresponding to a 
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Figure 4.7: Emission spectra of ANS complexed with WT and His257AIa E. coli 

CM-PD in the absence and the presence of Hgands. 

For each spectrum, 2 pM monomer and 50 pM ANS were mixed together with (—) no 

ligand, ( - ) 1 mM Tyr, ( ) 0.5 mM NAD\ ( - ) 1 mM Tyr/0.5 mM NAD+ in 50 mM 

potassium phosphate, 75 mM NaCl (pH 7.5) buffer. (—) is the spectrum of 50 uM ANS/1 

mM Tyr/0.5 mM NAD+ without enzyme in the same buffer. Excitation was set at 370 nm 

and fluorescence spectra were recorded from 400 to 600 nm. Emission spectra were 

corrected from for background and for inner filter effects when appropriate (125). 
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molecular weight increase from 89 kDa (no ligands) to 174 kDa (with ligands). indicating 

tetramer formation. This result coincides with previously reported data (65). 

Interestingly, in the presence of both Tyr and NAD". His257Ala CM-PD eluted mainly as 

a dimer: the estimated molecular weight increased from 74 kDa to only 99 kDa. Some 

tetrameric species (in rapid equilibrium with the dimer) may be present, promoted by the 

binding of NAD" as previously reported for the E. coli enzyme (65). Neither PD (54 kDa) 

nor A19PD (52 kDa) showed altered retention times when ligands were present (Table 

4.3), confirming the previous report by Aponte(/(?<5). Further analysis of A. aeolicus PD 

using interference sedimentation velocity experiments yielded sedimentation coefficient 

values for the enzyme that were similar in the absence and presence of L-Tyr plus NAD4 

thus indicating that PD remained dimeric (data not shown). 
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Table 4.3 Retention times and estimated molecular weights from analytical size 

exclusion chromatography 

No ligand 0.5 mM NAD71 mM Tyr 

Proteins 

WT CM-PD 

His257Ala 

WTPD 

A19PD 

Retention time 
(min) 

19.08 

19.19 

20.12 

20.14 

Esti mated MW 
(kDa) 

84 

74 

54 

52 

Retention time 
(min) 

17.65 

18.73 

20.08 

20.13 

Estimated MW 
(kDa) 

174 

99 

55 

54 

The native molecular weights of E. coll CM-PD. His257Ala and A. aeolicus WT PD and A19PD 
were determined in the absence or presence of NAD+ and Tyr by a Pharmacia Akta FPLC system 
fitted with a Superdex G-200 column (HR 10/30. Pharmacia) at ambient temperature. Samples of 
0.4 mg of protein were introduced in a 500 ul sample loop. Chromatography was performed with 
mobile phase containing 50 mM potassium phosphate. 150 mM NaCl and 1 mM DTT (pH 7.5) 
for the A. aeolicus enzyme and 50 mM potassium phosphate. 25 mM NaCl and 1 mM DTT (pH 
7.5) for the K coli enzymes at a flow rate of 0.75 mL/min and injection volume of 500 (iL with 
and without 0.5 mM NAD+ and 1 mM Tyr. Protein elution was monitored at 290. 300 and 310 
nm. Bio-Rad gel filtration protein standards (range of 1.35-670 kDa) were resolved in both 
mobile phases in order to follow changes in retention time associated with the presence of NAD+ 

and Tyr in the mobile phase. A standard curve was generated using these proteins to correlate 
retention time with native molecular weight. 
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4.3 DISCUSSION 

End-product inhibition of PD provides a major regulatory control in the pathway 

of Tyr biosynthesis (56, 161). In this report, we explored the effects of L-Tyr on the 

activity and quaternary structure of PD from A. aeolicus. Most importantly, from the 

analysis of variant proteins of A. aeolicus A19PD and E. coli CM-PD. we identified a key 

residue involved in Tyr inhibition. These findings, in combination with recent 

crystallographic data of the enzyme-NAD+ complex bound with HPP, HPPropionate or 

L-Tyr (manuscript submitted), were used to develop a possible model describing how the 

enzyme can accommodate a ligand in the active site that carries a keto versus an amino 

group on its propanyl side chain. To aid in our studies, two binding assays have been 

developed to monitor the association of L-Tyr to PD in the absence of prephenate. 

We have shown that A. aeolicus PD is inhibited by L-Tyr over a broad 

temperature range, although the full-length protein appears more sensitive to L-Tyrs 

effects than the Al 9PD variant. This observation documents a further example whereby 

the N-terminal region of PD appears to provide an important structural element. The 

kinetics in the presence of Tyr are suggestive of positive cooperativity between subunits 

at 55°C. However, inhibition does not appear to accompany a shift in equilibrium from 

active dimer to inactive tetramer promoted by NAD+ and/or Tyr. as noted for E. coli CM-

PD (65). The latter can be concluded from the results of gel filtration experiments (Table 

4.3) and sedimentation velocity experiments in the presence and absence of NAD+ plus 

L-Tyr: while E. coli CM-PD formed a tetramer under these conditions, PD from A. 

aeolicus did not. 
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]f the mechanisms of inhibition by A. aeolicus PD and of E. coli CM-PD are 

identical then our results are consistent with suggestions that any cooperativity is 

manifested through tertian' structural changes transmitted between subunits (100, 101), 

and that tetramerization of the E. coli enzyme is an "artifact" observed at high protein 

concentrations. It is worth noting that TyrA from Ps. stutzeri forms tetramers at high 

protein concentrations but in the absence of ligands (46). While other studies report 

inhibition of the activity of TyrA proteins by Tyr (46, 49, 69, 161), this is the first 

examination of any h'gand-induced structural changes for a mono functional TyrA protein 

under conditions that should promote tetramer formation (relatively high concentrations 

of protein, Tyr and NAD+). Studies on CM-PDT by Ganem and colleagues also showed 

that this bifunctional enzyme undergoes oligomerization upon Phe binding (70, 163). 

Moreover, fusion of the N-terminal CM domain directly to the C-terminal Phe binding 

domain, resulted in activation of the enzyme by the end product, but no oligomerization. 

They proposed that residues involved in the oligomerization are found within the PDT 

domain. Interestingly, Sun et al. reported that A19PD complexed with NAD" crystallized 

as a tetramer as would be expected for an enzyme that undergoes an allosteric transition. 

However, only three pairs of interdomain interactions were observed (48). Hence, it 

remains to be determined if this tetrameric species is biologically relevant. The 

possibility arises that A. aeolicus PD does form tetramers but only at temperatures nearer 

to the activity optimum. Size exclusion chromatography was performed at an ambient 

temperature. At 55°C, we did not observe cooperativity in the binding of prephenate to 

the enzyme (Chapter 3), although it is enhanced upon Tyr addition. It may be that at a 
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temperature considerably below the optimum, the protein is less flexible and thus less 

sensitive to changes that promote interactions between subunits. 

Through studies presented in this chapter, we have identified a residue that is 

critical for the regulation of PD activity in two TyrA proteins: His217 in A. aeolicus PD 

and the homologous residue in E. coli CM-PD, His257. This was achieved by examining 

the inhibition of PD activity by L-Tyr on WT A. aeolicus A19PD and the series of variant 

proteins characterized in Chapter 3 (Serl26Ala, Glul53Ala, His217Ala/Asn, Asp247Ala 

and Arg250Gln) to determine which, if any. of these residues played a role in Tyr 

inhibition. Of the variants tested, His217Ala/Asn was markedly resistant to feedback 

inhibition followed by Arg250Gln (Figs. 4.4, 4.5 and 4.6). Not surprisingly, insensitivity 

to inhibition by L-Tyr was also noted for the equivalent variant in E coli CM-PD, 

His257Ala (Fig. 4.6), and this resistance affected both mutase and dehydrogenase 

activities equally. Our finding was even more striking when considering that the 

Michaelis constants for prephenate and chorismate, determined in this study (Table 4.1) 

or in the work by Christendat et al. (52), were only modestly increased, about 2 to 3-fold 

relative to the WT enzyme, in keeping with the loss of a weak H-bond between the 

His257 and the keto group on pyruvyl side chain of prephenate. Thus, for E. coli CM-PD, 

we report the identification of a residue in the dehydrogenase domain that is essential for 

Tyr inhibition rather than supplying considerable binding energy towards the enzyme's 

combination with prephenate or chorismate. 

Moreover, analysis of the crystal structure of A19PD from A. aeolicus suggests 

that this residue is likely in the active site of the E. coli enzyme (see Fig. 4.9). Liikte-

Eversloh and StephanopouJos {102} reported the identification of feedback resistant 
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variants of E. coli CM-PD. obtained by error prone PCR and selecting for growth on 

media containing a Tyr analogue. Interestingly, two residues (AIa354 and Phe357) are 

confined to the C terminal region of the enzyme while one lay in the middle of the 

primary sequence of the PD domain (Tyr263). In agreement with our results with 

His257AIa. both activities of the variants were L-Tyr insensitive. Additionally, our 

findings can also be compared to those by Ganem and coworkers on E. coli CM-PDT 

(163) who pinpointed four residues within the dehydratase portion of this bifunctional 

enzyme that were important for Phe inhibition/binding. These residues were not 

conserved between the two bifunctional enzymes in E. coli, however. 

Our kinetic results were confirmed by binding studies although those obtained by 

using our radiolabeled Tyr assay (Table 4.2) must be interpreted respecting experimental 

limitations: the low specific activity for the 3H-Tyr meant that a high concentration of L-

Tyr could not be tested. A second, fluorescence based assay we developed was rapid, 

inexpensive, and could be performed at relatively low protein and higher L-Tyr 

concentrations. It exploited the affinity that the external fluorophore ANS has for many 

proteins as well as its increase in quantum yield that occurs with binding. This was 

particularly useful in our case as our ligand (L-Tyr) was an intrinsic fluorophore. ANS 

fluorescence emission was quenched upon the addition of NAD4 plus Tyr to either WT E. 

coli CM-PD or WT A. aeolicus A19PD (Fig. 4.7). although less so, for the A. aeolicus 

enzyme which is reported to be less inhibited by Tyr than the E. coli enzyme. The results 

were also in keeping with the observation by Hudson et al. (65) that the presence of Tyr 

helps NAD bind and vice versa. For the variant proteins fluorescence quenching was 

relieved indicating that the Tyr did not bind or did not bind well. It is likely for both 
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proteins that ANS was binding to the sites where either NAD4 and/or Tyr combine as it 

has been reported that ANS binds to nucleotide binding sites (22, 23). The quenching of 

ANS fluorescence emission upon the addition of NAD+ plus L-Tyr to WT E. coli CM-PD 

(Fig. 4.7) could be interpreted in part, due to the oligomerization of the enzyme as surface 

hydrophobic sites became inaccessible for the binding of ANS. It is well documented that 

ANS can bind to such patches and additionally, it has been noted empirically that E. coli 

CM-PD likely possesses a very hydrophobic surface. Although not performed in this 

study, we could have readily determined Ki values for Tyr s and NAD+rs interaction with 

WT enzyme and and for variants whose affinity for the Iigands were not too poor. 

The crystal structure of A19PD from A. aeolicus co-crystallized with NAD+ and 

L-Tyr shows without ambiguity that L-Tyr binds in the active site (Fig. 4.8). This is not 

surprising given that A. aeolicus PD can utilize L-arogenate as a substrate yielding L-Tyr 

as the product of the oxidative decarboxylation. Tyr's side chain carboxylate interacts 

with the guanidinium group of Arg, an interaction which should be significantly 

weakened with this Gin substitution. Our solutions studies (Fig. 4.4) are in agreement 

with the crystal structure which show that the activity of this variant is less inhibited by 

L-Tyr than the activity of WT enzyme. By contrast the Serl26's hydroxy! group appears 

not to be involved in inhibition by Tyr even though it has been implicated in the binding 

of HPP through the same interactions as that of Tyr. Two residues at the "entry way" to 

the active site (Glul53 and Asp247') were also tested and found to be more sensitive to 

the effects of L-Tyr than WT enzyme; possible reasons for these results require more 

analysis. 
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Under the assay conditions described, our kinetic data are also consistent with a model 

whereby L-Tyr binds at the active site of Al 9PD. A value for the dissociation of Tyr from 

the enzyme-NAD complex, at about 16 U.M. This value is within the range (10-100 uM) 

reported by fitting kinetic data to models whereby L-Tyr competes at the active site, or at 

an allosteric site (56. 65, 100). The Kt value is about 8-fold lower than the Michaelis 

constant for prephenate suggesting that the end product inhibitor combines more tightly 

to the enzyme than does prephenate. The kinetic data also reveal concave upward kinetics 

for the binding of L-Tyr (Fig. 4.2). A model consistent with this feature in addition to 

competitive inhibition would have L-Tyr and prephenate simply competing with each 

other for binding to the active site, with L-Tyr binding with positive cooperativity. Fitting 

initial velocity data for the inhibition of PD of CM-PD, Christopherson (100) proposed a 

similar model but which included positive cooperative effects for the binding of 

prephenate as well. It is worth noting that the crystal structure of A19PD shows only one 

Tyr binding per monomer. Thus, the solution studies and the crystal structure are not in 

total agreement. Additionally, steady-state kinetic mechanisms can also yield concave 

upward double reciprocal plots (164). Thus, a more thorough analysis of these types of 

complex initial velocity patterns, along with the analysis of initial velocity patterns in the 

presence of HPP and L-Tyr must be undertaken. 

179 



Figure 4.8: Active site representation of the combination of L-Tyr with A. 

aeolkus A19PD-NAD+. 

A number of residues interacting with Tyr were identified in the prephenate binding 

pocket: both His 147 and Serl26 interact with the C4-hydroxyI group of L-Tyr. Arg250's 

guanidinium group is within H-bonding distance of the carboxylate moiety of L-Tyr. 
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The crystal structure of the enzyme bound with L-Tyr or HPP reveals that the 

amino group of L-Tyr interacts with the main chain carbony] of Thrl52 but the side chain 

keto group of HPP interacts with the imidazole of His217 (Fig. 4.8 and Chapter 3, Fig. 

3.7). For this structural change, which would appear to confer ligand specificity. 

Christendat and coworkers speculated that the side chain of His217 must be in the 

protonated state. While the interaction of a keto group with a protonated imidazole is 

favoured, an amino group on the same position of the ligand would produce a repulsive 

effect and therefore direct the interaction of Tyr's amino group away from His217 

towards the main chain carbonyl group of Thrl52. Replacing His217 with Ala/Asn 

eliminates this repulsive effect and Tyr is no longer directed towards the carbonyl of 

Thrl52. We attempted to conduct pH rate profiles of His217Ala to determine if the 

protonated group (pK 9.5) whose ionization is observed in the pH profile for WT A) 9PD 

is that of His217. Regrettably, His217Ala was prone to precipitation at high pH values 

however, and its activity could not be confidently monitored. 

Are the interactions that hold prephenate and/or L-Tyr in the active site the same 

as for E. coli CM-PD or other PDs? The crystal structure of an engineered 

monofunctional PD from H. influenza bound with NAD+ and L-Tyr (unpublished) again 

places L-Tyr in the active site of the enzyme (Fig. 4.9). This enzyme is dimeric and binds 

two molecules of NAD+ and two of L-Tyr per dimer. Additionally, many of the residues 

located within A19PD's active site are also found in that of//, influenza PD (see Fig 4.9 

and description in figure legend). Of interest, Tyr at position 306 replaces Trp259 in A. 

aeolicus PD: this residue is shown to interact directly with the amino group of L-Tyr. We 
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are currently modeling the PD domain of E. coli CM-PD using as a template the structure 

of PD from H. influenza. Regrettably, a loop region (amino acids 111-119) in the 

modeled E. coli PD monomer adopts a conformation that is distinct from that of the same 

loop found in the H. influenza PD dimer (residues 141-149). Thus, a dimeric E. coli PD 

cannot be readily reconstructedn(Appendix 4A). Interestingly residues that Liikte-

Eversloh and Stephanopoulos {102) propose are the important for generating feedback 

resistance in E. coli CM-PD are at the C-terminal end of the protein, which appears 

distant from the active site. It may be that the C-terminal end of the protein adopts a 

different orientation in the bifucntional CM-PD of E. coli and H. influenza. We have 

commenced peptide mapping and site-directed mutagenesis studies on the E. coli enzyme 

based on the new available structures. 
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Figure 4.9: Active site representation of H. influenzae CM-PD in complex with 

NAD+ and L-Tyr. 
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Appendix 2A 

Determination of the native molecular weights of A. aeolicus PD and A19PD by 

analytical size exclusion chromatography. (A) FPLC tracings of 150 (ig of A19PD 

(solid line) or PD (dotted line) chromatographed on a Pharmacia Akta FPLC system 

fitted with a Superdex G-200 column (HR 10/30, Pharmacia). Chromatography was 

performed with mobile phase containing 50 mM potassium phosphate, 150 mM NaCl 

(pH 7.5) at a flow rate of 0.75 mL/min and injection volume of 500 uL. Elution was 

monitored at 254, 280 and 290 ran, and fractions (1 mL) were assayed for enzyme 

activity (here is shown AJW). The arrows show the elution time corresponding to each 

protein of the Bio-Rad gel filtration protein standards including vitamin B )2 (1.35 kDa), 

equine myoglobin (17 kDa), chicken ovalbumin (44 kDa). bovine y-globulin (158 kDa) 

and thyroglobulin (670 kDa). (B) Logarithm of protein standard molecular weights and 

their respective retention times were used to generate a calibration curve to estimate A. 

aeolicus PD (red dot) and A19PD (green dot) molecular weights. 
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Appendix 2B 

Sedimentation velocity analysis of A. aeolicus PD and A19PD. The protein 

concentrations were 25 |iM and 37 U.M, respectively; the buffer was 50 mM potassium 

phosphate, 0.3 M NaCl and 0.5 mM TCEP (pH 7.5). Sedimentation velocity was carried 

out at 35,000 rpm at 30°C for 10 h. Top panel: Raw sedimentation data (circles, every 

second scan shown) and fit with the c(s) model (solid lines). The middle panel shows the 

residuals of the fit. The best-fit c(s) distribution is shown in the bottom panel. 
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Appendix 2B (continued) 
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Appendix 2C 
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Modified Stern-Volmer plots of acrylamide quenching of A19PD in the absence and 

presence of NAD+ or Gdn-HCl. The titration of A19PD (3 uM monomer) by acrylamide 

was performed in PPS buffer at 30°C. Acrylamide quenching was monitored in the 

absence (o) and the presence of 0.5 |lM NAD+ ( ) or 6 M Gdn-HCl (•). The modified 

Stern-Volmer plot was constructed by plotting F0/(F0-F) versus 1/[acrylamide]. 

Extrapolations to the ordinate of the points at the lowest quencher concentrations allow 

the determination of the quenching parameters. 
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Appendix 2D 
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Appendix 3A 
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Irreversible thermal inactivation of E. coli CM-PD. Enzyme (1 mg/mL in assay 

buffer) was incubated in capped Eppendorf tubes at 40°C. Samples were removed at 

different time intervals, cooled on ice. centrifuged for 5 min, and residua] activity of the 

supernatant was determined by the standard assay at 30°C as described section 3.1.5. 

Data were fitted to a single-exponential decay described by the following equation: A =AQ 

e ~ . where A is the specific activity at time t, Ao is the activity at time zero, k is the rate 

constant and t the time. Half-life, the time it takes for the enzyme to loose 50% of its 

activity (t]/2) was determined by the following equation: t\a=0.693/k. A half-life of 6 min 

at 40°C was estimated. 
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Appendix 3B 

pH 

The optimum pH for the PD activity. The pH dependence of the dehydrogenase 

activity of A. aeolicus PD and A19PD was monitored between pH 3.2 and 9.8. Assays 

were performed at 55°C in a 3-component buffer system of 0.05 M 2-

morpholinoethanesulfonic acid (MES), 0.05 N-ethylmorpholine, and 0.1 M 

diethanolamine, (containing 0.15 M NaCl), plus 0.8 mM prephenate and 4 raM NAD+. 
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Appendix 3C 
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Effect of NaCI on PD and AI9PD activities. Assays were performed at 55°C in 50 mM 

HEPES and 0 to 2 M NaCI at pH 7.5. NADT and prephenate concentration were fixed at 

4 mM and 0.8 mM, respectively. 
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Appendix 3D 
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Effect of CoCI2 on PD and A19PD activities. Assays were performed at 55°C in 50 mM 

HEPES and 150 mM NaCl at pH 7.5. NAD+ and prephenate concentrations were fixed at 

2 mM and 0.8 mM. respectively. 
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Appendix 3E 

Variation of initial velocity of A. aeolicus A19PD reaction as a function of the 

concentration of prephenate (A) and NAD (B). In (A) Prephenate was varied from 72-

396 pM at fixed concentrations of NAD+ of: 57 (A), 115 and (x) 140 (•) yM. In (B) 

NAD+ was varied from 54-430 U.M at fixed concentrations of prephenate of: 43 (x), 108 

(•) and 216 (A) pJVl. The data were fit to the equation describing a sequential kinetic 

mechanism, v = VAB/(KiJCi, + KaB + K\4 + AB), to generate the lines shown in the figure, 

v is the initial velocity, V is the maximum velocity, A and B are concentrations of 

reactants, Ka and Kb are Michaelis constants for A and B, and Km is the dissociation 

constant from the binary complex. The following kinetic parameters when prephenate 

was the variable, were calculated as 12.1 s'1 (V), 146.3 ± 11.5 (Ka), 82.3 ± 7.1 pjvl (Kb). 

137.8 ±22.1 \lM(Kia). 
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Appendix 3E (continued) 

A 

1/[NAD] (nM1) 

204 



Appendix 3F 

A19PD K(\iM) 

K,s (MM) 

HPP 

99 ± 10 

1 1 8 ^ 1 4 

HPpropionate 

] I 0 ± 9 

485 ± 67 
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Appendix 4A 

Comparison between the architecture of H. influenzae and the modeled E. coli PD 

portion of CM-PD. (A) Cartoon representation of the monomer of the PD portion of 

CM-PD from H. influenzae in complex with its cosubstrate NAD (blue sticks) and L-Tyr 

(yellow stick) (PDB access code, 2pv7). The monomer consists of 12 a-helices and P-

sheets. The N-terminal domain contains a Rossman fold characteristic of nucleotide 

binding site. The C-terminal is highly a-helical and participates in the dimerization 

domain. (B) Three-dimensional structure representation of PD domain of £ coli CM-PD 

modeled against H. influenzae CM-PD. The loop between (35 and P6 in the model is 

positioned differently than in the H. influenzae PD enzyme, preventing modeling of the 

dimer. Model and pictures were generated using Modeller 9v3 and PyMOL, respectively. 
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