A Schrodinger solver for nano-scale one-particle Quantum-Wells, -Wires and -dots with

infinite potential barriers

Sanam Moslemi-Tabrizi

A thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Electrical Engineering) at
Concordia University
Montreal, Quebec, Canada

April, 2007

(©Sanam Moslemi-Tabrizi, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28921-1
Our file Notre référence
ISBN: 978-0-494-28921-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

A Schrodinger solver for nano-scale one-particle Quantum-Wells, -Wires and -dots
with infinite potential barriers
Sanam Moslemi-Tabrizi

In this thesis a fast, efficient and simple algorithm and its implementation (in the
Java programming language) is presented; the algorithm calculates the energy states
and the corresponding wave functions of a one-particle quantum well/wire/dot structure
with an arbitrary potential profile by solving the multi-dimensional time-independent
Schrodinger equation. The algorithm is based on the Finite Cloud Method (FCM), which
is a truly meshless method. The contributions of this thesis are the expansion of FCM to
a 3D method and implementing a tool to solve the multi-dimensional Schrodinger equa-
tion in an efficient way. To validate the accuracy and efficiency of our implementation
we calculated the eigenstates of different rectangular GaAs quantum-wells, -wires and
-dots. Comparing the obtained results with the analytical results published in the liter-
ature shows our approach to be a successful proof of concept. The results also confirm

our implementation of the FCM algorithm to be highly accurate and efficient.

iii

Acknowledgments

The research presented in this thesis could not have been possible if not for the help, under-
standing, and support of many people.

First and foremost I would like to thank Professor Mojtaba Kahrizi. His valuable guid-
ance, continuous support and great patience helped me with the most difficult aspects of my
research.

Thanks also to my thesis defence committee members Dr. Abdel Sebak, Dr. Ali Dolatabadi
and Dr. Kash Khorasani for their valuable comments that greatly improved the quality of this
thesis.

Last but not least I'd like to thank the loves of my life, Bahman and Roitan, for their care,
love and many sacrifices they have made. Their support and presence enriched my mind and
made this thesis possible. I would also like to thank my parents for their indescribable love

and support.
Sanam Moslemi-Tabrizi

Concordia University

26 February 2007

iv

Contents

List of Tables

List of Figures

List of Symbols

List of Abbreviations

1 Introduction

2 Technical information

2.1

2.2

Quantummechanics i e e e e e e e
2.1.1 HIstory o i e e e e e e
2.1.2 Schrodingerequation,
2.1.3 Solving the Schrodinger equation and the problems
Numerical solutions
221 Meshmethods
222 Meshlessmethods

223 stateofartinmeshlessmethods

3 Theory of FCM and its implementation

3.1

Finite CloudMethod
3.1.1 The fixed reproducing kernel approximation in one dimension .

3.1.2 The fixed reproducing kernel approximation in two dimensions

vii

viii

ix

xi

10

16

19

20

22

27

32

32

33

38

3.1.3 The fixed reproducing kernel approximation in three dimensions . . .

314 Collocation v o v v i e e e e e e e e e e

3.2 Applying finite cloud method (FCM) on Schrodinger equation

........

321 Quantumwell e e

322 Quantum wWire. v ot e e e e e e e e e e e e

323 Quantumbox

4 Numerical Results

5 Conclusions and remarks

5.1 Contribution e e e e e e e e e e e e

52 Future Work e e e e e e e

References

A maple code for quantum well

B maple code for quantum wire

C maple code for quantum box

D Java Code to Implement the Solver

vi

42

46

47

49

51

52

56

71

73

74

76

79

80

81

82

List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

PARAMETERS OF THE Q-DOTs, Q-WIREs and Q-WELLs USED FOR

THE EIGENSTATES CALCULATIONS 65
ENERGY LEVELS OF RECTANGULAR GaAs QUANTUM WELL STRUC-
TURES, DESCRIBED AT TABLE 4.1 65
THE EFFECT OF AN ELECTRIC FIELD ON ENERGY LEVELS OF QUAN-
TUM WELL-I, DESCRIBED AT TABLE 4.1 66
ENERGY LEVELS OF RECTANGULAR GaAs QUANTUM WIRE STRUC-
TURES, DESCRIBED ATTABLE 41 66
THE EFFECT OF AN ELECTRIC FIELD ON ENERGY LEVELS OF QUAN-
TUM WIRE-I, DESCRIBED ATTABLE 41 67
ENERGY LEVELS OF RECTANGULAR GaAs QUANTUM BOX STRUC-
TURES, DESCRIBED ATTABLE 4.1 67
ENERGY LEVELS OF QUANTUM WIRE-I, DESCRIBED AT TABLE

4.1 WITH A SINUSOIDAL POTENTIAL FUNCTION 68

vii

List of Figures

4.1

4.2

4.3

4.4

4.5

The (a) obtained and (b) exact wavefunctions corresponding to the second
and the forth energy levels of a quantum well with width=1nm
The (a) obtained and (b) exact wavefunctions corresponding to the first and
the third energy level of a quantum well with width=40nm
The (a) obtained and (b) exact wavefunctions corresponding to the third en-
ergy level of a quantum wire with dimensions lmm x 1lnm
The (a) obtained and (b) exact wavefunctions corresponding to the third en-
ergy level of a quantum wire with dimensions 10nm x 100nm
The (a) obtained and (b) exact wavefunctions corresponding to the first en-

ergy level of a quantum dot (box) with dimensions 1nm X 1nm X 1nm and

viii

List of Symbols

w angular frequency

ye(x approximated of unknown function
dy, dy, d; cloud size

€0 correction Function

Oy, Oly, Oz dimensionless factor

Ax, Ay, Az distance between two neighbor node

Q domain of interest

m* effective mass of particle
E energy

f frequency

H Hamiltonian

Ni(x) interpolation function

¢() Kernel Function

V? Laplacian Operator

M moment matrix

)4 momentum

h Planck’s constant

V(r) potential Energy Function
h reduced Planck’s constant
t time

PT vector of basis function

ix

vector of coefficients
vector of position
wavefunction
wavelength

wavenumber

List of Abbreviations

BEM

CAD

DEM

EFG

FCM

FDEM

FDM

FEM

LSMFM

MBE

MLPG

MLS

MOCVD

PDE

boundary element method

computer aided design

diffuse element method

element free Galerkin

finite cloud method

finite difference element method

finite difference method

finite element method

least-squares meshfree method

molecular beam epitaxy

meshless local Petrov-Galerkin

moving least squares method

metalorganic chemical vapor deposition

partial differential equation

PG DEM petrov galerkin diffuse element method

PIM

point interpolation method

xi

RKPM reproducing kernel particle methods

SPH smooth particle hydrodynamics

Xii

1 Introduction

In recent years, due to significant improvements in micro-fabrication techniques like molec-
ular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) it is possi-
ble to fabricate ultra-small quantum structures. Further miniaturization has resulted in design
and fabrication of nano scale devices including pressure sensors [1], resonant tunneling tran-
sistors [2], biosensors [3] and photodetectors [4], [S]. Nano-scale devices have a variety of
applications in different fields as diverse as nano-electronics, bioelectronics, military and
biophysics so their fabrication is of great importance for modern electronics. However, since
the cost —both in time and effort— required to fabricate a new nano device is considered ex-
tremely high, it is important to perform a realistic computer simulation of the devices in order
to predict their characteristics and electrical properties before any further steps in the actual
manufacturing process can be taken.

The basic building blocks of the nano-scale devices whose lateral dimensions range any-
where in the range of 1 to 100 nm, are quantum structures —quantum well/wire/dot. The
simulation of nano scale devices therefore requires the simulation of the quantum struc-
tures. At this point it would be appropriate to briefly go over some definitions. According to
quantum theory, the quantum effects are observed by decreasing the size of semiconductor
structures to be comparable with de Broglie’s wavelength of a particle. A semiconductor
structure is called a quantum well, when its size in one spatial dimension is comparable with
de Broglie’s wavelength of a particle. Likewise a quantum wire is a semiconductor structure
which confines the motion of a particle in two dimensions; in a quantum wire the quantum

effects are observed in two spatial dimensions. And finally a quantum dot is a nanostructure

which shows quantum effects in all the three spatial dimensions which consequently confines
the motion of a particle in three spatial directions.

To simulate and design nano-devices based on quantum structures, it is important to know
the eigenenergies and eigenfunctions of the quantum structures which are determined by
solving the time-independent Schrodinger equation. The Schrodinger equation is a key equa-
tion in quantum mechanics whose solution predicts the behavior of quantum phenomena. As
is the case with many partial differential equations, solving the Schrodinger equation poses
enormous challenges with both analytical and numerical methods. For sufficiently simple
conditions the time-independent Schrodinger equation can be solved analytically however
for the more complex conditions, numerical methods often are the only approach possible
to obtain a solution. Conventional mesh-based numerical methods have been used now for
several decades to solve many problems in various fields of science, however recently their
limitations such as the problem of having to deal with large geometrical deformation, crack
growth and others have been revealed. The major shortcoming of mesh-based methods origi-
nates from these methods’ reliance on mesh generation which is a challenging process to say
the least.

Recently a new category of numerical methods, called meshless, meshfree or point-based
methods, have been shown great promise. These meshless methods overcome many prob-
lems of mesh-based methods by eliminating the most problematic part of mesh-based meth-
ods namely the mesh generation process. The main advantage of meshless methods is that
they use a set of distributed nodes for approximation purposes. The fact that meshless meth-

ods do not need mesh generation or connectivity information between the elements attracts

many researchers to this promising field of numerical methods which has led to the devel-
opment of different types of meshless methods in the recent past. Classical smooth particle
hydrodynamics (SPH) [6], reproducing kernel particle methods (RKPM) [7], [8], element
free Galerkin methods (EFG) [9], [10]and meshless local Petrov-Galerkin methods (MLPG)
[11] are examples of point-based methods.

Finite Cloud Method (FCM) [12], [13] is one of the most recent meshless methods. Its
major feature compared to other meshless methods is that it is fruly meshless and doesn’t
need a background grid at any point. In this thesis we expand and implement FCM to solve
the multi-dimensional Schrodinger equation for the one-particle quantum -well, -wire and

-box semiconductor structures. The outline of the rest of this thesis is as follows:

e Inchapter 2, an overview of quantum mechanics including history of quantum mechan-
ics and the derivation of the Schrodinger equation as well as an overview of numerical
methods including mesh-based and meshless methods are given. At the end of this

chapter, the state of art in meshless methods is presented.

e In chapter 3, the theory of Finite Cloud Method (FCM) for one- and two- dimensional

spaces, its expansion to three dimensions and its implementation is detailed.

e Chapter 4 illustrates some numerical examples to validate our approach. The imple-
mentation has been applied to different quantum structures and the results from running

the simulation are compared with the expected theoretical results.

e Chapter 5 provides a brief comparison between mesh-based and meshless methods.

This chapter also discuses the pros and cons of our approach and finally it suggests

some future work directions arising from our work.

e A detailed list of references, arranged according to their appearance, is given following

Chapter 5.

e The source code of our tool and the Maple programs used to calculate the theoretical

eigenstates, are presented as appendices at the very end of this document.

2 Technical information

2.1 Quantum mechanics
2.1.1 History

In 1687 Isaac Newton (1642-1727) published his famous book The Mathematical Principles
of Natural Philosophy or as more commonly known The Principia in which he summarizes
the rules of classical mechanics. Classical mechanics is the science that describes the motion
of objects in space and had been used for over than 200 years but, by the end of the nine-
teenth century scientists started to observe phenomena that were not explicable in terms of
classical mechanics. In early 1900s scientists were trying to find new rules to describe these
observations. On 19 October 1900 Max Planck (1858-1947) announced a new formula for
heat radiation in black bodies that fit the experimental evidences well, but at that time he
didn’t have a theoretical explanation for his formula. Planck was not satisfied with his work
and that became a motivation for him to work harder until he came up with a theory that was
more satisfactory. Quantum theory as it was later known stated that light consisted of a set of
discrete energies known as photon. Planck derived his formula based on this theory, which

is now the fundamental idea of quantum mechanics. Planck’s formula is given by

E = hf = hw 2.1)

where % is Planck’s constant and its value is 6.626068 x 10734 J.s and f is the frequency

of the phonon.

He published his results on 14 December 1900. This date now is the birthday of quan-
tum mechanics [14]. Planck’s idea was a revolutionary step in physics and it resulted in
more intensive collaborations being formed between researchers in the this field. In 1905 Al-
bert Einstein (1879-1955) proposed the photon theory of light in photoelectric effect. Using
Planck’s idea of discrete energy, Einstein showed that the discrete energy E released from a
matter is proportional to the frequency f of the incident light. His work confirmed that en-
ergy released or absorbed by an electron is in discrete form therefore under certain conditions
light behaved like individual particles. Einstein won the Noble prize for his work on 1921.

In 1913, Niels Bohr (1885-1962), a Danish scientist who was working with Rutherford
developed the idea of atomic structure for hydrogen atom. At that time, Rutherford and other
scientists were considering a planetary model for atoms that stated that an atom was made
of a cloud of negatively charged electrons which orbited a positive nucleus. Bohr considered
the same model for the atom with the difference being that electron-orbits could only have
certain discrete quantized energies. He proposed that if an electron orbiting in an outer orbit
jumped to an inner orbit it would emit energy and that energy equaled to the difference of the
energies of the two orbits. With his theory, the so-called old quantum theory, he described the
fundamentals of atomic spectra and for his work Niels Bohr received the 1922 Nobel Prize
for Physics. In 1920, Niels Bohr became the head of the Institute for Theoretical Physics
in Copenhagen University. The institute’s working domain was theoretical and experimen-
tal research on atomic physics area, which later led to creation of new quantum mechanics.
The institute was a meeting place for many physicists and scientists from all over the world

who wanted to join into the research and Werner Heisenberg (1901-1976) was one of them.

Heisenberg worked with three superior scientists: Arnold Sommerfeld, Max Born and Niels
Bohr. He was determined to find the laws of quantum mechanics. He thought since he can’t
see the orbits of electrons, he had better develop a quantum mechanics based on observable
entities. In 1925 Heisenberg published his first paper describing the laws of quantum me-
chanics by using matrices, which was a breakout for quantum mechanics. Two years later
on 1927 he announced his uncertainty principle in which he stated: ”The more precisely the
position is determined, the less precisely the momentum is known in this instant, and vice
versa.” By his first paper in 1925 Heisenberg intrqduced a new way to formulate quantum
mechanics. He assumed electrons as quantum particles and associated the properties of the
particles by arrays of quantities. He stated that the commutative law in arithmetic is not valid
for quantum mechanics which means that if A and B are two different observable properties
of a particle then the result of AB is not equal to the result of BA. This led to the famous
commutative relation, which is the basis of quantum mechanics and uncertainty principle as
below:

[x,p] = xp — px = ik (2.2)

In which x is the position of the particle and p is the momentum of the particle and 7% =
h/2m is the reduced Planck’s constant. According to Heisenberg’s uncertainty principle it is
impossible to precisely measure the position and momentum as well as the energy and time

of a particle at the same time as shown below:

AxAp > h/2

AE At > 1/2 (2.3)

In his theory, later called matrix mechanics, Heisenberg used a complicated mathematics for
the calculations, which was not familiar to other scientists. Max Born (1882-1970) who was
Heisenberg’s professor discovered that the strange mathematics that Heisenberg had used
was as same as matrix calculations which was invented long time ago by mathematicians
like James Joseph Sylvester, Cayley, Hamilton and Grassmann. Born and his student Pas-
cual Jordan (1902-1980) reformulated Heisenberg’s quantum theory and published a follow
up paper to Heisenberg’s paper. This was how matrix mechanics, the first formulation of
quantum mechanics was invented.

Meanwhile Louis de Broglie (1892- 1987) was working on the duality theory of the mat-
ter. In 1924 in his doctorial thesis, Broglie proposed that wave-particle duality did not belong
to light only and other matter could exhibit wave-particle duality in certain circumstances.
He associated each particle with a wavelength (A). The famous de Broglie’s wavelength
relation is as below:

A=h/p=h/my 2.4

Where 4 is Planck’s constant, p is the momentum, m is the mass and v is the velocity of the

particle. In his work de Broglie was inspired by Einstein’s theory in photoelectric effect i.e.

E = hf 2.5)

where f is the frequency of the light. Considering the relation between frequency and wave-
length we see that a particle with greater energy has shorter wavelength. Later in 1927

Clinton Davisson and Lester Germer did an experiment that confirmed de Broglie’s hypoth-

esis. They built a device to measure the intensity of the fired electrons. The electrons were
directed at a nickel target. Davisson and Germer monitored the dependency between the
reflected electron’s intensity and the angle at which the electrons were observed. The exper-
iment determined that the reflected electrons had the same diffraction patterns that Bragg’s
law predicts for X-Rays. Bragg’s law, which was formulated by William Lawrence Bragg
(1890-1971), allows us to calculate the wavelength and therefore the energy of the incident
X-ray beams as below:

nA = 2dsin© (2.6)

where A is the wavelength of the incident X-ray beam, d is the distance between the atomic
layers, O is the incident angle at which the intensity peaks and # is an integer. The diffraction
described by Bragg’s law used to be a property of waves, so the Davisson-Gremer experi-
ment demonstrated the wave-like nature of electrons and thereby de Broglie’s hypothesis was
experimentally confirmed. De Broglie’s idea was a significant step in quantum mechanics,
which followed other important developments.

Erwin Schrodinger (1887-1961) was an Austrian physicist. He entered the university of
Vienna in 1906 and received his doctorate on 1910. He studied analytical mechanics, ap-
plications of partial differential equations to dynamics, eigenvalue problems, statistical me-
chanics, algebra and Maxwell’s equations. Schrodinger who didn’t know about Heisenberg’s
work was inspired by de Broglie and Einstein’s ideas and was trying to find a wave equa-
tion for matter that would demonstrate the wave behavior of particles. In 1926, Schrodinger
published six papers explaining a new formulation for quantum mechanics, namely wave

mechanics for which he won the Noble prize on 1933. In his first paper on January 1926

Schrodinger proposed the wave equation for matter now called the Schrodinger equation,
which is the second formulation for quantum mechanics. In his 3rd paper on May 1926 he
proved that Heisenberg’s matrix mechanics is equivalent to wave mechanics. In that paper
he wrote, ”To each function of the position- and momentum- coordinates in wave mechanics
there may be related a matrix in such a way that these matrices, in every case satisfy the

formal calculation rules of Born and Heisenberg.”

2.1.2 Schrodinger equation

Schrodinger’s equation is the fundamental equation of quantum mechanics, which is equiv-
alent to Newton’s motion equation in classical mechanics. It predicts the wave behav-
ior of matter and governs the microscopic world. The solution of the Schrodinger equa-
tion is the wave function (®(r,¢)) which describes the quantum states of the system [15],
[16], [17]. Schrodinger equation has two basic forms, time-dependent and time-independent
Schrodinger equation. The solution of the time-dependent form demonstrates how the sys-
tem changes with time, and the time-independent Schrodinger equation gives us the energy
eigenstates of the system.

Hamiltonian mechanics

Hamiltonian mechanics, which was introduced by the Irish mathematician Sir William Rowan
Hamilton (1805-1865), is a re-derivation of Newton’s laws and is more useful in understand-
ing the concepts of conservation laws (conservation of momentum and energy). According
to Hamiltonian mechanics, ’the quantum Hamiltonian H is the observable corresponding to

the total energy of the system.” [18] Hamiltonian H is a function that relates the energy of a

10

system to its coordinates and momentum. If r is the position vector and p is the momentum

vector of the particle then the Hamiltonian H is given by:

H(r,p) =P*/2m+V(r) 2.7

Description of a Wave

A wave is a2 movement through space with a repeating pattern and propagates in a given
direction usually transferring energy. It can be described by its parameters such as Ampli-
tude, Wavelength, Wavenumber, Frequency, Period and Angular frequency. Below is a brief
explanation of these parameters.

The Amplitude (usually shown by A) of the wave is a nonnegative value, which represents
the maximum vertical distance of the particle from the rest position i.e. the maximum value
of wave’s magnitude in one cycle. The Wavelength (M) of the wave is the horizontal length
of a repeating unit of the wave pattern and it can simply be measured as the distance between
two sequential crests of a wave. Wavenumber (k) is a parameter related to wavelength, which
is more commonly used in quantum mechanics than the wavelength. Wavenumber is the

number of complete wave cycles per unit distance and is given by

k =21/ (2.8)

As a periodic event, the parameter Period (T') is defined for a wave. Period refers to the time

needed for a particle to make one complete cycle and frequency (f) is the number of periods

11

in one unit time given by

f=1T 2.9)

The last parameter is the Angular frequency (w), which represents the angular speed of the

particle in terms of radian per second and is given by

w=2nf (2.10)

Mathematically, description of a wave using the above parameters is given by

®(r,t) =Aexp(i(k.r—wt)) (2.11)

r: position vector

t: time

A : Amplitude

k : wavenumber

w: angular frequency

Derivation of the Schrodinger equation
As mentioned earlier, de Broglie associated a wave with a particle, according to his theory

the relation between the wavelength and momentum of a particle is given by equation 2.4.

12

From Hamiltonian mechanics we know that the total energy of a system is given by

E =H(r,p) = P*/2m+V(r) (2.12)

Substituting Planck’s formula in equation 2.12 we will have

hw = P?/2m+V(r) (2.13)

The calculation below will finally result in the Schrodinger equation;

k=2m/A="2n/(h/p) = p/h (2.14)

®(r,t) = Aexp(i(kor—wt))

Aexp(i(r.p/h—wt))

I

= Aexp(i((psx+pyy+pzz)/hi—wt)) (2.15)
90(r1) = —iAwexp(i(k.r—wt))
ot
= —iwd (2.16)
_ . 00(rt) 1
=% e @1

13

90 = i%’fAexp(i(k.r—Wt)

ox
.Px
= [—]
"B
?0 p? 2 , 0D 1
o __ B —
ox? 2 = Px ox2 @

By substituting equation 2.17 and equation 2.19 in equation 2.13 we have

2D 1
6 +V(x,y,z)

od 1 1 0*d 9°®
B — — _— (—_K2 _ 52 52
5 e =t h L

0x2 oy? dz?)

LoD B PO PO PO
o am a2 T T) TV @y

We rewrite equation 2.21 as

2 oD
—hV2<I> +VO = ihi—
2m ot

where V? is the Laplacian operator given by

? 9?92
2~ 2 2
vi= ox2 + 0y? + 072

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Equation 2.22 is the time-dependent Schrodinger equation. The solution of equation 2.22,

®(r,t), is the wavefunction of the system which gives us all the information about the system

such as momentum, position and energy of the particles as well as probability density of

finding the particles. The latter which is the most useful information is given by ®@* ®. Since

the probability of finding a particle in the entire domain is unity, the wavefunction must

14

satisfy the normalization condition as below

/ " () @ (1) dr = 1 (2.24)

—o0

Recalling Bohr’s theory of atomic model, we know that a stationary state with an energy E

has the frequency f = E/h. So the wavefunction ®(r,t) can be written as;

O(r,1) = w(r)exp(—i %) 2.25)

Using the new form of wavefunction (equation 2.25) will reduce the normalization condition

to the form below:

/Mwnwmmzl (2.26)

Also by substituting the resulting wavefunction from equation 2.25, in time-dependent Schrodinger
equation (equation 2.22) as well as using the concept of effective mass of particles (m*), we

will get the time-independent Schrodinger equation as shown in equation 2.27.

2
V() +V (W) = Ey(r) @a7)

The time-independent Schrodinger equation is a linear second-order partial differential equa-

tion. It can be written in short notation as:

Hy=Evy (2.28)

15

Where H represents the Hamilton operator.

2

h
H=—

2
= VAHV(r) (2.29)

Equation 2.28 is an eigenvalue equation in which E is the eigenvalue and y is the eigen-
function of the equation. Schrodinger equation has solutions only for certain discrete values
of E where these discrete values are the eigenenergies of the system. Likewise there is a
corresponding eigenfunction () for every eigenvalue which describe the eigenstates of the

system.

2.1.3 Solving the Schrodinger equation and the problems

Schrodinger equation is a linear partial differential equation (PDE). ”A partial differential
equation (PDE) is a relation invoking an unknown function of several independent variables
and its partial derivatives with respect to those variables.” [18] It is well known that an
analytic solution to the Schrodinger equation is intractable except for very simple potential
functions. Here we show some examples of simple cases.

1. A particle in an infinite well

Suppose we have an infinite well with width a, the potential function for this well is defined
by

0 O<x<a
Vix) = (2.30)

o0 elsewhere

16

The Dirichlet boundary conditions is given by

y(0) =y(a) =0

Inregion 0 < x < a the Schrodinger equation is written as

B B2 %y (x)
2m* ox?

= Ey(x)

The general solution for equation 2.32 is given by

y(x) = A sin(kx) + B cos(kx)

in which

2m*E

(2.31)

(2.32)

(2.33)

(2.34)

Using the boundary conditions in equation 2.31 we obtain the energy levels of a particle in

the infinite well as
2.2
_ knt o,

= "ThA

17

(2.35)

Fulfilling the normalization condition equation 2.26 we obtain the wavefunction as

a

y(x) = \/g sin(Tx) forn=1,2,-- (2.36)

2. A particle in a square well

To obtain the energy levels of a particle in a square well with infinite barriers we consider a
well with width a and the potential Vj inside the well, the potential is given by equation 2.37
and the boundary conditions is same as equation 2.31.

Vo O0<x<a
Vix) = (2.37)

oo elsewhere

The Schrodinger equation here is given as

R 9%y(x)

C2m* ox2

[2m*(E —V,
k= w (2.39)

the general form of wavefunction can be written as

+(Vo—E)y(x) =0 (2.38)

If we assume

y(x) = A exp(ikx) + B exp(—ikx) (2.40)

18

By enforcing the boundary conditions we will obtain the energy levels as blew

2.2
r‘ms 5

E=Vy + 2m*a2n n=1,2,--- (2.41)

For potential functions, which are not very simple even for the one-dimensional case, we
can’t solve the equation exactly and we need to use the approximation techniques like WKB,
Perturbation and Variational methods. The WKB approximation also known as the semiclas-
sical calculation is the method to solve the Schrodinger equation only for potential functions
that vary slowly with the dimension; it can be used for the systems with more than one di-
mension only if the potential is symmetric and the equation can be transferred to a radial
equation. The WKB method is used to estimate the eigenenergies of the system but as we
mentioned above it has very limited applications. The next approximation is the perturbation
theory. In this method a complex system is approximated by a simpler system for which we
can find the exact eigenstates. But as the dimensions get smaller and/or the potential func-
tions get more complicated these methods can’t be applied to solve the equation; hence we

resort to numerical methods to solve the equation.

2.2 Numerical solutions

In order to understand physical phenomena, scientists and engineers simulate and model the
phenomena with mathematical models. These models can be simple algebraic formulas, or-
dinary differential equations, integral equations or partial differential equations. Since the
mathematical models represent the physical phenomena, certain properties and characteris-
tics of the physical phenomena can be explained and predicted by observing the model. In

19

most cases there are no analytical solutions for the equations these models represent so they
have to be solved numerically. Traditionally in pre-computer era scientists had used numeri-
cal analysis with pencil and paper. After the invention of computers, numerical analysis were
rapidly and widely developed and continue developing. Nowadays CAD (computer aided de-
sign) tools use numerical methods to model and simulate a diverse range of phenomena. The
main idea in numerical analysis is to numerically approximate unknown functions and solve
equations such that there are upper bounds on errors.

Although numerical methods do not provide an exact solution for a given problem —
only an approximation—, a good approximation is still very important since a lot of real
world phenomena cannot be expressed exactly anyway. In computational electronics and
mechanics, which are the fields of modeling and simulating novel semiconductor devices,
two broad categories of numerical analysis are used for obtaining the solutions, namely mesh-
based methods and meshless or point-base methods. In the rest of this chapter we will explain

the two methods and compare them with each other.

2.2.1 Mesh methods

Various mesh methods, such as the finite element method (FEM) [19], the boundary element
method (BEM) [20] or the finite difference element method (FDEM) [21], [22] are widely
used in today’s CAD tools to simulate advanced engineering systems. Among these tech-
niques FEM is the most practical technique and there are lots of commercial packages such
as ANSYS, ALGOR and LUSAS, which use FEM in their computations. In the mesh-based

methods, the domain of the governing differential equation, which describes the system, is

20

discretized into a mesh of discrete elements. For each element there is an approximated
form of the principle equation. By using the connectivity information within the mesh and
solving the simplified equations for each element, the solution to the governing partial differ-
ential equation is found from which the solution to the actual physical problem is obtained.
Mesh-based methods as the name imply, concentrate on mesh generation. They require the
generation of an elaborate mesh to perform the required numerical analysis. The quality of
the mesh has the most influence in the quality of the solution. Mesh generation is expressed
by dividing the physical domain into finite and smaller elements and connecting these ele-
ments to each other in order to discretize the whole domain. The generated mesh should be
fine enough to get a more detailed solution; however generating too fine a mesh increases
the computation time. In addition to the number of elements in a mesh, the shape of the
elements also influences the accuracy of the calculation. Since the exact solutions are un-
available, the best way to find out if a generated mesh is accurate enough is to estimate the
discretization error for the mesh, then re-mesh the domain and repeat the procedure until the
desired accuracy is met. The mesh generating or re-meshing time is usually several times
more than the processing time for solving the equations, specially in three dimensions and/or
other complicated domains and this leads to the main weakness of the mesh-based methods.

In nano and micro engineering we usually deal with complex 3D structures. Generating
the mesh, re-meshing the domain and obtaining the connectivity information between the
elements for these structures are a demanding process. This and other similar problems have

led to some alternative methods based on meshless analysis.

21

2.2.2 Meshless methods

Meshless methods sometimes referred to as point-based methods offer simple and efficient
solutions for some of the most complex physical phenomena. Given the known problems
with the mesh methods cited earlier, over the last few years, research into meshless methods
has seen explosive growth and has moved the focus of research in modeling nano and micro
devices from the more traditional mesh methods. In this thesis we use a meshless method
to solve the Schrodinger equation and we focus on the application of meshless methods for
partial differential equations. Meshless methods are performed as the three step process set
out below [23], [24]:

Step1: Representation of the domain

For a given problem, first the domain of the problem (Q) is represented by a set of scattered
points(nodes), the density of which is controlled by the desired accuracy. Unlike the mesh
methods, no connectivity information for the points is needed therefore the distribution of
these points is easy and compared to the mesh generation in mesh methods, computation
time is not excessive.

Step2: Interpolation

The second step is to interpolate the unknown function u at any point ¥ = (x,y,z) in the
domain (). For this purpose a support domain (€;) is defined for each node. A support
domain is a small domain around any point X of the main domain whose nodes are used to
interpolate the unknown function at the point . The size of the support domain (ds), which

determines the number of nodes in the support domain, is very important for the sake of

22

accuracy of the interpolation. The dimension of the support domain (ds) is defined by [24]
ds = Od. (2.42)

where d. is the characteristic length which is the distance or the average distance of two
neighbor nodes and o is the dimensionless size of the domain which is usually determined
experimentally —it is usually between 2 to 3—. Now that we have the support domain around

any node in the domain we interpolate the unknown function u as below
n
u(® =Y 0i(®)u; (2.43)
i=1

Where n is the number of nodes in the support domain (Qs) ,@(%) is the interpolation(shape)
function of the i;; node in the supﬁort domain and u; is the value of unknown function at iy,
node in the support domain. In meshless methods interpolation is a central step and lots of
researches and developments are currently going on in this area. In the literature many im-
proved and expanded techniques such as Reproducing Kernel approximation, Moving Least
Squares method (MLS) and Point Interpolation Method(PIM) are used for the interpolating
step. However generally speaking we can classify interpolation techniques to three broad

categories as:

1. Finite integral representation techniques: such as Smoothed Particle Hydrodynamics

(SPH) and Reproducing Kernel approximation

2. Finite series representation techniques: such as Moving Least Squares method (MLS)
and Point Interpolation Method(PIM)

23

3. Finite differential representation techniques: such as Finite Difference Method (FDM)

In this thesis, to construct the shape functions, the fixed reproducing kernel technique is
used, which is a finite integral representation method; we explain these methods in more
detail below.

In these methods a function is represented in the form of

W (x) = / W (x —5)u(s)ds (2.44)

where W is the kernel weighting function. Choosing the proper kernel functions is an impor-
tant key in the accuracy and coverage of the numerical results and there are some essential
conditions that a proper kernel function must satisfy [24] (Note : x; is the node that the

kernel function is centered).

1. The kernel function should be zero outside the support domains.

Wixg—x)=0 outside the support domain (2.45)

2. For convenience, it is desired that the integral of the kernel function equals unity.
/ Wix,—s)ds =1 (2.46)
Q

3. To satisfy the consistency condition, which is the ability of the approximation tech-

nique to reproduce the unknown function at each node in the domain, it is required that

24

the kernel function has the delta function behavior.

W(x) — 8(x) as dy — 0 (ds is the support domain size) (2.47)

Considering the conditions above, different kinds of functions can be used as the weight
function which we will explain three of them here [25]:
Cubic spline function: In case of using cubic spline as a kernel function, we divide the
support domain to » intervals by choosing n + 1 points (x;,y;) such that the spline has to go

through them, then for each interval i we define the cubic spline function as

S; (x) = ajp+apx+ a,-zxz + a,-3x3 for i=1---n (2.48)

We need 4n equations to find the unknown coefficients of the cubic spline function. Due to

the condition that the spline function is continuous, the two end points of each interval must

satisfy the condition

Si(x;) = i

Si(xix1) = yipr for i=1--m (2.49)

It is also required that the first and second derivatives of the cubic spline function be contin-

25

uous as well, so the interior points must satisfy the following conditions

Si(xiv1) = Sipi(xig1)

S:-I(xi+1) = S:~,+1 (xi+1) for i=1---n—1 (2.50)

By satisfying conditions equation 2.49 and equation 2.50 we get 2n and 2(n — 1) equations
respectively. Now we need two more equations to be able to obtain the weighting function’s
coefficients. There are some standard ways in the literature to obtain these equations one of
which is to set the second derivative of the cubic spline function to be zero at the endpoints

of the support domain as follows [26].

Sg(x0) = Si_1(xs) =0 (2.51)

With this calculation we built a cubic spline function that can be used as the kernel function
for interpolating.

Quartic spline function : The quartic spline function can be built similar to the cubic spline
function with the difference being that the polynomials are in order of four and also the third
derivative of the function must be smooth and continuous as well as first and second deriva-
tives.

Gaussian function : Gaussian function is the probability density function of normal (gaussian)
distribution. Due to the fact that normal distribution is an extremely important class of distri-
butions in statistics, and many analysts use this distribution in modeling and approximating

the physical phenomena, the gaussian weight function plays a very important role in simula-

26

tions. In general a gaussian function is in the form of

—(x—p)?

1
1) = o exp(—5 1)

(2.52)

In the next chapter we will explain the gaussian function and how to choose its parameters in
order to get a proper kernel approximation.

Step3: Discretization

Having the shape functions and their derivatives in hand, now we have to convert the com-
plex partial differential equation to a linear system of algebraic equations. Employing a
point-collocation on the PDE will discretize the PDE and convert the problem of solving
the PDE to a matrix problem. There are different ways to approximate a function. When
we approximate the unknown function with a discrete form, we lose a bit of accuracy but
instead since we are working with a set of points and their interpolation functions, there is
no need for the connectivity information between the points, in contrast to what we have in

mesh-based methods, therefore calculations in meshless methods are less complicated.

2.2.3 state of art in meshless methods

The origin of meshless methods go back to 1977 when L. B. Lucy [27] first introduced
SPH and then J.J. Monaghan [28] modified that. The Smoothed Particle Hydrodynamics
(SPH) [6] method is an example of using a finite integral representation method to build

shape functions. Lucy [27] (1977) and R. A. Gingold & J. J. Monaghan [29] (1977) initially

27

and independently introduced SPH, which is a meshless, Lagrangian, particle method. The
most significant advantage of SPH is that as a meshless method it doesn’t need the mesh
generation as well as the connectivity information, which are the major problems with FEM
and other mesh-based methods. Another characteristic of SPH is the Lagrangian nature of
the approximation. Since SPH is a Lagrangian method, the particles in SPH have physical
meaning which distinguishes this method from other meshless methods in which particles
are just points used to construct the interpolation functions. SPH was first used in modeling
astrophysics phenomena however due to its properties, many scientists and researchers were
interested in SPH and there was an ongoing active development on this method leading to
more applications of this method. Although SPH can handle solving complex problems
where traditional mesh-based methods have difficulties mentioned earlier, there are some
shortcomings of this method such as inconsistency, instability and inaccuracy. Monaghan
(1982)[28] explained SPH as a kernel approximation and improved the stability of SPH,
however more developments were needed to improve the accuracy and consistency of the

method. In SPH the approximated form of an unknown function u(x) is given by
W (x) = / W (x— s, 1)u(s)ds (2.53)
Q

Where W (x — s, k) is the kernel function and 4 is the smoothing length. By adding a cor-
rection function to the kernel function in SPH and employing a Galerkin method for the
discretization step, W. K. Liu and his colleges (1995) introduced a new method named re-
producing kernel particle method (RKPM) [30], [7], [8], which improved the accuracy

and consistency of SPH specially near the boundaries. The approximation in RKPM is the

28

discretized form of the reproducing kernel approximation defined by
W (x) = /Q W(x—s)u(s)ds (2.54)
Where W (x — s) is the modified kernel function and is given by
W(x—s) = C(x,s)W (x—5s) (2.55)

Where C(x,s) is the correction function and W (x — s) is the kernel function. The correction
function is typically expressed in form of a linear combination of polynomial basis functions

given by
C(x,5) = Co(x) + C1(x)(x— 5) + Co(x) (x — 8)2 + - + Cu(x) (x — 5)" (2.56)

in which C;(x)’s are the correction coefficients and their number depends on the highest order
of the derivative terms and also the number of variables in the governing partial differential
equation. The correction coefficients are functions of x and they are found by satisfying the
consistency conditions. By substituting the Taylor series expansion of function u(s) around
the point x in equation 2.54 and writing the consistency conditions for all the derivative terms
in the governing partial differential equation we can determine the correction coefficients.
The procedure is shown in detail in [7], [31].

Due to meshfree methods significant features, there has been an ongoing development in this

area of numerical methods. As one of the most recent meshfree techniques we can name

29

the diffuse element method (DEM), element free Galerkin (EFG) [9], [10], meshless lo-
cal Petrov-Galerkin (MLPG) [11], least-squares meshfree method (LSMFM) and so forth.
Nayroles, Touzot and Villon in 1992 introduced DEM where they used MLS approximation
method for interpolation and combined it with Galerkin method to discretize and solve par-
tial differential equations. In 1994 Belytschko and his colleagues modified DEM, specially
in computing derivatives of shape functions and called it the EFG method. Since DEM, EFG
and RKPM are all based on Galerkin method, they are not truly meshless and they need a
background grid for the integrations. To overcome this problem Atluri and Zhu developed
MLPG in 1998 which is similar to EFG in that both construct the shape functions using
MLS approximation. The major difference between MLPG and EFG is in the integration
step. In Galerkin based methods integration is done over the entire domain which calls for
background grid, however, in MLPG a Petrov-Galerkin method is used and that reduces the
integration to be done over a small local subdomain of each node. The latest improvement
in meshless methods is replacing Galerkin method with a point collocation method to omit
the integration step completely. In point collocation method only nodes are used to discretize
the partial differential equation and we do not need any kind of background grid. G. Li and
N.R. Aluru developed a new meshless method called finite cloud method (FCM) [12], [13]
in which they combined fixed reproducing kernel technique with point collocation to solve
partial differential equations. Due to the fact that FCM is a point collocation based method,
it doesn’t need any background mesh at any point, so it is a truly meshless method. This
feature makes FCM an efficient and easy approach to solve many problems in computational

mechanics. In original paper [12] FCM was introduced for one- and two- dimensions. In

30

this thesis we expand FCM to three dimensional space (to our knowledge hasn’t been done
before) in which the formulations are more complex and the resulting matrices are very
large. We then implement FCM —for one-/ two- /three- dimensions— and the needed eigen-
value solver in the Java programming language to solve the Schrodinger equation for nano

structures (well/ wire/ box) in infinite barriers with arbitrary potential functions.

31

3 Theory of FCM and its implementation

3.1 Finite Cloud Method

As mentioned earlier the Finite Cloud Method (FCM) is a truly meshless method, which is
originally developed by G. Li and N.R. Aluru [12], [13]. As a meshless method, the first
step in FCM is to represent the physical domain Q with a set of N, distributed points. These
scattered nodes can be distributed uniformly or non-uniformly over the entire domain. For
simplicity it is preferred to have a uniform set of nodes but sometimes depending on the
geometry of the system, stability of the solution and accuracy of the results we need to add
/remove nodes to/from some areas. Due to the fact that FCM is a meshfree method, the case
of non-distributed nodes can be easily dealt with FCM. For any node x in the domain Q we
define a local small domain called a cloud around it, which contains a number of nodes.
The size of the cloud for the node x, which determines how many nodes are in the vicinity
of x, is very important for the sake of accuracy and stability of the approximations. For
more stability in our solution it is important to increase the number of points in the clouds;
however this increase well make the results to be less accurate. On the other hand decreasing
the number of points in the cloud will cause the singular matrix problem in our computation.
We have to therefore optimize the cloud size in a balancing act to achieve an all around
“reasonable” solution [32]. We use rectangular clouds by dividing each coordinate into a
number of nodes. This way, we have an opportunity to increase or decrease the cloud size
for any node if needed, which is a plus for our implementation specially if we improve our

method using an adaptive algorithm. Similar to the support domain, the cloud size d, given

32

by equation 3.1 is a factor of the distance between the neighbor nodes in the domain and o,

the dimensionless factor, is also defined and optimized by experiments.
dy = O Ax 3.1

Now, after representing the domain €2 and defining the clouds around each node, we are
ready to construct the interpolation functions for each node in Q. For simplicity we first ex-
plain FCM in one dimensional space and then expand it to more dimensions. Having said that
the difference between multi- and one- dimensional cases is mostly in constructing the shape
functions, we start with explaining the interpolation for one- two- and three- dimensions in

detail.

3.1.1 The fixed reproducing kernel approximation in one dimension

Fixed reproducing kernel technique approximates any unknown function u(x) by

u(x) = /QC(x,s)(p(xk —s)u(s)ds (3.2)

where @(x; — s) is the kernel function centered at x;, we redefine @(x; — s) as

1 —
ou—s) = W (E=) (3:3)

o dx

Where d is the cloud size and W is the new kernel function. For the best approximation it is

ideal to use Dirac delta function as the kernel function but due the problem that Dirac delta

33

function is not suitable for the numerical analysis we use an approximated form of Dirac delta
function for the weighting purpose such as spline, exponential, gaussian functions and etc. If
we compare the fixed reproducing kernel approximation equation 3.2 with the reproducing
kernel approximation equations 2.54 and 2.55, explained earlier, we see that the difference
is in the kernel function, which is centered at node x; for fixed reproducing kernel. This
treatment has some advantages over other interpolation techniques, which we will explain

later. C(x,s) is the correction function given by

C(x,s) = PT(s) C(x) (3.4)

in which PT (s) is the vector of basis functions and CT (x) is the vector of correction function
coefficients. As mentioned earlier the number of the basis functions and correction function
coefficients depend on the highest order and also the number of the variables in the partial
differential equation. In this thesis we will use FCM to solve the Schrodinger equation which
is a second order partial differential equation, so in the rest of this matter we assume that the
highest order of the partial differential equation is two hence in the 1D case the quadratic
basis function vector is given by

PT(s) =11, s, s*] (3.5)

And the correction function coefficients vector is given by

CT (x) = [co, c1, 2] (3.6)

34

The correction function coefficients can be obtained by fulfilling the consistency conditions

below

/Q PT($)C(0)9(xx — s) pi(s)ds = pi(x) for i=1---3 3.7)

The consistency condition in equation 3.7 can be rewritten in matrix form as
MC(x) = P(x) or C(x)=M"'P(x) (3.8)
in which M is the moment matrix and its elements are given by

M= [oot = pj(s)ds ij=1-3 (3.9

As we notice in equation 3.9, due to the fact that the kernel function is centered at the point
xi, the elements of the moment matrix are not functions of x; hence the moment matrix in this
approach is a constant matrix which is a plus for this method. As we will see, to discretize
the Schrodinger equation we have to compute the partial derivatives of the interpolation func-
tions, which requires the computation of partial derivatives of the moment matrix. Having a
constant moment matrix makes these computations easier and faster.

If we define a 3 X N, matrix F as

pi(x1) pilx2) -+ pi(aw,)
F=| pyx1) palx2) - palew,) (3.10)
p3(x1) p3(x2) -+ p3(xw,)

35

And a N, X N, diagonal matrix W as

{ @(x—x1)AVy 0 v 0 \
0 (p(xk—X2)AV2 M 0
W= (3.11)
\ 0 0 se (p(xk—pr)AVNp)

then we can write the moment matrix M as M = F W F. By substituting M in equation 3.8
and then using the auxiliary result to replace C(x) in equation 3.4 we can rewrite the fixed

reproducing kernel approximation (equation 3.2) as

v = [PT@M T P)0(u —)w(s)ds (3.12)

The discrete form of equation 3.12 can be written as

Np
vi(x) = Y, Ni(x)U; (3.13)
I=1

where Uy is the nodal unknown and Nj(x) is the fixed reproducing kernel interpolation (shape)
function given by

Ni(x) = PT ()M P(x1)p(x — x7)AV; (3.14)

in which V; is the nodal volume associated with node I. Li and Aluru in [12] have shown
that choosing the nodal volumes to unity will cause the shape functions to be identical with

the ones constructed by least square methods. In addition to this feature, they showed that

36

using either exact or unit nodal volumes will build almost identical interpolation functions,
which is a great advantage of this method. Since it is difficult to find the exact nodal volume
for complex geometries or when the distribution of points in the domain is not uniform, by
having the explained feature we can simply use unity nodal volumes in difficult cases.

An important point that should be carefully considered here, is the issue of constructing
multi-valued shape functions. As can be seen in equation 3.14 the interpolation functions
constructed by fixed reproducing kernel technique are multi-valued. To clarify this issue
in detail, recall the representation of the domain with the scattered nodes and the clouds
around them. As mentioned earlier we center the kernel function at each point in the domain.
Consider two points x, and x; and the clouds around each of them, respectively cloud a and
cloud b. Assume that points a and b are in a position that their clouds overlap each other
and so we have at least one node (node c) that belongs to both of the clouds. According to

equation 3.14 we will get different shape functions at point ¢ given by

N._a(x) = PL(x) M1 P(x.)@(x, — x.) AV, (3.15)

Ne_p(x) = PT (x)M~' P(x.)p(xp — x.) AV, (3.16)

However Li and Aluru have a solution for this problem [12]. By using a point collocation
method they determined single-valued shape functions for the nodes. If we compute the
interpolations at the node where the kernel function is centered, the shape functions will be
limited to a single value. (for more detail see [12])

The derivatives of the interpolation functions can be computed from equation 3.14, due the

37

fact that the moment matrix is a constant matrix, obtaining the derivatives of interpolation

functions is a straightforward calculation. To solve the Schrodinger equation in 1D we need

the second derivative of Nj(x) i.e. d———-zfivéz(x) , which is calculated as follows

PT(s)=11,x, %] (3.17)

d PT (x)
=10,1, 2 3.18
dx [0, 1, 2x] (3.18)

d* PT (x)

d*Ny(x B :

d;z(= Npe(x) = [0,0,2)M 7 Px)(xk —x1)AV; (3.20)

With the above procedure we are able to obtain the shape functions and their derivatives for
all the nodes representing the domain.
3.1.2 The fixed reproducing kernel approximation in two dimensions

In the two dimensional space, which is explained in detail in [12], the domain € is repre-
sented by N, = Ny X N, points, where Ny and Ny, are the number of nodes in each dimension.
Assuming X = (x,y) and 7 = (r,s) as the space position vectors and d7 = drds, the fixed

reproducing approximation is stated as

V(D) = [lxyns)oE —)yrdr (3.21)

38

@ (% — %) which is the multi-dimensional kernel is defined by the products of one-dimensional

kernel functions as below:

T T L s
) = —W 3.22
o0 = 7w W) 62)
€(x,y,r,s), the correction function is given by
E(x,y,n5) = PT(F)C(%) (3.23)

For 2nd order partial differential equations with two variables the quadratic basis function

PT(7) = PT(r,s) is defined by
PL(F) =1, ns, rs, 1%, 5% (3.24)

The vector of correction function coefficients, C(¥) is determined by satisfying the reproduc-

ing condition given by

/QPT(f)C(fkp(fk — 7) pi(F)dF = pi(%) for i=1---6 (3.25)
We rewrite equation 3.25 in matrix form as below:

MC(X) =P or CX) =M'P(x) (3.26)

39

where the entries of the matrix M are obtained by

M;j = /Qpi(f)w(fk —Fpj(FdF i,j=1---6 (3.27)

The matrix F in this section is defined as below;

/Pl(fl) (%) - Pl(pr)\
p2(%1) p2(%2) -+ p2(Ew,)

P (3.28)
\Ps()ﬁ) ps(%2) - Ps(fN,,)/

Because of having 6 elements in the basis function vector equation 3.24, the matrix F in a
two dimensions case is a 6 X N, matrix.

And also the N), X N, diagonal matrix W is defined by

(o(X—%1)AVI 0 e 0 \
0 (p(fk——.fz)AVZ s 0
W = (3.29)
\ 0 0 s (p(ik—in)AVNp)

By defining M as M = FW FT and performing the needed mathematical calculations, we
will extract both the continuous and discrete approximated forms of the unknown function

as below:

V(@ = [PTOMP@ol -y dr (330

40

NP
vi(E) = D Ni(®)U (3.31)
=1

Where the shape function, N;(X) = Ny(x,y), is given by
Ni(®) = PT(®)M ™' P(%1) (% — %1)AVy (3.32)

Adopting the technique explained in [12] to avoid the multi-valued function problem, here
the shape functions are computed at the node where the kernel function is centered. Recalling
the Schrodinger equation with two variables, we need the second order derivatives of the

shape functions as below

02 02
SN | SN (333)

Considering the basis function as PT (%) = [1, x, y, xy, x2,], the required derivatives are

obtained as below:

2 _ —
5aNi(®) = Niu(%)

0?PT (x
= aé@M”H@mmeﬂﬁ

= [0,0,0,0,2,0|M ' P(%) (% — X1)AV;

(3.34)

2 - _
ZN®) =Niy(®)

aZPT =
— ayz(x) M_lP(x"I)(p(ik —%)A

41

=[0,0,0,0,0,2]M ™' P(%) (% — %1)AVs

(3.35)

In sections 3.1.1 and 3.1.2 the fixed reproducing kernel approximation for one- and two-
dimensional space were detailed. In next section we will expand the fixed reproducing kernel
procedure to a three-dimensions case.

3.1.3 The fixed reproducing kernel approximation in three dimensions

In the 3D case we represent the domain £ by N, = Ny x Ny X N, points, where Ny, N, and N,
are the number of nodes in each dimension. Considering ¥ = (x,y,z) and 7 = (r,s,t) as the

space position vectors and dr = dr ds dt, the fixed reproducing approximation is given by

V(D = [Cenzns 0o —v(rdr (336)

where the multi-dimensional kernel function, ¢(X; — X), is defined by:

oo o g—x 1 oy —y 1 g —2
— %) = — — — 3.37
o —5) = W (D) WD) T (D) (337
Similar to the routine explained in 3.1.2 we extract the formulas for a 3D case.
C(x,y,z,1,s,t), the correction function is given by
Cx,y,z,m5,1) = PT(A)C(%) (3.38)

42

For a 2nd order partial differential equation in 3D we define the quadratic basis function
PT(7) = PT(r,s,t) by

PI(F) =[1,r,s,1,71s,1t, 51, %, 5%, 1] (3.39)

The vector of correction function coefficients, C(¥) is determined by satisfying the reproduc-

ing condition given by
/Q P (ACR)0(% —) pi(F)dF = pi(®) for i=1---10 (3.40)
The matrix form of equation 3.40 is given by
MC(X)=P(x) or CE =M"'P(x) (3.41)
where the matrix elements are obtained by
M= [P0G —Ppy(Adr ij=1--10 (3.42)

The matrices F and W in 3D are defined as follows.

(pi(f1) pi®) - pi(n,) \
p2(%1) pa®) - p2(Fw,)
F = (3.43)
\plo(fl) po(®2) - Plo(fzv,,)/

43

Since the vector of basis function in 3D case has 10 elements instead of the 6 elements we
have in 3.1.2, in this section the matrix F is a 10 x N, matrix.

And the N, x N, diagonal matrix W is given by

O(Fe—51)AV; 0 e 0 \
0 QX —X2)AVy - .- 0
W = (3.44)
\ 0 0 e (p()?k—.pr)AVNp /

Repeating the calculation done in 3.1.2 will result in the approximated forms (continuous

and discrete) of the unknown function as

v(@® = [PTOMP@o -y dr (345)
NP

vi(X) = Y, Ni(®)U; (3.46)
I=1

Where the shape function, N;(¥) = Nj(x,y,z), is given by

Ni(®) = PT ()M~ P(%1) (% — %1)AVy (3.47)

Here again to avoid the multi-valued function problem we compute the shape functions at
the node where the kernel function is centered. In the 3D case we have three variables in

our governing partial differential equation. Recalling the Schrodinger equation we need the

44

second order derivatives of the shape functions as below

0% 02 0?
@Nz(f) ; a—yle(f) ; a—zle(f) (3.48)

Considering the basis function
PT(X_) = [1a Xy Yy Ty XY, X2y Y, x2’ }’2, ZZ] (349)

and following the calculation in 3.1.2 will result in the required derivatives as

az

SN = Nia(?) =

[0,0,0,0,0,0,0,2,0,0|M L P(%) (% — %1)AV;

(3.50)
82
a—yle(f) = Npyy(X) =
[0,0,0,0,0,0,0,0,2,0]M ' P(%1) (% — £1)AVy
(3.51)
32
a—zz'NI(f) = NI,zz(x) =
[O,0,0,0,O,O,O,O,O,Z]M—IP()EI)(P()E]C —)_C'])AVI
(3.52)

45

So far we have obtained the shape functions and their required derivative for solving the
Schrodinger equation with finite cloud method (FCM), in one-, two- and three- dimensions.
Now we are ready to go to the next step which is discretizing the governing partial differential

equation using a point collocation method.

3.1.4 Collocation

In FCM a point collocation method [13], [33] is used to discretize the partial differential
equation and obtain the solution. An alternative for point collocation method would be to
use the Galerkin method [34]. The latter is more accurate and has various applications in the
literature such as element free galerkin method (EFG) and petrov galerkin diffuse element
method (PG DEM). But due to the fact that the Galerkin approach is based on integrating over
the intervals, it needs more computation time as well as connectivity information. In contrast,
a point collocation method doesn’t need any background grid; the main concept here is meet-
ing the governing partial differential equation for each point in the represented domain. This
feature makes it easy to enforce the boundary conditions in point collocation method. Sup-
pose we have N; interior nodes, Ny boundary nodes with Dirichlet boundary conditions and
N, nodes with Neumann boundary conditions in the domain , where N, = N; + Ny + N.
Taken from [18] here are the definitions of Dirichlet and Neumann boundary conditions. ”In
mathematics, a Dirichlet boundary condition (often referred to as a first-type boundary con-
dition) imposed on an ordinary differential equation or a partial differential equation specifies
the values a solution is to take on the boundary of the domain”, ”’In mathematics, a Neumann

boundary condition (named after Carl Neumann and also referred to as a third-type bound-

46

ary condition) imposed on an ordinary differential equation or a partial differential equation
specifies the values the derivative of a solution is to take on the boundary of the domain”. In
point collocation approach the interior nodes must satisfy the governing partial differential
equation and the boundary nodes must meet the boundary conditions, so if we consider the

general form of a partial differential equation given by

Gu(x) = f(%) (3.53)

Where G is the differential operator, then the collocation equations are given by

Gu' (%) = f(x) i=1.--N; (interior nodes) (3.54)

u’(%;) = D(%;) i=1---Nyg (Dirichlet boundary nodes) (3.55)
a(5

w = N(x;) i=1---Ny (Neumann boundary nodes) (3.56)

Substituting the discrete form of unknown function #%(x) in equations above will lead us to a
matrix problem. Depending on the governing equation and the boundary conditions we will
obtain different types of matrix problems and for each type there is a specific approach of

solution.

3.2 Applying finite cloud method (FCM) on Schrodinger equation

For a one-electron quantum structure obtaining the eigenstates (eigenenergies and eigenfunc-

tions) reduces to solving the one-electron time-independent Schrodinger equation. The pur-

47

pose of this thesis is to find the eigenstates of nano-scale quantum structures by employing
FCM to solve the Schrodinger equation.

As mentioned earlier in the technical information chapter, one of the essential condi-
tions to have the desired accuracy and coverage using a meshless method is that the kernel
weighting function, integrals to unity (equation 2.46). Therefore in this matter we have used
a normalized Gaussian function as the kernel function to perform the interpolation step. The
general form of a normalized Gaussian function is given by equation 2.52, where u is the
mean value and 67 is the variance of the function. The Gaussian function is a bell-shaped
function which is symmetric around its mean value so we chose the mean value to be zero.
Later when we center the kernel function at each node in €2, having a zero mean value makes
it easier to show the node where the kernel function is centered at. The other parameter in
equation 2.52 is variance, sometimes referred to smoothing parameter. Due to the fact that
variance controls the width of the function, it is a very important factor in controlling the
accuracy of the approach. Here we wanted to mimic the Dirac delta function so we want to
have o2 as small as we can. Using trial and error we chose 02 = 0.1 in our code, if 62 gets
smaller we may face the singular matrix problem at some point and if it gets larger we won’t
get the desired accuracy so with this introductory explanation the chosen one dimensional
kernel function is given by

42
flx) =1.2615 exp(o—xz) (3.57)

This kernel function is centered at every point in the domain €2 to weight the nodes that are
in the cloud of the center point X;.

Another issue that we should discuss here is the cloud size. Once again we resort to trial

48

and error to find the dimensionless factor in equation 3.1 (o, = 1.02). We chose to have three
nodes in each cloud so while obtaining the desired accuracy of the results we won’t face the

singular matrix problem.

3.2.1 Quantum well

Consider a quantum well with infinite barriers and the width ;. Because of the infinite
potential barriers, the wavefunction y(x) vanishes outside the well, hence the domain Q is
given by

Q: 0<x< (3.58)

The potential function inside the well can be any arbitrary function V (x). To represent the

infinite barriers we apply the Dirichlet boundary conditions at the boundary nodes as follows

y(0) =vy(k) =0 (3.59)

For a one-electron quantum structure obtaining the eigenstates (eigenenergies and eigen-
functions) reduces to solving the one-electron time-independent Schrodinger equation. The
time-independent Schrodinger equation for a one electron Q-well is given by equation 3.60.

B dy(x)
2m* dx?

+Vwlx) = Ey(x) (3.60)

49

E is the eigenenergy and y(x) is the wave function of the electron. We represent the domain

Q by N, uniformly distributed nodes.

Ay = (3.61)

A, is the distance between two neighbor nodes. In our code N, = 25. The quadratic basis
function is given by equation 3.5. If we follow the procedure in section 3.1.1 we will get the
approximated wavefunction, shape functions and the derivatives of the shape functions as
shown in equations 3.12, 3.13, 3.14 and 3.20. Recalling the operator form of the schrodinger

equation 2.28, the collocation equations can be written as

Hy*(x) =Ey*(x) i=1---N; (3.62)

Vi) =0 i=1---Ny (3.63)

By enforcing boundary conditions (equation 3.63) in equation 3.62, solving the schrodinger

equation reduces to the eigenvalue equation given by

Hy=Ey (3.64)

where H is a submatrix of H and V is the vector of the interior nodal unknowns.

50

3.2.2 Quantum wire

In this section we study a Q-wire with infinite barriers and the potential function V (x,y)
inside the wire; we follow the procedure in section 3.2.1, except the changes due to the

added dimension. Assume X = (x,y) is the vector of position. The 2D domain Q is given by

Q : 0<x<l

0<y<l (3.65)

where I, and [, are the lengths of the Q-wire in coordinates x and y. The Schrodinger equation

and the boundary conditions for a quantum wire are given by

22)3 2)?
”;ﬁﬂ2$)+d£y)+W@W@:EW@ (3.66)
v(0,5) = y(ky) = ¥(x,0) = y(x,1) (3.67)

We represent the domain by N, = Ny x N, uniformly distributed nodes, where N, and N, are

the number of points in coordinate x and y respectively (in our code Ny = Ny = 16)

A, = (3.68)

51

Ay and A, are the distances between two neighbor nodes in direction x and y. The quadratic

basis function is given by

P =1, x5 x,, %, ¥ (3.69)

If we follow the procedure in section 3.2.1 we will get the collocation equations as below.

Hy*(x;,y;) = EV(x;,y;) i=1---N; (3.70)

Vi(xi,y) =0 i=1---Ng (3.71)

And finally the eigenvalue equation is obtained as

By =Ey (3.72)

3.2.3 Quantum box

We consider a Q-box with infinite potential barriers. Once again we repeat the same proce-
dure we have done earlier for Q-well and Q-wire with the difference that we now have to
develop the 2D fixed reproducing kernel to a 3D technique. Due to this change the size of
the matrices will be a lot larger and the formulations will be more complicated than the two

first cases. Assume X = (x,y,z) is the vector of position. The 3D domain € for a Q-box is

52

given by

Q: 0<x<l,
0 <y <l

0<z<I, (3.73)

where I, [, and [, are the lengths of the Q-box in each coordinates. The Schrodinger equation

and the boundary conditions in this case is given by

2

>V W(®) +V (@) (E) = Ey(@) (3.74)

y(0,y,2) = y(x,0,2) = y(x,y,0) =

\V(lxa)’a Z) = \|l(x, ly,Z) = W(xa)’a lz) =0 (3.75)

The total number of nodes in this case is given by N, = Ny, X Ny X N, where Ny, N, and N,
are the number of points in coordinate x, y and z respectively (in our code we have chosen
N, = Ny = N; = 14). Note that the total number of points in 3D case is extensively large
and this requires excessive time and memory for the computation. For instance if we have
10 nodes in each coordinate then N, = 1000 and we obtain a matrix with an order of 1000
which consumes huge computing resources —both in time and memory— to do the operations
on this matrix. In our implementation to overcome this problem, we have used a sub-matrix

of the main matrix to find the eigenstates which reduces the substantial computing time

53

and memory, however compared to the 1D and 2D cases the required computing time and
memory is still considerable. Recalling the formulas in 3.1.3 and following the procedure

done in 3.2.1 and 3.2.2 we have

Ly
A —
* Nx_l
l
by = Nyy—l
l
A, = z)
z N, —1 (3.76)

Ay and A, and A, are the distances between two neighbor nodes in direction x, y and z. The

resulting collocation equations are as follows

HY* (%) =EV*(%) i=1-N; (3.77)

qla(f,) =0 i=1---Ny (3.78)

Using equation 3.78 and the discrete form of y*(X) in equation 3.77 will lead us to a eigen-
value problem

Hy=Ey (3.79)

where H is a submatrix of H and V is the vector of the interior nodal unknowns.

In sections 3.2.1 to 3.2.3 we explained how to discretize the Schrodinger equation for a
quantum well/ wire/ box and extract the eigenvalue equation. The final step is obtaining the
eigenvalues and the corresponding eigenstates by solving the eigenvalue equation, which is

done the same way for the three cases by our code. As mentioned earlier Matrix H is a large

54

matrix specially for the 3D cases. To decrease the order of matrix H, we omit the unimportant
rows of matrix H (the rows corresponding to the boundary nodes) and obtain the sub-matrix
H. This makes the order of matrix H a lot smaller than matrix H and that conserves some
computing time and memory space. Then using the matrix operations we find the first five
eigenvalues, which are the first five energy states of the Q- structure, and then with some
more computation we obtain the wavefunction corresponding to the resulting energy states.

Implementing our program, we had to use very large matrices and operating on such large
matrices required huge memory space as well as excessive computing time. As a practical
solution we needed an algorithm that would do the computations in the most effective way.
We therefore used the Java programming language to implement our scheme presented in
appendix D. Java is a modern, object oriented, garbage collected language which offers a lot
of flexibility to customize the code in many various ways. Specially when dealing with large
matrices, the garbage collecting feature was very useful and a must. For the linear algebra
operations we used the Jama package [35] which is a Java matrix package.

To demonstrate the validity of our approach we have applied our program on different
quantum structures and compare the results with the theoretical results. In the next chapter

we analyze the numerical results and discuss their validity.

55

4 Numerical Results

In order to prove the validity of our methodology, below we analyze some numerical exam-
ples. In our examples we consider one-electron infinite rectangular GaAs quantum structures
with parameters defined in Table 4.1.

Quantum well structures in GaAs semiconductor

We consider two quantum wells with the parameters given in columns E and F of Table 4.1.
The Schrodinger equation for an infinite well with width I, is given by

B Py
2m* Ox2

+V(x)w(x) = Ey(x) @.1n

V(x), the potential function is o outside the well and equals to V} inside the well. Because
of having infinite barriers, the wavefunction must vanish outside the well so the Dirichlet

conditions are as below.

v(0) =y(k) =0 (4.2)

Defining k = 4/ 2m” f —%0) and replacing V (x) by Vp, the Schrodinger equation inside the well

is as follows.

oy (x)
ox?2

+ky(x) =0 4.3)

The general solution equation 4.3 is given by

y(x) = A exp(ikx) + B exp(—ikx) 4.4

56

Using equation 4.2 we have

wO0)=A+B=0 = B=-4 4.5)

and

y(l) = Aexp(ikly) + Bexp(—ikly) =0

= Asin(kly) =0

= kl,=nn
2m*(E —V,
= %)zx_,m
h2 2
= E=Vo+5sn n=12 (4.6)

The amplitude of the wavefunction is obtained by satisfying the normalization condition

(equation 2.26) as below:

J2S W)y dxe =1 = 4.7
[T 4A%sin? (kx) dx = 1 =
AT 4% sin? (M) dx = 1 =
A= 2lx =
w(x) = \f sin(%x) forn=1,2,--- (4.8)

Maple, a mathematics software tool, is employed to calculate the exact energies using for-

57

mula 4.6 as well as to plot the exact wavefunctions using equation 4.8. We need to import
the data of the wavefunctions obtained by running our code to Maple in order to plot the
resulting wavefunctions. The Maple code for the quantum well is given in Appendix A.

The exact calculated energy levels, calculated in Appendix A, for the given wells are
shown in columns B and E of Table 4.2 and the obtained results from running our code are
shown in columns A and D of the same Table. Likewise in Figures 4.1 the wavefunctions of
the second and forth energy states of well-I and in figure 4.2 the wavefunctions of the first
and third energy states of well-IT are illustrated. Comparing the results shown in Table 4.2
as well as comparing figures 4.1(a) with 4.1(b) and 4.2(a) with 4.2(b) we see that our results
are in an excellent agreement with the exact theoretical results.

A quantum well with an applied Electric Field

In [36], B. V. Zeghbroeck describes an approximated solution for a Quantum well with an
applied uniform electric field. It is shown that if E,g is the n;, energy level of a Quantum
well without the presence of an electric field then E,, the Energy levels of the quantum well
with an applied electric field (), is approximated by equation 4.9. It is also stated that the

equation 4.9 is a good approximation if En >> eFl,.

eFl
En: no + -

ne=12,3,--- (4.9)

Here we have applied two electric fields of 5 x 103V /m and 5 x 10’V /m to the well-I de-
scribed in table 4.1. Using equation 4.9 and the data for E, given in column B of Table 4.2,
we have calculated the energy levels of the quantum well-I in presence of the applied electric

field. The calculated results are shown in columns B and E of Table 4.3. We have also run

58

our code for the same well with the potential function V(x) =V + eFx. The obtained results
are shown in columns A and D of Table 4.3. Comparing the two sets of results validates the
applicability of our approach.

Quantum wire structures in GaAs semiconductor

For the quantum wire structure, the two wires described in columns C and D of Table 4.1
are considered. According to quantum theory, the eigenenergies and eigenfunctions of an
infinite quantum wire when variables are separable can be obtained as follows:

In case of having separable variables the wavefunction of the system can be written as

V(x,y) = y(x) w(y) (4.10)

And also the potential function can be written as
V(xy) = V() + V) @.11)

For a quantum wire with infinite barriers the Schrodinger equation inside the wire is given

by

L (azw(x,y) L Pyxy)
2m*" ox? 2

) +V(xy)u(x,y) = Ey(x,y) (4.12)

If we substitute equation 4.10 and 4.11 in the Schrodinger equation 4.12, we’ll have:

2 2 X 2 x
o (SYINO) | TVENO)) 1 (v () +V ()W) = (Ect EJVGIVD) @.13)

By dividing the two sides of equation 4.13 by y(x)y(y) the two-dimensional Schrodinger

59

equation can be divided into two one-dimensional equations as below.

2 22

TV v () = B a1t
2

_5}:71? agy)JrV(Y)\lf(y) Eyy(y) (4.15)

Where E is the eigenenergy in x direction and E, is the eigenenergy in y direction and
E = E, +Ey is the total energy levels of the wire. We solve equations 4.14 and 4.15 the
same way we did for the quantum well and by using equations 4.10 and the fact that the total
energy of the Quantum wire is given by E = Ex + E,, we obtain the total energy levels as

well as the wavefunction of the quantum wire as below.

282 2 2
Tk ny
EnZV()-l- m 'L—% Z—%) nx,ny:1,2,3,--- (416)

Yu(X) = ” Lysm(nnxx)s (TCZ)’ Ag,ny=1,2,3,.-- 4.17)

where Vj is the constant potential function inside the wire. The Maple code for calculating
the exact energy levels and plotting the wavefunctions of the given quantum wires with us-
ing formula 4.16 and 4.17 respectively, is shown in Appendix B. The expected theoretical
eigenvalues and the ones obtained from running our program are shown in Table 4.4. Also
in Figures 4.3 and 4.4 some wavefunctions of the given wires are illustrated. The validity of
our approach is confirmed by comparing the results obtained by the two methods, given in
Table 4.4 on the one hand and by comparing the figures 4.3(a) with 4.3(b) and 4.4(a) with

4.4(b) on the other hand.

60

A quantum wire with an applied Electric Field

In this example we analyzed the change in the energy levels of a nanowire in the presence of
an applied electric field. If we expand Zeghbroeck’s approximated solution for a Quantum
-well in an applied electrical field [36] to an approximated solution for a nanowire in an
applied electrical field, the change in energy levels is calculated as

eFl, el

E, — Ey =))

n=1,2,3,-- (4.18)

where F; and F; are the applied electric fields in directions x and y. Here we have applied
electric fields of F; = F, =5 x 107V /m to the wire-I described in table 4.1. We have
calculated the energy levels of the quantum wire-I in the presence of the applied electric field
using Zeghbroeck’s method. The calculated results are shown in column B of Table 4.5.
The obtained results from running our code for the same wire with the potential function
V(x,y) = eFxx+ eF,y are shown in column A of Table 4.5. Comparing the two sets of results
validates the applicability of our approach.

Quantum box (dot) structures in GaAs semiconductor

As the last set of examples, we define two quantum dots as shown in Table 4.1. Similar
to the Quantum wire example, in case of having separable variables we can re-write the

wavefuntion and the potential of a Quantum box as below.

V(x,y,z) = ¥(x) y(y) ¥(z) (4.19)

61

And also the potential function can be written as
V(x,y,2) =V + V@) + V(2) (4.20)

If we follow the same procedure as the Quantum wire example, the theoretical energy levels
and wavefunctions of an infinite quantum dot with the potential function Vj inside the dot are
given by

2 2 2

By
w2V TR

N / 8 L Rmx, . TRyY, . TRz
\lln(x)"‘ LxllyLZSZn(Lx)Sln(ll)})Sln(Lz)

Ry, Ry,n; = 1,23+ 4.22)
y

Ry Ry,n, =1,2,3,--- 4.21)
Yy 182

The Maple code for calculating the exact energy levels of the given quantum dots using
formula 4.21 is shown in Appendix C. Plotting the wavefunctions of the Quantum dots
results in a 4 dimensional plot which is difficult to visualize and can’t be done by Maple. By
employing our method on the given quantum dots, we have obtained the five lowest energy
levels and the corresponding wavefunctions. Table 4.6 shows both the obtained and the exact
energy levels as well as the percentage differences between them. Also in Figure 4.5 the
obtained and exact wavefunctions of the quantum box-I corresponding to the first energy
states are shown.

Once again comparing the results in Table 4.6 and also comparing Figures 4.5(a) with

4.5(b) show that the results obtained with our code are in agreement with the theoretical

62

results which proves the validity and efficiency of our method. The drawback of simulating
quantum boxes is the computing time it requires. In our program each dimension of the box
is divided into 14 points. This results in large matrices in the order of 14 x 14 x 14 = 2744
which in turn results in increased computing time and memory consumption. In section 5
some suggestions to overcome this problem are made (as future work).

Quantum wire structures in GaAs semiconductor with a sinusoidal potential function

To show that our code is capable of obtaining solutions for complex potential functions, we

analyze below quantum wire-I in table 4.1 with a 2D sinusoidal potential function given by:

V(x,y) = 8(sin(x) + sin(y)) x 10712 (4.23)

The obtained results from running our code for wire-I described in table 4.1 with the sinu-
soidal potential function given by equation 4.23 are shown in column A of table 4.7. To
evaluate our results we need to find an approximated theoretical solution for this example.
According to the Small Angle Approximation method in trigonometry sin(x) = x when x

approaches zero. In this example x and y are in domain €2 defined by

Q : 0<x<10?

0<y<10° (4.24)

Therefore since x and y are very small, we can use the Small Angle Approximation method

to approximate the sinusoidal potential function given by equation 4.23 with the simplified

63

form given by

V(x,y) =8(x+y) x 10712 (4.25)

Noting the equivalence relation that exists between equations 4.23 and 4.25 we may conclude
that the solution of 4.23 is equivalent to the solution of 4.25. Similar to what was done in
the example for quantum wire-I in the presence of an applied electric field, we calculated
the energy levels for wire-I in this example which are shown in column B of table 4.7. The
comparison between the obtained and calculated results shows the accuracy and applicability
of our approach.

Note that although for simplicity we have presented numerical examples of the quan-
tum structures with simple potential functions, our implementation is capable of analyzing

quantum structures with arbitrary potential functions.

64

Table 4.1: PARAMETERS OF THE Q-DOTs, Q-WIREs and Q-WELLs USED FOR THE
EIGENSTATES CALCULATIONS

Q-dot-I | Q-dot-II | Q-wire-I | Q-wire-Il | Q-well-I | Q-well-IT
A B C D E F
I, nm 1 10 1 10 1 40
ly nm 1 10 1 100 - -
I, nm 1 10 - - - -
m* /my | 0.067 0.067 0.067 0.067 0.067 0.067
Vo 4 ev 0 ev 0 ev 10 mev 0 ev 25 mey

Table 4.2: ENERGY LEVELS OF RECTANGULAR GaAs QUANTUM WELL STRUC-
TURES, DESCRIBED AT TABLE 4.1

well-1 well-11

number | FCM Exact Error || FCM Exact Error
of level Solution Solution
n ev ev % mev mev %0

A B C D E F
1 5.605 5.601 0.07 28.503 28.501 0.007
2 22.326 22.403 0.34 38.954 39.002 0.12
3 49.876 50.408 1.05 56.173 56.505 0.58
4 87.783 89.614 2.04 |l 79.865 81.009 1.41
5 135.399 140.021 33 109.625 112.513 2.56

65

Table 4.3: THE EFFECT OF AN ELECTRIC FIELD ON ENERGY LEVELS OF QUAN-
TUM WELL-I, DESCRIBED AT TABLE 4.1

F=5x%x10"V/m F=5x10%V/m
number | FCM Exact Error || FCM Exact Error
of level Solution Solution
n ev ev % ev ev %

A B C D E F
1 5.630 5.626 0.07 5.851 5.855 0.068
2 22.351 22.428 0.34 22.753 22.576 0.78
3 49.901 50.433 1.05 50.658 50.126 1.05
4 87.808 89.639 2.04 89.864 88.033 0.93
5 135.424 140.046 3.30 140.271 135.650 3.29

Table 4.4: ENERGY LEVELS OF RECTANGULAR GaAs QUANTUM WIRE STRUC-
TURES, DESCRIBED AT TABLE 4.1

wire-I wire-I1

number | FCM Exact Error || FCM Exact Error
of level Solution Solution
n ev ev %0 mev mev %

A B C D E F
1 11.182 11.202 0.17 | 66.470 66.569 0.14
2 27.705 28.004 1.06 | 68.065 68.249 0.27
3 44.194 44.807 1.36 70.645 71.049 0.57
4 54.440 56.009 2.80 || 74.098 74.670 0.77
5 70.873 72.811 2.66 || 78.273 80.010 2.17

66

number | FCM Exact Error
of level Solution
n ev ev Yo

A B C
1 11.232 11.252 0.18
2 27.755 28.054 1.06
3 44.244 44.857 1.37
4 54.490 56.059 2.80
5 70.923 72.861 2.66

Table 4.5: THE EFFECT OF AN ELECTRIC FIELD ON ENERGY LEVELS OF QUAN-
TUM WIRE-I, DESCRIBED AT TABLE 4.1

Table 4.6: ENERGY LEVELS OF RECTANGULAR GaAs QUANTUM BOX STRUC-
TURES, DESCRIBED AT TABLE 4.1

box-I box-1I

number | FCM Exact Error || FCM Exact Error
of level Solution Solution
n ev ev % mev mev %

A B C D E F
1 20.743 20.803 0.29 | 0.167 0.168 0.59
2 37.146 37.605 1.22 | 0.331 0.336 1.49
3 53.504 54.407 1.66 || 0.495 0.504 1.78
4 63.424 65.609 3.33 0.594 0.616 3.57
5 69.818 71.210 1.95 0.658 0.672 2.08

67

Table 4.7: ENERGY LEVELS OF QUANTUM WIRE-],

WITH A SINUSOIDAL POTENTIAL FUNCTION

DESCRIBED AT TABLE 4.1

(a) wavefunction produced by our code

number | FCM Exact Error
of level Solution
n ev ev %
A B C
1 11.232 11.252 0.18
2 27.755 28.054 1.06
3 44,244 44 857 1.37
4 54.490 56.059 2.80
5 70.923 72.861 2.66
10000 000 /“vr\ L) /»\
/ \ / \
20000 20000 //‘ \\ / \\\
) 0 i 2e—10‘\\ 4e-10 ,; 6e-10 X\ee—m 16600
20000 20000 \\ ;’j \\\ ' ;"/
\\ ;/ \ /f
00 40000 _/ u*"\"w»//’
Legend level n=4 e I‘_eg?nd level n=2
...... Jovel n=2 level n=4

(b) Exact wavefunction

Figure 4.1: The (a) obtained and (b) exact wavefunctions corresponding to the second and
the forth energy levels of a quantum well with width = 1nm

68

L L TN
6000 4 Nt : 7N
/ RN /. N
000y 3 / N
/ 3 ; 3
w0l /. \\ / A
i kY + 3
¢ 16-08 2008 /3008 40-08
r
‘\ ,‘;
—4000 Y 7
\\, 7
-6000 ;N /
N
Legend Legend
levelnzd 0 1 e level n=1
...... leveln=1 e {ovel 1=
(b) Exact wavefunction

(a) wavefunction produced by our code

Figure 4.2: The (a) obtained and (b) exact wavefunctions corresponding to the first and the
third energy level of a quantum well with width = 40nm

(a) wavefunction produced by our code (b) Exact wavefunction

Figure 4.3: The (a) obtained and (b) exact wavefunctions corresponding to the third energy
level of a quantum wire with dimensions 1nm X 1 nm

69

(a) wavefunction produced by our code (b) Exact wavefunction

Figure 4.4: The (a) obtained and (b) exact wavefunctions corresponding to the third energy
level of a quantum wire with dimensions 10nm x 100nm

(a) wavefunction produced by our code (b) Exact wavefunction

Figure 4.5: The (a) obtained and (b) exact wavefunctions corresponding to the first energy
level of a quantum dot (box) with dimensions 1nm X 1nm X 1nm and Vp =4 ev

70

5 Conclusions and remarks

We have presented an efficient, accurate and simple algorithm to solve the multi-dimensional
time-independent Schrodinger equation for infinite quantum well/wire/dot structures. The
algorithm works on arbitrary potential functions and finds the energy levels and the corre-
sponding wavefunctions of the input structures. The algorithm is based on the Finite cloud
method, which is a meshless method and as a consequence does not deal with the known
complexities of mesh methods. To underscore the reasons for using a meshfree method in
this thesis, it would be appropriate to make a comparison between mesh methods and mesh-
less methods. In the mesh-based methods the first step is to discretize the physical geometry
of the problem into a mesh which is a time consuming process. An expert analyst has to
invest a lot of time and effort into the mesh generation process, since mesh generation can
not be completely handled by a computer. The need for human expertise increases the cost
of the simulation due to the simple fact that manpower is more expensive and valuable than
computer time. Whereas in meshless methods distribution of nodes can be done easily, the
nodes are independent from each other and there is no need to connectivity information be-
tween the nodes in these methods. Another important issue is the use of adaptive algorithms
in the simulating process. Usually defining a very fine mesh or node distribution leads to very
accurate results, however this is by no means guaranteed. Sometimes a very fine discretiza-
tion or representation of the domain does not have a considerable effect on the accuracy
of the results but nonetheless increases the computation time and eventually the cost of the
whole project. If we use an adaptive algorithm in our simulation, the extra information can

be ignored automatically to reduce memory consumption and computation time. The fact

71

that adding/removing nodes in the meshless methods are easy and straightforward, provides
more flexibility in implementing adaptive algorithms by these methods. The weak point of
meshless methods is the fact that they are very new and haven’t been thoroughly developed
yet so there is as yet no commercial packages based on these methods which we can use in
the modeling and simulation projects. Furthermore if we do not consider the mesh genera-
tion and node distribution steps, the computation time for the rest of process in FEM is less
than that of the meshless methods. Besides, because of dealing with huge matrices, meshless
methods are more memory intensive than many mesh methods.

Despite the shortcomings of the meshless methods, they still appeal to many analysts and
researchers, because of the advantages they offer, in particular their overcoming the mesh
generation problem. At the time of starting this thesis, there were several developed and less
developed mesh free methods from which we chose the finite cloud method (FCM) to work
with. FCM is a meshless method which uses fixed reproducing approximation to build the
interpolation functions and uses a point collocation scheme to discretize the governing partial
differential equation. The combination used in FCM gives unique characteristics to FCM as

follows.

1- Due to the fact that the kernel function in fixed reproducing technique is centered
at point 7, we have constant moment matrices, which makes the computation of

the derivatives of the shape functions much more easier and faster than other

reproducing methods.

2- AsLietal. [12] showed that using unity nodal volumes instead of exact nodal
volume will result in almost identical shape functions which is a handy feature

72

in case of having complex geometries.

3- In point collocation method boundary conditions are enforced easily and directly

and there is no need for special treatment in dealing with them.

4- As noted in chapter 3 the shape functions constructed with the fixed reproducing
kernel technique are multi-valued; this problem is overcome by using a point
collocation method such that it limits the shape functions to be computed at the

point where the kernel function is centered ().

5- The most important advantage of the point collocation method which makes
FCM truly meshless is the factor that it doesn’t require any connectivity informa-
tion for discretizing the governing equation as opposed to the Galerkin method

which needs a background grid to do the required integrations.

5.1 Contribution

Li et al. [12] originally introduced FCM for two dimensional space. In this thesis we
expanded FCM to three dimensions —which to our knowledge has not been done before—
and implemented the algorithm in Java. Java has specific features which make it a powerful
programming language, the most important of which for the purposes of our implementation
was its automatic memory management (garbage collection) feature while we worked with
huge matrices.

The contribution of this thesis is to develop a 3D method to solve the multi-dimensional

Schrodinger equation for nanostructures as well as implementing a functional tool for simu-

73

lating and analyzing quantum structures which gives both the eigenenergies (energy levels)
and the corresponding eigenfunctions (wavefunctions) of the structures.

To demonstrate the validity of our method, we have applied our program to different
quantum structures. The comparison between the obtained results from running our solver

and the (expected) theoretical results shows the efficiency of our method.

5.2 Future Work
Following is a list of possible improvements to our implementation as future work.

1- Note that in our implementation we have used constant effective mass through
the structure, using variable effective mass would be an obvious improvement

for this implementation for the sake of the accuracy of the results.

2- In this algorithm we used rectangular clouds with the same size for the nodes,
however the shape as well as the size of the clouds for each node are independent
of each other. So up-scaling the algorithm to an adaptive algorithm which would
determine the best cloud size for each node in order to get the best solution would

be a huge improvement.

3- As mentioned earlier the order of matrices are fairly large specially in three di-
mensions and operating on large matrices requires extensive amounts of memory
as well as computing power. In our implementation we omitted some unimpor-
tant rows of the matrix H to obtain the matrix H which is much more smaller

than H. An efficient way to make the resulting matrix H even smaller would

74

be to use an adaptive algorithm which would estimate the domain representation
error with a priori or a posteriori error estimate and then determine the areas of
the domain € where we need to add/remove nodes. In this case we could remove
the unwanted nodes and keep only the useful ones which would lead to smaller

matrices and as a consequence, to reduced memory and cpu utilization.

75

References

[1] K. Mutamba, M. Flath, A. Sigurdardottir, A. Vogt, and H. L. Hartnagel. A gaas pressure

sensor with frequency output based on resonant tunneling diodes. IEEE Trans. Instrum.
Meas., 48(6):1333-1338, December 1999.

[2] ECapasso, S. Sen, F. Beltram, L.M. Lunardi, and A.S. Vengurlekar. Quantum func-
tional devices - resonant-tunneling transistors, circuits with reduced complexity, and
multiple-valued logic. IEEE Transactions on Electronic Devices, 36(10):2065-2082,
October 1998.

[3] Kenith E. Meissner and Adam Allen. Whispering gallery mode biosensors using semi-
conductor quantum dots. IEEE Sensors J., October 2005.

[4] F. Capasso, K. Mohammed, and A. Y. Cho. Resonant tunneling through double barriers,
perpendicular quantum transport phenomena in superlattices, and their device applica-
tions. IEEE J. Quantum Electron., QE-22(9):1853-1869, September 1986.

[5] Emmanuel Anemogiannis, Elias N. Glytsis, and Thomas K. Gaylord. Bound and quasi-
bound state calculations for biased/unbiased semiconductor quantum heterostructures.
IEEE J. Quantum Electron., 29(11):2731-2740, November 1993.

[6] Rade Vignjevic. Review of development of the smooth particle hydrodynamics (sph)
method. Cranfield University; School of Engineering, December 2004.

[7]1 N. R. Aluru. A reproducing kernel particle method for meshless analysis of micro-
electromechanical systems. Computational Mechanics, 23(4):324-338, May 1999.

[8] Gregory M. Hulbert. Application of reproducing kernel particle methods in electromag-
netics. Computer Methods in Applied Mechanics and Engineering, 139(1-4):229-235,
December 1996.

[9] T. Belytschko, Y. Y. Lu, L. Gu, and M. Tabbara. Element-free galerkin methods for
static and dynamic fracture. Infternational Journal of Solids and Structures, 32(17-
18):2547-2570, September 1995.

[10] P. Krysl and T. Belytschko. Element-free galerkin method: Convergence of the contin-
uous and discontinuous shape functions. Computer Methods in Applied Mechanics and
Engineering, 148(3-4):257-277, September 1997.

[11] S. N. Atluri and T. Zhu. A new meshless local petrov-galerkin (mlpg) approach in
computational mechanics. Computational Mechanics, 22(2):117-127, August 1998.

[12] N. R. Aluru and G. Li. Finite cloud method: A true meshless technique based on fixed

reproducing kernel approximation. International Journal for Numerical Methods in
Engineering, 50(10):2373-2410, April 2001.

76

[13] N. R. Aluru. A point collocation method based on reproducing kernel approximation.
International Journal for Numerical Methods in Engineering, 47(6):1083-1121, Feb-
ruary 2000.

[14] Hendrik F. Hameka. Quantum Mechanics: A Conceptual Approach. John Wiley and
Sons, Hoboken, New Jersey, 1st ed. edition, 2004.

[15] Eugen Merzbacher. Quantum Mechanics. Wiley, New York, 3rd ed. edition, c1998.

[16] Vladimir Mitin, Viacheslav Kochelap, and Michael A. Stroscio. Quantum Heterostruc-

tures: Microelectronics and Optoelectronics. Cambridge University Press, New York,
1st ed. edition, 1999.

[17] Jon Willis. Introduction to quantum physics, 2006.
http://orca.phys.uvic.ca/ jwillis/teaching/teaching.html, last read on April 10, 2007.

[18] http://en.wikipedia.org/wiki/MainPage, last read on April 10, 2007.

[19] Kenji Nakamura, Akira Shimizu, Masanori Koshiba, and Kazuya Hayata. Finite-
element analysis of quantum wells of arbitrary semiconductors with arbitrary potential
profiles. IEEE_J_JQE, 25(5):889-895, May 1989.

[20] P. A. Knipp and T. L. Reinecke. Boundary element method for calculating electron
and phonon states in quantum wires and related nanostructures. Superlattices and Mi-
crostructures, 16(2):201-204, September 1994.

[21] Willi Schnauer and Torsten Adolph. Higher order may be better or may not be better:
Investigations with the fdem (finite difference element method). Journal of Scientific
Computing, 17(1-4):221-229, December 2002.

[22] Willi Schnauer and Torsten Adolph. How we solve pdes. Journal of Computational
and Applied Mathematics, 131(1-2):473492, June 2001.

[23] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods:
An overview and recent developments. Computer Methods in Applied Mechanics and
Engineering, 139(1-4):347, December 1996.

[24] G. R. Liu. Mesh free methods : moving beyond the finite element method. CRC press,
Boca Raton, Fla., 1st ed. edition, c2003.

[25] I. V. Singh. A numerical study of weight functions, scaling, and penalty parameters for
heat transfer applications. Numerical heat transfer. Part A, Applications, 47(10):1025—
1053, 2005.

[26] http://www.physics.utah.edu/ detar/phycs6720/handouts, last read on April 10, 2007.

[27] L. B. Lucy. A numerical approach to the testing of the fission hypothesis. Astronomical
Journal, 82(12):1013-1024, December 1977.

77

[28] J. J. Monaghan. Why particle methods work. SIAM Journal on Scientific Computing,
3(4):422-433, December 1982.

[29] R.A. Gingold and J. J. Monaghan. Smooth particle hydrodynamics: theory and appli-
cation to non-spherical stars. Royal Astronomical Society, 181(2):375-389, November
1977.

[30] W.K. Liu, Y. Chen, R. A. Uras, and C. T. Chang. Generalized multiple scale reproduc-
ing kernel particle methods. Computer Methods in Applied Mechanics and Engineering,
139:91-157, April 1996.

[31] L. Zhang J.X. Zhou, H.Y. Zhang. Reproducing kernel particle method for free and force
vibration analysis. Journal of Sound and Vibration, 279(1-2):389—402, Nov 2005.

[32] M. J. Mitchell, R. Qiao, and N.R. Aluru. Meshless analysis of steady-state electro-
osmotic transport. Journal of Microelectromechanical Systems, 9(4):435-449, Decem-
ber 2000.

[33] N. R. Aluru. New approximations and collocation schemes in the finite cloud method.
Computers & Structures, 83(17-18):1366-1385, June 2005.

[34] J. Dolbow and T. Belytschko. Numerical integration of the galerkin weak form in
meshfree methods. Computational Mechanics, 23(3):219-230, April 1999.

[35] Joe Hicklin, Cleve Moler, Peter Webb, Ronald F. Boisvert, Bruce Miller, Roldan
Pozo, and Karin Remington. Jama : A java matrix package, 1998-2005.
http://math.nist.gov/javanumerics/jama/ , last read on April 10, 2007.

[36] B. Van Zeghbroeck. Principles of semiconductor devices, c2004. http://ece-
www.colorado.edu/~bart/book, last read on April 10, 2007.

78

A maple code for quantum well

0.067 % 9.11 = 107 (-31):
1.054 % 107 (-34):

> m_star:

> h hat

> X:='X'":

> 1 x:= 1.% 107(-9):

> VO0:= 0:

> E 01 :=((h _ hat % 3.14)72)/(2 % m_star » 1_x"2):

> # exact energy levels in Jule;

> for n from 1 to 5 do Ej[n]l:= VO + E 01* n"2; end do;

Ej, := .8972580070107 18
Ej, :=.3589032028 1017
Ej; :=.807532206310~17
Ej, := .14356128111071¢

Ejs ;= 2243145018 10716

> # exact energy levels in mev;

> for n from 1 to 5 do (Ej[n]l)/(1.6%x10"(-22)) ; end do;
5607.862544

22431.45018
50470.76289
89725.80069

140196.5636

79

\

exact wave function is given as follow.
> f:= r-> sqgrt(2/1 _x)* sin(Pisxr/1l_x):
f(l_X/Pi);

\

37631.72646

> plot([f(2+x),f(4+xr)], r=0..1 x,style=[point,line]):

\%

plot ([£(1+xr),£(3xr)], r=0..1 x,style=[point,linel):

B maple code for quantum wire

> m_star:

0.067 * 9.11 » 107 (-31);

> h_hat := 1.054 = 10" (-34);

> X:='xX":

> 1x:= 1.% 107(-9);
> ly:= 1.% 107(-9);
> V0:=0.;

> printlevel := 2;

m_star := .6103700000 107"
h_hat := 1054000000 1033
Ix := .1000000000 1078
ly := 1000000000108
VO :=0.

printlevel :=2

80

> for nx from 1 to 5 do for ny from 1 to 5 do E_exact[i]:= (VO + ((((h_hat * 3.14)%) /(2

m_star*1x?)) xnx? 4 (((h_hat % 3.14)%) / (2« m_starx1y?)) % ny?) /(1.602 % 10 — 19))) ¢ 1 :
i:=i+1:enddo: enddo :

> sort([seq(E_exactlk],k=1..10)]);
i=1

[11.20172293, 28.00430734, 28.00430734, 44.80689174, 56.00861469,
72.81119909, 95.21464493, 112.0172293, 145.6223982, 162.4249826]

> i = 1;
ii=1

> f:=7f1;

> fi=(r,8)- > sqrt((2.*¥2.)/(1x*1y)) * sin(1*Pi*r/1x)* sin(1*Pi*s/ly);
f=r

1 . ¢®r, . Ts
fi=(rs)—4/4 —I—JESIH(E)SIH(T)}_)

> plot3d(f(r,s),r=0..10"(-9),8=0..10"(-9)):

> plot3d(f(2xr,s),r=0..10"(-9),8=0..10"(-9)):

> plot3d(f(l*r,3%s),r=0..10"(-9),8=0..10"(-9)):
> plot3d(f(2+r,2%s),r=0..10"(-9),s=0..10"(-9)):

C maple code for quantum box

1
(@]

.067 % 9.11 » 10" (-31);
.054 % 10" (-34);

> m_star:

> h_hat

]
’_I

> xX:='x':
> 1x:= 1. % 10 "~ (-9):
> ly:= 1. % 10 " (-9):
> lz:= 1. x 10 ~(-9):
> NP:=14;
> V0:=0.;

81

> printlevel := 2;
> i:=1;
> for nx from 1 to 5 do for ny from 1 to 5 do for nz from 1 to 5 do E_exact[i}:= (VO +

((((h-hat * 3.14)?) / (2« m_star xIx?)) x nx® + (((h_hat * 3.14)?) /(2 x m_star ¥ Iy?)) x ny? -+

(((h_hat %3.14)2) /(2 x m_star x122)) xnz?) /(1.602x 100 = 19))) % 1 : i := i+ 1 : enddo :
enddo : enddo :

> sort([seq(E_exact[k], k=1..15)1]1);
m_star *= .610370000010 3!

h_hat := .1054000000 10~>*
VO := 0.
printlevel := 2
ii=1

[16.80258440, 33.60516880, 33.60516881, 50.40775321, 61.60947615,
61.60947616, 78.41206056, 78.41206056, 100.8155064, 106.4163679,
117.6180908, 145.6223982, 151.2232596, 168.0258440, 196.0301514]

D Java Code to Implement the Solver

Listing 1: Main.java

/%
* Main.java
*
x Created on March 29, 2006, 7:46 PM
*
*/
package javaapplicationl;
import Jama.Matrix;
import Jama.EigenvalueDecomposition;
import Jama.QRDecomposition;
import Jama.LUDecomposition; .
import Jama.SingularValueDecomposition;
import java.util.Date;
Sk
* @author Sanam Moslemi—Tabrizi
*/
public class Main {
[k

82

* Creates a new instance of Main

*/

public Main() {

¥

public static veid main(String[] args) {

if (args != null && args.length > 0) {

if (argsf0].equals("well™)) {
Util.print(”.............. ~WELL........ *);
System.out.printin();
QuantumWellEnergyLevelsFinder aQuantumWellEnergyLevelsFinder =
new QuantumWellEnergyLevelsFinder();
aQuantumWellEnergyLevelsFinder.findQuantumWellEnergyLevels();
}
else
if (args[0].equals("wire”)) {
UtiL.print(”......ccon.... WIRE........ Y
System.out.printin();
QuantumWireEnergyLevelsFinder aQuantumWireEnergyLevelsFinder =
new QuantumWireEnergyLevelsFinder();
aQuantumWireEnergyLevelsFinder.findQuantumWireEnergyLevels();

}
else
if (args[0].equals("box™)) {
Util.print(”.............. BOX........ ”Y;
System.out.println();
QuantumBoxEnergyLevelsFinder aQuantumBoxEnergyLevelsFinder =
new QuantumBoxEnergyLevelsFinder();
aQuantumBoxEnergylevelsFinder.findQuantumBoxEnergyLevels();
}
else
if (args[0].equals("eq™)) {
Util.print(”.............. ~Equation........)
System.out.println();
EquationsSolver aEquationsSolver = new EquationsSolver();
aEquationsSolver.SolveEquations();
}
else
if (args[0].equals("exact™)) {
Util.print("........c..... <Exact........ ”);
System.out.println();
ExactWaves aExactWaves = new ExactWaves();
aExactWaves.FindExactWaves();
¥
else {
Util.print("Unknown._option:.” + args[0]);
System.exit(1);
}

83

Listing 2: QuantumBoxEnergyLevelsFinder.java

/%

* QuantumBoxEnergyLevelsFinder.java

*

x Created on April 10, 2006, 3:54 PM

%

*/

package javaapplication];

import Jama.Matrix;

import Jama.EigenvalueDecomposition;

import Jama.QRDecomposition;

import Jama.LUDecomposition;

import java.util. Arrays;

import Jama.SingularValueDecomposition;

import java.util.LinkedHashMap;

import java.util.Map;

import java.util.Date;

[Hx

*

* @author Sanam Moslemi—Tabrizi

*/

public class QuantumBoxEnergyLevelsFinder {
/xx Creates a new instance of QuantumBoxEnergyLevelsFinder /
public QuantumBoxEnergyLevelsFinder() {
}
public static int numberOfPoints = 14;
//public static int numberOfPoints = 6;
public void findQuantumBoxEnergyLevels(){

double[][] txx = {

0.,0.,0.,0,0.,0.,0,2,0.,0.
}
Matrix PTXX = new Matrix(txx);
double[][] tyy = {

0.,0.,0.,0.,0,0.,0.,0., 2., 0.
}
}

Matrix PTYY = new Matrix(tyy);
double[]{] tzz= {

o.,0,0,0,0,0.,0,0.,0, 2.

}
}

Matrix PTZZ = new Matrix(tzz);

double lengthInXDirection = 1 * Math.pow(10, —9);
double lengthInY Direction = 1 « Math.pow(10, —9);
double lengthInZDirection = 1 * Math.pow(10, —9);

84

int totalnumberOfPoints = numberOfPoints * numberOfPoints * numberOfPoints;
intm=10;

double mm = 0.067;

double m_star = mm = Util.freeElectronMass;
double h_hat = 1.054 x Math.pow(10, —34);
double alpha=—(h_hat * h_hat)/(2.*m_star);
Matrix V = new Matrix(totalnumberOfPoints, 1);
Matrix pot = new Matrix(totalnumberOfPoints, 1);
Matrix temp2 = new Matrix(1, 1);

double x[] = new double[numberOfPoints};
double y[] = new double[numberOfPoints];
double z[] = new double[numberOfPoints];

x[0]=0;
y[0]=0;
z[0] = 0;

/fx dx, dy, dz are the could sizes in each Dim.
* the result is much more accurate for smaller cloud sizes
xbut if they be too small it would cause singular Matrix problem
«with 1.05 it is fine. x/
double delta_x = lengthInXDirection / (numberOfPoints — 1);
//double dx = 1.25 * delta_x;
double dx = 1.02 * deltax;
double delta_y = lengthInY Direction / (numberOfPoints — 1);
/double dy = 1.25 * delta_y;
double dy = 1.02 * delta_y;
double delta_z = lengthInZDirection / (numberOfPoints — 1);
/double dz = 1.25 * delta_z;
double dz = 1.02 * delta_z;
for (int i = 0; i < numberOfPoints; i++) {

x[i] = x[0] + 1 * delta_x;

y[i] = y[0] + i * delta.y;

z[i] = z[0] + i x delta_z;

Matrix[] nod = new Matrix[totalnumberOfPoints];
intnd=0;
for (int i = 0; i < numberOfPoints; i++)

{

for (int j = 0; j < numberOfPoints; j++)

for (int k = 0; k < numberOfPoints; k++)
{

double tempx = x[i];

double tempy = y[j];

double tempz = z[k];

double[][] templ = {

tempx , tempy , tempz

}
’

nod{nd] = new Matrix(temp1);
nd = nd+1;

85

}
}
Matrix F = Util.get3DF(m, totalnumberOfPoints, nod);
Matrix FT = F.transpose();
Matrix A = new Matrix(totalnumberOfPoints, totalnumberOfPoints);
double U[] = new double[totalnumberOfPoints];
double ax;
double ay;
double az;
double fiX =0;
double fiY = 0;
double fiZ = 0;
double phi[][] = new double[totalnumberOfPoints][totalnumberOfPoints];
double NXX[][] = new double[totalnumberOfPoints][totalnumberOfPoints];
double NYY[][] = new double[totalnumberOfPoints][totalnumberOfPoints];
double NZZ[][] = new double[totalnumberOfPoints][totalnumberOfPoints];
int numberOfNZPoints= totalnumberOfPoints — 6 x
numberOfPoints *xnumberOfPoints + 12 * numberOfPoints — 8;
int[] r = new int[numberOfNZPoints];
intri=0;
for (int k = 0; k < totalnumberOfPoints; k++)
{
System.out.print("k=." +k);
System.out.println(”\t”);
for (int i = 0; i < totalnumberOfPoints; i++)
{
ax = (nod[k].get(0,0) — nod[i].get(0,0)) / dx;
double tx = (—ax * ax) / 0.2;
fiX = 1.2618«Math.exp(tx);
ay = (nod[k].get(0,1) — nod[i].get(0,1)) / dy;
double ty = (—ay * ay) / 0.2;
fiY = 1.2618«Math.exp(ty);
az = (nod[k].get(0,2) — nod[i].get(0,2)) / dz;
double tz = (—az * az) / 0.2;
fiZ = 1.2618+Math.exp(tz);
phi[k][i] = fiX * fiY * fiZ;
V.set(i,0,phi[k][i]);
/' V[i,0]= phi[k][i]
}
Matrix W = Util.getDia(V);
Matrix M = F.times(W).times(FT) ;
Matrix M_in = M.inverse();
for(int n=0; n<totalnumberOfPoints; n++) {
double x0=1;
double x1 = nod[n].get(0,0);
double x2 = nod[n].get(0,1);
double x3 = nod[n].get(0,2);
double x4 = nod[n].get(0,0) * nod[n].get(0,1);
double x5 = nod[n].get(0,0) * nod[n].get(0,2);
double x6 = nod[n].get(0,1) * nod{n].get(0,2);
double x7 = nod[n].get(0,0) * nod[n].get(0,0);
double x8 = nod[n].get(0,1) * nod[n].get(0,1);

86

double x9 = nod[n].get(0,2) * nod[n].get(0,2);
double[][] temp1 = {
{

}
A

x0
x1
x2
x3
x4
x5
x6
x7
x8

x9
}

Matrix P = new Matrix(temp1);

NXX[k][n] = phifk][n]*((PTXX times(M_in).times(P)).get(0,0)) ;
NYY[k][n] = phi[k][n]*((PTYY .times(M.in).times(P)).get(0,0)) ;
NZZ{k][n] = phi[k][n]*((PTZZ.times(M_in).times(P)).get(0,0)) ;

}
if (nod[k].get(0,0) == 0 || nod[k].get(0,0)== lengthInXDirection ||
nod[k].get(0,1) == 0 || nod[k].get(0,1)== lengthInYDirection ||
nod[k}.get(0,2) == 0 || nod[k].get(0,2)== lengthInZDirection) {
Ulk] =0,
for(int i=0; i<totalnumberOfPoints; i++) {
A.set(k,i,0);
pot.set(k,0,0);
}
}
else {
for(int i=0; i<totalnumberOfPoints; i++) {
A set(k,i,alphax(NXX[K][i] + NY Y{KI[i] + NZZ{K][i]));
pot.set(k,0,Util.get3DPotential(nod[k].get(0,0) , nod[k].get(0,1) , nod[k].get(0,2)));
}

87

r[ri] = k;
ri=ri+1;
}

}
Matrix pot_func = Util.getDia(pot);
Matrix H = A. plus(pot_func);
Matrix H2 = H.getMatrix(r,r);
EigenvalueDecomposition D1 =
new EigenvalueDecomposition(H2);
double[] d1 = D1.getRealEigenvalues();
Matrix wave = D1.getV();
Map<Double, double[]>> map = new LinkedHashMap<Double, double[]>();
double[][] waveArray = wave.transpose().getArray();
for(int i=0; i<numberOfNZPoints; i++)

{
Double d = d1[i];
double[] m4 = waveArrayl[i];
// ith coloumn
map.put(d, m4);
}
Arrays.sort(d1);

Matrix[] u_funcs = new Matrix[5];
Matrix[] wave_function = new Matrix[5];
for(int i=0; i<5; i++)

{
wave_functionfi] = new Matrix(1 , totalnumberOfPoints);
}
for(int i=0; 1<5; i++)
{
double[] m4 = map.get(d1[i]);
double[][] mm4 = {
m4
}
Matrix w_m4 = new Matrix(mm4);
u_funcs[i] = w_m4;
}

double beta = Math.pow(1/(delta_x * delta_y * delta_z), 0.5);
for (int i=0 ; i<5 ; i++)

{
if (u_funcs[i].get(0,0)<
0)
u_funcs(i].timesEquals(—beta) ;
}
else
{
u_funcs[i].timesEquals(beta) ;
}
}
for (int i=0;i<5 ; i++)
{

int u_funcs_index = 0;

88

for (int j=0 ; j<totalnumberOfPoints ; j++)

{
if (nod[j].get(0,0) == 0 || nod[j].get(0,0)== lengthInXDirection ||
nodJ[j].get(0,1) == 0 || nod[j].get(0,1)== lengthInY Direction ||
nod[j].get(0,2) == 0 || nod[j].get(0,2)== lengthInZDirection)
wave_function[i].set(0,j,0);
}
else
{
wave_function[i].set(0,j,u_funcs[i].get(0,u_funcs_index));
u_funcs_index = u_funcs_index + 1 ;
}
}

}

// make 5 matrixes of x, y, wavefunction for ploting the wavefunction
Matrix[] plot_data = new Matrix{5];
for(int i=0; i<5; i++)

{

plot_data[i] = new Matrix(totalnumberOfPoints , 4);

for(int i=0; i<5; i++)

{
for(int j=0; j<totalnumberOfPoints; j++)
plot_data[i]. set(j,0,nod{j].get(0,0));
plot_data[i]. set(j,1,nod[j].get(0,1));
plot_datal[i]. set(j,2,nod[j].get(0,2));
plot_datafi]. set(j,3,wave_function[i].get(0,j));
}
System.out.print(’wavefuntion_level.n. ~.");
System.out.println(i+1);
System.out.println(”.wavefunction..”);
for(int j=0; j < totalnumberOfPoints; j++)
{
Util.print(plot_data[i].get(j,0));
System.out.print(”.”);
Util.print(plot_data[i].get(j,1));
System.out.print(”.");
Util.print(plot_data[i].get(j,2));
System.out.print(”.”);
Util.print(plot_data[i].get(j,3));
System.out.println();
}
}
double[][] dd1 = {
di
}

Matrix E_H= new Matrix(dd1);

89

E_H = E_H.times(6.25xMath.pow(10, 21)) ;
Util.print(’EIGENVALUES.OF._H._mev\n");
Util.print(E.H , true);

90

Listing 3: QuantumWireEnergyLevelsFinder.java

/x

* QuantumWireEnergyLevelsFinder.java

*

x Created on April 7, 2006, 10:25 PM

*

*/

package javaapplication1;

import Jama.Matrix;

import Jama.EigenvalueDecomposition;

import Jama.QRDecomposition;

import Jama.LUDecomposition;

import Jama.SingularValueDecomposition;

import java.util. Arrays;

import java.util.LinkedHashMap;

impeort java.util. Map;

import java.util.Date;

[rx

*

* @author Sanam Moslemi—Tabrizi

*/

public class QuantumWireEnergyLevelsFinder {
/xx Creates a new instance of QuantumWireEnergyLevelsFinder */
public QuantumWireEnergyLevelsFinder() {
}
/xx set Nx = Ny = 16x+/
public static int numberOfPoints = 16;
public void findQuantumWireEnergyLevels(){

double[][] txx = {

{
}

0.,0.,0.,0.,2.0.
}

Matrix PTXX = new Matrix(txx);
double[][] tyy = {

0.,0.,0.,0.,0.,2.

)
.}

Matrix PTYY = new Matrix(tyy);

/fxx define the lenghts of the wirexx/

double lengthInXDirection = 1 « Math.pow(10, —9);
double lengthInY Direction = 1 * Math.pow(10, —9);
double mm = 0.067;

int totalnumberOfPoints = numberOfPoints * numberOfPoints;
int m = 6;

double m_star = mm x Util.freeElectronMass;
double h_hat = 1.054 * Math.pow(10, —34);

double alpha=—(h_hat * h_hat)/(2.+m_star);

Matrix V = new Matrix(totalnumberOfPoints, 1);

91

Matrix pot = new Matrix(totalnumberOfPoints, 1);
Matrix temp2 = new Matrix(1, 1);
double x[] = new double[numberOfPoints];
double y[] = new double[numberOfPoints];
x[0] =0;
y[01=0;
/xx set the cloud sizex*/
double delta_x = lengthInXDirection / (numberOfPoints — 1);
double dx = 1.02 * delta_x;
double delta_y = lengthInY Direction / (numberOfPoints — 1);
double dy = 1.02x delta_y;
for (int i = 0; i < numberOfPoints; i++) {
x[i] = x[0] +1i * delta_x;
yli] = y[0] + i * delta_y;
}
Matrix{] nod = new Matrix[totalnumberOfPoints];
int nd=0;
for (int i = 0; i < numberOfPoints; i++) {
for (int j = 0; j < numberOfPoints; j++) {
double tempx = x[i];
double tempy = y[jl;
double[][] temp1 = {

{
}

tempx , tempy
}

nod[nd] = new Matrix(temp1);
nd = nd+1;
}

}
Matrix F = Util.get2DF(m, totalnumberOfPoints, nod);
Matrix FT = F.transpose();
Matrix A = new Matrix(totalnumberOfPoints, totalnumberOfPoints);
double U[] = new double[totalnumberOfPoints];
double ax;
double ay;
double fiX = 0;
double fiY =0;
double phi[][] = new double[totalnumberOfPoints][totalnumberOfPoints];
double NXX]][] = new double[totainumberOfPoints][totalnumberOfPoints];
double NYY[]{] = new double[totalnumberOfPoints[totalnumberOfPoints];
int numberOfNZPoints= totalnumberOfPoints — 4 * numberOfPoints + 4;
int{] r = new int[numberOfNZPoints];

intri=0;
for (int k = 0; k < totalnumberOfPoints; k++)
{

for (int i = 0; i < totalnumberOfPoints; i++)
{
ax = (nod[k].get(0,0) — nod[i].get(0,0)) / dx;
double tx = (—ax * ax)/0.2;
fiX = 1.2618xMath.exp(tx);
ay = (nod{k].get(0,1) — nodfi].get(0,1)) / dy;

92

}

double ty = (—ay * ay) / 0.2;
fiY = 1.2618xMath.exp(ty);
phifk][i] = fiX * iY;
V.set(i,0,phi[k][i]);

/' V[i,0]= phi[k][i]

Matrix W = Util.getDia(V);

Matrix M= F.times(W).times(FT) ;

Matrix M_in = M.inverse();

for(int n=0; n<totalnumberOfPoints; n++)

{

}

double x0=1;
double x1 = nod[n].get(0,0);
double x2 = nod{n].get(0,1);
double x3 = nod[n].get(0,0) * nod[n].get(0,1);
double x4 = nod[n].get(0,0) * nod[n].get(0,0);
double x5 = nod[n].get(0,1) * nod[n].get(0,1);
double[][] temp1 = {

{

}
A

x0

x1

. e

x2

LI

x3

v e

x4

v Ay

x5

}
)

Matrix P = new Matrix(temp1);

/xxNXX and NYY are the second derivatives of shape functions %/
NXXTk][n] = phi[k][n]*((PTXX.times(M._in).times(P)).get(0,0)) ;
NYY[k}[n] = phi[k][n]*((PTYY .times(M_in).times(P)).get(0,0)) ;

Jxxconstructing the H matrix and H2 submatrix+x/

if (nod[k].get(0,0) == 0 || nod[k].get(0,0)== lengthInXDirection ||
nod[k].get(0,1) == 0 || nod[k}.get(0,1)== lengthInY Direction)

Ulk] = 0;
for(int i=0; i<totalnumberOfPoints; i++)

{
A set(k,i,0);
pot.set(k,0,0);

h

93

}

else
{
for(int i=0; i<totalnumberOfPoints; i++)
{
A set(k,i,alphax(NXX[k][i] + NYY[K][i]));
pot.set(k,0,Util.get2DPotential (nod[k].get(0,0) , nod[k].get(0,1)));
}
rfri] =k;
ri=ri+l;

}
}
Matrix pot_func = Util.getDia(pot);
Matrix H = A. plus(pot_func);
Matrix H2 = H.getMatrix(r,r);
EigenvalueDecomposition D1 =
new EigenvalueDecomposition(H2);
double{] d1 = D1.getRealEigenvalues();
Matrix wave = D1.getV();
Map<Double, double[]> map = new LinkedHashMap<Double, double[]>();
double[][] waveArray = wave.transpose().getArray();
for(int i=0; i<numberOfNZPoints; i++)

{
Double d = d1fi];
double[} m4 = waveArray[il;
// ith coloumn
map.put(d, m4);
Arrays.sort(d1);

Matrix[] u_funcs = new Matrix[5];
Matrix[] wave_function = new Matrix[5];
for(int i=0; i<5; i++)

{
wave_function{i] = new Matrix(1 , totalnumberOfPoints);
}
for(int i=0; i<5; i++)
{
double{] m4 = map.get(d1{i]);
double[][] mm4 = {
m4
}
Matrix w_m4 = new Matrix(mm4);
u_funcs[i] = w_m4;
}

double beta = Math.pow(1/(deltax * delta_y), 0.5);
for (int i=0 ; i<5 ; i++)
{

if (u_funcs[i].get(0,0)<

0)

{

}

u_funcs[i].timesEquals(—beta) ;

94

else

{
u-funcsfi].timesEquals(beta) ;
}
}
for (int i=0 ; i<5 ; i++)
{
int u_funcs_index = 0;
for (int j=0 ; j<totalnumberOfPoints ; j++)
if (nod{j].get(0,0) == 0 || nod[j].get(0,0)== lengthInXDirection ||
nodfj].get(0,1) == 0 || nod[j].get(0,1)== lengthInYDirection)
wave_function[i].set(0,j,0);
}
else
{
wave_function[i].set(0,j,u_funcs[i].get(0,u_funcs_index));
u_funcs_index = u_funcs_index + 1 ;
}
}
}

// ' make 5 matrixes of x, y, wavefunction for ploting the wavefunction
Matrix[] plot_data = new Matrix[5];
for(int i=0; i<5; i++)

{
}

for(int i=0; i<5; i++)

plot_data[i] = new Matrix(totainumberOfPoints , 3);

for(int j=0; j<totalnumberOfPoints; j++)

plot_data[i]. set(j,0,nod{j].get(0,0));
plot_datali]. set(j,1,nod[j].get(0,1));
plot_datali]. set(j,2,wave_function[i].get(0,j));
}
System.out.print("wavefuntion_level_.n_=_");
System.out.println(i+1);
System.out.printin(” .wavefunction..”);
for(int j=0; j<totalnumberOfPoints; j++)

System.out.print(plot_data[i].get(j,2));
System.out.println(”,”);

}

double[][] dd1 = {
dil
}

Matrix E_H= new Matrix(dd1);

E_H = E_H.times(6.25xMath.pow(10, 21)) ;
Util.print(”_EIGENVALUES_OF. THE_.QUANTUM_WIRE._mev...\n");
Util.print(E_H, true);

95

96

Listing 4: QuantumWellEnergylLevelsFinder.java

/%

* QuantumWellEnergyLevelsFinder.java

*

x Created on April 7, 20006, 9:51 PM

*

*/

package javaapplicationl;

import Jama.Matrix;

import Jama.EigenvalueDecomposition;

import Jama.QRDecomposition;

import Jama.LLUDecomposition;

import java.util. Arrays;

import Jama.SingularValueDecomposition;

import java.util.LinkedHashMap;

import java.util. Map;

import java.util. Date;

/x%

*

* @author Sanam Moslemi—Tabrizi

*/

public class QuantumWellEnergyLevelsFinder {
/xx Creates a new instance of QuantumWellEnergyLevelsFinder */
public QuantumWellEnergyLevelsFinder() {
}
/xx set Np = 25xx/
public static int numberOfPoints = 25;
public void findQuantumWellEnergyLevels(){

double[][] txx = {

{
}

0., 0., 2.
}

Matrix PTXX = new Matrix(txx);
/xx set lenght of the well xx/
double lengthInXDirection = 1 * Math.pow(10, —9);
intm=3;
double mm = 0.067;
double m_star = mm * Util.freeElectronMass;
double h_hat = 1.054 * Math.pow(10, —34);
double alpha=—(h_hat * h_hat)/(2.xm_star);
Matrix V = new Matrix(numberOfPoints, 1);
Matrix pot = new Matrix(numberQOfPoints, 1);
Matrix temp2 = new Matrix(1, 1);
double x[] = new double[numberOfPoints];
double E_exact[] = new double[numberOfPoints];
x[0] = 0;
double delta_x = lengthInXDirection / (numberOfPoints — 1);
/+x define cloud size */
double dx = 1.02 * delta_x;
for (int i = 0; i < numberOfPoints; i++) {
x[i] = x[0] + 1 * delta_x;

97

}

Matrix F = Util.getF(3, numberOfPoints, x);
Matrix FT = F.transpose();
Matrix A = new Matrix(numberOfPoints, numberOfPoints);
double U[] = new double[numberOfPoints];
double ax;
double phi[][] = new double[numberOfPoints][numberOfPoints];
double NXX[]{] = new double[numberOfPoints][numberOfPoints];
int numberOfNZPoints= numberOfPoints — 2;
int[] r = new int[numberOfNZPoints];
intri=0;
for (int k = 0; k < numberOfPoints; k++) {
for (int i = 0; i < numberOfPoints; i++) {
ax = (x[k] — x[i]) / dx;
double tx = (—ax * ax)/ 0.2;
phi[k][i] = 1.2618*«Math.exp(tx);
V.set(1,0,phifk][i]);
/ V[i,0]= phifk][i]
}
Matrix W = Util.getDia(V);
/fex M is the Moment Matrixsx/
Matrix M= F.times(W).times(FT) ;
Matrix M_in = M.inverse();
for(int n=0; n<numberOfPoints; n++) {
double x0=1;
double x1 = x[n];
double x2 = x[n] * x[n];
double[][] temp1 = {
{

}
A

}

x0

x1

{
X2
}
J

Matrix P = new Matrix(temp1);

/x% NXX is second derivative the shape functionx+/

NXX[k][n] = phi[k][n]+*((PTXX times(M.in).times(P)).get(0,0)) ;
}
/xx Constructing the hamiltonian matrix, H and its submatrix H2xx/
if (x[k] == 0 || x[k]== lengthInXDirection) {

Ulk] =0;
for(int i=0; i<numberOfPoints; i++){
A.set(k,i,0);
pot.set(k,0,0);
}
else {

for(int i=0; i <numberOfPoints; i++){

98

A.set(k,i,alphaxNXX[k][il);
pot.set(k,0,Util.getPotential(x[k]));

}
rri] = k;
ri=ri+1;

}
}
Matrix pot_func = Util.getDia(pot);
Matrix H = A. plus(pot_func);
Matrix H2 = H.getMatrix(r,r);
/xxobtaining the eigenvalues and eigenfunctionsx+/
EigenvalueDecomposition D1 =
new EigenvalueDecomposition(H2);
double[] d1 = D1.getRealEigenvalues();
Matrix wave = D1.getV();
Map<Double, double[]> map = new LinkedHashMap<Double, double[]>();

double[][] waveArray = wave.transpose().getArray();
for(int i=0; i<numberOfPoints—2; i++)

{
Double d = dl1[i};
double[] m4 = waveArray([i];
// ith coloumn
map.put(d, m4);
Arrays.sort(d1);

Matrix[] u_funcs = new Matrix[5];
Matrix[] wave_function = new Matrix[5];
for(int i=0; i<5; i++)

{
}

for(int i=0; i<5; i++)

{

wave_function[i] = new Matrix(1 , numberOfPoints);

double[] m4 = map.get(d1[i]);
double[][] mm4 = {

mé4
}

Matrix w._m4 = new Matrix(mm4);
u_funcs[i] = w_m4;
}
double beta = Math.pow(1/(delta.x), 0.5);
for (int i=0 ; i<5 ; i++)

{
if (u_funcs[i].get(0,0)<
0
{
u_funcs[i].timesEquals(—beta) ;
}
else {
u.funcs[i].timesEquals(beta) ;
}

99

}

for (int i=0; i<5 ; i++)

{
int u_funcs_index = 0;
for (int j=0 ; j<numberOfPoints ; j++)
if (x[j] == 0 || x[j]== lengthInXDirection)
wave_function[i].set(0,j,0);
}
else
{
wave_function[i].set(0,j,u_funcs[i].get(0,u_funcs_index));
u_funcs.index = u_funcs_index + 1 ;
}
}
}

// make 5 matrixes of x, y, wavefunction for ploting the wavefunction
Matrix[] plot_data = new Matrix[5];
for(int i=0; i<5; i++)

{
}

for(int i=0; i<5; i++)

plot_data[i] = new Matrix(numberOfPoints , 3);

for(int j=0; j<numberOfPoints; j++)

plot_data[il. set(j,0,x[j1);

plot_data[i]. set(j,2,wave_function[i].get(0,j));
}
System.out.print(’wavefuntion._level_n.=..");
System.out.println(i+1);
for(int j=0; j <numberOfPoints; j++)

Util.print(plot_data[i].get(j,2));

System.out.println(”.,.”);

}

}

double[][] dd1 = {
di

}

Matrix E_H= new Matrix(dd1);

E_H= E_H.times(6.25xMath.pow(10, 21)) ;
Util.print("EIGENVALUES._OF_H.mev\n");
Util.print(E_H, true);

100

Listing 5: Util.java

/*

x Util java

*

x Created on April 7, 2006, 9:54 PM

¥

*/

package javaapplicationl;

import Jama.Matrix;

import Jama.EigenvalueDecomposition;

import Jama.QRDecomposition;

import Jama.L.UDecomposition;

import Jama.SingularValueDecomposition;

import java.util.Date;

[xx

%

* @author Sanam Moslemi—Tabrizi

*/

public class Util {
/xx Creates a new instance of Util x/
public Util() {

public static double freeElectronMass = 9.11 * Math.pow(10, —31);
public static double ElectronCharge = 1.6 * Math.pow(10, —19);
static Matrix getDia(Matrix v) {
int size = v.getRowDimension();
assert size > 0;
assert v.getColumnDimension() == 1;
Matrix a = new Matrix(size, size);
for (int i =0; i < size; i++) {
for (int j = 0; j < size; j++) {
if (=) {
a.set(i, j, v.get(i, 0));
}

else {
aset(i, j, 0.);

}
}
return a;
}
FET:
* Generate magic square test matrix.
*/
public static Matrix magic(int n) {
double[][] M = new double[n][n];
// Odd order
if(n%2)==1){
inta=(n+1)/2;
intb=(m+1);
for (int j=0;j < n; j++) {
for (inti=0;1i < n; i++) {
Mliljl=nx({i+j+a)%n)+({([i+2xj+b)

101

}

% n) +
1;

}

// Doubly Even Order

}
elseif (n % 4)==0) {
for (int j = 0;j < n; j++) {
for (inti=0;i < n; i++) {
A+ D/ B2=((G+1)/2)%2){
Mliljl=n*n—n=i—j;
}

else {
Mlljl=n*i+j+ 1;
}

}

// Singly Even Order
}
else {
intp=n/2;
intk=(n—2)/4;
Matrix A = magic(p);
for (intj=0;j <p; j++) {
for (inti=0;i < p; i++) {
double aij = A.get(i, j);
M[il{j} = aij;
MIil{j +pl =aij +2 % p * p;
Mli+plljl=aij+3*p*p;
M[i +pllj + pl =aij +p*p;
}
}
for (inti=0;i < p;i++) {
for (intj = 0; j < k; j++) {
double t = M[i][j];
M[il[j] = Mii + pllj;
} Mii+plljl =t
for (intj=n —k+ 1;j <n; j++) {
double t = M[i}[j];
M(i][j] = M[i + pl[il;
, Mfi +pllil =t;

}
double t = M[k][0];
MIK][0] = M[k + p]{O};
Mk +pl{0] = t;
t=M[k][k];
MIk]{k] = Mk + p][k];
Mik + pl[k] = t;

}

return new Matrix(M);

102

VAT

* Shorten spelling of print. x

*/

public static veid print(String s) {
System.out.print(s);

}

public static void print(double d) {
System.out.format(”%3.3E”, d);
}

[xx

x Format double with Fw.d. *

*/

public static String fixedWidthDoubletoString(double x, int w,

intd) {

java.text.DecimalFormat fmt = new java.text. DecimalFormat();
fmt.setMaximumFractionDigits(d);
fmt.setMinimumFractionDigits(d);
fmt.setGroupingUsed(false);
String s = fmt.format(x);
while(s.length() <
w) {

§s="+s;
}

return s;
¥
Sk
* Format integer with Iw. *
*/
public static String fixedWidthIntegertoString(int n, int w) {
String s = Integer.toString(n);
while(s.length() <
w) {

s="+s;
}

return s;
}
public static void print(Matrix a, boolean f) {
for (inti = 0;i < a.getRowDimension(); i++) {
System.out.print("row:.” + 1 + 7.==>");
for (int j = 0; j < a.getColumnDimension(); j++) {
System.out.print(a.get(i, j) + ”.);
if (%1)==0)
{

System.out.printin();
}
}
System.out.printIn();
}
}
public static void print(Matrix a) {
for (int i = 0; i < a.getRowDimension(); i++) {

for (int j = 0; j < a.getColumnDimension(); j++) {
System.out.format(*%.3f.”, a.get(i, j));

103

}
System.out.println();
}
}

/xx we define potnetial functions as below x*/

/xx potential functions are in unit of J. %/

public static double getPotential(double x) {
return 8 x x x Math.pow(10.,—11.);

public static double get2DPotential(double x, double y) {
return 0;

public static double get3DPotential(double x, double y, double z) {
return O;
}

static Matrix getF(int r, int c, double[] x) {
Matrix F = new Matrix(r, ¢);
for (inti=0;i <r; i++) {
for (intj=0;j <c;j++) {
if(i==0){
F.set(i, j, 1);

else {
double t = Math.pow(x[j], 1);
F.set(i, j, t);
}
}
}
return F;

}

static Matrix get2DF(int r, int ¢, Matrix[] nod) {
Matrix F = new Matrix(r, ¢);
for (inti=0;i<r;i++) {
for(intj=0;j <c:j++) {
if(i==0){
F.set(i, j, 1);

else if (i == 1){
F.set(i, j, nod[j].get(0,0));

else if (i==2){
F.set(i, j, nod[j].get(0,1));

else if (i == 3){
F.set(i, j, nod[j].get(0,0) * nod[j].get(0,1));

}
else if (i == 4){
F.set(i, j, nod[j].get(0,0) = nod[j].get(0,0));

}
else if (i==5){

F.set(i, j, nod[j].get(0,1) * nod[j].get(0,1));
}

}

104

}

return F;
}
static Matrix get3DF(int r, int ¢, Matrix[] nod) {

Matrix F = new Matrix(r, ¢);

for (inti=0;i<r;i++) {

for(intj=0;j<c;j+H) {
if (i==0) {
F.set(i, j, 1);

else if (i == 1){
F.set(i, j, nod[j].get(0,0));

else if (i == 2){
F.set(i, j, nod[j].get(0,1));

else if (i == 3){
F.set(i, j, nod[j].get(0,2));

else if (i == 4){
F.set(i, j, nod[jl.get(0,0) * nod[j].get(0,1));

else if (i == 5){
F.set(i, j, nod{j].get(0,0) * nod[j].get(0,2));

else if (i == 6){
F.set(i, j, nod[j].get(0,1) * nod[j].get(0,2));

else if (i == 7){
F.set(i, j, nod[j].get(0,0) * nod[j].get(0,0));

else if (i == 8){
F.set(i, j, nod[j].get(0,1) * nod[j].get(0,1));

}
else if (i == 9){
F.set(i, j, nod[j].get(0,2) * nod[j].get(0,2));

105

