
Designing and Trusting Multi-Agent Systems for B2B Applications

Rafiul Alam

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science (Quality Systems Engineering) at

Concordia University
Montreal, Quebec, Canada

September 2008

© Rafiul Alam. 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45510-4
Our file Notre reference
ISBN: 978-0-494-45510-4

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Designing and Trusting Multi-Agent Systems for B2B Applications

Rafiul Alam

This thesis includes two main contributions. The first one is designing and implementing

2?usiness-to-i?usiness (B2B) applications using multi-agent systems and computational

argumentation theory. The second one is trust management in such multi-agent systems using

agents' credibility.

Our first contribution presents a framework for modeling and deploying B2B applications,

with autonomous agents exposing the individual components that implement these applications.

This framework consists of three levels identified by strategic, application, and resource, with

focus here on the first two levels. The strategic level is about the common vision that independent

businesses define as part of their decision of partnership. The application level is about the

business processes, which are virtually integrated as result of this common vision. Since conflicts

are bound to arise among the independent applications/agents, the framework uses a formal

model based upon computational argumentation theory through a persuasion protocol to detect

and resolve these conflicts. Termination, soundness, and completeness properties of this protocol

are presented. Distributed and centralized coordination strategies are also supported in this

framework, which is illustrated with an online purchasing case study followed by its

implementation in Jadex, a java-based platform for multi-agent systems.

An important issue in such open multi-agent systems is how much agents trust each other.

Considering the size of these systems, agents that are service providers or customers in a B2B

setting cannot avoid interacting with others that are unknown or partially known regarding to

some past experience. Due to the fact that agents are self-interested, they may jeopardize the

iii

mutual trust by not performing the actions as they are supposed to. To this end, our second

contribution is proposing a trust model allowing agents to evaluate the credibility of other peers

in the environment. Our multi-factor model applies a number of measurements in trust evaluation

of other party's likely behavior. After a period of time, the actual performance of the testimony

agent is compared against the information provided by interfering agents. This comparison

process leads to both adjusting the credibility of the contributing agents in trust evaluation and

improving the system trust evaluation by minimizing the estimation error.

Keywords: Multi-agent systems, B2B applications, argumentation theory, agent

communication, dialogue games, persuasion, trust.

IV

ACKNOWLEDGMENTS

First, I would like to convey my gratitude to my supervisor, Dr. Jamal Bentahar, for being

an enthusiastic and genius supervisor. He introduced me to the concept of Multi-Agent System

(MAS), the basis of this thesis, and provided me a good source of inspiration. He also helped with

his useful suggestions on the presentation of the results. This research would have been

impossible without his helps and encouragements.

Many thanks to Dr. Ben Hamza, Dr. Amin Hammmad, Dr. Nizar Bouguila for their

guidance and support on my course works and projects. Thanks go to the readers of this thesis,

for their thoughtful comments. Also, I would like to thank all the faculty and staff at the

Concordia Institute for Information Systems Engineering at Concordia University for providing

such a nice academic environment.

1 would like to thank my friends in course works and projects, my colleagues in the lab,

friends and relatives in Montreal for their continuous help and support in work as well as leisure

and also Babak and Maziar for collaborating with the project mentioned in Chapter 5.

Last but not least, my dear parents and my family receive my heartfelt gratitude for their

sweetest support and never-ending love. 1 always feel the warmth of their love and affection

especially of my wife Mahreen. This thesis is dedicated to all of them.

v

Table of Contents

LIST OF FIGURES IX

LIST OF TABLES XI

CHAPTER 1. INTRODUCTION ...1

l. 1 CONTEXT OF RESEARCH 1

1.2 MOTIVATIONS 2

1.3 RESEARCH QUESTIONS 3

1.4 CONTRIBUTIONS 4

1.5 OUTLINE 4

CHAPTER 2. MULTI-AGENT SYSTEMS: AN OVERVIEW 5

2.1 DEFINITION OF AN AGENT 5

2.2 NEGOTIATION IN MULTI-AGENT SYSTEMS 6

2.3 ARGUMENTATION IN NEGOTIATION 7

2.3. J Game-Theoretic Approaches to Negotiation 7

2.3.2 Heuristic-based Approaches to Negotiation 9

2.3.3 Argumentation-based Approaches to Negotiation 9

2.4 TRUST IN MULTI-AGENT SYSTEMS 11

2.5 LEARNING AGENTS IN MULTI-AGENT SYSTEMS 11

CHAPTER 3. MULTI-AGENT PROGRAMMING 13

3. l AGENT-BASED SOFTWARE ENGINEERING TECHNIQUES 14

3.1.1 BDI-Oriented Model 15

3.1.2 Role and Society Based Model 16

3.2 METHODOLOGIES 17

3.2.1 Tropos 17

3.2.2 MaSE 17

3.2.3 Prometheus 19

3.3 JADEX PLATFORM 20

3.3.1 Agent Architecture 21

3.3.2 Beliefbase 22

vi

3.3.3 Goals 23

3.3.4 Plans 24

3.3.5 Events 25

3.3.6 Request Interaction Protocol (RP) 26

3.3.7 Agent's Reasoning Model 28

CHAPTER 4. DESIGNING AND IMPLEMENTING B2B APPLICATIONS USING

ARGUMENTATIVE AGENTS 30

4.1 INTRODUCTION 30

4.2 THE PROPOSED FRAMEWORK FOR BIB APPLICATIONS 32

4.2.1 Brief Description of Levels & Relations 32

4.2.2 Forms of Coordination 34

4.3 FORMAL ARGUMENTATION SYSTEM 37

4.3.1 Generic Background. 37

4.3.2 Partial Arguments and Conflicts for B2B Applications 43

4.4 ARGUMENTATIVE PERSUASION FOR B2B 46

4.4.1 Notations 46

4.4.2 Protocol Specification 48

4.4.3 Protocol Analysis 55

4.5 CASE STUDY 56

4.6 IMPLEMENTATION 60

4.7 RELATED WORK 62

CHAPTER 5. TRUST MANAGEMENT IN OPEN MULTI-AGENT SYSTEMS 65

5.1 BACKGROUND 66

5.2 AGENT ARCHITECTURE 67

5.3 TRUST COMPUTING WITH MAINTENANCE 70

5.4 PROOF OF CONCEPTS 72

5.4.1 Honest Environment 75

5.4.2 Biased Environment 76

5.5 EXPERIMENTAL RESULTS 78

5.6 RELATED WORK 82

VII

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 86

6.1 CONTRIBUTIONS AND CONCLUDING REMARKS 86

6.2 FUTURE WORK 87

REFERENCES 88

APPENDIX 1: AGENT DEFINITION FILE (ADF) 94

APPENDIX 2: PROOF OF PROPOSITIONS AND THEOREMS 94

V I I I

List of Figures

Figure 2.1 Agent characteristics 6

Figure 2.2 Conceptual elements of a classical negotiating agent 10

Figure 2.3 Learning Agent 12

Figure 3.1 Example of BD1 model 15

Figure 3.2 Social (knowledge) level model 16

Figure 3.3MaSE Methodology 18

Figure 3.4 Prometheus Methodology 19

Figure 3.5 Agent Architecture 22

Figure 3.6 The Request Protocol 27

Figure 3.7 Jadex Abstract Architecture 28

Figure 4.1 The argumentative agent framework for B2B applications 31

Figure 4.2 Argumentation in vertical coordination 35

Figure 4.3 Argumentation in horizontal coordination 36

Figure 4.4 Specification of purchase-order scenario 57

Figure 4.5 Scenario description 59

Figure 4.6 Sample of interaction between A-A A of Inv-Mgmt-WS and A-AA of Shipper-WS... 60

Figure 4.7 A screenshot from the prototype -computing arguments- 62

Figure 5.1 Agent structure equipped with BDI architecture 68

Figure 5.2 Trustworthy and referee agent's topology 69

Figure 5.3 Protocol of gathering information from trustworthy and referee agents 70

Figure 5.4 Comparison of CRM with FIRE, Referral and Sporas model, in terms of mean utility

gained value at each RUN 75

Figure 5.5 Comparison of CRM with FIRE model, in terms of commutative utility gained value

over the RUNs 77

ix

Figure 5.6 Substituting untrustworthy agent in maintenance step 79

Figure 5.7 Comparison of CRM and FIRE Model in terms of selecting fickle service providers

along the elapsing RUNs 81

Figure 5.8 Comparison of CRM and FIRE Model in terms of selecting good service providers

along the elapsing RUNs 81

x

List of Tables

Table 3.1 Beliefbase Summary 23

Table 3.2 Goals Summary 24

Table 3.3 Plans Summary 25

Table 3.4 Events Summary 26

Table 5.1 Protocol minimization over the obtained measurement 73

Table 5.2 Protocol minimization over the obtained measurement 77

XI

Chapter I Introduction

Chapter 1. Introduction

In this chapter, we explain what initiated our interest into the design and implementation of

B2B applications using argumentative agents and identify some related technologies. In such

open multi-agent systems, before interacting with another agent for any scenario, agents

representing businesses need to trust each other. This trust management with credibility is another

scope of this thesis. We also specify research problems under consideration, describe our

contributions, and present the structure of the thesis.

1.1 Context of Research

Performance and competition challenges are nowadays putting businesses under constant

pressure to meet changing requirements. This fuels the need for continuous merge and sometimes

re-engineering of business processes, resulting in i?usiness-to-J9usiness (B2B) applications

development. Briefly, a BIB application is a set of business processes that make disparate

autonomous entities (e.g., departments, businesses) collaborate to achieve a common set of goals.

Despite the multiple initiatives on BIB applications [50, 54, 59, 61], not much exists in terms of

modeling and deploying such applications from intelligent and argumentative-agents perspective.

By modeling, we mean identifying all the necessary components that connect assets of

independent entities engaged in a B2B scenario. By deployment, we mean identifying all the

necessary technologies that make the connection of these assets happen effectively. Finally, by

argumentation we mean making software and autonomous agents comply with a dialectical

process to affirm or disavow the conclusions that these agents wish to reciprocally convey. In a

B2B scenario, argumentation would broadly mean assisting businesses, through representative

agents, engage in intense negotiation and persuasion sessions prior to making any joint decisions.

The argumentation capability of an agent representing a business can assist this business in

negotiating with its peers during a conflict situation and in collaborating with them to achieve

1

Chapter 1 Introduction

agreements about their strategies. Our research addresses the challenge of using argumentation

theory for multi-agent systems to develop E2B applications, and a case study is used to illustrate

the proposed framework followed by its implementation. This framework is an initiative within

the emerging field of developing intelligent systems [48, 46]. The technique we are using in this

thesis is different from other techniques proposed in this field such as the Lyee methodology [49].

In this context of open multi-agent systems for B2B applications, trust plays a fundamental

role. Trust models for multi-agent systems represent a set of trust meta-data to define the trust

level of the participating agents [21, 40, 41, 66]. In this thesis, our aim is to develop an efficient

trust assessment process. To do so, agents mutually interact and rate each other based on the

interactions done (either satisfactory or dissatisfactory). The obtained ratings are accumulated to

make the trustworthiness of a particular agent. Inter-agent communication is regulated by

protocols (shared amongst agents and thus public) and determined by strategies (internal to agents

and thus private). Here, agents are capable of evaluating the trust level of the agents which are not

known (or not very well known) by consulting other agents who can provide suggestions about

the trustworthiness level of other agents. The idea of consulting with others originates from the

fact that agents by nature assess diverse trust levels of an agent depending on their different

experiments of direct interaction with that specific target agent.

1.2 Motivations

In order to facilitate agile business and to support dynamic partnership formation,

information systems are designed to support interoperability. In particular, interoperation between

agent systems and electronic business processes is more interesting because of the benefits that

can be achieved from both technologies to accomplish complex goals. Our first motivation is to

present a framework, which will address different levels and components of e-business

applications by intelligent agents that will reason and make decisions. Levels such as resource,

application, and strategic in an e-business setting are connected through vertical relations such as

2

Chapter 1 Introduction

rely-on and run-on-top-of or horizontal relations such as inter connectivity, composition, and

collaboration. The agents in a B2B application should be equipped with argumentation

capabilities to assist a specific component (i) persuade peers of collaborating, (ii) interact with

peers during business process implementation, (iii) resolve conflicts that could impede

collaboration, and (iv) track conflict resolution.

To be able to interact flexibly in B2B dynamic environments, agents need to use advanced

communication mechanisms and to achieve trust. Our second motivation is to find a way to help

agents reason about their communicative acts, combine them efficiently for complex interactions

and achieve the demanded trust. In order to reach that goal, we propose a f-amework for agent

communication based upon logical rules agents can combine to take part in complex interactions

such as negotiation. For trust consideration, the proposed model deals with the classification of

agents according to their level of truthfulness, which help agents to learn and decide in a dynamic

environment where agents may join and leave the system at their own will.

Providing a formal model with termination, soundness, and completeness properties for

resolving potential conflicts between businesses in our integrated model for BIB applications is

our third motivation. Our final motivation is proving the efficiency of the proposed trust model

through simulation using Jadex, a programming platform for intelligent agents. By efficiency we

mean that the malicious agents in the environment are detected faster than any other model in the

literature.

1.3 Research Questions

The overall research questions we are considering in this thesis are the following:

1. How multi-agent systems can be used to design and deploy B2B applications?

2. How agents can play different roles in a B2B scenario? How should they develop arguments

and resolve conflicts?

3. How an agent can trust another agent in a B2B dynamic environment?

3

Chapter 1 Introduction

4. What kind of architecture do we use? Which platform do we select for B2B applications?

1.4 Contributions

The thesis contributions are summarized in three points:

1. Introducing a framework for designing B2B applications using argumentative agents that

combine multi-agent technology and computational argumentation theory.

2. Implementing the proposed framework within a case study about a purchase-order scenario

using Web services.

3. Proposing a trust model for B2B applications including service providers and customers and

proving its efficiency through experimental results.

1.5 Outline

This thesis is divided into 6 chapters and 2 appendices. Chapter 2 and Chapter 3 are about

the state of the art. Chapter 2 introduces multi-agent technology, argumentation theory,

negotiation and trust in multi-agent systems. Chapter 3 presents multi-agent programming with

some methodologies and platforms. Chapters 4 and 5 are about our main contributions. Chapter 4

includes the design and implementation of B2B applications using multi-agent systems where

agents are argumentative. Chapter 5 presents the trust evaluation model. Finally, Chapter 6

concludes the thesis by summarizing our contributions and identifying directions for future work.

Appendix 1 presents the agent definition file used in Jadex implementation. Appendix 2 provides

proofs for some propositions and theorems.

4

Chapter 2 Multi-Agent Systems: an Overview

Chapter 2. Multi-Agent Systems: an Overview

A multi-agent system (MAS) is one that consists of a number of agents, which interact

with one-another. In the most general case, agents will be acting on behalf of users with different

goals and motivations. To successfully interact, they will require the ability to cooperate,

coordinate, and negotiate with each other [1, 2]. By definition, this system is composed of

multiple interacting intelligent agents and is used to solve problems, which are difficult or

impossible for an individual agent or monolithic system to solve. Examples of problems, which

are appropriate to multi-agent systems research, include online trading [3], disaster response [4],

and modeling social structures [5].

After defining an agent in Section 2.1, we devote Section 2.2 to negotiation mechanism in

MASs. Section 2.3 introduces argumentation in negotiation. Section 2.4 addresses the importance

and evaluation of trust. Characteristics required for an agent to be learning are discussed in

Section 2.5. The reader is referred to the references in each section to obtain more knowledge.

2.1 Definition of an Agent

An agent is a computer system that is capable of independent actions in some environment

on behalf of its user or owner (figuring out what needs to be done to satisfy design objectives,

rather than constantly being told) in order to meet its design objectives. An intelligent agent is a

computer system capable of flexible autonomous actions in some environment. We mean by

flexible that agent has the following capabilities:

Reactivity: intelligent agents are able to perceive their environment and response in a

timely fashion to changes that occur in order to meet their design objectives.

Pro-activeness: intelligent agents can generate and attempt to achieve goals. They are not

driven solely by events, but they can take the initiative.

5

Chapter 2 Multi-Agent Systems: an Overview

Social ability: intelligent agents are capable of interacting with other agents (possibly

humans) via some kind of agent-communication language in order to satisfy their design

objectives [1,2].

Weiss [1] defines an agent as "a real or virtual entity which is emerged in an environment

where it can take some actions, which is able to perceive and represent partially this

environment, which is able to communicate with the other agents and which possesses an

autonomous behavior that is a consequence of its observations, its knowledge and its interactions

with the other agents". Figure 2.1 represents the characteristics of an agent.

1 '

Reactivity

Flexible

•"

Pro-Activeness
i '

Social-Ability

Figure 2.1 Agent characteristics

2.2 Negotiation in Multi-Agent Systems

As a type of interaction, negotiation is gaining increasing prominence in agent computing.

By negotiating, agents with conflicting interests, but with a desire to cooperate, try to come to a

mutually acceptable agreement on the division of scarce resources [6, 7, 8, 9]. Resources can be

money, services, time, commodities etc. Resources are scarce in the sense that competing claims

over them cannot be fully satisfied simultaneously. The problem of resource negotiation in a

distributed setting is core to a number of applications, particularly the emerging semantic grid

computing-based applications such as e-science and e-business. To allow agents to autonomously

negotiate with each other, some researchers propose to equip them with argumentation and

logical reasoning capabilities [9, 10, 11, 12, 13, 14, 15]. The idea is to use dialogue games as well

6

Chapter 2 Multi-Agent Systems: an Overview

as the fact that agents should have an argumentative ability to facilitate their communication and

negotiation. Dialogue games are rules governing agent interactions by defining pre and post

conditions of communicative acts, also called dialogue moves [6, 16, 15, 17].

2.3 Argumentation in Negotiation

There are many ways to classify existing approaches to automated negotiation but we

discuss here the three major classes of approaches that suit our purpose in the multi-agent

literature.

2.3.1 Game-Theoretic Approaches to Negotiation

Game theory has its roots in the work of Neuman and Morgenstern (1944) [79]. It is a

branch of economics (Osborne & Rubinstein, 1994) [80] that studies the strategic interactions

between self-interested agents [18]. Game-theory-based negotiation techniques have been widely

used in agent systems (Rosenschein & ZIotkin, 1994; Sandholm, 2002b) [81, 82]. The key

concepts in this approach to negotiation are:

1. Utility functions;

2. A space of deals;

3. Strategies and negotiation protocols.

The difference between the worth of achieving a goal and the price paid achieving it is

defined as utility. Usually, the utilities are given as decision matrices, where an agent looks up a

value for a certain action. Using a strategic reasoning, the agent will perform the action with the

lowest or highest value. Utility functions represent the prices or costs for activities, in the context

of negotiation.

A negotiation protocol defines the rules that govern the negotiation, including the process of

termination. Several negotiation protocols can exist in a complex agent-based system. The

process of negotiation is described as follows. As an outcome of an interaction for an agent,

7

Chapter 2 Multi-Agent Systems: an Overview

utility values are built into a payoff matrix, which is shared by both of the parties involved in the

negotiation. Each agent chooses a deal, which maximizes its expected utility during offers and

counter-offers generated in the process of negotiation. An agent evaluates the other's offer at each

step in terms of its own negotiation strategy. The negotiation process might depend on the agent's

internal goal of maximizing its utilities, but the decisions are settled on the basis of utility

optimization. "In game-theoretic analysis, researchers usually attempt to determine the optimal

strategy by analyzing the interaction as a game between identical participants, and seeking its

equilibrium" [19].

Game theory based negotiation for multi-agent systems fails to address some crucial issues

according to Nwana et al. (1996) [83]:

1. Agents are presumed to be fully rational and acting as utility maximizers using

predefined strategies.

2. Each has knowledge of its payoff matrix, and therefore full knowledge of the

other agent's preferences. This is certainly unlike the real world where agents

only have partial or incomplete knowledge of their own domains. Therefore, this

is unrealistic for truly non-benevolent and loosely coupled agents. Further, the

payoff matrix can become very large and intractable for a negotiation involving

many agents and outcomes.

3. Agents only consider the current state when deciding on their deal; past

interactions and future implications are simply ignored.

4. Agents are considered to have identical internal models and capabilities.

5. Much of the work presumes two agents negotiating, though some later work is

addressing n-agent negotiation.

8

Chapter 2 Multi-Agent Systems: an Overview

2.3.2 Heuristic-based Approaches to Negotiation

A number of heuristic approaches have emerged to address some of the limitations of game-

theoretic approaches mentioned above. Heuristics can be seen as rules of thumb that produce

good enough (rather than optimal) outcomes and are often produced in contexts with more

relaxed assumptions about agents' rationality and resources. Empirical testing and evaluation are

required to support particular heuristics (e.g. Faratin, 2000; Kraus, 2001) [84, 85]. Examples of

this approach are in [18]. Though heuristic methods can overcome some of the shortcomings of

game-theoretic approaches, they also have a number of disadvantages (Jennings et al., 2001) [86].

The models often lead to outcomes that are sub-optimal because they adopt an approximate

notion of rationality and because they do not examine the full space of possible outcomes.

Furthermore, it is very difficult to predict precisely how the system and the constituent agents will

behave. As a result, the models need extensive evaluation through simulations and empirical

analysis.

2.3.3 Argumentation-based Approaches to Negotiation

Argumentation-based approaches to negotiation attempt to overcome the above limitations

by allowing agents to exchange additional information, or to pursue about their beliefs and other

mental attitudes during the negotiation process. In negotiation, an argument is a piece of

information that may allow an agent to justify its negotiation stance, or influence another agent's

negotiation stance.

By definition, negotiation is a form of interaction between agents and that is why a

negotiation framework requires a language that facilitates such communication (Labrou et al.,

1999) [87]. The elements of the communication language are usually referred to as locutions,

utterances or speech acts (Searle, 1969; Traum, 1999) [88, 89]. For example, if p is the

information conveyed by an utterance or locution or speech act, the information conveyed by the

9

Chapter 2 Multi-Agent Systems: an Overview

next one can be the acceptance, refusal, challenge, attack, etc. of p. Indeed, if agents

communicate by exchanging isolated messages, the resulting communication is extremely poor

and agents cannot participate in complex interactions such as negotiations, which are formed by a

sequence of utterances. Figure 2.2 describes the elements of a classical negotiating agent.

Two major proposals for agent communication languages have been advanced in multi-

agent systems, namely the Knowledge Query and Manipulation Language (KQML) (Mayfield et

al.,1996) [90] and the Foundation for Intelligent Physical Agents' Agent Communication

Language (FIPA ACL) (F1PA, 2001) [91]. For example, FIPA ACL offers 22 locutions. In

Chapter 3, we will see how Jadex platform uses FIPA ACL in FIPA Request Interaction Protocol

(RP).

Proposal
- Database

:-« proposal
content

Locution
i interpretation

,•

/ incoming
\ Locuti ons

query

A
Proposal

Evaluation/
Generation

_ query/
update

-•' Opponent/ '
Environment

Model
&

Mental
Attitudes

propose/accept/reject
Locution

Generation
Outgoing
Locutions

Figure 2.2 Conceptual elements of a classical negotiating agent

In the recent research into agent negotiation, flexible protocols based on dialogue games are

used [6, 16, 17]. In Chapter 4, we shall see the important aspects of argumentation in negotiation.

10

Chapter 2 Multi-Agent Systems: an Overview

2.4 Trust in Multi-Agent Systems

J. Ousterhout says: "... The agents need to be able to make decisions that are complex and

subtle, and we need to be able to trust them enough that we don't have to check up on them

constantly" [20]. In multi-agent systems, an agent often finds benefit in cooperating with other

agents to achieve a payoff, through gaining information or performing actions toward a goal.

Cooperation, however in uncertain environments exposes agents to risk. As an example, an agent

may believe another agent, which is malicious, and consequently, it may risk its ability to

accomplish an intended goal, since the requesting agent cannot be guaranteed that the responding

agent will be able to, or will even try to, fulfill the request. In order to evaluate whether to

cooperate and ultimately to provide a decision basis for whom to trust, agents must model both

the worth and risk of interacting with other agents. Models of trust serve as decision criteria for

whether to cooperate with the agent whose trust is being modeled. While explaining the

implementation of the proposed trust model in Chapter 5, we will consider other issues related to

trust.

2.5 Learning Agents in Multi-Agent Systems

While the agents are referred to be autonomous and intelligent, do not necessarily mean

that they are also capable of learning. In our proposals presented in Chapters 4 and 5, all the

agents are learning agents (Figure 2.3) which means that they will learn and adapt to changing

circumstances. According to Kasabov [22], a learning agent should exhibit the following

characteristics:

1. Learn and improve through interaction with the environment (embodiment);

2. Adapt online and in real time;

3. Learn quickly from large amounts of data;

11

Chapter 2 Multi-Agent Systems: an Overview

4. Accommodate new problem solving rules incrementally;

5. Have memory based exemplar storage and retrieval capacities;

6. Have parameters to represent short and long term memory, age, forgetting, etc.;

7. Be able to analyze itself in terms of behavior, error and success.

AGENT

f «

learnin

Performance
Standard

1
Critic

»dback 1

Learning
element

3 goals t r

Problem
Generator

changes _̂

knowledge

1 '

Performance
element

-/experiments

'

>

)

percepts

actions

r ">

ENVIRONMENT

\ J

Figure 2.3 Learning Agent

12

Chapter 3 Multi-Agent Programming

Chapter 3. Multi-Agent Programming

Increasing software and complex systems are using software agents as components to

cooperate and coordinate with each other to achieve their expectation. It is becoming more

necessary and popular within the domain of agent-based systems that designers need special

methodologies to develop software according to the various requirements. Within the last decade,

a blooming of agent-based methodologies were introduced and developed based on various

theoretical grounds, such as, object-orientation and knowledge representation. Due to lacking of

systematic estimation of these approaches, it is difficult to select a proper methodology for

designing a particular project. Even only few frameworks were proposed to evaluate those agent-

oriented methodologies, however, the measurements in those frameworks are not sound enough.

Hence, it is crucial to systematically analyze and evaluate agent-based methodologies to ensure

that developers can apprehend what advantages and drawbacks of each methodology are, and

which methodology should be chosen when they face several specific complicated systems and

projects. The discussed evaluation of methodologies is out of the scope of this thesis work. We

have used some of the ideas while designing the implementations mentioned in Chapters 4 and 5.

We assessed three prominent agent-oriented methodologies: MaSE, Tropos and Promethus and

focused on MaSE. This chapter is organized as follows: Section 3.1 describes two models for

agent-based software engineering techniques. Section 3.2 discuses the three agent-oriented

methodologies mentioned above. Finally, in Section 3.3 we describe Jadex platform and the

features that we have used in our implementations.

13

Chapter 3 Multi-Agent Programming

3.1 Agent-based Software Engineering Techniques

The most important aspect of the agent-oriented technology is its ability to deal with

complexity and emergent behavior of distributed software systems. To construct such complex

systems, we need a suitable methodology as a solid foundation to develop the system from the

requirement to the implementation stage. Recently, more than two dozen methodologies have

been proposed such as: Gaia [23, 30], MaSE [24], MESSAGE [25], Tropos [26], HL1M [27],

Prometheus [28], AUML [29], etc. Yet, only recently, the evaluation of these methodologies

draws the research community attention. For examples, a comparison among agent-oriented

methodologies shows in [25] estimates the similarity between the models of the Gaia [23, 30] and

MAS-CommonKADS [31] methodologies. However, it does not explicitly evaluate these

methodologies or provide techniques for doing so. A similar comparison is presented in [28], in

which the authors contrast between Gaia and MaSE [24] and conclude that MaSE is much more

detailed than Gaia. Yet, they do not mention drawbacks of MaSE nor do they provide outlines for

making a comparison between methodologies.

In [32], the authors suggest an exemplar case study according to which the various

methodologies could be estimated. In addition to the case study, they list a set of questions to be

asked about an agent-oriented methodology. However, the questions are somewhat vague and

answering these questions may not lead to an understanding of what the right methodology is for

a specific project, i.e., there is no framework for evaluating agent-oriented methodologies within

that study. Another work on the comparison among agent-oriented methodologies [33]

summarizes the advantages and drawbacks of several streams (such as SE, formal methods, and

knowledge engineering) within the domain of agent-oriented methodologies. However, it

overlooked some of the software engineering aspects of MASs and agent application properties.

Additionally, that work did not provide evaluation criteria for assessing advantages and

14

Chapter 3 Multi-Agent Programming

drawbacks of various modeling methods within a specific stream. Before discussing some

methodologies, we should introduce some concepts in the following subsections.

3.1.1 BDI-Oriented Model

BDI (Belief, Desire and Intention) is the well-known method to describe rational agents.

The motivation of BDI is the recognition that when modeling the behavior of an agent, we should

consider the dynamic factors from the system and the environment. BDI describes an agent's

beliefs about the system and the environment, the agent's desires (or goals) to achieve as well as

expressing the agent's intention by way of executable plans. Agents can reason about what is the

best plan for achieving desires under specific beliefs about the environment. An agent can review

its goals and respond with revised plans, if necessary, as system or environmental parameters

change. Figure 3.1 illustrates these concepts, which convey that intelligent (or cognitive) adaptive

systems may comprise three types of processes: reactive, for producing timely responses to

external stimuli; deliberative, for possessing learning and reasoning abilities; and reflective, for

the ability to continuously monitor and adapt based on introspection. Although useful, the BDI

model has limitations for use for the design of multi-agent systems [35, 36].

(Component Rules and Constraints

.' Intcr-Agcm •
1 Communication j
\aiid Coordination/

Inputs/Outputs

(sensors and I
V actuators) j

Application/Environment Context
Component Context
Cognitive Agent i n l e r a c ! i „ x md Conmbumm ,..~\

Public

Private

Public
Beliefs

Beliefs

Private
Beliefs

Public
Gails

(Soils

Private
Goals

Public
Services

Intentions H
Autonomic
Proactive
Reactive

Reasoning and Adapting

Acent Privileges. Access Policies and linfbrcenicni Mechanisms
y

Figure 3.1 Example of BDI model

15

file:///aiid

Chapter 3 Multi-Agent Programming

3.1.2 Role and Society Based Model

We introduce this model from two viewpoints. The first is the social-level point of view and

the second is the knowledge-level viewpoint. Figure 3.2 shows the social level model in a

summary diagram, which delineate how a system is modeled as an organization or society made

up of components, the majority of which are agents. Their communication channels include

content and mechanisms, dependencies between agents, and organizational relationships such as

the concepts of peers and competitors. In the society, compositional laws are used as guidelines

that describe how components in the system are organized under the regulation of the society.

Behavioral laws regulate how components (i.e., members in the organization) meet both their

roles and societal commitments. From the social level viewpoint, units of the system are different

organizations in the society. Different organizational mechanisms and structures can influence the

behavior of the constituent components. The way organizational structures change can also

significantly affect role relationships, especially by adding/removing roles. The Medium

describes how to accomplish these changes, and from the knowledge level side, agents are central

to a system. An agent perceives its goals and accomplishes them by actions. These goals and

actions are governed by rational rules, which are provided as laws. All laws are based on the

knowledge of their environment.

K n o w l e d g e L e v e l S o c i a l Leve l

A g e n t

G o a l s ,
a c t i o n s

v a r i o u s

Pr inc ip le o f
ra t iona l i t y

K n o w l e d g e

S y s t e m
A.

C o m p o n e n t

C o m p u t a t i o n a l l aw

**..
B e h a v i o r l aw

•
M e d i u m

A g e n t
O r g a n i z a t i o n

A g e n t
R e l a t i o n s h i p

R o l e s ,
o r g a n i z a t i o n a l
r u l e

P r inc ip le of
o r g a n i z a t i o n a l
ra t iona l i t y

S o c i a l S t r uc tu re

Figure 3.2 Social (knowledge) level model.

16

Chapter 3 Multi-Agent Programming

3.2 Methodologies

In this section, the three main methodologies of multi-agent software development will be

discussed.

3.2.1 Tropos

Tropos [34] was introduced by a research group in University of Toronto, Canada, and is

being extended and maintained in some universities in Europe. It was developed for building

agent-oriented software systems. Tropos is based on two key ideas. First, the notions of agent and

all related mental notions such as goals and plans are used in all phases of software development,

from early analysis down to the actual implementation. Second, a crucial role is assigned to

requirements analysis and specifications when the system is analyzed with respect to its intended

environment. There are five phases in the Tropos design process: (1) early requirements analysis

phase: the relevant actors are defined, along with their respective goals; (2) late requirements

analysis phase: a potential system actor is introduced and is related to actors in terms of actor

dependencies; (3) architectural design phase: more system actors are introduced and they are

assigned sub-goals or sub-tasks of the goals and tasks assigned to the system; (4) detailed design

phase: system actors are defined in more detail, including specifications of communication and

coordination protocols; and (5) implementation phase: the Tropos specifications produced during

detailed design phase is transformed into skeleton for the implementation. Tropos adapts JACK

programming language for its execution because they are both based on BDI architecture [34,

35].

3.2.2 M a S E

The Multi-agent Systems Engineering (MaSE) is a general-purpose methodology for

developing multi-agent systems that is founded on the basis of software engineering principles

[24]. MaSE divides the development process into two major phases: the analysis phase and the

17

Chapter 3 Multi-Agent Programming

design phase. For each phase, MaSE provides a set of stages need to be performed. Figure 3.3

presents the development process proposed by MaSE. The analysis phase consists of the

following stages: capturing goals, applying use cases and refining roles. The design phase

consists of the following stages: creating agent classes, constructing conversations, assembling

agent classes and system design.

C a p t u r i n g
G o a l s

A p p l y i n g
U s e C a s e s

3>
=3

I
C3

t o "
=3

R e f i n i n g
R o l e s

C r e a t i n g
A g e n t
C l a s s e s

C o n s t r u c t i n g
C o n v e r s a t i o n s

A s s e m b l i n g
A g e n t
C l a s s e s

D e p l o y m e n t
D i a g r a m s

S y s t e m
D e s i g n

Figure 3.3MaSE Methodology

MaSE methodology deciphers agent-based software design as two main parts: (1) goal

analysis, conducted at the beginning of a MaSE process to reinforce goal preservation through

analysis and (2) design phases. It facilitates role and agent class modeling to focus on clear goal

delegation, where every role is responsible for a particular goal to be accomplished. Every goal

18

Chapter 3 Multi-Agent Programming

has to be associated with a role. With these roles defined, the design of communication between

roles and their corresponding tasks becomes fixed, lacking dynamic adaptability of goals.

3.2 .3 P r o m e t h e u s

We consider the overall structure of the Prometheus methodology [28]. Prometheus is

intended to be a practical methodology. It aims to be complete: providing everything that is

needed to specify and design agent systems.

c
_0
*3

s °
** s
*» a.

Scenarios
[Sy$t9ro goals [

~>i Initial |
4 Functionality h

"1„ctesaigtOTs_j :

! Actions, percepts

sc
,0)
3
!
3
o
fit

.--*

Interaction
diagrams

agent j
acquaintance j

*_
Date
coupling

Key

. . final design
i 1 artifact

—j intermediate
~~' design tool

• crosscheck

-•*• derives

/J messaaes

Protocols System
[Overview}

TT

T

shored
data

Agent
t descriptors J

£ I Process

VI

«

Agent
Overview

1

Capability
I descriptors J

TV

4l
Q

Capability
overview

— r n —

Event
descriptors

f '

_fc
Data
descriptions

_

ki
(Plan

descriptors

Figure 3.4 Prometheus Methodology

Prometheus methodology consists of three main designing phrases: (1) system specification;

(2) architecture design and (3) detailed design. Firstly, system specification begins with a rough

idea of the system, which may be simply a few paragraphs of rough description, and proceeds to

define the requirements of the system in terms of the goals of the system, use case scenarios,

19

Chapter 3 Multi-Agent Programming

functionalities, and the interface of the system to its environment, defined in terms of actions and

percepts.

Several distinguishing features of the Prometheus methodology are below:

1 Prometheus is detailed - it provides detailed guidance on how to perform the various steps that

form the process of Prometheus.

2 Prometheus supports the design of agents that are based on goals and plans. A significant part

of the benefits that can be gained from agent-oriented software engineering comes from the use

of goals and plans to realize agents that are flexible and robust.

3 Prometheus covers a range of activities from requirements specification to detailed design.

4 The methodology is designed to facilitate tool support, and tool support exists in the form of

the Prometheus Design Tool (PDT), which is freely available.

Since we have used Jadex as platform, we choose MaSE along with some added and

modified techniques for the methodology to design the software, which is the implementation of

our negotiation protocol and trust mechanism in Chapters 4 and 5.

3.3 Jadex Platform

Software agent technology is in high demand and many software companies are directing

their attention on developing platforms that could be used for the creation of multi-agent

environments. Some of these platforms include Jack, Jade, and Jadex. The platform we used in

implementing the multi-agent environment is Jadex [37] since it is fully compatible with Belief,

Desire and Intention (BD1) model and provides a BD1 reasoning engine.

The Jadex system is based on the BDI model and facilitates easy intelligent agent

construction with sound software engineering foundations. It uses both XML and Java and can be

deployed on different kinds of middleware such as Jade. In order for the creation of agents to

20

Chapter 3 Multi-Agent Programming

happen, agent architecture should take into account agent internal state and artificial intelligence

concepts.

The Jadex project [37] accommodates these properties with an open research map that

outlines the areas of interest and the actual work in progress in these fields. The framework

consists of an API (Application Program Interface), an execution model, and a predefined

reusable generic functionality.

The API provides access to the Jadex resources when starting programming plans. Plans are

plain Java classes, which could include information such as sending messages, or waiting for

events. Jadex has included an intuitive OQL (Object Query Language) used to make queries into

databases and information systems. In addition to the plans coded in Java, it provides an XML

based Agent Definition File (ADF), which specifies the initial beliefs, goals, and plans of an

agent.

In order to develop an agent application in Jadex, one has to create two types of files: XML

Agent Definition Files (ADF) (see Appendix 1) and Java classes for the plan implementations.

Plans describes the actions that an agent undertakes. The developer needs to define the head and

body of the plan. The head contains the conditions in order for the plan to be executed, and these

conditions are to be found in the agent definition files. The body is the complete set of steps

describing the actions to achieve a goal or reaction. The agent definition file is an XML file that

contains the beliefs, goals, and plans of an agent.

3.3.1 Agent Architecture

Our model is implemented on the Jadex platform and as a result, it follows the same agent

architecture as the one presented in Figure 3.5. The figure shows how the execution on the agent

level takes place in order to produce a message from the plans. The beliefs, goals, plans and

events used in this architecture will be described in the following subsections.

21

Chapter 3 Multi-Agent Programming

JADEX Agent

NewZZs:ge Events Queue
- > • -

Events Select
Plans

Plans
New

Messages
•

Figure 3.5 Agent Architecture

3.3.2 Beliefbase

A beliefbase is a container that stores believed facts and is an access point for the data in the

agent. It provides more abstraction as compared to the attributes in object-oriented world and

represents a unified view of the knowledge of an agent. The information about the beliefs, goals,

and plans of an agent are included in the ADF. An example of an ADF is shown in Appendix 1.

The beliefbase contains strings as the name of a belief that represents an identifier for a specific

belief. Since we have two proposed protocols for different aspects in a multi-agent system and we

have limitation of space for this thesis, we include only one agent's ADF (Appendix 1) for a

consumer agent of the trust model described in Chapter 5. Table 3.1 shows the summary of the

mentioned agent's beliefbase [21, 37].

22

Chapter 3 Multi-Agent Programming

Belief Summary:

Names

Circle

Mine

KnownTr

KnownTR

KnownN

Utility

content of info

Agent has in his knowledge base the names of all the agents present in the framework as a

String array.

agent list

The set of all the agents in the known community as an array list

agent categorization

The set of agent categorization (agent trust table) as an array list

Values

Trustworthy agent's trust values as a hash table

Values

The recency of the information about trustworthy agents as a hash table

Values

Trustworthy agent's number of interactions as a hash table

Values

The value of the provided service by a service provider agent as an integer

Table 3.1 Beliefbase Summary

3.3.3 Goals

Goals are a central concept in Jadex; they are concrete, momentary desires of an agent.

Unlike traditional BD1 systems, Jadex treats goals as events. Agents will more or less directly

engage into suitable actions, until the goal is being reached. When a goal is adopted, it becomes

an option that is added to the agent's desire structure. Some goals may only be valid in specific

contexts determined by the agent's beliefs. When the context of a goal is invalid, it will be

suspended until the context is valid again. An ADF will include the content of an agent's goal

23

Chapter 3 Multi-Agent Programming

(see Appendix 1) [37]. Table 3.2 shows the content of a goal that represents the agent's desire

discussed in the previous section.

Goals Summary:

Achievegoalref dfsearch

Search the agents and services in the Directory Facilitator (DF)

Achievegoalref rp initiate

Initiates the FIPA Request Interaction Protocol (RP) (section 3.3.6)

Maintaingoalref dfkeepregistered

Ensures that an agent description remains available at the DF as long as the goal

is present in the agent

Table 3.2 Goals Summary

3.3.4 Plans

Plans describe the concrete actions that an agent may carry out to reach its goals. The plan

has a head and a body that the developer needs to define. The head contains the conditions under

which the plan may be executed and used as specified in the agent definition file (ADF)

(appendix 1). The body of the plan, written in JAVA, is a procedural recipe describing the actions

to take in order to achieve a goal or react to some event. Table 3.3 shows different plans that

agents have in our implementation of the proposed model.

24

Chapter 3 Multi-Agent Programming

Plans Summary:

Select

Tell

Give

Final

Init

EvaluatonPlan

This plan evaluates the trust values as per the proposed protocol and gets services from

the providers and updates beliefs if necessary.

Mine informPlan

This plan informs when asked the other agents of its own trustworthy agents community.

Value informPlan

This plan informs when asked the other agents of its own trustworthy agent's trust value,

time relevance and number of interactions it had with that agent.

Utility informPlan

This plan informs when asked about the best service provider agent's rank of the

provided service.

InitialPlan

The plan initiates the trust table and content table of the agent's in its circle of activity.

Table 3.3 Plans Summary

3.3.5 Events

An important property of agents is the ability to react in a timely fashion to different kinds

of events. In Jadex, these events are presented in the ADF program. There exist two types of

events, message events and internal events. Internal events can be used to denote an occurrence

inside an agent, while message events represent a communication between two or more agents.

Events are usually handled by plans [37]. Table 3.4 gives an event summary for our implemented

agents for trust management.

25

Chapter 3 Multi-Agent Programming

Events Summary:

request init

request final

requesttell

requestselection

request what

Inform

Failure

direction = "receive"

Initiates the initial plan

direction= "receive"

Initiates the utilityinform plan

direction= "receive"

Initiates the mine inform plan

direction= "receive"

Initiates the evaluation plan

direction= "receive"

Initiates the valueinform plan

direction= "send"

This ensures that the important information such as the conversation-id and in-

reply-to also appears in the answer. Moreover, message properties, which should

not change during a conversation (e.g. protocol, language and ontology) are also

automatically copied into the success reply.

direction= "send"

This ensures that the important information such as the conversation-id or in-

reply-to also appears in the answer. Moreover, message properties, which should

not change during a conversation (e.g. protocol, language and ontology) are also

automatically copied into the failure reply.

Table 3.4 Events Summary

3.3.6 Request Interaction Protocol (RP)

The Request Interaction Protocol [37] manages the interaction consisting of one initiator

and one participant agent. The initiator wants the participant to perform some action. We have

26

Chapter 3 Multi-Agent Programming

used this protocol through Jadex for our multi-agent system of the both negotiation protocol and

trust mechanism proposed in Chapters 4 and 5.

initiator
Domain Layer

FIPA-Request-Protocol)

Initiator
Protocol Layer

(t i l »Uki*it, m i^vsrtvwf.

tpjn-im's «na

Participant
Protocol taver

Participant
Domain Laver

o u t jnfcvOCtj*'* *fc*tO, <k*t « X * ^ t j

|*n acSofu is ai^s*K,

{inackw, *n i»i!ykr.

rpm?ec«Hvef „rs?wactxsi sr&
J

Figure 3.6 The Request Protocol

The protocol consists of an initiator and a participant (Figure 3.6). The initiator asks the

participant to perform an action by sending a request message. When the participant receives this

message, it accepts or refuses to perform the action, and depending on that decision, it sends

either an optional agree message or a refuse message. If it has agreed, the participant

subsequently performs the action and when it has finished, it sends a failure or an inform

message. The inform message may be just a notification that the task was done or contain a result

of the task execution.

27

Chapter 3 Multi-Agent Programming

3.3.7 Agent's Reasoning Model

After all the discussions about different parameters in agent architecture, it is good to

mention here the process of reasoning in Jadex. Jadex facilitates using the BDI model in the

context of mainstream programming, by introducing beliefs, goals and plans as first class objects

that can be created and manipulated inside the agent. In Jadex, agents have beliefs, which can be

any kind of Java object and are stored in a beliefbase. Goals represent the concrete motivations

(e.g. states to be achieved) that influence an agent's behavior. To achieve its goals the agent

executes plans, which are procedural recipes coded in Java. The abstract architecture of a Jadex

agent is depicted in Figure 3.7.

A g e n t
s~ """-•

Practical reasoning
interpreter

Hand*

Goal
deliberation

, Handle.

Means-end
reasoning

Capsbi%

Beliefs

events

Goals

\ Events <^ * -

Plans

:m#33,ag€&

Figure 3.7 Jadex Abstract Architecture

28

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Chapter 4. Designing and Implementing B2B

Applications Using Argumentative Agents

The design and implementation of BIB applications using computational argumentation

theory and agent technology is described in this chapter. Section 4.1 introduces the framework

from e-business point of view. Section 4.2 describes our agent-based framework for B2B

applications. Section 4.3 presents the argumentation model upon which this framework operates.

Section 4.4 discusses the argumentative protocol for BIB conflict resolution and analyzes its

formal and computational properties. A case study illustrating this model through a running

example is provided in Section 4.5. The implementation of the running example is discussed in

Section 4.6.

4.1 Introduction

Our framework for B2B applications suggests three levels, resource, application, and

strategic that are connected through rely-on and run-on-top-of relations (Figure 4.1). These levels

represent the way businesses generally function: the strategic level, associated with a set of

Strategic Argumentative Agents (S-AAs), sets the goals to reach (e.g., 10% revenue increase).

Decisions affecting a business growth are made at this level. The application level, associated

with a set of Application Argumentative Agents (A-AAs), sets the automatic and manual

processes (e.g., new auditing system) that permit fulfilling these objectives. The resource level,

associated with a set of Resource Argumentative Agents (R-AAs), sets the means that achieve the

performance of these processes. The framework couples components (that reside in one of the

three levels) with agents equipped with argumentation capabilities to assist a specific component

(i) persuade peers of collaborating, (ii) interact with peers during business process

implementation, (iii) resolve conflicts that could impede collaboration, and (iv) track conflict

30

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

resolution. Still in Figure 4.1, rely-on relation means mapping the business objectives onto

concrete system applications, and run-on-top-of relation means performing the business processes

of these system applications subject to resource availabilities. In addition, both relations make

issues at lower levels influence goals at higher levels. For example, lack of resources could result

in reviewing goals. In Figure 4.1, horizontal relations permit linking similar levels of separate

businesses. We refer to these relations by interconnectivity, composition, and collaboration.

Underneath each horizontal relation's name, an example of conflict to fix in a BIB scenario is

shown for illustration purposes. Collaboration relation bridges the strategic levels and focuses on

how businesses adapt their goals and plans so that these businesses can now reach the goals that

result out of their decision of partnership. Composition relation bridges the application levels and

focuses on how new business processes are developed, either from scratch or after re-engineering

existing processes. Finally, interconnectivity relation bridges the resource levels and focuses on

the means that make the performance of business processes happen despite distribution and

heterogeneity constraints.

Business

Strategic level

~ *
Rely on

r

, Collaboration >

Business ;

Application level

Run on top-of

t

(policy conflict,...)

Composition

Strategic level

(semantic conflict,...)

Rely on

t
Application level

Resource level
, Interconnectivity y
(compatibility conflict,...)

Run on top-of

±
Resource level

i f y) , (r ^) , (i y 1 Strateglc,App]ication,Resource Argumentative Agent

Figure 4.1 The argumentative agent framework for BIB applications

3 1

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

4.2 The Proposed Framework for BIB Applications

4.2.1 Brief Description of Levels & Relations

The resource level includes data and software resources (e.g., DBMS) that a business owns

or manages, and the hardware resources upon which these software resources run.

The application level is about the software applications that businesses operate such as

payroll. From a BIB perspective, the application level hosts a number of ^4-AAs according to the

number of these applications. The role of ^-AAs is (i) to monitor the external business processes

that will make use of software applications and (ii) to initiate interaction sessions with other A-

AAs. These sessions frame application compositions according to the guidelines that S-AAs set

and resolve possible conflicts during these compositions as depicted by composition relation in

Figure 4.1. For illustration purposes, we assume that software applications are implemented as

Web services [53], although other technologies could be used.

The strategic level is about the planning and decision-making mechanisms that underpin a

business growth. Like the application level, the strategic level hosts a number of S-AAs according

to the number of active collaborations that a business initiates with its partners. The role of S-AAs

is (i) to reason over the business plans and (ii) initiate interaction sessions with other S-AAs as

depicted by collaboration relation in Figure 4.1. These sessions aim at persuading peers to

participate in collaborations, reviewing policies in case of conflicts, optimizing some parameters

such as distribution network, etc. A-AAs feed S-AAs with details related to the execution progress

of business processes. Particularly, if a conflict during the composition process cannot be

resolved, ̂ 4-AAs inform their respective S-AAs.

From an argumentation perspective, S-AAs and ^-AAs are equipped with the same

reasoning capabilities. However, they differ in terms of the knowledge they manage and the

responsibilities they are in charge of. For example, to resolve conflicts at the application or

strategic levels, ,4-AAs or S-AAs use the same persuasion and negotiation protocols but execute

32

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

them differently. Protocols publicly describe the allowed moves, but how to select a certain move

would dependent on the knowledge that feed agents' private strategies.

Figure 4.1 shows vertical and horizontal relations. In a B2B context, the focus is on

horizontal relations. Interconnectivity relation targets the resource level and allows (i) data to

freely and securely flow between businesses without any restriction related to format, location, or

semantics and (ii) disparate resources to trigger each other without any restriction related to

access rights, time-slot availabilities, or compatibilities. Communication protocol incompatibility

(e.g., different vendors) is an example of conflict that falls under interconnectivity relation.

Composition relation targets the application level and exhibits how business processes

associated with A-AAs get "virtually" integrated without being subject to any functional or

structural changes. Lack of common semantics (e.g., different measurement units) is an example

of conflict that falls under composition relation. When it comes to Web services-based

applications, composition targets users' requests that cannot be satisfied by any single, available

Web service, whereas a composite Web service obtained by combining available Web services

may be used.

Collaboration relation targets the strategic level and emphasizes the mechanisms that S-

AAs set-up for coordinating the new B2B processes using A-AAs. These processes result out of

composing applications, stretch beyond businesses' boundaries, and have to consider the

requirements/limitations of the resource and application levels per business. Policy

incompatibility (e.g., various tax rates) is an example of conflict that falls under collaboration

relation. Policies of businesses can be in contradiction, and some core business policies cannot be

easily re-engineered. By using argumentative agents, we aim at handling these issues. Through

their argumentative reasoning, and interaction, negotiation, and persuasion abilities, these agents

could reason about these policies, identify possible conflicts and update their policies to resolve

these conflicts. They can also persuade each other for the benefit of collaborating and sharing

33

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

their resources and determining alternative agents to work with, in case current conflicts cannot

be resolved.

4.2.2 Forms of Coordination

We split coordination in the argumentative agent-based framework into two forms: vertical

between strategic and application levels via rely-on relation, and horizontal between strategic or

application levels via collaboration or composition relations, respectively. We discuss hereafter

how argumentation is used with coordination using Figures 4.2 and 4.3 where plain lines and

dotted lines denote interactions and conflict detection/resolution respectively.

Vertical Coordination occurs within the boundaries of the same business. Here an S-AA

has the authority to execute a set of actions over an ,4-AA (Figure 4.2): "select", "ping", "trigger",

and "audit". These actions are explained as follws:

1. "select" action makes the S-AA identify the A-AA of an application that will pursue the

interactions with other A-AAs as part of the partnership decision;

2. "trigger" action makes the S-AA forward the execution requests to the A-AA of an

application; these requests arrive from others A-AAs;

3. "audit" action makes the S'-AA monitor the performance of an application through its A-AA;

this is needed if the S-AA has to guarantee a certain QoS to other S-AAs.

Argumentation in vertical coordination is illustrated with two cases: Application-to-

Strategic (this chapter focus) and Strategic-to-Application.

34

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Figure 4.2 Argumentation in vertical coordination

Application-to-Strategic case highlights an A-AA that faces difficulties in resolving

conflicts and completing its operations. For example, this A-AA was put on hold for a long period

due to occupied resources or did not receive information in the right format from other

businesses' .4-AAs. As a result, the A-AA notifies its S-AA so that both set up an argumentation

session for the sake of discussing the current difficulties and the potential solutions to put

forward. This notification is represented with "feedback" in Figure 4.2. Briefly, we report on the

way conflict resolution progresses in this argumentation session.

Case 1. The S-AA has an argument supporting the fact that the conflict facing the 4̂-AA

could be resolved based on similar past situations for example. Thus, the S-AA argues with the A-

AA about the feasibility of this solution using persuasion (Section 4.2.2). If the A-AA is not

convinced (i.e., persuasion fails), the .S-AA will decide to select another A-AA to continue the

uncompleted composition work of the withdrawn A-AA.

Case 2. The S-AA does not have any argument for or against the possibility of resolving the

conflict facing the A-AA. Thus, -S-AA and A-AA collaborate to find a solution through an inquiry

dialogue game like the one proposed in [42]. As defined byWalton and Krabbe [60], inquiry

35

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

dialogues rise from an initial situation of general ignorance and the purpose is to achieve the

growth of knowledge and agreement.

If neither case 1 and case 2 succeed, the respective S-AAs of the collaborative businesses

try to work out a solution via horizontal coordination. When a solution is found, the S-AAs invite

the same J-AAs if they are still available, or new ones to take part in the composition to deploy at

the application level.

Strategic-to-AppIication case highlights an S-AA that expects the occurrence of conflicts if

appropriate actions are not taken on time. Examples of actions include reprimanding an A-AA

that released private details to peers. Expecting conflicts is based on the different feedbacks that

the S-AA receives from their ,4-AAs. This shows a preventive strategy to conflict occurrence.

However, preventive strategies are beyond the scope of this thesis.

Horizontal Coordination spreads over the boundaries of businesses and thus, reflects BIB

applications in a better way. We identify two scenarios where each scenario involves either S-

AAs or J-AAs. For the sake of simplicity, our description is restricted to/4-AAs. Here an A-AA

has the authority to carry out a set of actions over another peer engaged in the same composition

(Figure 4.3): "ping" and "trigger".

1. "ping" action makes the A-AA check the aliveness of a remote application through its A-AA:

this is needed before the former A-AA submits requests;

2. "trigger" action makes the A-AA submit its requests to a remote application through its A-

AA.

„ . c.
y- 2

Initiator: A-AA ; Actions
• >

7T
Argumentation session

conflict resolution

Recipient: A-AA j

~K

Figure 4.3 Argumentation in horizontal coordination

36

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

able to capture properties that other frameworks concentrate on. The set of well-formed formulas

{wff) built from L is denoted by WF.

Agents build arguments using their beliefs. The set Arg{L) contains all those arguments. Similarly

to [38, 43, 44], we abstractly define argumentation as a dialectical process that underpins the

exchange of for/against arguments that lead to some conclusion. Because we are using an abstract

language, we are not interested in the internal form of an argument. Formally, we define our

argumentation framework as follows:

Definition 1 (Argumentation Framework) An abstract argumentation framework is a pair

< A, JIT >, where A Q Arg(£), and AT Q A X A is a binary relation over A that is not

necessarily symmetric. For two arguments a and b, we use JIT (a, ft) instead of JIT 6 {(a, ft)} to

indicate that a is an attack against b.

For example, an argument may be defined as a deduction of a conclusion from a given set

of rules, or as a pair (//, ft) where ft is a sentence in WF and H a subset of a given knowledge

base such that (i) H I- ft, (ii) H is consistent, and (iii) there is no subset of H with properties (i)

and (ii).

As conflicts between arguments might occur, we need to define what an acceptable

argument is. To this end we define first the notions of "defense" and "admissible set of

arguments" (from [44, 45]):

Definition 2 (Defense) Let A £ Arg(£) be a set of arguments over the argumentation

framework, and let S £ A. An argument a is defended bySiffVbGA if JIT (b, a), then 3c G

5: JlT(c, b).

Definition 3 (Admissible Set) Let A Q Arg(L) be a set of arguments over the

argumentation framework. A set S £ A of arguments is admissible iff:

38

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

])$a,b £S such that JIT {a, b) and

2) Va G S a is defended by S.

In other words, a set of arguments is admissible iff it is conflict-free and can counter­

attack every attack.

Example 1 Let A = {a,b, c, d} and JIT defined as follows: JlT(b, a), <AT (c,a),

<AT(d,b), c/£T(d, c). The sets: 0, {d} and {a, d} are all admissible. However, the sets {b} and

{d, c} are not admissible.

Definition 4 (Characteristic Function) Let A £ Arg(£) be a set of arguments and let S

be an admissible set of arguments over the argumentation framework. The characteristic function

of the argumentation framework is:

F:2A ->2A

F(S~) = {a\a is defended by S]

Definition 5 (Extensions) Let S be an admissible set of arguments, and let F be the

characteristic function of the argumentation framework.

• S is a complete extension (Sco) iffS = F(S).

• 5 is the grounded extension (Sgr) iffS — F(S) and S is minimal (w.r.t. set-

inclusion) (grounded extension corresponds to the least fixed point ofF).

• S is a preferred extension (Spr) iff S = F(S) and S is maximal

(w. r. t. set inclusion).

Example 2 Let us consider the same argumentation framework as in Example 1.

We have:

39

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

• F(0) = {d}, so the admissible set 0 is not a complete extension.

• F({d}) = {a, d), so the admissible set {d} is not a complete extension.

• F({a,d}) = {a,d}, so the admissible set {a,d} is a complete extension.

In this example, the only complete extension is {a,d} the grounded extension and is also

the only preferred extension.

Example 3 Let A={a,b,c} and <AT defined as follows: AT(a, b), AT (b, a). The sets: {c},

{a, c}, and {b, c} are the complete extensions of the argumentation framework. The minimal

complete extension {c} is the grounded extension, and the maximal complete extensions {a, c}

and {b, c} are the preferred extensions.

According to Definition 5, an admissible set S is a complete extension if and only if S is a

fixed point of the function F, which means that all arguments defended by S are also in S. Also,

the grounded extension is the least fixed point of F. Consequently, the grounded extension

contains all the arguments that are not attacked (the arguments that are defended by the empty set:

-F(0)), all the arguments that are defended by these non-attacked arguments F(F(0)) = F2(0), all

the arguments that are defended by the defended arguments (F3(0)), and so on until a fixed point

is achieved. The grounded extension corresponds to the intersection of all the complete

extensions. Finally, a preferred extension is a maximal complete extension that cannot be

augmented by adding other arguments while staying complete.

We have the following direct proposition:

Proposition 1 Let (<A,<AT) be an argumentation framework. S!Sgr in (<Jl,JlT). In words,

there exists a single grounded extension for the abstract argumentation framework. Now we can

define what the acceptable arguments are in our system.

Definition 6 (Acceptable Arguments) Let A £ Arg(L) be a set of arguments, and let G -

Sgr. An argument a over A is acceptable iff a £ G.

40

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Argumentation in horizontal coordination is illustrated with two cases: Application to-

Application and Strategic-to-Strategic.

Applkation-to-Application case stresses an A-A A that identifies a conflict after interacting

with peers. Conflicts could be of many types like different security policies, different semantics

(e.g. different measurement units, different ontology, etc.), conflicting quality of service, different

cost associated with the application, etc.

A-AAs try to resolve these conflicts via argumentation using a combination of persuasion

and inquiry (Section 4.2.2). ,4-AA agents engage in pure persuasion if one of them has already a

solution that could be accepted by the other with respect to the beliefs it has. However, merging

persuasion with inquiry allows these agents to build up a joint agreed argument.

Strategic-to-Strategic case highlights an S-AA that identifies a conflict and tries to resolve it

with its S-AA partner. Some conflicts at this level concern penalty policies (e.g., collaboration's

contract terms and conditions not respected) and payment policies. This case also stresses the

situation where two S-AAs, of the collaborative businesses try to work out a solution of a conflict

reported by the respective ^l-AAs which cannot be resolved by vertical coordination. To resolve

these conflicts, S-AAs engage in persuasions and inquiries (Section 4.2.2). Before presenting this

protocol, let us discuss its formal framework based on computational argumentation theory.

4.3 Formal Argumentation System

4.3.1 Generic Background

This section discusses the formal argumentation system that frames the internal operations

in our B2B framework. This discussion includes the configuration featuring argumentative agents

as well. We use an abstract formal language £ to express agents' beliefs. Here abstract means that

beliefs could be propositional formulas like in [55], Horn clauses like in [40], or a set of facts and

rules like in [42, 47]. The use of an abstract language would make our framework generic and

37

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

According to this acceptability semantics, which is based on the grounded extension, if we

have two arguments a and b such that <AT{a,b) and <AT{b,a), then a and b are both non-

acceptable. In a B2B scenario, this can happen when two A-AAs present two conflicting

arguments about the type of security policies to use for the current transaction: a weak policy

which is simple to implement and less expensive or a strong policy which is hard to implement

and more expensive. This notion is important in B2B applications since agents should agree on an

acceptable opinion, which is supported by an acceptable argument when a conflict arises.

However, during the argumentative conversation, agents could use non-acceptable arguments as

an attempt to change the status of some arguments previously uttered by the addressee, from

acceptable to non-acceptable. This idea of using non-acceptable arguments in the dispute does not

exist in the persuasion and inquiry protocols in the literature. For this reason, we introduce two

new types of arguments based on the preferred extensions to capture this notion. We call these

arguments semi-acceptable and preferred semi-acceptable arguments.

Definition 7 ((Preferred) Semi-Acceptable Arguments) Let G be the grounded extension

in the argumentation framework, and let E\, E„ be the preferred extensions in the same

framework. An argument a is:

• Szmi-acceptable iff a 3 G and 3 EhEj with (1 <;', j < n) such that a 6 E, A a £ Er

• Preferred semi-acceptable iff a & G and V' E, (1< i < n) a £ Ej.

In other words, an argument is semi-acceptable iff it is not acceptable and belongs to some

preferred extensions, but not to all of them. An argument is preferred semiacceptable iff it is not

acceptable and belongs to all the preferred extensions. Preferred semi-acceptable arguments are

stronger than semi-acceptable and grounded arguments are the strongest arguments in this

classification.

Example 4 Let A = {a, b, c, d} and <AT is defined as follows: <AT (a, b), JIT (b, a), JIT

(a, c), cAT (b, c), AT (c, d).

41

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

• 0 is the grounded extension in this argumentation framework.

• The argumentation framework has two preferred extensions: {a, d} and {b, d}. The

arguments a and b are then semi-acceptable, and the argument d is preferred semi-

acceptable.

A concrete scenario of this example in a B2B setting would be as follows: Suppose we have

a transaction Tr and three possible security policies for it: s,, s2 and s3. The four arguments a, b, c

and d are as follows:

• a: S] is the most suitable policy for the transaction Tr.

• b: Alone, S2 is not sufficient to secure the transaction Tr, but by combining it with S3 it

becomes the most suitable.

• c: s2 is less expensive than S].

• d: Si is not expensive to implement, and is sufficient to secure the transaction Tr.

In some extent, the argument d is stronger than a and b because it is defended by these two

arguments against the only attacker c, and a and b attacks each other. From a chronological point

of view, we can imagine the following scenario leading to build these four arguments at the

application level of two businesses represented respectively by A-AA^ and A-AA2. First, A-AA]

presents the argument d, then ^4-AA2 attacks by moving forward the argument c. ̂ -AAi replies by

attacking c using the argument a. At that stage, arguments a and d are grounded. A-AAj tries then

to degrade one of these two arguments by attacking a using d. ^-AA2 is aware that by using b to

attack a, b is at the same time attacked by a. The idea here is just to change the status of the

argument presented by A-AA\ from acceptable to semi acceptable.

Proposition 2 Let A £ Arg(L) be a set of arguments, and let SD = fa G A\V b £ A JVT (b,

a) => JVT (a,b)&%cEA: JVT (c, b)}. Ver G SD, a is semi acceptable.

In other words, the arguments defending themselves by only themselves against all the attackers

are semi-acceptable.

42

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Proof see Appendix 2.

Proposition 3 Complete extensions are not closed under intersection.

Proof sec Appendix 2.

Definition 8 (Eliminated Arguments) Let A £ Arg(L) be a set of arguments, a E A be an

argument, and EL be the set of eliminated arguments over the argumentation framework. Also, let

E],.. . ,E„ be the preferred extensions in the same framework,

a EEL iff a 0E„ Vi € [1, nj.

In other words, an argument is eliminated iff it does not belong to any preferred extension

in the argumentation framework. We have the following proposition:

Proposition 4 Let a be an argument in A, and AC, PS, SA be respectively the sets of

acceptable, preferred semi-acceptable, and semi-acceptable arguments over the argumentation

framework, a EEL iff a gAC \)PS\) SA.

In other words, an argument is eliminated iff it is not acceptable, not preferred semi-

acceptable, and also not semi-acceptable.

Proof see Appendix2.

Consequently, arguments take four exclusive statuses namely acceptable, preferred semi-

acceptable, semi-acceptable, and eliminated. The dynamic nature of agent interactions is reflected

by the changes in the statuses of uttered arguments.

4.3.2 Partial Arguments and Conflicts for B2B Applications

In a B2B scenario, it happens that argumentative agents S-AAs and ,4-AAs do not have

complete information on some facts. In similar situation, they can build partial arguments for

some conclusions out of their beliefs. We define a partial argument as follows:

Definition 9 (Partial Arguments) Let x be a wjf in WT. A partial argument denoted by

a% is part of an argument a £A, which misses an argument (or a proof) for x. In other words, by

adding a proof supporting x to a£ an argument is obtained.

43

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

For example, if arguments are defined as deductions from a set of rules, x will represent

some missing rules, and if arguments are defined as pairs (H, h), x will represent a subset of//.

Example 5 let us suppose that arguments are defined as pairs (H, h) using propositional

logic, a = ((m,m -» n), n) is an argument for n and a?x - ((m -> n), n) is a partial argument for n

missing the support for x = m. a = ((m,m -» n, n -> 1,1 -» r), r) is an argument for r and o?x = ((n

-» 1, 1 -» r), r) is a partial argument for r missing the support for x = n. In this case a possible

support is ((m,m -> n), n).

In a BIB scenario, an example where partial arguments are needed is when A- AA) of

business B] knows that security policy s2 that another business B2 uses can be substituted by

policy j) that B] uses if some conditions are met when deploying 52. Thus, A-AA] can build a

partial argument supporting the fact that B2 can use su To be an argument, this partial argument

needs a support that implementing s2 in B2 meets these conditions.

The idea behind building partial arguments by an agent is to check if the other agent can

provide the missing part or a part of this missing part so that the complete argument could be

jointly built (progressively). This idea which is a part of the inquiry dialogue will be made clear

in the persuasion protocol defined in Section 4.4.2.

As for arguments, we need to define what an acceptable partial argument is. This

acceptability is defined in the same way as for arguments. We use the notation a?x.x to denote the

resulting argument of combining the partial argument a£ and an argument supporting x supposing

that this latter exists.

Definition 10 (Partial Attack) Let a£ be a partial argument over the argumentation

framework. JLT (aV
x ,b) iff JIT (cPx .x, b) and JIT (b, aV

x) iff JIT (b, aV
x .x).

Definition 11 (Acceptable Partial Arguments) A partial argument a£ is acceptable

(preferred semi-acceptable, semi-acceptable) iff a?x .x is acceptable (preferred semi-acceptable,

semi-acceptable).

44

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Example 6 Let I = {n -> m, r -> 1, 1 -»t, —, 1} be a propositional knowledge base. The

partial argument ((n -» m),m) is acceptable, however the partial argument ((r -» 1, 1 -» t), t) is not

acceptable since the argument ((r, r —>• 1,1 —> t), t) is attacked by the argument (—> I, —i1).

Proposition 5 Let a be an argument in A. If a is acceptable, then Vx 6 WF ax is

acceptable.

Proof see Appendix 2.

After having specified the argumentation model, We define the notions of conflict and

conflict resolution in our B2B framework as follows:

Definition 12 (Conflict) Let p and q be two wffs in WF. There is a -onflict between two

argumentative agents a and B about p and q in the B2B framework iff one of them (e.g., a) has

an acceptable argument a for p (denoted a t p) and the other (i.e., B) has an acceptable

argument bfor q (b T q) such that JIT (a, b) or <AT (b, a). We denote this conflict by ap i Bq.

For example, if p and q represent each a security policy Si and s2 such that Si and s2 cannot

be used together, then there is a conflict if one agent has an acceptable argument for using si

while the other agent has an acceptable argument for using s2 (the two arguments are conflicting).

This conflict arises when both agents need to agree on which security policy to use.

Before defining the notion of conflict resolution, we need to define the notions of

interaction and interaction's outcome. An utterance u made by an agent a in a given interaction is

denoted u ^ f f .

Definition 13 (Interaction) Let a and 8 be two argumentative agents. An interaction

(denoted by lap) between a and B in the B2B framework is an ordering sequence of utterances

uh u2, . . . , u„ such that u, -~-> a. => u,~ / -~* /? and u, ~~* /? =* u,- / -~» a. CSa (resp. CSa) is the set

(called commitment store) containing the arguments used by a (resp. B) during the interaction.

Definition 14 (Conflict Resolution) Let p and q be two wffs in WF and a and B be two

argumentative agents in the B2B frame-work such that api Bq. Also let lap be an interaction in

45

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

this framework. The conflict ap£ Rq is resolved by the interaction lap iff the outcome ofIap is a

formula r 6 WF such that 3 a E CSa, b 6 CSp: a t r, b t r and a and b are both acceptable.

In the aforementioned security example, the conflict is resolved iff (i) after interaction,

one of the agents can build an acceptable argument from its knowledge base and the arguments

exchanged during this interaction, supporting the use of the other policy, or (ii) when both agents

agree on the use of a new policy such that each agent can build an acceptable argument, from its

knowledge base and the exchanged arguments, supporting the use of this policy. The idea here is

that by exchanging arguments, new solutions (and arguments supporting these solutions) can

emerge. In this case, agents should update their beliefs by withdiawing attacked (i.e. eliminated)

assumptions. However, there is still a possibility that each agent keeps its viewpoint at the end of

the conversation.

4.4 Argumentative Persuasion for B2B

This section consists of three sub-sections as follows-

4.4.1 Notations

The outcome of an interaction aiming to resolve a conflict in a B2B setting depends on the

status of the formula representing the conflict topic. As for arguments, a wff has four statuses

depending on the statuses of the arguments supporting it (an argument supports a formula if this

formula is the conclusion of that argument). A wff is acceptable if there exists an acceptable

argument supporting it. If not, and if there exists a preferred semi-acceptable argument supporting

it, then the formula is preferred semi-acceptable. Otherwise, the formula is semi-acceptable if a

semi-acceptable argument supporting it exists, or eliminated if such an argument does not exist.

Let St be the set of these statuses. We define the following function that returns the status of a wff

with respect to a set of arguments:

46

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

A: WF x 2A -* St

Generally, the interactions we need in a B2B scenario involve two argumentative agents.

For simplicity, we will not refer in the remainder of the paper to agent types (strategic or

application), but denote participating agents by a and B. Each agent has a possibly inconsistent

belief base Eaand Ep respectively containing, for example, all the policies on which these agents

should reason when they manage businesses as explained in previous sections.

Agents use their argumentation systems to decide about the next move to play (e.g., accept

or attack the arguments advanced during their interactions). When an agent accepts an argument

that an addressee suggests, this agent updates its knowledge base by adding the elements of this

argument and removing all the elements that attack this argument. Each agent a has also a

commitment store CSa publicly accessible for reading but only updated by the owner agent. The

commitment stores are empty when interaction starts, and updated by adding arguments and

partial arguments that the agents exchange. CSa refers to the commitment store of agent a at the

current moment.

The possibility for an agent a to build an acceptable argument a (respectively an

acceptable partial argument a£) from its knowledge base and the commitment store of the

addressee p is denoted by </?.U(Ea U CSp) o a (respectively c/ZR(Ea U CSp) > a£). Building a

partial argument a£ from a knowledge base means that no argument for or against x can be built.

c/?R(Ea U CSp) $> a (respectively c/?R(Ea U CSp) fr a%) means that agent a cannot build an

acceptable argument a (respectively an acceptable partial argument a%) from Ea U CSp. The

symbols £ and £ associated with semi-acceptable (partial) arguments are defined in the same

way.

47

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

4.4.2 Protocol Specification

In our B2B framework, agents engage in persuasion and inquiry dialogues to resolve

conflicts. Atkinson et al. [39], Pasquier et al. [56], and Prakken [57] propose persuasion protocols

for multi-agent systems. However, these protocols consider only pure persuasion without inquiry

stages and does not address completeness (or pre-determinism) property [55].We propose a

persuasion protocol including inquiry stages for our B2B framework, in which pre-determinism is

considered. The protocol is modeled with dialogue games [51, 52]. Dialogue games are

interactions between players (agents), in which each player moves by performing utterances

according to a pre-defined set of rules. Let us define the notions of protocol and dialogue games.

Definition 15 (Protocol) A protocol is a pair {C,D) with C a finite set of allowed moves

and D a set of dialogue games.

The moves in C are of c different types (c > 0).We denote by M,{a,B, a, i) a move of type

i played by agent a and addressed to agent /? at time / regarding a content a. We consider four

types of moves in our protocol: Assert, Accept, Attack, and Question. Generally, in the persuasion

protocol agents exchange arguments. Except the Question move whose content is not an

argument, the content of other moves is an argument a (a E Arg(£)). When replying to a

Question move, the content of Assert move can also be a partial argument or "?" when the agent

does not know the answer. We use another particular move Stop with no content. It could be

played by an agent to stop the interaction. Intuitively, a dialogue game in D is a rule indicating

the possible moves that an agent could play following a move done by an addressee. This is

specified formally as follows:

Definition 16 (Dialogue Game) A dialogue game Dg is either of the form:

Mt (a, p, a01) => V Mj (/?, a, a,-, t')

48

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

where Mt, Mj are in C, t < t' and nt is the number of allowed moves that B could perform

after receiving a move of type ifrom a;

or of the form:

>
0<y s„

MAa^a ./' t°)

where Mj is in C, t0 is some initial time, and n is the number of allowed moves that a

could perform initially.

According to this definition, a dialogue game is in general non-deterministic, in that, for

example, given an incoming move of type i, the receiving agent needs to choose amongst n*

possible replies. As proposed in [40, 41, 42], we combine public dialogue games with private

strategies so that agents become deterministic. To this end we introduce the conditions within

dialogue games, each associated with a single reply.

Definition 17 (Strategic Dialogue Game) A strategic dialogue game SDg is a

conjunction of rules, specified either as follows:

A. (Mi(a, B, a, t) A Cj => Mj(fi, a, aj, t '))

where t < t' andtii is the number of allowed communicative acts that B could perform

after receiving a move of type ifrom a;

or as follows:

0<%n^
cj^MM-P-aj'to^

where t0 is the initial time and n is the number of allowed moves that a could play

initially.

49

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

In order to guarantee determinism, conditions Cj need to be mutually exclusive [58].

Agents use their argumentation systems to evaluate, in a private manner, conditions Cj. These

argumentation systems are based on the private agents' beliefs and the public commitments

recorded in the commitment stores.

To simplify the notations, we omit the time parameter form the moves and use the

notation U CS as an abbreviation of CSa U CSp. In our Business-to-Business Persuasive Protocol

{HIB-TT), agents are not allowed to play the same move (with the same content) more than one

time. The strategic dialogue games we consider in this protocol are:

1-Initial game

Qni =* Assert(a, B, a)

where:

Cim = 3p. q e WT: ap¥pqA «/WZ(Ea) > a A o t p

The persuasion starts when a conflict is detected and one of the two agents asserts an

acceptable argument supporting its position. In the remainder of this section, we suppose that the

persuasion topic is represented by the wffp.

2- Assertion game

Assert(a,R,ii) A Casl => Attack(B,a,b) A

Assert(a,B, v) A Cas2 => Question{B, a,x) A

Assert(a, B, v) A Cas3 => Accept{B, a, a) A

Assert(a,B,v) A Cas4 => Stoj)(B,a)

where \i is an argument or partial argument, v is an argument, partial argument, or "?"

and:

50

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Cast = OPall V (-1°P«51
1 A OPalV

0pa
a

l
s\ = 3b£ A:AJl(2,p U CSa) > b

A A(p,U CS) * A(p,U CS U {b})

Opal* =3b£ A:A%{Y.p U CSa) > b

A A(p,U CS) * A(p,U CS U {b})

Cas2 = ".Cas l A (0p<£ V (-,Op25 A Op^"2))

Oy^l ^3bl,bp
x.xeA: JUl{2p U CSa) o bv

x

A A(p,U C5) gt A(p,U CS U {b£. x})

0pa
q
s
u
2
2 = 3fc£, fe£.x € /I: c/Z^Cfy U CSa) £ *£

A A(p,U C5) * A(p,U CS U {fc£.x})

cas3 =3aGA: A"R(Zp U CSa) > a A a T p

A - . O p g A - .Op^ 2

CaS4 = - > 0 p ^ A - .Op^ 1 A ~iOp^ A -,Cas3

A Vb 6 A.JUK^Ep U CSa) S6=>

A(p,U CS) = A(p,U CS U {6})

In this game, the content of Assert could be an argument, partial argument, or "?".

Indeed agents can use this move to assert new arguments in the initial game or to reply to a

question in the question game, which is a part of inquiry in our protocol. The move that agent B

can play as a reply to the Assert move depends on the content of this assertion. When a asserts

an argument or a partial argument, CSa gets changed by adding the advanced (partial) argument.

Agent B can attack agent a if R can generate an acceptable argument from its knowledge base

and the a's commitment store so that this argument will change the status of the persuasion topic.

Consequently, in this protocol agents do not attack only the last advanced argument, but any

advanced argument during the interaction, which is still acceptable or (preferred) semi-acceptable

51

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

(Opas*). This makes the protocol more flexible and efficient (for example agents can try different

arguments to attack a given argument). If such an acceptable argument cannot be generated, ft

will try to generate a (preferred) semi-acceptable argument changing the status of p (0pas
2). The

idea here is that if B cannot make a's arguments eliminated, it will try to make them (preferred)

semi-acceptable. This is due to the following proposition whose proof is straightforward from the

definition of semi-acceptable arguments and the fact that only four statuses are possible.

Proposition 6 IfB plays the Attack move with a semi-acceptable argument, then the a's

attacked argument changes the status from acceptable to semi-acceptable, and the persuasion

topic changes the status from acceptable to semi-acceptable or preferred semi-acceptable.

We notice that in Assertion game changing the status of p is a result of an attack relation:

Proposition 7 In Assertion game we have: Vb E A,

A(p,U CS) f A(p,U CS U {b}) => 3a GU CS: AT(b, a).

If B cannot play the Attack move, then before checking the acceptance of an a's

argument, it checks if no acceptable and then no (preferred) semi-acceptable argument in the

union of the knowledge bases can attack this argument (inquiry part). For that, if B can generate a

partial argument changing the status of p, then it will question a about the missing assumptions

(OPas2 an(^ ^Pa"2
2)- This n e w feature provides a solution to the "pre-determinism" problem

identified in [55]. If such a partial argument does not exist, and if B can generate an acceptable

argument supporting p, then it plays the Accept move (Cas3).

Proposition 8 An agent plays the Accept move only if it cannot play the Attack move and

cannot play the Question move.

Proof see Appendix 2.

52

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Agent B plays the Stop move when it cannot accept an a's argument and cannot attack it.

This happens when an agent has a semi-acceptable argument for p and the other a semi-

acceptable argument against p, so the status of p in the union of the commitment stores will not

change by advancing the /?'s argument (Cas4). Finally, we notice that if the content of Assert

move is "?", B cannot play the Attack move. The reason is that such an Assert is played after a

question in the Question game, and agents play Question moves only if an attack is not possible.

By simple logical calculus, we can prove the following proposition:

Proposition 9 An agent plays the Stop move iff it cannot play another move.

3- Attack game

Attack(a,B, a) A Catl =» Attack((3, a, b) A

Attack{a,B, a) A Cat2 => Questional, a,x) A

Attack(a,B, a) A Cflt3 =* Accept(6, a, a) A

Attack(a, B, a) A Cat4 => Stop{B, a)

Where:

Can =OPS1VC-TOP%AOPS1)

opa
ai; =oP%

Cat2 = - ,C a t l A (0p*£ V C^Opq
a^ A Opq£))

OP% =OPSJ

53

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Cat3 = AKVp U CSa) o a A -^Op^1 A -nOp^2

Cot4 = ^OpaJl A - .Op^ 1 A - ^ p ^ A -nCat3

AVbEA, jm(Zp U CSa) > 6 =>

A(p,U CS) = A(p,U CS U [b])

The conditions associated with the Attack game are similar to the ones defining the

Assert game. The Attack move also includes the case where the agent that initiates the

persuasion puts forward a new argument, which is not attacking any existing argument but

changing the status of the persuasion topic. This is useful when the advanced arguments cannot

be attacked/defended, so that the agent tries another way to convince the addressee.

4- Question game

Question(a, /?, x) A Cqul =» Assert((3, a, a) A

Question(a, p, x) A Cqu2 => Assert(fi, a, y*,') A

Questioned, f3,x) A Cqu3 => Assert(fl,a,?)

Where:

cqui = 3a G A:Jm{Y.p U CSa) o a A (a T x V a T x)

CqU2 = 3y£ ,y l ,x ' e A: AR&p u CSa) •> yl,

54

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Cqu3 — ~~>Cqul A ~\Cqu2

Agent B can answer the a's question about the content x by asserting an argument for or

against x. If not, it answers by a partial argument if it can generate it. Otherwise, it answers by

"?" which means that it does not know if x holds or not. We recall that this game is played when

an agent has a partial argument and asks the addressee about the missing part, so that the answer

could be the complete missing part, a part of it, or nothing.

5- Stop game

Stop(a,B) A Cstl => Question{fi, a,x~) A

Stop(a,B) A Cst2 => Stop{fi,a)

Where:

Cstl =0p^V(-i0p^A0p^))

OPZ1 =OP%

OP%; =OPTSI

Qt2 = ~>Qti

Before answering the a's Stop move by another Stop to terminate the persuasion, B

checks if no other partial arguments changing the status of p could be generated. Consequently,

the Stop move is played only if no such argument could be generated, which means that the

conflict cannot be resolved.

4.4.3 Protocol Analysis

In this section, we prove the termination, soundness, and completeness ofBTB-TT.

55

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

Theorem 1 32'B-TT always terminates either successfully by Accept or unsuccessfully

by Stop.

Proof see Appendix 2.

When the protocol terminates, we define its soundness and completeness as follows:

Definition - Completeness 18 (Soundness-Completeness) A persuasion protocol about

a wffp is sound and complete iff for some arguments afar or against p we have:

MR{Ia U ^) > a « c/4#(U CS) o a.

Theorem 2 The protocol (323 -TT) is sound and complete.

Proof see Appendix 2.

4.5 Case Study

Our running example illustrates a purchase-order scenario (Figure 4.4). A customer

places an order for products via Customer-WS (WS for Web service). Based on this order,

Customer-WS obtains details on the customer's purchase history from CRM-WS (Customer

Relationship Management) of Business 'B1. Afterward, Customer-WS forwards these details to

Sj's Billing-WS, which calculates the customer's bill based on these details (e.g., considering if

the customer is eligible for discounts) and sends the bill to CRM-WS. This latter prepares the

detailed purchase order based on the bill and sends Inv-Mgmt-WS (Inventory Management) of 3X

this order for fulfillment. For those products that are in stock, Inv-Mgmt-WS sends Shipper-WS

of £ 2 a shipment request. Shipper-WS is now in charge of delivering the products to the

customer. For those not in stock, Inv-Mgmt-WS sends Supplier-WS of S 3 a supply message to

the requisite, which provides the products to Shipper-WS for subsequent shipment to the

customer.

56

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

S-AA,

A-AA
Customcr-WS

1

A-AA
CRM-WS

T"

S-AA,

A-AA
Billing-WS

I

M

Customer order . '

,Customer purchase
his ton'

Updated customer ordqr

tr

Customer bill

1
Updated customer ordqr

S-AA,
B,

A-AA
Inv-Mgt-\X'S

S-AA?
ih

A-AA
Shippcr-WS

Shipment

s-AA3 ,
—7-—QE

A-AA
Supplier-\VS

Shipment notification

Product
order

- Product deliver

Legend

I B, I Business « I

Figure 4.4 Specification of purchase-order scenario

The above scenario could be affected by several types of conflicts. For example, 2?2's

Shipper-WS may not deliver the products as agreed with S^s Inv-Mgmt-WS, perhaps due to lack

of trucks. This is an application-level conflict that needs to be resolved using our "BZB-TT by

which, Shipper-WS tries to persuade Inv-Mgmt-WS about the new shipment time and then

inform Customer-WS of the new delivery time. If not, Shipper-WS may change its policies by

canceling its partnership agreements without prior notice. This is a strategic-level conflict, that

calls for either asking 2?2
 t o which Shipper-WS belongs to review its policies, or if that does not

work, selecting an alternate shipper.

Let aBi be the A-AA of Inv-Mgmt-WS and /?Bz be the A-AA of Shipper-WS. The

resolution of the application level conflict along with the use of dialogue games are hereafter

provided:

1- BBz identifies the conflict and plays the Initial game by asserting an acceptable

argument a about lack of trucks from its Y.pg supporting its position: Assert{PBz, aB ,d).

57

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

2- aB has an argument b attacking BB^s. argument which is about available trucks

committed to others that could be used to ship the products. aB plays then the Assertion game by

advancing the Attack move: Attack(aBi, BBi, b).

3- BB replies by playing the Attack game. Because it does not have an argument to

change the status of the persuasion topic, but has a partial argument for that, which is about the

high price of these particular trucks that could be not accepted by aBi, it advances the move:

Question(fiB2,aB^,x) where x represents accepting or not the new prices. The idea here is that

Pg2 can attack aBi, if it refuses the new prices that others have accepted.

4- aB plays the Question game and answers the question by asserting an argument c in

favor of the increased shipment charges: Assert(aB_i, /?#.,, c).

5- /?B2 plays the Assertion game, and from T,pB U CSag , it accepts the argument and

agrees to deliver the products as per the agreed schedule with the new price, which is represented

by d: Accept(fiB , aB , d). Consequently, the persuasion terminates successfully by resolving the

conflict.

Figures 4.5 and 4.6 illustrate the scenario details with the exchanged arguments.

58

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

1- Conflict detection by A-AA of Shipper-WS after the request of the product PI with normal delivery time
from A-AA of Inv-Mgmt-WS. There is a conflict because A-AA of Inv-Mgmt-WS has an acceptable argument

from its knowledge base for normal delivery time which is:

p>p->q
where

p = "past agreement", and q = "normal delivery time of P I "

And A-AA of Shipper-WS has an acceptable argument "a" for delayed delivery of PI which is:

a = r,r -» s
Where /* = "luck of trucks to ship product P I " , and S = "delayed delivery of P I "

Here q and 5 are contradictory, hence the conflict. The formula S represents the conflict topic.

A-AA of Shipper-WS plays the Initial game by asserting his acceptable argument a about lack of trucks

2- A-AA of Inv-Mgmt-WS has an argument "b" in its knowledge base attacking A-AA of Shipper-W'S's
argument which is:

b = f],t2,t] A < 2 —>• M

where /j = "some trucks tr committed to another businesses BS", /2
 = "trucks tr could be used to ship the

product P I " , and U = "available trucks to ship product P I "

Here U and V are contradictory. Inv-Mgmt Agent plays then the Assertion game by advancing the Attack

move with the argument b .

3- At this stage, A-AA of Shipper-WS cannot change the state of the conflict topic by attacking the Inv-Mgmt
Agent's argument. However, it has a partial argument for that, which is about the high price of these particular
trucks that could be not accepted by Inv-Mgmt Agent. The partial argument is:

m,m AX-> r

where Wl = "price of trucks tr is pr", X — "Inv-Mgmt Agent's not accept price pr", and V = "luck of

trucks to ship product P I " . This is a partial argument because it needs X to be an argument. For that, A-AA of

Shipper-WS plays the Attack game with the Question move about X.

4- Inv-Mgmt Agent's has an argument from its knowledge base against X. It plays the Question game and

answers the Question move by asserting an argument ' C' in favor of the increased shipment charges. This
argument is:

k,k->I
Where k = "pris less than Max", and / = "accept /) / '

(/ and X are contradictory)

5- From the Inv-Mgmt Agent's commitment store and the A-AA of Shipper-WS's knowledge base, this latter
plays an Accept move in which it accepts to deliver the product PI with normal delivery time and the new price
pr.

Figure 4.5 Scenario description

59

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

A-AAof
Inv-Mgmt-WS

(P.P-* $ I
A-AAof

Shipper-WS

Request for a product with Normal Delivery {Laptop, 1}

Assertion game with argument a: Delay for Norma) Delivery {72 hours}

b= t1,t2, ti A t2-» u I Attack with argument b: Possibility of .Speed Deliver)'
->

Conflict
detection
"a" = r, r —> s

(k,k-l) f
Partial argument for a

Attack game with Question move about Accepting or not the Extra Payment H counter-attack
for Speed Delivery {30 euros} | (m, m/\ N-» r)

Answer the OuesfzoH move by Accepting the Kxtra Payment

Acceptance for Speed Delivery {Accepted}

Legend: I Belief check

Figure 4.6 Sample of interaction between A-AA of Inv-Mgmt-WS and ;4-AA of Shipper-WS

4.6 Implementation

The main challenge of implementing the protocol above is to find the grounded and

preferred extensions dynamically from an argumentation framework as discussed in Section 4.1.

We used the word dynamic because the argumentation framework will change in each interaction

between agents. Only few works have been done in terms of implementation to solve this

challenge. In CaSAPI [62] the argumentation system is developed on Prolog and it only tests if an

argument belongs to some extensions, which means that whether the argument holds or not.

Another implemented system called Java argumentation tool kit "ArgKit" [63] is developed

recently, which also performs the same functionality (testing if an argument holds).

Because we have chosen Jadex platform, which is fully based on Java (Section 3.3), a

Java based implementation for the argumentation framework is necessary. It is possible to have

60

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

prolog based implementation of such framework. However, combining Java and prolog has still

some problems even though there are some projects facilitating this process for example

'tuProlog' [65] and 'JLog' [64]. Our implementation is the first one that can generate grounded

and preferred extensions (if any) from an argumentation framework.

Using this implementation for argumentation framework, we have implemented a proof-

of-concept prototype of the scenario discussed in the previous section (Figures 4.5, 4.6) using the

Jadex Agent System. Both agents have the same Java class to find acceptable, {preferred) semi-

acceptable arguments from grounded or preferred extensions. Figure 4.7 depicts a screenshot of

the prototype illustrating the computation of the arguments in the scenario. Currently, the

prototype only demonstrates the case of horizontal coordination described above. Future

extensions would include other scenarios as well as vertical coordination.

61

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

m mm H«tp

enaric.jsUC'!Oo4*i^ Setting

FiteitafHe £2B_?'?isno»r;i w j i g ^ j « S A r \ . M j r r t«ge l «/n -

Configuration [default . *

Autf. gentaate

? j if?vJfgmf_WS

? "'sShippH.WS
Aga« name [nv.Kijmt

Start

$ ait<t@* itfwny i ^ " Description

| t n ^ r u n y - *>~ | t n y Mgr* ' i $ r s p p «

souse is |a i
soyrse is jfei
source is Hag
arguments in sitae I: are j]
noi.attatked is ia)
defense is £

! ft? admissible set is M
F<S>forS= |a] ts |ai
tf>6 eempSeie tension is fiall
ih? grt^fidsd extension is ia|
Bwprefened emersion is [a]
source in Invjagmt a?tef rscfch* message from Shtf-pet is & bj

«-*« is U f c ^ M
arguments in sttetk aie 3b, a£
RoS_aSackfid is [bj
defsnss is Q
theadrnissibEeselts $4
r(S)%S-p!jisibI
the cc-mpiste extension is [ibjj
Ihe grounded extension & |t)J

the preferred exte^sicn is ffej
shippe; receives from lftv_Mgrrt message is b

Iny^Mgrr;! r e c e s s torn Shipper message ts x

stiippe? reserved final message rs 1
lnv_«3^t receded final message is {Act*ptetf Speetf Dsisven?}

Reload H Reset B&lp

Figure 4.7 A screenshot from the prototype -computing arguments-

4.7 Related Work

Recent years have seen a continuing surge of interest in designing and deploying S 2 S

applications. Service-oriented architecture is the most widely methodology that have been used in

this field [50, 54, 59, 61]. In [50] the author proposes the exploitation of Web services and

intelligent agent techniques for the design and development of a 2 2 $ e-commerce application. A

62

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

multi-party multi-issue negotiation mechanism is developed for this application. This negotiation

is a Pareto optimal negotiation based on game theory. This proposal aims at achieving an

agreement by computing concessions and generating offers in order to maximize the utility of the

participating agents. However, unlike our argumentation-based framework, this mechanism

cannot be used to resolve general conflicts as those discussed in Sections 4.2 and 4.3. In [54], the

authors develop a methodology for B2B design applications using Web-based data integration.

The aim is the creation of adaptable semantics oriented meta-models to facilitate the design of

mediators by considering several characteristics of interoperable information systems such as

extensibility and composability. The methodology is used to build cooperative environments

involving the integration of Web data and services. Unlike our methodology, this proposal does

not consider conflicts that can arise during the cooperation phase and only addresses the

cooperation from technological point of view.

On the other side, and from an argumentation viewpoint, some interesting protocols for

persuasion and inquiry have been proposed. [39] propose Persuasive Argument for Multiple

Agents (PARMA) Protocol, which enables participants to propose, attack, and defend an action or

course of actions. This protocol is specified using logical consequence and denotational

semantics. The focus of this work is more on the semantics of the protocol rather than the

dynamics of interactions. [42] propose a dialogue-game inquiry protocol that allows two agents to

share knowledge in order to construct an argument for a specific claim. There are many

fundamental differences between this protocol and ours. Inquiry and persuasion settings are

completely different since the objectives and dynamics of the two dialogues are different. In [42],

argumentation is captured only by the notion of argument with no attack relation between

arguments. This is because agents collaborate to establish joint proofs. However, in our system,

agents can reason about conflicting assumptions, and they should compute different acceptability

semantics, not only to win the dispute, but also to reason internally in order to remove

63

Chapter 4 Designing and Implementing B2B Applications Using Argumentative Agents

inconsistencies from their assumptions. From the specification perspective, there are no

similarities between the two protocols. Our protocol is specified as a set of rules about which

agents can reason using argumentation, which captures the agents' choices and strategies.

However, in [42] the protocol is specified in a declarative manner and the strategy is only defined

as a function without specifying how the agents can use it. The adopted moves in the two

proposals are also different. Another technical, but fundamental difference in the two protocols is

the possibility in our protocol of considering not only the last uttered argument, but any previous

argument which allows agents to consider and try different ways of attacking each other.

64

Chapter 5 Trust Management in Open Multi-Agent Systems

Chapter 5. Trust Management in Open Multi-Agent

Systems 1

In the previous chapter, we discussed how B2B applications are designed using open

multi-agent systems, where participating agents communicate by exchanging messages through a

communication protocol. In a B2B setting, businesses through their representative agents are

distributed in large-scale network and mutually interact to coordinate and share services with

other agents. In such open multi-agent systems, agents should trust each'other before starting their

collaboration activities and establishing partnerships. The purpose of this chapter is to present a

trust framework for these open agent-based systems. For simulation purposes, we assume that we

have a set of businesses providing services (service providers) and a set of customers. Some of

service providers are trustworthy and some are malicious. When a customer selects a service

provider, he obtains some utilities depending on the trust level of the provider. The trust

mechanism is evaluated in terms of the gained utility by agents using this mechanism. The

mechanism should allow agents to identify and then select the best service providers.

This chapter is organized as follows. In Section 5.1, we discuss the background of the

trust mechanism. Section 5.2 describes the agent structure we are using in our trust framework.

The trust evaluation technique is detailed in Section 5.3. Trust computing with maintenance,

based on the fact that agents in our model have learning capabilities, is shown in Section 5.4. The

implementation in different environments is described in Section 5.5. Finally, a discussion of the

advantages of the proposed model is presented in Section 5.6.

1 This chapter is essentially derived from the following papers:

a. Khosravifar, Eabak; Eentahar, Jamal; Alam, Rafiul and Gcmrokchi, Maziar; CRM: Comprehensive
Reputation 1'Jcdei for Open Multi-Agent Systems; submitted at IEEE Transactions on Knowledge
and Data Engineering (TKDE!.

t. Khosravifar, Eabak; Eentahar, Jamal; Gcmrokchi, Maziar and Alam, Rafiul; An approach to
Comprehensive Trust Management in Multi-Agent Systems with Credibility; IEEE 3Id International
Conference en Research ChaJlenaes in Information Sciences, RCIS, Harrakech, Morocco -00c.

65

Chapter 5 Trust Management in Open Multi-Agent Systems

5.1 Background

Agent's trust in another is the measure of willingness that the agent will make what it

agrees to do [66, 67, 68]. Attempting to maintain a trust-based approach, different frameworks

have been proposed representing the trust agents have in one another. The most recent research

works in trust models are as follows: a) interaction trust, which is based on the direct interactions

among involved parties; b) witness reputation, which is based on the reports provided by the third

parties; and c) certified reputation, which is based on the references requested from some agents

to report their beliefs about a particular agent's behavior.

The proposed frameworks objectively emphasize collecting the involved features in the

trust assessments. The objective is to collect reliable information, which leads to an accurate trust

assessment procedure. However, since agents are self-interested, there is always the possibility of

gaining fake information by a particular agent, even considering the certified reputation provided

by the target agent (the agent to be evaluated) [69]. In this case, the final trust rate would be

affected with non-reliable information about the target agent and eventually the evaluators

imagination about the target agent will not be true. These frameworks generally do not act

properly as agents in dynamic environment tend to change their goals and consequently their

behaviors. Moreover, these models do not recognize the recent improvement or degradation in

particular agent's capabilities.

Generally, trust models using direct experience need long term of interaction to reach a

state that agents can evaluate trust level of each other [41, 70, 71]. This is done either by direct

experience used to estimate the trust level of these agents or by moving to the second level of

evaluation process, asking other agents that are known to be trustworthy about the credibility of

the target agents. However, there is a problem if such trushvorthy agents are not able to report on

these agents. Moreover, the trust is not a transitive relationship (the fact that agent A is

trustworthy according to agent B and agent B is trustworthy according to agent C, does not mean

66

Chapter 5 Trust Management in Open Multi-Agent Systems

that agent A is also trustworthy according to agent C). We aim at overcoming these limitations by

proposing a framework combining the use of trustworthy agents (introduced by the evaluator

agent) and referee agents (introduced by the target agent) and by considering the possible

changes in agents' behaviors.

Another contribution of our trust mechanism is that the requesting agents (i.e. the agents

requesting information about a target agent) perform maintenance after a period of direct

interaction with a new agent in order to adjust the trustworthiness of the consulting agents who

provided information regarding to the trust level of the new agent. In the maintenance process,

the suggestions provided by other agents are compared with the actual behavior of the new agent

in direct interaction. Exceeding some predefined thresholds, the evaluator agent would either

increase or decrease its belief about the consulting agent. Doing so, gradually more accurate

ratings about the other agents would be dispersed around the environment. This allows us to

obtain a better trust assessment. The characteristics and efficiency of our model, called CRM

{Comprehensive Reputation Model) are presented in the next sections.

5.2 Agent Architecture

In our framework, agents are equipped with Beliefs, Desires and Intentions (BDD (see

Section 3.1.1). They use the BDI architecture when they interact with each other. Establishing the

trust between two agents is the quite frequent event that agents carry on, as they are involved in

interactions. Either evaluating or being evaluated, a rational agent is following strategies to make

the best decisions. Figure 5.1 illustrates the overall agent structure.

67

Chapter 5 Trust Management in Open Multi-Agent Systems

\.

re
p

u
ta

ti
o

n

re
qu

es
t

I
re

p
u

ta
ti

o
n

 r
es

po
ns

e

A g ent Structure

Off-line
Maintenance

t

_ „ __ JC

• Strategies £

re
ve

al
ed

r
. Being Eva
' Strateg

update order
1

1

1

L

is
to

ry

r

-c

Agent Strategy

c

' 05

1 >

__ _

"

i

o
rd

e

»

1

|

luated
ies

"

_ Neighborhood
Update

1

1

1

i

request info. Ir

History
Measurements

t

information

\
in

fo

t
re

ve
a

l

1

1

1

^

- _

Referee
Selection

ve
a

l i
n

fo
^.

1 u

' c

o
d

if
ie

d
 i

t

Agent Belief
Database

•6

|

Trustworthy \
Community J

s

_ _ _ 1

'?

1
re

fe
re

e
 r

e
q

u
e

s
t

1

Interaction Mechanism

A A A

Environment Sensor

Figure 5.1 Agent structure equipped with BDI architecture

Suppose that an agent Aga wants to evaluate the trustworthiness of a target agent Ag^

with who he never (or not enough) interacted before. Aga may want to consult some other agents

to get better and more accurate information about Agb's reputation. In this process, there are two

types of interfering agents, the ones known by Aga, which are called trustworthy agents and the

ones known by Agb, which are called referee agents. The referee agents are introduced by Agb to

report on his trust level based on the past experience (Figure 5.2).

68

Chapter 5 Trust Management in Open Multi-Agent Systems

Community of ._.---"""" --..,_
trustworthy.-'' Ag, A& AgV
agents \ ^Q ^-A?0 ° D__S—-tO

Ag, Q ^ f ^ f f Z l L L ^ Q Agb ̂ rget
r> T - ^ - ^ - / \ agent
Requesting \ "-- ' x

agent ^
Community,--
of referee\ „ r »f Rfi tK'<" agents "---._.

Figure 5.2 Trustworthy and referee agent's topology

Therefore, from agent structure point of view, each agent has its own trustworthy

community containing the agents who are the most reliable for him. This community would be

known as the agents that are being asked for information in case the agent is evaluating some

other agent or being asked for providing recommendation in case the agent is being evaluated by

some other agent (Figure 5.3). In this figure, Req_Inf stands for request for trust related

information, Req_Ref stands for request for references, A s k R e f stands for ask for information

from the introduced referees, R e p l n f stands for reply by providing the requested information,

RepRefuse stands for replying by refusing to provide the requested information and finally

R e p N o t H a v e stands for replying by informing the request or that the requested information is

not available.

69

Chapter 5 Trust Management in Open Multi-Agent Systems

Figure 5.3 Protocol of gathering information from trustworthy and referee agents

Each agent has a strategy component (Figure 5.1), which performs the main evaluation

process. The agent requests the history measurements of the previous direct interaction or it refers

to the agent belief database for its belief about others. In dynamic systems, the beliefs are always

subject to change, and this causes modification in each individual agent's trustworthy community

or neighborhood. Therefore, we use in our agent structure a component, which makes the updates

in the neighborhood with which the agent is interacting.

5.3 Trust Computing with Maintenance

Let A be a set of agents, and D be a set of domains or topics. The trust function Tr

associates two agents from A and a domain from D with a trust value between 0 and 1:

Tr:AxAxD->[0,l]

Given some concrete agents Aga and Agb in A and some concrete domain D, Tr(Aga, Agh, D)

stands for "the trust value associated to the target agent Agf, in domain D by the requesting agent

Ago".

It is obvious that judging based on the accumulated ratings would represent unfairness,

as all the interactions would be treated equally and factors like time and the value of the

70

Chapter 5 Trust Management in Open Multi-Agent Systems

transactions are not considered. Therefore, some trust metrics are to be taken into account to

adjust the confidence to some certain extent. To simplify the notation, in the remainder we will

omit the domain from all the formulas. Given agents Aga and Agb in A, we will represent Tr{Aga,

Agb) in short as TrA^b.

Let At be the time difference between the current time and the time at which requesting

agent updates its information about the target agent's trust. Equation 1 gives an estimation of

TAgb
irAga •

A9a ^ } £lt(Ag,n,Aga,Agb)+V>{Rf,m,AgaAgb)

where:

a(Ag,n,Aga,Agb) = Ef=1 Trf£ x Trffi x NJ£

a'(Ag,n,Aga,Agb) = E?=1 Trf£ x < f ;

V(Rf,m,Aga,Agb) = Y?=1 Tr% x Tr$ x < £

W'(Rf,m,Aga,Agb) = £ £ , Trf£ x < £

This equation is composed of two different terms representing the values got from two

different consulting communities involved in trust evaluation. The function H is defined as the

summation of the trust values estimated by the trustworthy agents together with their related self-

trustworthiness and the number of interactions between the trustworthy agents and the target

agent Agb.

Following the ideology that Aga could, to some certain extent, rely on its own history

interaction with Agb and partially use the second approach which is consulting some other

71

Chapter 5 Trust Management in Open Multi-Agent Systems

agents, Aga gives a 100% trustworthy rate to its history and use it as a portion in its trustworthy

community. This merging method takes into account the proportional relevance of each trust

value, rather than treating them separately. Basically, the contribution percentage is set regarding

to how informative the history is in terms of the number of direct interactions from the history.

Therefore, contribution is higher if the history represents a lower entropy. Respectively, the

higher entropy makes less rely on the history and thus the new evaluation is more considered. The

mentioned entropy is also affected by the coherency of the quality of the service provided by the

agent in question. If the belief about any agent is updated by the rates corresponding to the quality

of provided service with a very low deviation, then the history is considered more reliable.

However, the new evaluation is merged by the previous data and we tend to analyze the quality of

the service of the target agent regarding to what is expected and what is actually provided.

Likewise the H* function indicates the similar relative coefficients regarding to the corresponding

referee agents.

Equation (1) takes into account the three most important factors: (1) the trustworthiness

of trustworthy/referee agents according to the point of view of Aga (TrA^ and TrA
 J) ; (2) the

Agb\ trustworthiness according to the point of view of trustworthy/referee agents (TrA(f
b and

TrRFb); (3) the number of interactions between these trustworthy/referee agents and Agb (NAg*

5.4 Proof of Concepts

In this section, we assess the CRM model efficiency and implement a proof of concept

prototype. In this prototype, agents are implemented as Jadex®™ agents (Section 3.3). The

agent reasoning capabilities are implemented as Java modules using logic programming

techniques. All Java classes, objects and methods are described in Section 3.3 and Appendix 1.

Each agent has a knowledge base about the reputation of other agents, as hashtables object in

72

Chapter 5 Trust Management in Open Multi-Agent Systems

java. Such a knowledge base has the following structure: Agent — name, Agent — reputation,

Total — interaction — number and Recent — interaction — number. The visited agents

during the evaluation process are updated in the Jadex®™ belief sets. We have a manager

agent who decides which agent should be in which agent's radius of activity and the agent with

radius of activity sets its knowledge base for those it knows or are in its circle in the beginning of

the simulation. One simulator agent decides the number of runs and asks all agents to provide

cumulative utility at the end of each run. Also, there is a selector agent who selects randomly

some agents from the directory facilitator [37] where all agents are described and re registered.

Service
Provider

Age nts (S.P.)

Service
Consumer

Agents (S.C.)

S.P. Agent Type

Good

Ordinary

Bad

F ickle

S.C. Agent Type

CRM

FIRE

REFERRAL

SPORAS

Density in the
S.P. Community

15.0%

30.0%

15.0%

40.0%

Density in the
S.C. Community

25.0%

25.0%

25.0%

25.0%

Provided Utility at Each RUN

Range

[+5, +10]

[-5, +5)

[-10, -5]

[-10,+10]

Standard Deviation

1.0

2.0

2.0

-

Number of Joining Agents at Each RUN

6

6

6

6

Radius of
Activity

25

28

25

30

Radius of
Activity

35

35

35

35

Table 5.1 Protocol minimization over the obtained measurement

The testbed environment (represented in table 5.1) is populated with two type of agents:

service provider agents who are mend to provide services (toward simplicity, we assume only one

type of service is provided and therefore consumed) and service consumer agents (equipped with

the aforementioned trust model) who are seeking the service providers to interact with and

consume the provided service and therefore gain the corresponding utility. This utility depends on

type of the service provider. Generally, service providers are different, and thus they provide

different quality of service and the consumer agents who use these services obtain diverse utility.

73

Chapter 5 Trust Management in Open Multi-Agent Systems

Each agent (either service provider or consumer) is located randomly over the

environment and has been assigned a radius of activity in which it is centralized and be known by

all other agents who are in the area of activity. This simply means agents who are close enough

together, have private belief about each other. However, this does not exclude the fact that agents

extend their activity area and gradually get acquainted to other agents who are not in their activity

area.

The simulation consists of a number of consequent RUNs in which agents are activated

and build their private knowledge and keep interacting with one another, gain utility and enhance

their overall knowledge about the environment. The more agent knows the environment, the

better it can choose service providers and thus the more utility it gains. Agents are free to ask

others of their belief about the service provider to be selected. Finally, each agent requests for

service from the provider that the agent found the most trustworthy and reliable. This does not

mean that the agent can expect a certain utility from the selected service provider and the service

provider is more or less flexible in the quality of the service being provided. Table 5.1 represents

four types of the service providers: good, ordinary, bad and fickle. The first three provide the

service regarding to the assigned mean value of quality with a small range of deviation. However,

ficUe providers are more flexible as their range of quality covers the whole possible outcomes.

To put the system in a tighter situation, we gave a high number of fickle agents.

Since the major difference between frameworks is the trust model they employ for

credibility assessment, the utility gained by each model is considered as its efficiency in selecting

reliable service providers. Doing so, we compare CRM with three other models (FIRE, a

successful trust model with high performance [69], SPORAS, which is a centralized approach

[72] and Referral, which follows the concept of references [73]) in an honest environment to be

able to represent the comparison illustrated in related works. Moreover, we carry on comparing

74

Chapter 5 Trust Management in Open Multi-Agent Systems

CRM with FIRE model in more details in a biased environment in which CRM agents expose a

higher efficiency where the change of behavior is an issue.

5.4.1 Honest Environment

Figure 5.4 depicts the overall comparison of different models; The testbed consists of a

number of RUNs and consumer agents get service from the service provider agents after

evaluating trust and decided to interact; this number of interactions is represented as the

horizontal axes, and the mean value ranking for the utility gained of each group are represented in

the vertical axes. As the RUNs are elapsing, each service consumer is using a particular model to

find the most trustworthy service provider and thus gain the most. The utility gained means of

agents using the same trust models are compared with each other's using two sample t-test with

95% of confidence level represented in the ranking form to show the overall outperforming of

CRM and FIRE comparing to the other two.

Figure 5.4 Comparison of CRM with FIRE, Referral and Sporas model, in terms of mean utility

gained value at each RUN

Groups reflect the performance of four different trust models we considered for

comparison. SPORAS system is known as independently developed model which is generally

75

Chapter 5 Trust Management in Open Multi-Agent Systems

used as benchmarks. Since SPORAS is a centralized model, it suffers from inconsistency of the

trust values associated to agents, while they register upon entrance. Thus this system would not

perform well in situations when the good service providers are new to the system and remain

unknown for longer time comparing to others. Relatively we still have the problem of fake

advertising to the central agent to get more benefit. Therefore, SPORAS performs weak in

selecting the best service providers. Referral model agents directly consider how to place trust in

others and emphasize the key properties that affect the trust assessment, however they do not take

into account the suggestions of other agents, which lead them to assess the credibility of an

unknown or partially known service provider. This may affect the selection of good providers

from the beginning of the simulation. FIRE agents [69], regulates the problem of collecting the

required information by the evaluator to assess the trust of his partner. In addition they apply

certified reputation introduced by the target agent. As results oft-test illustrated in Figure 5.4, the

commutative utility gained over the 500 elapsed RUNs by FIRE and CRM agents are culminated

to be the highest as both methods select good service providers and therefore gain the highest

possible utility. In this environment the agents are considered to be honest and they reveal their

belief with 100% accuracy. In the next section, we carry on by the biased environment in which

agents would not necessarily reveal with 100% accuracy and this cause the evaluator agent to be

confused in the trust assessment and we discuss how CRM agents cope with such a problem.

5.4.2 Biased Environment

Being more realistic, we exposed the same agents in a very biased environment in which

the agents, serving some certain goals, may reveal much less accurate information. Each agent

accumulates the utility gained along interactions taken place employing its corresponding trust

model. We continue the comparison with FIRE model. Experimental variables are outlined in

table 5.2 and illustrated in figure 5.5. In order to perform an accurate comparison between

aforementioned trust models, each model is used by 50 consumer agents who seek service from

76

Chapter 5 Trust Management in Open Multi-Agent Systems

total 20 service providers providing diverse range of utility. In each RUN, 12 agents are joined to

seek for the best service provider and objectively gain the highest possible utility.

Measurements and
Characteristics

No. of active agents in
simulation

No. of RUNs in each
simulation

Measured cumulative
utility gained in five

simulations

Average cumulative utility
gained

Standard deviation of
cumulative utility gained
Half value of confidence

interval

Full confidence interval

CRN!

50

500

11,947

9,445

7,408

11,440

9,432

9,534

1,624

1,710

(7,824-11,244)

FIRE

50

500

8,429

8,063

4,652

5,538

9,092

6,554

1,837

1,934

(4,620 - 8,488)

Table 5.2 Protocol minimization over the obtained measurement

•CRM •Fire

8000

7000
•o

•S 6000
o
O
>. 5000

=> 4000

161 201 241 281 321

Number of Runs

361 401 481

Figure 5.5 Comparison of CRM with FIRE model, in terms of commutative utility gained value

over the RUNs.

77

Chapter 5 Trust Management in Open Multi-Agent Systems

In this case, FIRE agents collect the information gained by other agents and the target

agent to assess the credibility. However, they do not recognize the spurious ratings generated by

some malicious agents; and in a biased environment these agents quickly fail and drop their

accuracy in credibility estimation, which leads them to regular selection of fickle service

providers. We left the discussion of the CRM and FIRE agents for the next section in which we

discuss the advantages of CRM in more details by presenting an experimental scenario. In some

cases agents do not propose a good referee agent and as a rational agent, it picks up the referee

who is more beneficial for him rather than the system, thus in this case the final trust rate would

be affected with non-reliable information about the target agent. Eventually the agents

imagination about the target agent will not be true, therefore the evaluating agent has to evaluate

the referee agents, although it will cost an extra computational overhead for the method.

5.5 Experimental Results

FIRE is a successful trust-certified reputation model which addresses the problem of lack

of direct history. Agents evaluate the trust of other agents as a decentralized service. However

FIRE agents do not recognize the agents who got the good ratings and performed bad either in

terms of the inaccurate ratings provided for some others or unacceptable utility provided. CRM

agents are equipped with protocol which enables them to recognize change of behavior of others

and respectively adjust their beliefs regarding to the functioning of some particular known agents.

This basically states the collusion problem, by which agents intentionally reveal non-accurate

information, aiming to gain more benefit at the end. This change of behavior should be

recognized and the benefit of other agents should get adjusted for the new manner of the changed

agent. This process also quickly recognizes the fickle agents who may provide any quality of

service. Figure 5.6 illustrates a scenario in which an agent in collision with some other agents

tries to ignore a typical service provider.

78

Chapter 5 Trust Management in Open Multi-Agent Systems

Ag,

RUN t, about A gb
Ag, 97% ! S M> •' <70%, 25, 0.8>

Ag2 95% R U N t ' a b 0 U t A g

.•'Agj\ 94% RUN t, about Agb g '-,

" t>;' <75%, 30, 0.75>) o 70% out of 75%

•<60%, 15, 0.7>,-''

'; Ag4;' 92%

replaced for
maintenance

Ag. I

wou Id reveal if been asked
-t> <72%, 20. 0.8> •

if involved the
final was 72%

RUN t2 about Ag'b
I Ag4 92% 1> /'<75%J_8,0.8> \

Ag, 96% -
RUN t, about Ae'b '<77%, 20, 0.9> -O 76%out of79%

; RUN t, about Ag'h ,'• /> . -,-„, . rnc>o/
I Ag2 96% i> I \ <76%, 19, 0.8> / \ > 7 2 % o u 1 o f 7 9 %

^ 3 9 1 % — ~ ,.-. > , '•-.<65%, 18, 0.8>/'
would reveal if been asked -- '

Figure 5.6 Substituting untrustworthy agent in maintenance step

Suppose Aga after a period of time decides to balance the credibility of the other

consulting agents who had very recently revealed some information regarding to Agb's

credibility. From Aga's point of view, a consulting agent has revealed accurate information when

it is close enough to the actual performance of Agb, and oppositely a consulting agent is known to

be not accurate when the provided belief is apart from what has been seen by Aga. Suppose at

RUN tx, Aga asks the already defined set of trustworthy (Agt with 97% of credibility, Ag2 with

95% of credibility and Ag3 with 94% of credibility,) and referee agents their belief about Agb.

Ag-y discloses 70% to be the Agb's trustworthiness based on 25 interactions which are valid 0.8 of

time recency. Respectively, Ag2 discloses the required information as 75%, 30 interactions by

0.75 of time recency and Ag3 provides 60%, 15 interactions and 0.7 time recency. After

evaluation process of Aga, Agb is known to be 70% trustworthy, but in reality after a period of

interaction, Agb shows 75% accuracy in the service provided.

79

Chapter 5 Trust Management in Open Multi-Agent Systems

Let us discuss the same scenario when AgA (known to be 92% trustworthy) was involved

as a trustworthy agent (instead of Ag3), and upon Aga's request, Ag4 would provide 72% of

credibility based on 20 interactions by 0.8 of time relevance. Considering the number of

interactions and the accuracy of provided information, Ag4 seems to be more acquainted with

Agb rather than Ag3, therefore the choice of {Ag1,Ag2,Ag4) could have been a better choice of

trustworthy community to ask about Agb in which the evaluation process would end up with the

final value of'72% which is closer than previous estimation.

The objective of the maintenance that CRM model performs is to overcome this type of

inefficiencies. Based on formula 14 of [21], the trustworthy of Ag3 would drop to 91% which

automatically put Ag4 at a higher rate of trustworthy. Now performing a new evaluation process

done by Aga about Agb, who in reality performed 75% of accuracy in the provided services,

consider two cases of with and without maintenance. In the first case, Ag4 would be replaced by

Ag3, thus Aga would request the new trustworthy community ({Ag1,Ag2,Ag/i}) their belief

about Agb,; in this case Ag^ Ag2 and Ag4 respectively would respond 77%, 76% and 75% and

finalize the evaluation of the Agb, to be 76% which seems to be fairly close to the real credibility

of Agb,. In the second case, Aga's trustworthy community is still {Ag1,Ag2,Ag3}, and upon

request, Ag1, Ag2 and Ag3 respectively would respond 77%, 76% and 65% and finalize the

evaluation of the Agb, to be 72%. This value is affected because of the participation of Ag3 who

has recently started malfunctioning.

80

Chapter 5 Trust Management in Open Multi-Agent Systems

-CRM - Fire

^ • m ^ ^ ^ ^ ^ ^ ^ ^

8 15 22 29 36 43 50 57 64 71 78

Number of Runs

Figure 5.7 Comparison of CRM and FIRE Model in terms of selecting fickle service providers

along the elapsing RUNs

-CRM — ™ Fire

8 15 22 29 36 43 50 57 64 71 78

Number of Runs

Figure 5.8 Comparison of CRM and FIRE Model in terms of selecting good service providers

along the elapsing RUNs

Figure 5.7 shows a graph plotting fickle selection percentage versus number of RUNs.

The graph highlights the difference of having and missing the maintenance regarding to the

behavior of CRM and FIRE agents. In the first 80 RUNs, we observed that CRM agents are

reducing the selection of fickle agents in the RUNs as the time goes on. This is because the CRM

81

Chapter 5 Trust Management in Open Multi-Agent Systems

agents would perform maintenance on the behavior of the fickle agents who provide a bad utility

after the interaction and deduce their belief about them which leads to less selection afterwards.

Relatively FIRE agents would almost remain same as they do not recognize the fluctuated

behavior of the fickle agents. The picks of the CRM graph (Pa and P2) are simply because of

selection of few number of CRM agents at each RUN and therefore the maintenance they perform

would generally has low affect on the consequent RUN until they are selected again. Therefore,

the curve would come down in a fluctuated manner until all the fickle agents lose their credibility

and never get selected which happens in P3. Respectively Figure 5.8 illustrates the same type of

the graph with the good agent selection percentage versus the number of RUNs. This graph is the

complementary of the graph represented in Figure 5.7 as the less fickle providers are selected, the

more good providers are recognized and therefore, CRM agents would enhance their credibility

and after distribution of the obtained ranking good providers are always selected.

5.6 Related Work

Perhaps the best-known approaches to trust in multi-agent systems are FIRE [69],

SPORAS [72] and Referral [73]. In this section, in addition we get more into details by analyzing

some recently emerged systems like ReGret [74], Formal [75], HIT [76], Adaptive [77] and

Statistics [78]. So far the proposed approaches are distinguishable by the following

classifications: 1) Policy-based trust; 2) Reputation-based trust; 3) General model of trust; and 4)

Trust in information resources. Generally speaking, all the approaches are following a direction to

overcome the following problems: The model should be provided by adequate information related

to the environment and the contributing agents; they tend to avoid consulting with a central

control unit who is always subject to single point of failure or huge bottleneck (for example in

online auction development). Agents are aimed to make estimation independently; there are

always malicious agents who try to distract the overall process; they can either try to slander other

82

Chapter 5 Trust Management in Open Multi-Agent Systems

agents by lying about its trust level or supporting an agent on purpose, try to exaggerate about its

credibility.

The idea of witness reputation has been used by Sabater who proposed a decentralized

trust model [74] called ReGret. He used the reports from the witnesses in addition to the

technique based on direct interaction experience. One of the substantial aspects of this work is

unlike the previous approaches, the rating are dealt according to their recently relevance. Thus,

old ratings are given less importance compared to new ones. Sabater's work is sensitive to noise

and thus vulnerable as it does not represent witness locations. Also, it does not notice distractions

made by some malicious agents. In our model, the issue is managed by considering the witnesses

trust and our merging method takes into account the proportional relevance of each reputation

value, rather than treating them equally.

Singh in the other work with Wang developed as algebra [75] for aggregating trust over graphs

understood as webs of trust. They argue that current approaches for combining trust reports tend

to involve ad hoc formulas. In their work, dynamism is accommodated by discounting over time

and composition by discounting over the space source. They have developed a principled

evidential trust model that would underlie any such agent system where trust reports are gathered

from multiple sources.

Regarding to ad hoc formulation, Velleso et al. presented a similar work applied to ad

hoc network [76]. The aspect of their work is that they have refereed to human concept of trust.

Similar to our work they use the recommendations by trustworthy agents in addition to their own

direct experience. They tried to balance the recommendations regarding to recently relevance and

relationship maturity, but the agents do not have reasoning capabilities, moreover they do not

have policies taken for dealing with the malicious agents.

83

Chapter 5 Trust Management in Open Multi-Agent Systems

Song, Phoha and Xu, proposed an Adaptive recommendation trust model [77] for multi-

agent systems. They design a neural network for evaluating multiple recommendations of various

trust standards with and without deceptions. They used an ordered depth first search (DFS) for

delaying the first initial set of qualified recommendations (preparing a proper data set for

proposed neural network input). In the second stage they design a neural network which is based

on back propagation. The output of this stage will be the actual set of qualified recommendations.

The most important advantage of this model is adaptively and flexibility that captures the

dynamic nature of online trust. On the other hand using neural network in dynamic environment

needs much more time for training faze of neural net, thus when our input data set has changed

our designed neural net must be adapted and it needs a large amount of time considering time

period for each iteration in Multi-Agent Systems. As each trust model needs to update its

recommendations and we have to consider the time relevance factor in recommender qualification

faze of our system, designed neural network must be run frequently and it causes time complexity

overhead. On the other hand there is no method in their proposed approach to solve the report

refusal problem and there is no chance for the target agent to introduce his referee agents to us

and these flaws cause a late convergence problem for neural network or may be in accurate trust

estimation.

In the work proposed by Shi et al. [78], a trust model has been introduced to assist

decision-making in order to predict the likely future behavior by analyzing the past behavior. The

authors have mostly worked on the environment facilitation, for example the space of possible

outcomes has been studied. They believe it is crucial to identify the space of possible outcomes

which determines the nature of the associated trust model. The notion of discrete categories is

similar to our model in terms of giving more flexibility to the ratings as feedback in order to get

more accurate direct interaction estimation. But they have not taken into account the

measurements which would unbalance the trust estimation and their decision-makings are solely

84

Chapter 5 Trust Management in Open Multi-Agent Systems

based on the previous interactions but in our model after a certain amount of time a maintenance

is performed to dynamically update the policies adopted.

85

Chapter 6 Conclusions and Future Work

Chapter 6. Conclusions and Future Work

6.1 Contributions and Concluding Remarks

In this dissertation, a 3-Ievel framework for B2B applications was presented. The three

levels namely strategic, application and resource are populated with argumentative agents. We

have shown how our framework can be used to set up collaborations among autonomous

businesses (via strategic level), and execute and manage these collaborations (via application

level). Inevitably, given the autonomous nature of businesses, conflicts are bound to arise. We

have shown how our framework can detect and resolve conflicts. To this end an argumentation-

based model was developed and implemented. This model was the basis of a negotiation and

persuasion protocol that includes inquiry stages for resolving conflicts between agents acting on

behalf of applications of type Web services. This protocol has the originality of considering

partial arguments allowing agents acting on behalf of businesses to reason about partial

information.

Another contribution of this thesis is the proposition of a new probabilistic and statistic-

based model to secure open multi-agent systems such as the one proposed and developed in the

first part of this dissertation, which is about B2B applications. In this system, agents communicate

with each other using dialogue games. A framework based upon trustworthy and referee agents

has been presented. Furthermore, this framework considers many machanisms allowing agents to

make use of the information communicated to them by other agents to determine the trust of

further target agents. Our model has the advantage of being computationally efficient and of

taking into account three important factors: (1) the trust (from the viewpoint of the evaluator

agent) of the trustworthy agents; (2) the trust value assigned to target agent according to the point

of view of trustworthy agents: and (3) the number of interactions between trustworthy agents and

86

Chapter 6 Conclusions and Future Work

the target agent. Moreover, agents perform an off-line maintenance in order to evaluate the

consulting agents' trust level by comparing the provided information regarding to the target

agent's trust level and the actual behavior of the target agent since it has started interaction. The

resulting model allows us to produce a comprehensive assessment of the agents' credibility in a

software system. The simulations we carried out have shown the efficiency of the proposed

model compared to the existing models in the literature.

6.2 Future Work

For future work, we plan to investigate the following points:

1. Propose a general framework for agent negotiation by considering the formalization of

concessions and there effects on the outcome of negotiation protocols. Computational

argumentation theory provides a promising base for understanding and modeling concessions

by analyzing the strength of exchanged arguments and by building new arguments when new

information become available.

2. Analyze and enhance the computational complexity of the proposed framework. The

complexity of deciding if an argument is a valid one and if an agent can build arguments for

given conclusions is high in propositional languages. However, considering less general

languages that are enough to express agent beliefs can resolve this problem.

3. Scale up and demonstrate our argumentation-based model on larger examples. Additionally,

we plan to enrich our model with contextual ontologies when modeling knowledge bases of

individual agents.

4. Consider the effect of using argumentation reasoning when assessing the trust of other agents.

Indeed, when interacting, agents are not always using quantitative methods to evaluate the

provided service. However, they can argue about the quality of this service. In addition, when

87

Chapter 6 Conclusions and Future Work

asking testimonies for their opinions about other agents, argumentation can play a fundamental

role since quantitative evaluation can differ from an agent to another. By showing the arguments

that are used in the evaluation, agents can have a sophisticated reasoning to accept or refuse the

testimony. In fact, agents are not supposed to be always honest when sending their opinions to

others. By using an argumentation reasoning their strategies can change, and they will not simply

asking others, but try to argue with them before taking a decision. Furthermore, merging trust and

argumentation in a combined and unified framework will solve many problems in trust evaluation

that are generally based on heuristics.

88

References

References

[I] G. Weiss; Multiagent systems a modern approach to distributed artificial intelligence; MIT
Press, 1999.

[2] M. Wooldridge; An introduction to Multiagent Systems; J.Wiley, 2002.

[3] A. Rogers, E. David, J. Schiff and N.R. Jennings; The Effects of Proxy Bidding and Minimum
Bid Increments within eBay Auctions; ACM Transactions on The Web, Vol. 1, No. 2, Article 9,
August 2007

[4] N. Schurr, J. Marecki, M. Tambe and P. Scerri; The Future of Disaster Response: Humans
Working with Multiagent Teams using DEFACTO; AAAI Spring Symposium on Homeland
Security, 2005.

[5] R. Sun and 1. Naveh; Simulating Organizational Decision-Making Using a Cognitively
Realistic Agent Model; Journal of Artificial Societies and Social Simulation vol. 7, no. 3.

[6] M. Dastani, J. Hulstijn, and L.V. der Torre; Negotiation protocols and dialogue games;
Artificial Intelligence Conference, pp. 13-20, (2000).

[7] N.C. Karunatillake, N.R. Jennings, I. Rahwan and T.J. Norman; Argument-based negotiation
in a social context; AAMAS Conference, pp. 1331-1332, (2005).

[8] C. Li, J.A.Giampapa and K.P.Sycara; Bilateral negotiation decisions with uncertain dynamic
outside options; IEEE Transactions on Systems, Man, and Cybernetics, Part C 36(1): 31-44,
(2006).

[9] 1. Rahwan, L. Sonenberg, N. R. Jennings and P. McBurney; STRATUM: A Methodology for
Designing Heuristic Agent Negotiation Strategies; Applied Artificial Intelligence, Vol 21, No 6,
pp. 489-527. (2007).

[10] H. Prakken; Relating protocols for dynamic dispute with logics for defeasible argumentation
Syntheses; pp. 187-219, (2001).

[II] P. McBurney, S. Parsons, and M. Wooldridge; Desiderata for Agent Argumentation
Protocols; AAMAS Conference, pp. 402 - 409, (2002).

[12] F. H. van Eemeren and R. Grootendorst; Argumentation, Communication and Fallacies: A
Pragma-Dialectical Perspective; (1992).

[13] L. Amgoud, S. Belabbes, and H. Prade; A Formal General Setting for Dialogue Protocols;
AIMSA, pp. 13-23, (2006).

[14] J. Bentahar, B. Moulin, and B. Chaib-draa; Commitment and argument network: a new
formalism for agent communication; pp. 146-165, (2003).

[15] J. Bentahar, B. Moulin, and B. Chaib-draa: Specifying and Implementing a Persuasion
Dialogue Game using Commitment and Argument Network. Argumentation in Multi-Agent
Systems; vol. 3366 of LNAI, pp. 130-148, (2005).

88

References

[16] P. McBurney and S. Parsons; Dialogue Games in Multi-Agent Systems Informal logic;
Special Issue on Applications of Argumentation in Computer Science, vol. 22(3): 257-274,
(2002).

[17] J. Bentahar, J. Labban; An Argumentation-Driven Model for Autonomous and Secure
Negotiation; GDN Conference, pp. 5-18, (2007).

[18] I. Rahwan, S. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons and L. Sonenberg;
Argumentation - based negotiation; The Knowledge Engineering Review, Vol.18:4,pp.343-375,
Cambridge University Press (2004).

[19] W. Shen, D. H. Norrie and Jean-Paul Barthes; Multi-agent Systems for Concurrent
Intelligent Design and Manufacturing; CRC press(2001)

[20] Virtual Roundtable, Internet Computing on-line Journal, July-August issue, 1997.

[21] B. Khosravifar, J. Bentahar, M. Gomrokchi and R. Alam; An approach to Comprehensive
Trust Management in Multi-Agent Systems with Credibility; IEEE 3rd International Conference
on Research Challenges in Information Sciences, RCIS, Marrakech, Morocco 2008.

[22] N. Kasabov; Introduction: Hybrid intelligent adaptive systems; International Journal of
Intelligent Systems, Vol.6, (1998) 453-454.

[23] N. R. Jennings and M. Wooldridge; Agent-Oriented Software Engineering; Handbook of
Agent Technology (ed. J. Bradshaw) AAAI/M1T Press, 2000.

[24] S. A. DeLoach, M. F. Wood and C. H. Sparkman; Multiagent Systems Engineering; The Intl.
Jour, of SE and KE, Vol. 11, No. 3, June 2001.

[25] P. Bayer and M. Svantesson; Comparison of Agent-Oriented Methodologies Analysis and
Design, MAS-CommonKADS versus Gaia; Blekinge Institute of Technology, Student Workshop
on Agent Programming, 2001.

[26] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol, M. G. Staskauskas and J.
Von Olnhausen; A Framework for Evaluating Specification Methods for Reactive Systems,
Experience Report; IEEE Trans. Software Engineering, Vol. 22, No. 6, pp 378-389, June 1996.

[27] M. Bunge; Treatise on Basic Philosophy: Vol. 3, Ontology I: The Furniture of the World;
Reidel, Boston, June 1977.

[28] M. T. Cox and S. DeLoach; Multiagent systems and mixed initiative planning course;
Wright State University http://www.cs.wright.edu /people/faculty/mcox/ Teaching/Cs790/, April
2000.

[29] L. Cernuzzi and G. Rossi; On the Evaluation of Agent Oriented Methodologies; in Proc. of
the OOPSLA 2002 Workshop on Agent-Oriented Methodologies, November 2002.

[30] M. Wooldridge, N. R. Jennings, and D. Kinny; The Gaia Methodology for Agent-Oriented
Analysis and Design: Journal of Autonomous Agents and Multi Agent Systems, Vol. 3, No. 3,
pp. 285-312, March 2000.

[31] C. A. Iglesias, M. Garrijo, J. Gonzalez , and J.R.Velasco; Analysis and Design of multiagent
systems using MAS-CommonKADS: Proceedings of the Fourth International Workshop on

89

http://www.cs.wright.edu

References

Agent Theories, Architectures and Languages (ATAL), LNCS 1365, Springer-Verlag, pp. 313-
328, 1998.

[32] E. Yu and L.M. Cysneiros; Agent-Oriented Methodologies-Towards A Challenge Exemplar;
4th Intl. Workshop on Agent-Oriented Information Systems (AOIS'02), May 2002.

[33] C. A. Iglesias, M. Garijo, and J. C. Gonzalez; A survey of agent-oriented methodologies;
Intelligent Agent V, Proc. of ATAL-98, LNA1 1555, pp. 317-330, Springer, July 1999.

[34] P. Bresciani, P. Giorgini, F. Hiunchiglia, J. Mylopoulos, and A. Perini; Tropos: An agent-
oriented software development methodology; AAMAS Journal, 2004; 8(3): 203-236.

[35] A.S. Rao and M.P. Georgeff; Modeling Rational Agents within A BD1- Architecture; Second
lnt'1 Conf. on Principles of Knowledge Representation and Reasoning (KR'91), Morgan
Kaufmann: San Mateo, 1991, pp. 473-484.

[36] C.E. Lin, M. Krishna, T. Fredrick and M. Kris; A Methodology to Evaluate Agent Oriented
Software Engineering Techniques; proceeding of the 40th Hawaii International Conference on
system science - 2007.

[37] Jadex User Guide http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

[38] L. Amgoud, Y. Dimopoulos, and P. Moraitis; A Unified and Genaral Framwork for
Argumentation based Negotiation; In The International Conference on Autonomous Agents and
Multiagent Systems. ACM Press, 2007.

[39] K. Atkinson, T. Bench-Capon, and P. McBurney; A Dialogue Game Protocol for Multi-
Agent Argument over Proposals for Action; Journal of Autonomous Agents and Multi-Agent
Systems, 11(2), 2005.

[40] J. Bentahar, Z. Maamar, D. Benslimane, and P. Thiran; An Argumentation Framework for
Communities of Web Services; IEEE Intelligent Systems, 22(6), 2007.

[41] J. Bentahar, F. Toni, J.-J. Meyer, and J. Labban; A Security Framework for Agent-based
Systems; Journal of Web Information Systems, 3(4):341-362, 2007.

[42] E. Black and A. Hunter; A Generative Inquiry Dialogue System; In The International
Conference on Autonomous Agents and Multiagent Systems, ACM Press, 2007.

[43] A. Bondarenko, P. Dung, R. Kowalski, and F. Toni; An Abstract, Argumentation-Theoretic
Approach to Default Reasoning; Artificial Intelligence, 93(l-2):63-101, 1997.

[44] P. Dung; The Acceptability of Arguments and its Fundamental Role in Non-Monotonic
Reasoning and Logic Programming and n-Person Game; Artificial Intelligence, 77:321-357,
1995.

[45] P. Dung, P. Mancarella, and F. Toni; Computing ideal sceptical argumentation; Artificial
Intelligence, Special Issue on Argumentation in Artificial Intelligence, 171(10-15):642-674,
2007.

[46] H. Fujita; Special Issue on Techniques to Produce Intelligent Secure Software; Knowledge
Based Syst., 20(7):614-616, 2007.

90

http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

References

[47] A. Garcia and G. Simari; Defeasible Logic Programming: an Argumentative Approach;
Theory and Practice of Logic Programming, 4(1):95—138, 2004.

[48] V. Gruhn and H. Fujita; Special Issue on Intelligent Software Design; Knowledge Based
System, 19(2): 105-106, 2006.

[49] B. Ktari, H. Fujita, M. Mejri, and D. Godbout; Toward a New Software Development
Environment; Knowledge Based System, 20(7):683-693, 2007.

[50] R. Lau; Towards aWeb Services and Intelligent Agents-based Negotiation System for B2B
eCommerce; Electronic Commerce Research and Appl., 6(3), 2007.

[51] N. Maudet and B. Chaib-draa; Commitment-based and Dialogue Game-based Protocols, new
trends in agent communication languages; Knowledge Engineering Review, 17(2): 157-179,
2002.

[52] P. McBurney and S. Parsons; Games that Agents Play: A Formal Framework for Dialogues
between Autonomous Agents; Journal of Logic, Language, and Information, 11(3):315-334,
2002.

[53] N. Milanovic and M. Malek; Current Solutions for Web Service Composition; IEEE Internet
Computing, 8(6), November/December 2004.

[54] C. Nicolle, K. Y'etongnon, and J. Simon; XML Integration and Toolkit for B2B
Applications; Journal of Database Management, 14(4), 2003.

[55] S. Parsons. M. Wooldridge, and L. Amgoud; On the Outcomes of Formal Inter-Agent
Dialogues; In Proceedings of The International Conference on Autonomous Agents and
Multiagent Systems. ACM Press, 2003.

[56] P. Pasquier, I. Rahwan, F. Dignum, and L. Sonenberg; Argumentation and Persuasion in the
Cognitive Coherence Theory; In The 1 st International Conference on Computational Models of
Argument. 10S Press, 2006.

[57] H. Prakken; Formal Systems for Persuasion Dialogue; The Knowledge Engineering Review,
24(2), 2005.

[58] F. Sadri, F. Toni, and P. Torroni; Dialogues for Negotiation: Agent Varieties and Dialogue
Sequences; In The International Workshop on Agents, Theories, Architectures and Languages,
2001.

[59] Y. Udupi and M. Singh; Contract Enactment in Virtual Organizations: A Commitment-
Based Approach; In The 21st National Conference on Artificial Intelligence, 2006.

[60] D.N. Walton and E.C.W. Krabbe; Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning; Suny Series in Logic and Language, 1995.

[61] A. Williams. A. Padmanabhan and B. Blake; Local Consensus Ontologies for B2B-Oriented
Service Composition; In The International Joint Conference on Autonomous Agents and
Multiagent Systems. 2003.

91

References

[62] http://www.doc.ic.ac.uk/~dgOO/casapi.html

[63] http://sourceforge.net/projects/argkit/

[64] http://jlogic.sourceforge.net/

[65] http://sourceforge.net/projects/tuprolog/

[66] J. Bentahar and J-J. Ch. Meyer; A new quantitative trust model for negotiating agents using
argumentation; In the International Journal of Computer Science and Applications,4(2):1-21,
2007.

[67] P. Yolum and M.P. Singh; Engineering self-organizing referral networks for trustworthy
service selection; IEEE Transaction on systems, man, and cybernetics, 35(3):396-407, 2005.

[68] E. Shakshuki, L. Zhonghai, and G. Jing; An agent-based approach to security service.
International Journal of Network and Computer Applications; Elsevier, 28(3): 183-208, 2005

[69] T. Dong-Huynh, N.R. Jennings and N.R. Shadbolt; Fire: An integrated trust and reputation
model for open multi-agent systems; Journal of Autonomous Agents and Multi-Agent Systems
13(2) pp. 119-154,2006.

[70] T. Dong-Huynh, N.R. Jennings and N.R. Shadbolt; Certified reputation: How an agent can
trust a stranger; In Proceedings of The Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 1217-1224, Hakodate, Japan, 2006.

[71] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt; An integrated trust and reputation model
for open multi-agent systems; Journal of Autonomous Agents and Multi-Agent Systems
AAMAS,2006, 119-154.

[72] G. Zacharia, and P. Maes; Trust management through reputation mechanisms; Applied
artifitial intelligence, 14(9):881-908, 2000.

[73] B. Yu, and M. P. Singh; An evidential model of distributed reputation management; In Proc.
of the First Int. Conference on AAMAS. ACM Press, pp. 294-301, 2002.

[74] J. Sabatar; Trust and reputation for agent societies; Phd thesis, Universitat autonoma de
Barcelona, 2003.

[75] Y. Wang, and M.P. Singh; Formal trust model for multiagent ststems; Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1551-1556, 2007.

[76] P.B. Velloso, R.P. Laufer, M.B. Duarte and G. Pujolle; HIT: A humaninspired trust model;
IF1P International Federation for Information Processing, vol 211, pp. 35-46, 2006.

[77] W. Song, V.V. Phoha and X. Xu; An adaptive recommendation trust model in multiagent
system; Intelligent Agent Technology, 2004. (IAT 2004). Proceedings. IEEE/W1C/ACM, pp.
462- 465, 2004.

[78] J. Shi, G.V. Bochmann and C. Adams; A trust model with statistical foundation: 1F1P
International Federation for Information Processing, vol 173, pp.145-158, 2005.

92

http://www.doc.ic.ac.uk/~dgOO/casapi.html
http://sourceforge.net/projects/argkit/
http://jlogic.sourceforge.net/
http://sourceforge.net/projects/tuprolog/

References

[79] J.V. Neumann and O. Morgenstern; Theory of Games and Economic Behavior; Princeton
University Press 1944.

[80] M.J. Osborne and A. Rubinstein; A course in game theory; MIT Press, Cambridge, MA
(1994).

[81] G. Zlotkin and J. S. Rosenschein; Coalition, cryptography and stability: Mechanisms for
coalition formation in task oriented domains; In Proc. of AAA194

[82] Sandhol; emediator: a next generation electronic commerce server; Computational
Intelligence. vl8 i4. 656-676.

[83] H.S. Nwana; Software agents: an overview: The Knowledge Engineering Review, 11(3),

1996, pp 205-244.

[84] P. Faratin, C. Sierra and N. R. Jennings: Using Similarity Criteria to Make Negotiation

Trade-Offs; 1CMAS 2000: 119-126

[85] S. Kraus; Strategic Negotiation in Multiagent Environments; MIT Press, 2001; ISBN: 0-262-

11264-7

[86] N.R. Jennings; An agent-based approach for building complex software systems.

Communications of the ACM 44(4), 35-41,2001.

[87] Y. Labrou, T. Finin and Y. Peng; Agent communication languages: the current landscape;

IEEE Intelligent Systems (1999), pp. 45-52.

[88] J. Searle; Speech Acts: An Essay in the Philosophy of Language; Cambridge University

Press, 1969.

[89] D. R. Traum; Speech acts for dialogue agents; Foundations of Rational Agency , 1999.

[90] J. May, Y. Labrou and T. Finin; Evaluating KQML as an Agent Communication Language;

Intelligent Agents II (LNA1 Volume 1037). Springer-Verlag, 1996.

[91] http://www.fipa.org/specs/fipa00086/index.html

93

http://www.fipa.org/specs/fipa00086/index.html

Appendix 1 Agent Definition File (ADF)

Appendix 1: Agent Definition File (ADF)

<?xml version="1.0" encoding="UTF-8"?>
<!--This is for Trust project.—>
<agent xmIns="http://jadex.sourceforge.net/jadex"

xmlns:xsi="http://www.w3 .org/200 l/XMLSchema-instance"
xsi:schemaLocation="http://jadex.sourceforge.net/jadex

http://jadex.sourceforge.net/jadex-0.96.xsd"
name="Cosumer"
package="Consumer">

<imports>
<import>java.util.*</import>
<import>jadex.adapter.fipa.*</import>

<import>jadex.planlib.*</import>
</imports>

<capabilities>
<capability name="procap" file="jadex.planlib.ProtocoIs"/>

<!— Include the directory facilitator capability under the name dfcap. -->
Capability name="dfcap" file="jadex.planlib.DF"/>

</capabilities>

<beliefs>
<!-- This belief contains the agents in the whole environment as an array. —>
<belief name="names" c!ass="String[]">
<fact>new String[] </fact>

</belief>

<beliefname="circle"class="Object">
<fact> new ArrayList() </fact>

</belief>

<belief name="mine" class="Object">
<fact> new ArrayList() </fact>

</belief>

<belief name="known_Tr" class="Object">
<fact> new Hashtable() </fact>

</be)ief>

<belief name="known_TR" class="Object">
<fact> new Hashtable() </fact>

</belief>

<beliefname="known_N" class="Object">
<fact> new Hashtable() </fact>

94

http://jadex.sourceforge.net/jadex
http://www.w3
http://jadex.sourceforge.net/jadex
http://jadex.sourceforge.net/jadex-0.96.xsd

Appendix 1 Agent Definition File (ADF)

</belief>

<belief name="utility" class="Integer">
<fact> 0 </fact>

</be!ief̂ >

</beliefs>

<goals>
<maintaingoalref name="df_keep_registered">

<concrete ref="dfcap.df_keep_registered"/>
</maintaingoalref>

<achievegoalref name="rp_initiate">
<concrete ref="procap.rp_initiate"/>

</achievegoalref>

<!-- Include df search goal type from dfcap. -->
<achievegoalref name="df_search">

<concrete ref="dfcap.df_search"/>
</achievegoalref>

</goals>

<plans>
<plan name="select">

<body class="EvaIuationPlan"/>
<trigger>

<messageevent ref="request_selection"/>
</trigger>

</plan>
<plan name="tell">

<body cIass="Mine_InformPlan"/>
<trigger>

<messageevent ref="request_tell7>
</trigger>

</p!an>
<plan name="give">

<body class="Value_lnformPlan"/>
<trigger>

<messageevent ref="request_what"/>
</trigger>

</plan>
<plan name="final">

<body class="Utility_InformPlan"/>
<trigger>

<messageevent ref="request_final"/>
</trigger>

</plan>
<plan name="init">

<body class="lnitialPlan"/>
<trigger>

95

Appendix 1 Agent Definition File (ADF)

<messageevent ref="request_init"/>
</trigger>

</plan>
</plans>

<events>
<messageevent name="request_init" direction="receive" type="fipa">

<parameter name="performative" class="String" direction="fixed">
<value>SFipa.REQUEST</value>

</parameter>
<parameter name="content-start" class="String" direction="fixed">

<value>"fire"</value>
</parameter>

</messageevent>

<messageevent name="request_final" direction="receive" type="fipa">
<parameter name="performative" cIass="String" direction="fixed">

<va!ue>SFipa.REQUEST</value>
</parameter>
<parameter name="content-start" class="String" direction="fixed">

<value>"final"</value>
</parameter>

</messageevent>
<messageevent name="request_teH" direction="receive" type="fipa">

<parameter name="performative" class="String" direction="fixed">
<value>SFipa.REQUEST</value>

</parameter>
<parameter name="content-start" class="String" direction="fixed">

<value>"who"</value>
</parameter>

</messageevent>

<messagsevent name="request_selection" direction="receive" type="fipa">
<parameter name="performative" c!ass="String" direction="fixed">

<va!ue>SFipa.REQUEST</value>
</parameter>
<parameter name="content-start" class="String" direction="fixed">

<value>"show"</value>
</parameter>

</messageevent>

<messageevent name="request_what" direction="receive" type="fipa">
^parameter name="performative" class="String" direction="fixed">

<value>SFipa.REQUEST</value>
</parameter>
<parameter name="content-start" class="String" direction="fixed">

<value>"referee value"</value>
</parameter>

</messageevent>
<messageevent name="inform" direction="send" type="fipa">

96

Appendix 1 Agent Definition File (ADF)

<parameter name="performative" class="String" direction="fixed">
<value>SFipa.INFORM</value>

</parameter>

</messageevent>
<!— The answer message after some error occurred. -->
<messageevent name="failure" direction="send" type-"fipa">

<parameter name="perfonnative" class="String" direction="fixed">
<value>SFipa.FAILURE</value>

</parameter>
</messageevent>

</events>

<properties>
<!— Only log outputs >= level are printed. -->
<property name="logging.level">Level.rNFO</property>
<!— The default parent handler prints out log messages on the console. -->
<properry name="logging.useParentHandIers">true</property>
<!~<property name="debugging">true</property>—>

</properties>

<configurations>
Configuration name="default">

<goals>
<initialgoal ref="df_keep_registered">

<parameter ref="description">
<value>

SFipa.createAgentDescription(null,

SFipa.createServiceDescription("service_trust", "do sometask", "University of
Concordia"))

</value>
</parameter>
<parameter ref="leasetime">

<value>300000</value>
</parameter>

</initialgoal>
</goals>

<plans>
<initialplan ref="init"/>

</plans>
</configuration>

</configurations>

</agent>

97

Appendix 2 Proof of Propositions and Theorems

Appendix 2: Proof of Propositions and Theorems

Proof of Proposition 2. Without loss of generality, let a, alt..., an be arguments in a

given argumentation framework such that a1, ...,an are the only attackers of a and a is the only

attacker of these arguments. According to Definition 5, the argument a is not acceptable since it

is attacked and not defended, directly or indirectly by a non-attacked argument. Because it is

defended, a belongs to some preferred extensions. However, a does not belong to all of them. For

example, a does not belong to the preferred extension to which the arguments ax, ...,an belong

since these arguments belong also to some preferred extensions because they are defended, a is

then semi-acceptable.

Proof of Proposition 3. We prove this proposition by a counter example using Example

Error! Reference source not found.. In this example {a, d} and {b, d] are complete extensions

(preferred extensions). However, {d} is not a complete extension.

Proof of Proposition 4. By Definition 5, the grounded extension is included in all

preferred extensions. Consequently, using definition 4, an eliminated argument is not acceptable.

Also, according to Definition 7, an eliminated argument is not semi-acceptable and not preferred

semi-acceptable.

Proof of Proposition 5. Suppose that 3x G WT: cPx is not acceptable. Therefore, a part of

the non-missing part of a j is not acceptable. Because this part is also a part of a, then a is not

acceptable. Contradiction!

Proof of Proposition 8. To prove this we should prove that Cas3 => -iCasl A -\Cas2-

Using the logical calculation, we can easily prove that -iCas l A -iCas2 = -iCas l A -lOPa"1 A

-i0p„52
2. Also, if an agent /? can build an acceptable argument a from Jlp U CSa, then it cannot

94

Appendix 2 Proof of Propositions and Theorems

build an acceptable or (preferred) semi-acceptable argument attacking a from the same set.

Therefore, J\3l{Jlp U CSa) o a => —iCasj. Thus the result follows.

Proof of Theorem J. Agents' knowledge bases are finite and repeating moves with the

same content is prohibited. Consequently, the number of Attack and Question moves that

agents can play is finite. At a given moment, agents will have two possibilities only: Accept if an

acceptable argument can be built from CSa U CSp, or Stop, otherwise. Therefore, the protocol

terminates successfully by Accept, or unsuccessfully by Stop when Accept move cannot be

played, which means that only semi-acceptable arguments are included in CSa U CSp.

Proof of Theorem 2. For simplicity and without loss of generality, we suppose that agent

a starts the persuasion.

Let us first prove the =» direction: JW(cf{a U c/fy) > a => <AJZ(V CS) t> a.

In the protocol, the persuasion starts when a conflict over p occurs. Consequently, the

case where <Aa i> a and <Ap c> a does not hold. The possible cases are limited to three:

1 c/Za o a and Jlp sf> a. In this case, agent a starts the persuasion over

p by asserting a. Agent /? can either play the Attack move or the

Question move. Because J\!R{Jla U Jlp t> a) all the /?'s arguments

will be counter-attacked. For the same reason, /? cannot play the

Stop move. Consequently, at the end, /? will play an Accept move.

It follows that c^32(U CS > a).

2 cAa fr a and <Ap t> a. In this case, agent a starts the persuasion by

asserting an acceptable argument b in its knowledge base against p

95

Appendix 2 Proof of Propositions and Theorems

(Aa o b). This argument will be attacked by agent /?, and the rest is

identical to case 1 by substituting agent roles.

3 Aa tf> a and Jlp ti> a. To construct argument a out of Jla U <Ap,

two cases are possible. Either, (1) agent a has an acceptable partial

argument o7d for p and agent /? has the missing assumptions (or some

parts of the missing assumptions, and agent a has the other parts), or

(2) the opposite (i.e., agent /? has an acceptable partial argument ag

for p and agent a has the missing assumptions (or some parts of the

missing assumptions, and agent /? has the other parts)). Only the

second case is possible since the first one is excluded by hypothesis.

For simplicity, we suppose that agent a has all the missing

assumptions, otherwise the missing assumptions will be built by

exchanging the different partial arguments. Agent a starts the

persuasion by asserting an acceptable argument b in its knowledge

base against p. Agent /? can either play an Attack or a Question

move. If attack is possible, then agent a can either counter-attack or

play the Stop move. The same scenario continues until agent a plays

Stop, and then agent /? plays a Question Move. Agent a answers

now the question by providing the missing assumptions, after which

agent p attacks and agent a can only accept since MR(Jla U <Ap t>

a). It follows that JlJl(V CS > a).

Let us now prove the <= direction: <AJl(U C5) > a => <A!R{Jia U <Ap) i> a.

In the protocol, to have c/?3?(U CS) t> a one of the two agents, say agent a, puts forward

the argument a and the other, agent /?, accepts it. On the one hand, to advance an argument, agent

96

Appendix 2 Proof of Propositions and Theorems

a plays the Assert move (in the initial or question rules) or Attack move (in the assertion or

attack rules). In all these cases, we have: <AJl(<Aa U CSp) > a and there is no partial acceptable

argument attacking a from Aa U CSp. On the other hand, to accept an argument (in the assertion

or attack rules), agent /? should check that <AJl(<Ap U CSa) t> a, there is no other arguments

changing the status of the persuasion topic, and there is no partial acceptable argument attacking

a from Ap U CSa. Therefore we obtain: JVR(Jla U CSp U Jlp U CSa) t> a. Because CSa Q <Aa

and CSp £ Jlp we are done.

97

