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ABSTRACT

Return, Risk and Diversification of Canadian Stocks

Shishir Singh, Ph.D.
Concordia University, 2007

This thesis examines three major issues dealing with the risk of Canadian stocks. The
first issue is what are the differences in various measures of idiosyncratic volatility (IV)
and is this risk priced. To this end, various measures of realized, conditional and
idiosyncratic volatility are examined for Canadian stocks for the 1975-2003 period. As
for other markets, smaller firms exhibit higher total and idiosyncratic risks than their
larger counterparts, and IV accounts for almost three-quarters of total volatility for the six
studied samples. Unlike other markets, Canadian IT firms exhibit considerably lower
volatilities. The relationship between returns and IV is examined using various
approaches with(out) the presence of control variables for liquidity and firm-specific
information embedded in stock prices. The conditional relation between returns and
asymmetric IV is highly significant, robust and as expected (i.e., positive and negative for

correspondingly signed excess returns).

The second issue is whether a minimum portfolio size (PS) should be prescribed to
achieve a naively but sufficiently well-diversified portfolio for investment opportunity
sets (un)differentiated by cross-listing status and market capitalization. To this end,
various (un)conditional metrics are used to measure diversification benefits for stocks

listed on the TSX for 1975-2003. The minimum PS is found to depend upon the chosen

il



investment opportunity set, the metric(s) for measuring diversification benefits, and the

criterion for determining when the portfolio is sufficiently well diversified.

The third (final) issue is to re-examine volatility transmission for stocks cross-listed
in synchronous markets. To this end, four bi-variate GARCH models are used to examine
contemporaneous co-movement, asymmetry and volatility transmission effects for equal-
(value-)weighted daily returns for Canadian stocks cross-listed on the TSX and U.S.
markets for 1975-2003. Contemporaneous and asymmetric comovements decrease during
the 1990s and increase thereafter, mostly due to the entrance of new (and smaller) stocks
into both national markets. Conclusions about the directional change of asymmetric
volatility spillovers depend upon the choice of GARCH model. Thus, a researcher should
use more than one multivariate GARCH model in order to draw robust inferences on

cross-market volatility dynamics.

v
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CHAPTER 1

INTRODUCTION

Common definitions of volatility include a direction-less statistical measure of
dispersion (Investopedia) or the standard deviation of a financial asset (Wikipedia).
Various measures of volatility are often used to quantify the risk of a financial asset over
a specific time period. Higher volatility (uncertainty or risk) is undesirable from an
investor’s viewpoint as higher volatility implies that asset prices or returns can change
dramatically in either direction. Stock volatility is decomposable into a systematic (non-
diversifiable) component and an unobserved unsystematic (diversifiable) component,
where the latter is theoretically equal to the standard deviation of innovations beyond
what investors expect given market or factor returns. However, there is considerable
debate not only on how expectations are generated by investors but also on the choice of
the empirical model to determine innovations and on whether or not these innovations are
priced. This thesis addresses this debate by examining risk, risk diversification and risk
pricing for Canadian publicly traded equities.

Thus, the main objective of this thesis is to examine three major risk-related issues for
Canadian equities. The first issue is centered on the academic debate on what is an exact
measure of risk and what risk is priced in the market. To address this issue, this thesis
compares various measures of realized, conditional and idiosyncratic risk, and tests
whether 1diosyncratic risk is priced in its relationship with expected returns. The second
1ssue deals with whether or not a minimum portfolio size can be prescribed for investors

by examining the extent of risk diversification achieved as measured by various metrics



for various portfolio sizes for six investment opportunity sets. The third issue relates to
co-movement, volatility transmission and asymmetric response to negative shocks for
Canadian stocks cross-listed on both the TSX and US markets.

The second chapter (first essay) addresses the debate on an exact measure of risk by
comparing various measures of realized, conditional, idiosyncratic and downside risk for
different portfolio groups, including all stocks, non-cross-listed, cross-listed, big firms,
small firms, and IT firms. This chapter is grounded in the ongoing debate about the
irrelevance of idiosyncratic risk in the pricing of equities. While Fama and MacBeth
(1973) argue for the irrelevance of idiosyncratic risk since it can be diversified away by
holding a diversified portfolio of stocks, other authors (Brennan, 1975; Fu, 2005) note
that the majority of investors are under-diversified given transaction and information
costs, and intuitively need to be compensated for holding stocks with high idiosyncratic
risk. Hence, under incomplete information (Merton 1987), idiosyncratic risk is expected
to be priced in the cross-section of expected returns. Using cross-sections of stocks or
portfolios of stocks, recent studies report mixed results of either a weak positive relation
(Malkiel and Xu, 2002), or a negative relation (Ang et al., 2006), or a significant positive
relation (Fu, 2005). Arguments presented to explain these puzzling findings include an
‘error-in-variables’ problem caused by the unobservability of both expected returns and
idiosyncratic volatility; realized returns are a poor proxy for expected returns (Chua, Goh
and Zhang, 2006); models of idiosyncratic volatility used in the extant literature do not
capture substantial time variation (Fu, 2005); data frequency, the weighting scheme, as

well as controls for size and liquidity play a critical role (Bali and Cakici, 2006); and that



expected returns include a liquidity component as well as a risk component (Guo and
Savickas, 2005).

The second chapter examines whether or not firm-level volatilities or IVs have
increased over time, and whether idiosyncratic volatility is priced in its relationship with
expected returns. The risk-return relationship is examined using two robust empirical
procedures. The first empirical procedure sorts idiosyncratic volatilities into quintiles and
then examines the differences in the expected returns between the first and fifth quintiles.
The second method uses the Carhart four-factor model in a two-step Fama-MacBeth
methodology to examine the relationship between expected returns and idiosyncratic
volatility in the presence of control variables for liquidity and firm-specific information.
The chapter finds a substantial increase in idiosyncratic volatility for Canadian stocks
consistent with findings reported for other markets in the recent literature. A positive and
significant relationship between expected returns and idiosyncratic volatility is found
using quintiles as well as the multiple regressions. The multiple regression results are
robust to the choice of liquidity measure, controlling for measurement error resulting
from the first-step regressions and controlling for structural breaks in the returns for each
of the investment opportunity sets. The existence of a positive relationship between
expected returns and asymmetric idiosyncratic risk reveals that idiosyncratic volatility is
priced and is not completely diversified away.

The third chapter (second essay) examines the extent of diversification achieved, on
average, for portfolio sizes ranging from two stocks to 100 stocks for six investment
opportunity sets using various diversification metrics. The background to this inquiry

stems from findings by various studies that at least 15 to 20 securities are needed to



obtain approximately 90 percent of the benefits of diversification for US equity markets,
and about twice that number is needed for Canadian equity markets. Consequently, an
average individual investor is advised that portfolios of about 20 and 30 stocks are
sufficient to achieve about 90% of the risk-reduction benefits from increasing portfolio
size in the U.S. and Canadian equity markets, respectively. However, an average investor
is found to hold two to four stocks depending upon the sample, even during periods of
relatively stable overall market risk and rising firm-specific risk.

The metrics used to assess diversification benefits in the third chapter fit into four
categories; namely, those that measure risk reduction, those that measure the impact on
higher-order return moments, those that measure the impact on reward-to-risk, and those
that examine the impact on the probabilities of underachieving various target or lower-
bound rates of return. A clinical approach is implemented to obtain the minimum
portfolio size to achieve, on average, an acceptable level of risk diversification. When
combined with the increase in firm-level idiosyncratic volatility for the TSX documented
in the second chapter, the decline in average correlations identified in this chapter
substantiates the intuition that an increasing number of stocks is required to achieve a
reasonably well diversified portfolio in Canada. This minimum portfolio size depends on
the chosen metric used to measure diversification benefits, chosen investment
opportunity sets, and the criteria for sufficient diversification. The minimum portfolio
size for Canada is higher than is reported in the literature for US markets, probably due to
the less distributed nature of Canadian industries.

The fourth chapter (third essay) examines contemporaneous asymmetry, co-

movement, and volatility transmission between Canadian stocks cross-listed on TSX and



US markets having synchronous trading hours. The background to this inquiry stems
from two empirical observations. The first observation is that few studies examine inter-
market volatility dynamics for the same group of stocks that trade on two different
national markets with synchronous trading hours, as these would provide a cleaner test of
the nature of information flows between the two financial markets, their level of
integration and the nature of their interdependence (Niarchos et al., 1999). The second
observation is that the number of Canadian stocks cross-listed on the TSX and U.S.
markets now accounts for the single largest share of foreign stocks cross-listed on U.S.
markets, and thus is an ideal group to study inter-market volatility dynamics.

Four bi-variate GARCH models are used to test for the robustness of any relations
between the fluctuations in returns for two financial markets in terms of integration,
asymmetric shock transmission and persistence. The chapter finds US markets transmit
volatility and the direction of volatility transmission is mainly from US to Canadian
markets with Canadian stocks traded on the TSX having higher asymmetry than for their
trades on US markets. Asymmetric co-movement and volatility spillovers have increased
more recently due to increased financial integration and increases in the numbers of
smaller and newer stocks.

The fifth chapter summarizes the principal findings of the three essays in this thesis
and provides avenues for further research on, for example, idiosyncratic volatility (IV).
This further work on IV involves the assessment of causal factors, predictive pricing

relationships, and international diversification using other synchronous markets.



CHAPTER 2

MEASUREMENT AND PRICING OF IDIOSYNCRATIC RISK
FOR CANADIAN EQUITIES

241 INTRODUCTION

The finance literature includes an ongoing debate on three related issues (see the next
section for greater details). The first issue deals with what is an exact measure of risk
(Bali et al., 2005), and is reflected in the various metrics used to measure the
idiosyncratic variance (or standard deviation) or volatility or risk (henceforth IV) of
stocks. Early researchers measure stock risk by the covariance between the stock’s return
and other variables, such as market return (Black, Jensen, and Scholes, 1972; Fama and
MacBeth, 1973), macroeconomic variables (Chen, Roll, and Ross, 1986), and extracted
factors from multivariate time series (Roll and Ross, 1980). More recently, researchers
focus on realized volatility measures that include aggregate market volatility (Schwert,
1989) and various equal- and value-weighted average firm-level variance (or standard
deviation) measures or IVs (e.g., Goyal and Santa-Clara, 2003)."

The second issuec deals with whether or not firm-level volatilities or IVs have
increased, and what are the causal determinants for such changes. An IV increase is
related to a number of potential factors in the literature, including an increase in publicly
traded stocks on the NASDAQ (Campbell et al., 2001) and an increase in institutional

ownership and expected earnings growth (Xu and Malkiel, 2003).

! This measure incorporates the autocorrelation term due to non-synchronous trading, as identified by
Fama, French and Stambaugh (1987) and Schwert and Seguin (1990).



The third issue deals with the nature of the return-risk relation (Guo and Savickas,
2003b) and whether or not IV is priced and is a predictor of future stock returns. Recent
empirical findings produce mixed results (Guo and Whitelaw, 2006) in that some of the
estimated relationships between returns and various volatility measures are not robust.?
While some researchers argue that some IV estimates are measured with error and are
unable to capture time-varying properties (Fu, 2005), other researchers argue that the
mixed results reported in the literature may be caused by not controlling for either the
liquidity component in expected stock returns (Guo and Savickas, 2003) or other stock
return determinants such as the relative extent of firm- and market-level information
available in the market (Roll, 1988; Morck et al., 2000).

Thus, this chapter has three objectives. The first is to compare various measures of IV
for the Canadian market, and to determine if IVs have increased significantly recently.
The second objective is to examine if IV is priced in the Canadian stock market for
individual stocks using various methodological testing approaches to ensure inferential
sturdiness and after controlling for other factors that are believed to affect returns.
Although Guo and Savickas (2004) and Ang, Hodrick, Xing and Zhang (2006b) examine
this issue for G7 countries (which include Canada), their findings suffer from
survivorship bias since they are based on the Datastream database, which has only a
limited number of existing stocks. Our study overcomes these limitations by using all
stocks listed in the CFMRC database over the 1975-2003 period. Furthermore, our study
examines various subsamples thereof, including noncross-listed (local) firms, firms cross-

listed on both the TSX and U.S. markets, big and small firms, and firms in the IT sector.

? Bali et al. (2005) find that the significance of the equal-weighted average stock variance in the return-risk
relationship identified by Goyal and Santa-Clara (2003) is not robust across portfolios and sample periods.



The third and final objective is to examine the relation between contemporaneous returns
for individual stocks and lagged IV values, which provides a weak test of the predictive
power of idiosyncratic risk.

This chapter makes two major contributions to the literature. The first is to illustrate
the differences in the various measures of idiosyncratic volatility that are extant in the
literature, and the time-series and cross-sectional differences in IVs for various subsets of
Canadian firms. This chapter confirms recent findings by Brown and Ferreira (2005) that
smaller firms have higher average total and firm-specific risks (whether measured by
variance or lower partial moments) than larger firms, and that smaller firms are major
contributors to peaks in market volatility.

The second major contribution of this chapter is the use of asymmetric idiosyncratic
risk to confirm that there is a significant relation between monthly returns and
asymmetric idiosyncratic risk for individual stocks, and to demonstrate that this relation
1s not subsumed by the addition of various firm-specific variables such as (il) liquidity or
mformational transparency. By using an approach other than the traditional approach of
forming portfolios to deal with the measurement errors in the beta estimates from the first
step of the Fama-MacBeth approach, we find that the significant relation between returns
and asymmetric idiosyncratic risk remains after controlling for the so-called regressor
problem using the approach of Brennan et al (1998). The major advantage of this
approach is that it provides for a “fairer” test because it does not diversify away the
impact of firm-specific characteristics by forming portfolios. While the relation between
monthly returns and asymmetric idiosyncratic risk is stronger using more recent values of

idiosyncratic risk (i.e., values calculated using days-within-the-month versus a 60-month



moving window), we also find that the explanatory power of asymmetric idiosyncratic
risk is still very high for the returns of individual stocks when the value is lagged one
month to correspond with the information available to a typical (uninformed) investor.
The remainder of the chapter is structured as follows. Section two briefly reviews the
relevant literature. Section three provides various estimates of risk at the market, industry
and firm levels using various estimation methods for various samples of Canadian stocks
in order to determine if they are similar and have increased more recently. Section four
reports on whether or not IVs are priced and whether or not IVs have any power to
~ “predict” further stock returns in the Canadian market. Section five concludes the

chapter.

2.2.  BRIEF LITERATURE REVIEW

Idiosyncratic variance or its square root, volatility or risk (henceforth IV) represents
firm-specific information (Fu, 2005), and is captured by the innovations not explained by
expected returns (Spiegel and Wang, 2005). Since expected returns and expected Vs are
not observable, IV measures are dependent on the model used to price systematic risk(s).
Various estimation methodologies are used to estimate (un)conditional IVs in the
literature (Xu and Malkiel, 2003).

The disaggregated indirect approach of Campbell et al. (2001) uses a market-
(industry-) return-adjusted disaggregated method to avoid the estimation of industry and
firm-specific betas in order to estimate aggregate market, industry and average firm-level
risks. The indirect decomposition approach of Malkiel and Xu (2000) computes

aggregate IVs as the differences between conditional aggregated value-weighted firm-



level and market-level variances. The direct decomposition method uses the monthly
standard deviations of either CAPM innovations (Guo and Savickas, 2005) or innovations
from the three-factor FF model (Fama and French, 1973) in the average stock variance
model of Goyal and Santa-Clara (2003) that incorporates autocorrelations using lagged
terms.

Other IV proxies include the product of the standard deviation and the square root of
the number of observations (Fu, 2005), and the absolute and squared innovations from
cross-sectional regressions incorporating contemporancous and lagged market, industry
and firm returns to incorporate autocorrelations (Duffee, 2000). Although Xu and Malkiel
(2003) argue for the use of a GARCH estimation model to capture time variation, they
use a Monte Carlo derived optimum rolling window with declining geometric weights to
model persistence in conditional IVs. Given a lack of robustness, Spiegel and Wang
(2005) use nine EGARCH models on the innovations from the 3-factor FF model to
derive conditional IVs.

In summary, this literature finds that the various IV estimates are somewhat different,
and that IVs comprise about 85% of total risk (e.g., Goyal and Santa-Clara, 2003).

2.2.1 Time-series Behavior of Idiosyncratic Risk

Campbell et al. (2001) report that firm-level [Vs have a large and significant positive
trend in the U.S. during the period 1962-1997, while market and industry variances are
without any significant trend (as found earlier by Schwartz, 1989). Most studies of other
country markets report similar results.’ Exceptions include no trend in the U.K. (Frazzini

and Marsh, 2003), and a decline in Japan (Hamao, Mei, and Xu, 2003).

? These include: Guo and Savickas (2004) for equal-(not value-)weighted average realized variances for
some G7 countries; Kearney and Poti (2004) for Europe; Domanski (2003) for IT firms in Europe; and
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2.2.2 Idiosyncratic Risk Determinants

Idiosyncratic volatility is related to a number of factors. These include an increase in
publicly traded stocks on NASDAQ (Campbell et al., 2001), and especially small firms
(Bali et al., 2005); an increase in institutional ownership and expected earnings growth
(Xu and Malkiel, 2003); an increase in less diversified and more levered firms (Dennis
and Strickland, 2005); an increase in the number of smaller firms (Brown and Ferreira,
2005), and those issuing IPO’s (Fink et al., 2005); product markets becoming more
competitive (Irvine and Pontiff, 2005); increase in the dispersion of firm’s fundamentals
(Wei and Zhang, 2006); a decline in quality of earnings (Diether et al., 2002); an increase
in dispersion of analyst’s forecasts of earnings (Rajgopal and Venkatachalam, 2006); and
an increase in the accrual anomaly of cash flows (Mashruwala et al., 2006). Idiosyncratic
volatility is also related to past, current and future earnings (respectively, Wei and Zhang,
2006; Chang and Dong, 2005; and Jiang, Xu and Yao, 2005) and positively related (as is
total risk) to the variation of earnings (Pastor and Veronesi, 2002; Wei and Zhang, 2006).

While some researchers interpret this as evidence that information risk is not priced
(Johnson, 2004) or priced only for smaller firms (Brown and Kapadia, 2006), others
report that the return of IVs to their pre-1990s level in the U.S. signifies a speculative
episode (Brandt, Brav and Graham, 2005). Pastor and Varonesi (2005) argue that new
and small firms (particularly IT firms) have largely idiosyncratic risk, and that this
component is transformed into systematic risk as the firms become bigger or as their

technology becomes mature and widely accepted.

Maukonen (2004) for Finland. While Guo and Savickas (and others) examine the Canadian market, their
sample has survivorship bias since it is derived from the limited number of existing stocks reported in
Datastream.
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2.2.3 Relationship between Idiosyncratic Risk and Returns’

The debate on the relationship between returns and IVs, which was initiated by the
stock return predictability findings of Fama (1991), continues (Guo and Savickas, 2006c).
Under the intertemporal CAPM of Merton (1973) with time-varying expected returns,
Campbell (1993) argues that stock returns are determined not only by their covariances
with market returns but also with their covariances with variables that forecast market
returns (such as IVs).

Not only do the empirical studies produce mixed results (e.g., Guo and Whitelaw,
2006) but some find that the IV measures are not robust.” The reported relations for
various country markets run from positive and significant (e.g., Lintner, 1965; Campbell
and Hentschel, 1992; French, Schwert, and Stambaugh, 1987; Lehmann, 1990; Drew and
Veeraraghaven, 2002, for Hong Kong, India, Malaysia and Philippines; Goyal and Santa-
Clara, 2003; Drew, Naughton and Veeraraghavan, 2003, for China; and Jiang and Lee,
2004) to positive and insignificant (e.g., Tinic and West, 1986; Malkiel and Xu, 2002;
Bali, Cakici, Yan and Zhang, 2005) to negative and insignificant (e.g., Breen, Glosten,
and Jagannathan, 1989; Longstaff, 1989; Ang et al., 2006a) to negative and significant
(e.g., Campbell, 1987). To illustrate this rapidly growing literature, Malkiel and Xu
(2002a) find that IV is positively related to stock returns after controlling for size, book-
to-market ratios and liquidity, and that stock fundamentals partially explain increases in

aggregate IVs. Similarly, after controlling for numerous factors (such as business cycle

* Since stock returns reflect both market- and firm-level information (Morck et al., 2000), other firm-
specific factors are examined in the literature. These include synchronicity (Morck et al., 2000),
fundamentals such as dividend yield (Pastor and Varonesi, 2003) and non-fundamentals that focus on
heterogeneous beliefs (Levy et al., 2006).

® For example, Bali et al. (2005) find that equal-weighted average stock variances used by Goyal and Santa-
Clara (2003) are not robust across portfolios and sample periods.
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fluctuations, liquidity, momentum, size, value, variance in analyst forecasts and volume),
Ang, Hodrick, Xing, and Zhang (2006a) reject the notion that stocks with higher IVs may
also have higher aggregate volatility, and therefore lower returns.

However, this mixed evidence suggests a need for using a multi-factor model with
other risk factors (Scruggs, 1998) due to misspecification or an omitted variable bias.
While some researchers argue that IV estimates are unable to capture time variation
because of measurement errors (Fu, 2005), other researchers (e.g., Guo and Savickas,
2003) argue that expected stock returns have risk and liquidity components that may be
correlated negatively. This would lead to mixed results unless the liquidity component is
controlled for.® While Bali et al. (2005) argue that the positive relationship between
market returns and IVs is driven partly by trading on Nasdaq and partly due to the
liquidity premium, Guo and Savickas (2006) conjecture that investors demand a risk
premium in addition to a liquidity premium to compensate them for their not well

diversified portfolios (the latter is documented by, e.g., Goetzmann and Kumar, 2003).
2.2.4 Power of Idiosyncratic Risk to Predict Returns

While early researchers in finance found market volatility contributed little to the
prediction of returns (French, Schwert and Stambaugh, 1987), recent research by Guo
and Savickas (2006) and Guo (2006) confirms that market volatility in conjunction with
IV significantly predicts a negative relation with expected returns, although market

volatility and IV are positively correlated (Guo and Higbee, 2006). Furthermore, Yan and

% This is supported by findings of a relation between stock returns and both the level and variability of
liquidity (Chordia, Subrahmanyam, and Anshuman, 2001; Pastor and Stambaugh, 2003).
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Zhang (2003) find that the predictive power of IV is sensitive to its measure and is partly

driven by the liquidity premium.

2.3 SAMPLES AND DATA

The sample of all-firms consists of the 3,396 stocks listed on the Toronto Stock
Exchange (TSX) that are included in the December 2003 edition of the CFMRC
historical database for which a SIC code could be assigned for industry classification.
This sample is subdivided into those firms that are (not) cross-listed in U.S. markets
based on various issues of the 7SE Monthly Review. This results in samples of 3,072 that
are not cross-listed (TSX only — local control group) and 324 that are cross-listed
(treatment group) in both TSX and U.S. markets (NYSE, AMEX, or NASDAQ). The all-
firm sample is also subdivided by the median market capitalization each year into a
sample of big and small firms, given that some authors argue that idiosyncratic volatility
1s only priced for small firms (Brown and Ferriera, 2005). The 225 Canadian firms in the
IT sector (i.e., information technology, telecommunication, and consultancy) are also
examined to facilitate comparison against the findings of Domanski (2003) for this sector
in the U.S.

Daily and monthly stock returns, closing prices, closing bids and asks, traded share
volume and numbers of shares outstanding over the period from 1975-2003 are extracted
from the CFMRC. The 30-day Canadian and U.S. T-Bill rates are obtained from the Bank
of Canada and the Federal Reserve Bank of St. Louis, respectively, and are used as

proxies for the respective risk-free rates to compute excess stock returns. The SIC code
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classifications by Fama and French (1997) are used to group stocks into 47 industry
groups (industry group 20, Fabricated Products, was empty).

Following the approach of Fama and French (1992, 1995), monthly and daily time-
series of returns are constructed for five factors for the Canadian market using a variety
of sources, including the Financial Post database. These five factors are the market factor
(excess market return), the size factor (Small minus Big), the growth factor (High minus
Low), momentum factor (Up minus Down), and the value at risk factor (High VAR
minus low VAR). These return series are subsequently used in various applications of the
Fama-French three factor model, the Carhart model (i.e., original FF 3-factors plus

momentum) and a five-factor model (i.e., Carthart 4 factors plus VAR).

24 REALIZED VOLATILITIES AT THE MARKET, INDUSTRY, AND FIRM
LEVELS

In this section, volatilities (primarily variances) of various samples of Canadian
stocks are computed at the market, industry and firm levels using both equal- and value-
weighting schemes. Various computation methods are employed to examine the

robustness of the alternatives available in the literature for calculating such volatilities.

2.4.1 Cross-sectional Average Stock Market Variance

Two measures of the cross-sectional average realized variance of the total stock
market are examined first. The first measure, which is based on Schwert (1990), is the
equal- or value-weighted average of the monthly variances for all the firms in sample s

for month 7. This measure is given by:
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wherew; , is the equal weight or the beginning-of-the-month relative market value of
firm j in sample s for month ¢ ;, . is the return for stock j for day d of month ¢ for
sample s, and 7, is the average daily return for month ¢ for sample s based on the daily

returns for the N, stocks for the D, in month ¢.

The second measure, which is used by Goyal and Santa-Clara (2003) and Bali et al.
(2005), incorporates the autocorrelation in daily returns identified by French et al. (1987).
Thus, the equal- or value-weighted average of the monthly variances with the
autocorrelation correction for daily returns for all the firms in sample s for month ¢ is

given by:

_ N, D,
V2 W S[Z 2d,s-i- Z_ jd.v]d ls} (22)

where w;, is either the equal weight (i.e., 1/, ) or value weight based on the previous

month’s relative market value for stock j for month ¢ for sample s; and all the other terms
are as defined earlier.

To facilitate comparisons with the conditional idiosyncratic volatilities later derived
from the Fama-French model, the equal- or value-weighted average of the monthly
variances for each month t is also calculated for sample s using:’

N,

N 2
W/ts jtS (Z le jts] (23)

J=1

where all the terms are as defined previously.

No correction is made for autocorrelation given its insignificance in monthly returns.
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Summary statistics for the distributions of estimates for all these measures are
summarized in Table 2.1. Based on panels A and B of Table 2.1, small firms have the
highest average volatilities over the entire period, and exhibit more variation in these
conditional volatilities. Not only are the average volatilities of the IT firms lower than
those for all firms but so are the variations in the volatilities over the studied time period.
This differs from the findings of Domanski (2003) for U.S. IT firms. The time-series
distributions for each measure for the seven samples are right skewed and are highly
peaked with positive excess kurtosis.® The only exception is the cross-listed firms based
on U.S. trades, whose volatility distributions exhibit negative skewness and negative

excess kurtosis.

[Please place Table 2.1 about here.]
2.4.2 Lower Partial Moments

Lower partial moments (LPMs) measure higher-order moments below a target rate.
The main advantages of using LPMs as an alternative risk measure are that they do not
assume that return distributions are normal (Stevenson, 2001) or symmetric (Estrada,
2003). LPMs are also more plausible measures of the risk of asymmetric returns as they
incorporate information on variance and skewness in a single measure. The lower partial

second moment (LPSM) is given by:

2
7 — [(Ru-RL) | 2.4)

% Excess kurtosis is a useful measure obtained by subtracting 3 (i.e., the kurtosis of a normal distribution)
from the kurtosis measure. Positive excess kurtosis indicates a "peaked” distribution and negative excess
kurtosis indicates a "flat" distribution.
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where R, , is the rate of return for firm ; in day d; Rf , 1s the target rate of return for firm
jinday d; and N, is the number of firms in the sample for month 7. Three target rates are
examined herein; namely, R, (cross-sectional sample mean), R, (zero return) and

R, (risk-free rate).

Summary statistics for the distributions of estimates for the LPSM for seven samples
for the three target returns are summarized in Table 2.2. As reported in the previous
section, small firms have the highest average LPSMs over the entire period, and exhibit
more variation in these conditional LPSMs. The average LSPM is not much lower and
the coefficient of variation is much higher for the IT firms compared to all firms over the
studied time period. This reinforces our earlier findings based on variances. The time-
series distributions for each measure for the seven samples are right skewed for all seven
samples and are highly peaked with positive excess kurtosis except for cross-listed firms

based on U.S. trades for all three target returns and small firms for the zero and risk-free

rate of return targets.

[Please place Table 2.2 about here.]
2.4.3 Three-level Variance Decompositions
2.4.3.1 Indirect three-level variance decomposition

The main advantage of the indirect volatility decomposition method proposed by
Campbell et al. (2001) is that neither covariances nor betas need to be estimated. Value-

weighted returns are first aggregated across each firm j in industry i, and then across each

industry i to obtain excess market returns R, , for month ¢. More formally:
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R, = Z./Eiwj,i.t ‘R;;,,and 2.5)

R, = Ziwi,rRi,t = Ziwi,t : Zje,'w)j,i,t R,/ (2.6)
where R, and R, are the monthly excess stock returns for stock ; in industry 7 and for
industry #, respectively, for month £, w,,, and w,, are the proportional beginning-of-the-

month ¢ market capitalization weights for stock ; in industry 7 and for industry i in the
market m, respectively.’

The market variance for month ¢ is computed in two ways using:

o2, =>(R,s—R,) ,and 2.7)

det

o2 =S (Ry—R.u) (2.8)

det

where R, ,is the valuc-weighted excess return for all stocks for day ; R, is the mean of

the time-series of monthly averages of the R, ,over the entire estimation period; and

R, ,1s the cross-sectional average (i.e., equal-weighted) return across all stocks for day d.

The industry-level variance is calculated using the residuals from a modified CAPM
model that relates industry returns with market returns without an intercept and with
industry-specific betas that are implicitly assumed to be 1. Specifically, the equal- or

value-weighted industry variance for a representative industry / for month ¢ (ie.,

JEW. . .
o7 """y is given by:

2,EWorVW _ 2
Oy - Z Wi Oy, (2.9)
i

? As in Campbell et al. (2001), the closing numbers of outstanding shares for the previous month are used
to compute all market capitalization weights.
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where ofl_ = Zefd ,is the aggregation of the daily squared excess returns for industry i
! det o

over those of the market over the days d in month 4 ¢,,,=R,,, — R, ,,1s the excess

return for industry i over that of the market for day d in month ¢.

The equal- or value-weighted variance for a typical firm J for month ¢

2,EWorVw

(ie.,o;, ), which is derived in a similar fashion as that at the industry level, is given

by:
oy = Z Wi (Z Wi 'Gr?,-,,,, j (2.10)
; jei

where a;/__” = anl 4. 18 the aggregation of the daily squared excess returns for firm j
det

over those of it industry i over the days d in month £; 1, ,, =R R, ,,is the excess

Jade T N
return for firm j over that of its industry i for day ¢ in month ¢.

Summary statistics for the distributions of the variance estimates for the three levels
using the indirect decomposition method are summarized in Table 2.3. In contrast to the
findings of Campbell et al. (2001), the monthly market variance is not only higher on
average but also is more volatile when measured against a time-varying cross-sectional
mean return. Variances at the industry and firm levels are higher on average using equal-
weights, since the use of equal weights places relatively more weight on smaller firms.
This also applies to the variances of the variances, except for the value-weighted variance
at the firm level for all firms in the sample. Based on the average variances, firm-level

variance accounts for at least 69% (and up to 86%) of total variance (i.e., the sum of

market, industry and firm-level variances) for the four examined cases.
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[Please place Table 2.3 about here.]

2.4.3.2 Direct three-level variance decomposition

Since the direct method accounts for variations in risk across industries, it results in
different estimates of industry- and firm-level variances. The variance for industry 7 is
given by:

Var, (R, )= B, Var(R,,)+Var(£,) 2.11)
where f,, is the beta for industry i; Var(Rm,,) is the variance of the market return for
month #; &, is the error term or innovation for the relationship between the excess returns

on industry i and the market m for month #'" Var(éi’,)=25f’d over each month 7.

Similarly, the firm-specific variance for firm 7 is given by:

vary, (Rjﬂl.q,) = Z Wi Var (Rj’u) = ﬂfm 'Var(Rm,,) + Var(éi,r) + Var(nj,l.y,)
Jei (2.12)
= ﬂfm ~Var(Rm,t) + 6'2, + O'j_

i

where o} =ij,,.‘,-Var(77,.’,.’,) is obtained by weighting the summed daily firm-specific

Jei
residuals over each month, and all the other terms are as defined earlier. i
Since the market variances are the same for the direct and indirect decomposition
methods, only the industry- and firm level variances are reported in Table 2.4. If only

industries with at least five firms are considered, the five industries with the highest

19 The industry-specific betas and innovations are obtained from CAPM-based regressions of daily excess
industry returns against daily excess market returns when the intercept o is constrained to zero,
o R, =P, R..t&,

" The firm-specific betas and innovations are obtained from CAPM-based regressions of daily excess firm
returns against daily excess industry returns when the intercept o is constrained to zero,
or:R,,  =p, R,,+&y+n,,,- Thus, firm-specific innovations can be obtained as the difference
between excess daily firm-specific returns and the estimated excess daily industry returns (from the first

step regression) as: R, ., = R, , =70,
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industry betas in descending order are electronic equipment (1.4157), computers
(1.4002), automobiles and trucks (1.09006), electrical equipment (1.0677) and steel works
(0.8785), and the five industries with the lowest betas in ascending order are apparel
(0.2059), food products (0.2759), textiles (0.3238), consumer goods (0.3431) and utilities
(0.3531). Using the same industry inclusion criterion, the five industries with the highest
average industry-level variances in descending order are printing & publishing (0.0224),
coal (0.0222), aircraft (0.0150), healthcare (0.0150), and measure & control equipment
(0.0132), and those with the lowest average industry-level variances in ascending order
are rubber & plastic (0.0016), computers (0.0029), miscellaneous (0.0036), steel works,
etc (0.0041) and construction (0.0045). These industries also tend to be those with the

highest and lowest time-series variations in their industry-level variances.

[Please place Table 2.4 about here.]

Using the same industry inclusion criterion, the five industries with the highest
average firm-level variances in descending order are business services (0.4418), printing
& publishing (0.3731), utilities (0.2287), coal (0.0264), and recreational products
(0.0239) , and those with the lowest average firm-level variances in ascending order are
rubber & plastic (0.0051), insurance (0.0056), miscellaneous (0.0070), steel works, etc.
(0.0087) and business supplies (0.0111). Printing & publishing and coal are in the most
risky top five and rubber & plastic, miscellaneous, and steel works are in the least risky
top five at both the industry and firm levels.

Only the ratio of average firm-level variance to industry-level variance for insurance
is below one. Using the same industry inclusion criterion, the five industries with the

highest ratios in descending order are business services (40.91), utilities (23.10), printing
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& publishing (16.66), computers (5.97) and construction (3.87), and those with the lowest
ratios in ascending order are insurance (0.47), coal (1.19), textiles (1.26), banking (1.27)

and candy & soda (1.31).
2.4.3.3 Regression-based variance decomposition

As in Duffee (2000), industry- and firm-specific innovations are obtained respectively

from the following variants of the market model that includes lagged returns:
=0t :Bli,r Fog T ﬂzlr Fpa T :B;.t T T E (2.13)
rjf',r =a; + B, Foo Bl v, + ,33’, o, + ,84’t H + ,85’;, -rjf"t_l +e&;, (2.14)
where 7, and r]f’, are industry and corresponding stock returns in that industry, obtained

by market weighting the daily stock returns with market capitalizations from period ¢-/ so
that these results are comparable with those presented earlier. While Duffee (2000)
argues for the use of absolute over squared residuals due to the fat-tailed distribution of
daily returns and sensitivity of squared residuals (used in Fama-French, 1993) to outliers
(Schwert and Seguin, 1990), both types of residuals are used herein as a test of
robustness.

Thus, four variances are calculated monthly for both the industry and firms levels.
The industry variances are cross-sectional averages (i.c., across the 47 industries) of the
equal- and value-weighted absolute and squared error terms from (13). Similarly, the
firm-level variances for each month ¢ are cross-sectional averages (i.e., across all N,

stocks in month ¢) of the equal- and value-weighted absolute and squared error terms

from (2.14).
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Summary statistics for the various industry- and firm-level variances using this
decomposition method for all the firms and those that only trade on the TSX are
summarized in Table 2.5. While the value-weighted variances are higher at the industry
level, they are lower at the firm level. Furthermore, the variances exhibit considerably
higher volatility over time for the value versus equal-weighted errors, except for the
variances at the firm level based on squared errors. While the variances are higher using
absolute instead of squared errors at the industry level, the orderings are mixed at the firm
level. The ratio of the variance at the firm level to that at the industry level is above 1,
except for the TSX-only listed firms based on value-weighted absolute errors. This is

consistent with the results presented earlier in this section.

[Please place Table 2.5 about here.]
2.4.3.4 Multi-factor regression-based variance decomposition

In this section, firm-specific innovations are obtained respectively from the following

five-factor market model and more parsimonious versions thereof:

n,=a+ B, -MKT +f,, -SMB +p,,- HML, + B, ,-WML,+ B, ; VAR, +£ffF (2.15)

where MKT, =R, - R,,,

SMB is the small minus big cap factor, HML is the high minus
low book-to-market factor, WML is the momentum factor and VAR is the high minus low
variance factor. The first three factors are from the model of Fama and French (1992,
1995), the fourth and fifth factors are added by Carhart (1997) and Bali and Cakici
(2004), respectively. The average firm-level or idiosyncratic variance is obtained by

equal- and value-weighting the squared residuals of (2.15) in an analogous fashion to that

used in the indirect decomposition method.
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Since the idiosyncratic variances derived from the three, four and five factor models
are not significantly different, only the variances from the three-factor model for seven
samples are reported in Table 2.6. As reported earlier, the mean of the average firm-level
variances 1S highest for the small firm sample, which also exhibits the highest
intertemporal volatility in its average firm-level variance. The lowest mean and standard
deviations of the average firm-level variances are for cross-listed firms based on their
U.S. trades. Interestingly, the IT firms exhibit lower means and standard deviations of
their average firm-level variances than the samples of all firms and TSX-only listed firms

over the studied period.

[Please place Table 2.6 about here.]
2.5 RELATIONSHIP BETWEEN RETURNS AND RISK

In this section of the chapter, the relationship between returns and idiosyncratic risk
(i.e., idiosyncratic volatility or IV) in the presence of various control variables is
examined. Given the mixed results reported in the literature that were reviewed earlier,

two methodologies are employed for a robust examination of the risk-return relation.

2.5.1 Risk-Return Results Based on Extreme Quintile Portfolios

The first test is based on the approach used recently by Ang et al. (2006a) and Bali et
al. (2006), where stocks are first sorted into quintiles based on their idiosyncratic
volatilities as derived from the three-factor model of Fama and French (1993) or this
model combined with the model (GSC) of Goyal-Santa Clara (2003). Then, the
differences in the average equal- or value-weighed returns between the first and fifth

quintiles are measured for sign, size and significance.
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The average percentage monthly returns for the five quintiles for the seven samples
using the four types of estimates of the IVs are presented in Table 2.7. All of the
differences in the average returns between the quintiles with the highest and lowest IVs
(i.e., 5-1 returns) are positive. The differences are consistently significant for all equal-
weighted samples, and for the samples of all firms, TSX-only listed firms, cross-listed
firms using U.S. trades and small firms. For the other three samples, the 5-1 returns

generally lose significance when the IVs are value- and not equal-weighted.

[Please place Table 2.7 about here.]
2.5.2 Risk-Return Results Based on a Two-Step Regression Approach

The second method for testing if IV is priced is the use of the two-step regression
approach of Fama and Macbeth (1973), which is used by Spiegel and Wang (2005) and
Fu (2005). In the first step, the time series of monthly IVs are estimated. The IV for
month ¢ is based on the standard deviations of the innovations from a conditional 4-factor
Carhart model using a rolling window of 60 months ending with month ¢ or #-/, or by
using all of the trading days within month ¢ or #-/. This step also involves the estimation
of the time series of each of the five betas of the 4-factor Carhart model that is modified
to include up- and down-market factors.

The second step involves two estimation procedures as a test of robustness. In the
first estimation procedure for the second step, a series of cross-sectional regressions are
run where realized excess returns are regressed against the time series of the five betas,
the IVs and various control variables for (il)liquidity (amortized spread or Amihud) and
firm-specific information (synchronicity and zero-return metric). In the second

estimation procedure for the second step, risk-adjusted returns are regressed against the
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time series of the IVs and the same three control variables. The use of risk-adjusted
(excess) returns for individual securities avoids the measurement error problem that
occurs when using estimated betas as independent variables (Brennan et al, 1998) without
diversifying away the potential pricing information implicit in IVs that occurs with the
use of the common portfolio approach for dealing with measurement error. The risk-
adjusted returns for each firm are calculated by subtracting the product of each of the five
estimated factor coefficients from step 1 times its associated factor realization from the
realized excess return for each time period 7. For both second-step estimation procedures,
the resulting time-series of parameter estimates for the IVs and the three control variables
are then tested for significance, as in the original Fama-MacBeth (1973) procedure.
Robust standard errors are used in the regression-based tests for testing the time-series of
coefficient estimates when structural breaks in raw and risk-adjusted returns for the

various 10O sets are accounted for.
2.5.2.1 Empirical Test Procedure

In the first step, the 4-factor FF (Carhart) model that is modified to incorporate the
two market beta approach examined by Pettengill, Sundaram and Mathur (1995),
amongst others, is run for each month ¢.'* He and Kryzanowski (2006) find that a model
with conditional (up and down) market betas provides a better description of the pricing

relation in Canadian markets. The specific model is given by:

no=a+ ,.{‘{”*51{;,, + BT (-6R, , + B,s SMB, + 3, HML, + 3, WML, + £ (2.16)

2 Pettengill et al. argue that when using realized returns to test the CAPM, beta should be positively related
to returns when the excess market returns are positive, but a negative relation should be expected when the
excess market returns are negative.
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where 7;,is the excess return on security i over the risk-free rate for period ¢ (i.c.,
R,,—R,); R,,is the excess market return over the risk-frec rate for period £ 8 is a

dummy variable that is equal to 1 if (R, ,—R,,) >0 & is equal to 0 otherwise; and all the

m,t

other terms are as defined earlier. Subsequently, we refer to 5R;,t and (1—5)R;‘t as

MKT, and MKT, or as up- and down-market excess returns, respectively. To reduce the

impact of infrequent trading on the various estimates, a stock is considered in month 7 if it
has a minimum of either 45 months over the 60-month rolling window for which monthly
returns and non-zero trading volumes are reported in CFMRC or 15 days in the month ¢
or -1 for which daily returns and non-zero trading volumes are reported in CFMRC (the
latter is as in Fu, 2005).

In the second step, the following cross-sectional relationship is estimated by a series

of cross-sectional regressions for each month #:

r=at A 0BT+ A, (1= )BT+ A, B 1 A, B 4 A B 21
+ A BV, + A, (1 =)V, + A, LIQ, , + A, SYNC, , + 4, VROM, ,+ ¢,

where the five betas are the respective estimates from the first-step regressions; 6, SMB,

HML and WML are as described earlier; ¢ is a dummy variable that is equal to 1 if

(R,—R;,)>0 and is equal to O otherwise; and [V is the standard deviation of the

i

residuals from regression (2.16) (specifically, &'

.. when (2.16) is estimated using
monthly returns and by & multiplied by the number of trading days in the month when

(2.16) is estimated using daily returns). Since 7V is signed in a similar fashion to MKT to

allow for an asymmetric effect of idiosyncratic risk on stock returns, we subsequently
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refer to @IV, and (1-¢)IV,,as IV;,and IV, or as idiosyncratic risk for up- and down-

stock excess returns, respectively.

LIQ is initially proxied by the amortized spread measure of Chalmers and Kadlec
(1998) or LIQ**. The amortized spread measure intuitively is a product of effective
spread and share turnover, and is obtained by dividing the product of the absolute
difference between the trade and midspread prices and the traded volume by the product
of the trade price times the number of shares outstanding."

SYNC or synchronicity is the extent to which stock prices move together (Morck,
Yeung, and Yi, 2000), and signifies the magnitude of firm-specific information

incorporated into stock prices (Asbaugh-Skaife et al., 2006). Although different measures

of synchronicity exist in the literature (Li et al., 2003), the most popular isR>. As in

Morck et al. (2000), the logistic transformationy; = ln[Rf. / (1 —-R’ )} is used herein since

R? is bounded within the interval [0,1]. The RJZ. for each stock j is obtained from

regression (2.16) using either the 60-month moving monthly windows or the days-within-
each-month moving monthly windows.

Higher values of R’ imply an increase in co-movement of the stock with the market,
and thus an increase in synchronicity (Durnev et al., 2003). Also, higher R* may imply a
decline in firm-specific variation or noise (Jin and Myers, 2006), which leads to lower
idiosyncratic volatility because firm-specific information is already embedded in stock
prices (Roll, 1988). However, some inconsistencies occur with synchronicity as

Ashbaugh-Skaife et al. (2006) find that non-fundamental factors influence stock price

3 The daily closing price is taken as a proxy for the execution price, and the closing mid-spread is used in
its absence.
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synchronicity but the variation in firm-specific information flows or fundamentals is not
consistently captured by R*. Thus, the expected coefficient for SYNC is indeterminate if
the findings of Ashbaugh-Skaife et al. (2006) apply to the Canadian market.

VROM is a zero-trade, zero-return measure. Given the inconsistent results regarding
R* and synchronicity in being able to capture firm-specific information, Ashbaugh-
Skaife et al. (2006) suggest that a zero-return&trade metric is a better measure of firm-
specific information embedded in stock prices. The argument for this metric is based on
Lesmond et al. (1999), who argue that no information-based trades will occur as long as
the transaction costs of trading exceed the value of the information signal. Ashbaugh-
Skaife et al. (2006) propose that the smaller the proportion of zero returns in a given
period, the greater the firm-specific information impounded in stock prices. The monthly
measure of the zero-return&trade metric used herein is the In of the percentage of
nonzero-trade&return days in a month. Thus, the expected coefficient for VROM is

positive.

2.5.2.2 Empirical Results
2.5.2.2.1 Based on 60-month Rolling Windows

A series of cross-sectional regressions (2.17) for each month ¢ based on the
contemporaneous betas and IVs estimated from regression (2.16) with and without
contemporaneous estimates for LIQ**, SYNCH and VROM are run for each of the six

samples. A cross-sectional regression is run for month ¢ if at least 30 observations are
available for that month. This reduces the number of cross-sectional regressions from 288

only for the IT sample (to 106).
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Based on the regression results reported in Table 2.8, the average explanatory power
of the model is very high with a range of 45% to 57% for the various samples.'* The
intercept is negative and very significant in the absence of the three control variables, and
remains significant at the 0.05 level with the addition of the three control variables for
only the TSX-only listed sample. This is in contrast to the positive and significant values
reported for tests of the CAPM. While the down market betas are not priced, the up
market betas are significantly priced for the full sample and the TSX-only listed and
small firm samples. The average loadings on the SMB, HML and WML factor risks are
not significantly different from zero. Most interestingly, the average loadings on the
asymmetric IV factor risks are without exception very significant and with their expected
signs. Although the coefficient estimates for the IV factors lose some significance with
the addition of the three control variables for some samples, they remain highly
significant. The average coefficient estimate for positively signed IVs is always
significantly higher in absolute value than its negatively signed counterpart. These results
are most surprising given that the Fama-MacBeth estimation procedure implicitly
assumes that the estimates from the past 60 months of data are good proxies for the
conditional beta and conditional idiosyncratic risk in the current month, which Fu (2005)
argues is not the case for IVs. The coefficient estimates for the various control variables

are generally insignificant, except for liquidity for four of the six samples.

[Please place Table 2.8 about here.]

To examine if the relationship between returns and IVs is robust to the use of IVs

known at the beginning of each step 2 estimation period, the set of cross-sectional

' Median R” values are not materially different for the tests reported in this and following sections.
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regressions are rerun using asymmetric IVs lagged one month. These results are
presented in table 2.9. As expected, the average explanatory power of the model is
weakened but only marginally for the various samples. As for the results based on
contemporaneous [Vs, only the up betas are significantly priced for some of the samples
(and with their expected positive sign). The average loadings on the SMB, HML and
WML factor risks are generally not significantly different from zero. The average
coefficient estimates for the asymmetric IV factor risks continue without exception to be
very significant and with the expected signs. The average coefficient estimates for
positively signed Vs continue to be always significantly higher in absolute value than
their negatively signed counterparts. Unlike the results above for the use of
contemporaneous IV estimates, more of the average coefficient estimates for the three
control variables are now significant. For example, LIQ, SYNC and VROM are
significant (and with their expected signs) for the samples of all firms, and LIQ and
VROM are significant for TSX-only listed, big and small firms. Thus, even if one makes
the strong assumption that the best predictor of next period’s signed IVs are the current
period’s estimates (i.e., that both follow a random walk), the initial evidence finds that

both signed IVs appear to be priced in the Canadian market.

[Please place Table 2.9 about here.]
2.5.2.2.2 Based on the Days-within-the-month Rolling Windows

In order to compare our IV findings with those by Ang et al. (2006a, b) for the U.S.
and given the conclusion of Fu (2005) that idiosyncratic risk is best measured over a
short contemporaneous window, the methodologies implemented in the previous section

are repeated where the betas and signed IVs for the second-step regressions are estimated
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in the first step for a conditional 4-factor (i.e., 5-beta) Carhart model using a rolling
window of all of the trading days within month 7 or #-/.

A series of cross-sectional regressions (2.17) for each month ¢ based on the betas and
signed IVs estimated from regression (2.16) using a rolling window of all of the trading
days within month #, and with and without contemporaneous (month ¢) estimates

for LIQ™"* , SYNCH and VROM are then run for each of the six samples.'’ Based on the

regression results reported in Table 2.10, the average explanatory power of the model
increases and is very high with a range of 59% to 67% for the various samples. Not
unexpectedly, these average R*-values exceed their counterparts for the models estimated
using contemporaneous IVs based on a 60-month moving window. The intercept is
negative and very significant even in the presence of the three control variables, except
for the IT sample. This is in contrast to the positive and significant values reported for
tests of the CAPM. The risk premia on the up market betas are positive as expected for
the full sample, the TSX-only listed sample, the cross-listed sample and big firm sample,
but only in the absence of the control variables for the first three of these samples. With
a few exceptions, the average loadings on the down market, SMB and HML factor risks
are not significantly different from zero. With the exception of the IT sample, the

average loading on the momentum factor WML is positive and significant.

[Please place Table 2.10 about here.]

As reported earlier, the average loadings on the asymmetric IV factor risks are

without exception very significant and with the expected signs. The coefficient estimates

'S A cross-sectional regression is run for month 7 only if at least 30 observations are available for that
month. This only affected the IT sample, and reduced the number of cross-sectional regressions from 288
to 106.
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for the signed IV factors lose some significance with the addition of the three control
variables but remain highly significant. The average coefficient estimate for the
positively signed I'Vs is always significantly higher in absolute value than its negatively
signed counterpart. The coefficient estimates for all three control variables are positive
and highly significant for all but the IT sample.

A series of cross-sectional regressions (2.17) for each month ¢ based on the betas and
IVs estimated from regression (2.16) using a rolling window of all of the trading days
within month #-/, and with and without contemporaneous (month #) estimates for LIQ**,
SYNCH and VROM are then run for each of the six samples. Based on the regression
results reported in Table 2.11, the explanatory power of the relationships declines with
the use of lagged IVs based on trading-days-within-the-month but remains high in the
range of 0.48 to 0.57, which exceeds the corresponding values based on lagged IVs from
a trailing 60-month estimation window. Furthermore, the coefficient estimates for the IV
factors remain highly significant, and the average coefficient estimates for the positively
signed IVs remain significantly higher in absolute value than their negatively signed

counterparts.

[Please place Table 2.11 about here.]
2.5.3 Test of Robustness using an Alternative Liquidity Measure

In this section, the robustness of the relation between realized returns and IVs to our
initial choice of LIQ measure is tested. Specifically, we examine if the relation is robust
to the use of the approximate price impact measure of Amihud (2002) or LIQ*™" | which

is given by the absolute market return to traded dollar share volume over a monthly
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AMI iS

frequency. If greater illiquidity is priced, then the expected coefficient for LIQ
positive.

Thus, each of the tests conducted using the amortized spread as a measure of liquidity
is repeated using the Amihud measure of illiquidity. The time-series averages of the
second-step cross-sectional regression results where the dependent variable is
contemporaneous excess returns and the independent variables are the five estimated
betas, LIQ™', SYNC, VROM and either contemporaneous or lagged asymmetric IVs
based on 60-month moving windows and days-within-the-month moving windows are
reported in Tables 2.12 and 2.13, respectively. Although the average explanatory power
of the model remains very high in all cases, it is generally lower (marginally) when the
Amihud measure is used instead of amortized spread to measure (il)liquidity. Otherwise,
the results are qualitatively similar in terms of what factor risks are priced. More
specifically, the two signed IV factors continue to be highly significant with their correct

signs for all samples.

[Please place Tables 2.12 and 2.13 about here.]
2.5.4 Controlling for Measurement Error

Because the betas in equation (2.16) are estimated with error, Brennan et al. (1998)
recommend that risk-adjusted excess returns be used instead of raw excess returns as the
dependent variable in the cross-sectional regression (2.17). The reason is that the use of
risk-adjusted returns for individual stocks avoids the measurement problem that occurs
when first-step beta estimates are used as independent variables in the second-step cross-
sectional regressions in the Fama-MacBeth procedure. This avoids the use of the

portfolio approach to minimize measurement error, which tends to average-out the
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importance of firm-specific characteristics through the aggregation or portfolio building
process.

The risk-adjusted excess returns for firm i for period ¢, or ar,: , are given by:

A

ar, =r, - R, - (ﬂ,{‘{{?* SR, + BT (1-8)R,, + B3P SMB, + B HML, + B WML, )(2.18)
where all the terms are as previously defined, and the betas are estimated using the first-
step Fama-French regressions (2.16). The following second-step Fama-MacBeth

relationship is now estimated by a series of cross-sectional regressions given by (2.19)

instead of (2.17) for each month ¢:
Cll’;: =+ /ll,t¢]V;,t + /12,1 (1 - ¢)]V;,t + A’B,ILIQi,t + 2'4,ISYN it + /ISJVROMI',I + vi,t (219)

where all the terms are as previously defined.

The time-series averages of the second-step cross-sectional regression results where
the dependent variable is contemporaneous risk-adjusted excess returns and the
independent variables are LIQ (alternatively, either the amortized spread or the Amihud
measure), SYNC, VROM and either contemporaneous or lagged signed I'Vs based on 60-
month or days-within-the-month moving windows are reported in Tables 2.14 and 2.15,
respectively. While accounting for measurement error in the first-step beta estimates
reduces the significance of the two IV variables, their average estimated coefficients
retain their expected signs and remain highly significant in all cases. Thus, the
importance of asymmetric idiosyncratic risk for the pricing of individual securities is
robust to not only the choice of metric for measuring (il)liquidity but also to accounting
for measurement error in the coefficient estimates from the first-step regressions in the

Fama-MacBeth empirical procedure.
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[Please place Tables 2.14 and 2.15 about here.]
2.5.5 Impact of Structural Breaks in the Return Series

The tests of the time-series of cross-sectional coefficient estimates for each of the IO
sets conducted in earlier parts of section five of this chapter implicitly assume that the
coefficients are drawn from the same underlying distribution (i.e., the same underlying
regime). In this section of the chapter, we examine the impact of accounting for structural
breaks in the series of raw and risk-adjusted returns in tests of the time-series of the

cross-sectional estimates of the IV and AS coefficients for each 10 set.

2.5.5.1 Tests for structural breaks

Two types of tests are conducted for structural breaks in the equal-weighted series of
raw and risk-adjusted returns for each IO set. The risk-adjusted returns are adjusted using
the modified (5-beta) Carhart four-factor model described earlier in this chapter. The first
type of test, which is implemented using the unit roots test of Zivot and Andrews (1992),
allows for the presence of a single structural break in the intercept and/or the trend of the
series. The second type of test, which is implemented using the test of Clemente,
Montafies and Reyes (1998) (henceforth CMR) allows for two events or structural breaks
within the observed history of a time series. Specifically, the CMR tests allow for either
an additive outlier that captures a sudden change in a series (the AO model) or an
innovational outlier that allows for a gradual shift in the mean of the series (the IO
model). The test statistic for both types of tests is the minimum t-statistic below the
critical value of the coefficient of the lagged endogenous variable from a recursive
regression. Our preferred test is the AO model of CMR because it not only tests for two

structural breaks but it also captures a sudden change in a return series.
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The optimal breakpoints for the six IO sets are identified whenever the t-statistic on
the (rho-1) coefficient exceeds the 5% critical value (Baum 2004). The t-values for the
various tests for structural breaks that are significant at the 0.05 level and their
corresponding breakpoints (represented by “year.month”) for the six IO sets are
summarized in Table 2.16. For tests for one structural break, the structural break in the
raw returns occurs more recently in time for all six IO sets based on the CMR tests.
While the structural breaks identified by the two CMR tests occur in 1987 for cross-listed
and big firms and in 1996 for all firms, TSX-only listed and small firms, the ZA test
identifies structural breaks for months in 1980 for all of these IO sets. In contrast, both
the ZA and CMR tests identify the single structural breaks as occurring in the 1996-2000
period for all the 1O sets. For tests for two structural breaks, the structural breaks occur in
both the 1980s and 1990s for the raw monthly returns and in the 1993-2000 period for the
risk-adjusted returns. With a few exceptions, the month and year of the structural break
identified by the CMR AO or IO tests are within a month of each other, and are never

more than three months apart.

[Please place Table 2.16 about here.]

Unlike the raw returns, the risk-adjusted returns undergo structural breaks only during
the turbulent 1996-2000 period during which e-commerce and IT firms greatly affected
equity returns. Given the strong tendency of the CMR tests to detect structural breaks in

close proximity but prior to their actual occurrence, the October *87 crash is identified as
a structural break in 1987.08 or 1987.09 by the CMR tests for all firms, TSX-only listed

firms, cross-listed firms and big firms. Not surprisingly, the October ’87 crash is not
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identified as a structural break for IT firms and for small firms given that most IT firms

are in the small firm 1O set.

2.5.5.2 Price of idiosyncratic risk and liquidity accounting for structural breaks

In this section, the impact of accounting for two structural breaks in the raw and risk-
adjusted returns that are identified using the CMR AO model on the price of asymmetric
idiosyncratic risk and liquidity as measured by the amortized spread are examined for

each of the six IO sets. To implement this test, the following two regressions are run:

IBAk,z =)D, +a.D,, +a,D,, +&,, (2.20)
B, =+ D, + Dy, +¢,, (221

where f, ,is the cross-sectional average coefficient estimate for IV, IV, and A4S, ,,

respectively, for IO set k for month t based on second-step Fama-MacBeth type
regressions using either raw or risk-adjusted returns as the dependent variable;'°

D, D; and D3 are dummy variables that are equal to one for each month in the

period up to but not including the month of the first structural break, in the

period from and including the month of the first structural break and up to but

not mcluding the month of the second structural break, and in the period after

' The time-series of cross-sectional average prices or rewards for each of these return determinants are
obtained from Fama-MacBeth second-step cross-sectional regressions between contemporaneous raw
excess returns and contemporaneous betas, IVs and controls (e.g., amortized spreads), where the first-step
estimations of the modified Carhart model are based on contemporaneous days-within-the-month moving
windows. They also are obtained from Fama-MacBeth second-step cross-sectional regressions between
contemporaneous risk-adjusted excess returns and contemporaneous IVs and controls where the excess
returns are risk-adjusted using the beta estimates from first-step time-series regressions between
contemporaneous raw returns and the four factors in the modified Carhart model based on
contemporaneous days-within-the-month moving windows.
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and including the month of the second structural break, respectively, and are
equal to zero otherwise; and

¢, and ¢, are error terms with the commonly assumed properties.

An examination of the significance of the three alpha estimates (i.e., &,, &, and &, )

generated by regression (2.20) allows for a test of whether or not the price of risk is
significant for each of the three determinants of raw and risk-adjusted returns for each of

the three periods identified by the two structural breaks using the CMR AO model for
each of the six IO sets. Similarly, an examination of the significance of &, [d,]
generated by regression (2.21) allows for a test of whether or not the change in the price

of risk for 1V, , IV,’ or AS,, from the first structural break point and up to the second

structural break point [from the second structural break point] is significant for each of
the three determinants of raw and risk-adjusted returns for each of the three periods
identified by the two structural breaks for each of the six IO sets.

Based on the results summarized in panel A of Table 2.17, all of the estimated
cocfficients of the signed IVs are significant and have the correct sign for all three
periods delineated by the two structural breaks in the raw monthly return series for the six
IO sets. While all of the estimated coefficients of the amortized spread have the correct
sign, they are significant in all three periods for only three IO sets (all, TSX-only-listed
and small firms). The changes in the coefficient estimates in the second and third periods
versus their estimated values in the first period are generally not significant for the
positively signed IV and the amortized spread, but are significant for seven of the 16

changes for the negatively signed IV (six of which are positive). This suggests that the
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risk premiums for bearing these risks exhibit some time-variation, especially for bearing

negatively signed idiosyncratic risk.

[Please place Table 2.17 about here.]

Based on the results summarized in panel B of Table 2.17, all of the estimated
coefficients of the signed IVs have the correct sign for all three periods delineated by the
two structural breaks in the risk-adjusted monthly return series for the six IO sets, and all
but two are significant. While all of the significant estimated coefficients for the
amortized spread have the correct sign, they are significant in all three periods for only
four 10 sets (all, TSX-only-listed, big and small firms). In contrast, all of the estimated
coefficients for the amortized spread are not significant for cross-listed and IT firms. The
changes in the coefficient estimates in the second and third periods versus their estimated
values in the first period are not significant for the negatively signed IV and the
amortized spread, and are significant for five of the 16 changes for the positively signed
IV. This suggests that, after correcting for measurement error in the first-step Fama-
MacBeth estimates, the risk premiums for bearing these risks exhibit some time-variation

only for bearing negatively signed idiosyncratic risk.

2.6 CONCLUSION

This chapter makes two contributions to the literature. The first contribution is an
assessment of various measures of idiosyncratic volatility that are extant in the literature.
This chapter confirms recent findings by Brown and Ferreira (2005) that smaller firms

have higher average stock variances and idiosyncratic volatilities than larger firms. This
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chapter also interestingly finds that IT firms have relatively low volatilities and downside
risks (lower partial moments) during the studied period.

The second contribution of this chapter is an analysis of the relationship between
returns and idiosyncratic volatilities for Canadian stocks using quintiles, and various
variants of the Fama-MacBeth methodology. This result confirms that there is a
significant and robust relationship between returns and asymmetric idiosyncratic
volatility.

There is scope for further research on two related aspects. The first is an examination
of the prediction of expected returns using idiosyncratic volatility in the presence of the
consumption-wealth ratio (cay / tay), as has recently been undertaken for U.S. markets by
Guo and Whitelaw (2006). The second is an examination of the relationship between
idiosyncratic volatility and various possible determinants, such as the volatility of

liquidity, for Canadian stocks.

42



CHAPTER 3

SHOULD MINIMUM PORTFOLIO SIZES BE PRESCRIBED FOR ACHIEVING
SUFFICIENTLY WELL-DIVERSIFIED EQUITY PORTFOLIOS

31 INTRODUCTION

One of the most troubling implications of the basic CAPM is that the optimal
portfolio of risky assets for all investors consists of the market portfolio. Given constant
or increasing marginal costs as reported by Bloomfield, Leftwich and Long (1977) and
decreasing marginal benefits associated with increasing portfolio size (henceforth, PS),
Mao (1971), Levy (1978), Kryzanowski and To (1982) and Merton (1987) develop so-
called clinical versions of the CAPM for friction-related, constrained investment
opportunity sets. '’ Various studies specifically examine the marginal benefits associated
with increasing portfolio size. These studies generally find that at least 15 to 20 securities
are needed to obtain approximately 90 percent of the benefits of diversification for US
equity markets, and about twice that number is needed for Canadian equity markets;.. Asa
result, the average individual investor is advised that portfolios of about 20 and 30 stocks
are sufficient to achieve about 90% of the risk-reduction benefits from increasing
portfolio size in the US and Canadian equity markets, respectively (Xu, 2003; BMO,
2001). However, the majority of individual investors only hold one to three stocks in their
equity portfolios (Goetzmann and Kumar, 2005)."® The average investor holds two to

four stocks depending upon the sample (Goetzmann and Kumar, 2005; Statman 2004; Xu

""Brennan (1975) shows that a perfectly diversified portfolio is not necessarily optimal for individual
investors given transaction costs.

18 Using other sources of data for US households, Kelly (1995) and Polkovnichenko (2006) report similar
results.
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2003), even during periods of relatively stable overall market risk and rising firm-specific
risk (Campbell et al., 2001; Malkiel and Xu, 2003).

Thus, the major objective of this chapter is to answer the following question: Should
minimum portfolio sizes be prescribed for achieving sufficiently well-diversified equity
portfolios? To this end, the chapter examines the impact of increasing portfolio size for
portfolios drawn from various investment opportunity (IO) sets using monthly data for
Canadian stocks listed on the TSX over the period, 1975-2003 inclusive. The IO sets
consist of some of the common mandates of investment managers, such as all firms,
(non-)cross listed firms on US trade venues, big/small firms, and IT firms. For each
portfolio size and IO set, 5000 portfolios are formed using a naive diversification strategy
of randomly selecting and equally weighting the selected stocks. The metrics chosen to
assess diversification benefits fit into four categories; namely, those that measure risk
reduction, those that measure the impact on higher-order return moments, those that
measure the impact on reward-to-risk, and those that examine the impact on the
probabilities of underachieving various target or lower-bound rates of return. The specific
rationales for the choice of these metrics and their implementation are described in
section four of this chapter.

We make several contributions to the literature. The first contribution is a negative
answer to the question: Should minimum portfolio sizes be prescribed for achieving
sufficiently well-diversified portfolios? We find that the minimum portfolio size (PS)
depends upon the chosen investment opportunity (IO) set, the metric(s) used to measure
the benefits of diversification, and the criterion chosen to determine when the portfolio is

sufficiently well diversified. The minimums for a fixed investment opportunity set differ
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both within and across the categori‘es of metrics used for measuring diversification
benefits.

The second contribution is that we revisit the portfolio size issue for Canadian stocks
for a more recent time period and using a number of recently developed measures of the
relative benefits of diversification. We show that the use of these “new” measures
introduces considerable ambiguity into the common prescriptions on what constitutes a
minimum portfolio size for achieving a sufficiently well-diversified portfolio of domestic
equities.

The third and final contribution is that we nevertheless find that the minimum
portfolio sizes for various measures and implementations of the benefits of achieving
greater portfolio diversification by increasing portfolio size are considerably higher for
Canadian equities than the values reported in the literature for US equitics. We attribute
these differences to the less granular nature of both inter- and intra-industrial sector
weights in the Canadian equity market.

The remainder of the chapter is organized as follows. A brief review of the relevant
literature is presented in the next section. In section three, the sample and data are
described. Section four focuses on test results for the various performance metrics that
are used to determine the number of stocks needed to naively achieve a specific level of

the potential benefits through diversification. Section five concludes the chapter.

3.2  BRIEF LITERATURE REVIEW

Markowitz (1952) provides a theoretical foundation for portfolio diversification by

examining the trade-offs between the means and variances of returns for financial assets.
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Sharpe (1964), Lintner (1965) and Mossin (1966) use the effect of increasing portfolio
size on the diversification of portfolios to derive their versions of the Capital Asset
Pricing Model (CAPM). For example, Lintner (1965) capitalizes on the finding of
Markowitz (1959) that the total risk of a portfolio is not only less than the weighted sum
of the own risks of individual assets, but converges to systematic or market or
nonidiosyncratic risk as the portfolio size tends to infinity.

While researchers agree in principle that the firm-specific risk component of total
portfolio risk can be reduced to just systematic risk through diversification, researchers
report conflicting evidence on how many assets are needed to achieve a “well-
diversified” portfolio. The most distant literature includes the often-cited article by Evans
and Archer (1968) who observe that most of the economic benefits of diversification are
captured with a PS of eight to ten securities. While Elton and Gruber (1977) find that a
PS of eight stocks yields about eighty percent of the benefits from diversification, other
studies report that a larger PS is required. According to Latane and Young (1969), a PS of
eight only provides 25 percent of potential benefits from diversification. Jennings (1971)
and Fama (1965) report PS of 15 and at least 100 to nearly exhaust potential
diversification benefits. Kryzanowski and Rahman (1986) find that a PS of 15 securities
produces 95 and 98 percent of the benefits of diversification in terms of the mean and
variance of time-varying (MINQUE-estimated) variances, respectively. According to
Statman (1987), a PS of at least 30 and 40 stocks is required for borrowers and lenders,
respectively, to achieve sufficient portfolio diversification. Wagner and Lau (1971) argue
that an investor is better off as measured by the Sharpe ratio by holding a larger number

of low quality stocks than a smaller number of high quality stocks. According to
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Kryzanowski, Rahman, and Sim (1985), the minimum PS is 15 and 30 for the US and
Canadian equity markets, respectively.'’

More recent studies find that the benefits of increasing PS are more complex than
previously thought and provide weaker improvements in diversification benefits (e.g.,
Surz and Price, 2000; Bennett and Sias, 2005). Due to increases in idiosyncratic
volatility, the optimal PS is now 50 stocks (Malkiel and Xu, 2006) or exceeds 300 stocks
(Statman, 2004).

The same level of portfolio diversification also is more difficult to achieve in a
bearish market as average conditional correlations (Silvapulle and Granger, 2001) and
firm-level return dispersions (Demier and Lien, 2004) are higher when market returns are
largely negative. Nieuwerburgh and Veldkamp (2005) attempt to explain the
diversification puzzle by arguing that investors hold more specialized and less diversified
portfolios because they acquire informational scale economies about a set of highly
correlated assets. Bennett and Sias (2005) argue that idiosyncratic risk may be priced
because increasing PS results in a decline of the impact of systematic shocks on the time-
series variance of a portfolio but not on the cross-sectional portfolio variances. As a
result, they argue that the cross-sectional standard deviation of returns is a more intuitive
measure of the benefits of diversification.

International risk diversification benefits exist because the correlations across markets
tend to be lower than those within a national market (Solnik et al., 1996). However, the

benefits of international diversification have declined as higher correlations are reported

" Cleary and Copp (1999) find that PS of 50 and 90 stocks achieve total risk reduction benefits of 90% and
95%, respectively, for a sample of Canadian stocks with complete return information for the time period
being examined. Due to the introduction of this “look-ahead” bias into their results, their findings may not
be useful for making ex ante decisions on the required portfolio size to achieve what the investor considers
to be a sufficiently well-diversified portfolio.
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between, for example, US and international stocks (Goetzman, Li and Rouwenhorst,

2001).

3.3 SAMPLES AND DATA

The sample consists of all TSX-listed firms. The primary source of data is the
CFMRC for TSX monthly returns over the period 1975-2003. The risk-free rate is
proxied by the 30-day Canadian T-Bills rate, which is obtained from the Bank of
Canada.”

Portfolios are formed for IOs consisting of all firms, TSX-only listed firms, TSX
firms cross-listed in US markets, big/small firms (with firm capitalizations above and
below the median, respectively, each year), and IT firms. Using a Monte Carlo approach,
5000 equal-weighted portfolios are formed for portfolio sizes (PSs) of two, five through
100 in increments of five and all stocks for each of the six IO sets.?!

Care should be exercised when comparing portfolio sizes across the six IOs since the
10 sets differ in the numbers of stocks included in each IO set population (henceforth
IOSP). For example, based on the weighted average number of stocks in each IO set over
the studied time period, a portfolio size of 100 represents 13.3% of the IOSP for all firms,
15.9% of the IOSP for TSX-only listed firms, 20.7% of the IOSP for big firms, 37.3% of
the IOSP for small firms, 61.0% of the IOSP for cross-listed firms and 91.7% of the IOSP
for IT firms. While we follow conventional academic and practitioner practice of

defining portfolio sizes in terms of the number of stocks, we also provide the percentage

%0 The results using US trade data drawn from CRSP for TSX-listed firms that are cross-listed in the US are
similar, and thus are not presented herein.

2! Checks using 25000 portfolios of some randomly chosen PS/IO combinations suggest that the results
reported herein are robust.
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that a specific portfolio size represents of the IOSP to facilitate comparisons across 10

sets.

3.4 DIVERSIFICATION BENEFITS MEASURED USING VARIOUS METRICS

Various metrics for measuring portfolio diversification are examined in this section of
the chapter. The primary purpose for doing so is to identify the minimum number of
stocks (so-called portfolio size or PS) needed, for example, on average to naively
diversify a specific percentage of nonsystematic (or idiosyncratic or firm-specific) risk or

to capture a specific percentage on average of the reward from bearing risk.

3.4.1 Correlations of Stock Returns

Correlations among stocks and between the various investment opportunity (10) sets
are now examined. The average correlation coefficient is used as a standardized measure
of the rate and the level of maximum naive risk reduction (Dirk and Wit, 1998). While
the average covariance represents the minimum risk level of a portfolio, it is unbounded
and needs to be standardized. For the US markets during 1962-1997, Campbell et al.
(2001) find stable market volatility, increasing firm-level volatility, and declining average
correlations among individual stock returns. This implies that an increasing PS is needed
to diversify firm-specific risk. As in Campbell et al. (2001), the monthly correlations are
calculated herein using the previous 60 months of returns (i.e., moving window ¢ ).

Summary statistics for the time-series of conditional mean cross-sectional
correlations of returns for the six IO sets of TSX-listed stocks are reported in panel A of

Table 3.1. To obtain these values, the mean is first calculated for the correlations between
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every unique pair of stocks in IO set j for moving window z . Repeating the previous step
for each moving window ¢ for each IO set j generates a time-series of mean conditional
cross-sectional correlations for each 10 set j. The mean, median and standard deviation
of these time-series are highest for the all-firm IO set and lowest for the small firm IO set,
which suggests that whatever diversification is possible is achievable quicker for small
firms all else held equal. The conditional mean cross-sectional monthly correlations
appear to trend downwards after the 1987 market crash. This is illustrated for big and

small firms in Figure 3.1.
[Please insert Table 3.1 and Figure 3.1 about here.]

The correlations between these time-series of conditional mean cross-sectional
correlations of returns for the six IO sets of TSX-listed stocks are reported in panel B of
Table 3.1. Sample pairs with negative mean conditional correlations include big firms
with all the other IO sets except for small firms, and those with positive mean conditional
correlations below 0.5 include IT firms with all firms and TSX-only-listed firms, and
small firms with each of the other five 10 sets. The low positive and negative correlations
between the time-series of conditional mean cross-sectional correlations of returns for
some of the 10 sets of TSX-listed stocks provide the greatest risk-reduction options for

portfolio construction.
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3.4.2 Dispersion of Stock Return Metrics®

Dispersion metrics are superior to the correlation metric as a measure of
diversification benefits since the dispersion metrics do not depend upon correlations
being persistent (Solnik and Roulet, 2000), and they incorporate the effects of both
correlations and standard deviations (Statman and Scheid, 2004).2 Lower levels of stock
return dispersion are typically associated with lower levels of risk.

The first “dispersion” metric examined in this section of the chapter is referred to as
the mean derived dispersion (MDD) or excess standard deviation (Campbell et al., 2001).
The MDD for a fixed portfolio size s and IO set j is given by:

MDD, =5, —o, (3.1)

5§ J

where &,  is the mean of the standard deviations for the 5000 randomly selected

portfolios with a portfolio size or PS of s for IO set j over the whole time period, and o,

1s the average standard deviation of all the stocks in IO set ;.

The mean derived dispersion should be positive and converge monotonically to zero
with increasing PS for each investment opportunity (IO) set. The MDD are computed
herein and reported in table 3.2 for 22 portfolio sizes (PS) for each of six IO sets using
monthly returns for the period, 1975-2003. The MDD decrease monotonically from a
positive value for a PS of 2 to a value of zero for a PS of all for each IO set. The MDDs
for PSs of 2 and all also are significantly different at conventional levels for each 10 set.
If the decision criterion is to achieve at least 90 percent of the potential decline in the

MDD by moving from a PS of 2 to all, then the required PS is about 40 (IOSP of 15.1%)

*2 For expositional ease, the term is used herein also for time-series measures of variability and semi-
variability.
» An inverse relationship is expected between correlations and dispersion (Solnik and Roulet, 2000).
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for cross-listed firms, 45 (IOSP of 9.3%) for big firms, 95 (IOSP of 15.1%) for TSX-only
listed firms and over 100 for the remaining three IO sets. Thus, although the minimum
number of stocks is lower for cross-listed firms than for big firms (40 versus 45), it
represents a larger percentage of the stocks available for investment in that 10 set (15.1%
versus 9.3%). If the threshold is increased to 95 percent, then the required PS is about 75
for cross-listed firms, 100 for big firms and over 100 for the remaining four IO sets.
Nevertheless, the MDDs for the small-firm IOs are substantially higher for PSs through
100. This is consistent with the finding reported by Bennet and Sias (2005) that smaller
firms have relatively higher risk in the US. In addition, about 90 percent of the reduction
in the standard deviation of the MDD measures across the 5000 portfolios for each PS
and IO set occurs with a PS of between 25 and 40 stocks, where the lower value occurs

for big firms and the higher value for all firms.
[Please insert Table 3.2 about here.]

The second dispersion metric examined in this section is referred to as the mean
realized dispersion or MRD (de Silva et al., 2001; Ankrim and Ding, 2002). The MRD

for a fixed portfolio size s and 1O set j is given by:

N
MRD, = %Za‘w , (3.2)

r=1

where o, 1s the cross-sectional standard deviation for the 5000 randomly selected

portfolios for IO set j with a portfolio size of s for month 7 ; and N is the number of
cross-sections. To obtain the MRD for a portfolio of all stocks, we bootstrap using 5000

samples of N-1 firms.
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The time-series of conditional MRD are computed herein for 22 portfolio sizes (PS)
for the six IO sets and are reported in table 3.3. According to expectations, the MRD
decrease monotonically with increasing PS for each of the 10 sets. The MRD metric
emits different inferences than those reported above for the MDD metric. For example,
the required PS to achieve at least 90 percent of the potential improvement in the MRD
by moving from a PS of 2 to all is under 100 for only two IO sets. The two PSs below
100 are 70 (IOSP of 42.7%) for cross-listed firms and 60 (IOSP of 55.0%) for IT firms.
The decrease in the cross-sectional standard deviation of returns of individual firms with
increasing portfolio size may help to explain the findings of MacDonald and Shawky
(1995) that using this measure instead of a time-series measure reduces market volatility
by about 50%, and results in a significantly positive relation between risk and return. This
time-varying measure should be superior in capturing the impact of a changing
investment opportunity set on conditional risk.

However, the MRD inferences implicitly assume that the cross-sectional distribution
of portfolio standard deviations across the 5000 randomly selected portfolios for each
unique combination of PS and IO set is relatively normal. If the distributions are highly
positively skewed with high positive kurtosis at low PSs and these higher-order moments
become more like those of a normal distribution as the PS increases (as is subsequently
shown), then the required PS for an investor who dislikes both positive variance and
kurtosis and likes positive skewness is likely to be lower than the over 100 stocks based
on a consideration of the MRD metric in isolation. The MRD also is consistently higher

for the small-firm IO set relative to the other IO sets for all PSs.

[Please insert Table 3.3 about here.]
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The third “dispersion” metric examined in this section is referred to as the normalized
portfolio variance (NPV) in the literature (e.g., Goetzmann and Kumar, 2005). This
measure is based on the law of average covariances by Markowitz (1976), which states
that the variance of a portfolio approaches the average covariance among the stock
returns as the PS increases. This measure is developed from the following simplified
expression for the variance of a portfolio drawn from IO set j for a PS of s (Bodie et al.,

2003):

Zw o} + Zwak cov(r,r,) fork =i 3.3)

J=1 i=1
Since the weights for stocks i and k£ in an equal-weighted portfolio of s stocks

are w, = w, = 1/s, the variance of the portfolio can be re-written as:

:_ z_ ZZ—- Cov r rk) fork =i (3.4)

i=t § k=1 i=1 S

. . . 1
Defining  average  variance and  covariance  as .. == Yo and
S

equation (3.4) yields:
o ( ”/s) (s- 1C0v” (3.5)

Normalizing both sides of the above expression by the average variance yields the
following normalized variance for the i-th randomly selected and equal-weighted

portfolio of size s for 10 set j:

NPV, ., = 0'/“/0' = l/S [s l/s] (COV/“/O' )= l/s [(s l/s]corr]”, (3.6)
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where o’ _,is the variance of returns for the i-th randomly selected portfolio of size s for

J.sid
IO set j over the full period; & is the average cross-sectional variance of returns for all

the stocks in IO set j over the full period; Tov,; is the average cross-sectional covariance

of returns for the i-th randomly selected portfolio of size s for 10 set j over the full

period; corr, . is the average cross-sectional correlation of returns for the i-th randomly

Tosi
selected portfolio of size s for IO set j over the full period; and /=1, ...,5000.
Cross-sectional mean NPV values for 22 portfolio sizes for six 10 sets using monthly
returns over the period, 1975-2003, are reported in table 3.4 and are depicted in Figure
3.2. The means of the NPV display a gradual asymptotic decline as the PS increases and
the mean NPVs are significantly different for portfolio sizes of 2 and all. If the decision
criterion is to achieve at least 90 percent of the potential reduction of moving from a PS
of 2 to all, then the required PS is about 20 to 25 stocks for the six IO sets. This
represents an IOSP that ranges from a low of 2.7% for all firms to a high of 18.3% for IT
firms. If the threshold is increased to 95 percent, then the required PSs are higher at about
40 for all IO sets. Furthermore, 90 and 95 percent of the convergence towards the steady-
state standard deviation of the NPVs is obtained with approximately 20 and 30 stocks,
respectively, for the six IO sets. These findings differ from those presented above for the
MDD metric but are similar to those reported for an earlier period for Canadian markets

by Kryzanowski et al. (1985) and Kryzanowski and Rahman (1986).
[Please insert Table 3.4 and Figure 3.2 about here.]

The last measure of stock diversification benefits examined in this section is the semi-

variance. Cross-sectional mean values of the semi-variance measured in reference to the
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risk-free rate and the market return for 22 portfolio sizes for each of the six IO sets using
monthly returns over the period, 1975-2003, are reported in Table 3.5. As for the NPVs,
both measures of semi-variance decline asymptotically as the PS increases and all their
means are significantly different for portfolio sizes of 2 and all. For a risk-reduction
threshold of 90% percent, the required PS is marginally higher than for the NPVs at
approximately 25 for all IO sets, which represents an IOSP range of 3.3% (big firms) to
22.9% (IT firms). For a risk-reduction threshold of 95%, the required PSs are also higher
than for the NPVs and range between about 45 and 55 stocks. Thus, the required PS is
higher for all IO sets when risk is measured by semi-variance instead of variance. Also,
as shown earlier, while adequate diversification may require the same number of stocks,
for example, for the all firm and IT IO sets, it requires a much greater proportion of the

stocks in the IT versus the all-firm 1O set.

[Please insert Table 3.5 about here.]

3.4.3 Higher-order Moments of Stock Return Metrics

Since the higher-order moments of stock returns are priced,* this section examines
the impact of increasing portfolio size on the third (skewness) and fourth (kurtosis)
moments of stock returns. The time-series mean of the cross-sectional Skew and Kurt for

a fixed portfolio size s and 10 set j are given by:

1 N l N
/uSkewj,v\. = FZI Skewj,x,r and luKurtj’_‘, = WZI Kurtj,s,r (3 7)

%% Kraus and Litzenberger (1976) and Harvey and Siddique (1999) find that unconditional and conditional
skewness in returns, respectively, are priced. Fang and Lai (1997) find that the expected excess rate of
return is related not only to the systematic variance but also to the systematic skewness and systematic
kurtosis with a positive, negative and positive premium, respectively, for each.
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where Skew, . and Kurt,  are respectively the cross-sectional skewness and kurtosis for

the 5000 randomly selected portfolios for IO set j with a portfolio size of s for month 7 ;
and N is the number of cross-sections.

The time-series means of the conditional skewness estimates for the cross-sectional
distributions of portfolio returns are computed herein for 22 portfolio sizes (PS) for each
of the six IO sets and are reported in panel A of Table 3.6. Our expectation is that the
skewness of the cross-sectional distribution of returns across the 5000 randomly
generated portfolios for each unique combination of PS and IO set should, on average, be
highly right skewed at a PS of 2, and should decrease with increasing portfolio size. As
expected, the mean cross-sectional skewness is highly positive at a PS of 2 and decreases
monotonically as the PS increases from 2 to all stocks for all 10 sets. Furthermore,
between 35 to 40% of the cross-sectional right skewness is foregone when the PS
increases from 2 to 5. Since skewness is positively priced by investors, this suggests that
the required PS to not lose over 10% of the benefits of right cross-sectional skewness is
about 2 stocks (i.e., a highly concentrated portfolio). This is consistent with the lower PSs

of portfolio managers (such as hedge funds) who aggressively attempt to achieve high

returns.
[Please insert Table 3.6 about here.]

The time-series means of the conditional kurtosis of the cross-sectional distributions
of portfolio returns are computed herein for 22 PSs for each of the six IO sets and are
reported in panel B of Table 3.6. Our expectation is that the kurtosis of the cross-
sectional distribution of portfolio returns for the 5000 randomly generated portfolios for

cach unique combination of PS and IO set should, on average, be highly peaked at a PS
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of two, and that the excess kurtosis should decline with increasing portfolio size.”> As
expected, the time-series means of the cross-sectional kurtosis begin with their largest
positive values at a PS of two for the six IO sets and decrease monotonically in value
towards 3 but still remain positive for a PS of all for all six IO sets. This suggests that the
cross-sectional distributions of portfolio returns are quite peaked for low PSs, and
become increasing less peaked (i.e., flatter) as the PS increases and have almost the same
peakedness as a normal distribution when all stocks in each 1O set are considered. Since
kurtosis is negatively priced by investors, this suggests that the required PS to achieve at
least 90 percent of the potential reduction in the mean cross-sectional kurtosis by moving

from a PS of 2 to a PS of all is, on average, about 20 to 25 for all six 1O sets.

3.44 Composite Return and Risk Metrics

This section examines metrics that capture the various types of tradeoffs between the
first (mean) and second (standard deviation or semi-standard deviation) moments of
return distributions. The first and second composite metrics examined in this section of
the chapter are the Sharpe-ratio-adjusted excess-return measure (ER) and the relative

return measure (6 ) used by Xu (2003), which are respectively given by:

ER,, = R.f,s “(O'j,s/O'J)EJ (3.8)
o R T R (3.9)
'],S ' J gy | J|

** Excess kurtosis is a useful measure obtained by subtracting 3 (i.e., the kurtosis of a normal distribution)
from the kurtosis measure. Positive excess kurtosis indicates a "peaked" distribution and negative excess
kurtosis indicates a "flat" distribution.

*% The ER metric becomes the M metric of Modigliani and Modigliani (1997) if excess returns are used for
the portfolio and the market, respectively.
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where R, and o, are the average return and standard deviation of returns for IO set j

for a PS of s, and R,,

R J|and o, are the average return, average absolute return and

standard deviation of returns for the equal-weighted portfolio of all the stocks in IO set ;.
The mean values are reported in Table 3.7 for these two measures for 5000 randomly
generated portfolios for each unique combination of j and s. As expected given the
theoretical efficiency of holding the “market”, both ER and 6 are negative at a PS of two
and move monotonically towards zero with increasing portfolio size. If the decision
criterion is to achieve at least 90 percent of the potential reduction in the shortfalls in
Sharpe-ratio-adjusted excess returns and relative returns of moving from a PS of 2 to all,
then the required PS is about 40 for 1O sets consisting of cross-listed firms (IOSP of
24.4%) and of big firms (IOSP of 8.3%), about 55 (IOSP of 50.5%) for the 1O set of IT
firms and over a hundred for the other three IO sets. Only the IO set of cross-listed firms
has a PS less than 100 (i.e., 75) if the threshold is increased to 95 percent. Furthermore,
90 percent of the convergence towards the steady-state standard deviation of zero for
both of these measures is obtained with approximately 40, 40 and 45 stocks for the 10

sets of cross-listed, big and IT firms, respectively.
[Please insert Table 3.7 about here.]

The third and fourth measures of diversification benefits examined in this section are
the Sharpe (Sharpe, 1994) and the Sortino (Sortino and Price, 1994) ratios. While the
previous two measures, ER and &, are total-risk- and market-adjusted measures, the

Sharpe ratio is an excess return to total risk measure given by Sk, = (7;, — r,) /st , and

the Sortino ratio is an excess return to semi-standard deviation risk measure given by
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Sor

= (7 —rf)/o";_s. Thus, while the Sharpe ratio accounts for any volatility in the
return of an asset, the Sortino ratio only accounts for deviations below the mean since
deviations above the mean are not considered to be a component of risk.

The mean values of the Sharpe and Sortino ratios are reported in Table 3.8 for 5000
randomly generated portfolios for each unique combination of j and s. As expected given
the theoretical efficiency of holding the “market”, both SA and Sor increase with
increasing portfolio size. If the decision criterion is to achieve on average at least 90
percent of the potential increase in the Sharpe ratio from moving from a PS of 2 to all,
then the required PS is about 75 (IOSP of 45.7%) for cross-listed firms, 85 (IOSP of
17.6%) for big firms, and over a hundred for the other four 1O sets. None of the 10 sets
has a PS less than 100 for the Sharpe ratio if the threshold is increased to 95 percent. In
contrast and as expected given the positive skewness identified earlier, the required PSs
are much lower for all 10 sets based on the Sortino metric in order to achieve at least 90
percent of the potential increase in the Sortino ratio from moving from a PS of 2 to all
(also see figure 3.3). Specifically, the required PSs on average arc about 50 for cross-
listed firms (IOSP of 30.5%) and IT firms (IOSP of 45.9%), 55 for big firms (IOSP of
11.4%), 60 for TSX-only listed firms (IOSP of 9.5%) and all firms (IOSP of 8.0%), and

75 for small firms (IOSP of 28.0%). This once again illustrates the greater risk inherent in

the small firm and IT sectors.

[Please insert Table 3.8 and Figure 3.3 about here.]
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3.4.5 Probability of Underperforming a Target or Lower-bound Rate of Return

The metrics examined in this section of the chapter are based on the intuition of
reducing the relative importance of idiosyncratic volatility with respect to total portfolio
variance. Based on the approach by Xu (2003), these measures deal with determining the
number of stocks required for the probability (likelihood) to underperform a target or
lower-bound return over various investment holding periods. Three target or lower-bound
rates of return are used herein; namely, the market return (as proxied by an equal-
weighted average of all the stocks available for investment in each IO set in each month
over the studied period), a zero return and a lower-bound return of -25%.

The mean values of the average probabilities over implicit holding periods of one
month, one year and three years of not achieving these three target or lower-bound rates
of return criteria are reported in Tables 3.9, 3.10 and 3.11, respectively, for 5000
randomly generated portfolios for various unique combinations of j and s. The results for
the shortest holding period of one month should capture the trading behavior of an active
noise trader, and the successively longer one and three year holding periods should

capture the trading behavior of progressively more value-oriented investors.
[Please insert Tables 3.9, 3.10 and 3.11 about here.]

The Table 3.9 results, which report the average probabilities of obtaining (compound)
returns that are inferior to the all-firm (“market”) returns for each 10 set over the three
holding periods, are examined first. The average probabilities for the least diversified
portfolios consisting of two stocks are always above 0.5 (ranging between 0.543 for
cross-listed firms for the one-month holding periods to 0.683 for TSX-only listed firms

for the three-year holding periods), and the average probabilities decline monotonically
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with movement towards the most diversified portfolios consisting of all stocks in each 10
set for all three holding periods. The reduction in the average probabilities from a PS of
two to a PS of all is significant for all IO sets for the three holding periods. The average
probabilities for the IO set of small firms are higher than for the other five IO sets for the
less diversified PSs for all three holding periods. For a fixed PS and IO set, most of the
average probabilities decline as the holding period gets longer. The major exceptions are
the slightly higher average probabilities for big firms and IT firms for more diversified
portfolios when the holding period goes from one to three years. These results strongly
show that holding portfolios that tend to mimic the market will be favored if the investor
is concerned about the probability of underperforming the market. This may explain the
behavior of many managed funds (such as mutual funds) to behave as if they were closet-
indexers.

The Table 3.10 results, which report the average probabilities of obtaining negative
(compound) returns over the three holding periods, are examined next. All but one of the
average probabilities for the least diversified portfolios consisting of two stocks is below
0.5, and average probabilities decline monotonically as one moves to the most diversified
portfolios consisting of all stocks in each 10 set for all three holding periods. The
reduction in the average probabilities from a PS of two to a PS of all is significant for all
IO sets for the three holding periods. Not surprisingly, the average probabilities for the IO
set of small firms are higher than for the other five IO sets for all PSs for all three holding
periods. For a fixed PS and IO set, the average probabilities also decline as the holding
period gets longer. If the decision criterion is to achieve on average at least 90 percent of

the potential decrease in the average probabilities from moving from a PS of 2 to all, then
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the required PS is dependent on both the IO set being examined and the length of the
holding period. Specifically, the required PSs at 90% are approximately 70 stocks for
cross-listed and IT firms, 60 for big firms and over 100 for the other three IO sets for the
one-month holding periods. The required PSs at 90% are approximately 55 stocks for the
all-firm IO set, 60 for the TSX-only listed and big firm IO sets, about 75 stocks for cross-
listed firms, about 95 for IT firms and over 100 for small firms for a one-year holding
period. The required PSs at 90% are 50 for big firms, 70 for IT firms and over 100 for
the other four IO sets for the three-year holding periods.

The Table 3.11 results, which report the average probabilities of obtaining
(compound) returns that are more than 25% over the three holding periods, are examined
next. For the least diversified portfolio size of 2, the average probabilities of achieving a
loss of more than -25% is lowest for big firms and highest for small firms for all three
holding periods. For PSs of 5 or less, this probability generally increases with an increase
in the holding period for each of the six IO sets. For PSs of 10 or greater, this probability
generally increases from a one month to a one year holding period and then generally
decreases from a one year to a three year holding period. If the decision criterion is to
achieve on average at least 90 percent of the potential decrease in the average
probabilities from moving from a PS of 2 to all, then the required PS is dependent on
both the IO set being examined and the length of the holding period. Specifically, the
required PSs at 90% are approximately 5 stocks for big firms, 10 stocks for all, TSX-
listed only and small firms, 15 for cross-listed firms and 20 for the IT firms for the one-
month holding periods. The required PSs at 90% are approximately 25 stocks for the IT

10 set, about 35 for the All, TSX-only listed and cross-listed firm 1O sets, about 40 for
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big firms, and over 100 for small firms for a one-year holding period. The required PSs
at 90% are about 15 for big firms, about 25 for cross-listed and IT firms, about 30 for all
and TSX-only listed firms and about 85 for small firms for the three-year holding
periods. Thus, with the exception of portfolios drawn from the small or IT IO sets, a
portfolio of 40 stocks will have, on average, a probability of up to about 6% of obtaining
a compound return of more than -25% for holding periods of 1 month, 1 year or 3 years.
These findings provide mixed evidence for the refutation by various authors (e.g.,
Samuelson, 1963, 1989; Kritzman, 1994, 1997; Fisher and Statman, 1999) that investors
suffer from the cognitive error that losses are reduced over longer holding periods.
Specifically, while the probability of not earning a positive return is reduced with a
longer holding period, the probability of not earning the market return is increased with a
longer holding period. Thus, the existence of cognitive error depends upon the choice of

anchor or benchmark retumn.

3.5 CONCLUDING COMMENTS

This chapter used various metrics to determine the minimum portfolio size required to
achieve a sufficiently well diversified portfolio that is chosen naively for various
investment opportunity sets. Based on a summary of these results for the achievement, on
average, of 90% of the benefits of diversification presented in Table 3.12, we found that
this minimum portfolio size is very sensitive to the performance metric used to measure
such benefits and is somewhat less sensitive to the investment opportunity set from which

the portfolio selection 1s made. Whether or not these findings are applicable to future
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periods depends upon whether or not the investment opportunities represented by the
period studied herein are applicable to future time periods.

Thus, if the conventional measures of risk (such as the time-series variance, semi-
variance and NPV) are used, then about 20 to 25 stocks are required on average to
achieve about 90% of the potential benefits from diversification. If average time-series
measures of the excess standard deviation of nonmarket portfolios over that of the market
portfolio (such as the MDD) are used, then the number of stocks required to achieve
about 90% of the potential benefits from diversification is about 40 and 45 stocks for
cross-listed and big firms, respectively, and about 95 or greater for the other four
investment opportunity sets. As noted repeatedly in the text, a similar portfolio size in
number represents quite different proportions of the total number of stocks available in
each investment opportunity set (24.4% and 9.3% for cross-listed and big firms in this
case). If instead time-series averages of the standard deviations of the cross section of
portfolio returns (such as the MRD) are used, then the required number of stocks on
average is about 70 for cross-listed firms, 60 for IT firms and over 100 for the other four
10 sets. However, this inference must be tempered since it ignores higher-order moments
of the cross-sectional distributions of portfolio returns, especially for investors who prefer
positive skewness and dislike positive kurtosis. If skewness and kurtosis are considered
in isolation, then the minimum number of stocks required to achieve about 90% of the
potential benefits from diversification (or not diversifying in the case of skewness) is
about 2 stocks for skewness and about 20 to 25 stocks for kurtosis.

If the investor is concerned about the impact of diversification on reward for bearing

risk (as measured by ER, 0, Sharpe ratio or Sortino ratio), then the minimum number of
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stocks required to achieve about 90% of the potential benefits from diversification ranges
from 40 to over 100 stocks depending upon the performance metric used and the
investment opportunity set considered. To illustrate, most likely due to the skewness and
kurtosis in the various return distributions considered, such diversification benefits are
achieved with from about 50 stocks to about 75 stocks depending upon the investment
opportunity set based on the Sortino ratio that uses downside risk. And finally, if the
investor is interested in achieving about 90% of the potential benefits from diversification
in meeting three rates of return targets or lower bounds over holding periods of one
month, one year or three years, then portfolio sizes of over 100 are required for a market
rate of return target, portfolio sizes of 55 to over 100 are required for a zero rate of return
target, and portfolio sizes of 5 to 40 (up to 100 for small firms) are required for a lower-
bound return target of more than -25%.

Despite this ambiguity in what is the optimal portfolio size to obtain a fixed
percentage of the benefits from diversification, the chapter finds that the minimum
portfolio sizes for specific performance metrics are higher for Canadian equities than the
values reported in the literature for US equities. This is probably due to the higher
concentration of Canadian stocks within a few industries (sectors), which makes it more
difficult to diversify away firm-specific risk.

The ambiguity in what is the optimal portfolio size also illustrates the need for
financial advisors to carefully implement the “know your client” rules. Specifically, it
raises the standard of care required in assessing the tolerance and attractiveness of
various moments of the return distributions of various potential portfolio sizes for

investors.
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Much scope exists for further research on this theme. This includes an examination of
other investment opportunity sets that are consistent with the objectives of open-end
mutual funds or the mandates of pension fund managers such as value and growth,
industry-specific and multi-asset classes. It also includes the consideration of the costs
associated with increasing portfolio size, particularly trade costs, and the lack of liquidity.
Other interesting avenues of research include an examination of potentially asymmetric
benefits of diversification in up and down markets or in expansionary or recessionary
economies, and an examination of whether the ambiguity in the minimum portfolio size

extends to other asset classes and markets.
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CHAPTER 4

ASYMMETRIC VOLATILITY TRANSMISSION, CO-MOVEMENT AND
PERSISTENCE FOR CANADIAN CROSS-LISTED STOCK

4.1 INTRODUCTION

Asymmetric volatility is induced by overreaction to negative news (Crouchy and
Rockinger, 1997) when contemporaneous returns and conditional return volatility are
negatively correlated (Wu, 2001). The existence of this relationship across financial
markets can lead to volatility spillover. Volatility spillover research focuses on inter-
market returns (Eun and Shim, 1989; Aggarwal and Park, 1994), and on inter-market
volatility shocks (King and Wadhwani, 1990; Karolyi, 1995; Koutmos, 1996). Since
much of the research on inter-market volatility transmission examines the spillover
effects among markets with non-synchronous trading hours (Brooks and Henry, 2000),
their results are not robust (Gannon and Choi, 1998). Also, the robustness of such tests
can only be verified for a time period that covers several business and market cycles
(Longin and Solnik, 1995).

The topic of inter-market volatility dynamics needs to be revisited by examining co-
movements and volatility spillovers for the same group of stocks that trade on two
different national markets with synchronous trading hours in order to provide a cleaner
test of the nature of information flows between the two financial markets, their level of
integration and the nature of their interdependence (Niarchos et al., 1999). Cross-listed
Canadian stocks appear to be a good choice for such a study since the number of

Canadian stocks cross-listed on the TSX and U.S. markets has increased from 133 in
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1990 (Karolyi, 1995) to 324 in 2003. These stocks now account for the single largest
share of foreign stocks cross-listed on the U.S. markets.

Thus, the main objective of this chapter is to examine co-movements, asymmetries
and volatility spillovers for the 324 Canadian stocks cross-listed on the TSX and U.S.
markets over the 1975-2003 period. To ensure inferential sturdiness, the chapter uses four
bi-variate versions of the popular GARCH(1,1) model (namely, the GJR-, E-, DCC-, and
BEKK) to examine asymmetry, comovement and volatility transmission for the equal-
and value-weighted daily and monthly returns for this sample of cross-listed firms.

The remainder of this chapter is structured as follows. A brief literature review is
presented in the next section. In section three, the sample and data are described. In
section four, variance asymmetry is examined for the sample of cross-listed firms in each
market using various univariate models. In section five, variance asymmetry, spillover
and persistence are examined for the cross-listed samples using four bivariate GARCH

models. Section six concludes the chapter.

4.2  BRIEF LITERATURE REVIEW

4.2.1 Asymmetry and Volatility Spillovers

Some stylized facts exist about the properties of stock returns. These include
leptokurtic distributions (Nelson, 1991; Booth et al., 1997), presence of autocorrelation
(Lo and MacKinlay, 1990), volatility clustering where large changes follow large
changes of either sign and small changes follow small changes (Engle, 1982; Bollerslev

et al., 1994), and asymmetry in volatility, which implies a negative correlation between
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past returns with current volatility (Bekaert and Wu, 2000). Two hypotheses exist to
explain this asymmetry in volatility; namely, the leverage effect (Black, 1976; Christie,
1982), and the volatility feedback effect due to a time-varying risk premium (French,
Schwert and Stambaugh, 1987). According to the leverage effect hypothesis, a decrease
in stock price lowers returns, and increases the proportion of debt and consequently
financial leverage and return volatility. According to the time-varying risk premium
hypothesis, a rise in equity volatility raises the required return on equity by increasing the
risk premium, which lowers equity prices (Chan et al., 2005). Thus, required returns on
equity are related to a time-varying risk proxy (expected volatility). The two theories
provide contradictory predictions on causality with return shocks leading to [following]
changes in conditional volatility according to the leverage [volatility feedback]
hypothesis.

Empirical findings suggest that both theories only partially explain asymmetric
volatility (Schwert, 1989), and that the two effects interact simultaneously in that the
leverage effect reinforces the volatility feedback effect (Bekaert and Wu, 2000). This is
consistent with a partial-adjustment price model (Koutmos, 1998) where positive returns
are incorporated faster into market prices because they are more persistent than negative
returns. This leads some researchers to interpret the evidence as providing more support
for the volatility feedback over the leverage hypothesis (Bekaert and Wu, 2000). In sum,
the debate of whether the asymmetric volatility phenomenon is due to a firm-level
leverage effect or a market-wide volatility feedback effect continues (Dennis, Mayhew,

and Stivers, 2004).
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A debate also exists regarding the sign of the relationship between returns and
volatility (Li et al., 2004). A size or threshold effect also affects the asymmetric impact of
negative and positive returns on volatility (Crouchy and Rockinger, 1997). Negative
returns below a threshold level strongly increase volatility due to ‘leverage’ and the
‘feedback mechanism’, while positive returns seem to have a negligible effect on
volatility. In a similar manner, a long-term trend of either negative or positive shocks has
a cumulative effect on crossing a certain threshold.

Despite low correlations between markets that indicate market segmentation
(Niarchos et al., 1999), some studies report increasing interdependences among stock
markets (Eun and Shim, 1989; Arshanapalli and Doukas, 1993). Progressive
globalization and increasing integration of financial markets following the market crash
of October 1987 led several studies to examine the nature of the mechanisms influencing
information flows between various capital markets (Liu and Pan, 1997). Information
transmission occurs through both a mean spillover effect as well as volatility transmission
(King and Wadhwani, 1990; Theodossiou and Lee, 1993). Financial researchers find
supporting evidence (Yang and Doong, 2004) for price (first-moment) and volatility
(second-moment) spillovers and reciprocity in terms of their interdependencies (Hamao
et al., 1990). Research on understanding how volatility spillovers and transmissions occur
(Kearney and Patton, 2000) has caused some debate about the duration and size of their
magnitudes. For example, some authors find that their magnitudes are small and of short
duration (Susmel and Engle, 1994).

While some of these studies have shortcomings due to potentially misleading

spillover tests in nonsynchronous markets where one market is closed while the other is
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still trading (Gannon and Choi, 1998), the empirical evidence on the role of the U.S.
stock market is mixed. While some researchers find that mean and/or volatility spillovers
originate significantly from the U.S. market (Hamao, Masulis, and Ng, 1990;
Theodossiou and Lee, 1993), others find nonsupportive evidence (Lin, Engle, and Ito,
1994). Furthermore, some researcher find significant spillovers in both directions
(Koutmos and Booth, 1995; Bae and Karolyi, 1994).

Researchers also report that causalities and volatility spillovers change over time (Wu
and Su, 1998). Current research on asymmetry and volatility transmission finds an
increase in correlations in down markets (Longin and Solnik, 2001), time-variation in
conditional skewness (Harvey and Siddique, 2000), no spillovers in unrelated markets
(Niarchos et al., 1999), no asymmetric conditional volatilities for bonds (Cappiello et al.,
2003), and intra-day unidirectional effects (Gannon, 1994) in contemporaneous markets.
Since volatility spillover tends to increase non-systematic (idiosyncratic) risk, it reduces
the gains from international portfolio diversification (Kanas, 2000). The covariance
structure between markets also changes since the volatilities of markets and the
interdependences across markets evolve (Longin and Solnik, 1995), although some
researchers consider such changes as being transitory (King, Sentana, and Wadhwani,
1992).

As further evidence of how actively researchers are pursuing the examination of
asymmetries and volatility spillovers in various markets, we list the following studies as
an incomplete list: Yang and Doong (2004) for the G-7 countries; Kearney and Patton
(2000) for the countries in the European Monetary System; Booth et al. (1997) for the

countries in the Scandinavian stock markets; In et al. (2001) for Asian stock markets
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(Hong Kong, Korea and Thailand); Liu and Pan (1997) for the U.S. and Pacific-Basin
stock markets; Niarchos et al. (1999) for U.S. and Greece; Brooks and Henry (2000) for
U.S., Japan and Australia; Gannon and Choi (1998) and Koutmos and Booth (1995) for
the New York, Tokyo and London stock markets; Karolyi (1995) for U.S. and Canada;
Koutmos (1998) for the value-weighted stock indices of nine industrialized countries;
Gannon (1996) for East Asian currencies; Laopodis (1998) for the German mark versus
three EMS currencies (French franc, Dutch guilder, and Belgian franc) and three non-
EMS currencies (Canadian dollar, U.S. dollar, and Japanese Yen); Arago et al. (2003) for
spot and index futures; Kanas (2000) for stock returns and exchange rates for six
industrialized countries; So (2001) for interest rates and U.S. dollar; Tse (1999) for the
DJIA index and the futures market; and Chan et al. (1991) for the S&P 500 and the

futures market.

4.2.2 Autoregressive Conditional Heteroskedasticity

Engle (1982) developed the autoregressive conditional heteroskedasticity (ARCH)
model to capture volatility clustering and persistence in financial time series. Bollerslev
(1986) subsequently generalized the ARCH to the GARCH model. These models have
the ability to capture volatility persistence and clustering, thick-tailed distributions, and
even an infinite unconditional variance. Unfortunately, the simple GARCH models are
indifferent to both positive and negative innovations, and they underpredict volatility due
to negative shocks (Crouchy and Rockinger, 1997). Based on an examination of the
causality of autocorrelations towards the conditional volatility of returns under a GARCH

process (Diebold and Nerlove, 1989; Lamoureux and Lastraps, 1990), researchers model
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volatility in terms of information arrival (Engle and Ng, 1993; Bollerslev and Melvin,
1994; and Hogan and Melvin, 1994). The research methodology used to study the
transmission of movements include the dynamic simultaneous model (Koch and Koch,
1991), VAR (Eun and Shim, 1989), uni-variate GARCH (Hamao et al., 1990), multi-
variate GARCH models (Theodossiou and Lee, 1993), the GJR-GARCH that is less
sensitive to outliers (Glosten, Jagannathan, and Runkle, 1993) and the EGARCH or
Exponential GARCH that ensures that the variance is positive (Nelson, 1991). The last
two models enable empirical researchers to test for asymmetric volatility (Koutmos,
1998) and volatility spillover.*’

Multivariate GARCH models include the Vech and Diagonal Vech models
(Bollerslev, Engle and Woolridge, 1988), Constant Correlation model (Bollerslev, 1990),
BEKK model (Engle and Kroner, 1995), and the Dynamic Conditional Correlation model
(Engle and Sheppard, 2001). The main problems associated with the multivariate
GARCH models are the strong restrictions on the number of parameters to be estimated
that hinder convergence (Baur, 2002) and the optimization of the maximum likelihood
function to a global maximum (Engle, 2002), and the restrictions on positive definiteness
of the covariance matrix (Kash-Haroutounian, 2005). The Conditional Correlation
models of Bollerslev (1990) overcome these limitations with the estimation of volatility
using a univariate GARCH model, followed by the use of a conditional correlation matrix
using standardized residuals. Nevertheless, the assumption of a constant conditional
correlation is restrictive (Tsui and Yu, 1999; Tse, 2000) since it does not reflect a

dynamic response to innovations (Chiang and Tan, 2005) and it results in covariances of

7 The asymmetric volatility hypothesis incorporates both the ‘heat wave’ hypothesis reflecting country-
specific volatility and the ‘meteor shower’ hypothesis of volatility spillover from one market to another
(Niarchos et al., 1999).
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assets being determined solely by their respective variances (Harris, Stoja, and Tucker,
2004). The latter limitation is overcome by the Dynamic Conditional Correlation (DCC-
MVGARCH) model of Engle (2001) and Engle and Sheppard (2001). This model
estimates the conditional correlation coefficients and variance-covariance matrix
simultaneously after estimating the univariate GARCH parameters in the first stage and

the DCC parameters in the second stage.

4.3 SAMPLE AND DATA

Using the TSX Monthly Review, 324 Canadian firms cross-listed on the TSX and
U.S. markets are identified in December 2003. Using daily returns extracted from the
CFMRC and the CRSP historical database, both equal- and value-weighted portfolio
returns are computed for these 324 cross-listed Canadian stocks.

The basic statistics for these respective return series, which are presented in Table
4.1, confirm the stylized facts reported in the literature. The kurtosis measure and Jarque-
Bera statistics indicate that the distributions of returns are leptokurtic and ‘fat-tailed” (not
normal). The results for all five tests (F-test, Siegel-Tukey, Bartlett, Levene, and Brown-
Forsythe) that are reported in Table 4.2 reject the equality of inter-market variances,
except for the monthly returns for the equal-weighted portfolio. Based on Table 4.3, the
correlations between the return variances are lower for equal- versus corresponding
value-weighted portfolios, and the correlations are lower using daily than monthly

returns.

[Please place Tables 4.1, 4.2 and 4.3 about here.]
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Based on the unit root tests reported in Table 4.4, the null hypothesis of a unit root is
rejected for the series of return variances for both the equal- and value-weighted
portfolios of daily and monthly returns based on both the Adjusted Dickey-Fuller and
Phillips-Perron tests. Based on the critical values for the Johansen co-integration test
(Cavaliere, Fanelli and Paruolo, 2001), the null hypothesis of co-integration between two

series of rank 0 and 1 is rejected by both the Johansen's trace test (4, ) and the lambda-
max test (4,,) for all the tested return variance series that are reported in Table 5. These

findings reinforce the subsequent decision to use the simple mean model without ARMA
terms in the first moment equations of the two GARCH models, as our focus is on
analyzing components of the time-varying covariance matrix (Bauer, 2002). Preliminary
modeling of an AR(1) term in the mean equation also confirms that the error terms
associated with this formulatiion are white noise (i.e., likely to contain only “non-priced
risk”). In addition, it is not necessary to model returns herein as an autoregressive process

since this chapter models synchronous markets (as in Gannon and Au-Yeung, 2004).

[Please place Tables 4.4 and 4.5 about here.]

44  UNIVARIATE MODELS AND CROSS-LISTED VOLATILITY
ASYMMETRY

The first test for asymmetry in the variances of the various return series uses squared
returns as the variance measure and dummy variables in the following regression (Brooks

and Henry, 2000; Engle and Ng, 1993):

th,r =t ﬂi,l 'Ni,r—l + ﬂi,z '(Ni,r—l 'R;,f—l) +Pis '(Pi,r—l 'Ri,:—l) +&, (4' I)
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where N, =1if R;, ;<0 and zero otherwise, and P, =1-N,, . In (4.1), the sign

bias is given by the estimated coefficient of 3;, and the size biases by the estimated
coefficients of B,,and f,; that capture the magnitude of innovations in R,, . Based on
the results reported in Table 4.6, estimates of coefficient f;, reveal a sign bias in three of
the four daily series of return variances (the exception is the value-weighted portfolio of
U.S. trades) and only one of the four series of monthly variances (i.e., for the value-
weighted portfolio for TSX trades). The estimated coefficients for the size bias (,6,.’2 , ,Bm)
are of opposite signs, as expected, except for the return variances for the value-weighted

portfolio for TSX trades. However, the size-bias estimates are significant for the same

variance series as for the sign-bias estimates.
[Please place Table 4.6 about here.]

The next test for asymmetry in the return volatilities of the daily and monthly equal-
and value-weighted series uses two univariate GARCH models; namely, the GJIR-
TGARCH of Glosten, Jaganathan, and Runkle (1993), and EGARCH of Nelson (1991).
Two models are used because the choice of volatility model can lead to different
inferences (Kroner and Ng, 1998).

The variance term of the univariate GJR-GARCH model can be expressed as:

ol =a,+ Bel + e (e )+ B ol (4.2)

where persistence is measured by the coefficient §,and the indicator variable

I for £ <0 captures asymmetry in the estimate of coefficient f8,. A negative value of 3,

implies that negative residuals increase the variance more than positive residuals.
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Based on the results reported in Table 4.7 for the univariate GJR-GARCH model, the
return variances for both equal- and value-weighted portfolios exhibit stronger
asymmetry for trades on the TSX versus those in the U.S. for daily returns. This indicates
that negative shocks increase volatility more on the TSX than in the U.S. for the same
cross-listed shares. In contrast, the equal-weighted monthly portfolios of U.S. trades
exhibit stronger asymmetry than the TSX trades. Also, positive shocks lead to volatility

for the value-weighted monthly portfolios, with TSX trades exhibiting higher sensitivity.
[Please place Table 4.7 about here.]

The variance term of the univariate E-GARCH model can be expressed as:

In(o?)=a, + B, (Mj + B, (&j + B, Ln{c?,) (4.3)
g

t-1 t-1
where persistence is captured by the coefficient S, , and significant negative values of ﬁz

indicate that negative residuals lead to higher variances (i.e., asymmetry).

Based on the results reported for the univariate E-GARCH model in Table 4.7,
variances based on TSX trades exhibit stronger asymmetries than those based on their
U.S. counterparts for both equal- and value-weighted daily returns. In contrast and
consistent with the GJR-GARCH findings discussed above, equal-weighted monthly
portfolios of U.S. trades exhibit stronger asymmetry than the TSX trades, and positive
| shocks lead to greater volatility for value-weighted monthly portfolios, with greater

sensitivity for TSX versus U.S. trades.

[Please place Table 4.8 about here.]
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4.5. VARIANCE ASYMMETRY, COMOVEMENT, SPILLOVER AND
PERSISTENCE

Variance asymmetry, spillover and persistence are examined in this section using a
multivariate GARCH framework, which allows for a conditional or time-varying
covariance matrix. Once again to ensure inferential sturdiness, four bi-variate GARCH
models (the GJR-, E-, DCC-, and BEKK) are used herein. The GARCH(1,1)
specification is retained for all four bi-variate models, since research in finance finds that
this model is the most robust and parsimonious (Engle, 2001), avoids over-fitting, and is
less likely to violate non-negativity constraints (Brooks, Burke, and Persand, 2003).
Furthermore, the GARCH(1,1) is not inferior to other models (Hansen and Lunde, 2005),
except when other models include a leverage effect (as is done herein). For consistency,
the four models have the same mean equations (first-moment condition) but differ only in
their conditional variance expressions (second-moment condition). When univariate
models are extended to a multivariate framework, an additional constraint must be
imposed to ensure that the likelihood function is defined. This constraint is that the
conditional covariance matrix is positive definite. Furthermore, the results based on the
monthly return series are not reported in the interests of compactness due to their
similarity with the results reported herein for the daily return series.

The first bivariate model considered herein is the GTIR-GARCH, which is also called
the threshold GARCH or T-GARCH. It is simpler and less sensitive to outliers than other
GARCH models (Arago et al., 2003). While the mean equations in GJR-GARCH are
modeled by Niarchos et al. (1999) with MA(1) terms using their own past residuals as
well as those of the other series, our Johansen cointegration tests rejected the null

hypothesis of cointegrating vectors in both daily and monthly equal- and value-weighted
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return series. Hence, past innovations are not included in our mean equations and the
returns are regressed only on a constant (intercept).
The conditional return variances o, , = Var (g“,’, / Q,_l) ando’,, =Var (8 / Q,_l) for

us,t us,t
the trades for the same securities in the two markets are expressed as:

2 2 2 a2 . 2 . Q2
O—cd,r - acd,l + cd 1 -gcd,ﬁl + cd 2 'O-cd,r—l + cd 3 gus,t-—l + cd 4 Ial gczl,t—l +ﬁcd,5 Ius gus,t—l (44)

2 _ 2 2 2 . L2 . e
O-us,t - aus,l + us,1 ’ gus,t—l + us,2 : O-u:,t—l + ﬂus,S : gcd.t—l + ﬂus,4 Ius gus,t—l + lBus,S ch gc{l,t—l (45)

Persistence in the conditional volatilities is captured by the coefficients (ﬂcd’z , ﬂus’z) for

the Canadian and U.S. markets, respectively. Asymmetries in the Canadian (cd) and U.S.

(us) markets are captured by the coefficients 8 ,,and g, ,, respectively, where 7, =1 if

£4.4<0 and I, =1 if g, <0. Volatility spillover from the U.S. market to the

s -1
Canadian market is captured by the coefficient S, ,, and by B, for spillovers in the
reverse direction. These estimates reflect the effect of the two squared cross-innovation
terms (glfs,t_] , 534,;—1 )

The results for the bivariate GJR-GARCH estimations for the portfolios of daily
equal- and value-weighted returns are presented in panels A and B of table 8. All the
estimated coefficients (including pair-wise coefficients) are very significant. Negative
[positive] persistence exists in the TSX [U.S.] trades for the equal-weighted series for all
the time periods. In contrast, negative persistence exists in the TSX trades (except during
1990-1999) and in the U.S. trades for the value-weighted series for all the time periods.
Volatility spillover from the U.S. to the Canadian market increases during 1975-1999 and
turns negative during the most recent 2000-2003 period for both the equal- and value-

weighted series. Volatility spillover from the Canadian to the U.S. market increases over
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time for the equal-weighted series and is only significant for the value-weighted series for
the period 1990-1999. Thus, the direction of volatility spillover is mainly from the U.S. to
the Canadian market for the value-weighted series. The asymmetric response of TSX
trades to negative shocks in the U.S. market (and vice versa) for the equal-weighted
series decreases after October 1987 but has subsequently increased during 2000-2003.
The second bivariate model considered is the exponential GARCH (E-GARCH),
which ensures that the logarithmic conditional variances are always positive (Niarchos et

al., 1999). The model is given by:

2 2
Ln (O-cd,t ): Aoy + Pegy L (O'cd,m )"' Bz Gegys + Beas Gy (4.6)
2 2
Ln (O-us,t): aus,l + ﬁus,l ' Ln (O-us,t—] )+ ﬁus,Z ' Gus.t—l + ﬁus,3 ’ ch,t—l (47)
where
& 2 &
cd,t-1 cd, t-1
Gy =| F2H— [Z |46, =L and (4.8)
O-cd,t—l 73 O-cd,t—l

&

us,t—1

g

&
Gus t-1 = ( - \fg] gus . . (49)
, 7 O-us,t—l

In this model, the asymmetric response in the two markets is captured by the

us,t—1

coefficients (6,,,6,,) where 6, =1 if £4,0<0and 0, =11if ¢, <0. The coefficients

us,t—1

B..5 and B, capture volatility spillover from the U.S. to the Canadian market and vice

versa, respectively, after reflecting the effect of the two cross-innovation

terms (ch’,_l , Gu”_l). The persistence in the conditional volatilities in the two markets is

captured by the coefficients (,Bcd’l, ﬂus,l) (Yang and Doong, 2004). The terms
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(ch N E; ) are an asymmetric function of past standardized innovations, and measure

us,t-1
the magnitude and sign effect (In et al., 2001).

The results for the bivariate E-GARCH estimations for the portfolio pairings of daily
equal- and value-weighted returns are presented in panels A and B of Table 4.9. In
contrast with the estimates from the GJR-GARCH for both the equal- and value-weighted
series, the estimated volatility spillovers from both markets remain virtually unchanged
for all the time periods. The asymmetric responses to negative shocks in both markets for
both types of return series increase for all the time periods, with the exception of the
asymmetric response for the U.S. trades to negative shocks from the Canadian market for
the equal-weighted series. This response declines during 1990-1999 and then increases

during 2000-2003.

[Please place Table 4.9 about here.]

The third bi-variate model used herein is the Dynamic Conditional Correlation (DCC-
) GARCH model of Engle (2001), which estimates the conditional correlation
coefficients and the variance-covariance matrix simultaneously. The univariate GARCH
parameters are estimated in the first stage and the DCC parameters in the second stage.

For the bi-variate case, the conditional variance-covariance matrix (H,) in the DCC
model may be expressed as:
H, = D: R, Dt = (pij,t hii,t hjj,t ) (4.10)

where R, = {p!.l. }t is the conditional correlation matrix, and D, is the diagonal matrix of

time-varying standard deviations from univariate GARCH models such that:

(7], =k, [D],=\h;Vi=j&0Viz; (4.11)
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The elements of D, follow a univariate GARCH(1,1), and for the bivariate Canada-U.S.
case can be expressed as:

h '—0) +acnl cnt1+ﬂcn1 cn,t—1 (412)

hus,t:a)us+ausl us,t-1 ﬁusl us,t—1

The volatility co-movements and spillovers are incorporated into the conditional variance

equations ( 4, ) as in Balasubramanyan (2004) as follows:

h _a) +arngcnt1+ﬂm cntl+7cn ust+0cngustl (413)

h N 8 +ﬂus ust1+7/us cnt+0 8

us “us,t—1 us “en,t-1

where £

cn?

B, are coefficients that reflect persistence, y,,,7,, are coefficients that reflect

contemporaneous co-movement, and the coefficientsé@, ,6, reflect volatility spillover

(U.S. to the Canadian market and vice versa, respectively).

The results from estimating the DCC-GARCH with co-movements and spillovers for
the daily equal- and value-weighted series are reported in panels A and B of Table 10. All
the estimated coefficients are very significant. Contemporaneous comovements increase
during 1975-1989, decline during 1990-1999 and rise during 2000-2003 for both the
equal- and value-weighted series. The volatility spillover from the U.S. into the Canadian
market increases for both the equal- and value-weighted series during 1980-2003
although it declines for 1975-1989. Volatility spillover from the Canadian to the U.S.
market is high during 1990-1999 and declines during 2000-2003 for the equal-weighted
series. The negative coefficient for the value-weighted series indicates that volatility
spillover has been mainly from the U.S. market to the Canadian market, and that this

spillover effect increased during 2000-2003.

[Please place Table 4.10 about here.]
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Incorporating asymmetry into the measures of co-movement and spillover in the

DCC-GARCH model yields:

2 2 2 2 2
h n,t = a)cn o, + ﬂcnhcn,t—l + }/cngus,r + 9 3 + ncngus,tlemvﬁo + ll[/m‘(;‘us,t—llsu_‘,“_l<0

(4 cnen.t-1 cn®us,f-1

(4.14)

_ 2 2 2 2 2
h st a)us +a.f + ﬂushus,t—l + yusgcn,t + 9 € + 77us‘9 [ <0 +l//usgcn,l—1[emv1_,<0

u: us“us -1 us“en t-1 cnt” g,

where asymmetric co-movements are reflected in the coefficients 7,7, such that the

indicator dummy variables [

£, <02

I, ,cach take the value of 1 whenever

£,,<0& ¢, <0 and zero otherwise. The asymmetric volatility spillovers are reflected

in the coefficients y .,y such that the indicator dummy variables /_ I each

Eus gt <027 £ <0

take the value of 1 whenever ¢ <0&¢ <0 and zero otherwise.

us -1 en i1

The results from estimating the asymmetric DCC-GARCH model with co-movements
and volatility spillovers for the daily equal- and value-weighted series are reported in
panels A and B of Table 4.11. Compared to the DCC model results discussed above, the
effects are split into their (a)symmetric co-movements as well as their (a)symmetric
volatility spillovers. Contemporaneous co-movements for equal-weighted TSX trades
increase (except immediately after the October 1987 crash), and those for the equal-
weighted U.S. trades decline during 2000-2003. While co-movements of value-weighted
TSX trades remain fairly stationary over the period, those for U.S trades decline only
during 1990-1999. Asymmetric co-movements due to negative shocks in both markets
increase for both the equal- and value-weighted series after the October 1987 crash. The
direction of volatility spillovers for both the equal- and value-weighted series is from the
U.S. into the Canadian market, although it is more moderate during 2000-2003. This is

confirmed by the negative coefficient for U.S. trades, which reveals the opposite

direction of information flow. The measure of asymmetric volatility spillover reveals that
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negative shocks in the Canadian market lead to a much higher impact on U.S. trades for

the equal- versus value-weighted portfolio during 2000-2003.

[Please place Table 4.11 about here.]

The final bi-variate model examined herein is the Baba, Engle, Kroner, and Kraft or
BEKK model, which is a variant of the multivariate GARCH process proposed by Engle
and Kroner (1995). The BEKK model overcomes the numerous parameters problem
associated with the VECH (Bollerslev, Engle, and Wooldridge, 1988) model by ensuring
that the variance-covariance matrix is always positive definite (Gannon and Au-Yeung,
2004). Unlike the VECH and other models, the parameters of the BEKK model cannot be
interpreted on an individual basis (Worthington and Higgs, 2003), instead functions of -
these parameters are of interest (Kearney and Patton, 2000).

The variance-covariance matrix of the asymmetric version of the BEKK-GARCH
(1,1) model can be expressed as:

H =C'C+As,_ & A+B'H_B+D'n_n D (4.15)
where asymmetric negative shocks are modeled as 7, =¢,, -1{z'f £, <0} and
My = &30 -1{z'f £y <0} for the bi-variate case, and the matrices C (lower triangular),
A, B, and D are of dimension2®?2 (Baele, 2004). Alternatively, the BEKK can be

represented as:

[
2
a, a & £, & a. a
e 1 12 1,i-1 Le-1 €261 11 12
H'_CC-{a a }L £ &l }[a a}
21 22 1,t-1%2,t-1 2,0-1 21 22 (4.16)
d
d

+{b11 blz:H:o-lz,t—l Oy 41 I:bll b12j|+l:dll 12J 7712,1—1 hyeaTha ':du dlZ}
b, by O 1,11 O-zz,m b, b, d,, 2| [Tt T 7722,z—l d, d,
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The variance-covariance matrix depends on squares and cross products of lagged

innovations &, , and lagged volatility H, , (Worthington et al., 2002). The combination of
various parameter estimates presents some inference difficulties. Coefficientsa,, and a,,

represent the effect of shocks on the future uncertainty of TSX and U.S. returns,
respectively, while coefficients @, and a,, represent the cross effects of the TSX on U.S.
markets and vice versa, respectively. In addition, if coefficients a,, and a,, have different
signs, then shocks with opposite signs in the two series tend to increase future risk in the
TSX market, while if coefficients «a,,and a,, have different signs, then shocks with
opposite signs in the two series tend to increase future risk in the U.S. market.

The source of volatility spillovers as in Dark et al. (2006) is tested more formally as
follows:

Hypothesis A:

H,:a, =b, =0 {No Volatility Spillover from U.S. to TSX}
H, :a,, #0 or b, #0 {Volatility Spillover from U.S. to TSX}
Hypothesis B:

H,:a,=b,=0 {No Volatility Spillover from TSX to U.S.}

H :a,#0 or b, =0 {Volatility Spillover from TSX to U.S.}

Based on volatility values for the equal-weighted returns reported in Table 4.12, risk
in the TSX market increases during the overall period of 1975-2003, as well as for time
periods of 1975-1979, 1990-1999, and 2000-2003, and risk in U.S. markets increases

during the time periods of 1975-1979, 1980-1989, and 2000-2003. The only difference
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when the volatility values are based on the value-weighted returns is that risk in the U.S.
markets did not increase during the time period of 1975-1979.

Based on tests of the above hypotheses for volatility spillovers for the bi-variate
BEKK models for various time periods, the estimates of a,, are insignificant for time
periods of 1975-2003, 1975-1979 and 1980-1989 based on the equal-weighted return
series, and the estimate of a,, is insignificant for the time period of 1990-1999 based on
the value-weighted return series. Since the estimates of b,, are significant for both the
equal and value-weighted return series for all time periods, this implies a volatility
spillover from U.S. markets to the TSX. In a similar manner, volatility spillover is
implied from the TSX market to U.S. markets since the estimates of a,, are significant for
all but one time period (i.e, the 1990-1999 time period for the equal-weighted return
series), and the estimates of b,, are significant for all time periods for both types of return

series. Asymmetric negative shocks as captured by the estimates of d, ,and d,, are

insignificant only during the time period 1990-1999 for the equal-weighted U.S. and TSX
returns, and for the equal-weighted TSX returns and value-weighted U.S. returns during

2000-2003.

[Please place Table 4.12 about here.]

4.6. CONCLUDING COMMENTS

This chapter examined the time-series behavior in the contemporaneous comovement
and asymmetric volatility transmissions between U.S. and Canadian markets that have

synchronous trading hours, using daily equal- and value-weighted returns for Canadian
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stocks that are cross-listed on the TSX and U.S. markets. Both the uni-variate GJR-
GARCH and E-GARCH models confirm that TSX trades have higher asymmetries
compared to the U.S. trades for both equal- and value-weighted daily returns for the same
set of stocks. In contrast, the inferences for volatility transmission depend upon the model
and return series studied. This is consistent with the debate on the choice of the
appropriate model in the recent comprehensive survey of the literature on multivariate
GARCH models by Bauwens, Laurent, and Rombouts (2006).

Based on the findings from the multivariate GARCH models, contemporaneous and
asymmetric comovements declined during the 1990s but have increased more recently
due to the effect of newer and smaller stocks. The symmetric volatility spillovers in both
markets similarly declined after increasing during the 1990s, with the exception of the
increase in volatility spillover from the U.S. into the Canadian market, as reflected in the
equal-weighted returns based on TSX-trades. The asymmetric volatility spillovers due to
negative shocks increased [decreased] in both markets based on the E- and DCC- [GJR-]
GARCH results. Based on the DCC model results, the asymmetric volatility spillovers
due to negative shocks in the Canadian market lead to a much higher impact on U.S.
trades for the equal- versus value-weighted return series during 2000-2003. Estimates for
the BEKK model also confirm the bi-directional nature of volatility spillovers. While
multi-variate GARCH modeling poses the dilemma between flexibility and parsimony,
and few researchers compare results from different MGARCH models, the BEKK models
are not suitable for examining volatility transmission, while factor models like DCC

allow for more persistence between variances and correlations. Thus, it is advisable to
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use more than one multivariate GARCH model before drawing robust inferences when

one is examining the dynamics of cross-market volatility.

89



CHAPTER 5

CONCLUSION

This thesis examined a number of issues related to the risk or volatility of Canadian
stocks. It focused on three major issues regarding idiosyncratic volatility. The first major
issue is whether idiosyncratic volatility is priced in its relationship with expected returns.
The second major issue is the rate at which idiosyncratic risk is diversifiable, on average,
as portfolio size increases and the minimum number of stocks or portfolio size needed, on
average, to achieve a target level of risk reduction through naive diversification. The third
major issue is the extent and nature of asymmetric volatility transmission between stocks
trading on two synchronous financial markets, as proxied by Canadian stocks cross-listed
on the TSX and the US markets.

Since no widely accepted definition of risk exists, the second chapter (first essay)
examined various measures of realized, conditional and idiosyncratic volatility for
Canadian stocks for the period 1975-2003. The chapter also examined downside risk
using three plausible downside benchmarks; namely, the market-return, risk-free rate, and
zero returns. The finding of increasing idiosyncratic volatility is consistent with recent
findings in other markets (e.g., US). Furthermore, firm-level (idiosyncratic) volatility was
almost 75% of total stock volatility as compared to almost 85% for US stocks (Goyal and
Santa-Clara, 2003). This lower unsystematic and higher systematic volatility components
for Canadian stocks imply that less overall risk reduction is achievable in Canada.
Smaller firms have a higher average stock variance, idiosyncratic volatility and downside

risk as compared to bigger firms. Also, since smaller IT firms have the highest

90



idiosyncratic volatility and downside risk, they contributed relatively more given their
size to market peaks.

An examination of the relationship between idiosyncratic volatility and expected
returns for Canadian stocks using quintiles found positive and significant differences in
the expected returns between the first and fifth quintiles of stocks sorted by idiosyncratic
volatility. Using the Carhart four-factor model in a two-step Fama-MacBeth
methodology, a robust and significant positive relationship was found between expected
returns and asymmetric idiosyncratic volatility in the presence of control variables for
liquidity and firm-specific information. This latter result was robust to the choice of
liquidity measure and adjusting for measurement error in the factor coefficient beta
estimates from the first-step Fama-MacBeth regressions.

The third chapter (second essay) investigated the nature of risk diversification. Earlier
studies found that at least 15 to 20 securities are needed to obtain approximately 90
percent of the benefits of diversification for US equity markets, and about twice that
number for Canadian equity markets. The methodology in this chapter utilized a variety
of metrics that assess diversification benefits. These metrics fit into four categories;
namely, those that measure risk reduction, those that measure the impact on higher-order
return moments, those that measure the impact on reward-to-risk, and those that examine
the impact on the probabilities of underachieving various target or lower-bound rates of
return. A major finding of this chapter is that average daily and monthly correlations for
various investment opportunity sets have declined over time, which is consistent with the
findings reported by Campbell et al. (2001) for the US market. However, this is more

than offset by the increase in firm-level risk and number of equities identified in the
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previous chapter, which together imply that more stocks are now needed to diversify an
equivalent quantity of risk. Using portfolio sizes from 2 to 100 stocks and six investment
opportunity sets, the minimum portfolio size required to achieve a sufficiently well
diversified portfolio is found to be very sensitive to the performance metric used to
measure such benefits and is somewhat less sensitive to the investment opportunity set
from which the portfolio selection is made. Despite this ambiguity in what is the
minimum portfolio size to obtain a fixed percentage of the overall benefits, on average,
from naive diversification, the chapter finds that the minimum portfolio sizes for specific
performance metrics are higher for Canadian equities than the values reported in the
literature for US equities. This is probably due to the higher concentration of Canadian
stocks within a few industries (sectors), which makes it more difficult to diversify away
firm-specific risk.

The fourth chapter (third essay) dealt with the nature of contemporaneous asymmetry,
co-movement, and volatility transmission between Canadian stocks cross-listed on the
TSX and US markets having synchronous trading hours. Both equal- and value-weighted
series of Canadian stocks that comprise the largest share of cross-listed stocks on the US
markets were examined in a bi-variate GARCH framework using four models to achieve
a robust analysis. The findings confirm previous findings that the direction of volatility
spillover is from the US markets to the TSX market. The findings revealed that while
TSX trades have higher asymmetry as compared to US trades, asymmetric volatility
spillover due to negative shocks increased in both markets as did contemporaneous and

asymmetric co-movements due to increases in newer and smaller stocks as well as closer
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integration of these synchronous markets. Furthermore, robust inferences on cross-market
dynamics are found to depend on using more than one multivariate GARCH model.
There is considerable scope for further research in this domain. First, causal factors
that lead to an increase in idiosyncratic risk in the US market can be used to determine if
idiosyncratic risk continues to be priced in the presence of these controls. Such causal
factors include institutional ownership, expected earnings growth, issue of IPOs by newer
and smaller firms, and the dispersion of analyst’s forecasts of earnings. Since the pricing
of idiosyncratic risk also suggests that priced systematic factors may be missing from the
underlying model used to price risk (specifically, the four-factor model of Carhart
herein), tests using other asset pricing models such as the APT should be considered in
future research. With regard to the diversification of risk, an examination of the minimum
portfolio sjze to achieve a sufficient level of diversification for a mix of international 10
sets that includes US stocks would be of interest. Other optimization metrics such as
time-varying (MINQUE-estimated) variances could be explored to determine the
minimum portfolio size to achieve a sufficient level of risk diversification. Further
analysis using holiday dummies for the two markets could be undertaken to determine
what effect asymmetric holidays have on asymmetric volatility dynamics. In addition, bi-
variate GARCH modeling before and after structural breaks in return volatilities that
involve regime shifts could lead to further insights into the transmission of volatility

shocks between markets.
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Table 2.1 Summary Statistics for Aggregate Total Stock Return Variances for Canadian Stocks

This table reports summary distributional statistics for aggregate total stock return variances for Canadian
stocks. The average stock volatility is as in Schwert (1990). The average stock variability is as in Goyal and
Santa-Clara (2003) and Bali et al. (2005). CL1gx and CLyg refer to the TSX and U.S. trades, respectively,
of TSX-listed stocks cross-listed on U.S. trade venues. “Avg.”, “Stdev.”, “CV”, “Skew”, “Kur.”, “EW” and
“VW?” refer to average, standard deviation, coefficient of variation, skewness, kurtosis, equal-weighted and
value-weighted, respectively.

Avg. Stdev. Cv Skew. Kur.

Sample EW | VW | EW [ VW [ EW [ VW | EW [ VW [ EW | VW
Panel A: Stock volatility with no autocorrelation correction at monthly frequency based on daily returns
All Firms 0.0381| 0.0288] 0.4658| 0.2895/12.2407(10.0520]16.0529(17.4980{272.7236| 316.6624
TSX only 0.0369( 0.0351] 0.5522] 0.4887{14.9783|13.9326]18.2286/18.6421|336.5143| 347.6815
CLysx 0.0034] 0.0236] 0.0234| 0.1817| 6.8675| 7.6879{14.5714|14.0319{223.0155| 209.0182
CLys 0.0020] 0.0099| 0.0021} 0.0085| 1.0512| 0.8627| 2.5565| 3.9234| 8.2095| 21.2475
Big Firms 0.0132| 0.0133| 0.2142| 0.0628]16.2343| 4.7355|18.6453[12.9236|347.7622| 171.0911
Small Firms | 0.0904] 0.9354| 1.3681]16.6689}15.1395{17.8192|18.1400{18.6535]|334.0224| 347.9680
IT Firms 0.0024| 0.0106] 0.0026{ 0.0210] 1.1097| 1.9842| 3.1520| 7.3976| 13.7322| 72.1529
Panel B: Stock volatility with autocorrelation correction at monthly frequency based on daily returns

All Firms 0.0394( 0.0295| 0.4891| 0.3042{12.4057|10.3042/16.0727]|17.5107|273.4132| 316.9785
TSX only 0.0382| 0.0357] 0.5804| 0.513515.1891{14.3883|18.2145|18.6496|336.1201| 347.8708
CL1sx 0.0033[ 0.0241; 0.0231f 0.1790| 6.9870| 7.4385|14.2448[13.9884(212.0364| 205.0192
CLys 0.0010{ 0.0169{ 0.0031 0.0589| 3.1278] 3.4773|-0.6929|-0.4504| 2.6049| 2.8778

Big Firms 0.0135] 0.0133; 0.2230{ 0.0656(16.4936| 4.9294|18.6452|13.0812|347.7587| 174.0060

Small Firms | 0.0940| 0.9754| 1.4382(17.5162/15.3006|17.9577]18.1233|18.6535{333.5490| 347.9672

IT Firms 0.0025] 0.0105| 0.0059| 0.0176] 2.4025| 1.6858/13.5546| 5.6882]|220.0583| 46.0267
Panel C: Stock volatility with no autocorrelation correction based on monthly returns

All Firms 0.3873] 0.0217] 5.9023| 0.2046|15.2392| 9.4112|18.5862|17.5378|346.2457| 316.7635
TSX only 0.4642| 0.0267| 7.2359| 0.3451|15.5876{12.9210|18.5895]18.6395|346.3323| 347.6190
CLrsx 0.0447| 0.0157| 0.2499] 0.0982| 5.5954| 6.2631|17.8698|18.0616|327.4367| 332.7336
CLys 0.0264| 0.0114] 0.0217| 0.0133] 0.8228| 1.1649| 2.2229| 4.2946] 6.4021] 26.7163

Big Firms 0.0304| 0.0107] 0.0799] 0.0447| 2.6288| 4.1923(13.2067[17.6980|201.7497| 323.7775

Small Firms 0.1482] 0.0423| 0.7971} 0.1398| 5.3765| 3.3043|14.5311]|10.6958(235.6411| 125.0297

IT Firms 0.1070{ 0.0102| 0.9145] 0.0190| 8.5445| 1.8694|14.7579| 5.1209|230.7454| 34.4443
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Table 2.3 Summary statistics for variances at the market, industry and firm levels based on the
indirect three-level decomposition method

Summary statistics are reported in this table for the variances at the market, industry and firm levels
obtained using the indirect decomposition method of Campbell et al. (2001). Market variances are
computed using value-weighted daily excess returns of all stocks minus either the overall mean of the
market over the entire time period (Constant Mean) or the daily cross-sectional average (Conditional Mean)
across all firms. Industry- and firm-level variances are computed using both equal weights (EW) and value
weights (VW). “Avg.”, “Stdev.”, “CV”, “Skew” and “Kur.” refer to average, standard deviation, coefficient
of variation, skewness and kurtosis, respectively.

Constant Mean Conditional Mean
Avg. [Stdev.| CV | Skew. | Kur. Aveg. [Stdev.| CV | Skew. | Kur.
Panel A: Market-Level Volatility
AllFirms [0.0015[0.0029( 1.9451 | 8.3744 | 89.5816 |0.00180.0102| 5.6131 | 15.8408 |272.3804
TSX-only |0.001410.0033| 2.3115 | 12.2109 |176.9950/0.0023 | 0.0153 | 6.7353 | 17.0189 |304.0869
Equal-Weighted Value-Weighted
Panel B: Industry-Level Volatility
All Firms [0.0108]0.0488 [ 4.5352 | 11.0977 [126.7972{0.0032|0.0084 | 2.5954 | 12.1857 [174.5353
TSX-only [0.0099]0.0400| 4.0564 | 13.5157 |195.3952]0.0029]0.0053 | 1.8447 | 9.2995 [102.6114
Panel C: Firm-Level Volatility
All Firms [0.027210.2321| 8.5181 | 11.6263 |139.0183]0.0254]0.3026] 11.9004 | 17.6760 [321.5012
TSX-only [0.0626]1.0403] 16.6259 | 18.6542 |347.9851]0.0324]0.5100] 15.7296 | 18.6507 [347.8972
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Table 2.4

decomposition method

Summary statistics for variances at the industry and firm levels based on the direct three-level

This table reports industry betas and summary statistics for the variances at the industry- and firm-levels using the
direct decomposition method of Campbell et al (2001). The 47 industry groups, which are arranged in alphabetical
order, are those used by Fama and French (1997). “Ratio”, “Avg.”, Stdev.” and “CV” refer to the ratio of the mean at
the firm-level to that at the industry level, mean, standard deviation and coefficient of variation, respectively.

# Firm Variance Industry Variance

Industry Betas | Firms| Ratio Avg Stdev CvV Avg Stdev CvV

Agriculture 1.3580 3 1.06 0.0115 0.1176 0.0980 0.0108 0.1172 0.0920
Aircraft 0.7370 17 1.37 0.0205 0.0874 0.2349 0.0150 0.0877 0.1709
Alcoholic Beverages 0.4275 26 143 0.0139 0.0512 0.2723 0.0097 0.0504 0.1931
Apparel 0.2059 22 1.59 0.0210 0.0586 0.3580 0.0132 0.0572 0.2307
Automobiles & Trucks 1.0906 50 1.32 0.0119 0.0684 0.1735 0.0090 0.0658 0.1372
Banking 0.6006 98 1.27 0.0116 0.0456 0.2541 0.0091 0.0452 0.2014
Business Services 0.6756 218 40.91 0.4418 7.8949 0.0560 0.0108 0.0595 0.1823
Business Supplies 0.6155 52 1.98 0.0111 0.0560 0.1978 0.0056 0.0554 0.1008
Candy and Soda 0.7965 6 1.31 0.0118 0.0799 0.1477 0.0090 0.0797 0.1130
Chemicals 0.5776 44 1.79 0.0175 0.0620 0.2820 0.0098 0.0590 0.1652
Coal 0.5954 9 1.19 0.0264 0.1738 0.1518 0.0222 0.1719 0.1290
Computers 1.4002 48 597 0.0173 0.0902 0.1915 0.0029 0.0826 0.0353
Construction 0.4427 23 3.87 0.0174 0.0738 0.2352 0.0045 0.0770 0.0579
Construction Materials 0.5531 42 2.02 0.0117 0.0668 0.1755 0.0058 0.0666 0.0870
Consumer Goods 0.3431 24 1.84 0.0145 0.0508 0.2848 0.0079 0.0506 0.1564
Defense 0.9405 1 1.00 0.0182 0.1198 0.1518 0.0182 0.1198 0.1518
Electrical Equipment 1.0677 21 1.77 0.0170 0.1093 0.1553 0.0096 0.1074 0.0890
Electronic Equipment 1.4157 73 1.67 0.0177 0.1011 0.1748 0.0106 0.0998 0.1066
Entertainment 0.8196 45 1.34 0.0141 0.0645 0.2191 0.0105 0.0644 0.1637
Food Products 0.2759 34 1.62 0.0147 0.0521 0.2820 0.0091 0.0514 0.1774
Healthcare 0.5288 16 1.44 0.0216 0.0789 0.2740 0.0150 0.0796 0.1886
Insurance 04728 41 047 0.0056 0.0040 1.4000 0.0118 0.0474 0.2501
Machinery 0.4605 91 2.52 0.0161 0.0503 0.3193 0.0064 0.0505 0.1270
Measure & Control Equip.| 0.8249 11 1.62 0.0214 0.1449 0.1479 0.0132 0.1429 0.0926
Medical Equipment 0.5974 13 2.11 0.0179 0.1254 0.1430 0.0085 0.1224 0.0691
Miscellaneous 0.4621 11 1.94 0.0070 0.0606 0.1149 0.0036 0.0608 0.0589
Nonmetallic Mining 0.8224 240 2.59 0.0166 0.0718 0.2312 0.0064 0.0707 0.0900
Personal Services 0.4158 13 1.54 0.0160 0.0980 0.1635 0.0104 0.0966 0.1075
Petrol & Natural Gas 0.6436 056 1.78 0.0167 0.0586 0.2850 0.0094 0.0584 0.1618
Pharmaceutical 0.6749 59 344 0.0220 0.0851 0.2582 0.0064 0.0837 0.0769
Precious Metals 0.5570 366 2.20 0.0222 0.0942 0.2361 0.0101 0.0942 0.1075
Printing & Publishing 0.6771 26 16.66 0.3731 6.7408 0.0554 0.0224 0.2775 0.0806
Real Estate 0.4763 90 1.81 0.0114 0.0084 1.3571 0.0063 0.0595 | 0.1060
Recreational Products 0.5726 15 1.87 0.0239 0.0983 0.2431 0.0128 0.0952 0.1339
Restaurants, Hotel, Motel 0.4799 34 1.57 0.0163 0.0538 0.3034 0.0104 0.0535 0.1952
Retail 0.3981 117 1.85 0.0144 0.0430 0.3362 0.0078 0.0434 0.1793
Rubber & Plastic 0.5719 13 3.19 0.0051 0.0647 0.0788 0.0016 0.0651 0.0253
Shipbuilding, Railroad 0.5225 3 1.00 0.0250 0.2637 0.0947 0.0250 0.2637 0.0947
Shipping Containers 0.3941 4 1.60 0.0193 0.1276 0.1513 0.0121 0.1265 0.0959
Steel Works, Etc. 0.8785 43 2.12 0.0087 0.0648 0.1344 0.0041 0.0652 0.0633
Telecommunications 0.6411 93 1.54 0.0129 0.0518 0.2486 0.0084 0.0556 0.1507
Textiles 0.3238 15 1.26 0.0160 0.0875 0.1830 0.0127 0.0867 0.1458
Tobacco Products 0.0116 1 1.00 0.0289 0.2401 0.1202 0.0289 0.2401 0.1202
Trading 0.6596 331 1.59 0.0121 0.0506 0.2391 0.0076 0.0529 0.1428
Transportation 0.7179 66 1.54 0.0114 0.0517 0.2202 0.0074 0.0519 0.1429
Utilities 0.3531 52 23.10 0.2287 3.9692 0.0576 0.0099 0.0405 0.2457
Wholesale 0.5089 120 223 0.0178 0.0555 0.3206 0.0080 0.0545 0.1463
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Table 2.5

Summary statistics for variances at the industry and firm levels based on the Duffee
decomposition method

This table reports summary statistics for the variances at the industry- and firm-levels using the
decomposition method of Duffee (2000). “Avg.”, “Stdev.”, “CV”, “Skew” and “Kur.” refer to average,
standard deviation, coefficient of variation, skewness and kurtosis, respectively.

Equal-Weighted Value-Weighted
Sample Avg. [Stdev.] CV | Skew. | Kur. Avg., | Stdev. | CV | Skew. | Kur.
Panel A: Industry Volatility - Absolute Errors
All Firms [ 0.0102(0.0032 | 0.3152 | 2.1344 | 0.0102 | 0.1777 | 0.0676 | 0.3802 | 1.7828 | 4.3691
TSX-only {0.0101/0.0031] 0.3067 | 2.1248 | 0.0101 | 0.1746 | 0.0631 | 0.3612 | 1.6810 | 4.9518
Panel B: Industry Volatility - Squared Errors
All Firms [0.0005{0.0023 | 4.7895 | 13.0245 |171.2439| 0.0043 | 0.0094 | 2.2053 | 10.4206 | 126.1386
TSX-only [0.0004]0.0018| 4.1858 | 17.4009 |314.8446| 0.0040 { 0.0074 | 1.8647 | 10.7481 | 141.6660
Panel C: Firm Volatility - Absolute Errors
All Firms {0.0259]0.0062 ] 0.2381 | 1.4758 | 3.4587 | 0.2027 | 0.0789 | 0.3891 | 1.2451 1.830654
TSX-only [0.0285]0.0059| 0.2078 | 1.0468 | 1.2052 | 0.1315 ] 0.0622 | 0.4728 | 1.2345 1.69336
Panel D: Firm Volatility - Squared Errors
All Firms [0.0520]0.6673|12.8409 | 16.1721 |1276.5395] 0.0260 | 0.3028 | 11.6461 | 17.9933 | 329.9109
TSX-only [0.0091[0.0819 8.9744 | 18.5058 |344.2405] 0.0065 | 0.0150 | 2.3214 | 8.5854 | 84.86412
Table 2.6 Summary statistics for variances at the firm level based on the three-factor model

Firm-level variances are computed using both equal weights (EW) and value weights (VW) on the residuals
from the three-factor model of Fama and French. “Avg.”, “Stdev.”, “CV”, “Skew” and “Kur.” refer to
average, standard deviation, coefficient of variation, skewness and kurtosis, respectively.

Avg. Stdev. Cv Skew. Kur.

Sample EW | VW | EW | VW | EW | VW | EW VW EW Vw

All Firms 0.334410.0192 | 4.9117 | 0.1907 {14.6860| 9.947018.5810|17.5320{346.1150{316.5160
TSX only 0.3954{0.024315.9280 [ 0.3216 |14.9910]13.2400|18.5840|18.6400(346.1780{347.6210
CLrsx 0.05200.0125]0.4614 | 0.0924 | 8.8700| 7.3700(18.4590(18.2360(342.9570{337.0860
CLys 0.02180.00820.0163 [ 0.0075 | 0.7490| 0.9120| 1.9740| 4.2390| 4.6810| 27.2750
Big Firms 0.0260(0.0085| 0.0721 [ 0.0417 | 2.7770| 4.9290|13.7000|18.1920{212.9330(336.2890
Small Firms 0.9424 0.6665 [14.5815{10.9703|15.4740]16.4590]18.5910|18.6310{346.3740(347.4040
IT Firms 0.0957]0.0076] 0.8251 | 0.0137 | 8.6250] 1.7960(14.8010| 5.6330(231.5790| 42.2650
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Table 2.7 Relationship between average returns and idiosyncratic risk based on extreme quintile
portfolios

This table reports the average equal- and value-weighted returns for the five quintiles for 6 samples of
Canadian stocks sorted by their idiosyncratic variances derived from the Fama-French three-factor (3FF)
model and this model combined with the model (GSC) of Goyal-Santa Clara (2003). Quintiles 1 and 5 are
composed of the stocks with the lowest and highest idiosyncratic variances, respectively. EW and VW refer
to equal and value weights, respectively. CLrgx and CLyg refer to TSX and U.S. trades, respectively, of
TSX-listed stocks cross-listed on U.S. trade venues. “a”, “b” and “c¢” indicate statistical significance at the
10%, 5% and 1% levels, respectively.

Average Returns (x 100)
Quintile | AllFirms | TSX-only | CLysy | CLys | Big Firms | Small Firms | IT Firms
Panel A: 3FF & EW
1 0.0328 0.0409 -0.0219 0.4462 0.0214 0.0712 0.3384
2 0.1053 0.1018 0.0895 0.4086 0.1465 -0.0051 0.0130
3 -0.0591 -0.0293 -0.2834 0.7641 0.1695 -0.2589 -0.2059
4 0.5011 0.3747 1.6011 0.6930 0.5381 0.4234 0.0053
5 6.6598 6.0377 11.5390 1.9688 6.0033 7.6246 6.8183
5-1 6.6271° 5.9968° 11.5609° | 0.0152° 5.9819° 7.5534° 6.4799°
T-stat 7.6400 8.60000 2.4400 3.3100 8.1100 5.8700 4.6700
P-value 0.0000 0.00000 0.0150 0.0010 0.0000 0.0000 0.0000
Panel B: 3FF & VW
1 0.0000 -0.0000 0.0000 -0.1670 0.0000 -0.0000 0.0000
2 0.0000 0.0000 -0.0000 0.0825 0.0000 0.0000 0.0000
3 0.0001 0.0001 0.0001 0.5889 0.0001 0.0000 0.0002
4 0.0003 0.0002 0.0004 1.1170 0.0002 0.0003 0.0003
5 0.0030 0.0024 0.0105 2.6007 0.0041 0.0022 0.0169
5-1 0.0030° 0.0024° 0.0105 0.0277° 0.0041* 0.0022° 0.01692
T-stat 2.1300 2.0500 1.6500 8.0900 1.9200 2.0100 1.22000
P-value 0.0340 0.0420 0.1010 0.0000 0.0550 0.0450 0.2220
Panel C: 3FF & GSC & EW
1 -0.4042 -0.3806 -0.3945 0.6283 -0.3298 -0.4231 -0.0150
2 -0.4486 -0.4593 -0.5596 0.4311 -0.4675 -0.5351 -0.0740
3 -0.5286 -0.5265 -0.4439 0.6003 -0.4225 -0.5860 -0.4700
4 -0.0518 -0.0224 -0.0757 0.5313 0.1435 -0.2940 -0.2663
5 7.3088 6.5820 12.6410 2.0766 6.8202 8.0754 6.5806
5-1 7.7130° 6.9626° 13.0355° | 0.0145° 7.1500° 8.4985° 0.0660°
T-stat 9280000 | 10.180000 | 3.2800 | 3.080000 9.4000 7.1600 5.1400
P-value 0.000000 | 0.000000 0.0010 | 0.002000 0.0000 0.0000 0.0000
Panel D: 3FF & GSC & VW )
1 -0.0000 -0.0000 -0.0001 -0.1468 -0.0000 -0.0000 0.0001
2 -0.0001 -0.0000 -0.0001 0.1376 -0.0001 -0.0000 -0.0002
3 -0.0000 -0.0000 -0.0000 0.3552 0.0000 -0.0001 0.0000
4 0.0002 0.0002 0.0004 1.2524 0.0002 0.0001 0.0003
5 0.0030 0.0024 0.0100 2.6684 0.0040 0.0023 0.0168
5-1 0.0031° 0.0025" 0.0100° 0.0282° 0.0040° 0.0024° 0.0002
T-stat 2.2800 2.2100 1.6900 8.1300 2.0200 2.2700 1.3700
P-value 0.0230 0.0280 0.0920 0.0000 0.0440 0.0240 0.1710
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Table 2.8 Time-series averages of the second-step cross-sectional regression results with
contemporaneous excess returns, betas, I'Vs and controls (e.g., amortized spreads) based
on first-stage 60-month moving windows

Time-series averages of the parameter estimates for the series of second-step cross-sectional regressions
with and without the control variables (designated “with” and “w/out” below) for six samples of Canadian
stocks are reported in this table. The regressions use contemporaneous betas derived from the Carhart 4-
factor model using a 60-month moving window, and contemporaneous estimates for /¥, LIQ, SYNCH and
MKT*

VROM. First-step beta estimates from the Carhart model are: 3" and A" for the excess market return

2t

when nonnegative and negative, respectively, for firm 7 in month #; ,5’5’1” for the small minus big size

factor; B "

for the high minus low book-to-market factor; and A" for the momentum factor.

IV and 1V, are the idiosyncratic standard deviations from the first-step Carhart 4-factor model that are

signed based on the security return. The controls are LIQ®, SYNC, and VROM ,, . They are respectively
liquidity as proxied by the amortized spread of Chalmers and Kadlec (1998), which is obtained by dividing
the product of the absolute difference between the trade and midspread prices and the traded volume by the
product of the trade price times the number of shares outstanding); synchronicity as proxied by

7= ln[Rjz. / (1 - R_/z. )] where the R? values are from the first-step regressions; and the zero-trade, zero-

return measure, which is given by the In of the percentage of nonzero-trade&return days in a month. CL1gx
refer to the TSX trades of TSX-listed stocks cross-listed on U.S. trade venues. T-values based on robust
standard errors are reported in the parentheses. “a”, “b” and “¢” indicate statistical significance at the 10%,
5% and 1% levels, respectively. The minimum and maximum number of firms in the various cross sections
are report under “#Firms”. The average R value is reported in the table.

Sample All Firms TSX-only CLysx Big Small IT
Variable | W/out | With | W/out | With | W/out | With | W/out | With | W/out | With | W/out | With
Intercept -0.0192°[ -0.0186 [-0.0212]-0.0231°[-0.0160°} 0.0113 [-0.0146°| -0.0053 [-0.0362¢[ -0.0181 -0.0426
(-5.11) | (-1.56) | (-5.33) | (-1.95) | (-2.62) | (0.33) | (-5.40) | (-0.62) | (-5.18) [ (-1.18) (-1.03)
S MKT" 0.0468° | 0.0448° | 0.0484° | 0.0452° | -0.0318 | -0.0398 | 0.0136 | 0.0204% [ 0.1410° [ 0.1284" 1.0406
B (2.78) | (2.90) | (3.07) { (3.15) | (-0.39) | (-0.64) | (1.24) | (2.01) | (2.13) | (2.09) (1.21)
S KT 0.0113 | 0.0127 | -0.01521-0.0088 | 0.0070 | 0.0224 | 0.0309 | 0.0224 | -0.0756 | -0.0654 0.6722
12 (0.51) | (0.60) | (-0.74) { (-0.48) | (0.07) | (0.27) | (1.39) | (1.06) | (-1.33) | (-1.24) (0.68)
,éSM" -0.0020 | -0.0022 | -0.0015 | -0.0018 | 0.0022 | 0.0029 | -0.0016 {-0.0022%| -0.0011 | -0.0014 -0.0073
3 (-1.27) | (-1.44) | (-0.93) | (-1.11) | (0.69) | (1.24) | (-1.13) | (-1.68) | (-0.72) | (-0.92) (-1.52)
~HML 0.0014 | 0.0014 | 0.0013 | 0.0012 | 0.0010 | 0.0014 | 0.0018 | 0.0020* [ 0.0005 | 0.0004 0.0105
B 0.77) | (0.79) | (0.68) | (0.66) | (0.44) | (0.82) | (1.56) | (1.78) | (0.21) | (0.16) (1.29)
DML -0.0103 | -0.0106 | -0.0009 | -0.0018 | 0.0078 | 0.0116 [ -0.0074 { -0.0068 | -0.0088 | -0.0084 0.0260
ist (-0.75) | (-0.78) { (-0.07) | (-0.15) | (0.19) | (0.39) | (-0.62) | (-0.59) | (-0.67) | (-0.64) (0.74)
v 0.8736° | 0.8296° | 0.8988° | 0.8579° | 0.9485° [ 0.9350° | 0.8871° | 0.8383° | 0.9584° | 0.9041°¢ 0.9707¢
i (23.14) | (21.58) | (22.40) | (21.05) | (13.19) | (16.60) | (28.11) | (26.87) | (20.13) | (19.12) (7.69)
- -0.3725%(-0.3979°1-0.3611%{-0.3831°| -0.4906° | -0.4880° | -0.4702°| -0.4924° | -0.3089¢| -0.3343¢ -0.2842°
. (-18.52)| (-18.07) | (-16.08) { (-15.93) | (-13.42) | (-15.21) { (-22.71) | (-23.29) | (-10.05) | (-10.68) (-3.09)
LIQ 13.6474¢ 12.3875¢ 2.5959 13.9812¢ 15.6545°¢ 5.0081
i (7.33) (6.50) (0.90) (5.96) (6.61) (0.84)
SYNC. 0.0016 0.0021 -0.0013 0.0000 0.0030 -0.0053
i (1.17) (1.37) (-0.54) (-0.02) (1.38) (-0.82)
VROM. -0.0049 -0.0038 -0.0237 -0.0082 -0.0309° 0.0157
: (-0.64) (-0.51) (-0.74) (-1.32) (-2.18) (0.39)
R? 0.45 0.48 0.46 0.49 0.57 0.57 0.49 0.51 0.47 0.51 0.56

# Firms 237,625 197,476 35,70 160;499 70;164 35,69
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Table 2.9 Time-series averages of the second-step cross-sectional regression results with
contemporaneous excess returns, betas and controls (e.g., amortized spreads) and lagged
IVs based on first-stage 60-month moving windows

Time-series averages of the parameter estimates for the series of second-step cross-sectional regressions
with and without the control variables (designated “with” and “w/out” below) for six samples of Canadian
stocks are reported in this table. The regressions use contemporaneous betas derived from the Carhart 4-

factor model using a 60-month moving window, contemporaneous estimates for LIQ, SYNCH and VROM,

and one-period-lagged estimates for /V. First-step beta estimates from the Carhart model are: BT and

AMKT™
ﬂizr

> SMB
ﬂi}l

the momentum factor. /¥, and /¥ are the idiosyncratic standard deviations from the first-step Carhart 4-

for the excess market return when nonnegative and negative, respectively, for firm i in month ¢

for the small minus big size factor; 37

factor model that are signed similarly to the excess market return. The controls are LIQ;"
SYNC, and VROM , . They are respectively liquidity as proxied by the amortized spread of Chalmers and

Kadlec (1998), which is obtained by dividing the product of the absolute difference between the trade and
midspread prices and the traded volume by the product of the trade price times the number of shares

outstanding); synchronicity as proxied by y; = ln[Rf. / (1 —Rf )J where the R? values are from the first-step

regressions; and the zero-trade, zero-return measure, which is given by the In of the percentage of nonzero-
trade&return days in a month. CLygx refer to the TSX trades of TSX-listed stocks cross-listed on U.S. trade
venues. T-values based on robust standard errors are reported in the parentheses. “a”, “b” and “¢” indicate

statistical significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of

firms in the various cross sections are report under “#Firms”. The average R? value is reported in the table.

for the high minus low book-to-market factor; and B2 for

Sample All Firms TSX-only CLysx Big Small IT
Variable | W/out With W/out With W/out With W/out With W/out With W/out With
Intercept -0.0075"] 0.0270° [-0.0094°| 0.0220° | -0.0087 | 0.0753 [-0.0073] 0.0183" [-0.0114"] 0.0418" | -0.0422° -0.0572
(-2.43) | (3.01) | (-2.80) | (2.26) | (-1.59) | (2.16) | (-3.12) | (2.36) | (-2.04) | (2.22) | (-2.88) | (-1.2])
<o 1 0.0577°] 0.0698° [ 0.0580° | 0.0671° | 0.0121 | 0.0275 | 0.0181 | 0.0284° [ 0.2663° | 0.2848° | 0.3111 | 0.7141
B (2.78) | (3.50) | 2.81) | (3.45) | (0.15) | (0.51) | (1.54) | 2.60) | (3.10) | (3.43) | (0.37) | (0.32)
. agkr 0.0318 | 0.0207 [ -0.0177 [ -0.0199 | -0.0281 | -0.0312 | 0.0391 | 0.0289 | -0.0914 |-0.1219%] 1.7204* | 0.9531
B 1.26) | (0.87) | (-0.60) | (-0.71) | (-0.26) | (-0.43) | (1.60) | (1.27) | (-1.27) | (-1.77) | (1.71) | (0.31)
A svip -0.0012 [ -0.0015 [ -0.0006 [ -0.0010 | 0.0023 | 0.0031 [-0.0029 [-0.0035%| 0.0025 | 0.0019 | -0.0079 | -0.0096
B, (-0.53) | (-0.70) | (-0.25) | (-0.43) | (0.68) | (1.48) | (-1.32) | (-1.73) | (1.15) | (0.86) | (-1.63) | (-1.54)
P 0.0043 {0.0044* | 0.0046 | 0.0045 | 0.0020 | 0.0022 [ 0.0025 [ 0.0027° | 0.0033 | 0.0031 | 0.0124 | 0.0164
Bia (1.58) | (1.67) | (1.60) | (1.63) | (0.76) | (1.37) | (1.85) | (1.97) | (1.00) | (0.99) i (1.43) | (1.35)
fa -0.0168 | -0.0188 [ -0.0128 | -0.0151 | 0.0102 | 0.0103 | -0.0072 [ -0.0050 | -0.0209 [ -0.0163 | 0.0697 | 0.0603
ist (-1.23) | (-1.41) | (-0.90) | (-1.09) | (0.24) | (0.40) | (-0.53) | (-0.40) | (-1.32) | (-1.03) | (1.33) | (0.59)
W 0.7411°] 0.6773° | 0.7690° | 0.7080° | 0.8811° | 0.8529% | 0.7925° | 0.7323° | 0.7912° | 0.7225° | 1.0546° | 0.8216°
i (32.10) | (30.28) | (30.66) | (29.18) | (13.89) | (20.47) | (32.65) | (31.34) | (25.60) | (23.95) | (8.53) | (5.93)
- 20.4308°|-0.4751¢-0.4211%| -0.4619°] -0.5291%[-0.5412°] -0.5146° [ -0.5500° [ -0.4152° | -0.4486° [ -0.2063" | -0.4513¢
i (24.57) | (-26.21) | (-20.39) | (-22.25) | (-15.60) | (-21.43) | (-29.03) | (-32.40) | (-14.67) | (-15.70) | (-2.34) | (-3.83)
LIO* 17.2281¢ 15.9791° 0.4780 17.2921° 19.0524¢ 0.0015
i (8.29) (7.48) (0.19) (6.83) (6.89) (1.34)
SYNC -0.0028" -0.0021 -0.0041° -0.0021° -0.0035 -0.0126
(-2.12) (-1.52) (-1.84) (-1.85) (-1.38) (-1.15)
VROM. 20.0268 ¢ -0.0259° -0.0718P -0.0184° -0.0526° 0.0751%
i (-3.75) (-3.45) (-2.18) (-2.79) (-3.02) (1.83)
R? 0.42 0.45 0.43 0.46 0.55 0.55 0.46 0.49 0.45 0.48 0.52 0.53

# Firms 237:614 197,468 35:70 160,493 69;161 35;68

117




Table 2.10 Time-series averages of the second-step cross-sectional regression results with
contemporaneous excess returns, betas, IVs and controls (e.g., amortized spreads) based
on first-stage contemporaneous days-within-the-month moving windows

Time-series averages of the parameter estimates for the series of second-step cross-sectional regressions
with and without the control variables (designated “with” and “w/out” below) for six samples of Canadian
stocks are reported in this table. The regressions use contemporaneous betas derived from the Carhart 4-
factor model using a contemporaneous days-within-the-month moving window, and contemporaneous

estimates for /¥, LIQ, SYNCH and VROM. First-step beta estimates from the Carhart model are: """ and

1t

BYKT” for the excess market return when nonnegative and negative, respectively, for firm i in month ¢;

i

B for the small minus big size factor; 47 for the high minus low book-to-market factor; and S for

the momentum factor. [V, and /¥, are the idiosyncratic standard deviations from the first-step Carhart 4-

factor model that are signed based on the security return. The controls are LIQ;*, SYNC, and VROM, .

They are respectively liquidity as proxied by the amortized spread of Chalmers and Kadlec, 1998), which is
obtained by dividing the product of the absolute difference between the trade and midspread prices and the
traded volume by the product of the trade price times the number of shares outstanding); synchronicity as

proxied by 7, =In| R? /(1 —R?}| where the R? values are from the first-step regressions; and the zero-
J J J

trade, zero-return measure, which is given by the In of the percentage of nonzero-trade&return days in a
month. CLygx refer to the TSX trades of TSX-listed stocks cross-listed on U.S. trade venues. T-values
based on robust standard errors are reported in the parentheses. “a”, “b” and “¢” indicate statistical
significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of firms in
the various cross sections are report under “#Firms”. The average R” value is reported in the table.

Sample All Firms TSX-only CL1sx Big Small IT
Variable| W/out With | W/out | With | W/out | With | W/out | With | W/out | With | W/out | With
Intercept -0.0706¢ -0.0658°¢ -0.0681°¢ -0.0372¢ -0.1090°¢ -0.0244
(-7.61) (-7.49) (-4.58) (-6.37) (-6.32) (-0.82)
A VKT 0.0005 0.0005 0.0011* 0.0011°¢ 0.0002 -0.0006
B (1.44) (1.27) (1.72) (2.77) (0.43) (-0.39)
KT -0.0007 -0.0007 -0.0001 -0.0009* -0.0003 0.0000
B (-1.48) (-1.35) (-0.22) (-1.70) (-0.49) (0.03)
o SuB 0.0005 0.0005 -0.0016 -0.0000 0.0008 0.0008
B (0.85) 0.77) (-1.46) (-1.01) (0.91) (0.39)
oML -0.0012 -0.0015*% 0.0002 -0.0012* -0.0011 -0.0040
B (-1.53) (-1.79) (0.20) (-1.85) (-1.19) (-1.52)
ﬁWML 0.0065°¢ 0.0063°¢ 0.0059° 0.0058°¢ 0.0049" 0.0022
it (2.88) (2.81) (5.83) (9.08) (2.21) (0.98)
we 0.9628°¢ 0.9417¢ 1.0919¢ 0.9860°¢ 0.9905°¢ 1.0064°¢
: (52.62) (47.97) (42.39) (59.35) (35.11) (15.72)
- -0.4965°¢ -0.4875¢ -0.6013¢ -0.5990°¢ -0.3644° -0.5390°¢
i (-42.91) (-39.37) (-28.67) (-48.05) (-19.60) (-10.41)
LIO™ 3.0382° 2.8472° 9.2014° 3.9728° 3.6424° 1.9855
: (2.49) (2.15) (2.37) (2.82) (2.09) (0.35)
SYNC 0.0045¢ 0.0043¢ 0.0033¢ 0.0030° 0.0073¢ 0.0026
i (6.506) (5.88) (3.82) (5.72) (4.40) (0.76)
VROM 0.0410°¢ 0.0369¢ 0.0430¢ 0.0187¢ 0.0446°¢ -0.0092
i (5.94) (5.76) (3.12) (3.92) (3.78) (-0.35)
R? 0.59 0.60 0.66 0.62 0.60 0.67
# Firms 247,1044 202;842 43:202 183,725 39;319 35;115
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Table 2.11 Time-series averages of the second-step cross-sectional regression results with
contemporaneous excess returns, betas and controls (e.g., amortized spreads) and lagged
IVs based on first-stage contemporaneous days-within-the-month moving windows

Time-series averages of the parameter estimates for the series of second-step cross-sectional regressions
with and without the control variables (designated “with” and “w/out” below) for six samples of Canadian
stocks are reported in this table. The regressions use contemporaneous betas derived from the Carhart 4-
factor model using a contemporaneous days-within-the-month moving window, contemporaneous
estimates for LIQ, SYNCH and VROM, and one-month lagged IV. First-step beta estimates from the Carhart

MKT*

KT and Y57 for the excess market return when nonnegative and negative, respectively, for

model are: /%l.

HML

M8 for the small minus big size factor; 3™ for the high minus low book-to-market

firm i in month #; A3

factor; and """ for the momentum factor. /¥;" and /¥, are the idiosyncratic standard deviations from the
AS

first-step Carhart 4-factor model that are signed based on the security return. The controls are L/Q;”,
SYNC, andVROM , . They are respectively liquidity as proxied by the amortized spread of Chalmers and
Kadlec, 1998), which is obtained by dividing the product of the absolute difference between the trade and
midspread prices and the traded volume by the product of the trade price times the number of shares
outstanding; synchronicity as proxied by 7, = ln[Rf / (1 —R; )J where the R? values are from the first-step

regressions; and the zero-trade, zero-return measure, which is given by the In of the percentage of nonzero-
trade&return days in a month. CLygx refer to the TSX trades of TSX-listed stocks cross-listed on U.S. trade
venues. T-values based on robust standard errors are reported in the parentheses. “a”, “b” and “c” indicate
statistical significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of
firms in the various cross sections are report under “#Firms”. The average R* value is reported in the table.

Sample All Firms TSX-only CLygx Big Small IT
Variable | W/out | With | W/out | With | W/out | With | W/out | With | W/out | With | W/out | With
I -0.0411°¢ -0.0407¢ -0.0227 -0.0192°¢ -0.0677¢ 0.0101
ntercept
(-6.99) (-6.71) (-1.40) (-3.05) (-4.76) (0.26)
S MKT* 0.0010? 0.0006 0.0032¢ 0.0018° 0.0004 0.0044
B (1.86) (1.07) (3.66) (3.17) (0.66) (0.89)
BMKT -0.0001 0.0000 0.0003 -0.0006 0.0008 0.0051
B (-0.12) (0.03) (0.32) (-0.94) (0.96) (1.19)
A -0.0001 0.0000 -0.0027° -0.0017° 0.0005 -0.0071
i (-0.08) (0.05) (-2.20) (-2.17) (0.53) (-1.07)
fr -0.0006 -0.0008 0.0001 -0.0005 0.0000 -0.0102
141 (-0.64) (-0.74) (0.00) (-0.71) (-0.02) (-1.50)
B 0.0121° 0.0116° 0.0096¢ 0.0103¢ 0.0103¢ 0.0030
s (5.06) (4.84) (7.80) (12.49) (4.12) (1.03)
e 0.7639° 0.7475¢ 0.8676¢ 0.8181° 0.7287¢ 1.0689¢
i (43.60) (41.48) (32.04) (39.84) (27.88) (13.90)
- -0.5177¢ -0.5111°¢ -0.6383¢ -0.5846° -0.4671°¢ -0.5614¢
i (-45.78) (-45.22) (-31.22) (-48.16) (-28.50) (-10.82)
LIQ™ 7.4526° 6.7374¢ 19.1540°¢ 8.0260° 9.1468°¢ 0.0005
" (4.46) (3.88) (3.76) (4.48) 4.14) (0.64)
SYNC -0.0002 -0.0002 -0.0025° -0.0008 -0.0011 -0.0009
! (-0.39) (-0.29) (-2.65) (-1.54) (-0.68) (-0.28)
VROM. 0.0437° 0.0440° 0.0303" 0.0240° 0.0709¢ -0.0380
“ (7.81) (7.63) (1.96) (4.09) (5.25) (-0.95)
R? 0.49 0.49 0.57 0.51 0.50 0.66
# Firms 226,973 184,777 40,196 173;691 31;282 35;115

119



Table 2.12 Time-series averages of the second-step cross-sectional regression results with
contemporaneous excess returns, betas, and controls (e.g., Amihud liquidity) and
contemporaneous/lagged IVs based on first-stage 60-month moving windows

Time-series averages of the parameter estimates for the series of second-step cross-sectional regressions
with the control variables for six samples of Canadian stocks are reported in this table. The regressions use
contemporaneous betas derived from the Carhart 4-factor model using a 60-month moving window,

contemporaneous estimates of L/Q, SYNCH and ¥ROM and contemporaneous (““cont.”) or lagged

“lageed”) estimates for IV. First-step beta estimates from the Carhart model are: 4**"" and B for the
gg p it i21

B

excess market return when nonnegative and negative, respectively, for firm i in month #; ﬂ:ﬁff for the small

minus big size factor; A" for the high minus low book-to-market factor; and /%** for the momentum

factor. IV, and IV are the idiosyncratic standard deviations from the first-step Carhart 4-factor model that
are signed based on the security return. The controls are LIQ/*" | SYNC, and VROM , . They are

i
respectively liquidity as proxied by the approximate price impact measure of Amihud, 2002), which is
given by the absolute return for the month divided by the traded dollar share volume for the month;

synchronicity as proxied by 7, =In| R? /(1 —R?) | where the R? values are from the first-step regressions;
p J j j p regr

and the zero-trade, zero-return measure, which is given by the In of the percentage of nonzero-trade&return
days in a month. CLgx refer to the TSX trades of TSX-listed stocks cross-listed on U.S. trade venues. T-
values based on robust standard errors are reported in the parentheses. “a”, “b” and “¢” indicate statistical
significance at the 10%, 5% and 1% levels, respectively. The minimum and maximum number of firms in
the various cross sections are report under “#Firms”. The average R? value is reported in the table.

Sample All Firms TSX-only CLysx Big Small IT

Variable [ Cont. | Lagged | Cont. | Lagged | Cont. | Lagged [ Cont. [ Lagged | Cont. | Lagged | Cont. | Lagged

tercent | 001897 0.0232°]-0.0225°[ 0.0176" | 0.0020 | 0.0233 | -0.0089 | 0.0078 | -0.0148 | 0.0417* [ -0.0431 | -0.0572
PUCi8n | 2.76) | (2240 | (1.83) | 0.12) | (1.24) | -1.09) | (0.97) | (-0.90) | (1.90) | (-:0.97) | (-1.21)

o it 0.0395° | 0.061° | 0.0392" | 0.0555® | -0.0740 [ -0.0205 | 0.0172 [ 0.0271® ] 0.1140° | 0.2596° | 0.4610 | 0.7141

B @.42) | 287 | @5D) | @46) | (1.18) | 03D | (1.68) | (243) | (1.65 | (2.98) | (0.54) | (0.32)
x| 0.0078 | 0.0280 | -0.0027 | 0.0140 | 0.0310 | 0.0127 | 0.0264 | 0.0307 | -0.0785 | -0.0209 | 1.6559 | 0.9531
Pox 0.36) | (1.08) | (-0.13) | (031) | (0.36) | (0.14) | (1.24) | (1.31) | (-1.33) | (-0.17) | (1.55) | (0.31)

B -0.0033 | -0.0015 [ -0.0030 | -0.0011 | -0.0010 | -0.0009 | -0.0012 | -0.0028 | -0.0032 | 0.0013 [-0.0082"| -0.0096
i (-1.60) | (-0.65) | (-1.35) | (-0.46) | (-0.81) | (-0.73) | (-0.90) | (-1.30) | (-1.37) | (0.58) | (-1.71) | (-1.54)

~

5 HML 0.0001 | 0.0040 [ -0.0002 | 0.0039 [0.0027" | 0.0034° [ 0.0017 | 0.0026" | -0.0008 | 0.0023 | 0.0116* | 0.0164

Bl 0.03) | (1.45) | 0.08) | (132) | 239 | 2.79) | (1.44) | (1.82) | (-031) | (0.68) | (1.69) | (1.35)
| 0-0015[-0.0112170.0092 | -0.0041 |-0.0102 [0.0086 [ -0.0074 [ -0.0087 | 0.0047 [ -0.0063 [ 0.0886" | 0.0603
isi -0.10) | (-0.78) | (0.67) | (-0.27) | (-0.68) | (-0.55) | (-0.62) | (-0.64) | (0.32) | (-0.36) | (1.79) | (0.59)

0.8813°1 0.7115° ] 0.9113° | 0.7471° | 0.8261° | 0.7259° | 0.8548° [ 0.7405° | 0.9697° | 0.7781° | 1.0905° | 0.8216°

7, 20.68) | (31.24) | (20.26) | (29.47) | (23.59) | (24.55) | (25.48) | (30.92) | (18.89) | (23.74) | (8.04) | (5.93)
- -0.3654°]-0.4600° | -0.3465° [ -0.4389% [-0.5663% | -0.6325° | -0.4864° | -0.5537°] -0.2939% [ -0.4223[-0.2325" | -0.4513°
" (-14.15)| (-22.98) | (-11.88) | (-18.79) | (-20.21) | (-24.25) | (-20.19) | (-29.71) | (-7.98) |(-13.44)| (-2.30) | (-3.83)
Lip/ | 0-0001 [0.00030.0000 | 0.0002° 0.0008° [ 0.0014° [ 0.0001 | 0.0005° | -0.0001 | 00001 | -0.0007 | 0.0015

i (1.02) | 331 | 05D | @74 | @.16) | 3.30) | (0.99) | 2.87) | (-1.01) | (0.90) | (-0.51) | (1.34)
syvc, | 0-0018 -0.0037°] 0.0020 [-0.0036"| -0.0008 [-0.0027°] -0.0001 | -0.0021 | 0.0030 |-0.0059"| -0.0022 | -0.0126

(1.26) | (241D | (1.31) | (-2.02) | (-0.53) | (-1.83) | (-0.07) | (-1.84) | (1.26) | (-1.76) | (-0.38) | (-L.15)

VROM.. | -0-0061 [-0.0184%]-0.0056 |-0.0162° -0.0083 | -0.0161 | -0.0036 | -0.0059 |-0.0334°| -0.0393 | 0.0060 | 0.0751°
1 (-0.91) | (-2.63) | (-0.83) | (-1.99) | (-0.55) | (-0.92) | (-0.55) | (-0.84) | (-2.20) | (-1.64) | (0.12) | (1.83)

R? 0.47 0.44 0.47 0.44 0.56 0.55 0.50 0.48 0.49 0.46 0.55 0.53

# Firms  [299; 625[297; 614|251; 476{248; 468 | 46; 152 | 46; 150 |208; 4991206; 493| 70; 164 | 69; 161 | 35,69 | 34;68
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Table 2.13 Time-series averages of the second-step cross-sectional regression results with
contemporaneous excess returns, betas and controls (e.g., Amihud liquidity) and
contemporaneous/lagged IVs based on first-stage contemporaneous days-within-the-
month moving windows

Time-series averages of the parameter estimates for the series of second-step cross-sectional regressions
with the control variables for six samples of Canadian stocks are reported in this table. The regressions use
contemporaneous betas derived from the Carhart 4-factor model using a contemporaneous days-within-the-
month moving window, and contemporaneous estimates for LIQ, SYNCH and VROM and contemporaneous
(“cont.”) or lagged (“lagged”) estimates for /V. First-step beta estimates from the Carhart model are:

~

AU and BYXT for the excess market return when nonnegative and negative, respectively, for firm i in

month #; A5 for the small minus big size factor; A/ for the high minus low book-to-market factor; and

~

B for the momentum factor. IV, and IV, are the idiosyncratic standard deviations from the first-step

AMI

Carhart 4-factor model that are signed based on the security return. The controls are L/Q;™ ,
SYNC, and VROM , . They are respectively liquidity as proxied by the approximate price impact measure of
Amihud, 2002), which is given by the absolute return for the month divided by the traded dollar share

volume for the month; synchronicity as proxied by y, = ln[RJZ. / (1 —R; )] where the R? values are from the

first-step regressions; and the zero-trade, zero-return measure, which is given by the In of the percentage of
nonzero-trade&return days in a month. CLygy refer to the TSX trades of TSX-listed stocks cross-listed on
U.S. trade venues. T-values based on robust standard errors are reported in the parentheses. “a”, “b” and
“¢” indicate statistical significance at the 10%, 5% and 1% levels, respectively. The minimum and
maximum number of firms in the various cross sections are report under “#Firms”. The average R? value is
reported in the table.

Sample All Firms TSX-only CL1sx Bi. Small IT

Variable Cont. Lagged | Cont. | Lagged | Cont. |[Lagged | Cont. | Lagged | Cont. |Lagged | Cont. | Lagged
Intercept -0.0737° [-0.0418%(-0.0697°|-0.0410(-0.0751%]-0.0379" [-0.0359%[-0.0206° | -0.1223° [ -0.0807°| 0.0101 | 0.0191
(-7.97) (-6.67) | (-7.81) | (-6.29) | (-4.91) | (-2.18) | (-6.21) | (-3.37) | (-6.38) | (-4.66) | (0.26) | (0.35)

AMKT* 0.0006 | 0.0010* | 0.0006 | 0.0006 | 0.0010 | 0.0028° | 0.0011° | 0.0018° | 0.0004 | 0.0004 | 0.0044 | 0.0029
B (1.63) (1.92) | (1.42) | (1.10) | (1.50) | (3.29) | (2.86) | (3.18) | (0.84) | (0.54) | (0.89) | (0.62)
KT -0.0006 | 0.0003 | -0.0006 | 0.0004 | 0.0000 | 0.0004 |-0.0008 | -0.0005 | 0.0000 | 0.0014 | 0.0051 | 0.0070
Bra {(-1.06) (0.34) | (-1.05) | (0.49) [ (-0.06) | (0.44) | (-1.48) | (-0.79) | (0.08) | (1.50) | (1.19) [ (1.24)
G 0.0005 -0.0001 | 0.0005 | 0.0001 [-0.0018%[-0.0029"] -0.0004 [-0.0017°| 0.0007 | 0.0007 | -0.0071 | -0.0052
o (0.80) (-0.07) | (0.80) | (0.09) | (-1.67) | (-2.22) | (-0.79) | (-2.09) | (0.84) | (0.69) [ (-1.07) | (-0.63)
B -0.0011 | -0.0007 | -0.0013 | -0.0009 | 0.0000 |-0.0001 |-0.0012%] -0.0005 | -0.0009 | 0.0003 |-0.0102 [-0.0125%
a (-1.32) (-0.63) | (-1.53) | (-0.75) [ (-0.04) | (-0.05) | (-1.78) | (-0.62) | (-0.84) | (0.19) | (-1.50) | (-1.71)
BWML 0.0065° | 0.0122° ] 0.0062" | 0.0114° | 0.0065% | 0.0103¢ | 0.0058° | 0.0104° | 0.0048" | 0.0098° | 0.0030 | 0.0087"
& (2.87) (5.06) | (2.75) | (4.75) | (6.35) | (8.33) | (9.10) | (12.22) | (2.16) | (3.89) | (1.03) | (23]
w 0.9664° | 0.7722° | 0.9460° | 0.7535° | 1.1088° | 0.8915° | 0.9818° | 0.8142° | 0.9982¢ | 0.7553¢ | 1.0689° | 0.8632¢
i (51.23) [ (44.32) | (46.96) | (41.55) | (39.56) | (33.11) | (58.93) | (39.52) | (34.10) | (28.28) [ (13.90) | (20.45)
- -0.4946° |-0.5120°|-0.4868°(-0.5091°|-0.5918%| -0.6265°| -0.6002° | -0.5879¢ [ -0.3660° | -0.4603° [ -0.5614° | -0.5588°
! (-40.65) [(-48.36) | (-37.35) | (-47.90) {(-26.57) [ (-29.62) | (-47.83) | (-47.99) | (-17.94) { (-29.11) [ (-10.82) | (-14.00)
LIQA! 0.0001" [ 0.0003° | 0.00017 | 0.0003° | 0.0001 | 0.0004 [ 0.0001® | 0.0005¢ [ 0.0001° [ 0.0002% | 0.0005 | 0.0018°
i (2.15) (3.39) | (2.10) | (3.64) | (0.51) | (1.60) | (1.88) | (4.26) | (1.68) | (1.73) | (0.64) | (2.01)
SYNC 0.0047° | -0.0003 | 0.0046° | -0.0002 | 0.0034° [-0.0026° | 0.0029° [-0.0009*| 0.0079° | -0.0004 | -0.0009 | -0.0069"
! (6.31) (-0.50) | (5.62) | (-034) | 3.74) | (-2.59) | (554) [ (-1.65) | (3.74) | (-0.22) | (-0.28) | (~1.88)
VROM. 0.0440° | 0.0450° | 0.0405° | 0.0449° | 0.0496° | 0.0465° | 0.0183° | 0.0266° [ 0.0592° | 0.0833° | -0.0380 | -0.0031
i (6.49) (745) | (6.32) | (7.15) | (3.54) | (2.82) | (3.84) | (4.56) | (4.49) | (5.13) | (-0.95) | (-0.06)

R? 0.58 0.47 0.59 0.48 0.65 0.56 0.61 0.50 0.59 0.49 0.66 0.55
# Firms | 256; 1044 (233;973|211; 842(186; 777| 44,202 | 40; 196 [189; 725(177, 691]39; 319 35,282 | 35; 115 | 35; 112
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Table 2.14 Time-series averages of the second-step cross-sectional regression results with
contemporaneous risk-adjusted excess returns and controls and
contemporaneous/lagged IVs based on first-stage 60-month moving windows

Time-series averages of the parameter estimates for the series of second-step cross-sectional regressions
with the control variables for six samples of Canadian stocks are reported in this table. The regressions use
contemporaneous risk-adjusted excess returns based on estimates derived from the Carhart 4-factor model
using a 60-month moving window, contemporaneous estimates of LIQ, SYNCH and VROM and

contemporaneous (“cont.”) or lagged (“lagged”) estimates for IV. IV, and IV, are the idiosyncratic
standard deviations from the first-step Carhart 4-factor model that are signed based on the security return.
The controls are LIQ, , SYNC, and VROM . They are respectively liquidity LIQ;" as proxied by the

it
amortized spread of Chalmers and Kadlec, 1998, which is obtained by dividing the product of the absolute
difference between the trade and midspread prices and the traded volume by the product of the trade price

times the number of shares outstanding; LIQ™" as proxied by the approximate price impact measure of

it

Amihud, 2002, which is given by the absolute return for the month divided by the traded dollar share
volume for the month; synchronicity SYNC, as proxied by y; = 1n[RJZ. / (1 -R; )] where the R” values are

from the first-step regressions; and the zero-trade, zero-return measure ¥ROM,, , which is given by the In of

the percentage of nonzero-trade&return days in a month. CL1gx refer to the TSX trades of TSX-listed
stocks cross-listed on U.S. trade venues. T-values based on robust standard errors are reported in the
parentheses. “a”, “b” and “¢” indicate statistical significance at the 10%, 5% and 1% levels, respectively.
The minimum and maximum number of firms in the various cross sections are report under “#Firms”. The
average R? value is reported in the table.

Sample All Firms TSX-only CLysx Big Small IT

Variable | Cont. [Lagged Cont. |Lagged Cont. lLagged Cont. ILagged Cont. ILagged Cont. lLagged

Panel A: Using the amortized spread proxy for liquidity

Intercept -0.0100 [ -0.0033 [ -0.0075 [ -0.0134 [ -0.0181 | 0.0335 | -0.0163 | 0.0060 | -0.0005 | -0.1041 | -0.0636 | 0.0233
(-0.70) | (-0.10) | (-0.51) | (0.30) | (-0.37) | (0.59) | (-1.48) | (0.57) | (-0.03) | (-0.72) | (-1.12) | (0.41)
e 0.6072°10.5266° | 0.6515° [ 0.6075° | 0.7776° | 0.7139° | 0.6392° | 0.5470° | 0.6569° | 0.5968¢ | 0.7361° | 0.5339°
i (12.97) | (8.98) | (13.64) | (7.01) | (10.19) | (10.22) | (15.35) | (17.20) | (12.08) | (5.46) | (6.31) | (5.84)
- -0.4574°[-0.4969°] -0.4682°] -0.5043° [ -0.4950° -0.5414%] -0.5306° | -0.5820° [ -0.4631°[ -0.5424° [ -0.3989°| -0.5113¢
i (-16.88) | (-18.79) | (-16.29) | (-16.38) | (-11.13) | (-12.35) | (-16.93) | (-21.34) | (-13.52) | (-16.70) | (-7.32) | (-9.17)
LIQ* 18.7534%[21.3962°(17.2284°(19.0219¢[ 0.6763 | -1.9978 {20.9643°[24.7385¢[19.4422°119.2510%]16.4466°|37.6123*
i 953) | 923 | 8.53) | (6.70) | (0.17) | (-0.46) | (8.54) | (9.06) | (7.89) | (4.56) | (2.52) | (1.71)
syve. | -0.0010 -0.0031°] -0.0011 { -0.0025 | -0.0029 | -0.0047 | -0.0019 |-0.0035°] 0.0013 | 0.0039 [ -0.0005 |-0.0102"
" (0.67) | (-1.94) | (-0.68) | (-1.19) | (-0.89) | (-1.38) | (-1.56) | (-3.00) | (0.56) | (0.57) | (-0.08) | (-1.98)
vROM. | 00018 [ 0.0108 1-0.0004 | 0.0170 | 0.0076 |-0.0305 [ 0.0125" | 0.0026 | -0.0174 | 0.1156 | 0.0449 | -0.0001
“10.20) | (0.36) | (-0.04) | (0.44) | (0.17) | (-0.58) | (1.86) | (0.30) | (-1.36) | (0.83) | (1.00) | (0.00)
R? 0.49 0.46 0.50 0.48 0.46 0.45 0.42 0.40 0.52 0.50 0.45 0.43
# Firms | 237,625 237,614 [ 197,476 | 197;468 | 3570 | 35,70 |160;499(160:493 | 70;164 | 69;161 | 35,69 | 35;68
Panel B: Using the Amihud proxy for liquidity
Intercept -0.0095 | -0.0134 | -0.0057 [ -0.0217 [-0.0338*] 0.0022 [-0.0224°[ -0.0067 | 0.0082 [ -0.1185 | -0.0503 | -0.0843
(0.75) | (-0.36) | (-0.44) | (-0.46) | (-1.89) | (0.12) | (-2.21) | (-0.7D) | (0.47) | (-0.75) | (-1.03) | (-0.84)
e 0.6383°[ 0.5423° [ 0.6850° | 0.6227° | 0.6096° | 0.8261° | 0.6583% [ 0.5630° | 0.6918% | 0.6096° | 0.8661° | 0.4330¢
i (13.31) { (10.76) | (13.98) | (8.44) | (13.67) | (17.82) | (15.21) | (16.97) | (12.81) | (7.25) | (5.88) | (3.91)
v- -0.4428%[-0.5053%(-0.4575%-0.5164° [ -0.6399°] -0.5929°[-0.5291°[-0.5876°[-0.4635°[-0.5696° -0.3541%] -0.7026°
i (-15.56) [ (-21.19) | (-14.61) | (-19.45) | (-17.87) | (-17.10) | (-15.99) | (-20.67) | (-12.94} | (-17.90) | (-4.02) | (-6.10)
LIO™ 0.0003¢ | 0.0006° | 0.0002° | 0.0005° | 0.0013¢ | 0.0008" [ 0.0005” | 0.0007° | 0.0001 |0.0004° | -0.0008 | 0.0093"
i (2.75) | (3.98) | (2.46) | 3.84) | 3.47) | (2.02) | (249) | 3.67) | (1.28) | (1.99) | (-0.38) | (2.06)
sync. | -0-0024 1-0.0048° -0.0029 [-0.0047*| -0.0025 | -0.0014 |-0.0019*[-0.0035°] -0.0019 | -0.0004 | -0.0016 [-0.0394*
L3 | (25T | (-1.39) | (-1.93) | (-1.64) | (-0.80) | (-1.72) | (-3.06) | (-0.49) | (-0.06) | (-0.36) | (-1.72)
vroM. | 0:0073 | 0.0301 | 0.0051 | 0.0361 |0.0410° [ -0.0064 | 0.0211° 0.0186° [ -0.0084 | 0.1532 | 0.0284 | 0.2188"
“1(0.93) | (0.86) | (0.64) | (0.85) | (2.73) [ (-0.42) | (3.22) | (2.33) | (-0.48) | (0.98) | (0.52) | (1.65)
R?<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>