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Abstract

Gabor Analysis and Wavelet-Like Transforms
on Some Non-Euclidean 2-Dimensional Manifolds

Gilbert Honnouvo, Ph.D.
Concordia University, 2007

Many problems in physics require the crafting of suitable tools for the analysis of
data emanating from various non-Euclidean manifolds. The main tools, currently em-
ployed for this purpose, are Gabor type frames or general frames, and wavelets. Given
this backdrop, the primary objective of this thesis is the development of wavelet-like
and time frequency type transforms on certain non-Euclidean manifolds. An im-
mediate example of such a manifold (in the sense that it is homeomorphic to sev-
eral other two-dimensional manifolds of revolution) is the two-dimensional infinite
cylinder, for which we construct here Gabor type frames and wavelets. The two-
dimensional cylinder, as a surface of revolution, is naturally homeomorphic to several
other two-dimensional manifolds (themselves also surfaces of revolution). Examples
are the one-sheeted hyperboloid, the paraboloid with its apex removed, the sphere
with two points removed, the ellipsoid with two points removed, the plane with the
origin removed, the upper sheet, of the two sheeted hyperboloid, with one point re-
moved, and so on. Using this fact, in this thesis we build Gabor type frames and
wavelets on thése manifolds. We also present a method for constructing wavelet-like
transforms on a large class of such surfaces of revolution using a group theoretic ap-
proach. Finally, as a beginning to a related but different sort of study, we construct
some localization operators associated to group representations, using symbols (in

the sense of pseudo-differential operators) which are operator valued functions on the
group.
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Chapter 1

Introduction

1.1 Time-frequency and wavelet analysis

The Fourier series, the Fourier transform and Fourier analysis in general, have played
an immense role in many areas of present day mathematical and scientific research —
far beyond what could have been anticipated when the theory, now popularly known
as Fourier analysis, was first created by Joseph Fourier in 1822 (see [3]). As is well
known, the Fourier series was devised to enable one to study signals in detail by
decomposing them into their frequency components. The idea here is that any 27-

periodic function f(z) can be written as the sum

o0
ao-i—Z(ancosnm—i—bnsinnx) (1.1.1)

n=1
of its Fourier components a,, and b,,
1 2w 1 27 1 2

a = 7~ f@)dz, an= - (z) cos(nz)dz, b, = - (z) sin(nz)dz
’ ’ ’ (1.1.2)

when the function is developed in the standard trigonometric basis. For many years

the Fourier transform remained the tool of choice for analyzing data arising from



problems in applied mathematics and signal processing. Apart from the analysis of
signals, the method also enabled one (e.g., in the case of stationary signals) to work
backwards and reconstruct the signal from a knowledge of its frequency distribution.
However, as is well known, the theory suffers from the drawback that for a non-
stationary signal, such as that representing, for example, a musical score, an analysis
into the component frequencies suppresses all knowledge of its profile in time. Using
the frequency distribution, one is unable to say, for example, when the musical piece
began. In other words, one does not, strictly speaking, have a time-frequency analysis
in this case — one either has a signal which is a fuction of time alone or of its frequency

components alone.

The first successful attempt at constructing a genuine time-frequency transform
of a signal appeared in a work by D. Gabor, published in [27]. Gabor suggested
that a more appropriate way to analyze a signal would be to use a “sliding window”
in time and to analyze the frequency content of the signal within this window at
each point of time. Specifically, Gabor proposed expanding a signal f as a series
f(z) = Y cmne®™™%g(z — na), where g is the Gaussian function (the window). His
basic idea was to use the expansion for data transmission: instead of transmitting
the function f, one could send the coeflicients c,, ,. Subsequent development of the
theory led, on the one hand to a continuous version of Gabor analysis and, on the
other hand, to wavelet analysis (both discrete and continuous). With hindsight, the
two approaches can now be subsumed within the theory of time-frequency (Gabor)

and time-scale (wavelet) analysis.

The idea behind the continuous Gabor or time-frequency transform is to take
the function f, representing the signal in time, and then to analyze the frequency
content of Xj—rt4r]-f, (With X[—rs4r] denoting the characteristic function of the set
[t — 7t + r]). This, to a good approximation, yields information on the frequency
content of the signal in the corresponding neighbourhood of . The resulting transform
then gives a proper time-frequency transform of the signal f. The technique can,
furthermore, be generalized by replacing the characteristic function x[;—r s of the set
[t—r,t+7] by a more general function, satisfying some additional technical conditions
and with support more or less concentrated in [t — r,t + r|]. The supplementary
technical conditions are needed to allow for a reconstruction of the signal from its

time-frequency transform. The Gabor transform, as this time-frequency transform



is often called, basically appears as the window function, modulated and translated,

and then convolved with the signal.

The notion of a wavelet first appeared in an appendix of the thesis of A. Haar
(1909) (see [3]). In a related development, between 1960 and 1980, the mathemati-
cians Guido Weiss and Ronald R. Coifman ( see [3] ) studied the problem of analyzing
elements of certain function spaces in terms of atoms, or elementary constituents of
these spaces, the goal being to find an appropriate set of atoms and a set of rules using
which any function in the space could be reconstructed in terms of the atoms. Such
studies fall within the scope of discrete wavelet and discrete time-frequency analyses.
The continuous wavelet transform, which may be viewed as a modification of the
continuous Gabor transform, also works with a basic window, satisfying certain tech-
nical conditions, but with the modulation being replaced by a scaling or dilation. In
a remarkable series of papers, Grossmann and Morlet in 1980 and Grossmann, Morlet
and Paul in 1985 (]29], [30],[32]) clarified and elaborated on the essential structure of
the wavelet transform, giving it, in the process, an elegant group theoretical interpre-
tation. The idea here was to consider a family of vectors ¢, ,, on the Hilbert space
L2(R) of signals, generated by a single vector v, called the mother wavelet, in the
Hilbert space. The parameter b runs through R while a is a non-zero real number.

Specifically,

nalo) = ol 0 (222), (113)

a
and the overlap integral of v, with the signal f then gives the wavelet transform,
as a function of the time b and inverse frequency a. It can then be shown that if the

mother wavelet satisfies the admissibility condition,

" 2
[, "
r |l
the signal can be reconstructed from its wavelet transform (f,,) in the manner,
dadb
f = / /<f7 "pb,a)wb,a"'{—: (115)
RJR a

with this latter equation being now called the reconstruction formula.

The original theory of the wavelet transform underwent rapid development in the
late 1980’s and 1990’s through the work of Daubechies, Mallat and Meyer, among



others. For details one may refer to [15], {16], [18], [19]. Today, the theory of time-
frequency and time-scale analysis, apart from its mathematical interest, has an im-
pressive range of practical applications, encompassing astronomy, acoustics, nuclear
engineering, sub-band coding, signal and image processing, neurophysiology, music,
magnetic resonance imaging, speech discrimination, optics, the study of fractals, tur-

bulence, earthquake prediction, radar imaging and human vision.

Gabor analysis took an entirely new direction from 1986 with the fundamental
paper [20], by Daubechies, Grossmann and Meyer where they developed an idea of
combining Gabor analysis with frame theory. The authors constructed tight frames
for L2(R) having the form {E,.;Tnag}mnez, and this contribution was the beginning
of an intense activity on wavelets which is still ongoing. For a collection of research
articles about Gabor systems we refer to [25]. The book by Grochenig [31] is also a

good source of information.

Nowadays, one of the current and important problems in signal analysis is the rep-
resentation and analysis of signals arising from non-Euclidean geometries (for example
in geophysics). This problem was considered by the research group of Jean-Pierre An-
toine and Pierre Vandergheynst ([5], [6], [8],[9],[10], [4], [7]) by constructing wavelets
on a sphere and on the upper sheet of a one-sheeted hyperboloid. For a collection of
research articles in the same direction we refer also to [11], [17], [28], [42],[43],[45].

With the aim of constructing wavelets on various non-Euclidean manifolds, Iva
Bogdanova in her thesis, Wavelets on non-FEuclidean manifolds, constructed wavelets

on the upper sheet of the two-sheeted hyperboloid.

The present thesis is an attempt to continue this work on two-dimensional mani-

folds in a systematic way. The content of this thesis can be summarized as follow:

Going back to a group theoretical treatment of a Gabor system, leads to a dis-
cretezation of the wavelet transform associated to the Schrodinger representation of
the Weyl-Heisenberg group. Recently, a generalization of the Weyl-Heisenberg group
has been presented in [36, 37]. Such a generalized Weyl-Heisenberg group is the cen-
tral extension of the direct product of a locally compact abelian group G with its dual
group G. By analogy with the standard Weyl-Heisenberg group, it is then possible
to construct Schrodinger-type representations in these general situations, which are
again continuous, unitary and irreducible. Since a Gabor system can be considered

as the orbit of a discrete subset of the Weyl-Heisenberg group, under the Schrédinger

4



action, this thesis presents a generalization of such a system using a discrete subset
of the generalized Weyl-Heisenberg group. The Walnut type representation of the
corresponding frame operator is also presented.

Next, the fact that a 2D-cylinder € = S* x R is a locally compact abelian group,
is used to construct a time-frequency transform on it. On the other hand, using a
particular group, we also construct a wavelet transform on a cylinder. We then trans-
fer these transforms (time-frequency and wavelet) to some non-Euclidean manifolds
which are topologically homeomorphic to the cylinder.

The basic idea is as follows:

Let £ be a smooth curve in R?, which is parametrized as

u(2)

) FAS ]Ra
v(2)

where v and v are two smooth functions. We assume that this map is a homeomor-

Z —

phism between R and £. The map

cos f u(z) cos @
Vilsing | | u(z)sind (1.1.6)
z v(2)

transforms the cylinder, homeomorphically to a surface of revolution & about the

z-axis.
The surface element do3 on the cylinder transforms to
dog(0, z) = w(z) df dz, (1.1.7)

on this surface, where w(z) = |u(z)| [v/(z)? + v/(2)?]2. The mapping V then induces
a unitary map V : L2(€, dzdf) — L*(&,dos), defined by

u(z) cos @ cos b
(Vf) u(z)sing | | = @)% f | | sing | |- (1.1.8)
v(2) z



By using this approach, we present a family of wavelet transforms on some sur-
faces of revolution such as the one-sheeted hyperboloid, two-sheeted hyperboloid,

paraboloid, ellipsoid, sphere, 2-D plane, etc.
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Figure 1.1: Examples of non-Euclidean manifolds: (a) Cylinder, (b) One-sheeted 2-

hyperboloid, (¢)Two-sheeted 2-hyperboloid, (d) Ellipsoid, (e)Paraboloid, (f) Sphere



Using Mackey’s theory of the induced representations, we present a wavelet trans-
form on some general two-dimensional surfaces given by the equation z = (2% + y*)*,
where « is a real number, by using a specific group. The wavelet transform on the

paraboloid is obtained by taking o = 1.

Finally, a short study of a localization operator associated to a group represen-
tation where the symbol is assumed to be an operator valued function on the group
is presented. This generalizes the standard one when the value of the symbol is a
multiple of the identity on the Hilbert space of the representation. An application is

given by using a spin representation of the Galilei group.

1.2 Main contributions

The contents of this thesis may be summarized as follows:

1. In chapters 2 and 3, after introducing the Gabor system associated to any
abstract abelian group, we generalize some necessary and sufficient conditions
for the system to be a frame. As an example, the Gabor type frame on the
torus is constructed. The Walnut representation is also presented. We define a
generalized shift-invariant system on L%(G) and present some results associated
to it.

2. In chapter 4, the idea of the first chapter is used to construct Gabor type frames
on various surfaces, namely the sphere, the ellipsoid, the one-sheeted hyper-
boloid, the upper sheet of a two-sheeted hyperboloid, paraboloid and plane.
The idea is that the infinite 2D-cylinder can be mapped homeomorphically to
all those surfaces, possibly with one or two points removed.

3. In chapter 5, as in the fourth chapter, we construct affine type wavelets on the

infinite cylinder and map it to various surfaces.

4. In chapter 6, we present a wavelet transform on a paraboloid through a repre-

sentation of a particular group.



5. Localization operators associated to group representations and their bounded-
ness is presented in [46], in which the symbol is taken as a complex valued
function on a group. In chapter 7, we present localization operators with the
symbol as an operator valued function on a group. An application is given by

using the spin representation of the extended Galilei group.



Chapter 2

Gabor-type Frames Associated to a
Generalized Weyl-Heisenberg

Group

2.1 Preliminaries

Gabor systems nowadays play a central role in e.g. signal processing, image and
data compression. A deep analysis of necessary and sufficient conditions for the
convergence of the frame operator is a fundamental problem in Gabor frame analy-
sis. In [33], some necessary and sufficient conditions are given on the Gabor system
{EmpTnag}munez to be a frame. In {12], weaker sufficient conditions are given and this

result is based on the Ron and Shen characterization of Gabor frames [40].

There exists an abundance of frame-related results, in the literature, for Gabor
frames. A good sampling of these may be found, for example, in [12, 20, 25, 31, 33, 40].

In the present chapter and the following, we work out extensions of several of these

10



results, in particular those dealing with the boundedness and invertibility of the frame
operator, to geﬁeralized Gabor systems. Specifically, we refer to Theorems 2.2.1, 2.3.1,
2.3.2 and 2.4.1 below. We ought to also mention that generalized Weyl-Heisenberg
groups have also been looked at for other and related studies. A good reference is
the work edited by H. Feichtinger and T. Strohmer [25] and in particular, Chapter
7 of that book. We begin by giving the central definitions and some necessary and

sufficient conditions for a standard Gabor system to be a frame.

2.1.1 Some definitions

A sequence {f}%2, of elements in a Hilbert space H is called a Bessel sequence if

there exists a constant B > 0 such that

| {(ffe) P<BIFI? VieH (2.1.1)

NE

ES
il

1
A Riesz basis for H is a family of the form {Uex}32,, where {ex }$2, is an orthonormal

basis for H and U : H — 'H is a bounded bijective operator.

(i) A sequence {fi}32, of elements in a Hilbert space H is called a frame for H if
there exist constants A, B > 0 such that

ALFIPSY I PEBIFIP, VfeH. (2.1.2)
k=1

The numbers A and B are called frame bounds.

(ii) A frame is tight if we can choose A = B as frame bounds.

The condition (2.1.2) is equivalent to say that, the following operator, the so call
the frame operator S = Y ;o | fi){fx | associated to {fx}3>, is bounded above and

below:

Al < S < BL (2.1.3)

11



Lemma 2.1.1- Assume that {fx}32,, is an overcomplete frame with frame operator
S. Then there exist frames {gi}3, # {S™  fi}io, for which

F=>Aflofu, feM (2.1.4)

keZ

A frame {g;}32, satisfying (2.1.1) is call a dual frame of {fi}32;.

The following Lemma will be useful in the sequel.

Lemma 2.1.2 Let {fi}32,, be a frame. Then the following are equivalent:

(i) {fu}iZ is tight.

(11) {fe}er, has a dual frame of the form g, = C fi, for some constant C > 0.

2.1.2 Weyl-Heisenberg frame

Let z,w be real numbers. The unitary operators defined on L?(R) by
T.f(y) = f(y — x), and E, f(y) = ™ f(y), are called translation and modulation

operators, respectively.

A Weyl—Heiéenberg frame, or synonymously, a Gabor frame is a frame for L2(R) of
the form {E,yTneg }mnez, Where a,b > 0 and g € L*(R) is a fixed function. Explicitly,

EmpThag(z) = €™ g(z — na).

The function g is called the window function or the frame generator. For an exhaustive

list of papers dealing with such frames we refer to the monograph [25].

Our main results in this chapter will consist of generalizations of the following

four theorems for standard Gabor or Weyl-Heisenberg frames [14].

Theorem 2.1.1 Let g € L*(R) and a,b > 0 be given. Then the following holds:

(i) If ab> 1, then {EmyTnag}mmnez is not a frame for L*(R).
() If {EmpTnag}mnez 15 a frame, then

ab=1% {EnwTheg}tmnez i o Riesz basis.

12



In [39], there is the following stronger result than (i) : when ab > 1, the family
{EmpTna9}mmnez cannot even be complete in L%(R). The assumption ab < 1 is not
enough for {EpTneg}tmnez to be a frame, even if g # 0. For example, if a € [%, 1],
the set of functions {Eanax[O, 1 ]}m,nez is not complete in L*(R) and cannot form a

frame.

Proposition 8.3.2 in [14] gives a necessary condition for a Gabor system to be
a frame. Sufficient conditions for {E,sTneg}mnez to be a frame for L%(R) have
been known since 1988, the basic insight being provided by Daubechies [18]. A slight
improvement was proved in [33]. Later, Ron and Shen [40] were able to give a complete
characterization of Gabor frames, spelled out in the next theorem. Given g € L2(R),

consider the matrix-valued function

M(z) = {g(z — na —m/b)} (2.1.5)

mnEZ "

The matrix M (xz)M*(x) is positive.

Theorem 2.1.2 {E;,Th0g}tmnez is a frame for L*(R) with bounds A, B if and only
if
bAI < M(z)M*(z) < bBI, a.e., (2.1.6)

where 1 is the identity operator on (2(Z).

This theorem is a special case of the following characterization [14] of a shift-invariant

system to be a frame.

Recall that if {g,, }mer is a collection of functions in L?(R), the shift-invariant
system generated by
{gm}mer and some a € R is the collection of functions {gm(. — na)}meinez. Usually

we will set [ = Z.

Given a shift-invariant system {g,(. — na)}nmez for L2(R), define the matrix-
valued function H(v), v € R, by

Hv) = (Gn(v—Fk/a))mez, ae, (2.1.7)

g denoting the Fourier transform of g. The following theorem then contains a gener-
alization of Theorem 2.1.2 to any shift-invariant system {g,,(. — na)}, mez for L%(R)
[14]:

13



Theorem 2.1.3 With the above setting, the following hold:

(i) {gnm} is a Bessel sequence with upper bound B if and only if H(v), for almost
all v, defines a bounded operator on 1*(Z) of norm at most vaB.

(i3) {gnm} is a frame for L*(R) with frame bounds A, B if and only if
aAl < Hw)H*(v) < aBl, a.e.v. (2.1.8)

(iii) {gnm} is a tight frame for L*(R) if and only if there is a constant ¢ > 0 such
that

> G (W)im(v + k/a) = clro, kEZ, ae.v. (2.1.9)

meEZ

In case (2.1.9) is satisfied, the frame bound is A = c/a.

() Two shift-invariant systems {gnm} and {hnm}, which form Bessel sequences,

are dual frames if and only if

Z dm(W)hm(v +k/a) = adxo, k€ Z, ae.v. (2.1.10)

mezZ

Theorem 2.1.2 is difficult to apply. This leads to a sufficient condition [12] for
{ErsTnag}mnez to be a frame for L2(R).

Theorem 2.1.4 Let g € L2(R) and a,b > 0 and suppose that

B := = sup Z | Zg z —na)g(z — na — k/b) |< oco. (2.1.11)

b e€l0a] yo7  nez

Then {EmpTnag }mmnez s a Bessel sequence with upper frame bound B. If also

A=y inf > late=na) P = 3 I3 ole — na)aCe—na— 5|

0#kEZ neZ
(2.1.12)

Then {EppTnagtmnez is a frame for L2(R) with bounds A, B.

14



2.2 (Generalized Weyl-Heisenberg group

Definition 2.2.1 Let G be a locally compact abelian (LCA) group, G its dual group,
dx and d¢ their Haar measures, respectively. Let T be the unit circle and put
Hg =G x G xT. For (g1, w1, 21) and (go, w2, 22) in Hg, define the following compo-

sition:
(g1, w1, 21).(g2, w2, 22) = (9192,w1w2,2122w2(91))- (2.2.13)

Hg s closed under this action, which is also associative. Equipped with this product,
Hg is a group, called the generalized Weyl-Heisenberg group, associated with G. This
group is nonabelian, locally compact, and unimodular [41], with invariant measure
dzdédd (where z = €¥).

A uniform lattice in G is a discrete subgroup K of G such that G/K is compact. For
a uniform lattice K in G, Ann(K) denotes the annihilator of K, i.e.,
Ann(K) ={y€G : y(k)=1,Vke K}.

By Lemma 24.5 of [34], we know that Ann(K) ~ CT/?(, so that Ann(K) is a

discrete subgroup of G.

Let m: Hp — U (LQ(G)> be the Schrodinger representation of Hg, which is a

unitary, irreducible representation, given explicitly by
(7(7,2)9) (1) = 9 (B)glta™), (2.2.14)
for all (z,7, 2) € Hg and almost all g € L*(G). In [36] frames of L?(G) of the type

{6?’“’7) - (W(k’ s l)g) }(k,'y)eKXAnn(K) ’ (22.15)

where K is a uniform lattice in G, have been studied. In this case, taking G = R and

K = aZ and defining the dual pairing in the usual way:
E(z) = ™ (2.2.16)

: 1
we obtain Ann(K) = —Z. Thus, the Gabor system defined by (2.2.15) is
a

{ehfzmg(m - 'na)}mmEZ , (2.2.17)
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which is a particular case (ab = 1) of the standard Gabor system:
{e*mbg(z — na)}mneZ . (2.2.18)

In this chapter, we study frames for L2(G) of the form

7 = (n(k 1 2.
{@(’“1’72) (W( L2 )g)}(kl,’Yz)EleAnn(Kz)’ (2.2.19)

where K; and K, are two lattices in G. Such a frame is clearly a generalization of

a Gabor frame, because if we take K; = aZ and Ky = —Z and use the same dual
pairing as above, we get exactly the standard Gabor system (2.2.18).

Definition 2.2.2 The set defined by

o } 2.2.2
{ (k1,72) (k1,72) €K1 x Ann(K2) ( O)

will be called the generalized Gabor system for L?(G) associated to the uniform lattices
K and K,, and the window function g.

Let K be a uniform lattice of a LCA group G. The lattice size is defined as the
measure of the a fundamental domain U of K, this latter being a measurable subset
of G such that every z in G can be uniquely written as z = uk™!; k€ Kandu e U.
Equivalently, G is a disjoint union of the sets kU = Tx(U).

Once the Haar measure dz on G, is fixed, there exists a unique invariant measure
v on G/K which satisfies the Weil formula (see, e.g, Chapter 6 of [25]), so that if
f € LYG,dz), then ¥, f(zk) € L' (G/K,dv) and

/G f(x)dz = /G /KZ Flk)dv(y), (2.2.21)

keK

Also, v (G/K) is the lattice size of K in G.

Now, let K; and K, be two uniform lattices in G and let 14 and v, be the unique
invariant measures on G/K; and G/K, respectively, which satisfy Weil’s formula
(2.2.21). Also, let 4 and ©» be the unique invariant measures on G/Ann(K,) and
G /Ann(K,) respectively, which satisfy the Weil formula,

[f(&)d£= . Yoo Fywdoy); i=1,2 VfeLYG). (2.2.22)
G G/Ann(K;)

vEAnn(K;)
The following Lemmas are essential for this work:
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Lemma 2.2.1 Let f,g € L*(G,dx) and let K, and K be two uniform lattices in G.
Then, for any ky € Ks, the series

S flakig(aki ks ) (2.2.23)

ki€K,

converges absolutely for almost all x € G and the function

g Y | fleki)g(ekiTkyY) | € LY(G/Ky,dwy), (2.2.24)

k1€EK,

Proof. Since f € L?(G) and Ty,g € L*(G), then f.T},g € L*(G). But,

/G > lffkl g(EkT kg )!du1(§)=/G|f(x)g(xk;1)|dx<oo, (2.2.25)

/KL jeky
by Hélder’s inequality. This implies that >, op, | f(@ki")g(zki 'k;') |[< 00 ,a.c. m

Lemma 2.2.2 Let f,g € L?(G,dz) and let Ky, K5 be two uniform lattices in G. For
a fized ky € K1, consider the function Fy, € LY(G/Ka,dvs), defined by

Fio(z) = Y flakyh)g(aki kD). (2.2.26)
ko€K2

Then, for any (k1,72) € K1 x Ann(K3), we have

(1% ) = . O (). (2.2.27)

Proof.

(16 ) = | @) (@)alak Via
= /G > 7a(€ks ) (kg (Eky Ty )dra(€)

- /G @) S ek )g(Eky Tk dva(€)

/K2 ko€K>

- / 72(&) Fi (€)dva(€). (2.2.28)
G/

17



Let us now present the generalization of the WH-frame identity (see [14], Lemma
8.4.3) for an arbitrary LCA group G. Our generalization appears in Lemma 2.2.3
below. Consider the function H,, defined by

Hig(e)= 3 | glaki™) > (2:2.29)

k1€K;

Lemma 2.2.3 Let f,g € L*(G,dx) and K1, Ko be two uniform lattices in G. Suppose
that f is a bounded measurable function with compact support and that the function
Hy, defined by (2.2.29) is bounded. Then

S 1188 P (2.2.30)

ki1€K1 v2€Ann(Ky)

= 1 (G/K) /G 1@ P Y | okt P da

k1EK,

tonGE) Y /G F@ (k") S ook glah; & Dz,

lg#ka€Ky k1€K:

where v (G/Ks) denotes the measure of G/ K.

Proof. From Theorem 4.26 in [26], we conclude that the set of functions
-1
{V2 (G/KQ) 2 72}'72€Ann(K2)

is an orthonormal basis for L?(G/Kj, dvs). By Parseval’s theorem, we have

S 1| %@ Fu@dn@) P = v(G/K)

ya€Ann(K;) Y GIK2

X / | By, (z) |? da(z). (2.2.31)
G/K>

18



which implies that

SN e, P (2.2.32)
ki€K; vo€Ann(Ko)
=3 S 1] R@F.©dnE) P

k€K ypeAnn(Ky) Y G/K2

=~ w(G/K) X [ 1 Fu(e) P dnfe)

ek, Y G/K2
= w(C/K) / Fio(€) 3 F(Ek; Do(eks ki t)dua(6)
k€K1 koeKo

IS 3 / Foy (2)F@)g (ki Vda

k1€K) G

= 1 (G/Ka) Y /f(x)g oki) D flakyt)g(ek; Tk dz

kek, Y G kz€ Ky

= w(G/K) [ 1@ P Y ok [ do

k€K1

+ 1 (G/Ks) > / F@)f(zks") D gzksg(zk; k") de.

lg#ka€K2 k1€Ky

The following is a generalization of Theorem 2.1.4 to any LCA group G.

Theorem 2.2.1 Let K1 and Ky be two uniform lattices of the LCA group G. Let
g € LA(G,dz) such that:

=1y (G/K2) sup > | Y gl g(zkitkyt) |< oo. (2.2.33)
2€G/K1 poeky kieK:

Then {69

also

by 72}(k1,72)€leAnn(Kz) 1s a Bessel sequence with upper frame bound B. If

A= 1)2 (G/KQ) X

inf | Y gk P= Y 1D glakiDaleki k) | | >0,
z€G/K)
ki1€K; 1g#ke€Ka k1€K:
(2.2.34)
then {@il,'yz}(k11’72)6K1XAnn(K2) is a frame for L*(G,dz) with bounds A, B.
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Proof.

For ky € K», fixed, define the function Hy, by

sz(m) =

2

| T2 Hi () |

> kek, Ter 9(2) Ty, 9(x). We have:

Yo T D Thg(@)Targ(@) |

1lg#k2€Ko lg#ke€ K2 k1€EK1
= Y Y Be@Tag@ | (2235)
lg#k€Ks k1€K;
Replacing ks by k5 ', we have
Yo T Hy@) | = > [T Y Tug(@)Tky(@) |
lg#keeK2 lg#k2€K2 k€K,
= Z | Z Tklkz—lg(-r)ng(m) |
la#k€Ks ki€K)
= Z I ZTkl Tklkz ( )!
lg#ko€Ka2 ki1€Ky
= Y |Hy,@]. (2.2.36)
lg#k2€K2
Thus,
| Y [T@er) Y awkielkR x| (223)
| lg#k2€Ka ki€eKy
= I Z /f Tkz sz((E)dl‘l
lg#k2€Ko
< X 1@ Tt @ ]| Hafe) | de
1g;£k2€K2

(using the Cauchy-Schwarz inquality twice: with respect

- to the integral and the sum)

< /lf(w .

| Hy, () | dz.

IG#kzeKz
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By Lemma 2.2.3, we have

Z ' Z ] <f|®?k1,72)> |2

k1€K1 va€ Ann(K2)

Ve (G/Kz)/G <| fl@) ? [ch(w)Jr YooY Tug(@)Tkg(@) ID dx

lg#k:€K2 k€K,

IA

= 0 (G/K) / dz | f@) P 3 | Y Tug@)Thng@) |

ko€Ka ki€K,
< B fI?.

Also, we have

Z Z l <f|@?k1,’72)> |2

k1€K) yo€Ann(K2)

2 v (G/K2)/G <| f(z) [? |:H1G(x) - Z | Z T, 9() Ty, 9( )l}) dx

lg#ko€K2 k€K

> Al

Since the frame conditions hold for all f in a dense subspace of L?(G), it is true for

any element of L%(G). m

Remark 2.2.1 The above result is more general than, and s in fact an extension to
other classes of groups, of the results in [12, 33]. By taking G = R, K, = aZ, and

K, = EZ’ we recover Theorem 2.1.4.

2.3 Frames on the torus T¢

Let G = T? be the torus in d dimensions. Let N;, M; € N*, i = 1,2,...,d, be 2d
positive integers. For simplicity, we adopt the following notation in this section:

Let n = (ny,...,nq), N = (Ny,...,Ng) and M = (My,...,My). Set (n,N) =
(7'\‘,—1;, %, very ]7\’,—‘;) and (m,IMN) = (ﬁ—i, TN %) and consider the following two uni-
form lattices in T¢:
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K2 ={(n,M):n;=0,1,...,N; — 1, for i = 1,...,d} (2.3.38)
and

K2 = {(m,M) :m; =0,1,...M; =1, for i=1,...,d}. (2.3.39)

Using these, we form the sets

1 1
T¢ /K2 = — — | =A
/’Cl |:O7 N1:| X X l:oa Nd] 1,
T¢/KE = |0 2lxoxlo—|=a
2 =V M| 2
and
Ann(ICQQ) = {’yk(g) = 62”2?=1Mjkj“’j; k= (k1,....kq) € Zd} .

1
Note that { (H‘;:l Mz) ’ ’y} is an orthonormal basis of L%(A;), and we have:
'yEAnn(lC%‘ll‘)

Corollary 2.3.1 Let g € L*(T?), and N;, M;, i = 1,2,...,d, be 2d positive integers
such that:

B: = —— sup YooY g(lz-@m)

d
” M,; zeA;
LT ET (mamek® (nonek®

x g(lz— 0N~ (m,M)]) [< oo . (2.3.40)

Then {fykT(nm)g}((n ) k) Ex e is a Bessel sequence for L*(T?) with upper bound B.
- A LLYCA TS 1
If also

! inf[ > ez @®) P

A= ——— o
. . TED
1L M, (naekit

- ool Y glz-@M)gz- @M - mM) || >0,

oA(mMeke (nMekT

(2.3.41)

then {'MT(‘—"ﬂ)g}((g,_fx_t),g)elc?xzd is a frame for L2(T?) with bounds A, B.
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We observe immediately that the canonical commutation relations,

2mi 5 Mj ()

Taumve =€ ks Vel (nm) >

hold in this case. Indeed, for g € L?*(T¢) we see that,

2mi Z‘;=1 M; (xj"%]'?

(T o) () = Tinay (€5 Z51 2050 (2)) = e )% (2 - ()

_27rzz“;=l il it ¥

= e N y(z)g (lz — (1, )

e 2 T M@ ki (1) Ty () -

It will be useful, for the purposes of the next section, to note that the frame oper-
ator, S =Y (090 )k x 2 | YT (o) 9) (VeI (nm)9 |, commutes with the corresponding

modulation and translation operators.

Lemma 2.3.1 Let g € L*(T¢) and let N;, M;, i = 1,2,...,d, be 2d positive integers
such that {’V&T(E,g_'t)g}((n o k)ekze 1S o frame for L*(T%). If S is the corresponding
frame operator then,

ST () Vs = T(no) Vs> for all kg € Z7, and all (ng, ) € K7

Proof. Let f € L?*(T%). We know that

S = . Yl uTanduTang (2.3.42)

d N
E€Z? (n,oM)ekT
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so that,

(SVEJ,T(EQ,_@))J” = > > | oo ) | T 9) T 0209

keZ (n ek

= D > (1T - %Teng) % lnmng

keZ (nomex]
2mi Y4 M (no, M) (kj—koj
= Y X (T it T gy ) 9)
EeZ? (n ek
X Yelnmg
2ri 4, M;(no,M) kj
= 3 Y (NS )
k€L (n ekt
X Vikko T (ning ;)9
2ni 0_, M;(no, M) k;
= D, > (fle Eies M (20, VeT (a3 9)
kezd (nfﬁ)elcm-

2ni M, M)
€ ZJ 1 (“0 )] ’kaT(nom)')/kT(nm)g

= > Y FluTawd) T, (n0.20) YL (0209

kezd (nomek®

= (MT(wm)S) F

2.3.1 Necessary condition for having frames on the torus T¢

We derive, in the next theorem, conditions for the existence of frames on L2?(T¢9),
which will be analogues of the conditions imposed by the product ab, in Theorem
2.1.1, for {EmpTragtmnez to be a Gabor frame for L*(R).

We start by fixing a certain partition of T¢. For k = 1, ...,d, let i} € {0,1, ..., M} —
1}. For a d—tuplet (i1, %2, ...,14), of such i, let us define the subset I'¢, 4,4, bY

i1 t1+1 ig tg+1
Liigigiy) = | = ——— —_—— . .3.
(31,582 va) I:Ml M, :I X |:Md M, ] (2343)

It is easy to see that these subsets have the following properties:
Uie=0,....Mp—Lik=1,....dL (i1 ia,...sia) = T, (2.3.44)
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F(h,iz,-..,id) N F(Zl i senily) = (Z) a.e. if (il, ig, ey Zd) 7é (’Lll, 1’2, ey Z:i) , (2345)

1

Timony (Diivsizs i) N Tissin,ia) = 0, ace. (2.3.46)
for all (o, 90) # (m, M) € IC% and all (iq, g, ...,%q) .
Let
F(T% = {f € L*(T?% : (i1, 4,...,4a) and supp(f) C Tiiyrig,in) |
Then, by virtue of (2.3.44),
F(T%) isdensein L*T9), (2.3.47)

and by (2.3.46),
Vf € F(TY), f(z) Tman f(2) = 0, (2.3.48)
for almost all z € T¢ and all (m, M) € K2 and (o, M) # (m, M).

The following gives a necessary condition for having frame on L?(T¢%)

Theorem 2.3.1 Let g € L*(T9), and let N;, M;, i = 1,2,...,d, be 2d positive inte-
gers. Then the following hold:

@1 () > (T ),  then
{VE—T(E’m)g}((n,%_‘t),_lg)elclﬂxzd is a not a frame for L2(TY).
(i) If {'}/E_T(n,m)g}((Eym)’&)elc_‘i_txzd is a frame for L*(T%), then

d d : , :
[liey Mi =115, N, & {'MT(E@)Q}((g,%_?),&)elclﬂxzd is a Riesz basis.

Proof. Let us assume that {v;T(nm) g4 18 & frame for L?(T?) with

g} (20, k) kD

frame operator S. Then {S 3 (76T g)} is a tight frame for L2(T¢)

(n2),k)ecTx2d
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with frame bounds 1. Let f € F(T9). Using Lemma2.2.3, Lemma2.3.1, and (2.3.48),
we have:

L@ Pdz = > Y {157 (mTem9)) I

keZ¢ (nyexd

= 3 S I wTamS i) P

d m
k€Z? (n0)eKT

= —_— 1 X
H] 1 M

IREC 15739 (lz— (0, V) P dr, (2.3.49)

_11 e)c—

which implies that

. d
> 1872 g(lz - (W) P=][M;, ae.,inT? (2.3.50)

(nWekT j=1

Since

{ 573 (% Twm9) }

((n, M) k) ek xz4
is a tight frame, we have

1

v

1577 (WeTmag) II?

= 15 P i

- // / S 157z — (W) P de

(n,‘Jt)eIC1

- () (1)

which proves (i). In order to prove part (ii), let us assume that {xT(n9} (0,90 B ek xze

is a Riesz Basis. Then {’Y&T(E,lt)s_% g}((g,m),&)elclﬂ g is a Riesz Basis having bounds

A = B =1, which implies that || S~2g |[|2= 1. So we have H?:l M; = [];_; N;. For the
second implication, let us assume that szl M; =[1;; N;. Then || vT(nmS ~3g 2=
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1, for all k € Z¢ and all (n,M) € KT . Thus, {VET(n,m)s—%g}((m@e’clﬂw is a an

orthonormal Basis for L2(T¢), and therefore,

1 -1
{'Y_IQT(E,?_'()Q} (02, k)ekBxzd — {5'2 YeT(n oS~ 2 g}((g,v_‘(),&)elc?xzd (2.3.51)

is a Riesz basis. m

2‘.3.2 Generalization to arbitrary LCA groups

We show next that the above theorem can be extended to any LCA group G, thus
constituting a generalization of Theorem 2.1.1 to any such group. Before stating the

result, we note two commutation relations.

For (k1,72) € K1 x Ann(Ks), we have
Tiyv2 = 712 (k1) v Tk, - (2.3.52)
Also, for (k?,49) € K; x Ann(K3), we have
SvaTko = 13T S - (2.3.53)
Indeed, for f,g € L*(G),

(S'YSTk‘l’)f = > Y (ATefImTung)reThg

k1€K) ya€Ann(K?2)

= Z Z <f|T(k‘1’)—1 (')’g) _172Tklg>72Tklg

k1€K1 yo€ Ann(K3)

= 2 (6D M) B08) T, )19 1T g

k1€K1 yo€Ann(Ky)

= Z Z (F172Ty, 9073 Teo72 T3, 9

E1eKy F2€AnN(K2)

whence the result.

Theorem 2.3.2 Let g € L%(G,dx) and let K; and K, be two uniform lattices in G.
Then, the following hold:
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3 148 G K1
(i) If V2§G§K2; > 1, then
{Oks o)} (krv)eKy x Ann(Kz) 18 a not @ frame for L*(G, dz).

(ii) If {@?kl,'yz)}(kly’Yz)eKlXA"“(K2) is a frame for L?(G,dz), then
n(G/Ky) =1 (G/K,y) & {@€k1,72)}(k1,72)€K1XA””(K2) is a Riesz basis.

Proof. Let U be a fundamental domain of Kj in G. For ky € Ko,
let Uk2 = Tk2U - kQU

We have:

(i) Ukyer Uk, = G

(11) ng n Uké = @, for k‘g 74 ké

Let
F(G)={f € L*G,dzx) : Ik € Ky and supp(f) C Uy}

and assume that {@il,qg}(kmﬂelﬁx Ann(ky) 1s a frame for L?(G). Then, the set of

vectors {Gi;jzg}(kly’)’z)e}clXAnn(ICz) is a tight frame with bounds 1. Let f € F(G).
Using Lemma 2.2.3, and the statements (i) and (ii), we have:

/G f@Pdz = 5 S [(f | mTuS Hg) P

k1€, 'ygArm K:z)

= w(@/K) [ f@ P Y 157 (ohi?) P ds, (235)

ki1€K)

which implies that

S 1575g (akY) P= 10 (G/K2)™!, e in G. (2.3.55)

kieky
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Since {S‘l T } is a tight frame, we h
2 (YT, 9) o)X Amn(C) is a tight frame, we have

1 > “S (2T, 9) |12

= /]S 2g(z) |? dz

= [ % Istha(en) F )

/K1 ki€K;
= [ w(G/E) A
G/K,

1241 (G/Kl)

= 1 (G/K) 2 (G/K)™ = oz

which proves (i). For part (11) let assume that {¥2Tk, 9}k, )k, x ann(k;,) 1S @ Riesz basis.

Then the set of vectors { —3 (v2Tk, 9 )} is a Riesz Basis having bounds
(k1,v2)EK1 x Ann(K2)

A = B =1, which implies that || S~2g ||*= 1. So, we have 11 (G/K1) = 15 (G/K2).
For the second implication, let assume that vy (G/K;) = v5 (G/K3) , then || 19Tk, S"2g ||>=
1, for all (k1,72) € K1 x Ann(K3). Then {ngle‘%g is a an or-

(k1,y2)EK1 X Ann(K2)
thonormal Basis for L%(G, dx), and therefore,

1 ~1
B G U} A L)

is a Riesz basis. m

2.4 General shift-invariant systems

In this section, using an obvious generalization of the notion of a shift invariant
system, defined in Section 6.1, we present a complete characterization of a generalized
Gabor frame on L?(G), where G is any locally compact Abelian group. The result
will be an extension of the result of Ron and Shen [40] on L?(R). Recall that for an
LCA group the Fourier transform is a map F defined from L'(G) — C (@) by

(FHE) = F(€) = /G 8 f(z)da. (2.4.57)
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Let define the following operations:

(yz, &) = (y,€)(z,£), Yo,y € G andV ¢ € G. (2.4.58)
(@,€) = (Y, &), Vo € G andVE € G, (2.4.59)
(nf) (z) = (z,n) f(z), V& € GV n € G, where f is complex valued function on G.

(2.4.60)

This can be extended to a map L2(G) — L2(G), satisfying the well-known Plancherel
identity. The following properties of the Fourier transform will be required in the

sequel:

@) © = [@ora e = | Grdse
v, 19, (2.4.61)

For n e'@, we have : (777) & = /Gm(m,n)f(x)dx zf(n—lﬁ) (2.4.62)

Let {gm}mez be a collection of functions in L*(G) and K a uniform lattice in
G. For m € Z and k; € K, consider the function g, ,,, defined on G by gi, m(z) =
Im(zkh).

Lemma 2.4.1 Let {gr, m tmezikick; and {hiy mtmezk ek, be two shift invariant sys-
tems and assume that they are Bessel sequences. Then, fore, f € L*(G), the function,

Ple,f): G —C
=YY (Tee | Giym) iy | Tef) (2.4.63)

meZ ki1€K1

is continuous and well defined on G/K,. Its Fourier series in L? (G/K,) is

Ple,fi(z) = > cymla), (2.4.64)

v €Ann(K1)

where,

ey = n(G/Ky)™ /@é(&)f(&w)Zg;;(oﬁi(&m)dg, n € Ann(K7).

mez
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Proof. Using the Cauchy-Schwarz inequality and the fact that the sets
{9ky,m Imezikier, and {hk, mtmezk ek, are Bessel sequences, we conclude that the
series defined by P (e, f) (z) converges absolutely. Also, for any k; € K, we have
Pe, f)(zki) = P (e, f)(x), for almost all x € G. Hence P (e, f) is well defined
as a function on G/Kj. For the determination of the Fourier coefficients, let assume

that e, f are continuous and have compact supports. Then the coefficients c,,, with

respect to {71(Z)}y,cann(k,), are given by
en = n(G/E)T [ pled)©nEE)
G/K:
= @K Y / (Tee | gm (F7))on (K1) | Tefy 0@ (€)

meZ k€K,

= 1 (G/Ki)” Z/Telgm m[Tf>'Yl()
mezZ

= n(G/K)" Y [ (Tee | gl TF TRy ia)da (2.465)
meZ

For an arbitrary ¢ € L%(G),

(T | 6) = (FToe | 70) = | E@e()3@)de = 7 (¢3) (@), (2:466)

The last equality is justified by identifying G and @ and adopting the natural dual

pairing.

Also, using (2.4.66) and (2.4.61), we have:

(Tef | hmdni(@) = n(@)F (fhim) (@)

- f(Tvl_l f.i}m) (). (2.4.67)
Using (2.4.66) and (2.4.67) in (2.4.65), we have
¢y = n(G/Ky)~ Z/]: (T,Yl—lf.ﬁ)(a:)dx
meZ
= n(G/Ky) Z/ { - (f fwm)] (€)de
= n(G/E) [ 4O FE X in©hnlewde.  (2468)



We proceed to characterize the frame properties of shift-invariant systems for
L*(G), where G is an arbitrary LCA group. Let {gm }mez, be a collection of functions

in L?(G) and K, a uniform lattice in G. For £ € @, consider the matrix valued

function H(é-) = {g'n,m(g) = gm (57{1)}m€Z;W1EAnn(K1)~

Proposition 2.4.1 Assume that the system {gy, m }(yi,m)eAnn(K1)x2Z, has finite upper
frame bound B. Then, for almost all £ € @, H(&) defines a bounded linear operator
from £2(Z) into £? (Ann(K})) with operator norm < (v, (G/K;) .B)l/2 . Ezplicitly,

S 1Y 9mlEn)Bn P< i (G/EL) B B I, (2.4.69)

yi€Ann(K1) meZ

for almost all € € G and B € ().

Ann(K) )) = Ann (Ann(K;)) = Ki, we see that K

is an orthonormal basis of L? (G JAnn (K1), v (G/Ky)™ dl?l) , where the action is
defined in a natural way by k(&) = &(k1).

Proof. Using the fact that (

Let ok, m # 0 for only finitely many (k1,m) € Ky X Z, and let

Z Ay m€ (k1) = Z ey mk (€). (2.4.70)

k€K, kieK;,

For any v; € Ann(K), we have ay,(€71) = apn(§). Thus, o, is well defined as a

function on G /Ann (Ky), and we have:

/G Do 1D em(©dm(En) P din(€) = (2.4.71)

/Ann(KL) o e anm(Ky) meL

/lzam )om (€) | dé.

meZ

Using Parseval’s theorem (or the fact that the Fourier transform is a unitary operator)
and (2.4.61), we have:

1Y mk)im© Pde=l Y akmGrm I (24.72)

G ki1€K1;meZ k1€EKq1;meZ
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Also, we have

I > ehmgeml® < B > Jowml? (2.4.73)

kieKymeZ k1€eK;meZ

and

lal®> = > lauml

ki1€EK1;meZ
= G/K m (&) |2 diy (€). 2.4.74
n (G/K) /a/AWl)mZ;Z'“ (€) P din(e) (2.4.74)
Using (2.4.72), (2.4.73) and(2.4.74), we obtain
m(E)Gm(EVTY) |2 din(€) < 2.4.75
/@/A'rm(Kl)—ne%(Kl) I mZE:Za ( )g ( n )l Ul( ) ( )
n(G/E) [ Y () P din(e).

G/Ann(Ky) meZ

For 8 € £2(Z), with By, # 0 for only finitely many m € Z, choose am(£) = Bmp(£),
where p(§) = D4 cx, Pr.k1(€), With p, # O for only finitely many k; € K;. Thus, we

get
. G (677 )P P din(6) < (2.4.76
‘/G/Ann(Kl)yle%(Kl) l p( ) | Imze:Zg ( " ) | Vl( ) ( )
w(GENBIGIE [ 1 p(e) P din(e)
G/Ann(K1)

Since the set of such p is dense in L? (@/Ann (K1), 01 (G/Ky) ™! dﬁl) (because of the
fact that K; is an orthonormal basis L? (@/Ann (K1), (G K1) dﬁl)), we have

S 1D i€ )Bm P<n (G/KD) BB,

y1E€EAnn(K;) mEL

for almost all £ € G/Ann (K;). Let V be a countable, dense subset of £2(Z) of B’s
with §,, # 0 for only finitely many m € Z, and let Ny C @/Ann (K1) be the null set
outside of which

Y Y 0V P < w(G/K)BBILVBEV. (24.77)

y1€Ann(K,) mEL
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Also, let Ny ¢ G /Ann (Ki) be a null set outside of which

Y lamEn ) P < wi(G/KL).B, Yy € Ann (K,). (2.4.78)

mEZL

Letting 3 € ¢*(Z) and [_3(M) € V such that Q(M) — (3, and applying Fatou’s Lemma,
we arrive at

S I B P < Jim oinf Y [ amlEn AR

—00

vy1€Ann(K;) mEZ y1€Ann(K1) mEZL

< 1w (G/K1).B| B (2.4.79)

Finally, we have

Yo D a8 P< 1 (G/Ky) BB VB € £(Z),

y1€4nn(Ky) mEL

for almost all £ € {@/Ann (Kl)} \ N, where N = N; U N,. Since any element v € G
can be written as v = £v;, where £ € G/Ann (K1) and 71 € Ann (K1) and since the

first sum in (2.4.80) is taken over all elements of Ann (K;), we have

ST Y 9B P< i (G/KY) BN B 1% B € (Z); ae. E€G.

neAnn(K1) meZ

The following is a generalization of the Theorem 2.1.3 to L2(G), for any LCA
group G.

Theorem 2.4.1 With the same setting as above, the following hold:

(1) {gy.,m} 5 a Bessel sequence with upper bound B if and only if for almost all
¢, H(§) defines a bounded operator from (*(Z) into €2 (Ann(K1)) of norm at
most \/v1 (G/ K1) .B.

(i) {gy,m} is a frame for L*(G,dx) with frame bounds A, B if and only if
v (G/K1) Al < H(§)H*(€§) < v (G/K1) .BIL, (2.4.80)
for almost all &, where I is identity operator on £2 (Ann(Ky)).
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(i) {gy,m} is a tight frame for L*(G,dz) if and only if there is a constant ¢ > 0

such that
> dm(©)gm(En) = cbyae, M € Ann(K) (2.4.81)
meEZ
c
or almost all €. In this case, the frame bound is A = ————.
f £ f U (G/Kl)

(iv) Two shift-invariant systems {gy, m} and {hy, m}, which form Bessel sequences,
are dual frames if and only if

> inhm(En) =1 (G/E1) by 1, , ™ € Ann(Ky) . (2.4.82)
meEZ

for almost all €.

Proof. For part (iv), it’s known that {g,, m} and {h,, m} are dual frames if and
only if

ClH=>"3 (elgnmlbuml|f), Ye fe LXG), (2.4.83)
meZ ki €Ann(K,)

and we have p (e, f) () = (Tye | Tof) = (e | f), Vz € G/K;. Hence the functions
p(e, f)(z) and (e | f) have the same Fourier coefficients in L? (G/K7,dv,), whence

e = a7 EOTEm X Em©hna(ene

G mEeZ

= (e | Ny, = b, / &€ F(€)de. (2.4.84)

é
Since (2.4.84) holds for all e € L? (G), we have

FEn) Y. am(©hm(En) = 0 (G/K) 80,1, f(6), ae.t€G.  (2.4.85)

meEZ

If v1 = 15, we get

> im©hm(6) = n(G/K1), ae.teG. (2.4.86)

meZ

If v # 1g, then & # §, V€ € G. Since G is Hausdorff, there exists an open
neighbourhood, O,,¢ of 11§, such that £ ¢ O.¢. By taking f(s) = X0,,.(8), the

characteristic function of O,,¢, and using this function in (2.4.85), we obtain

> Gn(Ehm(Em) = 0, (2.4.87)

meZ
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for almost all { € G and for all 7 # 1. Thus,

Z G () (E71) = 11 (G/ K1) 6 nlg M € Ann(Ky), (2.4.88)

meEZ

for almost all £ € G. For the opposite implication let us assume that (2.1.10) holds.
It follows that the function p (e, f) and (e | f) have the same Fourier coefficients and
then p(e, f) (z) = (e | f), Vx € G. By taking z = 1, we obtain (2.4.83).

For the first part of (iii), we use (iv) and Lemma 2.1.2. For the second part,
we use (ii) and the fact that the v;-st row and 7s-nd column of H(&)H*(£) are

ZmeZ gm(f’h—l)gm(f’)’é_l) = Oy, y;, b0 BEt A = V1(GC/K1)'

For part (ii), if 3. cann(rciymez | (f> 9vim) [’< B || f ||, then by virtue of
Proposition 2.4.1, H(§)H*(§) < 1 (G/K1) BL. Let f be an element in L%(G,dx)

with f compactly supported and let m € Z. The series
ST amEn)frEm) (2.4.89)

y1€AnN(K1)

defines a function in L? (@ /Ann(Kl)) :

~ ~ -1
Since K7 is an orthogonal basis of L? (G/Ann(Kl), 21 (G/Ann(Kl)) df/l), it
follows that

Yo & EN) = > ckmélky), (2.4.90)
v1€Ann(K1) k1€EK;
where
o = 1 (C/K) /G o w}ﬂ;@g(kngm(emr(ﬁl)dm(s)
= 1 (G/KY) / ETE)9m(©) F* (€)de
' G
= »(G/KY) /af(Tklgm OF () ()de
— n(G/K) /G g€k ) 1 (€)de
= U (CEL) (G ) (2.4.91)
Thus,
. Am P* 2 di — G K L 2 .
/G/Am(mue%m)g (En)F*(Em) 12 din(€) = v (G/ ugﬁugk, Y
(2.4.92)
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Let ¢ € G and set z(f) = {f(é77")}yiex,. We then have

f QdA = £ -1 2dA
Lo, 1O 1 160 /@/Am(Kl)wan(Kl)|f(m ) F din(€)
S ALGIRG
G
= 71?7, (2.4.93)

while use of (2.4.92) yields
[ w©ie e
G/Ann(K1)

= S alen ) P

meZ y1€Ann(K1)

= n @)Y S Haam )1 (2.4.94)

meZ k€K

Let p € L2 (@/Ann(Kl)) and let 8 € £(Z) with B # 0 for only finitely many
k € Z. Let Uk, be a fundamental domain in G associated to Ann(Ky). It is easy to

see that p can also be considered as a function on Uk, .

Assuming that | Ann(K7) |= oo, let us write Ann(K;) in the form
Ann(K ) ={vs: k€ Z}. (2.4.95)

Define a function f on G by f(&) = Bkp(€v1k), where k is such that vy, € Uk,.

We have
£(&) =8p(©) . (2.4.96)
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Furthermore, from (2.4.93) and (2.4.94) and the first (2.4.80), we have

R EGTGIRENG (2.497)
G/Ann(K1)

= [ 1@ P @8 dn(e)

G/Ann(K1)
fusnd 1/1 (G/Kl) Z Z l <gk1,m7f> 12
meZ k€K,
> w(G/Ky) Al fI?
= 1 (G/K;) A I £(&) I1* din(8)

G/Ann(KL)

— 1 (G/Ky) A > 1 Bep©) * din(€)

G/Ann(K1) keZ

= w(G/K) AN |

~

G/Ann(K1)

| B(€) 17 din (€).

Letting p run over all of L? (@ JAnn(K 1)), we obtain
| H*(©)B 12 n (G/K1) Al B I, (2.4.98)

for almost all ¢ € G/Ann(K;), where the null set involved in (2.4.98) may depend on
8. Let V' be a countable dense set of §’s in ¢%(Z) such that B # 0 for only finitely
many k € Z and let Ny C G/Ann(K,) be a null set such that

| H*(€)B |[*> v (G/Ky) . Al B|I% B €V, € € G/Ann(K1)/Ni. (2.4.99)
Also, let Ny C a/Ann(Kl) be a null set such that
| H ()8 I°< v (G/K1) B || B |%; B € £(Z), € € G/Ann(K1)/ N (2.4.100)

Take £ € (@/Ann(Kl)) — (N2UNy), B € €2(Z) and B € V such that M) —s B.
Then, from (2.4.99) and (2.4.100), we conclude that

IE*©B 1P = lim || B €)™ |*2 0 (G/Ky).A Lim || g*0|?
= n(G/K) Al B (2.4.101)

This completes the proof of the implication “=" of part (ii). To prove the opposite
implication, let f € L% (G) such that f is compactly supported in G. Then (2.4.93)
and (2.4.94), imply

AllfIPs | (£, 9mm) S BILFIP

v1EAnn(K1),meL
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Chapter 3

Walnut Representation of
Generalized Gabor Frame

Operators

3.1 Introduction

The Walnut representation of the frame operator (see [33] [44]), is often much easier
to compute and work with. This representation was done under the assumption that
the generating function for the frame has rapid decay. Recently [12], Christensen
and Casazza gave the same representation of this operator under a weaker condition:
(CC)-condition. The authors presented some results about the convergence properties
of this series representation of the frame operator [13]: they show that the weak
and norm symmetric convergence of the Walnut series are equivalent; also weak and
norm convergence of the Walnut series are equivalent. The analogue result on the

unconditionally case is also presented. Using this representation of the frame operator,
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the authors show that under some condition, this operator can be extented as a

bounded linear operator on LP(R), for 1 < p < oo.

More recently [35], Honnouvo and Ali gave a generalization of the Gabor frame
construction for the generalized Weyl-Heisenberg group which is a central extension
of the direct pfoduct of a locally compact abelian group G with its dual group G.
Under a condition which we can call generalized (CC)-condition, (GCC)-condition for
short, we present a generalization of the Walnut representation using this generalized
Gabor frame. The representation of the frame operator in the frequency domain is

also presented.

3.1.1 Walnut representation of Weyl-Heisenberg frame op-

erators

It’s known that the frame operator associated to the Gabor system { EpTnag}moncz,

is given by

S = Z | EmbTnag) (EmbTnag | - (3.1.1)

m,neZ

For a,b fixed, the class of functions g for which the operator (3.1.1) defines a
bounded linear operator on L?(R) is called the class of preframe functions and is
denoted by PF.

In 1992, it was proved by Walnut [44] that if the generating function g has rapid

decay, the operator (3.1.1) can be represented as follow:

Sf = b_l Z (Tk/bf) Gk, (312)
keZ
where
Gi(z) = Zg(x—na)g(m—na—k/b). (3.1.3)
ne€z
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In this case, the Walnut series (3.1.2) converges rapidly in norm. The Walnut rep-
resentation of the frame operator can often be much easier to compute and work with.
But the rapid decay assumptions limit its use. Recently, Casazza and Christensen
[12] gave much weaker assumptions on the window function g which still ensures that
the corresponding Weyl-Heisenberg system has a finite upper frame bound.

Let us recall the following important convergence results about the operator de-
fined by the series (3.1.2) [13]:

Proposition 3.1.1 Let a,b € R with ab <1 and g € L2(R) and assume that

> | Gi(z) P< B, aez€R, (3.1.4)
keZ

for some B > 0.

Then for all bounded, compactly supported function f € L2(R), the series

Lf =51 " (Tipf) Gr, (3.1.5)

keZ

converges unconditionally in norm in L*(R). Moreover,

(LEF) = | {f, ErsTrag) I* - (3.1.6)
m,neZ
Finally if g € PF, so that the series
Sf = Z <fa Emanag>Emana97 (317)
mnEL

converges unconditionally in L*(R), we have Lf = Sf.

Let us recall some convergence results which will be used in the study of Weyl-
Heisenberg frames.

If z,, are elements of some Banach space X, a series ), is said to be uncondi-
tionally convergent if for every increasing sequence of natural numbers (k,) we have
that

lirrln Z Tr,, (strong limit)
exists.
Let us recall a result which can be found in [38], Proposition 1.c.1
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Proposition 3.1.2 For z, in a Banach space X, the following are equivalent:

(1) 3, xn is unconditionally convergent.
(2) 3, To(n) converges for every permutation o.

(3) 3, Onzn converges for every choice of complex | 6, |< 1. Moreover, in this case

there is a constant K such that for every choice of numbers (a,) we have

||E ananSKsuplanl.HE |
n
n n

The following is the celebrated Orlicz-Pettis theorem [22]:

ORLICZ-PETTIS Theorem 3.1.1 If z, are elements of a Banach space such that

for every increasing sequence of natural numbers (k)

n
weak lim E Tk,
n v

j=1
exists, then the series ), x, is unconditionally convergent.
Definition 3.1.1 A series ), z, is said to be weakly unconditionally Cauchy (wuC)
if given any permutation o of the natural numbers we have that (Z;.Lzl To() ) 15 @

weakly Cauchy sequence.

Recall the Banach space ¢y :

co = {a: = (an) ;|| z ||=:sup | an |< coand lim a, = 0} . (3.1.8)
n n—00
Let recall the following theorem [22].

Theorem 3.1.2 The following are equivalent for a series Y x, in a Banach space:
(1) 3, Tn is wuC.
(2) For every z* € X* we have ) | z*(z,) |< .
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(8) For every (a,) € co,

E AnTn
n

converges.

(4) There is a constant C so that for every finite subset M of the natural numbers

we have

DN

neM

3.2 Walnut representation of the generalized Ga-

bor frame operator

Let K; and Kj be uniform lattices in G. For any ky € Ky and ky € K,, from the
proof of the lemma 2.2.1, the function Gy, (x) = Y, <k, 9(@ki " )g(zki k3 ") converges
absolutely for almost all z € G and we have

Do ITGh(@) = ) |G, aezed. (3.2.9)

koeKo ko€ Ko

Proposition 3.2.1 Let Ky and K, be two uniform lattices of the LCA group G. Let
g € L*(G,dz) such that

Z | Gr,(z) °’< B, aexed (3.2.10)

ko€ Ko
for some B > 0.

Then for all bounded, compactly supported functions f € L*(G,dx), the series

Lf =v3(G/K3) Y (Tkof)GCh, (3.2.11)

ko Ko
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converges unconditionally in norm in L*(G,dz) and

k1€K1;v2€Ann(K2)

Finally if g € PF, so that the series

Sf= > (f,72T0,9)72Tir 9, (3.2.13)
k1€K1,72€Ann(K2)

converges unconditionally in L*(G,dx), we have Lf = Sf.

Proof. Let prove that the series (3.2.11) converges unconditionally for all bounded

compactly supported functions f € L?(G, dz).
Let U be a fundamental domain of K, and for ks € Ky, let Uy, = Ty, (U).
We have

(i) Ukyer U, =G

(ii) Uk, N Uy, = 0, for ky # Ky

Since any bounded compactly supported function f can be written as a finite sum

of bounded functions supported on some Uy,, let f be supported in Uyg such that
| f(z) I< D on Uyg and let M C K> such that | M |< co.

The functions {(T, f) Gk, tr,ck, are disjointly supported and we have

| Y BuhGuling = X [ 1@0N@FGo@) Fde (3219)

koeM koeM

- Z/U | (T f) (@) P . | Gioa) [P de

ko€M

_ / o N TG (0) [ da

koeM

:/ 2 3 | T Gh(a) P da

Uk2 koeM

IA

> | T 1Gry() P da.

k[’ koM
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So, Lf converges unconditionally by the monotone convergence theorem.

<Lf7f> = <V2(G/K2) Z (Tsz)Gk2>f>

k2€K2

= 12 (G/K2) Y (T f)Ghy, f)

k2€K>

~ w(G/K) Y [ T@0u @)k do
ko€ Ko G
( using the generalized W H-frame Identity),

= > > {fwTugl (3.2.15)
k1€ K1 ya€ Ann(Ks)
To see that Sf = Lf, we just take f to be bounded and compactly supported and
V h € L* @), we have

<V2 (G/K>) Y (Tsz)Gk27h> = (57, h). (3.2.16)

koK,

3.2.1 Remarks:

By looking carefully at the proof of the first part of this theorem, we do not need the

fact that 222%3 < 1. So, in the proof of the original theorem the authors use the

assumption ab < 1 which they do not really need.

Theorem 3.2.1 Let K; and Ky be two uniform lattices on LCA group G and Let
g € L*(G) such that 3, | G,om(2) [< B, a.e.
2

Then the Walnut series for every f € L?*(G) converges unconditionally in L2
norm, where Ky = {kém)}

mEZL '
Proof. We know that
> | Ty om=1G o (2) |= D 1Gm@) ], ae. (3.2.17)
meZ meZ

Let h € L?(G), we have
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> 1, (Tk;mf) Gym) | = i |/G_ﬂ(_x_)(Tkgm>f) (@)Gom(z)dz | (3.2.18)

jmi=t jmi=t
<> J1F@ 11 (Ggf) @)1 (@) | s
= Y [ 1@ 6@ (Tgn1) @) |
[m}=t
X ’ Gkgm) (.’L‘) |d:17
< | L1 P Y 16yl do
|m|=l
<\ 1@ F 31 (TG @) 1dz | |
im|=1l

which goes to zero when I — oo. So, 3, ., (Tk(m) f) G, is weakly unconditionally
2 2
convergent in L2(G). =

Theorem 3.2.2 Let K; and K3 be two uniform lattices of a LCA group G. If there
is a constant B > 0 so that

> |Gr@)|<B, ae (3.2.19)
ko€Ko

then g € PF.

The condition (3.2.19), will be call the generalized CC-condition.

Here, we give a complete characterization of the preframe functions for some class

of group: compact abelian groups.

Proposition 3.2.2 Let Ky and Ky be two uniform lattices of a LCA group G. The
preframe functions PF of the generalized Gabor system {72Tk19}7zeAnn(K2),kleK1 , 18
a subset of L*(QG,dz) :

PF C L*(G). (3.2.20)
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Proof. Let g € PF and assume that {72Tk19}7zeAnn(K2),k1eK1 has a finite upper
bound B. Let us prove that

> gkt IP< _5___ e (3.2.21)
ve (G/Ka)

ko€Koy
Let U be a fundamental domain of K, and for ky € Ko, let Uy, = Ty, (U).
We have

(1) UszKzUkz =G

(i) Up, N Uy, = 0, for ky # Ky

Let assume that (3.2.21) is violated. Then there exists a measurable set A C G such

that
B

Hw)i= ) 1ok P> s

ko€K2

on A. We can assume that there exists some k) € K, such that A C Ugg-

Let

-1y |2 B

and for n € N*,

1 B B

1
An:{xEA:n+1+V2(G/K2)SH(CE)SE—*—M} (3.2.23)

It follows that U,enA,, = A and we can conclude that there exists ng € N such that
| Ao |# 0.

Let f = xa,,- Let 72 € Ann(K3) and let 7;“3 = Y2y, - From the proof of the the-
ky
orem 2.3 of [41] it is easy to see that {1/2 (G/Kg)_% ’yfg} Arn(E) is an orthonormal
Y2E€ANN{ K2
basis of L? (ng, dx) and we have:
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S | nTag) P = | / f @)k Y@z P (3.2.24)

Y2EAnN(Ka2) 'yzGAnn(Kz)
- | / F@)alek g (2)ds

'yzeAnn(Kz)
— w(G/Ks) [ 1 1) P ] gloki?) P da.

Any

So, we have:

Yo hmeTug) P = (G/Kz)/ | F@) P D glaki) [P de

k1€K) ya€ Ann(K>) Ang k1€K)
1 B
> G/K. + 2
> w(G/K) (g + s ) 1
G/ K.
- (B-i—M) £ 12, (3.2.25)
contradiction.

So, if {72Tk19}7geAnn(K2),kleK1 has a finite upper bound B then,
B
> | glakh) P ——
o v (G/K)’

which proves that g € L*(G). So, PF C L*(G). m

Corollary 3.2.1 Let K; and K, be two uniform lattices of a compact abelian group G.
The preframe functions PF of the generalized Gabor system {72Tklg}72€Am(K2) k€K,
coincide with the space L°(G,dx) :

PF = L®(G, dz). (3.2.26)

Proof. Since the group G is compact, K; and K, are finite. So, let | K; |and
| K5 | be there cardinality respectively. Let g € L*(G), we have:

YooY glakiglaki k) ST K| [ Ka | [l g 12 - (3.2.27)

k2€K2 ki1€EK)

So, g satisfiyes the generalized C'C-condition and by [35], g € PF, and L*®(G) C PF.
Using the previous proposition, we have the equality. =
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3.2.2 Representation of the frame operator in the frequency

domain

Lemma 3.2.1 Let G be a LCA group and K be a uniform lattice in G. For all
f € LYG,dx), we have

> 1fEr) P<oo ae €€ (3.2.28)

yeAnn(K)

Proof. Let show that the function F' defined on G by F(¢) = > ecann(K) | F(&) |2
is well defined as a function on G/Ann(K).

Lo PO = [ ST e P aste),

G/ Ann(K) yeAnn(K)

- /(;f(&) 2 de
= | f “%2(G)< Q. (3.2.29)

%0, 2 reAnn(K) | Flev) < 0 a.e. €€ @/Ann/gK) Since F(&y) = F(£) ae. € €
Gandy € Ann(K), we have F({) < 0a.e. € G. m

Let {gm}mez be a collection of functions in L2(G) and let {gmk, }rickimez =
{gm(=-kT ) }ryek,mez the corresponding shift-invariant system. The generalized
(CC) condition (GCC), is

v (G/ED)™ > 1D aml(©im(éri) IS B (3.2.30)

vy1€Ann(K1) mEL

Let now give a representation of the frame operator

Sf= Y (fiGumgm fE€LYG), (3:2:31)

ki€K1,meZ

in frequency domain.

Theorem 3.2.3 Let K be a uniform lattice of a LCA group G. Assume that the shift
invariant system gi, m,(k1,m) € K1 x Z has a finite frame upper bound B and let
f € L3G). Then we have

‘§.\f(§) N ;;—(——C—’Yl—/—l?l—j 7164%(1{1) d'Yl (g)f(é-’)/l—l) » (3232)
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with absolute convergence for a.e. ¢ € G. Here

dy(©) = gm(©nEn"), m € Ann(Ky). (3.2.33)
mz

Proof. From [35] proposition 5.2, we have

ST 1dn@©F = D0 1D am©anEnhH I

y1€Ann(K1) mn€Ann(K,) mZ

1 (G/K1).B Y | gm(&) I

mezZ

< (n(G/K1).B)?, aeteG. (3.2.34)

IA

Since 3., c ann(xy) | Flém) |P< 0o a.e.£ € G, the series (3.2.32) converges absolutely
and the right hand side of (3.2.32) is in L2 (G). Now, let h € L?(G) U L}(G) such

loc

that h is compactly supported in G.

Using Cauchy-Schwarz inequality, we have

/a| S ©Ff e | = [Sw(ﬁ)l S d,©FEh | hE) | de

Y1 GAnn(Kl) 1 EAnn(Kl)

X 7 -1
< Nl /Sw(ml Y du©F ) | s,

y1€EAnNn (K1)
(3.2.35)
which is finite because the right hand side of (3.2.32) is in L2 (G).
Using g = hy, in Lemma 5.1 of [35], we have
(85 £.h) = p(fR)(1e)= > Gy
y1€EAnn(K1)
= n@K)T Y [ FOREn Y tm@anends
Y1 €EAnn(Ky) G mMEZ
= wEE)t Y [ @i (3.2.36)

y1€Ann(K1) G
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Since the set of such 4 is dense in L%(G), we have,

- 1 N
Sf(€) = mmeg;%)dm (&) f(€v)- (3.2.37)

Theorem 3.2.4 Let {Gm i, tiickymez be a shift-invariant system with finite upper
frame bound and frame operator S. If the system satisfies the (GCC) condition, then
{Sgm (=57 )}k ek, mez satisfies also the (GCC)condition.

Proof. Let B be the upper frame bound of our system. We have for all f € L%(G)
and a.e. &£ € G,

SHO = D Sim©Ff ™), (3.2.38)
y1€Ann (K1)
where
S1om (6) =12 (G/K2) ™Y im(©)dm (€. (3.2.39)
meZ
So, we have
(57E™) sy, = 5O (flE) (3.2.40)
where
S = ( (G/K2)™ D gml(€rr ) gm(€nr )) (3:2.41)
mezZ vy €Ann(K1)
So,
€ = (54m©) oo (3:2.42)

Since Ty, commute with S, the frame operator of the system {Sgm,(—-k1") }rekrmez
is S3.

So, we need to show that there exists C' > 0 such that

> 1Sm©) P (3.2.43)

v1€Ann (K1)
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From (3.2.39), by replacing £ by 6711“1 we have,

Y 18, @FP<B (3.2.44)

y1€Ann(K1)

which implies that

Z|§3'm(5)| = ZIZ am (&) ]
Zl (€ Z £) |< B (3.2.45)

AN

From that, we arrived at

YIS (©] = Z | }: San(©) |

Z|S2 © . Z|Sm ¢) |< BB = B®. (3.2.46)

IA

3.3 Extending the frame operator

In this section, we present the extension of a generalized frame operator as a bounded
linear operator-on LP(G).

Theorem 3.3.1 Let G be a LCA group and Ky and Ky be two uniform lattices in
G. Let g € L*(G) such that

Y |Gym(@) < B, ae. (3.3.47)

meZ

Then, the operator

Sf= Y. (£ elhg)nTug (3.3.48)

k1€K1,v2 EAnn(Kz)

extends to a bounded linear operator from LP(G) to LP(QG) for every 1 < p < oo.
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Proof.

(i) Let f be a bounded and compactly supported. The using the Walnut represen-

tation of the operator S, we have

15F I = 12f lpo=n(G/K) [ | Y (iap) @)Gun(s) | do

G ko€Ky

< n@/m) / | (o) (@) | | Gio(2) | de
= 1 (G/K,) Z/|f || TG, (x) | da
ko€Ko

IA

v (G/Ky) .B /G | f(z) | da
< w(G/K) B | f I (3.3.49)

So, S is a bounded linear operator from a dense subset of L!(G) into L}(G),

and it can be extended uniquely to a bounded linear operator on L'(G).

(i1) Let f € L* with compactly supported, we have

ISflle = 1 Lf lloo= 22 (G/Ks) - I Y (Thrs) Gy lloo
ka€Ko
= w1 (G/K3)esssup | Z (Thyz) Gy |
ko€EKo
< w(G/Ksy)esssup Y | (Tiys) || G, |
koe Ko
< 1 (G/Ks) . || £ lloo esssup Y | Gh, |
ko€ Ko
< w(G/KD)- | f Il -B (3:3.50)

So, S can be extended uniquely to a bounded linear operator on L.

Using (7), (i7) and the Riesz-Thorin interpolation theorem (Theorem 7.1.1), S

is bounded linear operator from LP to LP for all 1 < p < o0.
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Chapter 4

Time-frequency-like Transforms of
Square-integrable Functions on

Some Non-Euclidean Manifolds

4.1 Preliminaries

This chapter is devoted to a time-frequency analysis on some non-Euclidean manifolds
such as : sphere, one and two sheeted hyperboloid, ellipsoid, paraboloid, etc. Since it
is not easy to find an underlying group structure for the translation and modulation
on these manifolds, we construct a time-frequency transform on an infinite cylinder

and map it homeomorphically to these manifolds.
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4.2 Time-frequency-like transforms on some non-

Euclidean manifolds

In reality this is done by mapping homeomorphically these non-Euclidean manifolds

to a simple one (infinite cylinder).

We take £ to be a smooth curve in R2, which is parametrized as

u(2)
v(2)

Z —

, ZER,

where u and v are two smooth functions. We assume that this map is a homeomor-

phism between R and £. The map

cos 6 u(z) cos 8
Vilsing | — | u(z)sind (4.2.1)
z v(z)

transforms the cylinder homeomorphically to a surface of revolution & about the

Z-axis.

The surface element doj on the cylinder transforms in to
dos(0, z) = w(z) df dz, (4.2.2)

on this surface, where w(z) = |u(z)| [v/(2)? + v/(2)?]2. The mapping V then induces
a unitary map V : L3(€, dzdf) — L?*(S,dos), defined by

u(z) cos @ cos 6
(Vf ) u(z)sing | | = @E) 2| | sino | |- (4.2.3)
v(2) z
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For a special case of the first chapter, let G = R x R/Z and Hg = (R x R/Z) x
(]R X Z) x T, the corresponding Weyl Heisenberg group. Let U be the unitary irre-
ducible representation of Hg on the Hilbert space L? (R x R/Z,dzdf) , defined by

(U ((z,9); (w, k); 1) 9) (2,8) = ne®™ >0 (2 — 2,0 — ¢). (4.2.4)
it’s known that this representation is square integrable.

Using the following unitary map V between the Hilbert spaces L*(C,dzdf) and
L*(8,dos), we obtain a representation U on L*(6,dog), defined by U= VUV
which underline a time frequency transform on &.

The representation U is defined by

u(z —x)cos(@ ~ p)

1

— l:w (z - l’):| 2 egm‘(w.z-{-k.@)f u (z _ :L‘) Sil’l(e _ (P) . (4.2.5)

v(z—2x)

In the next section, we will give an explicit expression of this representation de-

pending on the manifold in question.

4.3 Examples of wavelet-like transform on some

manifolds

we construct a time frequency transform on some known non-Euclidean manifolds by

giving some explicit form of u(z) and v(z) in the parametrization of &. Thereby we
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build a time frequency transform on those manifolds, namely: Sphere, Ellipsoid, one

and two sheeted hyperboloid, paraboloid, Plane, and so on.

4.3.1 Time-frequency-like transform on the sphere, 52

This section is devoted to a construction of transform on L? (8%, dy), where S? is

two-dimensional sphere in R3.
' \

Let 8= 4 | y | :2°+ 4> +2° =1}, be the two dimensional unit sphere.

z
\ J

Let consider the map V : € — &2, defined by

cos 6 cosh™!(2) cos @
Vilsing | = | cosh™!(2)sinf | > (4.3.6)
z tanh(z)

This map induces a unitary map,

V : L*(€,dzdf) — L* (S? cosh™2(2)dzdf) :

defined by
cosh™ (2) cos 6 cos
(f/f ) cosh™(z)sin g | = cosh(2)-f | sing (4.3.7)
tanh(z) 2

The representation U, of Hg on L2 (82, cosh_z(z)dzdﬁ) , is defined by

57



cosh™(z) cos @
((}((w,go);(w,k);n)f) cosh"l(z)sine =

tanh(z)

cosh™ (2 — ) cos(6 — )

| h .
=7 [M:I e2m(w.z+k.0)f COSh—l (z _ .’I)) sin(9 . 90) (438)

cosh(z — z)

tanh (z — )

Gabor systems

Let now introduce the Gabor system on L? (Sz,cosh"z( )dzdﬁ) So, let K1 = aZ x

{0,%, %,%,...,%} and Ky = 1Z x {0, = Ta M, ]31,. T M-I be two uniform lattices in

R x R/Z. Let g € L? (S?,cosh™ (z)dzd@) . The corresponding Gabor system is

Sg;L,M;a,b = (439)
( \
cosh™ (2 — na) cos(f — 2)
cosh (2) 2i(mb.2-+ M.k.6) _ .
[m] e 9| cosh™ (z — na)sin(6 — ) x
tanh (z — na) )
(m,n,k)yeZ3 1=0,1,..,L — 1. (4.3.10)

Using theorem 2.3.2, we have the following:

Theorem 4.3.1 Leta b>0and(M L) € N*xN*. Let K; zaZx{O,i,%,z, ,Lzl

and Ky = 1Z X {O’M7M’13\4" N TE LY be two uniform lattices in R x R/Z. Let
g€ L? (82,cosh *(z)dzd9) . The following hold:

G) If 2>1, then
S2) Map 5 anot a frame for L* (8%, cosh™(2)dzdb) .
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(it) If 82, rpap is a frame for L* (82, cosh™2(2)dzd#), then

ab= ML & S.; r1.05 05 a Riesz basis.

4.3.2 Time-frequency-like transforms on the ellipsoid

{ Y
x
Let o,y > 0,and let&, , = 1K1K faiz?ﬁ + fy; =1 3, be a two-dimensional ellipsoid
z
\ J

of revolution.

Let consider the map V : € — &, ,, defined by

cos 6 o cosh™'(2) cos @
Vilsing | — | acosh™(z)sinb | (4.3.11)
z ~ tanh(z)

This map induces a unitary map

Vi L*(€,dzd0) — L* (Eap, pe.,(2)dzdd)

where
pea.(2) = e \/0[2 sinh?(z) + 72, (4.3.12)
defined by -
acosh™'(2) cos @ cosf
(Vf> acosh™(2)sind | = [P&x,w(z)]_% f | siné | - (4.3.13)
~ tanh(z) z

The representation U, of Hg on L? (é'am pgm(z)dzdﬁ) , is defined by
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o cosh™ (z) cos @

(U((m,@);(w,k);n)f) acosh™ (2) sin g =n[

wiw

X

cosh (2) ]

cosh(z — )

7 tanh(z)

acosh™ (z — ) cos(f — ¢)

1
o?sinh®(z — z) + 2% .
wi(w.z+k.6) _ .
[ o2 sinh?(z) + 72 ] € f| acosh™ (z — ) sin(d — ) (4.3.14)

vtanh (z — z)

Gabor systems

Let now introduce the Gabor system on L2 (Sa,,, PEo (z)dzd@) . So, let K| = aZ x
{0,1,%2,3,. L1} and Ky = 3Z % {0, 47, &, &%, ..., 27} be two uniform lattices in
R x R/Z. Let g € L2 (Eans P, (2)dzdf) . The corresponding Gabor system is

N,M;a,b __

ggﬂ . wh _ (4.3.15)

¢ )

acosh™ (z — na) cos(f — o)
iN,M;a,b wi{mb.z K.
< ﬁi’m) a, )( )e 2mi(mb +Mk9)g acosh‘l(z—na)sin(e—%‘l) ¢ >
v tanh (z — na)
\ J

(m,n, k) €23 1=0,1,...,.L 1. (4.3.16)

where

1
T(g;N,M;a’b)( ) = [ cosh (2) } : [a2 sinh?(z — na) +v%1¢

4.3.1
(o) cosh(z — na) a?sinh?(2) + 42 (4347)

Using theorem 2.3.2, we have the following:

Theorem 4.3.2 Leta,b >0 and(M L) € N*xN*. Let Ky = aZx{0,},%,2, . &2
and K, = —Z X {O’M7M’J\3/I" oS 1Y be two uniform lattices in R x R/Z. Let

g € L* (&, pgw( z)dzd) . The following hold:
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() If 2 >1, then

EGLMiab s g not a frame for L? (Ey., pe, . (2)dzd0) .
oY Y p o,y

(i) If EGEMib is o frame for L? (Eay, pe..,(2)dzd6), then

ab= ML & ng’M;a’b s a Riesz basts.

4.3.3 Time-frequency-like transforms on one-sheeted hyper-

boloid

Let H = y|: 2?2 +9% — 22 =1}, be the two dimensional one sheeted hyper-

boloid.

Let consider the map V : € — H, defined by

cos @ cosh(z) cos
Vi |sin@ | ¥ | cosh(z)sind | - (4.3.18)
z sinh(z)

This map induces a unitary map

V:L?(C,dzdf) — L* (’H,cosh(z) cosh? (2z)dzd0) :

defined by
cosh(z) cos 6 cos B
(vf) cosh(z)sin@ | = Cosh(z)"% cosh™1 (22).f | sing | - (4.3.19)
sinh(z) 5
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The representation U, of Hg on L? (H, cosh(z) cosh%(Zz)dzdﬁ) , is defined by
defined by

, cosh(z) cos 6
(U((w,w);(w,k);n)f) cosh(z)sinf | = (4.3.20)

sinh(z)

cosh (z — z) cos(8 — )

_ {cosh (z — a:)] 7 {cosh (2(z — :v))] i itk e | (2 — ) sin(0 — )

cosh(z) cosh(22)

sinh (z — z)

Gabor systems

Let now introduce the Gabor system on L? (’H cosh(z) cosh%(Zz)dde) So, let K; =

aZx {0, ) L, L,. . Ll} and Ky = 1Z><{0, > M, 13\/[,. oo 11 be two uniform lattices

inRxR/Z. Let g € L? (H, cosh(z )cosh2 (22)dzd9) . The corresponding Gabor system

18

cosh (2 — na) cos(6 — 22)

2mi(mb.z+M.k.0)

Hg;N,M;a,,b' = X A(g;N,M;a,b)(z)'e g | cosh (Z — na) sin(9 — %) 4 9

sinh (z — na)

\ 7
(myn, k) €Z% 1=0,1,..,.L — 1. (4.3.21)
where
’ cosh (z — na) 7 [cosh (2(z — na)) i
A, ‘@ = .3.22
(o.M 10.9)(2) [ cosh(z) ] [ cosh(2z) (4.3.22)

Using theorem 2.3.2, we have the following:
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Theorem 4.3.3 Leta,b > 0 and (M, L) € N*xN*. Let K1 = aZx{0, 1, %,3,.., &1}

and Ky, = %Z X {0,%,%,%,...,%} be two uniform lattices in R x R/Z. Let

g € L? (M, cosh(z) cosh? (22)dzdf) . The following hold:

(i) If £=>1, then
'Hg;L,M;a,b’ is a not a frame for L ('H,cosh(z) cosh? (2z)dzd9) .

(i) If Hgrmapis a frame for L? (’H, cosh(z) cosh%(Qz)dsz), then

ab= ML & Hg,map 15 a Riesz basis.

4.3.4 Time-frequency-like transforms on the plane without

the origin

Let R? be the two-dimensional flat space without the origin.

Let consider the map V : € — R2, defined by

cosf
e*cosf
Vilsing | — ) (4.3.23)
e*sinf
z

This map induces a unitary map

Vi L*(€,dzdf) — L* (R%,e*dzdf) ,

defined by

cosf

Vf) —e*.f | sina | - (4.3.24)

The representation U, of Hg on L? (R2, e%*d2d8) , is defined by
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e?cosf

( (@) (w,R35m) 1) -

e*sinf
1
(=2)73 e* % cos(f — )
oy [e . } e2milw.7+k6) £ , (4.3.25)
e“ *sin(f — ¢

Gabor systems

Let now introduce the Gabor system on L? (R2, e?*dzdf) . So, let

Ki=aZx{0,1,%2,3,. 5} and Ky = $Z % {0, 37, %, 15> - “a~ } be two uniform

lattices in R x R/Z. Let g € L? (R?, dezdﬁ) . The corresponding Gabor system is

1
(z—na)] 2 e?—na COS(G — 2—7”)
* € 7i(mb.z k. L
Pg;L,M;a,b = [__. = ] g2mi(mb +Mk0)g :
e* " sin(f — %
(m,n,k) € 73, 1=0,1,..,L — 1. : (4.3.26)

Using theorem 2.3.2, we have the following:

Theorem 4.3.4 Leta,b> 0 and (M, L) € N*xN*. Let K; = aZx{0, 1, 2,3, ..., 51}
and Ky = 1Z x {0, L e M,A:f],. ‘1} be two uniform lattices in R x R/Z. Let
g € L?(R2 e**dzdf) . The following hold:
(i) If A‘}—”L > 1, then
Priaap 15 6 not a frame for L* (RZ, e*dzdf) .
(i) If Pyrrsan i a frame for L% (R?, e**dzdb), then

ab= ML & Py rrap 5 @ Riesz basis.
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4.3.5 Time-frequency-like transforms on the paraboloid with-

out the origin

Let P, = < y|: 2?24+ y? — 2z =0 p, be the paraboloid without the origin

\ J
Let consider the map V : € — P,, defined by

cos 6 e? cosf
Vilsing | | e*sinf | - (4.3.27)
= e2z

This map induces a unitary map

V. L2 (¢,dzdf) — L (P*, ¢ (1 + 4¢%)* dzd6‘> ,

defined by
cosh(z) cos @ cos @
(Vf) cosh(z)sing | =€ " (1 + 4e*)7% . f | sing | - (4.3.28)
sinh(z) 2

The representation U, of Hg on L? (’P*, e (1+ 4622)% dzd@) , is defined by
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e* cos 6
(ﬁ(($a¢)5(w?k)§77)f) e*sind | =

622:

e=2) cos(f — )

i
e?— % 1+4e2(z—m) 4 il
=n{ ] { RO o2 gin(g — ) | - (4.3.29)

1+ 4e2*

e2(z——w)

Gabor systems

Let now introduce the Gabor system on L2 (’P*, e (1+ 4622)% dzd@) . So, let K; =
aZ x {0, %, %, —2—, vy %} and Ky = %ZX {O; ”11\2’ —]%, —J%, - M—A—;—l} be two uniform lattices
in RxR/Z. Let g € L? (’P*, e?* (1 + 4e?%)2 dde) . The corresponding Gabor system

15

elz—na) cos(f — 27”)

1
PILMiab _ ) e [1 4 4ePena) ] G2wi(mb. 2+ M..6)
¢ B e? 1+ 4e?? g

~

elz="%) gin (6 — %)

2(z—na)
\ € Y,
(m,n, k) €23 1=0,1,...L — 1. (4.3.30)

Using theorem 2.3.2, we have the following:

Theorem 4.3.5 Leta,b > 0 and (M, L) € N*xN*. Let K; = aZx{0, %, %, %, s Lz—l}
and Ky = %Z X {O,ﬁ,ﬁ,%,...,—]‘%\;{“—l} be two uniform lattices in R x R/Z. Let
geL? (P*, e% (1 + 4¢¥)3 dzde) . The following hold:

(i) If —A‘/}iL > 1, then
PolMiad s g not a frame for L ('P*,BQZ 1+ 462’)% dZdH) .
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(ii) If PobMab s g frame for L* (77*, e (1+ 4622)% dzd0) , then

ab= ML & PIb-Mab s g Riesz basis.

4.3.6 Time-frequency-like transforms on the two-sheeted hy-

perboloid

( \

Let Hy =< | y | : 22—y —22=1;22 1), be the upper sheet of the two-sheeted

z

\
hyperboloid with one point removed.

Let consider the map V : € — H ., defined by

cos 6 sinh(e*) cos #
Vi|sing | ¥ | sinh(e*)sing | - (4.3.31)
z cosh(e?)

This map induces a unitary map

V: L*(C,dzdf) — L? ('H+,ez sinh(e?) cosh? (Zez)dzde) ,

defined by
sinh(e?) cos # cos @
(Vf) sinh(e?)sinf | =€° sinh™2 (%) cosh™1 (2¢*).f | sing | - (4.3.32)
cosh(e?) 2

The representation U, of Hg on L? (H+, e® sinh(e?) cosh%(Qez)dzcw) , is defined
by
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cosh(z) cos
(U ((z,9); (w, k);n) f) cosh(z)sin6 | = (4.3.33)

sinh(z)

cosh (z — x) cos(f — @)

_ [cosh (2 — x)} 5 [Cosh 2z - x))] i eriwatkd) ¢ | o (z — z)sin(d — )

cosh(z) cosh(2z)

sinh (z — x)

Gabor systems

Let now introduce the Gabor system on L? (H+, e* sinh(e?) cosh%(2ez)dzd0) . So, let
K, = aZ x {0, %, 23 ., 52—1} and K, = %Z x {0, %, %, .., —Mﬁ“l} be two uniform
lattices in R x R/Z. Let g € L? (H+, e?sinh(e*) cosh? (2ez)dzd0) . The corresponding

Gabor system is

' cosh (2 — na) cos(# — 27771) W
Hf’ﬁL’M”"b = Bi;L,M;a,b(z)e2m’(mb.z+M.k.G)g cosh (z — na) sin(6 — 2T7rl) "
\ sinh (z — na) )
(m,n,k)€Z31=0,1,..,L—1. (4.3.34)
where 1 1
e - [ [ sy

Using theorem 2.3.2, we have the following:

Theorem 4.3.6 Leta,b > 0 and (M, L) € N*xN*. Let K; = aZx{0, %, %, %, vers %}
and Ky = %Z x {0, 1, %,%,...,—M—ﬂ} be two uniform lattices in R x R/Z. Let g €

L? (’H+, e* sinh(e?) cosh%(2ez)dzdév5 . The following hold:
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(i) If A‘,}—Ij: > 1, then
HIELMb s 4 not a frame for L2 ('H+, e* sinh(e?) cosh? (Qez)dzdﬁ) :

(i) If HIEM% s o frame for L? (’H+, e* sinh(e?) cosh%(2ez)dzd0), then

L. M: . . .
ab= ML < H5"M* is a Riesz basis.
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Chapter 5

Wavelet-like Transforms on

2-dimensional Surfaces

5.1 Wavelet-like transforms

For constructing wavelet-like transforms for a similar class of 2-dimensional surfaces,
we are suggesting that one starts with the infinite cylinder, construct a wavelet-like
transform on it in a natural way and then homeomorphically map the cylinder to the

various surfaces.
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5.1.1 The cylinder

We use the following parametrization for the cylinder:
( \
cosf

C={X#,2)= | sing | €R®| 6 €0,27), Z€R . (5.1.1)

z
\ J

In these coordinates, the surface element on € is

dog(8, z) = df dz.

The group G¢ = SO(2) x Gag, where Gag is the full affine group of of the line,
acts on € in the manner,

X(6,z) — X(g(0,2)) = X(¢,2') = X(8 + » mod 27, az + b), (56.1.2)

where, g = (¢, b,a) € G¢. The left Haar measure on this group is

1
due(g) = dpe(p,b,a) = = dy db da. (5.1.3)

It is non-unimodular and has square-integrable representations. We shall work on
the Hilbert space $¢ = L?*(€,do¢), consisting of functions F' : € ~— C, which are
2m—periodic with respect to the variable 6, and hence have the Fourier decomposition

F(X(6,2)) = F(6,2) = \/—12—_7; S e (2),

Nn=-—00
o0

with  [[F|3, = D Ifallfeman < oo (5.1.4)
n=—oo

For fixed n, the functions F,(6,z) = #eine fn(2) form a closed subspace $,, of He
and in fact one has the orthogonal decomposition,

~6€: @ 5.

n—=—oo

The subspaces, ), each carry a unitary irreducible representation of G¢ given by
the operators U,:
z—b

(Un(9)Fn(6,2) = a3 Fo(g7(6,2)) = 073 (6 — 9, —

). (5.1.5)
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This representation is clearly square-integrable and there exist admissible vectors
U, € 9y, Vnll,2) = —\/%emown(z), satisfying

c(¥,) = 2m /—00 [9n(2)P dz < 00 (5.1.6)

2]

On $H¢ we have the reducible representation

U(p,b,a) = @U(p,ba

n=-—oo

A general admissibility condition for vectors in $)¢ can be obtained as follows: let
F(8,2) =2 ___e™f,(2) be an arbitrary element in H¢ and fix a vector ¥(6, z) =

n—-—oo

3 €™, (2) in He such that each 9, satisfies the admissibility condition (5.1.6).

n—-—--oo

Then, it is easy to see that

2 - ¢ 2 dz I{P\n(uﬂz w
/G @Y | Fjo* dils) =20 3 / a2 d / el g, s

provided the sum on the RHS converges. Since ¥ € $¢,

o 2
/ [1n ()] du — 0, asn — =oo0.
R

|ul
Thus, ¢(¥,) — 0 as n — oo, so that,

oo

T = /G V(@)UY duelg) = S e(T)Pa, (5.1.8)

n=—0o0
where P, is the projector on $)¢ which projects onto the subspace ),. Clearly, the
operator T' is bounded. However, its inverse, if it exists, is not bounded. Thus, it is
not possible to have a resolution of the identity on the entire Hilbert space. On the
other hand, let J be a finite discrete index set, $; = GnesH, and U; the restriction
of U to $;. Then, choosing ¥ ;(0,2) = 3. ; ¥a(8,2) = 3., €™n(2) in H,, such
that ¢(¥,) =1 for all n € J, we immediately get

/G 1Us(9)¥5){Us(9)¥| due(g) = L. (5.1.9)

Thus, using ¥; we can define a wavelet-like transform, S, of a vector in F; € §:

1 Z—b
S_]((p,b,a) = <UJ((Pab7a)\IIJ ] FJ)f)J za_5/\11(9—g0,
[

:azzm‘p/z/)n

neJ

VF(0, 2) df dz

(2) dz. (5.1.10)

For practical purposes, it is just a question of choosing J large enough to include all
relevant angular momenta.
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5.1.2 Other surfaces

The construction of the transform (5.1.10) on the cylinder can now be easily trans-
ferred to surfaces which are topologically homeomorphic to the cylinder. Let £ be a
smooth open curve in R?, parametrized as

u and v being two smooth functions. (We are assuming that this map is a homeo-
morphism between R? and £). The map

cos 6 u(z) cos @
Vilsing | — | u(z)sind | > (5.1.11)
z v(2)

then transforms the cylinder homeomorphically to a surface of revolution & about
the z-axis. The surface element dog on the cylinder transforms to

do(8,2) = w(z) d dz,  w(2) = |[u(2)] [W(2)? +v'(2)%2 (5.1.12)

on this surface: The mapping V then induces an isometric map W of ¢ onto Hg =
L*(6,dog), according to which F(X(6,z)) — F o V(X(4, z)) and

/|FoV(X(0,z))|2 d%:/w(xw,z))ﬁ doe .
(S C

More explicitly, let X¢(6, 2) be a point on the cylinder and Xg(4, z) = (VX¢)(6, 2)
the corresponding point on the surface &. Then for any F' € $)¢, we have

(WF)(Xe(0,2) = [w()] FF((V'Xe)(6, 2)).

The action of the group G¢ on the cylinder is similarly transferred to an action
on the surface &, under which,

u(z) cos 6 u(az + b) cos(8 + ¢)
u(z)siné pad u(az + b)sin(@ + ) | - (5.1.13)
v(2) v(az + b)
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Functions in g are again periodic in #. Since V induces an isometry between $)¢ and
$s, the representations U, in (5.1.5) carry over to irreducible and square-integrable
representations US = WU, W ~lon g in the manner

1
2
z—0b

2=b
Wz FO0-¢, =), Fefhs. (5114

aw(z)

Uz (,b,a)F)(0,2) = [

Let us look at a few special cases.

5.1.3 One-sheeted hyperboloid

Define the two matrices of rigid and hyperbolic rotations, R(p) and A(b), respectively,

cosp —sing 0 coshb 0 sinhbd
R(p) = sinp cosep 0> A(b) = 0 1 0 )
0 0 1 sinhbd 0 coshbd

where ¢ € [0,27), b € R. The first matrix represents a rigid rotation about the z-
axis and the second a Lorentz transformation in the xz-plane. Also, let D(a) denote

the linear transformation,
D(a)X(8,2) = X(0,az), a#0. (5.1.15)
From (5.1.13), the action of a group element (p,b,a) on X(0, z) is seen to be,
cosh(az + b) cos(8 + ¢)
(p.0,a)

X(0,z) == cosh(az + b)sin(8 + ¢)

sinh(az + b)
= R(p) [R(0) A(b) R(—0)] D(a) X(8, 2). (5.1.16)

The matrix R(6) A(b) R(—0) performs a Lorentz transformation in the plane of

the vectors (cos@,sind,0)” and (0,0,1)T, while the transformation D(a) induces a
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hyperbolic dilation. Physically, since

X(0,2z) = R(O)A(2) | o | »

the quantity v = tanh z represents the velocity of a relativistic particle at the point
X (6, z). Hence, z = tanh™ v represents its rapidity (assuming the velocity of light
¢ = 1). Thus the dilation D(a) simply scales the rapidity. In other words, on the
one-sheeted hyperboloid, the three transformations induced by the group G¢, amount

to a rotation, a Lorentz transformation and a rapidity scaling.

It will be more convenient to work with the variable v = sinh 2 itself, rather than

2. We write

v cos 0

X(07U) = | ysinf |, Vo=V 1+ 'U2,

v

so that in these coordinates,

doy, = V14 2v? df do.

Under the action of (¢, b,a) € G¢

v) cos(f + )
X(0,v) — X(0 +p,0) = vysin(f + ¢) | vp=V1+v2

/

v
where,
v' = sinhb cosh(asinh™ v) + coshb sinh(asinh™ v)
v) = coshb cosh(asinh™ v) + sinh b sinh(asinh™' v). (5.1.17)
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5.1.4 Wavelets on the sphere

Let 8= ¢ | y | : 22 +4* 4+ 2> =1, be the two dimensional unit sphere.

\ /
Let consider the map V : € — &2, defined by

cos 6 cosh™(z) cos 6
Vi|sing | — cosh_l(z)sine . (5.1.18)
z tanh(z)

This map induces a unitary map

Vi L*(€,d2df) — L* (S? cosh™>(2)dzdf) ,

defined by
cosh™(2) cos 6 cos
(Vf) cosh™(2)sinf | = cosh(z).f | sing | - (5.1.19)
tanh(z) 2

Using the representation Uy, the restriction of U to $;, we get a representation
U; of G on a subspace of L? (S2, cosh™(2)dzdf) , characterized by J, given by

Usg) = VU9V, (5.1.20)
defined by
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cosh(z) cos 6
(0J(g)f) cosh(z)sinf | =

sinh(z)

]a|'% [“CS&Z))] f | cosh™ (2=t) sin(6 — ) (5.1.21)

cosh(%®

Admissibility conditions

Let F,(z,0) = —\%ei"%)n(z), be an element of L? (S2,cosh™(2)dzdf) , for n € J.

Its easy to see that the admissibility condition on Fj, is given by

/ | én(’)’) l2d’y < o0, (5.1.22)
R |7l

where ®,(2) = én(2). cosh™}(2).
Let us plot the graphs of some families of admissible wavelets: ®, s, defined by

Do 5(2,y) = [acos(y)H(z) + B cos(2y)Me(z) + v cos(4y) Mo(z)]. cosh(z), (5.1.23)

by using the fbllowing changing of variable (z,0) — (z,y), where o, 3, are real
parameters, H stands for the standard Haar wavelet, Me stands for the standard
Mexican hat, and Mo(z) stands for the standard Morlet wavelet.
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(e) (avﬁ”}l) = (07 17 1) (f) (a,,@,'y) = (1,0, ]_)
78
Figure 5.1: The wavelet ®, 4., (5.1.23), at different values of the parameter («, 3, 7).



5.1.5 Wavelets on an ellipsoid of revolution

The previous construction of wavelets on 2D can be generalized to any ellipsoid of

revolution.
( )
x
Let o,y > 0,and let &,, = ¢ yl: ﬁo%ﬁ -+ ;j; =1 3, be the two dimensional
z
\ /

ellipsoid of revolution.

Let consider the map V : € — &, ,, defined by

cos acosh™(2) cos 6
Vilsing | — | acosh™(z)siné | - (5.1.24)
z 7 tanh(z)

This map induces a unitary map

7

V: L3(€,dzdf) — L? (Eay, pes,, (2)dzdf) :

where
pea,(2) = K}(;(;j\/aQ sinh?(2) + 72, (5.1.25)
defined by 4
o cosh™(2) cos @ cosf
(Vf) acosh“l(z) sinf | = [PS(,,7(2)]% ] sing |- (5.1.26)
~ tanh(z) 2

Using the representation Uy, the restriction of U to £, we get a representation
U; of G on a subspace of L? (E,'a,y, PEorry (z)dzdﬁ) , characterized by J, given by

Us(9) = VUs(g)V ™, (5.1.27)
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defined by

o cosh™(z) cos 8

2 inh2( 2= 2
. U _ -4 | cosh (2) o’ sinh*(%2) 4y
(UJ(g)f) acosh™ (z)sinf |a|™> [cosh(%b) aZsinh?(2) + 72 x
~ tanh(z)
acosh™ (£2) cos(d — )
f | acosh™! (£2) sin(6 — ) (5.1.28)
~tanh (%)
Admissibility conditions
Let F,,(2,0) = ‘\/liem%n(z), be an element of L? (£,,, pe, ., (2)d2d) , for n € J.
Its easy to see that the admissibility condition on F,, is given by
d 2
/ |——md'y < 00, (5.1.29)
R 7l

where ©,(z) = qbn(z).pgw(z)%.
Remark When a = v = 1, we get the previous result on the sphere.

Let now examine the case o = 1, v = 2.

Let us plot the graphs of some families of admissible wavelets: ®, 4 ., defined by

Doy (2,9) = (o cos(y)H (z) + ' cos(2y)(]\/[)el(x) + 7' cos(4y) Mo(z)) (5.1.30)
PE T 2

where o/, 3,7 are real parameters.
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(a‘) (al,ﬂly’yl) = (17070) (b) (al’ﬂ’afyl) = (0105 1)

(e) (¢, 8,7') = (0,1,1) ® («,8,7)=(1,0,1)
81
Figure 5.2: The wavelet ®y g (5.1.30), at different values of the parameter

(o, 8',7").



5.1.6 Wavelets on the one-sheeted hyperboloid

( 3

T
Let H =< |y cz?2 +y%2 — 22 =1}, be the two dimensional one sheeted hyper-
2
i \ J
boloid.

Let consider the map V : € — H, defined by

cosf cosh(z) cos 6
Vil sing | ¥ | cosh(z)siné | - (5.1.31)
z sinh(z)

This map induces a unitary map

"V :L*(€,dzdf) — L? (’H, cosh(z) cosh%(Qz)dsz) :

defined by
cosh(z) cos 6 cos 6
(Vf) cosh(z)sind | = cosh(z)‘% cosh™#(22).f | sing | - (5.1.32)
sinh(z) z

Using the representation Uy, the restriction of U to )7, we get a representation

U; of G on a subspace of L? ('H,cosh(z) cosh%(2z)dzd0) , characterized by J, given
by

Us(g) = VU;(g)V7H, (5.1.33)
defined by
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cosh(z) cos @
(0J(g)f) cosh(z)sing | =

sinh(z)

cosh () cos(6 — ¢)

1 [cosh (ZT_I’)} : [cosh (25—;—9

cosh(z) cosh(2z )] f | cosh (”T_b) sin(f — ) | - (5.1.34)

sinh (52)

Admissibility conditions

Let Fy(z,0) = \/liem%n(z), be an element of L2 (’H,cosh(z) cosh%(2z)dzd9), for
n e J

Its easy to see that the admissibility condition on F, is given by

EXOT .
/R o dy < o0, (5.1.35)

where ®,(2) = ¢n(2). cosh3 (z) coshi (2z).

Let us plot the graphs of some families of admissible wavelets: ®, g, defined by

(o cos(y) H (z) + B cos(2y) Me(z) + v cos(dy) Mo(x)]
cosh? (x) coshi (22)

Doy (2,y) = . (5.1.36)

where «, 3, v are real parameters.
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(a‘) (047/67'7) = (1’07 0) (b) (Ol,,B,’Y) - (0’0’ 1)

(C) (aa/gm')/) = (07 1a0) (d) (a7lga’7) = (17 170)

(e) (&, 8,7)=(0,1,1) () (a,8,7)=(0,1,1)
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Figure 5.3: The wavelet ®, 4., (5.1.36), at different values of the parameter (o, 3, 7).



5.1.7 Wavelets on the plane without the origin

Let R? be the plane without the origin.

Let consider the map V : € — R2, defined by

cosd
e? cost
Vilsing | — ) (5.1.37)
e*sinf
z

This map induces a unitary map

V@ L2 (€, dzdf) — L* (R?,e*dzdf)

defined by

cos

Vf) —e.f | smo | - (5.1.38)

Using the representation Uy, the restriction of U to £, we get a representation
U; of G on a subspace of L? (R2, e**dzdf) , characterized by J, given by

Us(g) = VUs(g)V ™, (5.1.39)
defined by
o e*cosf [ e(25%) 3 (51 cos(0 — 1)
on = la|™} [ ~ } f (5.1.40)
ezsinf e(53*) sin(6 — o)
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Admissibility conditions

Let F,(z,0) = %eme(bn(z), be an element of L? (R2,e**dzdf), for n € J.

Its easy to see that the admissibility condition on F), is given by

/R&nl%)_ﬁm < 0o, (5.1.41)

where ®,(2) = ¢n(z).€*.

Let us plot the graphs of some families of admissible wavelets: &, g,, defined by
®454(z,y) = [acos(y)H (z) + Bcos(2y) Me(z) + ycos(dy)Mo(z)].€®,  (5.1.42)

where «, (3,7 are real parameters.
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(b) (aaﬂy')') = (0707 1)

(d) (a’677) = (1’1’0)

T T T YT T
T T

o
-75 -50 -25 00 25 50 75 75 60 -25 00 25

v

(f) ( ? ) ) (1707 1)

o f8,7) =(0,1,1 o, B,7) =

(e) (o, 8,7)=(0,1,1) . % |
Figure 5 4: The wavelet q)a,B'y (5142), at different values Of the parameter (Ol, /3, vY)-



5.1.8 Wavelets on the paraboloid without the origin

Let P, be the paraboloid without the origin
Let consider the map V : € — P,, defined by
cos e*cosf
Vilsing |+ | esind
22

z €

This map induces a unitary map

Vo L2(€,dzdg) — L* (Pu, e (1+46%)? dzdf) -

defined by
cosh(z) cos 6 cos @
(Vf) cosh(z)sing | =€~ (1+ 462z)_i f| sin#
sinh(z) z

(5.1.43)

(5.1.44)

Using the representation Uy, the restriction of U to £);, we get a representation
~ 1
U; of G on a subspace of L? (’P*, e?? (1 + 4¢%)2 dzd@) , characterized by J, given by

Us(g) = VUs(g)V
defined by

ef cost

(ﬁJ(Q)f) e*sinf | =

622
e(57) cos(f — )
z—bh z=b | 14
_1}]€ e 1 +432 a 2—b
|a| 2 { e [ 1+ 4e2% jl f e(T) Sin(9 - ¢)
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Admissibility conditions

Let F,(2,0) = %em%n(z), be an element of L? (’P*, e* (1 + 4@21)% dzdé?) ,forn e J.

Its easy to see that the admissibility condition on Fj, is given by

D,(7) |2
/R%dy < o0, (5.1.47)

where ®,(2) = ¢,(2).e* (1 + 4622)%

Let us plot the graphs of some families of admissible wavelets: ®, 3., defined by

¢O‘,Bﬂ’(w’ y) =

[acos(y)H (z) + B COS(23/)M@($2 + 7 cos(4y) Mo(z)] , (5.1.48)

e® (1 + 4e2)

where a, 3, are real parameters.
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Figure 5.5: The wavelet ®, 4., (5.1.48), at different values of the parameter (o, 8, 7).



5.1.9 Wavelets on the two-sheeted hyperboloid

Let consider the map V' : € — H, defined by

cos 6 sinh(e*) cos @
V:i|sing | — | sinh(e?)sinf | - (5.1.49)
z cosh(e?)

This map induces a unitary map

V: L?(¢,dzdf) — L? (’H+, ¢” sinh(e?) cosh%(2ez)dzd0) :

defined by
sinh(e*) cos 6 cos 6
(Vf) sinh(e?)sinf | = e * sinh_%(ez) cosh‘%(Zez).f sinf | - (5.1.50)
cosh(e?) z

Using the representation Uy, the restriction of U to £, we get a representation
U; of G on a subspace of L? (H+,ez sinh(e?) cosh? (Zez)dzd(?) , characterized by J,
given by

Us(g) =VUs(g)VH, (5.1.51)
defined by

cosh(z) cos 8
(05(9)f) | cosh(z)sinb | =
sinh(z)
cosh (25) cos(6 — 1)

)] f| cosh (=2)sin(6 — ) | - (5.1.52)

. | cosh (&= : cosh (2&=2
s )] [

b
cosh(z) cosh(2z2)
sinh (2=2)

a



Admissibility conditions

Let F,(z,0) = %em%n(z), be an element of L? ('I‘(Jr,ez Sinh(ez)cosh% (Zez)dzde) ,
forne J

Its easy to see that the admissibility condition on F, is given by

B,(7) |?
/ 12y« oo (5.1.53)
R |7l
where ®,(2) = ¢n(2).e2 sinh%(ez) Cosh%(Zez).
Let us plot the graphs of some families of admissible wavelets: ®, g, defined by

(o cos(y) H(z) + B cos(2y) Me(z) + v cos(4y) Mo()]

e5 sinh?(e?) cosh (2¢?)

Do (T, y) = . (5.1.54)

where o, 3,y are real parameters.
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5.2 Existence of affine-type frames on the previous

2d-surfaces

5.2.1 Affine frame on a cylinder

As it was proved before, we consider our Hilbert space to be of the form

10
By = @ [ ® L* (R, dz)] , (5.2.55)
jeg LV2m
and let ;(2,0) =3 _.; j——%@(z) € %7 be an admissible vector of Uj.

Let consider the two subspaces of Sﬁf,c of $,, defined by

350
H7 = ‘_eH®)|, 5.2.56)
J JGE% [m + ] (
where
H:(R) = {f € L*(R) : f(k) = Ofork < o} , (5.2.57)

are the known Hardy spaces. Let N € N*. For k = 1,..., N;m,n € Z, let us consider
the set of functions ™™ defined by

ghrm; g) = Z la|"2 ————¢;(a ™™z — mb) (5.2.58)

Theorem 5.2.1 Let ¥, € 53}' be such that V§j € J, supp ((]3]) C [l;,L,], where
0<l;<Lj<ooandleta>1 andb>0 be such that

(1) There exist A, B such that

0<ALD |di(a™) P<B<oo, ¥y=0,Vjel (5.2.59)

neZ
(2) (L;— ;) < 1/b, Vi€l
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Then for all £1(2,0) = ¥c; 5= 15(2) € S,

bIAN Y /0 | Fi(n) Py < 301 (F 95" PSOTIBN Y /0 T H) P

jeJ k,nm jeJ
(5.2.60)
Thus, {\I/l}”m} is a frame for 7 with bounds b 'AN, b 'BN.
k=1,...,Nyn,meZ
Proof. The important and easy thing to see here is that
| (2, 957 =Y | (fs Dan Tt} (5.2.61)
jet
where DynTrpi(2) = |a| 2 ¢; (a™"2 — mb),
and it’s known that
> 1 {f5s DanTod) = b'l/o | f5(v) Pl §5a™) [P . (5.2.62)

meZ -

So, we have

Smnez | {fir Dar T} =671 [7 | fi(0) P Lz | 83(a™) I .
Now, using the fact that A <> | (ij(a"'y) |2< B, we have

A Y [T R0 Par< X1 Py BN Y [T A Fax

jeJ k,nm jedJ
(5.2.63)

As before, the same theorem can be proved for $

The following gives a frame for $,

Theorem 5.2.2 Let ¥}, V5 € §;, with ¥y(2,0) = 3., %d)}(z) and ¥%(z,0) =
> e %qﬁ?(z) Vi € J and supp ((]3]1) C [—Lj, =] and supp (qﬁ?) C U4, L;], where
0<lj<Lj<ooVjeJ Leta>1,b>0 be such that

(1) There exist A, B such that

A< 184 P< B, v>0aeVjed (5.2.64)
neZ

A<D | P< B, y<0aeVje (5.2.65)
neEL
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(2) (Ly—1;)<1/b, jeJ.

Then, {lIlb;k’"’m, \I}?k,n,m}kzl,...,N;n,meZ is a frame for 5 for alll < a < min{L;/1;}

and 0 < b < min{L; — ;}.

This theorem gives a condition on ¥; whose Fourier transforms of ¢; are not

necessary compactly supported so that {\IJ’}’"’"L, a, b} generates a frame for §;.

130

Theorem 5.2.3 Let U;(z,0) = }_.c; 55=¢;(2) € H; and a > 1 such that

(1) There exist A, B such that

A<Y 4i(a™) P< B, veRae,Vjel. (5.2.66)
neZ
(2) 1 1
l_an%lﬂ (k/B)% B; (~k/b)} =0, Vjel, (5.2.67)

where B;(s) = es55UP i1, Sonez | $i(a™)$;(a™y = 5) | -

Then, there exists by > 0 such that {‘If'}’"’m,a, b} generates a frame for §3;, for each
0 < b < by.

Proof. Let f;(2,0) =) ., %f](z) €9y
By following step by step the proof of Theorem 5.1.6 in [33], it follows that there
exits b; > 0 such that

AN £ S D | {F DanToeds) P< 6B | £ [32my, (5.2.68)

n,meZ

for 0 < b < b;.

By taking by = min;es{b;}, the proof is complete.
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5.3 Muitiresolution analysis

Definition 5.3.1 A frame multiresolution analysis for L*(R) consists of a sequence
of closed subspaces {V;}._, of L*(R) and a function ¢ € Vi such that [14]

JEZ
1. .. ViCcWCW..
2. UjezV; = LA(R)

3. V; = DIV}

4. feVo=>TifeVy, keZ

5. {Tkd} ez is a frame for Vy

5.3.1 A multiresolution analysis on L*(€, dzdf)

Let J C Z such that | J |< oo and let consider the Hilbert space H;

150

Hri=EP {f/ﬁ%‘ ® LQ(R)] . (5.3.69)

jeJ

Let V; be a closed subspace of H. So, there exist {V;} ;
subspace of L%(R) such that

cJ» & sequence of closed

eijo

Vi=P [E ® v,] . (5.3.70)

. jeJ
We will say that V is nowhere trivial if {0} # V; # L*(R) for all j € J.

Let N € N*, k € Z and let ¢ € H; such that ¢(2,0) = >, %qﬁj(z). For
I=1,.,N,let

2xl

oti(6—- 2t

(Toopy9) (2,0) = ——=—0;(2 — k). (5.3.71)
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Definition 5.3.2 Let J C Z such that | J |< oo. A frame multiresolution analy-
£ii?

sis for H; = Djes {\/ﬁ ® LQ(R)] consists of a sequence of nowhere trivial closed

it

on__ n . 70
subspace {VJ = EBjeJ [\/—2——; % ]}nEZ of Hy and a function ¢ € Vy such that

1. .Vt VP Vi,

2. UnezVP =M,
3. Vi = D"W?
4 feVI=TyunfeV? kezl=1,.,N

5. {T(k,l)‘b}kez; 11,y 18 a frame for VY

Theorem 5.3.1 A sequence of nowhere trivial closed subspace {VJ"} . of Hy and
g ne

a function ¢(z,0) = ZjeJ f;—;—jrquz 18 frame multiresolution analysis for H; if and only

if for all j € J, the sequence {Vj"}

analysis of L*(R)

ez, 0nd the function ¢; is a frame multiresolution

From this theorem, we can conclude that the problem of having a frame multires-

olution analysis of H; is reduced to |J| copies of a frame multiresolution analysis of

L2(R).

So, we can have a frame multiresolution analysis on the Hilbert spaces L?(S, do)

by transporting the one on the cylinder using the unitary maps V.
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Chapter 6

Wavelets on the Paraboloid Using

a Group-theoretical Approach

6.1 Preliminaries

Using Mackey’s theory of induced representations, we present a wavelet transform on
some general two-dimensional surfaces given by the equation z = (2% + y*)*, where o
is a real number, by using a specific group. The wavelet transform on the paraboloid

is obtained by taking o = 1.
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6.2 Wavelet transforms on the parabola

For time-frequency like transforms, the generic group, consisting of 3 x 3 matrices,
that we are suggesting is:

arg b b 0
G = a>0, b= eR? 0= , 8€l0,2m) p, (6.2.1)
OT f(a) b2 0

where f : Rt — R satisfies f(a1a2) = f(a1)f(a2), f(a)# 0 for any a, and

cosf —sinf
T =
sinf cosf

Note that if f is a continuous function, then the only possibility is f(a) = a® for some

real number o.

The subgroup of G with b = 0, then leaves the surface G, defined by the equation

c=f(lvl), v=]| | e®, (6.2.2)

invariant.

6.3 Paraboloid with apex removed
Consider the special case where f(a) = a?, with typical group element:

arg b
07 a?
and multiplication rule:

(b,a,0)(b’,d’,8') = (argb’ + a’*b,ad’,0 + §').
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We denote this group by Gg. Its subgroup, with b = 0, leaves the paraboloid
z = x? + g2, with the point (0,0,0) removed, invariant. We denote the resulting
two-dimensional surface by B. The two invariant measures on Gy are:

db da df __dbda db

dpe(9) = ——=— and  du(g)

3 . db=db dby.  (6.3.4)

ad

Define the two abelian subgroups of Gyp:

I, b 10
H={h= |beR?*}, L= , (6.3.5)
o7 1 01
and
arg 0
P={p= |a>0, 8€[0,27) ;. (6.3.6)
07 a?

Then for any g € G, one has a decomposition g = ph, with

arg O I, alr_gb
p= h = . (6.3.7)

07 ao? oT 1

The subgroup H acts as a shear group on R3, while as noted earlier, P leaves P
invariant. In fact P ~ Gg/H and is homeomorphic to 3, which can also be looked
upon as the orbit:
e 1
O=<p pEP e = , (6.3.8)
1 0

ie., P~ Gy/H ~ P ~ O. Thus P has a natural action on 3,
v argv

D = 3 pE P: Z = ”V”2,

z a?z

under which the measure p iz d
v _aray
dpsgp = e (6.3.9)

is invariant.
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6.3.1 Lie algebra and coadjoint action

The Lie algebra ggp of G is generated by the four elements:

]IQ 0 —w 0 @2 e;
D=1| . J = , P = . i=1,2 (6.3.10)
o 2 of 0 of o
where,
0 1 00
w = y @2 = and (ei)]’ = (5”
-1 0 00

The generators satisfy the commutation relations,

[D7J] = 0:[P1>P2]; [D;R]:_Pia i=1,2,
[J,Pl] = Pg, [J,PQ]:_P]_. (6311)

It ought to be noted here that gp looks similar to the Lie algebra sim(2) of the
SIM(2) group, which consists of 2 x 2 matrices of the type

arg b

o7 1

which can indeed be obtained, as a special case of the generic group G in (6.2.1), by
choosing f(a) = 1 for all a. However, in the case of sim(2), the commutator between
D and P, is [D, P)| = P, whereas in the present case it is [D, P;| = — P,

A general Lie algebra element has the form

s(a) B
X =01D+ayJ + ﬂlpl + ,BQPQ = R ai,ﬂi € R, (6312)
OT 2&1
with
€51 B a1 —Q2
o= , B= and s{a) =
Qo B2 Gy Qq
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The adjoint action of g € G on X € gy is then:

s(a) a"'rgB + a 2ayls + asw]b

X — Ady(X) :=gXg =X = . (6.3.13)
OT 20[1
a
Thus, the action on the coordinate vectors x = € R* is then given by the 4 x 4
B
matrix Ad(g):
Qa o «a
— = Ad(g)
B B B
with
e €9 @2
Ad(g) = . (6.3.14)
a b a%wb alrg

From this, the coadjoint action on the dual vectors xT = (a7, 87) = (a1, a2, f1, 52)

is calculated to be
xF — xT' =xTAd(g) ™! = (an —a*BTr_¢b, az—a" 18T r_gwb, aBTr_p). (6.3.15)
In particular, the action on the vector (0,0,e?) is seen to be
(0,0,eFy — (—aelr_gb, —a"telr_gwb, aelr_y), (6.3.16)

and consequently the corresponding coadjoint orbit can be identified with R? x
(R%\{0}) which is homeomorphic to the cotangent bundle T*P. From (6.3.15) it
can easily be deduced that this is the only non-trivial coadjoint orbit for this group
and hence, up to unitary equivalence, there is only one unitary irreducible represen-
tation of Gg. Note also that the group SIM(2) also has a single non-trivial coadjoint
orbit, R? x (R?\{0}). Moreover, in both cases, the group space itself can be identified
with this orbit.
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6.3.2 UIR and TF-transform

The single UIR of Gy can be obtained by inducing from a character of the abelian
subgroup H. The representation is carried by the Hilbert space L*(B,dug) (see
(6.3.9)) and it has the form

(U(9)¢)(x) = (U(b,a,0)Y)(x) = exp(iva'zb)w(g—lx), X = eP, (6.3.17)

for all ¥ € L*(B, dpusyp) and with

6.3.3 Construction of the representation

Since Gyp/H =~ P we identify points in Gg/H with x € P in the manner

arge;
pr—x = e P,

a2

with p € P as in (6.3.6). Next we define the section o : Gp/H — G

Thus, for go € G,

apare,+o 0
O'(g()X) = 3
0T (apa)?

from which we compute the cocycle h : Gg X P — H,

i I, ao tar—g—sbo
h(go, x) = o(gox)” " goo(x) = . (6.3.18)
oT 1
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We now take the one-dimensional unitary representation of H:
V(h) = e*rP, (6.3.19)
where £ is as in (6.3.5). Then, writing x as in (6.3.17), so that

- v-b
V(higs", %) = exp(~i"22),
0

we construct the UIR of Gy on L%('B, dusyp) in the standard manner:

U(g)y)(x) = V(h{g™"x))(g7'x), ¥ € L*(B,dusy),
yielding (6.3.17).

6.3.4 Square-integrability and coherent states

This representation is square-integrable, the admissibility condition being

— (2r)? W(X)f dpss(x) < 00. (6.3.20)
p VIl

To see this, consider the integral

I(d)a(ﬁ) = / |<¢IU(b)a70)¢>i2 duf(b)aa 9)7 ¢,¢ € Lz(madﬂm))

Gy

where du, is the left Haar measure in (6.3.4). After some straightforward manipula-
tions, this integral can be brought into the form:

oo p2T x 2
I(¢,¢) = (27T)2/0 /o /Rz (ﬁ_(__)!_)_:z |W(a~tr_gv, a™22)|* a da df dx dy,

1172 + y2
with
v
X = , V= and z = |[v].
z Y
&1
Writing € = = a~lr_gv, changing variables, (a,8) — (£1, &), and noting that
&
€112 = a~2||v||?, the above integral transforms to
2 3
Hw,6) = @rplol? | G0E duse), where 5 -
pY

€112
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From this follows the admissibility condition (6.3.20).

If 1 is an admissible vector, we define coherent states 1y, q¢ in the usual way

1
Mas = ——U(b,a,0)¢,  (b,a,0) € Gy, (6.3.21)
Ve ¥
which will then satisfy the resolution of the identity,
/ |7b,0,6) (Mb,0,6| dite(b, a,6) = 1. (6.3.22)
Gy

6.3.5 TF-like transform

Using the coherent states ny, 49 We now define a generalized “time-frequency trans-
form” on 93, the paraboloid with the vertex removed. For ¢ € L2(B, dusy), we define
its TF-transform Sy by

Se(b,a,8) = (Mbapld) = ‘/;exp(—-z'va;b) P(a~lr_gv, a=22) ¢(x) dug(x). (6.3.23)

It is also clear now that the same method could be applied, to build analogous

transforms, for any of the surfaces (6.2.2), in particular, for surfaces of the type,

z = ||v||*, « € R. It would be interesting to study in detail the case where a = —3,
1
i.e., of the surface z = — e, formed by rotating the hyperbola zy = 1 about
¢4y
the z axis.

6.4 Some general considerations

It is worthwhile re-deriving the above results for the general group G in (6.2.1). The
group multiplication rule now reads:

(b,a,0)(b',d',8") = aryb’ + f(a')b,ad’, 8 + ¢') (6.4.24)

The invariant measures for this group are:

db da df db da db
dpe(9) = ——— and  du(g) = F@Fa’ db = dby dby,  (6.4.25)
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so that the left invariant measure is the same for all such groups and the modular
function A(g) (such that du.(g9) = A(g) du.(g)) is given by

g

; (6.4.26)

Alg) = a00) = |
Thus, the the group is unimodular only in the case where f(a) = a, i.e., when the
invariant surface (6.2.2) is €, the cone with the apex removed. Of the four generators,
D,J, P, i=1,2, in the Lie algebra g of the group, the last three are the same as in
(6.3.10), while the first one has the form

]I2 0 d
D= o J() == f(a) o=t - (6.4.27)

0T f'(1)
This leads to the commutation relation
[D,P]=cP, i=12, c¢=1- () (6.4.28)

all the other commutation relations in (6.3.11) remaining the same. Note that this
commutator also vanishes when f(a) = a (i.e., in the situation where the invariant
surface is €). Furthermore, in this case, D is an element in the centre of the Lie
algebra g, which now is just the (trivial) central extension of the Lie algebra of
the two-dimensional Euclidean group. We don’t expect this group to have square

integrable representations and this indeed is the case, as we shall see later.

A general Lie algebra element (see (6.3.12) has the form:

X = o) P , (6.4.29)

0T (Do

which under the adjoint action (see (6.3.13)) changes to:

s(@) —[areB + (azw — carT)b]
X' = Ady(X) = f(a) . (6.4.30)

o’ ff(Dan
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Similarly, the matrix (6.3.14) changes to

€ €9 0O,

Ad(g) = , 6.4.31
@) —cb  wb arg ( )

fla) f(a) f(a)

yielding the coadjoint action on the dual vectors:

1
xT — xT' =xTAd(g)™ = (a1 + E,BTr_gb, ay— E,BTr_gwb, @BTr_g). (6.4.32)
a
This leads to the action on the vector (0,0, eT):

f(a)

(0,0,eF) — (caeTr_gb, —a teTr_swb, Tefr_g). (6.4.33)

Thus, unless f(a) = a, implying ¢ = 0, the corresponding coadjoint orbit is identifiable
with R? x (R%\{0}) which, in turn, is homeomorphic to the cotangent bundle T*&
of the invariant surface (6.2.2). Moreover, this is the only non-trivial coadjoint orbit
for this group and hence G has only one unitary irreducible representation.

The invariant measure on & is, once again (see (6.3.9)),

dv v z
dus(x) = ER X = €6, v= € R?, (6.4.34)
FAVID y
The cocycle h (see (6.3.18)) now reads
a
I f—(~—-)~r_9_90b0
h(go, %) = 0(gox) g0 (x) = Goa , (6.4.35)
of 1
with
arg 0
o(x) =
07 f(a)

Once again, we induce a representation of G from the representation (6.3.19) of H.
This resulting representation is carried by the Hilbert space L?(S,dug) and has the
form (see (6.3.17)),

(U(b,a,8))(x) = exp i% v-b|latr_gv, fla™t|[v])). (6.4.36)
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If we choose f(a) = a®, a € R, this representation is square-integrable, provided

a # 1, the admissibility condition being,
@m)? [ )P

o = 1] Jg [Iv][**~2

dpe < 00. (6.4.37)

Also, in this case, the representation (6.4.36) takes the form

-2

(U(b,a,0)1)(x) = exp [z Uaa V- bJ Y(a tr_gv, (a”tv)*), v=1|v|. (6.4.38)

Furthermore, for & # 1, the Fourier-like map, F : L?(6, dus) — L*(R?%, du),

-1

(Fo) ) =

/ e~ V(v ) v dpe, (6.4.39)
&

is unitary and writing (7(b, a,0) = F(U(b,a,0)F !, we get for 121\ € L*(R?,du),

argu+Db

(U(b,a,0)P)(u) = a® (g 7'u), where gu= (6.4.40)

a“

6.5 Special cases

It is worthwhile to look at a few special cases.

6.5.1 Case of the cone without the apex

When f(a) = a, i.e.,, a =1 and & = €, the cone without the apex, the admissibility
condition above cannot be satisfied and hence, in this case, the representation is
not square-intégrable. Also, now ¢ = 0 and from (6.4.32) we see that there is a
continuum of coadjoint orbits (one for each value of o). The transformation (6.4.33)

now becomes
(0,0,eT) — (0, —a'elr_pwb, efr_y), (6.5.41)

implying that each one of these orbits, is identifiable with the cotangent bundle of

the circle or the cone without the apex itself.
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6.5.2 Case of the 2-dimensional plane with the origin re-

moved

In this case, a = 0 and we recover the affine group in two dimensions. The transfor-

1
mation ||v| — —— and the unitary map % — (V) between L%(6,dues) and
v

L?(R?,dv) brings (6.4.36) and (6.4.37) into their well-known standard forms

6.6 A more general situation
A much larger class of surfaces can be obtained if we look at a group of the type:

A b by 0
G= a €R, A(A)=det[4], b= eR% 0= :

07 A(A)3 by 0
where A € K, which is a subgroup of GL(2,R) such that it has open free orbits in

R? and detA > 0.

The action of G on the homogeneous space G/H, with H as in (6.3.5), is given
by:

I Ax+Db
X 2 o
2 9, A(A)z | (6.6.43)
07 1 o7 1
Hence G can also be looked upon as a group of transformations of R? of the type:
Ax+b
X — —AE(;})?,' which should be compared to the action given in (6.4.40).
2

Clearly, the groups considered in the previous sections are all of this type. Another
obvious example of a group of this general type is obtained by taking the Lorentz

group in two-dimensions with dilations, so that

cosh?d sinhd
A=a , a>0, de€R. (6.6.44)

sinh? coshd

110



Then A(A) = a? and the surface & : z = (2 — y?)? is invariant under the action of

the subgroup

P=(p= . (6.6.45)

It is also the orbit of e; under P.
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Chapter 7

Localization Operators Associated
to Group Representations:

Application to the (alilei Group

7.1 Preliminaries and motivation

A Weyl-Heisenberg group (WH)", is the group R" x R™ x R/27Z, with the binary
operation

(q1,p1,t1)-(g2, P2, t2) = (@1 + @2, 1 + P2, t1 + ta + q1p2), (7.1.1)

for all points (g1, p1,t1) and (go,p2,t2) € (WH)", and t; + t2 + g1p2 is cocycle in
quotient group R/27Z. This group is unimodular with the Haar measure dqdpdt.
The representation (Schrédinger representation) U of this group on the Hilbert space
L*(R™) is defined by:

U(g,p,t)f) (z) = PP f(z — g), z€R™ (7.1.2)
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It is a square integrable, unitary irreducible representation of (W H)" . Daubechies in

[18], defined a class of bounded linear operators

Dpy : L*(R™) — L%*(R") associated to F in L}*(R® x R") and ¢ in L?(R") with
| ¢ ||z2@®ny= 1 is studied in the context of signal analysis , and

(Dryu, U>L2(R") = (27T)_n/ / F(q,p) (u, ‘Pq,p)LZ(Rn) (©gps 'U)Lz(Rn) dqdp,
L2 J L2 (Rn)

(7.1.3)
for all u,v in L*(R"™), where ¢ , = ePZp(z — q).
Later, it was proved that ([46])
<DF,¢U, U>L2(Rn) = (714)

AV /1,2 l/ I
I ! )é)v n dqdp’
C (]R 2(Rn ( )( ( ( ’ )7 )l,Z(RL (( (2’1 ) ) ) 2(R

for all u, v in L?(R"). So, the linear operator D, which is called Daubechies operator
in [[23], [24]], is the same as the localization operator Lp, : L2(R") — L2(R") asso-
ciated to the symbol F' and admissible wavelet ¢ for the Schrédinger representation
for the Weyl-Heisenberg group (W H)" on L?(R").

This idea was generalized to any abstract locally compact group which has a

square integrable unitary irreducible representation [46].

Let ¢ be an admissible vector for an irreducible and square-integrable representa-
tion 7 : G — U(H) of a locally compact and Hausdorff group G on a Hilbert space
‘H. Then, we have the resolution of identity:

Iy = g- / | 7(9) () (m(9) () | da(o), (7.15)

where I3 is the identity operator on H and u is the Haar measure on G.

Let F € LY(G) N L>(G). Then for all ¢ in H, we define the operator L, r¢ by:

(Lord | 9) = Ci / F(9) (6 | 7(9)e) (n(a) | ) duu(g), (7.1.6)
forall e H. .

The operator L, r is called a localization operator associated to the symbol F.
The following results on L, p are known [46]
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Proposition 7.1.1 Let F € L?(G), 1 < p < oo. Then there exists a unique bounded
linear operator L, p : H — H such that

1
1 P

| Lo i< (—) I F i,

@ C<p (@)

and Ly p¢ is given by (7.1.6) for all ¢ in H and all simple functions F on G for which

n{g € G: F(g) # 0} < cc.

The proof of this proposition is actually based on the following theorem, the so-call
interpolation theorem ,e.g, Chapter 10 of the book [47]:

Riesz-Thorin Theorem 7.1.1 Let (X, u) be a measure space and (Y,v) a o-finite
measure space. Let T be a linear transformation with domain D consisting of all
simple functions f on X such that

pu{se X : f(s)#0} < oo (7.1.7)

and such that the range of T is contained in the set of all measurable functions on Y.
Suppose that ay, ag, 1 and By are numbers in [0, 1] and there exist positive constants
My and My such that

Tl o <M, L ,feD,j=1,2 7.1.8
ITF0 g, <M 0 Flg  FeD. (7.18)
Then for0 < 8 <1, o= (1—0)ay + 0az and § = (1 — 0)1 + 002, we have

T3, S MM £ s s €D (7.1.9)

In this chapter, we try to consider the symbol ¢ associated to a localization opera-
tor L, to be more general. So, let us consider it in the following form: ¢ : G — B(H),

we mean by that o(g) is a.e. a bounded linear operator on H ,i.e. ||o(g)|l3 is a mea-
surable function on G.

Now let us define the following objects which are necessary for the next sections

En(G) = {0:G— B(H): a(g) € B(H), | o(g) [ne LG, du)}

= B(H)® LP(G,du) (7.1.10)
For ¢ € Z,(G), let us define the following operator on H by
1
Loof = 52 [ 45:000) xta)éDm(0)éauto) (71.11)

For any complex valued measurable function A on G, by taking o to be o(g) = A(g)lx,
the operator (7.1.11) defines the standard localization operator associated to the
symbol A. So, this definition of the Localization operator is more general than the
one known so far.
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7.2 Main results

Under the assumptions stated above, we have the following propositions
Proposition 7.2.1 Let o € E (G) Then
Lot = 32 [ 41,9(6) n(a)oDm()oduts

15 a bounded linear operator and

1
[ Lgolln < aﬁ” o7l 2 c)- (7.2.12)

Proof. Let suppose that o € Z1,(G). Then for f,h € H, we have

(Lol M| < g [ 14,00 r@)éDr(a)en ) | duto)

IA

C—¢ TANEY / I o(g) lln du()

= '—‘é AR ol (7.2.13)
¢
where || ¢ ||= 1.

]
Proposition 7.2.2 Let o € 52 (G) Then
Loof = 52 [ 45,000) nta)éDm(o)éduto

15 a bounded linear operator and

I\
P (-5;) o ellzecos - (7.2.14)

Proof.
Let 0 € Z%/(G). Using Holder inequality, we have

{Laaf P < (5 ) ([ 14700 e P dute)) =
([ 1wtaro.t P auto))
(é) 1517 [ 11(6) e duts) ([ Fintoient P auto))

1
o FEIP TR o el 2oy - (7.2.15)

IA
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The following is our main result

Theorem 7.2.1 If 0 € Z5/(G), for p € [1,2], the operator defined by (7.1.11) is a
bounded linear operator on 'H and

Lol < (g—;)"u oo (7.2.16)

Proof. The proof comes from the proposition 7.2.1 , proposition 7.2.2 and the

interpolation theorem 7.1.1. m

7.3 Application to extended Galilei Group

Now, let G be a locally compact group and H be a closed subgroup of G and X =
G/H, let v be a quasi-invariant measure on X, and A(g,.) be the Radon-Nikodym
derivative of the transformed measure v, g € G with respect to v. Fix a Borel section
0:X — G.For g € G and z € X, we define h(g,z) = o(g9z) tgo(z).

Suppose that H has a strongly continuous unitary representation h — V'(h), h €
H, on the Hilbert space & Let B(g,z) = [\(g, x)]% V (h(g71,2)~1) and consider the
Hilbert space H=R/elL? (X,dv), of functions ® : X — R, which are square

integrable in the norm

19 13= [ 19 dv(o) (7.3.17)

The operators U(g), g € G, defined on § by (U(g)d)) () = B(g,z)®(g9~'z), are
unitary on $. Moreover, they are a strongly continuous representation of G. The
representation g — U (g9) so constructed is called the representation of G induced

from the representation V of the subgroup H.
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The Galilei group is a ten-parameter group & of transformations of Newtonian

space-time. An element ¢ € & is of the form
g=(b,a,v,R), a,veR} RecSO3), (7.3.18)
with the group operation defined by
g9 = (b+¥,a,v+ RV RR) (7.3.19)

where b is a time parameter and a a spatial translation, v is the velocity boost, and

R is the spatial rotation.

In quantum mechanics, one needs to work with a central extension of & denoted
by & defined by

g=(0,b,a,v,R), 0cR aveR® RecSO@3), (7.3.20)

with the group law defined by

37 =0+ +&4,99), (7.3.21)
where 5, = m [1vi%by + vi.Ri.a3], m = const. > 0.
It is easy to see the Group ® can be looked upon as the semidirect product, see

[1]:

b=OxTxS)xK, K=VxSU(@2), (7.3.22)

where © x T x S, is an abelian subgroup of .

Using Mackey’s theory of the induced representation, we get the spin representa-
tion U’ of the group & on the Hilbert space C¥*! x L? (R?, dz) given by [1]:

2

(U7 (0,b,a,v,p) @) (z) = exp {z {0 + %b +mv.(x — a)}] xD7(p)¢ (R(p™")(x — a)) .
(7.3.23)

The resolution of the identity give rise the the reconstruction formula
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F=g 00760850 0 6.0,0,v.p) 6. (7.3.24)
¢

According to what we have proved so far, we can take a symbol ¢ to have a matrix

form as follow:
U(g) = {aifk(g)}lﬁi,k§2j+l’ (7325)

which is a linear operator on C¥*! with norm defined by

lo@ ez = D losx(@)l- (7.3.26)

1<4,k<254+1

In this form, 0(§) can be defined as a bounded linear operator on C¥*1x L2 (R3, dz)

as follow:
(0(9)9) (z) = 0(g) (¢(x)), which is well defined. (7.3.27)

So, the corresponding localization operatorL, is defined by

Lof = / (U3 (0,b,a,v,0) U7 (0,b,a,v,p) édg,  (7.3.28)
Cs
where

U3 (0,b,a,v,p) @) (z) = (7.3.29)
erp [z {9 + ;D—mb +mv.(x — a)}] x o(g) [D(p)¢ (R(p™)(x — a))] .

Corollary 7.3.1 If ||o(.)||czi+1 € LP(&) for p € [1,2] ,then the Localization operator
defined by (7.3.28) is a bounded linear operator on C¥+1 x L2 (R3,dz) and

1 1/p
| Lo[lc2s1x 23 da) < (@) Ao Ollczill o) » (7.3.30)

and Lo f is given by (7.3.28) for all f in C¥*' x L* (R?,dx) and all simple functions
o on® for whichu{ge é:a(ﬁ)#@} < 0.

Remark : If ¢ is such that o;(§) = A(§)d;x, for some measurable function A on
@5, we get the standard localization operator.
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Conclusion

The theme of this dissertation has been to develop a time-frequency-like and wavelet-
like analysis on certain non-Euclidean manifolds.

We first generalized the Gabor-type frame to an arbitrary locally compact abelian
group, and presented necessary and sufficient conditions for the convergence of the

corresponding frame operators.

Since the 2D-cylinder can be considered as a locally compact abelian group, we
associated to it the corresponding Weyl-Heisenberg group, and then constructed a
Gabor type frame on it. Next we obtained time-frequency type transforms on several

non-Euclidean manifolds which are homeomorphic to the 2D-cylinder.

Thereafter we presented a group theoretical approach for the construction of a
wavelet-like transform on the cylinder, and then transferred it to non-Euclidean man-

ifolds as before.

Using the above two techniques, wavelet and time frequency analyses were pre-
sented on a number of 2D-manifolds namely, the sphere, the ellipsoid, the one-sheeted
hyperboloid, the two sheeted hyperboloid, the paraboloid the and plane. We also con-
structed a wavelet-like transform on the 2D-paraboloid using a representation of a

particular group.

Finally, we studied localization operators associated to certain group representa-

tions.
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