Web Services as application enabler for Sinkless Wireless Sensor Networks

Nuru Yakub Othman

A Thesis

the Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at

Concordia University
Montréal, Québec, Canada

February 2007

©Nuru Yakub Othman, 2007

Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28923-5
Our file Notre référence
ISBN: 978-0-494-28923-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Web Services as application enabler for Wireless Sensor Network
Nuru Yakub Othman

It is foreseen that in the near future, several Wireless Sensor Networks (WSN)
will be deployed to provide data and services to end user applications. WSN will play an
important role in context aware applications and services, which adapt to situations of the
surrounding environment and that of their host devices. However, conventional WSNs
are built using proprietary protocols and use proprietary data access frameworks. They
necessitate the presence of gateways or protocol converters between the WSN and
application devices, and require special expertise from application developers. Further,
dealing with heterogeneous sensor networks is difficult, as the protocols and data access
mechanisms are different. There is a need to have a framework that is based on open
standards to simplify application development and deal seamlessly with heterogeneous
WSNs. This thesis proposes a Web Services based sinkless architecture for WSN as a
potential solution. A prototype of an embedded web services platform is also built. It
allows application devices to interact directly with the sensor nodes without going
through a gateway. The thesis includes a survey and evaluation of several frameworks to
highlight the potentials of web services. The use of Web Services will also attract a
larger pool of application developers, leading to more innovative applications. Further, as
the framework is built over IP, WSNs will no longer be treated as foreign islands. They
will be part and parcel of ICT infrastructure in enterprises, as well as fit in easily in Value

Added Services infrastructures for Next Generation Telecommunication Networks.

i

Acknowledgements
This work would not have been possible without the directions and continuous
support from my supervisors; Dr. Roch H. Glitho and Dr. Ferhat Khendek. Their sound
advice was vital in putting this work in focus and within the right scope. Being a member
of Telecommunication Services Engineering Research Laboratory (TSELab) has been a
valuable experience. I wish to thank all the group members for their comments, ideas and
constructive criticisms, and sharing with me their experiences and perspectives. The

biweekly meetings and presentations have been very useful indeed.

I also wish to thank the Natural Sciences and Engineering Research Council of

Canada (NSERC) and Ericsson Research for their financial and other material support.

My personal thanks also go to my family and friends for their support,

encouragement and understanding. It all counts.

Nuru Yakub Othman, February 2007

v

Table of Contents

Table Of CONLENLS.....ccviviririerreeriiiiree ettt seesbe e s e e sesesreeesteseaessnesrsesseensessrenes \%
LISt OF FIGUIES ...veoteiiiirieieieerirenisie et sreecreetesiras st sie et s eseaesaesatesatesnbesanesneesanessasssessnenas vii
LASt OF TADIES ...vivieureiiirentiericeciesesrteececre ettt s s sen s e st s s s b e s bt e e enae b nsbesseenns viii
List of Acronyms and AbDIreviations...........cccevvverirrerrerresesnieeeeresreesresrenseessnessesssesens ix
Chapter 1 INrOQUCHION.eoviiiiirieriericiicrer e et ettt s et sabesenebeemtas 1
1.1 ReSearch DOMAINcc.vviieienieniniirie st eeiresae s e estesesenresaesraesngesraenneas 1
1.2 Problem Statement and Contribution of the ThesiS........c.ccccorvrvivvenicrniniennens 2
1.3 Organization of the ThesiS......c.ccccovivevrnnriniiiiie e 3
Chapter 2 Background Information on Sensors, WSN and Web Services..........c.ccc...... 5
2.1 SEISOTS ..eiiiuvriiiiirere et irire v e et esererresreessbesessareesmbaeesssbeesenratessaraesesanesensnnessmnns 5
2.1.1 D INIION ..ottt e 5
2.1.2 Hardware COmpPONnents.........ccooeevveeromeiriiiniiiicnnre st ceieseaessnenens 6
2.13 Software COMPONENLS.........coreriirieiieeriieeeeree e crre e esreeeereeeneenne 8

2.2 Wireless Sensor NetWOrKSocoeeriieiiririeeiieenincenete s ereeessnee e seneesneeeneeens 9
2.2.1 DESCIIPHIONeieireeireeiere et ee e sbr e stb e e e eareearaesne 9
222 Entities and their rolesccccovvvrveriiiiiiinicnci e 9
223 Characteristics distinguishing WSN from other Networks..........c.cccoeeu.ee. 10
224 WSN Applications ... 11

23 Web Services Frameworkccoccevenieeriiciininiene e 12
23.1 Definition and Basic PrinCiplesc.cccoveeereniniineniniineniiieienesennns 12
232 The 3 roles and 3 Operations..........c.cveevereeveneneneceeniecereere e 13
233 Associated TechnOlOIESccovevirireerrereneieciieeneecene et 15

2.4 Chapter SUMIMATY ...c.ccoceirieiiiniiiieriereitennnens e s s sressrssaessnes 17
Chapter 3 WSN Application Enablers: State of the Art and evaluation........................ 18
3.1 WSN Application €nablersccccvcvereeeiineiiieinieeienicce e 18
3.2 Driving forces behind the evolution of the frameworkscocoovcineneninn 18
3.3 Categorization and Evaluation of the frameworks...........ccccoevvvininiiiniinnnne. 20
3.3.1 Criteria for evaluation.........c.ccocerierercennenneieere e 20
332 Evaluation of Frameworks based on common technologies..................... 24
3.33 Selected Proprietary frameworks.........ccccocvvvinivniiiiniinnnicinn 30
334 Evaluation SUMMATY........ccccocverieneriernieriencniienne e snnsseeensessessesnns 33

34 Chapter SUMMATYcccoeviiieiienteneertie e sieeese e sssesnessaessenesssneesressbassnn 34
Chapter 4 Proposed Web Services framework...........ccovvcviiivnviniincniinnn ceveenens 35
41 Web Services for WSN ..ot 35
4.1.1 Web Services at the gatewaycccooeeeeeerniniiene 35
4.1.2 Web Services on the ag@regatorccvvvveeevrereeieniiiereeressrnereeesssenseeeerensin 38
4.1.3 Web Services on the SENSOr NOAEScovevvereeeniernieiierieniiriiinieeeeee e 40

4.2 The Proposed ArChiteCtUrecccoovverviieriecriiiiiiicii e 42
4.2.1 Motivations for Sinkless Wireless Sensor Networkcccovveviiiiiinnns 43
422 The proposed model, its architectural entities and interactions................ 45
423 Protocol Stack and AdAressing........ccoovevveevverieverrorivenicinrenneenssreesesereenann 47
4.2.4 Performance Pre-ASSESSIMENL.........uvvvruireieieeininiieicieneciiee ot nereessniseenne 49

43 Chapter SUMIMATYcoeveiieiireireiiieeresrenise st bs s ns 51

Chapter 5 TinyWS prototype — Design and Implementationcocceeevviecerennennencnn 52

5.1 THIYWS tooereveeeeseeeeesesseeeseseeseesseseessssessesesessssessssssasessssessess s esssssesssesassssenenees 52
5.2 ODJECHIVES cevvveeiiireriienreienrerienieeestare st et esesssessenessesressesssessesreensessessesnsenesssesses 53
5.3 THE SEHUP cveevrerrieiiericrre ettt ste s st s st s e e s s e e eseessre s sreeae e nasaresanans 54
5.4 Hardware and Software TOOISc.ocevvivreriereneninineennnenenieeresereeressesseneos 54
5.5 ThEe deSIBN.cuiiiiiirciierieicire e ettesee st seeesse e e s e sresesreessraesaseessrresareesnsessaeases 56
5.5.1 The Services provided.......ccvevviveirirerrieneenenreeneeineesreesesrerseserseesseenes 57
5.5.2 The SOAP MESSAZES...eeeirrrererriererirrersirerasieirsireessiertssessnssseressssresssssnesones 58
553 The Software Architecture.........ccoevvvvieriiinivireniieniren oo esieens 62

5.6 Challenges faced, lessons learned and related work.........cccooevevvvciiiinininccnne. 67
Chapter 6 CONCIUSIONoveeveriiiereieriiereetrrereere et sreeesre s e see e aesae s sinsnnenens 72
6.1 Thesis CoONtrIDULIONSccvereeriiiriieierierererrccrereeere sttt 72
6.2 FUture WOrKooceiiirciciienieecnre st s 74
RETEIEICES v veveieerireni i e s 76
Appendix A: Sample WSDL file for the TinyWS prototype........occocvvniviniiniinninininnnen 88

vi

List of Figures

Figure 2.1 Main Hardware components of a sensornodecoovevvvivniiiiinininnnnn. 7
Figure 2.2: Some of the Common Sensor Platforms todayc.coocviiiiiiiniin, 7
Figure 2.3: Software Components of a sensor node............covvviviiiniiiiiiiiiininininn, 8
Figure 2.4: Wireless Sensor Networkcooooviiiiiiiiiiiiii e 9
Figure 2.5 Web Services roles and operations.coevevevuvevniinineninninenneneiniin 14
Figure 3.1 Agilla Mobile Agent framework for WSN............ooooiiiiiiiiiiii, 28
Figure 4.1 Web Services on Sensor Gateway... ST PPRORRPRIRONC 13
Figure 4.2 Web Services on Sensor Gateway, w1th UDDI in place 37
Figure 4.3 WS on the gateway, entity interactions..........c...ccceeviiiiiiiiiiinnnnninnn, 37
Figure 4.4 WSN for remote Monitoringcccocvviviiiiiiiinenininnnns 38
Figure 4.5 Web Services on the Aggregator... . et rreresrenreneeneee e seenrenses 39
Figure 4.6 Web Services at Aggregator, entity 1nteract10ns 40
Figure 4.7 Web Services on the Aggregator, indoor scenarioccoevvvvvnennnn.. 40
Figure 4.8 Web Services on sensor n0des.cvevviririiieiiiiiniiinieiieneeenanne 41

Figure 4.9 WS on the sensor nodes, entity interactions.............cvvvevveieninnereneninenn. 42
Figure 4.10 WS on the sensor node, Indoor exampleccovvivveniiiiiieneninnnen. 42
Figure 4.11 Sinkless WSN with routing done by the application devices 44
Figure 4.12 Web Services based sinkless architecture............c.c.coviiiiiiiniinnnnn. 45
Figure 4.13 Entity Interactions for WS based sinkless WSN 46

Figure 4.14 Spatial IP address assignment............cccovevvriiiiiiniiniiniiiieneneanann.s 48
Figure 4.15 Simulation results — Energy dissipation................ccoovviiiiniiiiniinnn. 49
Figure 4.16 Simulation results — System lifetime...............c.cooiiiiiiiiiiiiin e, 50
Figure 4.17 Simulation results — Network load...............coooiiiiiiiiiiiiiiiinnn s 50
Figure 5.1 TinyWS: Setup of the prototype... et e seeerresneeeenrneneeennenn O
Figure 5.2 TelosB Sensor Node and its block dlagram .. 55
Figure 5.3 The SOAP Request for service SubscribeData............cco.ovvviiiiniieiinnnn 59
Figure 5.4 The SOAP Response for service SubscribeData................c.cooeiviiiin 59
Figure 5.5 The SOAP Request for service ToggleLED...............ccoooiiiiiiinnnn, 60
Figure 5.6 The SOAP Response for service ToggleLED...............coooviiiiiiiiinene. 60
Figure 5.7 The SOAP Request for service GetLEDStatus...............coooiivieinnninnn 60
Figure 5.8 The SOAP Response for the service GetLEDStatus..................... 61

Figure 5.9 The SOAP Request embedded in HTTP message 61

Figure 5.10 The SOAP Response embedded in HTTP messagec.ccovvvenennen.n. 62
Figure 5.11 Tiny WS Software Architecture................c.coiiii 63
Figure 5.12: Software Architecture for the client libraryoo 65

vii

List of Tables

Table 1: An example modified SQL query for WSNccovvviinirinininnennenenenieseeenns 26
Table 2: Summary of the evaluation of the frameworks..........c.cceevverivenceinineiniineninennne 33

viil

IEEE:

IETF:

OGC:

SOA:

SOAP:

UDDLI

WS:

WSDL:

WSN:

W3C:

XML:

List of Acronyms and Abbreviations

Application Programming Interface

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

Open Geospatial Consortium

Service Oriented Architecture

Simple Object Access Protocol

Universal Description, Discovery and Integration standard
Web Services

Web Service Description Language

Wireless Sensor Network

World Wide Web Consortium

eXtended Markup Language

ix

Chapter 1 Introduction

1.1 Research Domain

The field of Wireless Sensor Networks (WSN) has become one of the very active
research areas, with a lot of potentials to improve the quality of life through its various
applications. It has been identified as one of the most important technologies of the 21st
century [1]. The MIT enterprise technology review has placed WSN at the top of the list
of ten emerging technologies that will change the world [2]. The technology was
originally motivated by military applications, but as the sensor nodes become smaller,
more powerful and cheaper, the applications have greatly diversified towards civilian.
Notable application areas include environmental monitoring [17], Habitat Monitoring
[18], Smart buildings [78], Structural monitoring [19], medical/health monitoring [80]
and a wide range of industrial and commercial applications [54].

Most of the WSN research activities have focused on system architecture for
miniaturization of the nodes and lowering their cost, low power radio links and energy
aware routing algorithms. At a higher level, very active research activities are on the
middleware frameworks for accessing data, reprogramming the sensor network and
application integration. In conventional Wireless Sensor Networks, sinks collect data
from sensors and/or aggregators and interact with applications via centralized gateways.
However, there are situations in which this sink based modus operandi may not be
suitable. In such cases, it is preferred that the applications interact directly with the

sensors. This thesis focuses on data access framework in this operational setting.

1.2 Problem Statement and Contribution of the Thesis

There are several development frameworks for enabling end user applications to
access sensor data. However, most of these frameworks used today are proprietary and
highly specialised, meant for developers who are already sensor experts or are expected
to undergo a learning curve in order to use them. This is particularly the case in the
sinkless architecture where the applications are expected to interact directly with the
sensor nodes. To allow general developers from diverse backgrounds, and to allow access
to different kinds of sensors (heterogeneity), there is a need for a framework that is
common to general application developers. This thesis proposes the use of Web Services
as a potential framework to fulfill that need. It looks at the potential benefits and the
various possibilities of using Web Services in WSN, proposes a comprehensive
architecture and builds a prototype as a proof of concept.

So, the problem addressed by this thesis is the difficulty of accessing sensor data
and other interactions between application devices and WSN due to the use of proprietary
protocols and frameworks in WSN. The thesis advocates the use of open and standard
protocols and providing data access via common frameworks. In particular, Web Services
based framework has been chosen as a potential solution. The framework is expected to
simplify and motivate development of new end user applications that make use of sensor
data, as well as simplify the integration of sensor data to existing applications.

The contributions of this thesis include:

1) A systematic survey and evaluation of several frameworks for accessing

sensor data, from application developers point of view

(ii) Highlighting the potentials of web services as a common framework for

heterogeneous WSN

(iii) Proposing a comprehensive web services based architecture for Wireless
Sensor Network

(iv) Development of the first embedded Web Services platform residing on

the actual sensor nodes.
V) Enhancement of the idea of using conventional protocols such as TCP/IP

in WSN instead of the proprietary ones.

1.3 Organization of the Thesis

Chapter 2 provides more detailed background information on the technologies and
concepts involved. It gives a formal definition of sensors and explains its hardware and
software components. Wireless Sensor Networks, their various entities, characteristics
and applications are explained. Lastly, an overview of Web Services framework, its

associated technologies and benefits are explained.

Chapter 3 surveys and evaluates the existing frameworks (State of the Art) for
data collection and application development in Wireless Sensor Networks. It proposes a
set of evaluation criteria and uses them to evaluate the existing frameworks. In doing so,

it highlights the potentials of web services as a very promising framework.

In chapter 4, the various possibilities of using web services in Wireless Sensor

Networks are presented, with relevant use cases. A comprehensive web services based

sinkless architecture is then proposed, with motivating application scenarios and use
cases. A discussion of the protocol and addressing issues and how they can be overcome

today is also presented.

As a proof of concept, Chapter 5 describes the design and implementation the

prototype, TinyWS, an embedded web services platform on the sensor nodes. The

challenges faced, the lessons learned as well as related work are also presented.

Chapter 6 concludes and highlights potential future work.

Chapter 2 Background Information on Sensors, WSN

and Web Services

This chapter provides some basic background information on sensors, wireless

sensor networks and Web Services.

2.1 Sensors

2.1.1 Definition

Sensors are electronic devices that can detect physical phenomena or stimuli from
the environment and produce an electrical signal. They convert (changes in) the measured
physical dimension into an electrical dimension (or changes thereof) that can be
processed or electronically transmitted. They are limited in energy, communication and
processing capabilities. They collect data and perform necessary actions or, transmit the
data to other nodes so that certain actions can be performed. The collected data could be
temperature, pressure, sound, existence of chemical or biological substances or certain
changes in them, location or movement (motion detection), or other observable
phenomena of interest to applications. A single sensor device can be made to observe a
single phenomenon or several of them. A simple example of sensor is a device that
notifies a home security system of potential trouble such as a break-in, a fire or other
undesired events.

Sensors can work individually or in collaboration with other nodes to form a
network, in which case they can aggregate data and provide a more complete view of the

environment with respect to the phenomena under observation.

2.1.2 Hardware Components

The main hardware components of a sensor node are:

Sensing unit (s): The main functionality is to do the actual sensing or
detection, by measuring the physical data from the target area. Upon
detection of the phenomenon, an electrical signal or analog voltage is
generated by this unit as a continual waveform, which gets digitized by an
analog-to-digital converter (ADC) before being delivered to the processing
unit for further analysis [3] [92].

Processing unit: usually associated with a small storage unit, it manages
the collaboration among the units within the sensor node as well as
collaboration with other nodes to carry out the assigned sensing tasks.
Families of this unit include microcontrollers, microprocessors and field-
programmable gate arrays (FPGA). The storage unit, usually in the form
of flash memory, helps to minimize the size of transmitted messages, to
hold some data during local computation and when the node is responsible
for data aggregation [93].

Communication unit (transceiver): connects to the network, does the
transmission and reception of data. Radio Frequency (RF) is the dominant
scheme in these units, but infrared and laser have also been used.

Power unit: provides power to the sensor node, usually supported by

batteries or other power scavenging units such as solar cells.

There may also be some additional application specific components such as

location finding system. The components are combined to make a sensor as small in size

as possible. These hardware components and their technology trends are well explained

in [3], [5] and [89]. A general architecture is shown in Figure 2.1

r
o1

- § Loration tinding system
- Sensing unit it
L Sensor

Power unit

Power E
generator E ;

Figure 2.1 Main Hardware components of a sensor node

Among the common hardware platforms as shown in Figure 2.2 are the Motes

(Mica, Micaz, TelosB) from the University of Carlifornia at Berkleley and Crossbow[6],

BTNodes Platform [7] which are Bluetooth based, the ScatterWeb platforms [8] by Freie

University in Berlin, Teco nodes by Telecooperation Office (TECO)/University of

Karlsruhe [9] and TMoteSky and other nodes by Moteiv{10].

Mica2 and MicaDot

TMoteSky

TelosB Mote

ScatterWeb

Teco Node

Smart Dust

Figure 2.2: Some of the Common Sensor Platforms today

The current research aims to build the smallest possible sensor with least energy
consumption. The Smart Dust project [79] intends to build a very small sensor, a few

millimetres in volume, which can remain suspended in the air.

2.1.3 Software Components

The software components differ from one design to another; in general, the two
main components are a lightweight operating system and a framework for data collection
and programming (application enabler). TinyOS [11] and Contiki [12] are examples of
the former whereas TinyDB [13] and Agilla [14] are examples of the latter. The
separation between the two software components is not very sharp; in some designs they
appear to overlap. Sometimes the separation is removed and a distributed operating
system combines the OS and middleware or data retrieval functionality [15]. The general
structure is shown in Figure 2.3 below. A survey of specific frameworks (i.e. the

programming and data access environments) is provided in Chapter 3.

‘Actual Queries, Programs or Scripts

_ Operating System (e.g. TinyOS)

Figure 2.3: Software Components of a sensor node

2.2 Wireless Sensor Networks

2.2.1 Description

Wireless sensor networks (WSN) are distributed sets of collections of small
sensors equipped with processors, memory and short range wireless communications.
They communicate with each other and with other nodes called sinks and gateways that
connect to the outside infrastructure and to the applications. The sensor nodes are usually
randomly scattered in sensor field and use multi hop routing to relay information to the
sink, possibly after data aggregation (also called fusion) along the way. A typical WSN

is shown in Figure 2.4 below.

Sensor nodes

Figure 2.4: Wireless Sensor Network

2.2.2 Entities and their roles

The entities of a conventional WSN are sensors, aggregators, sink and gateway.
The role of sensors is to do the actual sensing, perform limited computation to decide
where and how to send the data. They also act as routers when multi hop routing is used.
The aggregators (not shown in the Figure 2.4) are logical representatives of regions of
interest. They summarize (aggregate) data for the region from the nearby sensors. They
could be specialized nodes or dynamically selected from among the sensors (e.g. as

cluster heads in dynamic cluster of sensors).

The sink node is a collector of data from all the sensors and/or aggregators, It
receives requests from applications (via the gateway) and responds with appropriate data.
The sinks are equipped with the same ‘radio’ links and communication protocols as the
sensors. The gateway is the one that bridges the WSN to the ‘outside world’. It is
equipped with dual network interface (dual homed) to be able to communicate with the
sink (and sensors) as well as with end user application devices or the external
infrastructure. It is responsible for providing the necessary mappings and protocol
conversions.

It is also common to find the sink and gateway co-located in the same node. They
are more powerful in terms of available energy and processing capabilities. They take the
burden of data processing and long range transmission off the sensor nodes. Apart from
providing communication interfaces, in many cases, it is the sink and/or gateway nodes
that play the role of a sensor network representative. They have full knowledge of the
sensor network in terms of the types of sensors available, the services they offer, their
logical topology and how to communicate with them. They are also responsible to present
these capabilities to external parties.

While the above model is the most common; certain applications [38] [56] and
operational settings may not require the sink, gateway or multi-hop routing. We call a
WSN without the sink and/or gateway a sinkless WSN and this work has focused on that.

A more detailed discussion of sinkless WSN is given in Chapter 3.

2.2.3 Characteristics distinguishing WSN from other Networks

Wireless Sensor Networks have some characteristics that distinguish them from

other wireless networks. In particular, they often contain a very large number of nodes

10

which are very densely deployed (up to 20 per sq. m). The nodes are highly constrained
in power, computational capacity and memory. Therefore, energy saving is very crucial.
They often require a form of self organizing capability as they are usually deployed in a
random manner and in remote or in-accessible areas, operating unattended and, their
topology may change very frequently. Further, they often require co-operative effort in
collecting, processing and transmitting data in order to save energy. Fault tolerance is
also very crucial as the nodes easily die when energy is depleted.

Another characteristic is related to addressing; in conventional WSN, global
addressing or identification of specific sensor node is not mandatory, as applications are
more interested in the collected data than the actual node. Thus addressing is usually
data-centric, which could be based on geographic location or location coordinates in
space (spatial addressing) in which the address of the node provides hints of its location.

These characteristics play a major role in designing of the sensor nodes, the sensor

network and their programming frameworks. They are well explained in [3] and [89].

2.2.4 WSN Applications

The main categories of WSN applications include environmental, military,
building automation and security, health, industrial and commercial applications.

Environmental applications are mainly on observation and forecasting systems.
These include monitoring of air quality for pollution detection, water pollution detection,
forest fire detection, flood detection, monitoring disaster areas as well as intelligent
agriculture [86]. Military applications appear to focus on exploration and surveillance,
ranging from battlefield surveillance and damage assessment to detection of nuclear,

biological and chemical attacks [5].

11

WSNs are also used in home and office buildings for automation and security.
These include automatic door opening and closing, switching the lights ON and OFF
depending on room occupancy, intrusion detection, fire detection as well as indoor air
quality control.

There has also been a lot of work in applying WSN in the medical and health
arena. Notable and experimented area is tele-monitoring of human physiological data
such as heart rate and blood oxygen levels to alert the detected unusual levels to the
emergency personnel and paramedics [16][87][88].

Other commercial applications include inventory control, asset tracking, intelligent
traffic systems and habitat monitoring. References [17] [18] and [19] highlight several

applications of WSN.

2.3 Web Services Framework

2.3.1 Definition and Basic Principles

Web Services (WS) [20] are modular programs that can be discovered and
invoked across the network. According to Adam Bosworth [21], the term web services
refer to an architecture that allows applications to talk to each other. It is a collection of
protocols and standards used for exchanging data between applications or systems. The
architecture is platform independent, making it an excellent candidate when
interoperability between different systems is required. This interoperability is due to the

use of XML and other open standards.

12

The three basic principles of Web Services are coarse grained approach, loose
coupling and support for both synchronous and asynchronous communications. Coarse
grained approach refers to the high level of abstraction that the web services provide.
They can hide the internal complexities of the application and provide only the necessary
high level interfaces that the other applications need to invoke and use the service. Loose
coupling means no inter-dependency; the two applications that communicate via web
services do not interfere nor depend on each others’ internal workings; application A
which talks to application B should not necessarily be re-written if application B is
modified. The service user (i.e. application developer) does not have to know the details
of the services implementation, including the programming language used. If the internal
implementation changes, without changing the service interfaces and description, the
consuming application will continue to work seamlessly. As for support for asynchronous
communication, it means one application should not be necessarily blocked while waiting
for response from the other application. It should be able to continue with its other tasks
and handle the response when it comes.

Web Services is an example of a bigger paradigm known as Service Oriented
Architecture (SOA), which defines the use of services to make resources available to

network nodes through a well-defined and standard interface.

2.3.2 The 3 roles and 3 operations

The Web Services model defines three main roles and three main operations. The
roles are service provider, service requestor and service registry. The three operations are

publish, find and bind. Their relationship is as illustrated in Figure 2.5:

13

Figure 2.5 Web Services roles and operations

Service provider is the owner and host of the service; it is responsible for creating
a service description and publishing it to one or more registries, and receiving invocation
messages from one or more service requestors. The registry is a repository of web
services descriptions; each description contains all the necessary information to use the
described service. The requestor is a client that is able to discover a web service from the
registry and invoke it from its provider.

The publish operation is what the service provider uses to make the service
descriptions available in the registry. The find operation allows the service requestor to
state its search criteria to the registry in determining the service of interest and how to
invoke it. The service registry matches the find criteria against its collection of published
descriptions. The bind operation is the actual invocation embodying a client-server
relationship between the service requestor and the provider.

The most commonly used registry model in web services is based on Universal
Description, Discovery and Integration (UDDI) specifications. Publication is done using
the XML based Web Services Description Language (WSDL). The communications

(operations) among the three web services entities are usually based on XML and use

14

Simple Object Access Protocol (SOAP). These terms are explained in the next section,

and more detailed explanation can be found in [20] and [21].

2.3.3 Associated Technologies

2.3.31 XML

XML [73] stands for eXtended Markup Language. It is a markup language for
documents containing structured information. It makes use of tags, similar to HTML.
While the tags in HTML are fixed and predefined with unique meanings, XML allows
one to devise virtually any tag to describe anything, leading to better support for content
creation and management. XML carries data in plain text format, and separate the actual
data from its representation. Thus the data can be shared in a software and hardware
independent way, even between otherwise incompatible systems. It is neutral to
programming languages. The data represented in XML format are well structured,
usually given descriptive names and obey certain rules. Usually, there are XML
processors that are used to easily read and navigate through XML documents to create,

modify or delete its elements.

2.3.3.2 SOAP

SOAP [74] refers to Simple Object Access Protocol, which is a simple XML
based communication protocol that is independent of any platform or programming
language. Its purpose is to transfer XML data from one point to another over the

network. The main parts of a SOAP message are the envelope, the headers and the body.

15

While a number of protocols can be used to carry SOAP, it is a de facto standard to carry
it over HTTP. An application receiving a SOAP message will usually use a SOAP
processor to identify all parts of the message, verify that the application supports them
and thus act on them accordingly, or if the application is not the ultimate destination of
the message, forward the message accordingly. Examples of SOAP messages

corresponding to certain services will be shown in Chapter 5.

2.3.3.3 WSDL

Web Services Description Language (WSDL) [75] is an XML based language for
describing the web services and how to access them. It is an XML grammar that
describes the input data to the web service, the operations to be performed on the data
and the binding protocol method (e.g. HTTP post) to be used to send them. Appendix A

has an example of a WSDL file.

2.3.3.4 UDDI

Universal Description, Discovery and Integration (UDDI) [76] refer to the
registry with a form of database that holds information about web services, their
providers and how to access the services. It hosts the WSDL files. The specifications
allow web service providers to publish their services and web service requestors to
enquire and discover services. The publishing and inquiry is done via SOAP. UDDI is

considered as ‘yellow pages’ of web services.

16

2.4 Chapter Summary

This chapter has provided background information on the main concepts and
technologies used in this thesis. Sensors have been defined and their main hardware and
software components have been illustrated. A brief description of Wireless Sensor
Networks, their main entities and topologies, field of applications and the characteristics
that distinguish them from other networks have been highlighted. Lastly a sufficient

introduction of web services framework and its associated technologies has been given.

17

Chapter 3 WSN Application Enablers: State of the Art

and evaluation

This chapter defines application enablers, highlights the driving forces behind
their evolution, sets some evaluation criteria and then surveys and evaluates the state of

the art.

3.1 WSN Application enablers

Application enablers refer to middleware, frameworks or
programming mechanisms that allow developers to develop applications quickly and
easily. WSN Application enablers are the WSN middleware, frameworks or
programming mechanisms used by application developers to develop end user
applications that interact with wireless sensor networks. Their main role is to allow
retrieval of data from the WSN. They may also allow applications to send information to
the sensors in order to change their operating parameters. Further, they may also allow
applications to discover the existence of WSN and the services they offer. The term

framework will be used as synonym of application enabler.

3.2 Driving forces behind the evolution of the frameworks

The frameworks enabling data retrieval from WSN to applications and other
forms of interactions between applications and WSN keep on evolving, The main driving

forces behind this evolution include:

18

To address the WSN constraints more efficiently. Some frameworks’ focus is on
efficient algorithms that lead to higher savings in energy, processing and
communication.

Improving deployment and management of the WSN. This refers to improved self
organization, selection of aggregators, finding of best routes to the aggregators
and sink and, in case of mobile sensors, reorganization when the sensors have
moved.

Simplifying application development by providing appropriate levels of
abstraction. Some frameworks are built with the main objective of allowing
application developers to easily interact with WSN (easy ‘sensor enabling’ of
applications).

To provide dynamic reprogramming of sensors, adaptation and software updates
on the fly. This is to avoid redeployment of WSN simply because of the changes
in environmental conditions or application requirements.

Support for heterogeneity. This is to allow different kinds of sensors to co-exist
and cooperate within the same WSN. Also, to allow different applications to
simultaneously ‘query’ or interact with the same WSN.

Allowing discoverability of the WSN or the individual sensors. The applications
have to be aware of the presence of WSN or the actual sensors and the services
they offer before they can make use of them. Newer application enablers are
taking this into consideration.

Trying paradigms that have been successful in other domains. Some paradigms

have worked so well in different areas and have been well received by application

19

developers or in some cases even attracted them. The move to introduce them into
WSN 1is expected to attract more application developers and lead to more
innovative applications.

o Introducing new business models for WSN. As the use of WSN evolves, different
business roles arise (owners, service providers, end users etc). Application

enablers will need to accommodate these roles accordingly.

3.3 Categorization and Evaluation of the frameworks

Different criteria can be used to categorize the WSN frameworks [96] [97]. Since
the focus of this work is on the application developers, the categorization is based on the
programming paradigms and concepts that the developers should be familiar with in
order to use a particular framework. However, this categorization is not very strict, as
some frameworks do fall into more than one category, in which case they are placed
under the more dominant one. This applies to the frameworks based on common
technologies, Section 3.3.2. Some frameworks are very proprietary and can not be
conveniently placed in any of the general categories, and thus they are dealt with

individually in Section 3.3.3.

3.3.1 Criteria for evaluation

In order to facilitate the use WSN data in more and more applications, there is a
need to open up WSN application development by attracting application developers from
various fields. A number of criteria need to be satisfied by the WSN application enabler.

The ones we have identified are described below.

20

The first criterion is that the framework should provide a high level of
abstraction. Developers should not have to learn much, if at all, about sensors and their
technologies. Also, since applications are not really interested in readings of individual
sensor nodes. Ideally, it is not even necessary for the developers to know or care that the
data is coming from sensors. It would be sufficient for them to know that they can obtain
information about hotness (temperature), darkness (light), humidity, air quality etc,
regardless as to whether the information is coming from sensors or from other sources.

Another criterion is that the framework should be based on a widely deployed
technology so that it is easy to integrate with existing applications. The developers should
not be expected to learn new programming paradigms, special commands or languages
solely for the purpose of accessing and integrating sensor data with their applications.
The framework should be one of, or very close to the widely used frameworks for data
access and should be built on top of common protocols supported by many application
devices. They should provide interfaces for easy integration to existing applications.

The next criterion is related to performance. The framework should introduce
very little overhead or no overhead at all in terms of network load, processing and
response time. Substantial overhead will affect the network’s performance and slow
down applications. In cases such as disaster recovery and health monitoring, the sensor
data need to be fresh and accessible in real time. Substantial processing delay and poor
response time will compromise the usefulness of the collected data. It may also hinder the
adoption of the framework by developers.

As one of the criteria, we propose that the framework should support both

synchronous and asynchronous modes of data access. Upon requesting for data, the

21

application should not be forced to wait for response (blocked). The framework should
allow applications to express interest in certain data and, from then on, be provided with
the data and updates thereof whenever available until the interest expires or the
application expresses that it is no longer interested in receiving the data. In other words,
applications should not have to unnecessarily keep on re-querying (polling) for the same
kind of information in a given time span.

It is also necessary that the framework should allow simultaneous access by
different users or applications. Different applications may query the same network for the
same or different kinds of data at the same time. For example, 3 different applications
may submit the following requests:

Application A: “I need a list of rooms whose current temperature is above 20 degrees”

Application B: “For the next 24 hours, send me a notification whenever lights go OFF
or ON in any room”

Application C: “Provide me with a list of rooms which currently have lights ON and

there is some noise”

The framework should allow for independent simultaneous and sharable access to
the data by different applications. This means, the framework should not focus on
application specific sensors; it should cater for heterogeneity.

Another criterion is the ability to support different programming languages. The
framework should not be tied to a specific programming language. It should allow access
by applications written in different programming languages. This will attract a larger
number of application developers, as there will be no need to learn a new language.

Further, existing applications written in different languages will not have to be

22

substantially changed or re-developed in a different language just for the sake of
incorporating sensor data.

The last criterion is that the framework should support different business models.
As the WSNs continue to emerge, different business entities will be involved. The
owners may decide to charge directly or via third parties. These raise the need for the
frameworks to support different business models. This requirement can be broadly
divided into two sub requirements; providing Security mechanisms and providing
publication and discovery mechanisms.

To support different business models, the framework should provide
authentication and authorization mechanisms. Only eligible parties should have access to
the data; and they should only access the data that they are authorized to. Further, as
charging may be involved; there is definitely a need for a non-repudiation mechanism. In
principle, the mechanism should allow a third party to verify a claim from either party
(provider or consumer) regarding service usage, to prevent the consumer from denying
usage or the provider from charging for unused service. Security mechanism should also
provide data integrity, which includes correctness, reliability and freshness. By freshness
we mean real time results within reasonable time thresholds, not a replay of previously
collected data which may possibly be out of date.

As the users, (or rather their devices on which applications will be running) are
not expected to know of the existence of the WSN’s on a certain area or, more importantly
the services they offer and how they can be accessed, it is important that the framework
provide publication and discovery mechanisms. Coupled with the abstraction

requirement, the framework should allow the WSNs to publish their capabilities, the data

23

they offer and how they can be accessed. On the other hand, the framework should allow
potential applications to discover the available information and how to access them when

the user is interested.

3.3.2 Evaluation of Frameworks based on common technologies

These include Application Programming Interfaces (APIs) and specialised
languages, Database approach, Mobile Code approach, Virtual Machine approach and
Web Services Approach. We survey and evaluate each of them here.

3.3.21 APlIs and specialized languages

As common to embedded systems, manufacturers of sensors also provide
Application Programming Interfaces (APIs) or specialized languages to expose
capabilities of the sensors for the developers to access and manipulate them. They
normally require sensor programming boards attached to serial or USB ports. This
method is very powerful as the developer has full access to all the sensor capabilities but
it does demand the developer to be well versed in sensor technology. It is used to build
most other frameworks. The most popular example of specialised language is the nesC
[22]. There are also APIs in high level languages such as C/C++ and Java; examples are
CricketLib [23] and EmberNet [24].

In general, this framework does not offer a high level of abstraction nor does it
come with security and discovery mechanisms. It is tied to the specific programming
language, so it does not offer language neutrality. Also, as the framework is mostly meant
for low level development, it becomes necessary for developers to go through a learning
curve on sensors and WSN, thus it is not easy to integrate with applications. It is possible

for this approach to offer both synchronous and asynchronous access, as well as

24

simultaneous access by different applications. No significant overhead is expected from
this approach.

It should be noted that this category refers to ‘plane’ APIs that are not exposing
another mechanism like database or mobile code. The other categories discussed here
may also use APIs, but since they are just wrapping some other approaches, they are
placed in the relevant category.
3.3.2.2 Database Approach

This approach uses the concept of distributed and relational databases with some
modifications. The WSN is either modeled as a single database table, with columns
representing various characteristics of the sensor node, their location and the phenomena
to be sensed and rows representing the individual sensors, or a distributed database with
each node acting as a virtual database site. The analogy between data generation
(detection) and routing in WSN as compared to data storage and query processing in
databases led to this model. Applications issue SQL like queries, and receive responses
via the gateway/sink as if the WSN is a database system. The queries are high level; the
application developer doesn’t have to know the details as to which sensor node sent the
response or what in-network processing and aggregation was done. This is also referred
to as Data Centric approach.

The queries can be “one shot” relational queries with a fixed answer set, or
ongoing continuous queries that produce a bounded or unbounded stream of results. An

example query is as shown in Table 1 below:

25

SELECT AVG(volume), room FROM sensors WHERE
floor = 6 GROUP BY room HAVING AVG(volume) > 10

SAMPLE INTERVAL 3s FOR 30s

Table 1: An example modified SQL query for WSN

In this example, the WSN is modeled as a single table named sensors and has
room, floor and volume among its columns. The query is meant to retrieve a list of rooms
in the sixth floor of a building and their corresponding volume (sound) level, provided
that the average level collected by all sensors in that room exceeds ten. The data should
be furnished every three seconds for the next thirty seconds.

Abstracting the WSN as a database enables simpler and faster application
development. The most popular example in this category is TinyDB [13] which comes
with its SQL variation called TinySQL. Other examples include “TASK: Sensor Network
in a box” [25] , IrisNet [26] which uses XML instead of SQL, Cougar [27], SINA [28]
which comes with a query language called Sensor Query and Tasking Language (SQTL)
containing flavours of SQL and XML.

This framework can provide a high level of abstraction. Database is also a widely
used technology and easy to integrate with applications. It is not tied to a specific
programming language. Simultaneous access by different applications is generally
supported. Apart from non-repudiation, the approach could provide the required security
features, but most implementations have chosen not to. Using triggers, it is possible to
provide both synchronous and asynchronous modes, but again, most implementations
have chosen not to use them, presumably to avoid processing overhead on the sensor

nodes. Rather, modifications have been done to SQL queries to add duration and sample

26

interval to provide for continuous stream of data instead of the usual fixed set results in
conventional databases. No significant overhead has been reported for SQL based
queries; it may be significant for XML based access. The framework does not provide
publication and discovery mechanisms. Almost any programming language can be used

with this framework.

3.3.2.3 Mobile Code Approach (Mobile Agent and Active Networks)

Mobile agents are software modules that can execute in more than one node in a
special sequence, carrying intermediate results from one node to another. They may
eventually return final results to the original node. Applied to WSN, the sensors are
equipped with a lightweight mobile agent platform and the applications inject scripts or
programs (i.e. mobile agents) into the WSN via the gateway; the agents collect sensor
data and statefully migrate or copy themselves to other nodes and communicate with such
remote copies. The collected data is sent back to the sink/gateway ready to be delivered
to the requesting applications. The agents can also reconfigure or upgrade the nodes they
visit, making this approach primarily used for upgrading the sensor nodes ‘on the fly’.

As for Active Network approach, the nodes are made capable of performing
customized operations on the data flowing through them or, the flowing data can trigger
execution of certain programs on the nodes. The sensor nodes built on Active Network
concept are sometimes called Active Sensors.

Agilla [14] is one such example of a lightweight mobile agent platform for sensor
nodes running TinyOS. Figure 3.1 shows Agilla in action. The agents’ routes are pre-
planned by relatively more powerful backend system but new routes can be adopted in

case of network changes or failures.

27

1- Route Preplanning by » Genetic

Algetithm:

Server determines {otf-lina)

¥ - How many simultansaus Mobile Agenits ?
¥~ What are thase agents iineraries ?

Figure 3.1 Agilla Mobile Agent framework for WSN

Other example frameworks using the mobile code approach include SensorWare
[29] which takes most of its concepts from active networks, Janus [30] and Smart
Messages [31]. Impala [32], while primarily event based, also employs mobile code.

This framework can offer a high level of abstraction but some implementations do
not. Mobile code is not a widely deployed programming paradigm. While we would
theoretically expect high overhead due to migration and replication of scripts and agents
in the network, tests have proven otherwise [29]. It is possible to have both synchronous
and asynchronous access, as well as simultaneous access by different applications.
Security, publication and discovery are not provided. A specific programming language

has to be used with this framework, depending on the platform.

3.3.24 Virtual Machine Approach

As a concept, this is very similar to Java Virtual Machine except that it is the

developer who is expected to build a customized virtual machine instead of just building

28

applications that run on it. Therefore, the level of abstraction is not fixed, but rather
decided by the developer. The optimization focuses on a specific application.

The motivation behind this approach is the fact that an application specific
framework can be more efficient than a general framework that should cater for a wide
range of applications. The most popular example in this category is Mate’ [33].1t is
architecture for constructing application specific virtual machines on top of TinyOS. It
consists of scripting language and an interpreter to execute the scripts. It is the scripts that
are used by the developers for their applications to interact with the WSN.

The power of Virtual machines is that they can be used to derive and build other
frameworks faster and with less lines of code. For example, one can build a virtual
machine that can translate SQL queries and transmit sensed data, thereby coming up with
a database approach. In fact, Mate’ has been used to redevelop TinyDB faster and with
higher energy savings (11 — 30%). SensorWare, a mobile code approach, has been built
using Mate’.

This approach obviously requires extensive knowledge of sensors; it does not
provide high level of abstraction. It is not a widely deployed technology. Tests have
shown very good performance. It can support both synchronous and asynchronous data
dissemination, and can allow for simultaneous access. It is not independent of
programming language, does not address security or provide publication and discovery

mechanisms,

3.3.25 Web Services Approach

Web Services are modular, independent and self describing programs that can be

discovered and invoked across the network. The framework can and has been applied to

29

sensor networks in different forms, as will be detailed in Chapter 4. A common form
today is by implementing web service based sensor gateway. The gateway hides the
complexity of the sensor network and exposes the sensor data as web services. The
implementation of the web services involve mapping to the APIs or other underlying
frameworks.

Iﬁ principal, web services are meant to offer high level of abstraction, therefore it
is very convenient to ‘general’ developers. It is now a widely used technology among
application developers; it is easy to integrate with existing applications. However there
are well known issues with web services performance, their use introduces significant
overhead. The framework does allow both synchronous and asynchronous accesses.
There is no problem in allowing independent, simultaneous accesses to sensor data by
different applications. The framework supports several programming languages. It does
not come with security as yet, but there are established specifications to provide security
mechanisms for web services as provided in [34] without non repudiation, which is

covered in [35]. The framework provides its own publication and discovery mechanisms.

3.3.3 Selected Proprietary frameworks

Apart from the frameworks that are based on common technology approaches,
there are numerous proprietary frameworks with different design goals. The significant
ones for application developers include Sharman [36], Mires [37] and TinyLIME [38].
3.3.3.1 Sharman

This framework is a java based service gateway that integrates sensors into

heterogeneous ad hoc networks. The gateway uses service wrappers to support different

30

standards such as Jini [39], UpnP [40] and possibly others, simultaneously. Applications
can choose any of these standards to access the WSNs. A proxy on the gateway translates
the Jini, UpnP and possibly other commands into Sensor specific commands. This shields
the complexity of sensors from the developers.

The framework does offer a high level of abstraction but is not yet among the
widely deployed technologies, thus, in most cases it does involve a learning curve to
integrate with applications. Performance has not been reported, but it appears to have
significant overhead. Synchronous and asynchronous modes are both supported, and
simultaneous access from different applications is allowed. The frameworks architecture
is meant to allow access by applications independent of their programming language.
Security has not been addressed. The use of Jini and UpnP does offer support for

publication and discovery.

3.3.3.2 Mires
Mires is a message oriented middleware that allows applications to communicate

with sensors in a publish/subscribe way. It is developed directly on top of TinyOS. The
nodes publish the list of available services towards the sink node without transmitting the
actual data. The end user application has to subscribe by selecting one or more services.
Upon this subscription, the nodes start and continue to transmit the corresponding data to
the end user application. The application communicates with this middleware by sending
special commands or messages.

Mires does provide a high level of abstraction, as the end user application is only

supposed to identify the service of interest to start receiving the corresponding data. It is

31

not a widely used approach; the special commands/messages are proprietary. Reducing
overhead is one of this framework’s goals, although no performance tests have been
reported. It can allow multiple accesses by different applications, in both synchronous
and asynchronous modes. This middleware is tied to a mini programming language of its
own for the command set and messages. It is built with publication and discovery in
mind. Security has not been addressed.
3.3.3.3 TinyLIME

This framework is based on LIME [41] (Linda in Mobile Environments) which is
very common in Mobile ad-hoc Networks (MANETS). TinyLIME has been built with the
goal of removing centralization of WSN on the gateway. It therefore allows applications
to discover and directly ‘talk’ to individual sensor nodes in their neighbourhood. It comes
with proprietary APIs that combine concepts of mobile code and tuple spaces to provide a
shared memory between applications and the sensor nodes, thereby allowing the
discovery of the sensors and access to their data without needing a gateway or sink.

TinyLIME can provide a high level of abstraction, as it has taken care of the
lower level issues. It is based on a paradigm mainly used in MANET, thus not yet widely
adopted by general developers. There is some overhead involved when this approach is
used. Synchronous and asynchronous modes are supported, and so is simultaneous access
to data. The framework is mainly Java based, so it is not independent of programming
language. Discovery mechanism is among its main focus, but it has not addressed

security.

32

3.3.4 Evaluation Summary

As we have seen, in most frameworks, the criteria we have set are met to some
degree; certain aspects are supported whereas others are not. A tabulated summary is
shown in Table 2; the evaluation metric will be showing F for Fully met, P for Partially

met and N for Not met at all.

£ 5
3 g | 2 a
= AR AEAE:
=] - 3 51 - .
L 0 g | g §
g > a3 < & = 2
2l 2L] @ a 54 o | =
Els|2|8|g|28|E |3
O | 5 5 = & &% s
HEIEIE AR AR AR
<~ o [¥) = <] § 8
HI2| 2| 8| E|§|8)|.2
R 2|l |lalvlalal|d
Commands and APIs N (P |F |F |F |[N [N |N
Database Approach F |F (P (P |F |F |P |N
Mobile Code Approach P [N |P |F |F |[N [N |N
Virtual Machine Approach |N (N |[F |{F {F |N |[N [N
Web Services Approach F |F [N |F |F |F |P |F
Sharman F |[N |P |F |F |F [N |F
Mires F [N |P |F |[F |[N [N |F
TinyLIME F {N (P |F {[F [N |[N |F

Table 2: Summary of the evaluation of the frameworks

It can be seen that Web Services is one of the very promising frameworks; the

main drawback being performance. Performance is a well known issue with web services,

33

a number of research activities are under way to address it, and there are some suggested
techniques to reduce its impact.

Another survey and evaluation of the frameworks is provided in [90] and [91],
using different set of criteria which are not selected from application developer point of
view. However, they do not include web services among the surveyed and evaluated

frameworks.

3.4 Chapter Summary

This chapter has looked into frameworks for enabling applications to make use of
sensor data. The driving forces behind their evolution have been highlighted. A number
of necessary requirements for promoting the use of WSN data have been set, followed by
a survey and evaluation of the prominent frameworks. The evaluation reveals that Web
Services are among the very promising application enablers, though not necessarily the

best.

34

Chapter 4 Proposed Web Services framework

This chapter has two main sections. The first section outlines the various
possibilities of applying Web Services to WSN, with use cases and possible application
scenarios. The second section explains the Web Service based sinkless architecture for

WSN as proposed and envisioned by this thesis.

4.1 Web Services for WSN

By looking at the main entities of WSN and their roles, the Web Services model
and some application scenarios; Web Services can be applied to WSN in three main
forms:

@) having the web services platform on the gateway and the applications bind

to the gateway

(ii)) having the web services on the aggregators and the applications bind to the

aggregator, and

(iii) having the web services platform on the sensor nodes themselves and the

applications bind directly to the nodes

The next subsections details these possibilities.

4.1.1 Web Services at the gateway

This is the situation today, as far as the use of web services in WSN is
concerned. Web Services platform and the hosted services are located at the WSN

gateway. Figure 4.1 illustrates this situation:

35

Figure 4.1 Web Services on Sensor Gateway

In this model, the sensors, aggregators and sinks communicate via their own
proprietary protocols and frameworks. At the gateway, there is a mapping from the
proprietary framework(s) to web services. Thus the services and data offered by WSN are
exposed to application developers via web services. The end user applications
communicate with the gateway via SOAP by invoking a particular web service (i.e. they
bind to the gateway). In its simplest form, the gateway does the mapping of the SOAP
requests to the format and protocol of the framework used by the rest of the WSN entities
behind it. It also collects the responses from the network, builds the corresponding SOAP
response and forwards them to the requesting applications. A more practical web service
based gateway does more than just mapping the requests and responses. The services are
expected to do some processing of the collected raw sensor data and provide more
meaningful information. For example, instead of merely providing actual temperature
values as furnished by temperature sensor, it could allow applications to be alerted when
the temperature is above certain thresholds. Or, instead of supplying coordinates of a
particular object as detected by location sensors, it could allow applications to request
notifications when the object of interest is within certain proximity. More complex

services can be provided.

36

The services offered by the Web Services based WSN gateways can be published

in the UDDI registry for the end user applications to find. Figure 4.2 illustrates this.

Figure 4.2 Web Services on Sensor gateway, with UDDI in place

The actual interactions among the WSN entities, the web services gateway, UDDI
registry and user application are as shown in Figure 4.3 below. In the figure, native F/W
means the proprietary framework and associated protocols within the WSN; s, s2 and s3

are the sensor nodes.

Application UDDI Gw Sink St S2 S8
Publish

Find

Bind

Native FIW

Native FIW
Native FIW
Native F/W

Native F/W
Bind

Bind

Figure 4.3 WS on the gateway, entity interactions

This model is the best, actually the only realistic option, when the WSN is meant
for remote monitoring. In remote monitoring, as in Figure 4.4 it would not be practical
for the requesting applications to bind directly to sensor nodes or the aggregators. This is

because the sensors and aggregators are normally not equipped with long range

37

communication mechanism, they are far from the requesting application devices and,
normally the requestors in this case are only interested in the abstract and general view of
the network, not specific sensors. The roles of the sink and gateway are particularly

important in this case.

Figure 4.4 WSN for remote monitoring

The model is also used in non-remote monitoring as it fits well in today’s
conventional WSN topology, which almost always has the gateway in place.

4.1.2 Web Services on the aggregator

Another model, which we have yet to see implemented, is to have the web
services and their platform located on the aggregators. This model is useful when:

o the aggregator covers a meaningful area of interest to applications, for
example a room.

e the requesting application devices are often closer to the aggregators (than
going through a gateway). This happens when the user is within or around the
WSN.

o the requesting applications require extended and continuous access to data

from a particular aggregator.

38

There are two possibilities for the UDDI, we can have it as a stand alone entity or
distributed over several aggregator nodes as an overlaid entity. Figure 4.5 illustrates this

model, with a UDDI as a stand alone entity.

Figure 4.5 Web Services on the Aggregator

The role of sink and/or gateway is not relevant in this case. It is considered as a
sinkless architecture. The application devices interact directly with the aggregator nodes.
The communication between the aggregators and the individual sensor nodes could either
be via proprietary mechanisms or via web services. The latter would need the sensor
nodes to host web services too.

Figure 4.6 shows the message flows in this case, assuming that the UDDI is a
standalone entity and the communication between the sensor nodes and the aggregator is
via proprietary mechanisms whereas between aggregator and application devices, as well

as the UDDI entity is via web services.

39

Application yppI) At L S Az sy S» Sz As
Publish
native |
Pyblish
Find
Bind
L Native, |
Native /W
Publi s
Eing olish
Bind
Find
Bind Bind Bind

Figure 4.6 Web Services at Aggregator, entity interactions

Figure 4.7 shows an indoor scenario where the applications bind to the

aggregators.

Figure 4.7 Web Services on the Aggregator, indoor scenario

4.1.3 Web Services on the sensor nodes

Another possible model, which is also yet to be implemented and is the work of
this thesis, is to have the web services and their platform on the sensor nodes themselves.
The model is useful when the individual sensor nodes, rather than the aggregators, are
representatives of areas of interest, and the applications are often closer to them or

require extended data access from them.

40

Section 4.2 further builds a case for this model. It is also a sinkless model. One

possible setup of this model is shown in Figure 4.8

Sensor Nodes:
+ Service Providers
« Publish services to the UDDI

Applications:

« Service Requestors
« Find from UDDI

« Bind to individual Sensors

UDDI as a separate entity

Figure 4.8 Web Services on sensor nodes

Again, the roles of sink and gateway are not required in this case, as the
applications bind directly to the sensor nodes. This is referred to as a sinkless
architecture. The sensors themselves have a small built in web services platform and host
the necessary services. They act as service providers and publish their services to a
designated UDDI registry. Here too, the UDDI could be a centralized special node or
distributed over several nodes as an overlaid entity.

The interactions and message flows are as shown in Figure 4.9. The messages can
be sent via single hop or multi hop. This is a web services only network without any
proprietary frameworks. It should be noted that this architecture necessitates that the

application devices share the same network interfaces and protocols as the sensor nodes.

41

Application UDDI S Sz s3

L. Publish |
Publish

Publish

Find

Bind

Bind

Bind

Figure 4.9 WS on the sensor nodes, entity interactions

This model is applicable mostly to indoor applications and few outdoor scenarios.
An example application scenario is shown in Figure 4.10, a modified version of Figure
4.7. A building with each of its room having a sensor node that sufficiently covers

intended data collection for the room.

Figure 4.10 WS on the sensor node, Indoor example

4.2 The Proposed Architecture

The architecture proposed by this thesis is a web services based sinkless Wireless
Sensor Network. As mentioned earlier, a sinkless WSN is the one that has neither a sink
nor a gateway. The end-user applications interact directly with the individual sensors or

aggregators, as shown in previous figures and message interactions. This second part of

42

the chapter highlights some motivating scenarios for a sinkless architecture, presents the

proposed web services model, its architectural entities and the protocol issues.

4.2.1 Motivations for Sinkless Wireless Sensor Network

There are several scenarios in which it is more beneficial to have direct
interaction between applications and the sensors. The cases include onsite battlefield
assessment, specialized indoor monitoring and certain rescue operations.

We take onsite battlefield assessment as an outdoor example. In this case, several
sensors are scattered all over the field to detect landmines and other dangerous
substances. The soldiers are moving within the sensor field carrying application devices.
They need to be notified of the danger around them. It would be more beneficial from the
performance standpoint if the application devices can interact directly with the sensors in
their neighborhood than having the sensors send the data all the way to the sink and
gateway, which will then forward it to the device. In cases where it is necessary to have
the data sent to a centralized location or to other users, it will be sent by the application
devices communicating with each other and with the centralized infrastructure. This
approach will save energy of the sensors as they do not need to implement long range
communication or run complex multi-hop routing algorithms. The application devices are
relatively more powerful and thus better equipped to perform the routing or the long
range communication, if necessary. Figure 4.11 illustrates this scenario. In this case, the
application devices can route data to other devices and, eventually, to the centralized

location.

43

Figure 4.11 Sinkless WSN with routing done by the application devices

Another scenario, which is an indoor case, is a specialized monitoring of
humidity, temperature, or air quality in a building. Consider a building with several
rooms, each of which is equipped with a sensor, assumed to be sufficient for providing
representative data for the room. If the end user interest is in a specific room and/or the
application device is often very close to the room of interest, or is moving within and
around the building, then direct interaction with the individual sensor would be more
suitable than communicating through the gateway.

Sinkless WSN could also be used in rescue operations in large buildings, where
the rescuers (humans or robots) are moving inside the building and are interested in
receiving sensed events of interest close to them so that they can respond immediately.
Direct interaction with neighboring sensors will be more efficient. The received data
could also be used by applications to add more features such as navigation directions.

Several other scenarios can be thought of where a sinkless architecture is
preferred, when one or more of the following situations exist:

- Individual sensors are representative of an area of interest

- Application device is within or moving around the WSN

- Application needs data from sensors in close proximity

- Applications need extended access to data from a specific sensor

It should also be noted that, if the rooms or areas of interests are too large to be
covered by an individual sensor, the aggregators could be used and have the application
devices interact with them. The same motivating use cases will apply to these
aggregators.

There are other inherent advantages of having a sinkless architecture. The
decentralization removes the traffic burden from the sensors and aggregators that would
have been close to the sink, as they would have to handle a lot more communications in
routing data to and from the sink. It is also not necessary for the sensors to run complex
multi hop routing algorithms. Communication can be as simple as single hop from the
sensor to the application device, or, when aggregators are used, single hop from the
sensor to the aggregator and single hop from the aggregator to the application device.

These advantages have been demonstrated mathematically in [84] and [85].

4.2.2 The proposed model, its architectural entities and interactions

uDDI
\

Application

« Service Requestors

« Find from UDDI

« Bind to indiv Sensors

« Publish services to the overlaid UDDI

Figure 4.12 Web Services based sinkless architecture

45

Figure 4.12 shows the overall proposed architecture. There is no conventional
WSN gateway or sink; the web services reside on the actual sensor nodes. These nodes
are therefore service providers, providing relevant sensor services (data related to sensed
phenomena) whereas applications are requestors or clients of such services. While the
registry could be a specialized physical entity, the proposed model is a completely
decentralized approach having a distributed UDDI overlaid on the sensor network. The
sensors publish descriptions of their services to the overlaid UDDI. These descriptions
will basically include the services offered and how to access them. The descriptions will
be hosted in one or more sensor nodes; an appropriate overlay middleware will provide
the required mappings to their actual hosts. As long as the description can be found, the
actual location of the UDDI record is not important to the requesting applications.

The messages exchanged among the three entities, and their order, are as shown in

Figure 4.13. s, s2 and s3 are the sensor nodes acting as service providers.

Application UDDI St S2 S5
Publis
Publish
Publish
Find
Bind
e Bind__
IR USSR Bind o R

Figure 4.13 Entity Interactions for WS based sinkless WSN

Again it should be noted that a similar model as above can be used for

aggregators; the aggregators may host the web services and the overlaid UDDL

46

Applications would interact with the aggregators via web services; the interaction

between the aggregators and sensor nodes can be via web services or other mechanisms.

4.2.3 Protocol Stack and Addressing

In conventional WSN, the sensor nodes communicate via proprietary protocols,
from radio links to the application level. The WSN is effectively alien to applications. A
gateway is therefore necessary to link the two. For application devices to interact directly
with the sensors (or aggregators), the two must be compatible in their entire protocol
stack. The gateway, which usually performs protocol conversion, is no longer in place.

A promising solution for this protocol compatibility issue is the adoption of the
IEEE 802.15.4 standard [42], loosely referred to as Zigbee [43]. A number of Zigbee
compliant sensors are already available and Zigbee adapters for the application devices
have started to emerge. TelosB[44] and tmotesky[10] are examples of Zigbee based
sensor nodes. Zigbee adapters for application devices are also available; For PCs and
Laptops, these include UZBee[45], a USB Zigbee adapter, Zigbee Access Point (ZAP)
used in [46] and iB-Bean GW-5324-CF [47]. The trend for adoption on mobile devices is
also promising; Telecom Italia has released ZSIM [48], a SIM card with integrated
Zigbee adaptor.

It is also worth mentioning that, while Zigbee is more promising, Bluetooth could
have been a viable alternative. Already there are Bluetooth based sensor nodes, such as
BTNode[7], as well as widespread Bluetooth support in application devices.

Another important protocol issue is the fact that most application devices
communicate via IP (internet protocol) whereas conventional WSN have not been

supporting it. Realising the importance of natural integration of the WSN to the rest of

47

the world, there is a trend towards IP enabled sensors. There have been a number of
attempts to implement TCP/IP on sensor nodes [49] [50]. uIP [51] is one that is relatively
more matured; it has been used in a number of projects [52], and ported into several
platforms, including the Mote platforms and their TinyOS operating system. Applications
can interact with the sensor nodes via TCP/IP. A number of IP based protocols and
applications have been experimented. These include HTTP, SIP, DHCP and SNMP [53],
[46]. [52] presents a complete IP based sensor network in which application devices can
interact directly with the nodes via IP.

Along with the protocol stack is the issue of addressing. In conventional WSN,
addressing is data centric, i.e. applications do not have to know or care about the
identification of a specific sensor node. With this in mind, pIP for example uses spatial IP
address assignment when assigning IP addresses dynamically, which means the address
of the sensor is related to its location. Figure 4.14, taken from [55] shows an example
where the x and y coordinates of the regions are the least significant digits of the IP
address of the corresponding node. Sensor nodes on the same location will have the same
IP address without conflict. In sinkless WSN, the application can get the address or

identification of a representative sensor (or aggregator) and interact with it.

¥

? 7
[I & =]
5 1 o7 5 (i)\}
¢] T RIDAS . M,/mMs
(i\\ ¢ | wonwassassaszes
3 T w‘-\ o Wb d 5 TP ;':L:% """ (NP,
- e
E (LRE A T w0
K]<)mnanz) , j\»«"} WL _,_,!,‘3_‘}:*},3}}':”»5&255 254284
‘ ® ‘ oy
@ o 0 ~ Jodai
1Tt . [T 1 T T T
¢ i 2 3 & 5 & 7 @ 1 ¥ a2 4 5 &

Figure 4.14 Spatial IP address assignment

48

4.2.4 Performance Pre-Assessment

In [56], we did a performance comparison between conventional sink based
architecture and a web service based sinkless architecture, for a sample scenario that suits
a sinkless architecture. 50 simulations were done using Matlab, with 400 nodes scattered
in an area of 800 by 800 square meters, and an application device moving around it. The
metrics considered are the average energy dissipation, the network load and the system
lifetime. The comparison was between direct interactions with a specific sensor node
versus accessing data of the same sensor node through a gateway. The results showed
performance improvement of 22% for average energy dissipation, 30% for system
lifetime, but relatively little improvement for network load. The simulation results are

shown in Figure 4.15, 4.6 and 4.17 below.

A-compedson between treditions! deployment of sesars insink-architecture with sink-less - architecture: using Web Serioe mes sages

_= - T l , b |
0 Sink Aschitecture] ! ! '
[Sinkdess Aschitacture using W3S . , 3
1‘»5_"""""‘""""‘"""""""‘l’ """""""" :‘ """"""" ;"'""""’ - ""'""""' """""""
L} 1] 1]
¥ 1]) i)
: ; : :
. Fosamriianenas [SREEEETEPE T fromemmne R R - R e e e
| : ; ; :
: : ' ' :
S brmessediaeaan bemmesimnannns e et
v 13 1) !
5 : ; : ' '
F3 : 5 | : |
& Aaprerneenees Fromoenoasoes facmommnmnenas brmemnenoss droememnene- drarerenonae
= : H 1 H '
A2 M 1 4 1 '
k=) 1 1 i ’]
T U S LSOO -« S SN A
5 : [} l t :
: ? 5 ; i :
) H V . R Vo) _E ________
e e T e R e S e L e AR
2 : : : ;
; i i '
(] PP SR L Rt % ot LET TP £ e LR e R b e A m e]
1 i ;. v H '
- 3 1 A
i 1 1 ' '
0.4 [e e birdaciimdmentnnanndinidas R T T B e
)) '
4 1 [} [} 1]
I3 1] 1] *
... dorwwarmuvoosmadianmwnnemivenmdouseemmamnne-m
2.2 T h v ! 5 ' —‘
i H : i H H
P ¥ 13 4]]
. 1 1 1
a 1000 2000 3000 4000 B0 £000 000

Figure 4.15 Simulation results - Average Energy Dissipation

49

A-GoTmganison btwsen raditional dep lbyment ot safigors in Sink Stk
4 003 3 s T

=
F
3

Urg using Web Servivs messages

w s s boemonnooganas sz g e 4
R R R R LT P R SR LT M LR RO W b e R T §
E,;w --- .
§
F L U X [R SRS SO NI 275 A VAN SN RN = a2
od
g
WE
2 .5 e Uy SRR R, - SV P Yo VUUI U FEPRR P _

N
O SinkiArchitecture
0 Sink-less Architeciim weing WS

)

% 1

' 1

a { 4
2 led] pol et 4300 5300 X0 O
Mumiber ofrounts

Figure 4.16 Simulation results - System Lifetime

x 10 comperis on behveen raditional deplayment o sansors insink erchitectura with sik-less mchitectug us ing W5 mes sages
. L T T ! |
© Sirk Architsche J ! ! |
0 Stk liss Architechus s ing WS H H H H
' : H i
]]] + 1 [
L : : ': 5 E
L R e LR EES LA TR L ISP LR e —
' . ' H :
é ' . H
' ' H
1 i)
2 : '
i ' H
% afreennanans fomeeraenannis { fomnaesieases S
' ' H
b4 . H H
& H '
] ' ' .
g ; ;
£ U SN LI o oS S S SUOS S -
) ' :
§ ; ; ;
£ ' ; i
g) '
o TR SN N O S ETE RYCRUETONe: e eieeenes TR AR B
il = 1 , f |
' i i v
§~ : : : ‘
: 1 ;) |
= a e | j
L T T LT T T Foommmeme ey a e -
1 V y '
1 " ’ v !
\ H H ;
i ' 1 H ‘
: H ' '
H) H
1 H 1 H :
H ' ' .
1 H : ' :
1 ! | 1 1
2 1000 2000 2009 4000 5000 8000 o
Humbay of rounds

Figure 4.17 Simulation results — Network load (number of exchanged messages)

The simulations did not take into account the web service discovery phase, which

may have an impact. Nevertheless, the rationale for using web services is not solely based

50

on performance, but rather on the other advantages it brings to applications and
developers.

Apart from these simulations, [84] and [85] have also argued mathematically and
concluded that, energy wise, multi-hop routing and centralized architecture is less
efficient in many cases, and is not as beneficial as generally claimed in the rest of the
cases. The analysis was done from communication engineering perspective, taking into
account several factors such as interference, channel capacity and coding, link model, end

to end reliability and energy consumption.

4.3 Chapter Summary

This chapter has explained the various possibilities of using web services in WSN.
Some of them have already been used and some are newly proposed. The chapter has also
proposed a web services based sinkless architecture, by presenting motivating examples,
outlining the protocol and addressing issues and how they can be dealt with. Results of
preliminary performance analysis of the proposed architecture have also been briefly

presented. The next chapter presents the design and implementation of the prototype.

51

Chapter 5 TinyWS prototype — Design and

Implementation

This chapter presents our design and implementation of a proof of concept for an
embedded web services platform on the sensor nodes, in particular the motes [6] [44].

The challenges faced, lessons learned and some related work are also presented.

5.1 TinyWS

TinyWS is the chosen name for our small web services platform that will reside on
the sensor nodes. It hosts the services, receives web service requests via SOAP and sends
relevant responses via SOAP. The choice of the name TinyWS follows a common
convention for numerous other embedded software modules and frameworks for sensors
such as TinyOS [11] for the operating system, TinyDB [13] for a database based
framework and TinyDiffussion [57] for its routing protocol.

In its simplest form, a web services platform is a SOAP processing engine. A
SOAP engine is a software system that is capable of:

* receiving SOAP messages

o extract the actual request from it

» invoke another software module that can service or act upon the request

e receive response from the servicing module and package it as a SOAP message

e send a SOAP response back to the original requesting application

52

While a SOAP message could be carried over any protocol, the de facto standard
today is to carry it over HTTP. SOAP is considered to be HTTP + XML; HTTP message
carrying XML content in the body. Further, HTTP is an application layer protocol carried
over TCP/IP. The implication here is that a web services platform should be built over
TCP/IP and should handle HTTP as a transport protocol for SOAP. Thus, at a minimum,

our TinyWS prototype should do just that.

A conventional web services platform is expected to provide a mechanism for
deploying new services on the fly, the same way a web server allows deployment of new

pages. The TinyWS prototype does not provide that mechanism yet.

5.2 Objectives

The objective of building this prototype is to have a proof of concept that the
sensor node is capable of hosting a small Web Services platform and communicate via
SOAP over HTTP. It is an initial attempt and practical assessment of the feasibility of the
proposed web services based framework. The prototype is also meant to dispel the notion
that such a framework is absolutely unthinkable. Another objective is to experience the
challenges involved in resource optimization to fit an otherwise resource demanding
framework into small and resource limited devices. The lessons learned can be taken into

account when a full fleshed framework is to be built.

53

5.3 The Setup

Figure 5.1 shows the setup of our prototype.

Figure 5.1 TinyWS: Setup of the prototype

The prototype has two parts; the TinyWS which is on the sensor nodes and a client
application running on the laptop. A sensor node is also attached on the laptop to actas a
Zigbee [43] based wireless network interface card. In terms of the Web Services roles,
the remote sensor nodes act as service providers. The laptop, representing client devices,
host end user application which act as web service consumer. This prototype does not
include a UDDI registry and its respective operations.

It should be noted that the sensor node attached to the laptop is not considered to

be a sensor in this case. It is a network card in the absence of a real Zigbee network card.

5.4 Hardware and Software Tools

The main hardware involved are the sensor nodes and the laptop.
The sensor nodes used are the TelosB motes from Crossbow Technologies, part

number TPR2420. The actual node and its block diagram are as shown in Figure 5.2.

54

O | usm

Figure 5.2 TelosB Sensor Node and its block diagram

The TelosB motes have IEEE 802.15.4 or Zigbee compliant RF Transceiver,
operate at 2.4 — 2.4835GHz frequency band, have integrated onboard antenna, offer
250Kbps data rate. They are based on 8 Mhz Texas Instrument MSP430 microcontrollers,
with 10KB RAM and 1MB of external flash.

The Software tools and libraries used in developing the TinyWS platform are
TinyOS operating system, the nesC language, the TOSSIM Simulator, TinyOS port of the
ulP [51] TCP/IP stack and the TinyXML parser.

TinyOS [11] is a lightweight operating system specifically designed for
network embedded systems. It has component based architecture, whose components are
modular and reusable by applications. nesC [22] is an extension of the C language
primarily intended for embedded systems. It is considered a static language in the sense
that it does not offer dynamic memory allocation, everything must be pre-decided and is
checked at compile time. TOSSIM [58] is a simulator for TinyOS sensor networks that
allows developers to test, debug and analyze applications without compiling them into

the actual sensor nodes.

55

ulP [51] is an implementation of the TCP/IP protocol stack, in C language,
intended for small 8-bit and 16-bit microcontrollers. It provides the necessary protocols
for Internet communication, with a very small code footprint and RAM requirements.
The stack has also been ported into TinyOS by re-implementing it using the nesC
language and programming model. TinyXML [59] is a general purpose XML parser for
TinyOS. It is based on another small and efficient parser called Parsifal [60]. However,
considering resource limitations on sensor nodes, a number of features had to be
removed. Thus the TinyXML is non-validating and has no support for Namespaces and
DTD (Document Type Definition). Lack of these features would not affect our prototype.
The parser is contributed by researchers from University of Yeditepe [61]

The Software tools used in developing the client stubs or libraries for the client
application are Xerces-J XML Parser [62] (a popular XML parser for Java Langunge),
jakarta HTTP client library [63] (a full compliant HTTP 1.1 library), the Java

programming language and JDK 1.5 compiler.

5.5 The design

As a proof of concept, the prototype has been designed to host very simple
services. The focus was to make sure that the nodes can receive and process SOAP
messages, invoke the right service and send back corresponding SOAP response. The
simple services, their corresponding SOAP requests and responses as well as the software

architecture are presented in the following subsections.

56

5.5.1 The Services provided

Three simple services have been designed to cover common requests from
sensors, which include data collection, changing operational settings of the nodes and
checking certain node status.

The three services are:

(1) SubscribeData(char phenomena, int samples, int interval)

The functionality of this service is to collect sensor readings. It triggers the
sensor to sense of the specified phenomena and provide the sensed data.
The service takes three parameters:

e phenomena: this is a string value specifying the
phenomenon to be sensed. In this case it is either
temperature or light.

e samples: an integer value specifying the number of sample
readings to be collected

e interval: an integer value specifying the interval between
the sensor readings, in milliseconds.

The service is an example of a common query for sensor data.

(i) ToggleLED(char theLED, int N, int interval)

The functionality of this service is to change operational settings of the
sensor; in particular switching the sensor LED lights to ON or OFF

depending on current status (toggling). The service takes 3 parameters:

57

e theLED: this is a string value specifying the LED to be
toggled. The value can be RED, GREEN or YELLOW ",
e N: an integer value specifying the number of times that the
toggling should take place
e interval: an integer value specifying the interval between
the toggling, in milliseconds.
The service is an example of a command (instead of a query). The real life
use would be a command to change various operational mode of the
sensor, such as sending the node to sleep mode or wake up mode. A similar
service could also be designed to change the status of the sensor from a
normal sensor node to an aggregator, among other uses.
(1i)) GetLEDStatus()
The functionality of this service is to get the Status of the three LED
lights. This status is returned as a hexadecimal value; 000 returned as 0,
meaning all the lights are OFF, 111 returned as 7, meaning all lights are
ON, and the other combinations/value in between.

The service is another example of a query that takes no parameters.

5.5.2 The SOAP Messages

Inline with SOAP 1.1 specification, the SOAP requests and responses are as
shown below. They all include the SOAP envelope and SOAP body. The name of the
actual web service is preceded by the letter m and a colon in the corresponding XML tag

of the same name as the service. This ‘service tag’ nests the tags that represent the

* This LED is actually blue on the sensor node, but it is specified as YELLOW for backward compatibility

58

parameters and their values. For the sake of simplification and taking into account the
limited buffer resources on the sensor nodes, these SOAP messages neither include the
lengthy XML namespaces nor the SOAP headers. The SOAP specification asserts that
the two are not mandatory.

For SubscribeData service, the SOAP request and the SOAP response are as

shown in Figure 5.3 and Figure 5.4

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<m:SubscribeData>
<phenomena> temp | light </phenomena>
<samples> N </samples>
<interval> T </interval>
</m:SubscribeData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.3 The SOAP Request for service SubscribeData

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<m:SubscribeDataResponse>
<phenomena> temp | light </phenomena>
<value> nn.nn </value>
</m:SubscribeDataResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.4 The SOAP Response for service SubscribeData

The SOAP request and SOAP response for the ToggleLED service are as shown

in Figure 5.5 and 5.6

59

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<m:ToggleLED>
<ledType> RED|GREEN|YELLOW </ledType>
<samples> N </samples>
<interval> T </interval>
</m:ToggleLED>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.5 The SOAP Request for service Toggle LED

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<m:ToggleLEDResponse>
<status>red on | red _off | green on |
green_off | yellow_on | yellow_off
</status>
</m:ToggleLED>
</SOAP-ENV:Body>
</SOAP-ENV :Envelope>

Figure 5.6 The SOAP Response for service ToggleLED

The SOAP Request and Response for the GetLEDStatus Service are as shown in

Figure 5.7 and 5.8

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<m:GetLEDStatus>
</m:GetLEDStatus>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
</SOAP-ENV:Envelope>

Figure 5.7 The SOAP Request for service GetLEDStatus

60

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<m:GetLEDStatusResponse>
<LEDStatus> N* </LEDStatus>
</m:GetLEDStatusResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.8 The SOAP Response for the service GetLEDStatus

As mentioned earlier, SOAP messages are usually transported over HTTP. The
SOAP message is carried in the body of the HTTP message. Figure 5.9 and 5.10 shows
examples of the resulting HTTP messages with the SOAP messages embedded in their

bodies. The examples are for the request and response of the SubscribeData service.

POST /TinyWS HTTP/1.1

Host: 10.0.0.11

Content-Type: text/xml; charset="utf-8"
Content-Length: nnn

SOAPAction: ""

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<m:SubscribeData>
<phenomena> temp | light </phenomena>
<samples> N </samples>
<interval> T </interval>
</m:SubscribeData>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.9 The SOAP Request embedded in HTTP message

61

HTTP/1.1 200 OK
Content-Type: text/xml; charset="ut{-8"
Content-Length: nnn

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>
<m:ToggleLEDResponse>
<status>red on | red_off |green_on |
green off | yellow_on |yellow_off
</status>
</m:ToggleLED>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.10 The SOAP Response embedded in HTTP message

These are standard HTTP messages. The requests can be produced by any HTTP
client and the response can be understood by them. Most Web Services platforms have a
way of automatically generating a WSDL file for the services offered. TinyWS platform
doesn’t do this. However, a WSDL file to describe these sample services is included as

Appendix A.

5.5.3 The Software Architecture

The prototype has two parts, the TinyWS platform on the sensor node and the

client library and application on the client’s device, in our case a laptop.

5.5.3.1 TinyWS Architecture

The software architecture for the TinyWS is as shown in Figure 5.11

62

Figure 5.11 TinyWS Seftware Architecture

The Sensor Hardware is the TelosB Mote; it appears in the figure just for
convenience as it is not a software module. TinyOS is the open source operating system
for small devices, mostly used in sensors. It has been developed using the nesC language
and provides a lot of interfaces that can be reused by the software modules that are built
on top of it. The pIP TCP/IP stack is a light weight stack ported on nesC to run on the
sensor nodes and enable them to communicate with applications running on IP based
devices.

The modules developed from scratch or modified from their original form are the
pHTTP, the SOAPProcessor (also called TinySOAP), the TinyXML parser, TinyWSHost
and the services to be offered. The functionalities of each of these modules are as
explained below:

e pHTTP: This module provides the necessary functions to handle HTTP messages. It
uses the pIP functions to provide the HTTP protocol. The functionalities of
this module are:

» receiving HTTP messages from client applications

= extracting SOAP/XML messages from the body of the received HTTP

63

messages and pass them to the TinySOAP processor
= receive SOAP/XML response messages and embed them into HTTP
messages
» Sending HTTP responses (carrying SOAP) back to the requesting
application
SOAPProcessaor/TinySOAP: This is the module that processes the SOAP
messages. The role of this module is to:
» receive the SOAP message as extracted and handed over by the
pHTTP module
» use the TinyXML parser to extract the actual service requests and the
associated parameters from the received SOAP message.
" pass the requests and parameters to the TinyWSHost component for
service invocation
» receive responses from the TinyWSHost
» use the TinyXML parser to create the SOAP response
= pass the SOAP response to the pHTTP module
TinyXML: This is a stripped down XML parser that assists the TinySOAP processor
by:
= Parsing the SOAP/XML to retrieve the tags and values
» Creating the SOAP/XML responses from the parameters passed on by
TinySOAP
TinyWSHost: This is the module that hosts the actual web services. So, its

functionalities are:

64

» Receiving the requests from TinySOAP Processor and invoking the
right service
= Receiving responses from the actual service logic and pass them to the
TinySOAP Processor
o WS WS;, WS;. These are the actual services provided, containing the actual service

logic.

5.5.3.2 The Client Library and application
The role of this client library is similar to the client stubs provided by Tomcat

[64] web services platform or the client .jar files provided by BEA Web Logic [65] web
services platform. They hold the necessary functions and SOAP proxy that will produce
the SOAP/XML message embedded in HTTP. These are usually built automatically by
the platform. In this small prototype, the library had to be developed.

The Software Architecture for the client library and sample application is as

shown in Figure 5.12 below:

Figure 5.12: Software Architecture for the client library

The modules developed from scratch are the SOAP Processor, the

TinyWSClientAPI and the sample application. The XML Parser and the HTTPLib are the

65

open source libraries (the Xerces-] XML Parser and the Jakarta HTTP library
respectively).
The functionalities of the modules in Figure 5.12 are as explained below:

o HTTPLIib: This is a library that receives and sends HTTP messages. It sends
the HTTP messages carrying SOAP/XML to the TinyWS and, it receives the
respective HTTP responses, carrying SOAP/XML from TinyWS.

o TinyWSClientAPI: Provides the interfaces for invoking the web services. In
our prototype, the interfaces are:

e SubscribeData (.., .., ..)

o ToggleLED(...,....,...)

e GetLEDStatus()

o SOAP Processor: This module is responsible for

e Converting the requests and parameters from the
TinyWSClientAPI into SOAP/XML messages

e Embedding the SOAP/XML messages into the body of a HTTP
message and thus creating the actual HTTP message to be sent
out by HTTPLib.

e Extracting the SOAP/XML message from the body of HTTP
message received by HTTPLib

o Extract the actual response data from the SOAP/XML
messages and pass them to the TinyWSClientAPI to update the
application.

o Client Application: This represents the actual end user application logic.

66

The client library is developed in Java and currently runs in the Linux
environment. However, any language that supports web services could have been used,
on any operating system. Also, different XML parsers and HTTP libraries could be used.
What is important is that the exchanged SOAP messages are carried in standard HTTP

messages between the client application and the TinyWS platform.

5.6 Challenges faced, lessons learned and related work

The main challenges in this implementation were the limited resources on the
target sensor nodes on one hand and the complexity of HTPP and SOAP/XML
processing on the other. Both HTTP and XML are verbose text based protocols, which
tend to demand higher memory usage, processing and bandwidth, all of which are quite
limited in the sensor nodes. The static nature of the nesC language added more
challenges; a common way of optimizing memory usage is dynamic memory allocation,
but the language does not support it. A work around on this was to create a special
memory pool when necessary.

Other challenges arose from the fact that most of the crucial elements of this
implementation are very new, undocumented and in some cases incomplete. This was
particularly the case in the setup of TelosB programming environment in Linux, using the
ulP port of TCP/IP stack in TinyOS and the TinyXML parser.

Sensor network programming is hard, adapting to the TinyOS programming
paradigm is by itself a significant challenge. A substantial paradigm shift into component
based, event driven concurrency programming is required. Contrary to conventional

programming, development of TinyOS applications frequently involves calling the actual

67

operating system modules. Compiling the application includes recompilation of the
modules from the operating system.

There is no clear separation between the OS, the ulP protocol and the applications
to be built. The same buffers had to be shared between the IP protocol and the application
(i.e. the TinyWS modules), which further adds to the challenge of handling shared
variables, which is not so straight forward in NesC language.

The TinyOS version of ulP also posed its challenges. While the original stack is
reported to be fully compliant with relevant RFCs and is well documented, its TinyOS
port is yet to be fully complete and has no documentation beyond a few start-up
instructions to confirm its installation.

What has been learnt is that apart from having very limited resources, the sensor
nodes are capable of hosting a functional web services platform, serving several services.
Although our prototype has limited features, the resources used leave a lot of room for
additional features. While the node has 1IMB ROM and 10Kb RAM, this simplified
prototype appears to have used only 51.6 Kb ROM and 4.137 Kb of RAM.

The figures above suggest that the resource concern is more on the RAM, which
seems to have taken about 41%. While this figure is relatively small, it should not suggest
that having a web services platform on the sensor node is trivial. Apart from
programming techniques used for memory optimization, a number of non compulsory
features had to be dropped. Some features that are usually included in conventional
TCP/IP stack, XML Parsers and SOAP were dropped, leaving only the minimum allowed
by the relevant specifications and necessary for a simple prototype. In particular, the

TCP/IP stack was made to allow only a single connection on a single port (listening for

68

incoming SOAP messages). More connections on the same port as well as opening
additional ports for standard tools such as telnet and ping (ICMP) and others would
consume more resources. The XML parser was simplified to only parse non complex
XML messages, thus it does not handle Data Type Definition (DTDs) for validation. This
also lowered the required computatioﬁal resources without affecting core functionality of
the prototype. As for SOAP, the SOAP envelopes usually contain lengthy strings
representing XML name space and encoding style which would take a lot of
buffer/memory. As SOAP can do without them, these were also dropped from the design,
leading to further savings on resources.

In practical terms, the platform will need to scale and stabilize; this necessitates
allowing multiple connections, which raise the need for state management for the
connections and their corresponding web service requests. Nevertheless, the resources
used by the simplified prototype suggest that having a web services platform on sensor
node is not unrealistic. The conclusion would have been different if the prototype would
take, say 95% of the resources, after all the simplifications.

While the resources do allow adding more features to the prototype platform, the
full compatibility with other IP based applications and other web services platforms will
need significant work on the XML parser and the ulP protocol modules.

As for related work, we have looked at four aspects; survey and evaluation of the
state of the art in WSN middleware or application enablers, the use of web services in
WSN, the sinkless architecture and development of embedded web services platforms.

We explain how they relate to this work and highlight the points in which they differ.

69

While there are number of publications that have presented a survey of other
aspects of WSN, the only one found to have surveyed the application enablers or
middleware for WSN is the one reported in [90] and [91]. While it has dealt with most of
the frameworks mentioned in this thesis, it has not included web services and it has used
different set of criteria, not selected from application developers’ point of view.

In general, the use of WS in WSN has been at the gateway level or further away
from the sensor nodes; the implementation has mainly involved mapping WS to
proprietary APIs or other underlying frameworks. This includes one of our publication
[81] in which we have built a prototype of a WS based WSN gateway for location and
environmental Sensors. SensorWeb project by OGC [68] is another example.

To the best of our knowledge, there is no work in the public domain on an actual
implementation of a web services platform on individual sensor nodes, especially on
TinyOS [10]. However, there are some proposals; apart from our publication [56],
another proposal presented in [98] has modeled the WSN in terms of three roles and three
operations of Web Services, and has proposed that the sensor nodes should host a web
services platform. However, this proposal still assumes the presence of a sink node; the
requesting applications bind to the sink node, not to individual sensors, and there is no
TCP/IP stack on the sensor nodes. The proposal has not been implemented in actual
sensor nodes.

There is another form of Web Services called REST (Representational State
Transfer) [94], which is light weight and does not use SOAP. It has also been attempted

in WSN in the form of TinyREST [95] built on top of TinyOS. However, the model still

70

relies on the presence of a sink/gateway, and, REST web services have yet to be widely
adopted by developers, and not yet standardized.

As this thesis includes development of an embedded web services platfoﬁn, it is
also worth mentioning that there is a lot of interest in embedded web services, [99] and
[100] are among those initiatives. gSOAP, explained in [101] is a SOAP toolkit meant for
embedded devices, but has yet to be used on sensors.

As for the sinkless model, it has also been proposed in [38], which has an
architecture that allows applications to discover and interact directly with relevant sensor
nodes within single hop distance from the application device. The interaction is via
TinyLIME APIs, which require understanding of the combined concepts from mobile
code, tuple spaces and events; as such they are not as easy to use nor are they widely

adopted as web services.

71

Chapter 6 Conclusion

The Wireless Sensor Networks today use proprietary mechanisms in providing
data access. They use non standard protocols, which necessitate the need for gateways as
bridges between application devices and the sensors. To facilitate a wider use of sensor
data and motivate more innovative applications, WSN should use common and standard
protocols as most application devices and provide data access via frameworks that can be
used by general application developers. Web Services framework has been seen as a very
promising framework but often considered unsuitable for WSN. The limited resources in
sensor nodes were perceived to inhibit even the adoption of standard networking

protocols such as TCP/IP.

With the latest developments in electronics, smaller but more powerful sensors
continue to emerge. With necessary optimization techniques, it is now possible to have
small footprints of the standard networking protocols such as TCP/IP. This work has
leveraged on these developments by proposing the use of Web Services as a framework
for interaction between the WSN and the end user applications; thus creating a room for
more innovative applications. A prototype has been built which confirms that the idea of
having web services on the sensor node is feasible. Web Services performance is still an

issue that needs to and is being worked on.

6.1 Thesis Contributions

While most of the research on WSN focuses on low level routing mechanisms for
large sensor networks, energy savings and hardware optimization, often by introducing

new protocols and techniques, this thesis advocates the use of open standards and

72

common tools so as to attract a larger pool of application developers as well as allow
access to sensors from more application devices. Among the contributions, a systematic
survey and evaluation of existing data access mechanism, with criteria set from
application developer’s point of view is provided. In doing so, this thesis has also
highlighted the potentials of Web Services as compared to the other frameworks. It has
also presented a number of architectures for applying web services to WSN, by looking at
the roles of the various WSN and mapping them to the main roles and operations of Web
Services framework. A comprehensive Web Services based architecture for WSN has
then been proposed, which introduce the idea of having web services at the sensor level
rather than the usual convention of having it at the gateway only. As a proof of concept
and assessing the feasibility of the proposed architecture, a prototype of an embedded
Web Services platform residing on the sensor nodes, named TinyW'S, has been built; thus
dispelling the notion that web services on the sensor node is absolutely impossible.

Having a framework that is built on open networking protocols and standards has
further advantages. IP based WSN provide users with full access to sensor services
through common IT methodologies. The seamless integration of the sensor networks to
existing IT infrastructure brings about the ability to use conventional network utilities in
monitoring the network down to individual sensor level. A sensor node could be assigned
a domain name, appear on SNMP management tool or its route traced using existing
common tools.

Web Services are known as popular solutions in offering interoperability among
dissimilar systems. Thus if the framework is supported on sensor nodes from different

vendors, it is a very promising solution for interoperability in heterogeneous WSN.

73

Among the exciting value added services in next generation networks (3G, 4G and
beyond) are context aware applications. WSN data will need to be accommodated in
various applications offered through IP Multimedia System (IMS)[66]. As these network
and systems are IP based, the benefit of having IP based WSN are clear. As more and
more mobile devices are equipped with XML and Web Services enabled development
tools such as J2ME [47], access to Web Services enabled WSN could be used to extract
data for use in a local application running on the mobile device or; the sensed information
could be relayed over the IP network backbone to centralized infrastructure where more
applications and services can be offered.

Parts of this work have been presented and published in IEEE Symposium on
Computer and Communications 2006 (ISCC’06) [81] and IEEE Consumer
Communications and Networking 2007 (CCNC’07) [56]. A third publication is under

review for IEEE Symposium on Computer and Communications 2007 (ISCC’07) [82].

6.2 Future Work

As this is among the initial attempts of using Web Services on WSN, especially on
the individual sensor nodes, there is a lot of room for future work.

As this work has focused more on web services interactions between applications
and sensors, it can be extended to accommodate relatively larger WSN, where the nodes
themselves need to exchange data via web services. As such the necessary services for
network formation and cooperation will need to be designed to allow SOAP based

communication among the sensor nodes, regardless of the sensor type.

74

The work has proposed the use of an overlaid UDDI as a means to avoid
centralized entities. The details and realization of this aspect is another area that needs to
be addressed and developed further.

Another area to be looked at is dynamic and remote deployment of new services
on the sensor nodes. One possibility is to have remote reprogramming via Agentified
Web Services, in which some services can handle mobile code.

On the implementation side, apart from additional work required on the TCP/IP
stack and the XML processing modules, another area to be worked on is to employ Web
Services acceleration techniques, such as the ones suggested in [69] [70] [71]. Energy
saving techniques should also be considered in improving the performance of TinyWS.
The newly released TinyOS 2.0[72] has a number of new features that improve dynamic
memory allocation, among other things, which could greatly improve the handling of the

message buffers in TinyWS implementation.

75

References

[1] C.Y. Chong and S.P. Kumar, “Sensor networks: Evolution, opportunities, and

Challenges”, Proceedings of the IEEE, vol. 91, n.8, 2003, pp. 1247-1256.

[2] “10 Emerging Technologies That Will Change The World”, An MIT Enterprise
Technology Review, vol. 106, no. 1, pp. 33 — 49, Feb 2003. Available at:

http://www.technologyreview.com/InfoTech/13060

[3] LF. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor
networks: A survey," Computer Networks, vol. 38, pp. 393-422, 2002.

[4] David Culler, Deborah Estrin, and Mani Srivastava, Guest Editors' Introduction:
“Overview of Sensor Networks”, IEEE Computer, Vol. 37, No. 8, August 2004.

[5] L Khemapech, I. Duncan, and A. Miller, " A survey of wireless sensor networks
technology," in PGNET, Proceedings of the 6th Annual PostGraduate Symposium on
the Convergence of Telecommunications, Networking & Broadcasting (M. Merabti

and R. Pereira, eds.), (Liverpool, UK), pp. xx-xx, EPSRC, June 2005.

[6] Crossbow Technology, Mica2 Multi-Sensor Module, available at:

http://www.xbow.com/Products/productsdetails.aspx?sid=75

[7]]. Beutel, O. Kasten, M. Ringwald, F. Siegemund, and L. Thiele, “Poster abstract:
Btnodes - a distributed platform for sensor nodes,” in Proceedings of the First
International Conference on Embedded Networked Sensor Systems (SenSys-03) Los
Angeles, CA, Nov. 2003

[8] ScatterWeb Website:

http://www.scatterweb.com/

76

[9] TECO Particle Sensor Website:
http://particle.teco.edu/

[10] TMote Sky Sensor Node Website:

http://www.moteiv.com/products-tmotesky.php

[11] TinyOS WebSite:

http://www tinyos.net

[12] Contiki - A Dynamic Operating System for Memory-Constrained Networked
Embedded Systems. Website:

http://www .sics.se/contiki/

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “Tinydb: An
acquisitional query processing system for sensor networks. “Transactions on
Database Systems (TODS), 2005.

[14] Chien-Liang Fok, Gruia-Catalin Roman, Chenyang Lu. "Mobile Agent Middleware
for Sensor Networks: An Application Case Study" In Proceedings of the Fourth
International Symposium on Information Processing in Sensor Networks (IPSN’05),
Los Angeles, California, April 25-27, 2005, pp. 382-387

[15] Kay Romer, “Programming Paradigms and Middleware for Sensor Networks”.
GU/ITG Fachgespriach Sensornetze, Karlsruhe, February 2004

[16] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications of wireless
sensors and wireless sensor networks,” Proceedings of the IEEE International
Symposium on Intelligent Control, 2005.

[17] K. Martinez, J.K. Hart, and R. Ong, “Sensor Network Applications — Environmental

Sensor Networks”, IEEE Computer Society, August 2004

77

[18] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless
Sensor Network for Habitat Monitoring”, ACM WSNA’02, Atlanta, Georgia, USA,
September 2002.

[19] Merrett, G. V., Harris, N. R., Al-Hashimi, B. M. and White, N. M., “Energy
Controlled Reporting for Industrial Monitoring Wireless Sensor Networks”. In
Proceedings of IEEE Sensors 2006 (in press), Daegu, Korea.

[20] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S.:
Unraveling the Web Services Web An Introduction to SOAP, WSDL, and UDDI,
IEEE Internet Computing, March 2002

[22] McKusick, K. “A conversation with Adam Bosworth”, ACM Queue, vol. 1, no. 1,
March 2003, Available at:

http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=29

[22] Gay, D., Levis, P., Behren, R., Welsh, M., Brewer, E., Culler D.: The nesC
Language: A Holistic Approach to Networked Embedded Systems. Proceedings of
the ACM SIGPLAN 2003, San Diego, California, USA, pp. 1-11, 2003

[23] Cricket Version 2 User manual, MIT Computer Science and Artificial Intelligence
Lab, available at http:/nms.csail.mit.edu/projects/cricket/v2man-html/, Jan 2005

[24] Ember, company website:

http://www.ember.com

[25] Buonadonna, P., Gay, D., Hellerstein, J. M., Hong W. and Madden, S.: TASK:
Sensor Network in a Box, Intel Research Berkeley and UC Berkeley, 2005

[26] Nath S., Deshpande A., Ke, Y., Gibbons, P. B., Karp, B., Seshan, S., “IrisNet: An

Architecture for Internet-scale Sensing Services”. In proceedings of the 29" VLDB

78

Conference, Berlin, Germany, 2003

[27] Yong Yao and J. E. Gehrke. “The Cougar Approach to In-Network Query
Processing in Sensor Networks”, Sigmod Record, vol. 31, no. 3, September 2002.

[28] C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor Information Networking
Architecture and Applications,” IEEE Pers. Commun., Aug. 2001, pp. 52-59.

[29] SensorWare Project

http://sensorware.sourceforge.net/ and
http://nesl.ee.ucla.edu/projects/sensorware/

[30] Adam Dunkels, Richard Gold, Sergio Angel Marti, Arnold Pears, and Mats
Uddenfeldt. “Janus: An architecture for flexible access to sensor networks”. In First
International ACM Workshop on Dynamic Interconnection of Networks (DIN'05),
Cologne, Germany, September 2005.

[31]P. Kang, C. Borcea, G. Xu, A. Saxena, U. Kremer and L. Iftode, “Smart Messages:
A Distributed Computing Platform for Networks of Embedded Systems", The
Computer Journal, Special Focus Mobile and Pervasive Computing, British
Computer Society, Oxford University Press, Vol 47/4, pp 475-494, July 2004.

[32] Ting Liu and Margaret Martonosi. "Impala: A Middleware System for Managing
Autonomic, Parallel Sensor Systems". ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP'03), June 2003. Paper available at:

http://www.cs.princeton.edu/~tliu/p71-tliu.pdf

[33] P.Levis and D. Culler. "Mate": A Tiny Virtual Machine for Sensor Networks." In
International Conference on Architectural Support for Programming Languages and

Operating Systems, San Jose, CA, USA, Oct. 2002.

79

[34] “Specification: Web Services Security (WS-Security)”, available at:

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

[35] “Web Services Security: Non-Repudiation proposal draft 05, available at:

http://xml.coverpages.org/ReactivityWS-NonRepudiation-05.pdf

[36] Peter Schramm, Edwin Naroska, Peter Resch, Platte Platte, Holger Linde, Guido
Stromberg, Thomas Sturm. "A Service Gateway for Networked Sensor Systems,"
IEEE Pervasive Computing, vol. 03, no. 1, pp. 66-74, January-March 2004,

[37] Eduardo Souto, Germano Guimarges, Glauco Vasconcelos, Mardoqueu Vieira,
Nelson Rosa, Carlos Ferraz, ”A Message-Oriented Middleware for Sensor
Networks”, Toronto, Ontario, Canada, 2004, pages 127 - 134

[38] Carlo Curino et al, “TinyLIME: Bridging Mobile and Sensor Networks through
Middleware” Proceedings of the 3rd IEEE Int’l Conf. on Pervasive Computing and
Communications (PerCom 2005)

[39] Jini Network Technology Website:

http://www.sun.com/software/jini/
[40] uPnP Website:
http://upnp.org/

[41] Murphy, A.L., Picco, G.P., Roman, G.C., “LIME: a middleware for physical and
logical mobility”, Distributed Computing Systems, 2001. 21st International
Conference on, 16-19 April 2001 Page(s):524 - 533

[42] IEEE 802.15.4 Standard Specification, available at:

http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf

[43] Zigbee Alliance, Zigbee specification 1.0, June 2005, available at:

80

http://www.zigbee.org/en/index.asp

[44] TelosB Mote Research platform, Crossbow product website:

http://www.xbow.com

[45] UZBee, A USB to Zigbee Adapter. Product by Flexipanel. Company Website:

http://www.flexipanel.com/

[46] Christian, Andrew; Hicks, Jamey; Avery, Brian; Kuris, Ben; Denning, Don; Ayer,
Steven; Ankcorn, John, “Fingertips of the Network: Featherweight Communicators
and Sensors”, HP Lab Technical report, available at:

http://www.hpl.hp.com/techreports/2005/HPL-2005-114.pdf

[47] The iB-Bean GW-5324-CF Zigbee Adapter PCMCIA card, product Website:

http://www.wirelessmeasurement.com/millennial 24.html

[48] “TIM unveils Z-SIM SIM card with radio technology”, an article by John Tilak on
Digital Media news for Europe. Available online at:

http://www.dmeurope.com/default.asp? ArticleID=11958

[49] Xiaohua Luo, Kougen Zheng, Yunhe Pan, Zhaohui Wu, “A TCP/IP implementation
for wireless sensor networks”, Systems, Man and Cybernetics, 2004 IEEE
International Conference on Volume 7, 10-13 Oct. 2004 Page(s):6081 - 6086 vol.7

[50] Adam Dunkels, Thiemo Voigt, and Juan Alonso. “Making TCP/IP Viable for Wireless
Sensor Networks.” In Proceedings of the First European Workshop on Wireless Sensor

Networks (EWSN'04), work-in-progress session, Berlin, Germany, January 2004.

[51] The ulP embedded TCP/IP stack, Project web site:

http://www .sics.se/~adam/uip/

[52] Adam Dunkels, Thiemo Voigt, Niclas Bergman, and Mats J6nsson. “The Design and

81

Implementation of an IP-based Sensor Network for Intrusion Monitoring”, in Swedish
National Computer Networking Workshop, Karlstad, Sweden, November 2004.

[53] A. Christian, J. Healey, “Gathering Motion Data Using Featherweight Sensors and
TCP/IP over 802.15.4”, IEEE International Symposium on Wearable Computers,
On-Body Sensing Workshop, October 2005. Available at:

http://www.hpl.hp.com/techreports/2005/HPL-2005-188.pdf

[54] Xingfa Shen , Zhi Wang, and Youxian Sun, “Wireless Sensor Networks for Industrial
Applications”, Fifth World Congress on Intelligent Control and Automation, WCICA,
2004, Vol 4, pp 3636-3640

[55] Adam Dunkels, Thiemo Voigt, and Juan Alonso, “Making TCP/IP Viable for Wireless
Sensor Networks.” In Proceedings of the First European Workshop on Wireless Sensor

Networks (EWSN'04), work-in-progress session, Berlin, Germany, January 2004.

[56] N. Y. Othman, S. Chebbine, R.Glitho and F. Khendek, “A Web Services Based
Architecture for the Interactions between End-users Applications and Sinkless Wireless
Sensor Networks”, to appear in proceedings of IEEE Consumer Communications and
Networking Conference 2007 (CCNC’07), January 11 — January 13, 2007, Las Vegas,
Nevada, USA.

[57] General purpose XML Parser for TinyOS (TinyXML), project website:

http://ics.yeditepe.edu.tr/tnl/html/tinyxml.html]

[58] TinyDiffusion Application Programmer’s Interface, version 0.1

http://www.isi.edu/scadds/papers/tinydiffusion-v0.1.pdf

[59] Philip Levis, Nelson Lee, Matt Welsh, and David Culler, “TOSSIM: Accurate and

Scalable Simulation of Entire TinyOS Applications”, In Proceedings of the First

82

ACM Conference on Embedded Networked Sensor Systems (SenSys) 2003,
November 2003

[60] Parsifal XML Parser. Project website:

http://www.saunalahti.fi/~samiuus/toni/xmlproc/

[61] University of Yeditepe, Computer Engineering Department:

http://ics.yeditepe.edu.tr/

[62] Xerces-J] XML Parser, project web site:

http://xerces.apache.org/xerces-j/

[63] Jakarta Commons HTTP client, project website:

http://jakarta.apache.org/commons/httpclient/

[64] Apache Tomcat Server

http://tomcat.apache.org/

[65] BEA Web Logic Server Website:

http://www.bea.com/

[66] Miguel-Angel, Garcia-Martin, Gonzalo Camarillo, “The 3G IP Multimedia
Subsystem (IMS): Merging the Internet and the Cellular Worlds”, John Wiley and
Sons, 2004

[67] The Java Micro Edition (J2ME) Platform website:

http://java.sun.com/javame/index.jsp

[68] Open Geospatial Consortium (OGC) Inc

http://www.opengeospatial.org/
[69] N. Abu-Ghazaleh, M. Lewis, M. Govindaraju, “Differential Serialization for

Optimized SOAP Performance”, in: Proc. 13th IEEE International Symposium on

83

High Performance Distributed Computing, Honolulu, Hawaii, June 2004, pp. 55-64.

[70] K. Chiu, M. Govindaraju, R. Bramley, “Investigating the Limits of SOAP

Performance for Scientific Computing”, in: Proc. 11™ IEEE International
Symposium on High Performance Distributed Computing, Edinburgh, Scotland, July
2002, pp. 246-254.

[71] M. Migliardi, R. Podesta, “Performance Improvement in Web Services Invocation
Framework”, in: Proc. 18" International Parallel and Distributed Processing
Symposium, Santa Fe, New Mexico, April 2004, pp. 110-122.

[72] TinyOS 2.0 Documentation. Available at:

http://www .tinyos.net/tinyos-2.x/doc/
[73] XML specification, available at:
http://www.w3.org/ XML/

[74] Simple Object Access Protocol (SOAP) Specification 1.1, available at:

http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

[75] Web Services Description Language (WSDL) 1.1, available at:

http://www.w3.org/TR/wsdl

[76] Universal Data Discovery and Integration (UDDI) Specifications, available at:

http://www.uddi.org/

[77] SensorML
http://vast.uah.edu/SensorML/

[78] M. Srivastava, R. Muntz, and M. Potkonjak, "Smart kindergarten: Sensor-based
wireless networks for smart developmental problem solving environments," Proc.
7th Ann. Int'l Conf Mobile Computing and Networking, Rome, Italy, pp. 132-138,

Jul. 2001

84

[79] .M. Kahn, R.H. Katz, and K.S.J. Pister, “Next Century Challenges: Mobile
Networking for “Smart Dust””’, MobiCom’99, Seattle, Washington, 1999.

[80] G. Amato, S. Chessa, F. Conforti, A. Macerata, and C. Marchesi, “Health Care
Monitoring of Mobile Patients”, News No. 60, January 2005. Available online at:

http://www.ercim.org/publication/Ercim_News/enw60/amato.html

[81] Truong Ta, Nuru Yakub Othman, Roch H. Glitho and Ferhat Khendek, “Using
Web Services for Bridging End User Applications and Wireless Sensor Networks”,
in proceedings of IEEE Symposium of Computer and Communications 2006

(ISCC’06), June 26™ — June 29 , Cagliari, Italy.

[82] Nuru Yakub Othman, Roch H. Glitho and Ferhat Khendek, “The Design and
Implementation of a Web Service Framework for Individual Nodes in Sinkless
Wireless Sensor Networks”, under Review for IEEE Symposium of Computer and
Communications 2007 (ISCC’07), July 1st — 4th, Aveiro, Portugal.

[83] Imad Mahgoub, Mohammad Ilyas, “Smart Dust: Sensor Network Applications,
Architecture, and Design”, CRC Press, Taylor and Francis Group, 2006.

[84] M. Haenggi, "Twelve reasons not to route over many short hops," In Proc. IEEE
Vehicular Technology Conference. (VTC'04), Los Angeles, CA, Sep. 2004
Available at:

http://www.nd.edu/~mhaenggi/pubs/vtc04.pdf

[85] M. Haenggi, “Energy-balancing Strategies for Wireless Sensor Networks”, In
Proceedings of the 2003 International Symposium on Circuits and Systems
(ISCAS '03), May 2003. Available at:

http://www.nd.edu/~mhaenggi/pubs/iscas03.pdf

85

[86] J. Burrel, T. Brooke, and R. Beckwith, “Vineyard computing: Sensor Networks in
agricultural production”, IEEE Pervasive Computing, vol. 3, no. 1, pp. 38-45, 2004

[87] T. Fullford-Jones, D. Malan, M. Welsh, M. Gaynor, and S. Moulton, “CodeBlue: An
ad hoc sensor network infrastructure for emergency medical care”, in International
Workshop on Wearable and Implantable Body Sensor Networks, London, UK,
2004.

[88] D. Myung, B. Duncan, D. Malan, M. Welsh, M. Gaynor, and S. Moulton, ‘“Vital
dust: Wireless sensor network for real time patient monitoring”, in 8" Annual
England Regional Trauma Conference, Burlington, MA, 2002.

[89] Puccinelli D, Haenggi M, “Wireless Sensor Networks: Applications and Challenges
of Ubiquitous Sensing”, IEEE Circuits and Systems Magazine, vol. 5, issue. 3, 2005
pp- 19 -31.

[90] Salem Hadim, Nader Mohamed, “Middleware: middleware challenges and
approaches for Wireless Sensor Networks”, IEEE Distributed Systems Online, vol.
7, issue. 3, March 2006.

[91] Salem Hadim, Nader Mohamed, “Middleware for Wireless Sensor Networks: A
Survey”, First International Conference on Communication System Software and
Middleware, 08-12 Jan, 2006, pp 1- 7

[92] Jason Lester Hill, “System Architecture for Wireless Sensor Network”, PhD
dissertation, University of California, Berkeley, 2003.

[93]J. Feng, F. Koushnfar, and M. Potkonjak, “System-Architecture for Sensor
Networks. Issues, Alternatives and Directions”, ICCD’02, 2002

[94] Goth G., “Critics Say Web Services Need a REST”, IEEE Distributed Systems

86

Online, vol. 5, issue 2, Dec 2004, page 1.

[95] Thomas Luckenbach, Peter Gober, Andreas Kotsopoulos, Kyle Kim, Stefan
Arbanowski, “TinyREST - A Protocol for Integrating Sensor Networks into the
Internet”, Proceedings of REALWSN 2005

[96] Kirsten Terfloth and Jochen Shiller, “Driving forces behind middleware concepts for
Wireless Sensor Networks”, Proceeding of REALWSN Workshop, Stockholm,

Sweden, June 2005

[97]1 Y. Yu, B. Krishnamachari, and V K. Prasanna, “Issues in Designing Middleware for

Wireless Sensor Networks”, In IEEE Network Magazine, Jan/Feb 2004, vol. 18,
issue. 1, pp. 15 -21

[98] Flavia Coimbra Delicato, Paulo F. Pires, Luci Pirmez, and Luiz Fernando Rust da
Costa Carmo (Federal University of Rio de Janeiro, Brazil) “A Flexible Web
Service based Architecture for Wireless Sensor Networks” 23rd International
Conference on Distributed Computing Systems Workshops (ICDCSW'03),

2003, Providence, Rhode Island, USA, pp 730
[99] Dimitris Lioupis, Michalis Stefanidakis, "A Web Service for Embedded Distributed
Computation", 13th Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP'05), Feb 9 -11, 2005, pp. 20-25.

[100] Robert van Engelen, “Code Generation Techniques for Developing Web Services

for Embedded Devices”, in the proceedings of the 9" ACM Symposium on

Applied Computing SAC, Nicosia, Cyprus, 2004, pp. 854-861.

87

Appendix A: Sample WSDL file for the TinyWS prototype

<?xml version="1.0" encoding="utf-§"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<s:schema elementFormDefault="qualified" targetNamespace="http://www.openuri.org/"
xmins:s="http://www.w3.0rg/2001/XMLSchema">
<s:element name="subscribeData">
<s:complexType>
<s:sequence>
<s:element name="phenomena" type="s:string" minOccurs="0"/>
<s:element name="samples" type="s:int"/>
<s:element name="Interval" type="s:int"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="subscribeDataResponse">
<s:complexType>
<s:sequence>
<s:element name="phenomena" type="s:string"/>
<s:element name="value" type="s:int"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="toggleLED">
<s:complexType>
<s:sequence>
<s:element name="ledType" type="s:string" minOccurs="0"/>
<s:element name="samples" type="s:int"/>
<s:element name="Interval" type="s:int"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="toggleLEDResponse">
<s:complexType>
<s:sequence>
<s:element name="status" type="s:string"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="getLEDStatus">
<s:complexType>
<s:sequence/>
</s:complexType>
</s:element>
<s:element name="getLEDStatusResponse">
<s:complexType>
<s:sequence>
<s:element name="LEDStatus" type="s:int"/>
</s:sequence>
</s:complexType>
</s:element>
</s:schema>
</types>

88

<message name="subscribeDataSoapIn">
<part name="parameters" element="s0:subscribeData"/>
</message>
<message name="subscribeDataSoapOut">
<part name="parameters" element="s0:subscribeDataResponse"/>
</message>
<message name="toggleLEDSoapIn">
<part name="parameters" element="s0:toggle LED"/>
</message>
<message name="toggleLEDSoapOut">
<part name="parameters" element="s0:togglel EDResponse"/>
</message>
<message name="getLEDStatusSoapIn">
<part name="parameters" element="s0:getL EDStatus"/>
</message>
<message name="getL.EDStatusSoapOut">
<part name="parameters" element="s0:getLEDStatusResponse"/>
</message>
<message name="subscribeDataHttpPostIn">
<part name="phenomena" type="s:string"/>
<part name="samples" type="s:string"/>
<part name="Interval" type="s:string"/>
</message>
<message name="subscribeDataHttpPostOut"/>
<message name="toggle LEDHttpPostIn">
<part name="ledType" type="s:string"/>
<part name="samples" type="s:string"/>
<part name="Interval" type="s:string"/>
</message>
<message name="toggle LEDHttpPostOut"/>
<message name="getL EDStatusHttpPostIn"/>
<message name="getl. EDStatusHttpPostOut"/>
<portType name="TinyWSSoap">
<operation name="subscribeData">
<input message="s0:subscribeDataSoapln"/>
<output message="s0:subscribeDataSoapOut"/>
</operation>
<operation name="toggle LED">
<input message="s0:toggleLEDSoapIn"/>
<output message="s0:toggleLEDSoapQOut"/>
</operation>
<operation name="getLEDStatus">
<input message="s0:getLEDStatusSoapIn"/>
<output message="s0:getL EDStatusSoapOut"/>
</operation>
</portType>
<portType name="TinyWSHittpPost">
<operation name="subscribeData">
<input message="s0:subscribeDataHttpPostIn"/>
<output message="s0:subscribeDataHttpPostOut"/>
</operation>
<operation name="toggle LED">
<input message="s0:toggleLEDHttpPostIn"/>
<output message="s0:toggleLEDHttpPostOut"/>
</operation>
<operation name="getL EDStatus">

&9

<input message="s0:getLEDStatusHttpPostIn"/>
<output message="s0:getLEDStatusHttpPostOut"/>
</operation>
</portType>
<binding name="TinyWSSoap" type="s0:TinyWSSoap'">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
<operation name="subscribeData">
<soap:operation soapAction="http://www.openuri.org/subscribeData" style="document"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
<operation name="toggle LED">
<soap:operation soapAction="http://www.openuri.org/toggleLED" style="document"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
<operation name="getLEDStams">
<soap:operation soapAction="http://www.openuri.org/getLEDStatus" style="document"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<binding name="TinyWSHttpPost" type="s0:TinyWSHttpPost">
<hitp:binding verb="POST"/>
<operation name="subscribeData">
<http:operation location="/subscribeData"/>
<input>
<mime:content type="application/x-www-form-urlencoded"/>
</input>
<output/>
</operation>
<operation name="toggleLED">
<http:operation location="/toggleLED"/>
<input>
<mime:content type="application/x-www-form-urlencoded"/>
</input>
<output/>
</operation>
<operation name="getLEDStatus">
<http:operation location="/getLEDStatus"/>
<input>
<mime:content type="application/x-www-form-urlencoded"/>
</input>
<output/>

90

</operation>
</binding>
<service name="TinyWS">
<port name="TinyWSSoap" binding="s0:TinyWSSoap">
<soap:address location="http://10.0.1.2:81"/>
</port>
<port name="TinyW SHttpPost" binding="s0:TinyW SHttpPost">
<http:address location="http://10.0.1.2:81"/>
</port>
</service>
</definitions>

91

