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Abstract

A Performance Analysis of Tandem Network of Multiplexers with Binary

Markovian Sources

Xin Xin Song, Ph.D.
Concordia University, 2007

Currently, the modern networks including Internet and ATM are based on packet-
switched technology. In this technology, the arriving packets are statistically multiplexed
to achieve high bandwidth gain, also the output ports of routers may be modeled as
multiplexers. As a result, in this type of networks, a packet goes through a number of
multiplexers as it transits from source to destination. Because of this, the study of
tandem networks of multiplexers is very important; as it will give us the information
regarding the traffic shaping that occurs along the route. Due to the lack of exact analysis
methods, most of the previous work in the analysis of tandem networks is based on either
simulation or approximate models. This thesis presents an exact performance analysis of
tandem networks with arbitrary number of multiplexers. Since, the traffic generated by
multimedia sources in the real networks is correlated, the binary Markov On/Off source
model is assumed for the input traffic to the network. The objective of the analysis is to
determine the Probability Generating Function (PGF) of the queue length of each
multiplexer in the tandem network as well as the corresponding performance measures.
The complicated dependency among tandem multiplexers results in unknown boundary
functions, determination of which is the main source of difficulty in the exact
performance analysis. In this thesis, at first a straightforward solution technique is used
to determine the PGF of the queue lengths and number of On sources for a tandem
network with two multiplexers. Unfortunately, this solution does not extend to tandem
networks with higher number of multiplexers. As a result, an alternative method has
been developed, which determines the unknown boundary functions by using busy
periods of multiplexers. The PGF of the queue length and number of On sources is
obtained for each multiplexer in a tandem network with arbitrary number of multiplexers.

Following that, the mean and variance of queue lengths as well as the packet delay at
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each multiplexer have been determined. A proof of this solution is given to show that the
analysis is correct. Then, the solution has been extended to a more general tandem
network, where each multiplexer is fed by multiple types of traffic. Finally, numerical
results regarding the analysis are presented and compared with those of the simulation.
The analysis shows network raffic gets smoother when it goes through higher number of
multiplexers, this smoothing effect is more obvious in heterogeneous traffic case. It also
shows that under constant traffic load, as the number of sources increases, the delay and
queue length increase. The analysis results enable to explain the delicate interaction

between traffic smoothing and source burstiness
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Chapter 1

Introduction

The field of communication networks has shown tremendous amount of growth in
recent decades, which is making great changes in our lives. A communication network
may be designed as a set of equipments and facilities that provide a service: the transfer
of information between users located at various geographical points [1]. With the rapidly
increasing volume of transferred information, the communication networks have become
very complex. This has created many challenges in the network design and
implementation, which led to a great research effort in the area of network modeling and
performance analysis. The main objectives of the mathematical modeling of
communication networks are the prediction of performance and resource requirements [2],
such as the sizes of waiting buffers, the delay experienced by an arrival, and the
availability of a service facility. In this chapter, first a brief introduction is given to the
circuit and packet-switched networks. Then, the statistical multiplexer model of the
packet-switched networks is introduced, and the tandem network model and the binary
Markovian source model are presented. Afterwards, the previous research work on
tandem networks in the literature is sumerized. Finally, the contributions and the outline

of this thesis are presented.

1.1 Circuit and Packet-Switched Networks

Traditionally, there have been two types of networks: telephone and data networks.
Telephone networks have been used to carry voice and the data networks to transport data.
Voice and data are examples of real-time and non-real-time traffic respectively. Real-
time traffic is delay sensitive but it is usually loss tolerant, while non-real-time traffic is
loss sensitive but usually delay tolerant. The different characteristics of voice and data led

to the development of two different types of networks.



Telephone networks use circuit-switching technology, which sets up a dedicated end-
to-end path through allocation of bandwidth for each call. When the required resources
are not available then new call requests are rejected, however accepted calls experience
short deterministic delay, which is desired for real-time traffic. The circuit-switching
technology is not appropriate for transmission of data since data sources are burstier,
which results in the communication line being idle for most of the time. Because of this,
data networks use packet-switched technology. In packet-switched networks, information
is transmitted in short blocks, called packets. The packets travel from one node to the
next one in the network until they reach from source to destination. Each intermediate
node stores the incoming packets, makes routing decisions and then transmits them on the
proper output links. In packet switching, there is no call blocking, but as packets travel
from source to destination, they experience random delays [3]. In this type of networks,
bandwidth efficiency is greater since calls are not assigned dedicated circuits but they are
statistically multiplexed. However, statistical multiplexing and distributed routing
decisions may cause congestion. Congestion increases delay, which is not appropriate for
real-time traffic; also congestion may result in buffer overflows, and therefore causes loss

of information.

Telephone and data networks have evolved independently of each other over the
decades. The development of fiber optics as transmission medium has made enormous
amounts of bandwidth available. This led to the expansion of both telephone and data
networks as well as to the introduction of new services and transmission of multimedia
traffic in the networks. Clearly, it is not economical to build and maintain a separate
network for each type of service. It would be most beneficial to use a single
infrastructure to serve all services. This led to the effort for development of the
Broadband Integrated Services Digital Networks (B-ISDN) that would support
transmission of the multimedia applications such as voice, video, data and other signals

in a single fiber optics based network.

In telephony networks, Asynchronous Transfer Mode (ATM) has been designated as
the target technology to meet the requirements of B-ISDN [3]. In ATM, the information
is segmented into fixed-size packets, referred to as cells that are transmitted from source

to destination in a virtual circuit. A pre-planned route is established before any cells are



sent and all the packets between a pair of communicating parties follow the same route
through the network, which is called virtual-circuit switching. ATM has been designed to

inherit the best features of circuit and packet-switching.

On the other hand, data networks have shown tremendous growth with the
introduction of the Internet. The Internet was designed to provide best-effort service for
delivery of data traffic. The datagram approach 1s used in the Internet, where each packet
is treated independently, so the packets with the same destination address do not
necessarily all follow the same route and they may arrive out of sequence to their
destination. As explained before, the data networks are not suitable for transmission of
real-time traffic. However, the increasing popularity of the Intemnet has shifted the
paradigm from “IP over everything” to “everything over IP”. In order to manage the
multitude of applications such as stream video, voice over IP, e-commerce and others, the
Internet requires different QoS in addition to best-effort service, and new protocols are

being proposed to provide requisite QoS to new applications on the Internet.

Nevertheless, ATM and the Internet are both based on packet-switched technology
and their ultimate aim is to meet QoS requirements of different services. In packet-
switched networks, statistical multiplexing is applied to obtain bandwidth efficiency, no
matter whether they use virtual-circuit approach (connection oriented) or datagram

approach (connectionless).

1.2 Statistical Multiplexing

Statistical multiplexing refers to sharing of expensive switching and transmission
facilities among different packet streams in the network. As explained above, in packet-
switched networks, packets are routed from source to destination, following the store and
forward principle. When a packet reaches the nearby node, it is temporarily stored there
until the transmission line to the next node becomes available. For this purpose, at each
node, switching elements are installed to route the incoming packets to the appropriate
output link. For those packets that cannot be transmitted immediately, buffer space has
been provided at each switching port. Inside a switching element, packets from different

input ports may go to the same output port. These packets will queue up in the output



buffer and be transmitted according to some queueing disciplines. Thus, an output port

of a switch may be modeled as a multiplexer (see Figure 1.1).

In a network, hundreds of sources may access a single link. Then statistical
multiplexing is performed on the incoming packets to achieve high bandwidth gain, and
buffering is required to absorb traffic fluctuations when the instantaneous rate of the
aggregate incoming streams exceeds the capacity of the outgoing link. Again, this is

multiplexing.

Buffer

lnputs Output

Figure 1.1 Statistical multiplexer model

Therefore, in order to implement efficient admission and flow control strategies to
satisfy different QoS requirements, network designers need to acquire a very good
understanding of the statistical multiplexing of the aggregate traffic generated by

multimedia sources (with possibly different characteristics).

From a modeling point of view, a statistical multiplexer may be modeled as a
deterministic server with a slotted time axis and correlated discrete-time arrival processes.
Most often, the quantities of interest are the buffer occupancy (number of packets stored
in the buffer, or equivalently, queue length) and the packet delay (or waiting time)

experienced by the packets in the system.

1.3 Tandem Network Model

In packet-switched networks, packets are routed from source destination as shown in
Figure 1.2. At each node, the packets are received, stored briefly and then passed on to

the next node along the route when the transmission line becomes available. As the



packets go through the network, the statistical properties of the traffic change. For

example, the traffic becomes smoother and the long-range dependence of the traffic

dissipate due to the statistical multiplexing gains [4]. Thus, the performance analysis at

the network level is very important as this will enable more accurate determination of

buffer requirements in the network and end-to-end delay.

Figure 1.2 A diagram of a network

Destination

As packets go through the network from source to destination, the route that they

follow is a series of switching nodes (which may be modeled as multiplexers) in tandem.

The output of each multiplexer may leave the tandem network or enter the next

multiplexer. Figure 1.3 is a general model of multiplexers in tandem. The input of each

multiplexer in the tandem network consists of two parts: the a portion of the output from

the previous multiplexer and external inputs from outside of the tandem network.

Mux 1 Mux 2 / Mux n-
""" ——————

T a1 [EREE]
External External
Arrivals Arrivals

—

External
Arrivals

Figure 1.3 Tandem multiplexer model

Mux n



1.4 Binary Markov On/Off Source Model

The performance evaluation of the networks requires accurate modeling of the
network traffic. The current networks support various communication services, such as
data, voice and video, each having different traffic characteristics. This has introduced
significant changes in the way that uncorrelated traffic models (such as Poisson and
Bernoulli) dominated the traditional performance analysis methods. In fact, when
dealing with the traffic generated by multimedia sources, the uncorrelated random arrival
process assumption becomes inadequate because of the dependencies in the stream of
information. For these reasons, traffic characterization has been a major field of research

during the past years due to its direct impact on the network performance analysis.

There have been many traffic models proposed in the literature for characterizing
individual traffic sources or superposition of multiple sources. For instance, Poisson
arrival process (continuous time case) and geometric inter-arrival process (discrete time
case) are good models for data traffic; Interrupted Poisson Process (IPP) is a good model
for voice traffic; and Markov Modulated Poisson Process (MMPP) can be sued to model

data, voice and video traffic. A good review on traffic modeling can be found in [11].

—-o

1-p

Figure 1.4 Binary Markov On/Off source model

Among these traffic models that have been used for different types of sources, one of
the most versatile ones is the binary Markov On/Off model. This simple traffic model has
been widely used for characterization of packet speech and data sources [12]. In this
model (see Figure 1.4), active (On) periods alternate with idle (Off) periods according to
a discrete-time Markov Chain. The transition from On to Off state occurs with probability

1-a, and from Off to On state occurs with probability 1— 4 from slot to slot. During an

On period, the traffic source generates packets following some distribution; during Off



periods, no packets are generated. As a result, the lengths of the On and Off periods are

geometrically distributed.

The binary Markov On/Off model is good for capturing the correlation behavior of
many traffic sources. Let us define the following:

D0 =Pr (a source is On | it was Off'in the previous slot)=1- 4 ,

p,,=Pr (a source is On | it was On in the previous slot)= «a

The correlation index is usually defined as, A= p,, —p,=a+ -1 (see [10]). If
a+ =1, then A=0, p,, = p,,; then the probability that a source is On does not depend

on the status of the previous slot. So the source transitions between On or Off states
follow a Bernoulli process, and hence the packets arrivals are independent from slot to
slot. Thus choosing A # 0 captures the correlation behavior of the traffic generated by a

source. When a + £ is high (0 <A <1), the packet arrivals have a positive correlation
whereby packets have tendency to arrive in clusters. Alteratively, when a+ £ is

low(—1<A <0), the packet arrivals have a negative correlation, where the packets are

more dispersed in time scale .

More complicated models, such as the three-state Markov model, have been proposed
for more accurate modeling. Queueing analysis with these types of models may be very
complex and not mathematically tractable. Therefore, these models have rarely been
applied in performance analysis; on the other hand, the binary Markov On/Off model has
been frequently used for the modeling of voice, video and data traffic. In some cases,
Gaussian distribution may be used as an approximation model for the traffic [15]. For
example, [16] uses Gaussian Distributed and Autoregressive input as the approximation

of superposition of On-Off voice sources.

Because of its versatility and flexibility, in this thesis work, the binary Markov
On/Off model has been chosen as the basic model for the characterization of input traffic
sources. Hence, the rest of the thesis will be mainly concerned with the analysis of
tandem networks with correlated arrivals process, which consists of the superposition of

many independent traffic streams generated by binary Markov sources.



1.5 Previous Work on Tandem Networks

Most analytical studies related to network performance focus on an isolated
component in the network, such as a single multiplexer or a switching node. This is
mainly because of the difficulties involving the performance analysis at the network
level. The performance analysis of large-scale networks is still an intractable problem.
However, the studies of a network connection, which typically consists of a number of
queues in tandem, is of great importance since it might help us to understand the changes

in the traffic characteristics at the interior of the network.

Due to lack of exact analysis methods, most of the previous work in the analysis of
tandem networks has either focused on simulation experiments [5, 6, 17] or on some
approximate models, whereby each node is analyzed in isolation, after fitting an
approximate model to the departure process of each node [7 - 9, 15, 16]. The factors that

complicate the exact analysis of networks may be listed as follows [10]:

. The arrival process of each node is often complicated and exhibits strong
correlation. This correlation among arrivals makes the corresponding analysis

far more complicated than that of an uncorrelated case.

o The interaction among the traffic streams in the tandem network gives rise to
rather complicated, statistical dependence among the nodes. This dependence
results in unknown boundary functions in the expression of the PGF for the

system. The determination of the boundary function is generally very complex.

o As the independent Poisson model doean’t hold for the network arrivals, the
joint PGF of a tandem network does not posses a product-form solution, so
direct application of the well-known combined iterative/decomposition

methods becomes hard to justify.
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Figure 1.5 Network of two stage queues in the study of [17]

In [17], two types of queueing networks are considered: one with a single buffer and
another with two buffers in tandem as shown in Figure 1.5. They present a discrete-

event simulation methodology for the estimation of the correlation in the traffic.

A queueing network model of four-node ATM tandem is considered in [15]. The
output process of each node is approximated by a renewal process, and the output of a
node is fed to the next one. In addition, interfering traffic enters each node and leaves
immediately. The interfering traffic in [15] consists of an M-stream, which is modeled
by a Bernoulli process with batch arrivals, and a B-stream, which is modeled as a
number of N discrete-time interrupted Poisson processes. By convolving the delay
distribution at each switching node, an approximation for the end-to-end delay
distribution is provided. The limitation of this approach lies in the characterization of the
output process of each isolated switching node. In fact, the renewal approximation for
the nodal departure process is hard to justify, as correlation is inherent in the output
process of each node. This correlation has significant effect on the queueing behavior of

the downstream nodes.

In the next, two works will be described, which use exact methods of analysis. In
[18], a two-node tandem network model has been analyzed, where the number of external
arrivals to the two queues is modulated by a single two-state Markov Chain. An

expression for the PGF of the queue lengths distribution has been determined. However,



the single two-state Markov Chain model for the external arrivals is too restrictive for

modeling network traffic.
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Figure 1.6 A two-node tandem network model in [19]

In [19], an exact analysis of a two-node tandem network with correlated arrivals has
been presented. As shown in Figure 1.6, the node-1 is fed by the traffic generated by the

superposition of m, independent and homogeneous Markov binary sources; the node-2

is fed with the output of node-1 as well as the traffic generated by m, independent and
homogeneous Markov binary sources. A functional equation relating the joint PGF of the
system between two consecutive slots was derived. From there the mean queue length for
each node as well as the average packet delay in the network was determined. The
limitation of [19] is that the boundary functions of the joint PGF are not determined, thus
there is no explicit expression for the joint PGF although the performance measures have

been determined.

1.6 Contributions of the Thesis

In this thesis, an exact performance analysis is presented for a tandem network with
arbitrary number of multiplexers. A Markovian source model for the arrival process has
been assumed that incorporate the correlation in the network traffic. The functional
equation is derived, which describes the tandem network through the imbedded Markov

Chain analysis. The unknown boundary functions have been determined, which leads to

10



the solution of the functional equation: the joint PGF of the queue length and number of
On sources for any multiplexer at the steady state. The correctness of the solution has
been proven. From the joint PGF, it is feasible to derive the closed-form expressions for
various performance measures of the tandem network, such as the mean and standard
deviation of queue length, the mean packet delay for arbitrary number of sources and
arbitrary number of multiplexers in the network. The solution has been extended to more
general tandem networks with heterogeneous traffic feeding each of the multiplexers. In
this multiple types of traffic case, the joint PGF of a multiplexer at the steady state, as

well as the closed-form expressions of performance measures are also determined.

The numerical results regarding the analysis in the thesis are presented. The results
show the smoothing effect of statistical multiplexing. As the traffic goes through higher
number of multiplexers, it becomes smoother. As a result, both mean and variance of the
delay and queue length are reduced. This reduction is more pronounced in the case of
heterogeneous traffic feeding each multiplexer. The interaction between the smoothing
effect and burstiness of traffic is explained. Finally, the simulation results are presented,

which supports the analytical results of this thesis.

1.7 Outline of the Thesis

The outline of the rest of the thesis is as follows. In Chapter 2, the analytical model
for the tandem network of multiplexers is presented. An embedded Markov chain
analysis is used to derive the functional equation that relates the PGFs of the system
between two consecutive slots, and then the functional equation is transformed into a new

form, which is mathematically more tractable.

In Chapter 3, a straightforward method is used to determine the unknown boundary
functions in the functional equation, and the solution of a tandem network with two
multiplexers is given. The simulation and numerical results regarding the performance

measures are also presented.

In Chapter 4, an alternative technique is used to determine the unknown boundary

function, which involves the application of multiplexer busy periods. From there, the

11



solutions for tandem networks with two and three multiplexers are obtained. Again, the

simulation and numerical results regarding the three-multiplexer tandem network are

presented.

In Chapter 5, the solution is extended to a tandem network with arbitrary number of

multiplexers. And a proof of the solution is presented.

In Chapter 6, a general tandem network with heterogeneous traffic feeding each of the
multiplexers is studied. The analytical model is presented and the solution is obtained.
Then, the performance measures are determined, and the corresponding numerical results

are presented.

In Chapter 7, the contributions and conclusions of this thesis are summerized. Finally
in the Appendix A and B, some results related to the multiplexer busy periods are given,
which are needed in the thesis. In Appendixes C and D, the details of mathematical

derivations are given, which are referred in Chapters 3, 4 and S.

12



Chapter 2

Tandem Network Modeling

In this chapter, first the tandem network and the source model are presented.
Afterwards, a model of two multiplexers in tandem is considered, and the functional
equation relating the joint PGF of the two queue lengths and the number of On sources
are derived by using embedded Markov Chain analysis. Then, the functional equation is
transformed into a new form, which is mathematically more tractable. Finally, the
derivations are extended to general tandem networks with arbitrary number of

multiplexers.

2.1 Tandem Network and Source Model

This thesis considers the performance modeling of n (»>1) multiplexers in tandem at
the entrance of the network. Since these multiplexers are aggregating the traffic, the
entire output of each multiplexer is fed to the next one together with the new arrivals. The
new arrivals are generated by a number of Markovian sources. The tandem network
model under consideration is shown in Figure 2.1, which will be modeled as a discrete-

time queueing system.

|

]

——pe-1
m. {T|Im
2 ] — e fMux 3
———— m —T->DI:D -------------------- e i1
3 i —=Mux 1
— i —{
o [T
_:——>

Figure 2.1 Tandem Network Model
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It is assumed that each multiplexer has infinite buffer to store the arriving packets.
The time axis is divided into intervals of equal lengths (slots) and a packet is transmitted
at the slot boundaries. It is assumed that a packet cannot be transmitted during the slot

that it arrives, and that a packet transmission time is equal to one slot.

The external packet arrivals to multiplexer-i (1<i<n) is generated by m, type-i

sources as shown in Figure 2.2. Each type of sources are independent binary Markov
sources alternating between On and Off states. For type-i sources, a transition from On to

Off state occurs with probability (1-a;), and from Off to On state occurs with

probability (1— £,). As a result, the length of the On and Off periods are geometrically
1

and ——
l“ai 1_161'

distributed. And the mean duration of Or and Off periods are

respectively. And the steady-state probabilities that a source is On and Off during a slot

1-4 1-a,
are A and 9
2-a,-pf 2—a; - B

respectively. It is assumed that an On source generates

at least one packet during a slot, while an Off source generates no packets during a slot.

Figure 2.2 Source Model for Type-i Sources

Now let us introduce the following notations:

m, = number of type-i sources feeding multiplexer-i.
¢, ,= queue length of multiplexer-i at the end of slot .

a, , = number of On-sources of type-i during slot £.



/.. =number of packets generated by the j’th On-source of type-i during slot k. f,,, are
independent identically distributed (i.i.d.) from slot to slot for type-i sources, with
PGF f(z,).

b, , = the total number of packets generated by type-i sources during slot k.

c;, = a variable that assumes the values of 1, 0 if /’th source from type-i is in On and Off

states in the next slot respectively, given that this source is On in the present slot.

d,, = a variable that assumes the values of 1, 0 if /’th source from type-i is in On and Off

states in the next slot respectively, given that this source is Off in the present slot.

The following figure shows the various random variables defined above,

Departure Departure

a;x fi,kj\‘ai,kﬂ Ei,kHL'
] ] I
I K I

' S L
Time slots

bi,k bi,k+1
The ¢,,, d,, arei.i.d. Bernoulli random variables with the corresponding PGF given by:
c(z)=l-a,+az,, di(z;)=p,+(1- )z (2.1)

From the above definitions, we have,

by = zfj,i,k > Aign = ch,i + Zdj,i (2.2)
j=1 Jj=1 Jj=1 )

The evolution of the first queue length is given by,

Chpn =, =D +b, (2.3)

And the evolution of the i’th queue length (i >1) is given by,
Cown =W =D +b +u,, , 2<5i<n 2.4)
where, u;, is a random variable depending on whether the previous queue is empty or

not,
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(1 ife,, >0 s
YT 00 ife,,, =0 (23)

In the above equations the notation (x)* denotes max(x, 0).

2.2 Tandem Network with Two Multiplexers

First, the simplest case of a tandem network with two multiplexers is considered. This
system will be modeled as a discrete-time Markov Chain. Following that, the functional
equation will be derived, which relates the PGF of the system between two consecutive
slots. Afterwards, some preliminary results are given, so that the functional equation can

be transformed into a new form that is mathematically more tractable.

2.2.1 Embedded Markov Chain Analysis

The state of the two multiplexer tandem network under consideration can be

described by a four random variable set (¢,,,a,,,¢,,,a,,) , where the notations
£, ,.,a,,,¢,, and a,, are defined in the previous section. Let us define Q,(z, y,,2,, ;)

as the joint PGFof ¢, ,,a,,,¢,, and a,, , then,

Qk(znywzz’Yz):E[ o "z [“ a“] Zzzzzl 23y a, s diotys Jy) (2.6)
(=0 j;=0iy=0 j,=0
where, g, (i, Ji,6y, J,) =Pr(ly, =i, a1, = ji, 4y, =150, = J3), (2.7)

From (26)a Qk+] (Zl7yl,227y2) is given bya

O (20, 01,25,¥,) = E[ é’m.y]am, . a“”] ZZZZZIylj‘z;yzqukﬂ(il,j],i2,j2) (2.8)

§=0 j;=0i=0 j,=0
Next, the relation between Q,,,(z,,¥,,2,,¥,) and Q,(z,,,,2,,y,) will be derived. Let

us substitute for ¢, ,,,,4,,,, in (2.8) from (2.3, 2.4), then we have,

=D +B 1 | @it D +0p gtz sy 44
O (21,1525, ¥,) = E[ it 2 Y2 ]
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First, let us condition on ¢,,,a,,,,,¢,,.a,,., and u,,; and substitute for 4,,,,,0,,,,
from (2.2) in the above equation,

(Crp =D +by gy | @y (€= +by pttia s 840
E[Zl Nz Y2 gl,k>a1,k+l’£2,k>a2,k+l7u2,k

121(:+ ’ Zfl”f
(=D L ap (D Hupy - appn o5 T2k
iz y, "M E| z, Z,

=z 1 2 2 £ s>ty gs @y st

Z]("l w7 yal,k+lZ§(2,k")++u2,k y;uu [fl (Z] )]“1,k+1 [f'2 (Z2 )]az,k+|
=z (€” -t [ylf (Z1 )]“|k+x (a1 +uy [yzfz(zz )]az,kn
Then,

a1y appn (L2507 +uy a4

Qk+l(z]3yl’z2ay2):Ezl((’u ] DA 122[2' Ve [ /2 (2)] ]

Substituting for a, ,,, and a,,,, from (2.2) in the above equation yields:
Qi (215 91522, 1)

"lz,k ’"l'z":l,kd ”%,:k +"‘2'z‘:72,kd (2 9)
Y 2t . i et 2. €2 2 .
=E 7" i@ S M S R

Again, let us conditionon ¢,,,a,,,¢,,,a,,, 4, and substitute from (2.1), we have,

ark m - lk m2-ark
ch 2 jZ+ z dp

(4 -0" (l D'+ =
E\ z " Iy fi(z)]" ! " “ [J’2f2(22)]1 l - El,k’al,k’glk’alk’uz,k

= Zl(é’u—l)* e (0 /(2 )] [d,(n /(7 )] i Z(Zz'rwwu le, (3, /5 (2, )] d,(y,/(z, )) e

=z —-—-————cl(y]fi(zl) m ([u'l) +ityp M@ my
; [dl(y]fl(zl)) /I (d (62%71¢: )j [4:(32/2(z,)]

(2.10)

Next let us define:
Y:M, BM=ld.(y. flz Y, B()= : B.(1), '31,2,3,"' 2.11
i d,(y,f,(z,)) 1( ) [ r(ylf;(zz))]m ( ) 1;—11 1( ) l n ( )

Then (2.10) may be written as
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my—ay k
2t Z 0 dj,

2,k
= djl + e
o (€ 4-1) Hug j=1 j=
z, [y,/2(2))] fl,k’al‘k’EZ,k’alk’uZ,k

Tk M=l
Zent
Jj=}

E Zl(el'k_])+ [y £i(z)]

— B(I)Z](fl,k‘l)+ Y]al,k dez,k‘])“r“z,/« Yzaz,k

And (2.9) becomes

Oz, 1525, ¥7)
- E[B(l)zl((‘*”lr Ylau ngz,k‘1)++“z,k Yzaz,k ]

-n* -
- B(I)EI:Z]WM ) )/lal,k Z;Z” Y Uy Yzﬂz’k]

In the next, let us remove the ()" operation. From the definition in (2.6), the above
equation may be expanded as,

O (21, 1,2,,¥,)

© m

= B(])Z Zz Zzzl(i.-n* Kj. Z;iz—l)uuz,k Yzfzqk (s Jrsbys Jy)

=0 j;=04,=0 j,=0

O 21, Y1,25512)

© M

- B(l)z ZZ Zzzl(i’—])ylj1 Z§i2_1)++uz'k Yzquk (15 J1>i25J2)

i=1 j;=0i;=0 j,=0
0 m o m .
o} 7 H-1)"+u 2 .. .
+B(1)Zzzzzl Yz *Y2q,(0, /1,055 J2)
(=0 j,=00,=0 j,=0

O (2501525, ¥,)

o m

o m
Dy -] h e s s
=B(I)ZZZZZI('I Y2 Y g G o ) °
i=1 j,=04,=1 j,=0

o m my

0
L0)IDIPIPIL L A AT NN EFA)

1
i1=1 ji=0i,=0 j,=0

0 m x m . . .
+B(1)Y. ZZ iz,"Y."z?“n”qk (0, j1sb5 /)

§=0 j1=04=1 j=0
R D 0y O
+BMY. YD 2)Y420Y/2q, (0, /.0, j,)

§=0 /=00,=0 j,=0

Next, (2.5) may be used to remove the random variable u, , from the above expression,
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O (21, 11,22, )

—ZzB(l)ZZZ ZZ(” VY237 G ity 1)

iy=1j1=0iy=1,=0

+Z B(l)zzzzz(“al)yh Yzquk(i]’jl70>j2)

iy=1j,=0i;=0j,=0

m o

+B(l)z ZZ Z:zloY"z;2 'Y/2q,(0, ji»iy, jp)

iy=0jy=0iy=1 j,=0

+ B(l)z Z Z Zz?Y"zﬁY’qu(o 710, 72)

iy =0 j1=0i;=0/,=0
The above equation may be written as,

Oen (251525, ,)

:_B(l)z Zz ZZ]"YhZ;YZJ qk(ll7]1312>]2)

iy =1 jy=0iy=1j,=0

22 B(I)Z ZZ ZZ;'YJI Y4, Grs 410, /)

ih=1jy=0i;=0/,=0

+— B(I)Z ZZ ZZOYJ’Z”Y”%(O?J}’iz’fz)

i1=0 /=0, =1 j, =0

+ B(I)Z Z Z Zz?Y," 23 4,(0, ,,0, 1)

iy =0 j;=0iy =0, =0
Next, letting the lower limits of i, #, in the summations start from 0 instead of 1 gives,

Qk+l(zl>y|5227y2)

=——B(1){Z IDIER SED LA WA ZZZ S Y 4,0, iy, )
iy=0j,=0i,=0/,=0 i =0/,=0i;=0/,=0
w my Q0 my 0 )
ZZZ Z “Y“Z;YJZQI((H’JNO Jz)'*'zzz Zzl YJ' Ythk(oajnO»jz)}
0)=0j;=0i,=0/, =0 1=0j,=0i,=0,,=0
o om0 m mg 0 m )
ZZ B(l){zzz ZZ;]YJIZSY“%((’UJNO J)— ZZZ ZZIOYJI YZJqu (07j1’05j2)}
(=0 /;=0i3=0,,=0 i1=01=0i,=0/,=
+— B(l){z 533 Zz,"Yf*z; Va0, i )= 3 0D SN2 4, (0,1,0, m}
i(1=0/,=0i,=0,,=0 i1=0/,=0i,=0;,=0

LBOY. 5 > S 8207724, (0,7,0,7,)

#,=0 j,=0i, =0 j, =0

Combining the similar terms in the above gives,
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Qk+1(ZnJ’nZ2sJ’2)

= —B(])Z ZZ ZlelYI'Z?szqk(’nJl”sz)

ii=0 j1=04i,=0 j;=0

Lol

VY2 G 0 ) 2.12)

§=0 ;=0 =0 j,=0

2 -2 B(])ZZZ ZZ;'YJlZ;YJqu(O Jlalzafz)

=0 j=04=0 j,=0

" (22 - 1)(21 =2) pyy 3y 3 AN Y, (0, 1,0, )

122 §=0 j;=01i,=0 j,=0

As stated earlier in the assumptions, an On source generates at least one packet during a

slot, which means that in (2.12) if §, =0 then j, must be zero, if i, =0 then j, must be
zero. Therefore, we have g¢,(i,/,,0,7,)=0 for all the cases of j,>0 ; and
q.(0, ji,i,, j,) =0 for all the cases of j, >0; and ¢q,(0,,,0,,) =0 for all the cases of
5 >0or j,>0. So(2.12) becomes,

Qk+1(zlaY1,ZzaJ’2)

:—Bﬂ)ZZZX YAZEY G iy o)

i=0 j;=04,=0 j,=0
© 0 0

‘1Y!1 Z;z le qk (l] , ]] ’0 O)

7=0 /1=04=0 j;=0

~z Shah e
: B(])ZZZ Zzllyhzzzyzjz%((oo I, J2)
4=0 j1=04,=0 j,=0
_ _ 0.0 0 o
+ (Zz 1)(21 Zz B(])Z ZZ ZZ;IYIJIZ?YZIqu (O’0,0’O)
2z, §=0 /,=0i,=0 j,=0

From the definition in (2.6), the above expression may be written as,

Qk+1(21’)’|’22’J’2)

1 -1
- B(l){;Qk (21,502, 1)+ 2= 0, (2, %,00) (2.13)

1 Z

—Z,

Qk(’ 0, Zy5 )+(22—1)(ZI~ZZ)Q/¢(O’0’0’0)} , k20

2,2, 22,
This is the functional equation that relates the joint PGFs for two consecutive slots for a

tandem network with two multiplexers. It is noted that Q, (z,,Y,,0,0) and Q,(0,0,z,,Y,)

are referred as boundary functions and they are unknown.
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Let q(i,, j;»%,,/,) and O(z,,,,2,,y,) denote the steady-state distribution and joint
PGF of the system respectively, then we have q(i,, j,,i,,/,) = lim 9.y, J158,,j,) and
—0
0(z,, 5,2y, y2)=llcimQ,( (2,,)1,2,,¥,) - Therefore, the limiting form of the functional
0

equation (2.13) at the steady-state is given by
Q(Z] 84 aZz’J’2)

= B(l){—l—Q(Zl REMATE

Z Z

-1

0(z,7,,0,0) (2.14)

+57% 0(0,0,2,,1, )+ (z, -1z =2) Q(0,0,0,0)}

)2, 212
It is noted that Q(0,0,0,0) corresponds to the probability that the system is empty at the

steady state.

2.2.2 Preliminary Results

In order to transform the functional equation in (2.13) into mathematically more
tractable form, a number of preliminary results will be given here. More details regarding

the preliminary results can be found in [10]. Let us define the following,

X, (k+1) =Xi(1)[Xi(k1yi=Yi] with X, (0)=1, X, ()=6,+(A-8)y.f.(z) (2.15)
U(k+1) = X,.(l)[U,.(kXyl:yi] with U,(0)=y,, U (D =1-a,+a,y,f.(z,) (2.16)
where 1<i<n.

X,;(k) and U, (k) defined in the above have the recurrence relationships given below:

X,(ky=[p +a,f,z )X, (k=D +[1-c, - B1f,z) X, (k-2) , k=2 (2.17)

U k)= +a,f,z)U.(k-D+[1-a, - B1f,(z)U,(k-2) , k=2 (2.18)

Let us define:

60=29 " then, 4=y, M=%, gE+D=g®)| (2.19)
X, (k) »=,

B,(k)=[X,(®)]", B(k)= l_ilIBi(k), B/ (k)= B,-(k)lyizﬂ.( 7 (2.20)
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2
From (2.20) we have B,(1)=[X,()]", BQ1)= HBi (1), which are the same as defined
i=1

in (2.11). It is noted that B (k) = B, (k) , and from (2.19, 2.20) it is easy to show that,
B,(k+ j)= B.(/)B/ (k) (2.21)

The homogeneous difference equations given in (2.17, 2.18) have the following

characteristic equation,
A —[ﬂi + aifi(zi)]/li —(I-a,-£)f(z,)=0

The roots of the above equation are given by,

i +aifi(zi)q:\/(ﬂi +aifi(zi))2 +4(-a, - ) /(z)

I = : @.22)

Then, the solutions of the difference equations are given by,

U, (k): Duﬂfi + Dzl'/llz(i . ¢ (k)= Cli/l:(i + CZiA’IZ(i (2.23)

where,

Ciioi = 1 T 20y =y — ai)zfi (z,)+ (/Bx + aifi(zi)) (2.24)
2 2B +af,(z)) +40-a - B)fi(z)

Dy, = Vi 2(1 ~a,+2,),f, (zi))_(ﬂi +aifi(zi)) i (2.25)

2 2(B +anf,(2)) +40-a,~ B) ()
In the above expressions A, C,;, D,; are taken with the negative sign and 4,,,C,;, D,,

are taken with the positive sign.

From (2.20, 2.23), we have,
B(k)= (Cli/?‘fi + CZi/’{‘;i)Mi (2.26)

2.2.3 New Form of the Functional Equation

With the above preliminary results, the original functional equation (2.13) can be
transformed into a new form, which is mathematically more tractable. Because the
steady-state distribution of a Markov Chain does not depend on its initial distribution, and

this research work is only interested in the steady-state joint PGF, the initial state of the
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system does not matter. For simplicity, the following zero-initial conditions will be

assumed,
0,(21,51,2,,¥,) =1, 0,(0,0,z,,»,) =1, O,(z,»,0,0) =1, 0,(0,0,0,0) =1 2.27)
which means that the initial queue lengths are zero and all the sources are in Off states.

In the next, the functional equation (2.13) will be transformed into a new form. At

first, it may be shown that the functional equation may be expressed as follows,

O (2, V1,25, ;)

k : ,
= _—J—k {szB(k +1)+(z, - l)z z,’ (lez)k_j B())Qyn-,(2,,9,()),0,0)

- (z,2;) =

SYE oy , 228
+(Z]—22)Zzzj (lez)k jB(])an-j(OaO’Zz’¢2(J)) ( )

+(z, -1D(z, - 2, )i sz_] (2,2, )kij(j)le-j (O>O>O,O)}

In the above, it is assumed that if the upper limit of a summation is less than its lower
limit, then that summation is empty. The proof of the above result will be given in the
following through induction. First, expanding Q,.,(z,,¥,,2,,»,) in (2.13) for the first few
values of £, we have,

I)Fork=0

The functional equation (2.13) gives,

Ql(zvywzzayz)

1 -1
= B(l){z_Qo (Zl 1,2, ) + ZZZ— o (Zl 4 ’O’O)
I 1
+B25 0 (00,2, 1)+ A ) o (0,0,0,0)}
zyz, 212,

From the zero-initial condition assumption in (2.27), we have

QI(Z,,y],zz,yz): B(l){i_'_ Z, —1 + Z,—Z, + (Z2 —1)(21 _22)}

z, z, z,z, z,z,

or equivalently,

0(z1,31,2,,3,) = BO) (2.29)
Thus, it may be seen that (2.28) is true for k= 0.
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II)Fork=1
The functional equation (2.13) gives
QZ(Z]’yDZZ’yZ)

- Bm{zig, (D22, )+ 20, (5,4, .00)

z
+ 1

“2.0,(0,0,2,,4,00)+ XA TR (o,o,o,o)}
212, 2,2,
Substituting (2.20, 2.29) in the above, we have,

Qz(znynzva’2)

= B(l){lB’ M+

2 Z

Zy -

1 o (21 N (l),0,0)

Zy—Z
+1 2

0,(00,2,.4, )+ 2= NE =) o (0,0,0,0)}

ZiZ, 212,
Applying (2.21) in the above equation gives

QZ(Zl’yl’ZZ’yZ)

=L B@)+ 2722 B1)0,(0,0,2,,4,(1) (2.30)
Z 2z,

NEzhel BMO,(z,, 4,(1),0,0)+ (z, =z~ 7) B(10,(0,0,0,0)
212, 2,2,

Thus, it may be seen that (2.28) is true for k£ =1.

Now, let us assume that (2.28) is true for the order &, which is

0 (21, 1,25,1,)

k-1 '
1 {sz*]B(k) +(z, - l)z z,’ (zlzz)kul_j B()Q,-,;(z,,¢,()).,0,0)

= |
(z,2,) I

= : 2.31
H@-2)Y 27 (2,2,) 7 B()O,, (00,254, () (2-31)
=1

J=

k-1 .
+(z, (7, -z, )Z sz_] (z,2, ) B())Qx-; (O;O:O,O)}

Then, it will be shown that (2.28) is also true for order & +1.

Substituting (2.31) in (2.13) gives
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Qk+](21’y1’227y2)
k-1 . .
- A {szB k) +Hz, -0 2, (2,2,) 7 B (DO, (254, +1),0,0)

X
(z,2,) =l

k-l .
(z, ‘Zz)zzzj (lez)kﬁl—jB](j)Qk—j(O,Oazza¢2(j+1))

k-t ‘
+(z, —D(z, - 2,)) 2, (2,2,)" B (NG, (0,0,0,0)}

J=t

+ 20 {(h ~1)2,0, (2, (D0,0,0) + (2, = 2,)0, (00,25, (D) + (2, = 1)z, — 2,)0,(0,0,0,0) }

z,z,
From (2.21), after rearranging the terms, we have,
Qe (211,25, 9,)
- —B(k +)+—o G ! Y (z, - )kf; 2,"(2,2,)"7 B(j +DQ,_,(2,,4,(j +1),0,0)
=)

Z z,z,

+B_z(]1')'( 2 D0, (2,,4,(1),0,0)

+(_]]Z>7(Z' "22 )gzz“z‘%)“"’B(f+1)Qk_, (0.0,2,,4,(i+1))
Z]( ) )9,(0,0,2,,0,(1))
e 2)" Gy 2 ZZ)ZZZJ(Z 2,)"" B'())Q,-;(0,0,0,0)
z(zz) (z, —1(z, - 2,)0,(0,0,0,0)

Finally we obtain,

Qv (221,23, 92)
k . )
- '—IT{ZZkB(k +D+(z, - I)Z z,’ (Zrzz)k—l B())Qyu-;(21,6,()).0,0)

(z,2,) =l

+(z, -z, )Zl: ZzH (z,2, )k_j B(j)Qk+1-j 0,0,z,,0,())

+(z, )z, - )Z (2,2,)7 B()Qyu_, (o,o,o,O)}

J=1
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The above is the same as (2.28). Thus, it has been shown that (2.28) is also true for order
k +1. This completes the proof of (2.28). Actually, the solution of the functional equation

in (2.13) is given by (2.28) except for the unknown boundary functions, @, (0,0,z,,y,)

and Q,(z;,5,,0,0).

2.3 Tandem Network with Arbitrary Number of Multiplexers

Next, a general tandem network with arbitrary number of multiplexers is considered.
Assuming that the number of multiplexers in the network is greater than n (n=2), then
the behavior of the »’th multiplexer is not affected by the multiplexers on its downstream
and the total effect of the multiplexers in its upstream has been summarized in the output
of the (n-1)’st multiplexer. Thus, in order to determine the performance of the n’th
multiplexer, one only needs to consider the joint performance of the (n-1)’st and n’th

multiplexers.

The system that consists of (n-1)’st and »’th multiplexers may be modeled using a
discrete-time four-dimensional Markov Chain as before. The state of the system under

consideration can be defined by the set of four random variables, (¢, ,,a,,,¢,,,@,,)-

Let O,(z,.,,¥,4,2,,¥,) denote the joint PGF of this system,

Qk(zn ]’yn 12 n’yn)
=E[§1”y3 "z ”yff"‘] (2.32)

- Z Z Zzz lynlznyn qk(l »],jn—pinaj,,) s n=2

=0 jp1=0,=0 j,=0

Where qk(lnl’]n—]’ n’.]n) Pr(gnlk: nl’ n-1,k jn—1>€ =in’an,k=jn)9
Then Oy.1(2,.1: Y4122, 7,) is given by,

Q2,15 Y,4:2,. )
= Elzyo iy (2.33)

m,., ©

:Z Zzznlynllzn ynqk+l(ln]9jn1’n’]n) , nz2

in1=0 jpy=0 =0 /,=0
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Following the embedded Markov chain analysis of section 2.2.1, the relation between
0.z, Va2, ¥,) and O, (2,1, ¥,t52,, Y, ) may be determined,

Qk+1 (Zn—l > V-1 ’Zn ’yn>

1
:Bn—l (I)Bn (1){Z_'Qk (Zn~I’Yn—I’Zn’Y;)+ z Qk (Zn—l’Yn—l ’On ’On)
n—1 n-1 (234)

z,—1

Z,,—2, z,-1)(z,,-2,)
+ l Qk (On~l ’0n~l ’ Zn ’ Yn )+ ( ] Qk (On—l ’On—l ’On ’On )
n—lZn Zn—lzn
, k>0, n>2
where, O, (2,,,Y,.1,0,,0,) = Qi (2,15 Y0152,5 V) 2. 0.p,20
Qk~j (On—l >0n~l ’Zn ’ Yvn ) = Qk—j (Zn—l ’yn—l ’Zn ’yn) 2,.1=0,y,_,=0

Qk_j (Or,_| 70,,_1 70,, ,0,,) = Qk—j (Z,,_l sVus12Zn> yn)

2,-1=0,,1=0,2,=0,y,=0

In the above equation, substituting 1 for z,_, and y,, gives the joint PGF of the n’th

multiplexer,
O (ln—l lots 2, yn)
= Bn (1){Qk (1n~l ,1,,,1 > Zn ’ Yn ) + (Zn - I)Qk (1 n-1 ’ln—l ’On ’On ) (235)
_1\2
+ 1 —Zn Qk (On—l ’On—]’Zn’Yn)_-(—Zn——l_)—Qk (On—l ’On—l’on ’On )} ’ k 2 0
Z, zZ,

Where Qk—j(ln-l ,ln__],Z",Y") '_‘Qk-j(zn—]:yn—]’zn,yn)

2
2y =k Yy =1

Qk—j(ln—l >1n—1 ’On ’On) :Qk—j (Zn—-]’yn—-l’zn’yn)

z,1=Ly,=1,2,=0,y,=0
This functional equation relates the joint PGFs of the n’th multiplexer in a tandem

network for two consecutive slots. It is noted that O, (0,_,,0,,z,,Y ) is referred as a

boundary function and that it is unknown.
Letting g(i,,j,) and Q(1,,,1,,,z,,y,) denotc the probability distribution and joint

PGF of the of the »n’th multiplexer at the steady state, we have g(i ,/, )= }(imqk(z’", J.)
a'nd Q(l,,_] 31,,—] b Zn 5 y;,) = il_l,{i Qk (ln—l ’ln—] > Zn’ yn) .

Then the limiting form of the functional equation (2.35) at steady state is given by,
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Q(ln—l ’ln—l’ Zn’ yn)
= Bn(l){Q(ln—l ’ln—l 2 zn ’ Yn )+ (Zn - l)Q(ln~l 7ln—l ’On ’On) (236)

+]_Zn

z, V4

n

_1\2
Q(On-l DOn—l’Zn’Yn)_u_Q(On—l ’On—l ’On ’On )} ’ k 20

Next, as before the functional equation (2.35) will be transformed into a

mathematically more tractable form. Again, zero-initial conditions are assumed,
Ol 2,00 =1, 00(0,,,0,,,2,,¥,) =1,
9,(,.1,1,.,0,,0,) =1, 9,(0,,,,0,,,0,,0,) =1 (2.37)
Then, new form of (2.35) is given below,
0,151,052, 5,)

k-1
=B,(k)+(z, - 1)2 B, (NG ;(1,451,.1,0,0)

-z, & . . 2.38
+ - ZBn (.])Qk-j(on—l 0,.1:2,,9, (])) ( )
n J=1
_1\2 k-
I " B,()0,.;(0,,,0,,.0,.0,) k>1,n>2
z, =

The proof of the above equation is also through induction and the application of the
preliminary results, which is similar to the proof of (2.28), therefore, the derivation will
not be given here. Basically, the solution of the functional equation (2.35) is given by

(2.38) except for the unknown boundary function, Q,(0,0,z,,,).
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Chapter 3

Performance Analysis of Two Multiplexers in
Tandem

In this chapter, the performance of the simplest case of a tandem network with only
two multiplexers is studied. The functional equation derived in the previous chapter is
solved by using a straightforward approach. First, the two unknown boundary functions
are determined, which lead to the determination of the joint PGF of the queue length and
the number of On sources for the second multiplexer at the steady state. Then, from this
joint PGF the marginal PGF of queue length as well as the corresponding performance
measures are determined. Unfortunately, this solution technique does not extend to a

tandem network with more than two multiplexers.

3.1 Determining the Boundary Functions
The functional equation describing two multiplexers in tandem is given in (2.28),
which contains two unknown boundary functions, 0, (0,0,z,,y,) and Q,(z,,»,,0,0). In

this section, these boundary functions are determined.

First, the boundary function @, (z,,y,,0,0) is already available in the literature [10].
In the next, the derivation of this boundary function is explained. It is noted that

0,(1,1,0,0) is the probability that the second multiplexer is empty and all of its m,
sources are in the Off state in slot k. Thus, given @, (1,1,0,0), the first multiplexer must be

empty in the previous slot and all of its m, sources must be in the Off state in slot 4-1;

otherwise the first multiplexer would output packets to the second one in slot k£ and then

the second multiplexer cannot be empty in slot k&, which conflicts with the given
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condition O, (1,1,0,0) . As a result, we have O, ,(z, =0,y =0| {,,=0,a,,=0). From

this zero initial condition at slot -1, the first multiplexer reaches to slot & through a one-

slot evolution, which is [ 8, + (1 - 8)»,f,(z)]™ . Therefore, Q,(z,,,,0,0) is given by

0,(2,,,,0,0) = Q, (LLO,O) B, + (1= By i(z)]" . k=21,

or equivalently

0, (z,»,0,0) = (DY, (1,1,0,0) , k=1 (3.1)

Unfortunately, there is no such an easy way to derive the other unknown boundary

function Q, (0,0,z,,y,) . Next, this unknown boundary function will be expressed in

terms of the known one in (3.1).

The functional equation in (2.28) may be written as,

Qk+1(Z]ay1522>y2)

k
——1—7 {zéB(k +1)+(z, =D 272y B()Osr; (21, 4,(1),0,0)

- (2,2, 7=1
+l_jZ§_lB(j)Qk+1—j (0,0, 2,,6,(1))

. 32
—IZSB(j)QkH‘j (0,0,2,,¢,(j)) G2

k
+ Z zt
j=1
k
j=1
k
+(z, =1, 2" 23 B())B())0,.._,(0,0,0,0)
Jj=1
k .
~(z, =D, z{“’sz(j)B(j)Qh,*,(0,0,0,0)}
j=1

- , | : , 0. :
Substituting 0 for z,, y, in the above equation results in the form of o indeterminacy,

therefore, L’Hopital’s rule is applied, which gives,
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Qk+1 (0’0’ z2 ’yz)

. zX B (k+1)B,(k +1)
iz}
: d* (i .
+(z, "1)22532 (J){ﬁ(zlk ’B, (])Qk+]—j(zl’¢l(.])90a0)j }
/= ! 71=y=0

kB YV ()By ()@ (00,25, 6, (1))

kB (1)B())Qrr,(0,0,2,,6, (/)

: k

+ Z z
j=1

: k

- ZZ 2
J=1

k —
+(z, -1 25 kB, (/)B, (/)01 (0,0,0,0)

J=1

—(z, - 1)iz:lz( ‘ k!'EU) (B (N)Cxn-, (0,0,0,0)}

J=t

(3.3)

1d'B.())

where the notation B,'”(;) denotes B! ()= o
. Z;

(3.4)

z;=y;=0
Rearranging the terms in the above gives,

Qk+l (070: Zz J’z)
=B "™ (k+1)B,(k+1)

k 1 dk ]
+ (22 - I)Zl'/; Bz (]) —dZ—k (Zlk—jB] (j)Qk+]—j (Zl >¢1 (.j)’oao)*
/= ) ! 7=y=0

k .
+ Y LB (NB()Oun,(00,23,6,() 3.3)

j=1 %2
k —_— .
= 2B (NB,(NGe-,(0.0,2,¢, ()
N )
+(z, —DZ—Z—B,“ "()B,()0,..-,;(0,0,0,0)
Jj=1 2

(2 =D B (DB () (0,0,0,0)

Let us define the following additional notations:

g, =B+, g =BY()) (3.6)
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1

fi=—g.-8), (3.7)
2
Vod (imy. :
hk+1—j,j = (ZZ _1).__ *—k(Z, B] (])Qk+]—j(zl’¢1 (])3070) (38)
k| dz; g0
R, =(z, -1, (3.9)
Ik,j = hk+]—j,j +ijk+1_j (0,0,0,0) (3.10)

It is noted that the maximum power of z, in the denominators of f, g, and &,,, . are
all j.

Then, equation (3.5) may be expressed as

k k
0.(0,0,2,,,)=g,B,(k +1) + Z.ij2(j)Qk+]—j(0’0922>¢2(j)) + Zlk,sz(j) (3.11)

Next, the expression Q,,, (0,0,z,,¢,(j)) will be eliminated in the above equation,
and Q,,,(0,0,z,,y,) is expressed in terms of 0,(0,0,z,,y,) and the other boundary

function. For this purpose, Q,,,(0,0,z,,y,) is determined for the first few values of k .
For k=1
0,(0,0,2,,,) = g,B,(2) + 2ﬂBz (ND>-;(0,0,2,,4,()) + Z B,(N)I,,
= e
0,(00,2,,,) = g 8,(2) + £,B,(0Q, (0.0, 25, 4, (1)) + B, (D1,
For k =2

2 2
0,(00,2,,5,) = £,8,3)+ 2 /,B,()Gs.,(0.0,2,,8,(N)+ X B, (N,

05(0,0,z,,,) = 8,B,(3) + f1B,(NQ, (O>0?Zz N (1))+ f2B,(2)Q, (O,O’Zz .9, (2))+ ZBz (N1,

J=t

0,(0,0,z,,y,)=g,B,3) + /B, (I)I:g1B; (2) +lezl Mg, (anazz P, (2))+ ile (j)]l,j:I

J=1

+£,B,0,0.0.2,,6, @)+ LB, (DL,
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0,(0,0,2,,y,)=g,B,(3)+ /,8,B, (3)+f1232 2)o, (0,0,22,¢2(2))+fIZBZ(j+1)1,J

+1,8,(20,(00,2,,6,D)+ 2B (D,
0,(00,2,,,) = (g, + 2B, () + (' + ) Ba(D0,(00,2,,4,(2))
1 2
+/, ZBz (j+D1 +ZB2(j)12,j
j=t Jj=1

For k=3

0,(00,2,7,) = g,By(4) + gf,Bz (D04, (00,2, ,(1)+ ZB s,

0,(00,2,,7,) = 8B + f,B, (N0, (0.0,2,. 6, )+ £,5, (22, (0.0.2,.6,(2))
+ 1,8,()0,(00,7,,6,3)+ ZB )i,

0,(0.0,2,,5,) = g,B(4) + £,(g, + £18)B,#H + /(i + /)B,(30,(0.0,2,,6,(3))
+ 12X B+ DL+ 2By 4 DL +28,(4) + £,£:8,(90,(00,2,,6,(3))

+ 1,2, B+ D1, + £B,3Q/(0,0,2,,6,3)+ 3 BN,

Q4(0,0,zz,y2)=(g3 +f2g1 +f1(g2 +f1g1))Bz(4)
AU+ L)+ NS + 1,)B(3)0,(0.0,2,,6,(3)
W ONAVEIFENSWACRDLIETS AUV WAGLY

Q4(O’0’22>Y2) = (g3 +fzgl +(f1g1 +g2)f1)Bz(4)
(4 51+ £+ £))BD0(00,2,,6,3)

1 2 3
L)Y B+, + 0. B+ D, +) By (D
J=1 j=l j=1

For k=4

0,(0,0,2,,7,) = £,B,(5)+ D £,8,(N0s_,(0,0,2,,8,(N)+ Y B, ()L,
Jj=1 J=1
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0,(0,0,2,,,) = 2.B,(5) + £,B, (10, (0,0, 2,,8, (D) + £,B,(2)0,(0,0, 2,,8,(2))
+ /B,(30,(0.0,2,.6,(3)+ 18, (40, (00,2,,6, D)+ X B, (N,
Qs (O>0’22:Y2)

=g,B(5)+ 1, (g3 +g, /1 +(F + g )Bz (%)
+ AL+ 1)+ £+ 1, )B(0,(00,2,,6,(4))

AV W AT

+flziBz(j+2)12J +f,Z::Bz(j+1)I3J
+ (g, + /12))B, (5)+fzj<ff +/2)B,(4)0,(0,0,2,.,4,(4))
AR B, D B+, ¢ 80
+f3f1119; (90,(0,0,2,,4, (4])_)
+ fZB (+3)1,; + [,B,(#HQ, (0,0, zz,¢2(4))+ng QL1
0:(0.0,7,,,)

=[g,+ £i(gs + fi(g, + fig)+ £22)1B,(5)

+f2((g2 +g1f1)+g1f3)32(5)
AU+ 1)+ £+ L)% LU+ 1)+ 5+ £ B #0,0,0,2,.6,(4)

A+ L)+ LS+ LB+,
(R + /2 B+ DL, + £ B (G +D;
‘*‘ZBz (j)14.j

Next, let us define a, and b, as follows,
a, = f,
a, = fifi + [y
a, = AN+ 1)+ ofy + [
a, = MAUNA+ D+ Lfi v Bl LUGA+ )+ L+ fas
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b =g,
b, =f1& + &>
by = f,(f18 +8,)+ 28+ &35

b, :fl[fl(flgx +g,)+ /.8 +g3]+f2(flg1 +g,)+ /38 + 8,

Let us define a, =1, b, =1, then a;, b, may be expressed as,
a, = f,a4,
a, = fia, + [,
a, = fia, + f,a, + f34,,

a, = fias + fLa, + fra, + f,a,,

by = g,by,

b, = f,b, + g,b,,

b, = f,b, + f,b, + g;b,,

b, = fiby + [,b, + fib, + g,b,,

Therefore, it is concluded that

j-1
a,=) fiua, ,jz1, witha,=1 (3.12)
i=0
j=1
b=gby+Y fiub , jz1, with b =1 (3.13)
i=1

One may note that the maximum powers of z, in the denominator of a and b, are j.

With the above definitions, equation (3.11) may be written as,

k-1 k—i

0,1(0,0,2,,9,) =B, B, (k +1)+a, B, (k)0,(0,0,2,, 4, () + D D a,B, (G + D, (3.14)
i=0 j=1 .

, k=1

Thus, Q,.,(0,0,z,,y,) has been expressed in terms of (,(0,0,z,,y,) and the other

boundary function.
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From (2.29), we have,

0,(0,0,2,,y,) = B,() /™ (3.15)
Substituting this result in (3.14) gives,

k=1 k—i

Q,M(O,O,zz,yz)=kaz(k+l)+akB2(k+1),Blm'+22ai82(j+i)1,(_,.,j , k=1 (3.16)

i=0 j=1
From (3.10) we have,
Ly = Moy R Qkn-,.(0,0,0,0)

Substituting from (3.8), the above equation becomes,

dkz

dk i i
Iy = (k——z)'{ ( B (/)Osa- —imj (z,,4,()),0 O)i

} + ijk—l—-i—j (0)07030)

7=y;=0
Substituting the above result in (3.16) gives,

0,1(0,0,2,,,)
=b,B,(k+1)+a,B,(k+1) ™

k=1 k=i

+(2, _l)z

i=0 j=1 (k )'

k—i

aBz(j+i)|: i ( 7B V(D ,-1(217¢1(])00)1 jl

2

k-1 k—i

+ aiB2 (.] + i)ijk+l—i~j (0705030) » k21

i=0 j=1

Let us change the subscripts in the above equation as follows, i = i,, j — j,, and let

¢, =k+1-i, - j,, then above equation becomes,

01(0,0,2,,,)
=b,B,(k+1)+a,B, (k+1),3,""
k-1 k—i,
+(z, —1)22 a,.sz(k+1—€2)
ip=0¢;= )
dk—iz ( [2_1 L k .
* e 2" Bi(k+1-14, gz)Qz,(Zh¢1( +1-1, —£,),0,0)
! 27=1=0
k-1 k=i,
+. > a, By(k+1-£,)R,,,. , 0, (0,000) , k=21
i=0 ;=1

Next, exchanging the order of summations in the above gives,
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Qk+l(090’22’y2)
=b,B,(k+)+a,B,(k+1) "

K k=t,

+(z, - DZZ(k- )aB(k+1 ;)

€=t =0

dk iy ‘
#| (217 B (k1= iy = £,)0, (21,6, (k+1~i, = £,),0,0)
dz, " _—
k k=t
+3° 3 a, B (k+1-£,)R,.,._, 0, (000,00 , k=1
#2=1i,=0

letting r, = k—1i, in the above equation, we have,

04n(0,0,2;,»,)
=bB,(k+1)+a,B, (k+1),3,"”

+(22—1)ZZ a,_, B, (k+1-1,) (3.17)
{,=1n=(, 2
d™ (o
i (21(2 IBI(VZ+1—52)Q€2(Z,,¢1(r2+l——ﬂ2),0,0)* :|
! 71=n=0
k k
+> D a,, B(k+1-£,)R, , , 0, (0,0,0,0) , k>l

13=1n=t,
If £ =0, from (2.29) we have Q,(0,0,z,,y,) = B,(1)F"
This completes the derivation of expressing Q,(0,0,z,,y,) in terms of Q,(z,,,,0,0).
Substituting Q, (z,,¥,,0,0) in (3.17) from (3.1), we have,
B\(ry +1=£,)Q, (2),¢,(r, +1-£,),0,0) = B (r, +2-£,)Q, (1,1,0,0)
Further,

1d™ [, .
— (2B, +1-£,)0, (21,4, (1, +1—z2),o,0)1

-
r, dz,*
2 1 zy=y,=0

_ta

£
r, dz|

(zlez_lBl (r,+2-4, )le2 (1a1>0’0)1

zj=y;=0
1 d -~

= B(r,+2-¢ 1,1,0,0
(r, =L, + 1) dz* 6 (7 208, ( )

= E](rZH_(Z}(rz + 2 - g 2 )Q(z (]a17070)

zy=y,;=0
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Substituting the above result in (3.17) gives

0,.(0,0,2,,y,)
=bB,(k+1)+a,B,(k +l)ﬁ,m'

k_k _
+(z, =D Y a,, B, (k +1-£,)B""™(r, +2-£,)Q, (1,1,0,0) (3.18)
6,=1n=t,
k k
+Y > a4, B(k+1-£,)R, ., O, (0,0,0,0) , k=>1

=1 n=t,
Finally, the boundary function Q,(0,0,z,,y,) has been expressed only in terms of

0,(1,1,0,0) and Q,(0,0,0,0).

3.2 Joint Steady-State PGF of the Second Multiplexer

Since the first multiplexer is not affected by the second one, it behaves like a single
multiplexer, which has already been studied in [22]. Therefore, only the performance of
the second multiplexer needs to be studied. In this section, the joint steady-state PGF of

the queue length and number of On sources for the second multiplexer will be determined.

After substituting 1 for z,,y, in (3.2), the marginal PGF of the second multiplexer is

obtained, which is given by

Qk+] (1,1,22 9y2)

k
=;17{2sz2 (k+D+( _22)225‘]Bz (NG41-;(0,0,2,,0,()))
2 j=

+(z, - l)i Z:lz(Bz (j)Qk+l—j (1,1,0,0)

+(z, -1 -2z, )i 25 By (NG (0,0,0,0)}

The above may be written as,
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Qk+l (LLZQ ,)/'2)
=23 B,()Qun-, (00,2, (1))

Zy

:Bz(k+l)+1

+(z =D B, ()@yn; (11,0,0) (3.19)

Nk
_ (_Z_z__lz B,(/)0y.1-,;(0,0,0,0)

2 A
As may be seen, the above equation has only one boundary function, which has been

determined in (3.18). In the following, this boundary function will be eliminated. First,

B, (/)0y.1-,;(0,0,2,,8,())) is formed from (3.18),

B, (j)QkH—j (0,0,z,,0,())
= bk_sz (k+D+ ak_jB2 (k+ 1),3]”"

k—j k=j

+(z, — I)Z Zak-—j—rzBZ (k+1-¢, )EUZH—[Z)(’E +2- gz)Qez (1,1,0,0)
=1 =0,
k—j k—j
+> > a4, By(k+1-L)R, ., 0, (0000) , k=j+]
l,=ln=¢,

From (3.17), it k= j, then @, ;(0,0,z,,y,) = B,(1) 5", thus

By ())Qin-;(00,2,,8,()) = B,(k + D™, if k=
Substituting the above results in (3.19), we have,
Qk+] (1319 Z2 H y2)

= B,(k+1)+ 1-7 B,(k+1)B™
Z

2

1-z, k-1 i
Bk +D 3 b ap )
2 j=t
N\ k-l k=) k-
(z2 ) D 6,y By Uk +1=0)BE 2, +2-£,)0, (11,0,0) (3.20)
J=1,=1 ’2"’(2
_ k-t k-j k
1 z, ak,,B(k+1~£ R, .-, 9., (0,0,0,0)
Zy A bymin=t
k ] (z, -1 3 .
+(z,-1)) B, (])Qkﬂ—j(l’l’O’O)—Z—sz ()@ (0,0,00) , k=1
J= 2 =
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Let us define the transform of O, (1,1,z,,»,) w. . t. to discrete time £,
01,2y, y,,@) = Y 0, (11,25, ;)0 (3.21)
k=0
then,
Q(lala Z2:Y2> CO) = QO(]’L Zy5 yz)wo + Q] (1’17 2y yz)a) + Z Qk+| (1717 225 yz)a)Ml ’
k=1

Substituting (3.20) into the above equation, we have,

oL, z,, y,, w)
=1 +Ql(1,1,zz,y2)a)+ZBz(k+1)a)"“ +1—"—Z—2—232(k +DBM
k=1 2y k=l
-2z, < & m -kt
DY B, (k+1)b,_, +a,_,B™Mw
2 k=2 j=1
2 w k-1 k—j k—j .
_& -] Z > Ay jor, By (k +1=£,)B 7 (1, + 2= £,)0, (1,1,0,0)0"" (3.22)
Z; k=2 j=1 €,=1r=t,
1 —r & k-1 k=j k o4
222 ak,,B(k+1—f)m,wzQ[(ooomw*
2y k=2 = =l n=t
2 . k+1 (Zz —1)2 S . k4l
(2 =D 2 By (NQi, (10,000 —22—=3 3 [ B, (0,1, (0,0,00)
k=1 j=1 2 k=1 j=1
Let us also define the following transforms:
Q(030707O7 CU) = ZQI( (an’O’O)wk (323)
k=0
0(1,1,0,0,0) = > 0, (11,0,0)0" (3.:24)
k=0

Further, defining the probability distribution and PGF of the busy period for the first

multiplexer as,

&,(j) = Prob( multiplexer-1 has a busy period of j slots), j=0, 1, 2,... (3.25)
L(w) =Y &)’ (3.26)
j=0

Then from Appendix B, the derivatives of B,(k) has been expressed in terms of I, (w).
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After some algebraic manipulation, details of which can be found in Appendix C,
equation (3.22) may be written as,
01,2y, y,,0)
=1+€2[”’,2j(qzﬂ”)i(92fzf "o
=0\ ! v
- )Z [m] (Cohy) <czzﬂn>'"2" wﬂ: ol (A A

- . - (3.27)
(-4, a))[22 Ay, “al, (’112/1222 w)]

2 Cipdy) (Cpdy, e L i2/1'21122_i
- (z, ~D*[001,1,0,0, w)—l]Z(m ) (41' A )ag)[z/12 2?1 o “5?(’11 w)“’)]

+(z, - 1[0(1,1,0,0, ) - 1]2(’"2) (Ciaby) ic;;ﬁ

In order to determine the steady-state PGF of the second multiplexer, the final-value

theorem is applied,
Q(1,1,22 ’yz) = an (171’22 ’y2) = 1(3{)1']1(1 - a))Q(171’Z2 ’y2 > w)
Because,

hn,l(l - a))Q(l)l)())O) C()) = Q(1>13090) =1- (p] + pz)

where p, is the traffic load generated by type-i sources, and (p, + p,)is the total traffic
load of the second multiplexer. From [22] we have,

=m0, f (D) (3.28)
In the above, m; is the number of type-i sources, o, is the probability that a type-i source
is On, and f/(1) is the mean number of packets that an On type-i source generates during

a slot. o; may be expressed in terms of the source parameters,

__ -5
a7 (3.29)

After the application of final-value theorem to equation (3.27), we have,

41



01,25, ;)

(2 -1 p, - pz)Z[l)(C”ﬂl“_) ;1”“2 - (3.30)

e (C) (Co)"™ T,
=D 0-p—r Z)Z( Ja—ﬂ;z N2y — AR T (A )]

The above gives the joint PGF of the queue length and number of On sources for the

second multiplexer at the steady state.

Substituting y, =1 in (3.30) gives the marginal PGF of the queue length for the

second multiplexer, which is given by

P(z)) = (z, - 1)1 = p, - p2)z[":zJ(Cnﬂl1_) icisz) i

I (Ciohy) (Con )™ T (A, A557)
(22 1) (1 P pZ)Z( ) (1 _ ﬂv]zlgg—l) z, - 212/1?22—11—* (ﬂq m2—1

(3.31)

where, C,, =Cyl, , and Cyp, =Cy| (3.32)

yy=1

Next, the behavior of the second multiplexer is dicussed when the load of the first
multiplexer approaches to zero. In this case, there are no arrivals from the first
multiplexer to the second one, and therefore the second multiplexer should behave like a
single multiplexer. In the following, it will be shown that the presented analysis supports

this conclusion.

Since, given p, =0, the first multiplexer is always idle, its busy period has zero
duration with probability one. Thus from (3.26), we have I} (w)=1. Substituting this

resultin (3.27) and letting y, =1 gives,
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oL z,,1, )
— <[ M2 (512}‘12)i(522172 "
_1+2[1) 1_/11 mz—z
+(z, - D[0(1,1,0,0, ) _1]2[’"2) (Clzﬂlqz) écziéf )™
| -
—(z. — ", (Clz/llz (szlzz)m2 wfﬁleg"f"'
e )Z( j (- A )z, — A ]

—(z, -1)*[0(1,1,0,0, ) — 1]2( ) f‘?ﬁj}a()fz;ﬂﬂ{mw

i=0

From (3.32) and (2.24), we have,

e}

m ~i ~m2~i ~ ~ my .
Z[ izjclzczz :(C12+C22) =1,

i=0

Therefore, O(1,1,z,,1,w) may be written as,

o1l z,,1,w)
+(z, ~DO,1L0,0,0) - 1]2( , )(C”ﬂ;z)fzif??
(e - >Z[m2j (Cory) Cy)™” au;zz;"; '

(= 24557 @)z, = Ao A" @

~(z, - 1’[0(1,1,0,0, w) - 1]2( )(1 _(flzﬁzz_? af)szzﬂqz%%n

Combining the first term with the second one, the third term with the fifth one in the

above, we have,

Q(l,l,zz,l,a))
e —1)[Q(1,1,0 0,0)- 1]2(’"2)(@2”") (f”?

(0 my \(C4,) (szﬂzz)mz—‘wfgz 7w
e )Z( J(l—ﬂ; oz~ A2

The above may be written as,
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Q(laLZz ,1,(0)

- o[ ™ 51i252"2’2Ai _ _ m, (Clz"{u (sz/?'zz)mrl
) ( ' jl—ﬂézﬂ;"{"w ) Z( j %Zl';; '
+(z, -DE1,1,0,0, )Z[ J(Clzix )_;]ijzﬂ )™

_ _ m, (CIZX’I )(sz’lzz) 'la”ﬂz/l;nzz
. DZ( j(l A )z — A A ]

Combining the first, second and the forth terms in the above equation results in,

0(1,z,1,w)
- m; 1z, (Cl2) (sz)m2
Z[ ] zZ; 212’1;"7?"

+(z, - 1DQ(1,1,0,0, )Z[mzj (ClZA‘lZ) (sz/?'zz )" @

— Ay Aoy @
As expected the above expression corresponds to the single multiplexer result given in
(23) of [22].
Next, let us determine the PGF of the queue length of the second multiplexer at

o, =0. Substituting p, =0 and T,(4,4;27) =1 in (3.31) gives,

P (Z ) (22 —1)(1 -—pz)Z( )(CIZAIZ) ElchziZ_zl)

Again, P,(z,) corresponds to the single multiplexer result in (30) of [22].

In the above discussions, it has been shown that the second multiplexer behaves
exactly like a single multiplexer if the load of the first multiplexer approaches to zero.

This consistence gives further confidence that the previous analysis is correct.

3.3 Performance Measures of the Second Multiplexer

From the steady-state PGF of the queue length, it is easy to determine the
corresponding performance measures, such as the mean and variance of queue length,
mean packet delay, for the second multiplexer. First, the PGF of the queue length (3.31)

is transferred into a more convenient form. Let us define the following,

44



E,(z)= i[m] (Cion) (Cpp )™ (3.33)

l_’ﬁzlznzri
& (my)  (Cady) (Cpy)™ T (A ™)
Fz( 2): . i Amy—i i oamy—i i amy-i (3'34)
’ 2( ](1_’112’1222 Nz, = A A T (A A )]
Then, we have, E,(1)=0, F,(1)=0 (3.35)
and (3.31) may be expressed as,
Py (z,)
=(z,-D)(1~-p,—p, ){E2 (z,) +%} (3.36)
22

(Cpu )" T () }

—(z,-D)(1-p, _pz)l:Fz(Zz)"' (= Az, = ABT, ()]

Let us further define

H,(z,)=13 , Gz(zz):(6:22/122)”‘2 (3.37)
@2(22):HZ(ZZ)F](HZ(ZZ)):/1'2"221—‘](/1;"22) (3.38)
Then, H,(1)=1,G,(1) =1, 0,(1) =1 (3.39)

As aresult, (3.36) may be further expressed as,

G,(z,) }

Pz(Zz):(Zz "1)(1'—/01 —pz)I:E2(22)+1—H2(22)

(3.40)

G, (2,1 (H,(z,)) J
[1-H,(z,)llz, -09,(z,)

Multiplying both sides of the above equation with its denominator, we have,
[1-H,(z,)]lz, — ©,(2,)1F(z,)

= (2, D)1= p, = p)[[1- Hy(2)[z, = ©,(2,)1E,(2,) +[2, — ©,(2,)]G, (2,)] (3.41)
~(z, =)’ (- p, = p)[[1 - H,(2,)][z, = ©,(2,)]F, (2,) + G, (2,)T,(H, (2,))]

—(z, "1)2(1_:01 ",02){]?2(22)"'

In the next, the performance measures will be expressed in terms of the derivatives of

H,(z,), G,(z,), E,(z,), Il(w) and O,(z,).

- Derivation of the mean queue length and packet delay
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First, the mean queue length for the second multiplexer will be determined. Taking

the third derivative of both sides of (3.41) with respect to z,, and then substituting z, =1,

after noting (3.35, 3.39), an equation is obtained which contains P;(1) = dh(z,)

2 zy=1

b

~3HJ([1 - O, ()] +3H; (1)@} (1) ~ 6H; (D1 - O, ()P (1)
= =6(1 - p, = P H W) + Gy D] 430~ p, ~ p)[-O4 (1) +2(1~ O, ()G, (V)]

where G,y = 4% G) gy @)
2 do |,
2
@Iz (1) — d®2 (ZZ) , ®’2’(1) — d ®2 (222) ,
dz, - 2
2
m =@ gy L&) (3.42)
d 2 zy=] d22 zy=1

Solving the above equation for P)(1), the mean queue length, N 5, 1s determined,

T i @g(l) _ 1 " —_— - !
V= B0 = ez O A GO
(3.43)
1-p-p,

e OO+ D H ) +2650)]

From the Little’s Result, the mean packet delay, D, , that a packet experiences at the
second multiplexer is given by,
— N,

D, = Z

Pt Py

(3.44)

- Derivation of the variance of queue length

The variance of the queue length of the second multiplexer requires the second order
derivative of P,(z,). After taking the forth order derivative of both sides of (3.41) with
respect to z,, and then substituting z, =1 and noting (3.35, 3.39), the following equation

containing F)(1) is obtained:
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~12H}(D)[1 - O, (BN - 12H; (W[ - ©,MIF Q) +12H, ()05 (1) A (1)

— 4HJ(D[1- ©4()]+6H;()O; (1) + 4H, (1)®; (1) - 24H; (D1 - ©, (DI1F (1)

—12H;()[1 - @, (D] +12H, (1)@} (1) (3.45)
=-12(1- p, - p)ITOH; 1)) + T} H; (1) + 2D H; (VG5 (1) + G (1)]

—4(1- p, - p){6H (D1 - O, DIE; (1) + O (1) + 305 (VG5 (1) - 31 - ©,(DIG; (1))

3 2
where @7(1) = 402N Gry 2 FR2) (3.46)
dz; et dz, el
' =dE2(Zz) m ___d3H2(Zz) 1) = dzrl(w)
E; (1) Tz, . ,  HY() =a , D do’ | (3.47)
Solving (3.45) for P/(1) gives,
K1)
1
— 2 l._ . @”l /4 n 1
6H, (1)[1_(_),2(1)]{ (1= p, — py))O7 (1) +3H;(1HO; (1)
+6(1-p, — p)[O; (NG, (D) + ] (1)G§'(])+F{(I)H;'(l)]} (3.48)
1 ", 4 ! " 7
T {~ HEW)+60- oy~ p)H; OE; (O -3H WP }
1

+ -0.0)] {@)’z”(l) +307 MNP 1) +3(1-p, — p,) 2T/ DG, (1) + T HL (1)] }

The variance of the queue length for the second multiplexer, ¥,, may be expressed in

terms of the derivatives of its PGF as,

v, =B+ B0~ (F/H0) (3.49)

The expressions of performance measures require the derivatives of H,(z,), G,(z,),
E,(z,), IN(w) and ©,(z,). Next, how to determine these derivatives is discussed. The
denivatives of H,(z,), G,(z,) and E,(z,) may be determined from their definitions in
(3.33, 3.37) in a straightforward manner, therefore the details will not be given here. It is

only noted that,

H} (1) = mzz(l_”aﬂ 2_)’[2,’- O,

(3.50)

2
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Next, the derivatives of I, (w) and ©,(z,) will be expressed in terms of the derivatives

of z;(w), which is the unique root of the equation z, = wA;!. I',(w) is the PGF of the

busy period of the first multiplexer, which has been determined in {23]. Let us repeat the

result from [23},
I =242 (.51
@

Equation (3.51) may be written as
aly (o) = z, (®) (3.52)
Taking the first three order derivatives of both sides the above equation with respect to w),

and substituting w =1 gives,

() _dn (@) : (3.53)
w=1
) .
() = fl—i‘é@ —2r(1) (3.54)
do w=1
rn=22@0 ey (3.55)
dw ool

Next, 95(1), ®5(1), and ®7(1) will be determined. From (3.38, 3.52), we have,
©,(z,) =z, (H,(2,)) (3.56)
Taking the first order derivative of ®,(z,) in (3.56) with respect to z,, we have,

do,(z,) _ dZ:(Hz(zz)) dH,(z,)
dz, dH,(z,) dz,

Substituting z, =1 in the above, and noting that /,(1) =1, we have, .

dz, (w)

0} (1) = H; (== (3.57)

w=1

Taking the second order derivative of ©,(z,) in (3.56) with respect to z,, we have,

d2®2(22)_d22;(H2(22)) dH,(z,) 2+d21*(H2(22)) dsz(Zz)
dz2 d’H,(z,) dz, dH,(z,)  dz?

Substituting z, =1 in the above equation, we have,
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Z (0)) dz (w)

(1) =[H, (1)] + Hy()—— (3.58)

w=1 w=l

Taking the third order derivative of ®,(z,) in (3.56) with respect to z,, we have,

* 3 *
d’®,(z,) _d’z/(H,(2)))( dH,(z,) I d’z/(H,(z,)) dH,(z,) d’H,(z,)
dz; d’H,(z,) dz, d’H,(z,)  dz, dz2
zzl*(Hz(Zz)) dH,(z,) dsz(Zz) + dzl*(Hz(Zz)) d3H2(Zz)
d’H,(z,)  dz, dz? dH,(z,) dz;

Substituting z, =1 in the above equation, we have,

d’ = (@) dz; (@)

+Hm1 e N\
)

w=1

Z] (a))

e"(1) =[H,)T +3H,()H!(1) (3.59)

w=] w=1

Since the derivatives of ©,(z,) has been expressed in terms of the derivatives of z, (@),

then next the first three order derivatives of z (w) at w=1 will be determined.

Following the notation of H,(z,) defined in (3.37), H,(z,) is defined as,

H(z)) =4, (3.60)
because z, (w) is the unique root of the equation z, = wA]!, we have,

z (w) = wH, (z, = wH, (z,*(a)))l (3.61)

zy :z,‘ (w)

Taking the first order derivative of both sides of (3.61) with respect to w, we have,

D (2 ) 0 (21 (@) dzy (@) 5.62)
dw dz, (o) do

Since the unique root of equation z, = wA;! at w =11is z; =1, we have,

z:(a))Lr_l =1 (3.63)

Substituting w =1 in (3.62) and noting that H,(1) =1 gives,

ﬁl_z.l_@ = ___1_’__ (3.64)
dw wa 17 H(D)

Taking the second order derivative of both sides of (3.61) with respect to w, we have,

’z/(@) _, (5 (@) dz (@) d*Hz @)z @), dH(z (@) d’z (@)
do* ~ dz(w) do d*z; (w) dw dz (0)  do’
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Substituting @ =1 in the above, and then solving the equation, we obtain,

. 2
+ H,”(l)[———dz(;;w) ] (3.65)

Taking the third order derivative of both sides of (3.61) with respect to w, we have,

Pz(@) _ &5 @) @), 4dH, (@ (@) 'z (@)
do’ d*z; (o) dw dz; (@)  do’
L) @) L & @) dz (@) 42 (@)
d’z (w) dw d’z/(w) do do’
+wdH1(zI(w>)d3zI<3w>
dz, (o) dw

2 * *
d*z] (za))| N N Py A
do* |, 1-H(Q) dw

=]

w=1

+

Substituting @ =1 in the above, and then solving the equation, we obtain,

2

3 * * 2 %
d ) (360)! — 1 3H1"(1) dzl (CL)) +3H{(1)d Z (zw)
do’ | T 1-H|(Q) do | do’ |,
) (3.66)
* * 2 *
ca| @ | g dE@ s (Za))l
do | | do do” | |

This completes the derivation of all the expressions needed for determining the mean and

variance of queue length, as well as the mean packet delay.

3.4 Numerical Resulits

In this section, some numerical results regarding the analysis of this chapterare
presented. The simulation results are also presented to show that the numerical results are
correct. Because the behavior of the first multiplexer is not affected by the second one
and it has been studied, the results are presented mainly for the second multiplexer.
Unless otherwise stated, it will be assumed that an On source generates a single packet

during a slot.
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Figure 3.1 Analytical and simulation results: mean queue length of multiplexer-2 vs. its
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Figure 3.2 Analytical and simulation results: Standard deviation of queue length for

multiplexer-2 vs. its total load
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Figures 3.1 and 3.2 present both the analytical and simulation results for the mean and
standard deviation of queue length against the total load of multiplexer-3. It may be seen
that both mean and standard deviation increase with the load. Moreover, the analytical
results match the simulation results exactly, which gives further support that presented

analysis is correct.

In Figures 3.3 - 3.5, the mean queue length, mean packet delay and standard deviation
of queue length are presented for multiplexer-2 respectively. The figures are plotted
against the number of external sources feeding multiplexer-2, while its total load is kept
constant, From (3.28, 3.29) it is concluded that the traffic load generated by one source is
%:—i”)%‘%l This expression may be written as 1/(1—161,.(;;16;3—@)

seen that [, increases as the single source traffic load decreases if ; and f(1) are kept

Si(1), it may be

constant. From [25], the burstiness of a source is defined as the variance of the inter-

arrival time of packets divided by the mean inter-arrival time squared, which is given by,

(1-a)(e; +5)
(z—ai —ﬂi)z

increases while «; is constant. The above discussion leads to the conclusion that as the

. In this expression, it may be seen that the burstiness increases as f,

traffic load of a source decreases, the burstiness of this source increases. Since the total
load of multiplexer-2 is held constant, increasing the number of sources makes the traffic
load generated by each source decrease; therefore, its burstiness increases. On the other
hand, because of the statistical multiplexing, increasing the number of sources smoothes
out the superposed traffic. From Figures 3.5 - 3.7, it may be seen that all curves rise with

increasing number of sources, which means that burstiness overweighs traffic smoothing.
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Figures 3.6 and 3.7 present the mean and standard deviation of queue lengths versus

its individual loads for multiplexer-i, i =1, 2. For multiplexers 2, the input traffic from

the preceding multiplexer is kept constant, thus increase in their traffic load is due to
external traffic. The curves for multiplexers 2 is below the curve for multiplexer-1 except
for heavy loading. This is due to the smoothing effect of statistical multiplexing; the
traffic at the output of a multiplexer will be less bursty than its input traffic. Following
the discussion in the previous paragraph, the sources feeding multiplexers-2 will be
burstier than that of multiplexer-1 because each of them will generate less traffic. Further,
under heavy traffic, the proportion of the input traffic of multiplexers 2, which have not
already gone through smoothing, will increase, which explains the reversed positions of

the curves.
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Figure 3.8 presents the mean queue length of multiplexer-2 as m, or m, is changing
while keeping the other constant at a value of 11. The traffic load of each multiplexer is
held constant. It may be seen that two curves cross each other at m, =11. From the
discussion of the previous paragraph, higher number of sources means that traffic is
burstier when the load is kept constant. On the other hand, as the traffic goes through

more multiplexers then it gets smoother. When m, <11, the solid line corresponds to
m, < m, and the dashed line corresponds to m, < m,. It may be seen that the solid line is

higher than dashed line. This is because higher proportion of the traffic feeding

multiplexer-2 has been smoothed out. The converse of this happens when m, >11.

20 T T T T T T T T T

19

18+

o, =0.9, (x2=0.9
r m =11 1

,/ P, = 0.35, P, = 0.4
16r b
f(z) =2, L,z) =2

Mean Queue Length of Mux-2

5 10 15 20 25 30 35 40 45 50

Figure 3.8 Mean queue length for multiplexer-2 vs. the number of sources for

multiplexer-i
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In Figures 3.9 - 3.11, mean queue length, mean packet delay, and standard deviation
of the queue length are presented for multiplexer-2 versus its total load respectively for
two different functions of f,(z,) . The results have been presented assuming that a type-2
On source generates two packets constantly during a slot, with f,(z,) = z;, or generate
geometrically distributed number of packets during a slot with mean equal to two, with
fo(z,)=1z,/(2—2z,). It may be seen that the results for deterministic packet generation
are slightly lower than those for geometrical packet generation though both f,(z,) have

the same mean. This is due to that geometric sources are burstier than deterministic

Sources.
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Figure 3.9 Mean queue length vs. its total load for multiplexer-2
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Figures 3.12 and 3.13 present the mean and standard deviation of queue length
respectively versus the total load for multiplexer-2 while p, or p, is varied and the other

one is kept constant. It may be seen that both curves cross each other when the total load

is 0.8. As stated above the traffic going through more multiplexers becomes smoother.
When total load is less than 0.8, the curves corresponding p, > p, achieves lower values
because higher proportion of the traffic feeding multiplexer-2 has been smoothed out.

The converse of this happens when p, < p,.
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Chapter 4

Alternative Performance Analysis of Tandem
Networks

Unfortunately, it has not been possible to apply the solution technique of the previous
chapter to tandem networks with more than two multiplexers. In this chapter, an
alternative analysis is developed to study a tandem network with two and three
multiplexers. The alternative analysis uses busy period of a multiplexer to determine the
unknown boundary function. Fortunately, this analysis extends to a general tandem

network with arbitrary number of multiplexers.

4.1 Two Multiplexers in Tandem

First, the alternative solution technique is applied to the two-multiplexer case. At first,
how to determine the boundary function in the functional equation is explained, by using
the alternative technique. Then, the steady-state PGF for the second multiplexer will be
determined, which turns out to be the same as what has been obtained using the previous
technique. After that, the PGF of the busy period of the second multiplexer will be

determined, which is needed in studying a system with three multiplexers in tandem.

4.1.1 Determining the Boundary Function

As stated in section 3.2, because the first multiplexer is not affected by the second
one, it behaves as a single multiplexer. So only the performance analysis of the second
multiplexer is of interest. Next, the marginal PGF of the second multiplexer is repeated

from (3.19),
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Qk (1,1’22 ’yz)
= By(0)+ (5 - DL B ()2, (1.00)

k-1
B,()O.,(0.0,2,,6, () “.1)

J=l

) kz B, (/)¢,-,(0,0,0,0) k21

It may be seen that in the above equation there is only one unknown boundary
function. In the next, this boundary function is determined using the alternative method.

The essence of this method is to write down Q, (0,0, z,, y,) through interpretation of the

result for a single multiplexer.

First, let us consider the second multiplexer in isolation without the input from the
first multiplexer. Then the evolution of this multiplexer would be same as a single

multiplexer, which is given by, (see [22])

z, -1V B (k—h
-3 Zz(k_h_l )Q,,(1,1,0,0) (4.2)
2

~ 1
0,(0,0,2,,5,) =;‘;Z1'32(k)+

2 Zy  hl
where Qk (0,0,z,,y,) denotes the PGF of the second multiplexer without the input from
the first one. The terms of the summation on the RHS of (4.2) may be considered as
PGFs conditioned on mutually exclusive events. These events correspond to the last time
that the multiplexer queue was empty which may be at the end of any of the % slots.
Assuming that the last time this event occurred at the end of 4’th slot, then, its probability
is given by 0, (1,1,0,0). B, (k — h) gives the PGF of the number of On sources and the

number of packet arrivals from the last time the multiplexer queue was empty. z; " in
the denominator corresponds to the PGF of the number of packet departures during the

k=1 reveals that the

(k—h) slots that the multiplexer was busy. One may note that z,
multiplexer-2 has always been busy during this (k—#4) slots, which guarantees that the
last time it was empty was at the end of the /’th slot. One may also note that the first term
on the RHS corresponds to the event that the last time the queue length was zero was at

the initial state.
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Next, the arrivals from the first multiplexer will be considered. Equation (4.2) is

modified using the above interpretation. Since the goal is to determine O, (0,0, z,, yz), it

is known that the first multiplexer is empty and all of the m, sources are in the Off state
at slot k. First, the modification of the first term in (4.2) is considered. From the zero
initial-condition assumption, it is known that the first multiplexer is also empty at slot 0.
Let us assume that the first multiplexer has » busy periods in the interval from 0 to £’th
slot, and the probability of this event is ¢ (k) (see Appendix A); then, the first
multiplexer will output & - » packets to the second multiplexer during these 4 slots, which

has the PGF of zé‘*’ . Therefore, the first term on RHS of (4.2) will become,

1 1
—7 B (g ()2, = —= B, (k)p" (k) ,
2 Z
Now summing up over all possible number of busy periods that the first multiplexer may
have during these £ slots, we have,
k 1 M
Y 70V (k)B, (k) (4.3)
r=1 Zz

Next, the modification of the second term in (4.2) will be considered. The summation

1k‘B(k h)

khl

0,(1,1,0,0) on the RHS of (4.2) corresponds to the evolution of

h=1
multiplexer-2 from slot 4 to slot & Given Q,(1,1,0,0), it is known that multiplexer-2 is
empty at slot /, then multiplexer-1 must be empty at slot /-1. If the first multiplexer has r

busy periods from slot 4-1 to slot &, which has the probability of ¢'”(k -4 +1); then

multiplexer-1 will output k-h+1-r packets to multiplexer-2, which has the PGF of z:™*~"

Thus, the summation becomes,

Ik‘B(k L)
—2

k h—

0,1,1L,0,000p" (k —h+1)zs "

h=}

- B k
Z: ( QAHOOMﬂKk h+1)
h=

Again summing up over all possible number of busy periods, we have,

0% 3 25 0,010 -

h=l r=l
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Therefore, we finally have,
O (O 0,2,,y,)

—Z QLD @4)
+(z2-1)§kf] H(pr])(k h+1)B, (k- h)Q,(1,1,0,0) , k>1
h=1 r=l

From the above, the unknown boundary function 0, ; (0,0, Z,, 0, ( j)) in (4.1) may be

expressed as,

O j(O 0,z,,¢,(/))

~Z ,,(p,"(k NBP (k- j) (4.5)

r=1 2
k—1-j k—h+1~j

+(22—1)Z Z qu,”(k h+1-j)BY (k—h-/)Q,(1,1,0,0), k> j+1
r= 2

Thus, the unknown boundary function in (4.1) has been expressed in terms of Q, (1,1,0,0)

and the probabilities of the busy periods for the first multiplexer.

4.1.2 Steady-State PGF of the Second Multiplexer

In this section, the steady-state PGF of the second multiplexer will be determined.

Substituting (4.5) back into (4.1), we have,
0. (Lz,,y,)

k-1
=B, (k) +(2, -1 B,()NQ, ;(1,1,0,0)

z,-18H 1 o0
=23 — 0" (k- j)B, (k) - (4.6)
Z, Jam 2,
(Z _ )2 k=2 k—j-t k—j-h+l 1
—=22 — " (k— j—h+1)B,(k—h)0,(1,1,0,0)
Zy el k=l e=l 2y
_1N2 ke
~ED S (70,,(0000) . k=1
Z, J=1

Substituting the above into Q(1,1,z,,y,,w) in (3.21) gives,
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Q(L])Zz ’y2)w)

® o k-1
=1+ B,(h)o* +(z, - > B,()Q,_, (1,1,0,0)0"
k=l k=2 j=1
®© k-1 k—j o
‘(22—1)2 Z . o (k - j)B, (k)" (4.7)
2 j=t r=l 23
o k-2 k—j-1k-j—h+l 1
(-2 > — oWk — j-h+DB, (k- 10, (1,0,0)w"
k=3 j=1 k=l =l 23
1 2 o k-1
_(z-D 3N B,(/)Q,;(0,0,0,000*
2 k=2 j=l

A general form of the above PGF has been simplified in Appendix D. Applying the result

in (D.13) with n= 2, the above equation may be expressed as,

o), z,, y,, )
14N (Ciyy) (Cpp )™ @
_1+§( i ) e
+(z, - D[0A,1,0,, a))—-l]Z( )(C”ﬂ“)icj{mf” e (4.8)

~(z, - )Z[mzj(clzﬂn) (Cpty) " ol Agr ol (A, A @)
’ A A5 )z, — A A ool (A, A5 )]

2 C12 2 C22 2 ’”2—’ r i2/1;"22_i
(e len00.e - I]Z( j (/112/1/;;3;)[2212 2 Z’_,;ﬁ‘% ﬂ;f‘)'w)]

The steady-state PGF of the second multiplexer is determined through the application of
the final-value theorem to (4.8),

Q(1,1,22 >Y2) =0, (1,1,22 7y2) = la}g]l(l —w)Q(L},z, » )2 , @)
Noting that
]irrlx(] -0)0(1,1,0,0,w) = 0(1,1,0,0) =1-p, — p,

We have,
Q(llzz’)"z)
=(z,~-D(1-p - pz)Z[ ; )(C‘Zﬂl’f_) icjliﬂ” (4.9)
(Cp 4, )(szﬂzz) T ()
-(z, -D"(A~p, ) - - —
(2= - p)Z( )(l—ﬂn AT (A
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The above result gives the joint PGF of the second multiplexer. Substituting y, =1 in
(4.9) gives the PGF of the queue length of the second multiplexer, which is

P(z,)=(z,~D(1-p, - Pz>Z[,j(C’2ﬂf)ﬂ€ij” -

€, )"(522122>'"f"r< LA
—(z, “1) (d=p, - pz)Z[ ](1 /11 /1,,,,2_, 112/1;,,22 TXZA mz—-l

(4.10)

It may be found that the equations (4.8), (4.9) and (4.10) are the same as (3.27), (3.30)
and (3.31) in the previous chapter respectively. This gives strong support that the

alternative analysis presented above is correct.

4.1.3 PGF of the Busy Period of the Second Multiplexer

The performance analysis of a tandem network with three multiplexers will require
the PGF of the busy period of the second multiplexer, I', (w) . In this section, this PGF is

derived. From (B.8) of Appendix B, we have,

1 1

It may be seen that I',(w) is determined completely by 0(1,1,0,0,w) . Next, 0(1,1,0,0, w)
is determined by invoking the analytical property of the function Q(L,1,z, .1, w) within the
poly disk (|22| <1 lcoi <1). Substituting y, =1 in (4.8), we have,

o1, z,,, )

S mz 512 i 522 2 ’”Z“i
oS|Gt e

+(z, - D[01,0,0,0) 1]2("’2J(C‘2’1’2);1C2f’” )™ (4.12)

—(z, - )Z(mz] (C”/l‘z) (CZZ/{IZ ol A ol (4, 47 @)

i=0

(1= 4,455 )z, = A '"”'wl“(ﬂqz%"z’_'w)]

IS B (CAy) (Cp Ay )™ ol (1;2 2 @
G - led100) IE[ )(1—21213";*'@[@ R

66



Let F,(z,) denote the following factor in the denominator of O(1,1,z,,1, ),

F(z,) =z, = Ay 3 @l (A, 4 @), 0<i<m, (4.13)
It is noted that the number of distinct factors of F;(z,) is equal to (m, +1).

Next, it will be shown that each F(z,) has a single root within the open poly disk
(z,| <1;|w| <1) through the application of Rouche’s theorem. Let us define,
Wz,)=2,, g(z)=-A,A @l (A, w) (4.14)
As shown in the Appendix A of [24], for the cases under consideration, A, and 4,, are
analytic functions of z,; and because I',(w) is a PGF of the busy period, T|(w) is also
an analytic function of w. As a result, g,(z,) is analytic as required by the Rouche’s
theorem within the closed unit circle, |zn[ <1. It has also been shown in the Appendix A
of [24] that Iﬂnl <1 and |/122| <1 on |22| =1, then on the closed unit circle (|22| =1, |a>| <1,
we have |2;‘2/1;";"'a>| <1. Because I'(w) is a PGF, we have IF, (A, '";‘ia))l <lon|z|=1.
Therefore, on the closed unit circle (|22| =1, Ia)[ <1), we have,
W) =] =1, |gi(z,)] =, 4 el (A, A5 )| <1 (4.15)
From the above we conclude,
[h(z2 )I > lgi(zz)| on the closed unit circle ([zzl =1 Ia)l <1), and h(z,) and g,(z,) are

analytical functions within and on the unit circle. Therefore, Rouche’s theorem applies,

and as a result i(z,) and F,(z,) = h(z,) + g,(z,) have the same number of zeros within
the open unit circle (Izzl <l |a)| <1). Since k(z,) has a single zero, F;(z,) will also have
a single zero within the open unit circle. Let z, denote the zero of the i’th distinct

denominator factor, F;(z,).

Following the similar steps in the application of Rouche’s theorem, it is easy to show
that the denominator factor (1~ 4,42 @) has no zeros within the open unit circle
(z.]=1;]w| <1). So these z; are the only roots of the common denominator of (4.12)

within the open unit circle.
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Because O(1,1,z,,1, ) is an analytic function within the closed unit circle, it has to
be bounded. Then, the roots of the denominator, z: , must also be the roots of the

numerator. Since we have Rnl , =0; then for any i, 0<i<m,, the unique root of the

Zy =

. . * . . =~
denominator is z, = 0, which also appears in the numerator as we also have C,, =0.
2

Therefore these m, roots do not give us an equation to solve for 0(1,1,0,0,w). Let us

consider the term corresponding to i =0 in (4.12), which is given below,

Q[) (]719 Z2 913 CU)

1+ )70 0011,0,0,0) 1] t2) @
- -5
(522/172 )" Ay ol (Ay; @)
(1= w)[z, = A3 ol (A3 @)
(522 Ay)™ ool (A @)
(=g o)z, — 3 ol (A3 @)]

~(z,-1)

~(z, -1)*[0(1,1,0,0,) 1]

The above equation may be written as,

QO(I)I) Zz )17 w)
1

= 1_ my _ﬂmzr /1,"2
(1= 23 @)z, = Ayl (A3 )] (-, - BT ()

+(Cphy)™ iz, — 3T, (A3 00)] (4.16)
+(z, ~D[0(1,1,0,0,0) ~1KCy, ,) ™  z, — A3 00T (35 )]

= (2, = )(Cpp )™ A3 00T, (A3 )

(2, = 1*[0(11,0,0, ) ~1(Cy Ay )™ T, (A2 00)|

Letting z,(w) denote the unique root of the denominator of the above equation, that is
z,(®) = z, . Then, z,(w) is the root of the following equation,

2, ~ A el (ABw) =0,

Substituting z,(w) in the above equation gives,

z,(w) = A3 ol (A3 )

=0 (4.17)

7=2;(w)
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As stated before, z,(w) must also be the root of the numerator of (4.16), therefore, we
have,
(1 - o)z, - e, (g )] +(Cpphy)™ @z, — A3, (A5} )]
+(z, — 1)[Q(1,1,0,0, w) — 1](C22/122)”’2 ofz, — A3 ol (12 w)]
—(z, - 1)(522’?72 )" Ay} ol (A3 @)
~(z, ~1*[0(1,1,0,0, 0) ~1XC, A,)™ ool ( '";w)lzzzz;(w) =0
Substituting (4.16) in the above yields,

—(z, - 1)(522}”22 )" a)/l'znzz ol’} (/1;'22 )

.
2;=2,{w)

= (z, ~ 1)*[0(1,1,0,0, ©) = 1XC,, 4,,)™ @ ( mzza))lzfz‘(w)

Solving the above equation for 0(1,1,0,0, ) gives,

25l
2 zz=z;(a))

1L,1,0,0,0) =1+ 2
O )=t

(4.18)
Finally, substituting (4.18) into (4.11) results in the PGF of the busy period of the second

multiplexer,

my

20 .+
- R 1C) (4.19)
1-z,(w)+ 450

I (w) =

2,=2,(w)
Next, let us determine Q(1,1,0,0,w) and I',(w) at p, =0. When p, =0, according
to the definition of a busy period, we have T, (@) =1. So, I (4,42™") = 1. Substituting this

result in (4.17) gives,

z,(0) - By

.
2y=23(w)

Thus, we have
23 (@) = B3 ol
Substituting the above result in (4.18) gives us

_
I-2(@)

(4.20)

- b
zy=2, (@)

Q(1,170’0’ a)) =

It may be seen that the above result is the same as the single multiplexer case in (26) of

[22].
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Substituting (4.20) in (4.19), the PGF of the busy period of the second multiplexer is

obtained,

_ z, ()

— M
rz (a)) - 2 lzz:z;((u) W

Not surprisingly, it may be seen that for p, =0, I',(w) is reduced to the single

multiplexer case in (42) of [23].

4.2 Three Multiplexers in Tandem

Now, the alternative analysis is applied to a tandem network with three multiplexers.
As the second multiplexer is not affected by the third one, it behaves exactly like the
second multiplexer in a tandem system with only two multiplexers, which has just been
studied in the preceding section. Therefore, one needs to study only the third multiplexer

in this tandem network.

4.2.1 Steady-State PGF of the Third Multiplexer

In this section, the joint steady-state PGF of the queue length and the number of On
sources of the third multiplexer is determined. This will be done following the same steps
as in the previous section. First, the new technique is used to determine the unknown
boundary function, and then the final value theorem is applied to determine the steady-

state PGF of the third multiplexer.
Substituting n =3 in (2.38) gives the following transient PGF of the third multiplexer,
0, (13,15, 23, 33)
=B,(k) +(z, - 1)2 B,()0,_;(1,,1,,0,,0;)
=

1-z, 4.21)

+

23 B0 (0,0,,2,,6,()

-1 2 k-l
_EL—)ZBs(j)Qk—j(Oz,Ozaozaos) k=1
j=

Z,4
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The only unknown boundary function in the above is O, _; (0,,0,,z,,¢,(j)). Analogous to
(4.4), the boundary function Q, (0,,0,, z,, y;) may be written as,
0,(0,,0,,25, )

B S IA ) (422)

r=1 Z3

k-1 k—h+l

1
+(z; _l)z Z TT¢:2)(k_h +1DB,(k-mQ,(1,,1,,0,,0,) , k21

k=t r=l 23
The above equation may be written as,

0,-,(0,,0,, 2y, ¢, (/1))

k-Jj 1 )
= Z—Z—T o (k~ )HB" (k- )
r=l #«3

(4.23)

ko khel=j

Fo-DY Y o5 oPG=h+1= B (k—h= /)0,(1,,1,.0,.0,)
=1

r=1 23
, k2j+1

Substituting (4.23) back into (4.21), we have,
Qk (12,12,23,)’3)

k-1
=B, (k) +(z; - 1)233 (1)€,:-;(1,,1,,05,0,)

Jj=1

Aol L%~ )8,k (4.24)

> 2 F{sz’(k —J = h+D)By(k - 1)Q,(1,,1,,05,05)
3

B3 (j)Qk—j(Oz 302 a03 ’03) > k Z 1
Let us define the following transform,

011,25, 5, 0) = D0, (1,1, 2, y,) 0" (4.25)
k=0

Then from (4.24) we have,
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Q(12912’Z33y3’a))
© o k-1
=1+ By(k)o* +(z, = 1)) D" By(NQ;.,(1,,1,,0,,0,)0"

k=1 k=2 j=1

o k-1 k=j
—(z, _1)2 Z
r=1
2 k=j-1 k=j=h+]

—(z, —1)2i2 D ir<p§2>(k ~ j—h+1D)B,(k - 1)Q,1,,1,,0,,0,)0"

=1 k=l r=l 23

o (k - ) B, (k)" (4.26)

N
W |

2 j=1

(23 )’ &&
2 Z By())0,-,;(0,,0,,0,,0,) 0"

k=2 j

1t

After substituting »n = 3 in (D.13), the above equation may be written as,
Q(12>127z37y37 60)
=1+ i (m3j (Cias) (Chyy)™ @

i 1- /1:31’2"33_1.
+ (2, ~D[0(1,,1,,0,,0,, @) - 1]2("3) Cuto) fj,fff)
3

~(z; — )Z my ) (Cp3As) (Cp )™ 0, 45" 0, (A 455 @)
’ (= A )z, — A A0 el (A AT )]

C C my~i 1—‘ "'3“’
_(23~1)2[Q(12,12,o3,03,w)—1]2(":3) ;‘3}2);)[2%3231; af? (A, a))]

i=0

(4.27)

In order to determine the steady-state PGF of the third multiplexer, the final-value

theorem is applied to (4.27),

O,.1,,25,y;,) =0, (1,51, 25, ¥3) = lagr]l(l - w)Q(1,,1,,2;, y;, ®) (4.28)
Noting,
3
l(jirll(l -w)Q(1,.1,,0,,0,,0) = 0(1,,1,,0,,0,) =1~ Z P (4.29)
i

where p; is the external arrival rates from type-j sources, which is given in (3.28).
Then, from (4.27, 4.28) we have,
01,.1;,25,y5)

=(z, -1)(1~Z )Z[msj(c”ﬂfs)}cﬁfﬁ’ - (4.30)

— 12 (1 — 2 N[ (C13’113) (023223 mrlr (ﬂq m;-—z
(23 1) (1 ;pj)Z( i) /11 '"3-')[23 ﬂﬂ/{;n}g Irz(ﬂﬂsﬂ;”; )]

i=0

72



The above is the joint steady-state PGF of the queue length and the number of On sources
for the third multiplexer.

Substituting y, =1in (4.30), the PGF of the queue length for the third multiplexer is
obtained,

3 m = i 5 m;—i
e

Az — _ (Clsfll )(C23/‘123)m3_ir2(ﬂ1i3
&1 Zp ’)Z[ )(l—ﬂﬂﬂ"’;”)m AR T )

(4.31)

4.2.2 PGF of the Busy Period of the Third Multiplexer

In this section, the PGF of the busy pertod for the third multiplexer I',(w) will be

determined. I,(w) is needed in the performance analysis of tandem networks with four

multiplexers. From (B.8), we have,

1 1
I(w) = ;(1 - 0,.1,.0.0., co)} (4.32)

In the above it may be seen that I';(w) is determined completely by O(1,,1,,0,,0;,w).
Next, 0(1,,1,,0,,0,,®) is determined through invoking the analytical property of the

function O(1,,1,,2,,1;, ) within the closed poly disk (|z,| <1;|e| <1).

Substituting y, =1 in (4.27), we have,

0,),,z,,1;,w)
=14 i(”ﬁ) (C13’?1 ) (C23’123)m3—l

; -

-2,

+(z, - D][0(,.1,,0,,0, ) _l]z("%) (C]3J;3);1C23]23 Y™ .
1 —
_(Z _ )Z[mg}J (C13/113.) (C23A23 m3 G)ﬂ; CUF (/1] M3—l
3 iy ey

(2 12[001,,0,.0,,0) - 1]\4’") ; _(CUA ) Con)™ 0y

i=0

A A w)zy — A A0 el (A, ﬂ"”"'co)]
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where, C,, =C,|  and C,, = C23|y3=1

y=l
The above equation has the same form as the one in (4.12). Therefore, following the

derivation of the PGF of the busy period for the second multiplexer, we have,

e
23=23 (@)

Q(12 ,12 ’03 703760) - 1 +
—23(60)

(4.34)

Substituting (4.34) into (4.32) gives the PGF of the busy period for the third multiplexer,

23)
Iy () = ————22 (4.35)
l-z,(w)+ 0

.
z3=z73{(w)

4.2.3 Performance Measures of the Third Multiplexer

In the next, the mean and variance of queue length, and packet delay for the third
multiplexer will be determined. Determination of these performance measures for the

third multiplexer follows the same steps as those in section 3.3. First, £Z(z,) in (4.31) is

transferred into a more convenient form. Let us define,

m, (Cn/?qs)(Czaﬂzs)m B
Bl Z( ] 1= A 0
m\  (C s )"(52 Ay)" T, (s A7)
F (23) [ } 1.3 37723 — 3; 3,,,_,' (437)
Z = A3 Nzy = Ay T (A4 )]
Then we have, E;(1)=0, F;(1)=0 (4.38)

And P (z,) may be written as,

Pi(z;)=(z; - D - ij {E (23)+(C23}°23) J

Jj=1

(523173)'"3 I, () ]
)]

- —D%*1 - ) F;
(2 =1« ;pl)l: 3(‘23)4_(1— 7z — AT, (A

Let us further define
Hy(z) =A%, Gy(z,)=(Cpiy)™ (4.39)

05(2y) = Hy(2;)1,(H;(2,)) = 2315 (4;3 (4.40)
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Then we have H,(1)=1,G,(1)=1,0,(1) =1 (4.41)

As aresult, P,(z,) may be further written as,

G,
P(z,)=(z, -1 - ZPJ {E( 3)+1_H(Z(3)3)J

(4.42)

_(23_1)2(1~ij)[;;(23)+ Gala L&) }

(1 - H,(z,)][z; — ©,(z;)

In the next, the performance measures will be expressed in terms of the derivatives of

Hi(zy), G;(z4), E5(z4), I,(w) and ©(z,).

- Derivation of the mean queue length and mean packet delay

First, the mean queue length of the third multiplexer will be determined. Both sides of
(4.42) are multiplied with the common denominator, then the third derivative of both
sides is taken with respect to z,. After that, substituting z, =1 and noting (4.38, 4.41)
gives,

—3H;(O[1 - O3 ()] +3H;(HO; () - 6H;(D[1 - O3 (D] (D)

3 3
=61 pHIT;(MH; (D) + G ()] +301 - Y p)[-05(1) +2(1 - 8, (1) G; (1]
= j=1

Solving the above equation for P/(1) gives the mean queue length of the third multiplexer,

3
" " 1-2.p
N, =)= 163(;‘,)1 —;;,“1) LT + G 1)
2[1-0;(1)] M ;()[ - 0;(1)] (4.43)
(- Zp,)@"(l) -2,
—G;()
"om] (1)[1—9 O  H)
where @' (1) = 40,(z3) , O = “’2_@.3_(22_3) (4.44)
23 23=1 dZ3 ;=1
/oy = 9H5(25) ey = 42H,(23) 4.45
H;(1) o, ] H1) & ] (4.45)
U PR G2 N 1)) (4.46)
23 z;=1 w=1
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From the Little’s result, the mean packet delay at the third multiplexer is given by,

3

D,-N 3/ S, (4.47)

j=1
- Derivation of the variance of queue length
The variance of the queue length requires the second order derivative of P, (z,). After
multiplying both sides of equation (4.42) with the common denominator, and then taking

the forth derivative with respect to z,, z, =1 is substituted and then the equation is

solved for A1),

TG
1 : ” L4 ”
TR {2(1 —; P01 +3H; (1O (1)
+6(1 —Zp,)[@)’;’(l)Gé O+0;HGM)+T, (1)H3"(1)]} (4.48)
1 ", 3 14 1 n [
+m{— HI(1)+6(1 —Z: pOH,(DE; (1) -3H;(1)P(1) }
1

+ ——-——————————3[1 ~6 )] {@’3"(1) +30; (WA (1) +3(1- ;pj 2 DG, (H + T (HH; (D) }

3 2
where ©3(1) = 5—93—52—3) , Gi(D= i——%gi) ,
3 z3=1 dz3 23=1
3 2
gn=D8 gy cLILEN gy D@ g 4)
Zy 7=l dZ3 zy=1 w=1
The variance of the queue length of the third multiplexer is given by,
7, =B+ 1)~ (B (4.50)

Next, how to determine the derivatives of H,(z,), G,(z,), E,(z;), I,(w) and
©,(z,) is discussed. The derivatives of H,(z,), G,(z;) and E;(z,) can be determined

from their definitions in (4.36, 4.39) in a straightforward manner and the details will not

be given here. It is only noted here that,
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HI) = m32 (1—0{ ﬁa—)ﬁ(l) - (4.51)

Next, the first three derivatives of I',(w) and ©,(z,) will be determined. These
derivatives will be expressed in terms of the derivatives of z,(w), which is the unique
root of the equation,

z, —wH,(z,)I\(wH,(2,)) =0, (4.52)
From its definition, I',(w) is the PGF of the busy period of the second multiplexer,
which has been determined in (4.19). Let us repeat this result,

H,(z,(®)) (4.53)
1-z,(w) + H,(z, (o)) @’ '

[ (w) =

Taking the successive derivatives of the above equation and substituting @ =1, and then
noting that T,(1) =1, z,(1) =1 gives,

dz, ()

r() = -1 (4.54)

w=1

=22 o) -2, [—-——dzg(w)

2
w

} (4.55)

w=]

3 * 2 * *
r) = 42() +3(r2"(1) 4 Zz(f")j{r; M-, '-———dzz(“’)}
do | do do

_3H;(l)_(dz§;w>)

w=1

* (4.56)
dz,(®)

—6p,I;(1)

w=1 w=1

Now, the first three derivatives of ®,(z,) will be determined. From (4.40), we have,
©,(z;) = Hy(2;)13(Hy(23)) (4.57)
Taking the successive derivatives of ®,(z;) with respect to z, and then substituting
zy =1 gives,

0;() = p,(1+T15(1) (4.58)

O5(1) = H;(H[1+ T, (D] + p3 [21; (1) + T; (D] (4.59)
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O7(1) = H{M[1 + T ()] + 3o, H; (DI (1) + 20, (D] + A3 [T3(1) + 305 (1) (4.60)

Finally, the first three derivatives of z,(w) will be determined at w=1. From

equation (4.52), z,(w) is the unique root of the equation, z, — 32l (A2 w) = 0, then we

have,
23(@) = oH, (2,)T,(0H,(2,))], ..., @6)
Taking the first order derivative of both sides of (4.65) with respect to w, we have,
dZ* a)) * dH Z* a)) dz*(a)) .
—;i) =| H,(z}(0))+ @ dzz(2 (za()) ). 2 Jr] (i, (2, (@)))

. . ) (4.62)

+ofl, (z;(a))) I, (sz (32 (60))) I:Hz (Zz (a)))+ @ i, (,Zz (a)))_ iz (a))}
d(sz (Zz (a))» dz, () do

Since the unique root of the equation z, — 12wl (1;w) =0 at w =1is z, =1, we have,
z (a))Iw:] =1 (4.63)

Substituting @ =1 in (4.62) and noting that z,(1) =1, H,(1) =1, I (1) =1 gives,

B )1+ p, 2
dCU w=1 w=1

Solving the above equation, we obtain,

d,(@)| _  1+L(Q) (4.64)
do | 1-p[1+I{1)]

Taking the second order derivative of both sides of (4.65) with respect to w, we have,
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iz(0) |, di(5@) d@) | d3HE@) (@)
do* dz; (@) dw d*z,(w) dw

dt,(zy(0)) d°z)(w) :
to dz. (@) T ot :|F1 (C‘JHz(Zz(w)»

+2 H (5 @)+ o 4H, QZ;(G))) @z (@) | dr(oH, (22 @)
dz,(w) do d(a)H ) (z2 (a))»
o VT, E@) dH,(z}(@) dzj(@) |
o) o o) | O e
+oH, (Z;(w))dfl (C"HZ({;(“’)» 2 de(*Z;(CU))' dz; () +a)d2sz (*Z;(Ct))). dz,(w) ’
dloH,(z; (@) | dz(@)  do d’z(w) do
+ o3 (*z;(a)))_ d2z;(2a))]
dz,(w) dw
Substituting w =1 in the above equation, and then solve the equation for —-—-—di‘f; (260)
@w w=1
gives,
dzZ;(aJ)l _ 1 , _dz;(a)) . dz,(w) ?
do’ Ia):l = 1—p2[1+F1'(1)]{[1+F1(1)‘1:2p2 d———w +H(1) ————da)
(4.65)

LTV + I}"(l)]{l +py dzj(“’)} }
(4]

w=1

Taking the third order derivative of both sides of (4.65) with respect to w, we have,
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d’z,(w)

do’
) {3 d*H,(23(w) (dz;%w))z 3 d(E5@) dP5@) | EH(E @) (dz;uo))}
d’z,(w) do dz,(w) do’ d*z,(w) dw

+3

ERAAC) AN AAG)] dBZ;(fO)} SHEIREID))
d*z,(w) dw dw dz,(w) dw

N 3{2 dH, (*z; (@) dz}(@) \ o & H; (*z;(a))) _ (dz;(a))jz
dz,(w) do d’z,(w) dw

+a)dH2(*z;(a)))'dzz;(a)) e (w))+wdH2(z;(w))_dz;(w) dF,(a)Hz(f;(a))))
dzy(0)  do’ diy(0)  do | dloH,(z(w)))

+ S[H 2 (z; (a)))+ w dfizz(*iza();))) dzéi)‘”)}
Jarn (e, @) L, (o dH, (2}(w) dzi@) |
{dz(sz(Z;Z(w))T[HZ(ZZ(w))Jrw Eiw)  do
dT (ot (2)(0)))| ., dH,(z5(0) d(e) | d’H,(z3(0)) (dzi(e))
+ : 2 n . +w " .
dloH, (@) | di(@)  do d*zy () do

10 dil5@) &'z <w)}}
dz,(w) dw’

o N &rler @), (- dH,(z}(@)) dzj(@) |
+a)H2(zz(a))){ Pl ()] H,(Z(@))+ @ d;;(w) 2

L4, (e, (f;(a)))) 1, (2204 0 Y (*z;(a))). dz} (@)
d*(oH, (25 (0))) dzy()  dw
{2 dH(z5(0) d) , &H, @), ( dz;(w)T RAHD)) dzz;(za))}
dz,(w) dw d z,(w) dw dz,(w) dw

dr (o, (23(0)))| , 221, (z3() (dzi(0)) |, di,(z3(w) d7Z(w)
+ . 3 > . +3 > .
a’(con(zz(a)))) d’z;(w) dw dz;(w) dw’

+a)d3P€2(*z;(a))). @), 3wd2fi2§z;(w>),dz;<w>,dzz;(zw)
d’z,(w) do d*z,(w) do do

1 0 dh(5@) 4z @) ]}
dz,(w) dw’
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Substituting @ =1 in the above equation, and then solving the equation for

B

d’z;(w)
e

w=1

we obtain,

d°z;(e)
do’

w=1

2 * * 3
__ +ho vof 423(@) d*zy(@) o [ 25 (@)
W—pﬂlﬁ{(l)]{wza)[ do )+3p ©do’ +H2(D[ do )

+3H](1) (4.66)

dzy(w) d*z,(w)
dw dw’

w=1

P HORI N {1 i h, dz;(w)]
1-p,[1+T7(D] dw

w=]

LACW 20O, dn@)] | d5(@) e €@) 4@
1- p,[1+T7(1)] ? dw * do : dw P do?

w=1
The expressions of (4.64, 4.65, 4.66) involve the derivatives of PGF of the busy period
for the first multiplexer. This is because that the first multiplexer affects the third one

through the second multiplexer.

Thus, all the unknowns have been determined in the expressions of the performance

measures for the third multiplexer.

4.2.4 Numerical Results

In this section, some numerical results are presented regarding the performance of the
third multiplexer. And simulation results are also presented to show the correctness of the
analysis. Unless otherwise stated, it is assumed that each On source generates only one

packet during a slot.

Figures 4.1 and 4.2 present both the analytical and simulation results for the mean and
standard deviation of queue length against the total load of multiplexer-3. It may be seen
that both mean and standard deviation increase with the load. Moreover, the analytical
results match the simulation results perfectly, which gives further support that presented

analysis is correct.
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Figure 4.1 Mean queue length vs. its total load for multiplexer-3
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Figure 4.2 Standard deviation of queue length vs. the total load for multiplexer-3
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In Figures 4.3 - 4.5, the mean queue length, mean packet delay and standard deviation
of queue length are presented for multiplexer-3 respectively. The figures are plotted
against the number of sources feeding multiplexer-3, while its total load is kept constant.
As stated in section 3.4, when the traffic load generated by a source decreases, the
burstiness of this source increases. Since the total load of multiplexer-3 is held constant,
increasing the number of sources makes the traffic load generated by each source
decrease; therefore, its burstiness increases. On the other hand, as a result of statistical
multiplexing, increasing the number of sources smoothes out the superposed traffic. From
Figures 4.5 - 4.7, it may be seen that all curves rise with the increase of number of

sources, which means that burstiness overweighs traffic smoothing.

8.5 T T T T T T T T

75F

m1=11, m2=11

a, = 0.7, o, = 0.75, o, = 0.8

Mean Queue Length of Mux-3

651 p, =02, p,=02, p,=035 ]
6l f1(z1)=z1, f2(22)=22, f3(23)=z3 |

55F _
5 b

4'50 5 1Io 115 2|0 o 2‘5 3'0 315 410 45

Figure 4.3 Mean queue length vs. the number of sources for multiplexer-3
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Figure 4.5 Standard deviation of queue length vs. the number of

sources for multiplexer-3
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Figures 4.6 and 4.7 present the mean and standard deviation of queue lengths versus
their individual loads for multiplexer-i, i =1,---3. For multiplexers 2 and 3, the input
traffic from the preceding multiplexer is kept constant, thus increase in their traffic load
is due to external traffic. The curves for multiplexers 2 and 3 are very close to each other
and they are below the curve for multiplexer-1 except for heavy loading. This is due to
the smoothing effect of statistical multiplexing; the traffic at the output of a multiplexer
will be less bursty than its input traffic. Following the discussion in the previous
paragraph, the sources feeding multiplexers 2 and 3 will be burstier than that of
multiplexer 1 because each of them will generate less traffic. Further, under heavy traftic,
the proportion of the input traffic of multiplexers 2, 3, which have not already gone

through smoothing, will increase, which explains the reversed positions of the curves.
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Figure 4.6 Mean queue length vs. its total load for multiplexer-/
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Figure 4.7 Standard deviation of queue length vs. its total load for multiplexer-i

Figure 4.8 presents the mean queue length of multiplexer-3 as the number of sources
feeding one of the multiplexers is varied while keeping the other two constant at a value

of 11. The traffic load of each multiplexer is also held constant. It may be seen that three

curves cross each other at m, =11. From the discussion of the previous paragraph, higher

number of sources mean that traffic is burstier when the load is kept constant. In addition,
as the traffic goes through more multiplexers then it gets smoother. When m, <11, it
may be seen that the solid line is higher than the line with asterisks, and which is higher
than the dashed line. This is because higher proportion of the traffic feeding multiplexer-
3 has been smoothed out than multiplexers-2 and 1; and higher proportion of the traffic
feeding multiplexer-2 has been smoothed out than multiplexers-1. The converse of this

happens when m, >11.
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Figure 4.8 Mean queue length of multiplexer-3 vs. the number of

sources of multiplexer-i

In Figures 4.9 - 4.11, the mean queue length, mean packet delay, and standard
deviation of the queue length are presented for multiplexer-3 versus its total load
respectively for two different functions of f;(z,). The results have been presented
assuming that a type-3 On source generates two packets constantly during a slot, with

PGF f,(z,)=z}, or generates geometrically distributed number of packets during a slot
with mean equal to two, with PGF f,(z,) = z, /(2 - z,) . It may be seen that the results for

deterministic packet generation are slightly lower than those for geometrical packet
generation though both have the same mean. Again, this is due to that geometric sources

are burstier than deterministic sources.
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Figure 4.9 Mean queue length vs. its total load for multiplexer-3
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Figure 4.10 Mean packet delay vs. its total load for multiplexer-3
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Figure 4.11 Standard deviation of queue length vs. its total load for multiplexer-3

Figures 4.12 and 4.13 present the mean and standard deviation of queue length
respectively versus the total load for multiplexer-3 while p, or p, is varying and the
other two type of traffic loads p, are kept constant. It may be seen that both curves cross

cach other when the total load is 0.6. Again, this is explained through the smoothing

effect of multiplexers. When total load is less than 0.6, the curves corresponding p, > p,

achieves lower values because higher proportion of the traffic feeding multiplexer-3 is

smoothed out. The converse of this happens when p, < p,.

89



80~ m,=15, m,=15, m=15 4
o 70+ 0.'=0,9, 0.2=0.9, 0.3=0.9 .
|
X f@)=2z ,1(z)=2,, f(z)=2 !

2 19 1 2\ 2' '3\73 3 !

2 eof , 1
2 !

£ /

5 50r ~_ _p,=02,p,=02 / 1
3 /

® 40k p]—0‘2,p2—0.2 // |
jon

()

3

8]

=

[

[}

=

0.4 0.5 0.6 0.7 0.8 0.9 1
Total Load for Mux—3

Figure 4.12 Mean queue length vs. its total load for multiplexer-3

100 T T T T T
90F _ _ _ ' g
m1_15, m2_15, m3_15 ,
!
80| - = - _
a, =09, 0(2—0.9, a3—0.9 '
70} f1(z1)=z1 , f2(22)=22, f3(23) =z, ! 4
/
/
60} / ]
___p2=0.2,p3=0.2 /
50 —_p]=0.2’p2-_—0‘2 // .

Standard Deviation of Queue Length for Mux--3

L Il

O 1 1 1
0.4 0.5 0.6 0.7 08 0.9 1

' Total Load for Mux-3

Figure 4.13 Standard deviation of queue length vs. its total load for multiplexer-3

90



Chapter 5

Performance Analysis of General Tandem

Networks of Multiplexers

In this chapter, the performance analysis is presented for tandem networks with
arbitrary number of multiplexers. The analysis will follow the same steps as in Chapter 4.
The new technique will be used to determine the unknown boundary function and then
the joint PGF, as well as the corresponding performance measures for each multiplexer in
the tandem network. Afterwards, it will be shown that the solution satisfies the
equilibrium form of the functional equation describing the system. This will give the

proof that the new solution technique is correct.

5.1 Performance Analysis of General Tandem Networks

In Chapter 4, two special cases of tandem networks have be studied: two and three
multiplexers in tandem. Now the solution will be extended to a general case: a tandem
network with n (n>1) multiplexers. The unknown boundary function, the PGF of the busy
period, and the steady-state PGF will be determined for the n’th multiplexer. The

following analysis will follow the same steps as in Chapter 4.

First, let us repeat the joint PGF of the »’th multiplexer from (2.35),
Qk (ln—l 71n—] H Zn’yn)

=B, + (2, ~DL B, (N0s, (1 1,1:00)

-z, & (5.1
ZBH(.])QI( i\ 350,0,2 n’¢(]))
(Z _1 2 -1
~2—"%"B,(NQ,0,,,0,,,0,,0,) k>1,n=2
n J=1
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Following the interpretation given in sections 4.1.1 and 4.2.1, the unknown boundary

function in (5.1) may be written as follows,

Qk (0 n-1 90,,_1 ,Z" 9yn)

—Z HW " (k)B, (k) (5.2)

r= 1 n

k 1 k—h+l
Z > ,m" Y(k—h+1)B,(k—1)0,(,.,,.,0,,0,), k21
=l r=l

ﬂ n

As before, it is noted that the first term on the RHS of (5.2) corresponds to the event that
the last time the »n’th multiplexer is empty is at the 1initial slot; and that the second term
corresponds to the event that the last time the #’th multiplexer is empty is at the end of
Pth slot. In the first term, @"""(k) corresponds to the probability that (n-1)’st
multiplexer will have r complete busy periods during the & slots. And the PGFs of the
packets received and transmitted by the »’th multiplexer during the k slots are given by

B,(k)z¥" and z'"' respectively. For the second term, given that the n’th multiplexer is

empty at the end of /’th slot, the (n-1)’st multiplexer must be empty in the previous slot.
Thus in the above, ¢"V(k—h+1) corresponds to the probability that (n-1)’st

multiplexer will have r complete busy periods during the (k-h+1) slots. Since, busy
periods are separated by an idle slot, (r-1)’st multiplexer will not generate packets at its

output during r of these slots. The PGFs of the packets received and transmitted by the

n’th multiplexer during the (k-h) slots are given by B,(k—h)zf"' and zF*!
respectively.
Substituting (5.2) in (5.1), we have,
01,0052, 9,)
=B, (k) +(z, —1)213 N@-,;(1,,.1,5,0,,0,)
J
AL S o k- 8,0 (53)

n i=l r=l “p

N

" k- j-h+DB (k-hQ,Q4,,.1,,,0,0.)

B,,( 0;-,00,.,,0,.,0,.,0,) k>1
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Let us define the following transforms,

Q(ln——l ’1n—1 ’ Zn’ yn ’ a)) = Z Qk (1n—1 ’ln—l 4 Zn 4 yn)wk
k=0
01,,1,.:0,,0,,0) =3 0,@,.,.1,,,0,,0,)0" (5:4)
k=0

Q(On~l ’On~l ’On ’On ’ CU) = Z Qk (Onfl ’On—l ’On ’On )a)k

k=0

Then we have,

Q(ln ]aln 1,2,,,}’,,750)

143 B, 00"+, -0 Y B, (N0, (,11,1,0,,0,)0*

k=1 k=2 j=1
o k-1 k-j 1
=z, =D 2. > o k- )B, (k)" (5.5)
k=2 j=1 r=1 Z,
o k-2 k—j-1k—j—h+] 1
~(z,-D*Y.Y, — " (k= j-h+1)B,(k-1Q,1,,1,,,0,0,) "
k=3 j=1 h=l r=1 Z,

From Appendix D the above equation may be written as,

o, 1,02, ¥,,0)

12 5[ ) Cuae) (Couton)™
iz \ 1 1_/1; A;'n"ﬂia)

- (Cuhn)(Co o)™ @
+(z, -], 1,,,0,.0,,0) - 1]}:( j By (5.6)
>Z[ j ) (Copla)"™ 0y ﬂz"wr e ﬂq"w)
=2, 457" o)z, = A, 435 o, (4, 250

2 Cln CZn N 1 N
_(Z -1) [Q(l —1’ n— l’On’Orna))_l]Z( ) (/11 j:—)la()) /’LZ ;; ﬂ;"wI:wlfﬂ:(iz a)——)xa))]

In order to determine the steady-state PGF of the n’th multiplexer, let us apply the final-
value theorem to (5.6),

Q(ln—] ’ln—17Zn7yn) = Qoo(ln-—l’ln—HZn’yn) = 1(33?(1 - a))Q(ln—I ’ln—l’zn’yn’w)
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Noting that,

n

111'111(1 - a))Q(ln—l 71 n-1 ’On ’On 2 Cl)) = Q(l n—1 ’1 n-1 ’On ’On) = 1 - Z pi

i=1
We have,
Q(ln—l ’1n—l > Zn > yn )

=(z, —1)( Zp,)_mZ(": )(C‘"ﬂl“"_)ﬂ(f%fi") . (5.7)

— ~1? — " < m" (Clnj'ln)i(CZnJ'Zn)mn_irn—l(A;nﬂ'rzng_i)
I v

The above is the joint PGF for the n’th multiplexer. Substituting y, =1 in the above, we

obtain the PGF of the queue length of the n’th multiplexer, which is given by
1)!1 (Zn) = Q(ln—] ’1n—1 > Zn ’ln—] )

e _1)[1 —ZPJZ("Z] (Cuh)'(Cop )" (5.8)

i=0 1- Z‘In/?’;n; ’

e -nfi- ’"n] Couon) Cona) ™ T (AL, ﬂq)
@ )( Zp‘jz( Az, A T (R

In the above expressions, (5.7, 5.8), we may see that the PGF of the »’th multiplexer
contains the PGF of the busy period of the (n-1)’th multiplexer, T, (4,4;:") . From (B.8)

of Appendix B, we have,

L(w)= l 1- I (5:9)
w Q(l n-2 31,,—2 70n—-] 707!—1 H Cl))

It may be seen that I, ,(w) is totally determined by ©(1,.,.1,,,0,,,0, ,,@). Since the

determination of Q(1,.,,1,.,,0,,,0,,,®) is equivalent to that of QO(1,,.1,,,0,.0,,®),

next we will determine QO(1,,1,,,0,,0,,@).

Substituting y, =1 in (5.6), we have,
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o, .,.1,..2,.1,,0)
s Z( )(cl,,ﬂq)(cznﬂz,,) o
i

1- //Llnl;nn_l
+(z, - D01, ,on,o,,,w)—l]zn[r?)(Cl"ﬂ;")z(gci'lfi") — (5.10)
i - 2n

)Z[ J(cm D (Co, )" 0l A o, (A4, A )
A Ao o)z, = A, A o, (A, A5 )]

- o) Co)"™ T, U
10 0,000 1]2[ )(l PN ey

and C =C,

Inly -1 2n

where, C,, =

Following the same process of the development in section 4.1.3 and 4.2.2, the

expressionQ(1, .1, ,,0,,0,, ) may be determined by invoking the analytical property of

the function Q(1 ) inside the poly disk (|z,|<1;|@/<1), and through the

n— 1’ n-1> n’ n?
application of Rouche’s theorem. Therefore, the details will not be presented here and

just the results are given,

/1'""(0!
2n 2,=2,(w)

a,..1,,,0.0 ,0)=1+ * (5.11)
n-1>"n-1°>Yn>"n
I-z,(w)

where z, (@) is the root of the equation
z, = gl (A,w) =0 (5.12)
From (5.11), we have,

1 Al
I’n(a))=_1~(1— J: . " ”:( )

ol 00,10,10,.0,.0) ) 1-z(@)+Xsa| .

Therefore,
I‘,,_l(co)— MR AT (5.13)

z, ,(w)+ Ayt 1)“"

z, ~z (@)
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5.2 Performance Measures of the n’th Multiplexer

In this section, the mean and variance of queue length will be determined, as well as
mean packet for the n’th multiplexer. It may be seen that the PGF of the queue length of
the »’th multiplexer in (5.8) has the same form as the PGF of the queue length of the
second and third multiplexers in (3.31) and (4.31). Thus, the derivation of the
performance measures for the n’th multiplexer will follow the same steps as in sections
3.3 and 4.2.3. First, let us write (5.8) in a more convenient form:

n G,
P(z,)=(z, —”[l_;p"){E"(Z"HT—_H%}

(z,)T,.(H,(z,) 19
2 < Gn Zn n-1 n Zn
~&-D [l 2P ’j[F"(Z"” - H, )z, —Q(a)}
where
Ly =% (m) (Codiy) (Cou )™
E,( )~Z[ ; j Ty (5.15)
F(z)= Z(m) Coh) Q)" Tl 5.16)
S\ ) A= 4,5z, — 4,2 T, (4,4 )]
Hn(Zn)zﬂ’;n;> Gn(zn):(EZn/’{’Zn)mn (517)
®n(zn):Hn(zn)rn—l(Hn(Zn)):/’{"Zn;rn—l(//i"lnn") (518)
And wehave, E,(1)=0, F.(1)=0, H,()=1,G,(1)=1,0 (1) =1 (5.19)

- Derivation of the mean queue length and mean packet delay
Let us apply the same technique as in the previous chapter. First multiplying both

sides of (5.14) with the common denominator, and then taking the third derivative of both

sides with respect to z,, afterwards substituting z, =1 gives,
-3H,(O[1-0,(]+3H,1)e;(1) - 64, (D)1 -6, )]F,1)

= =61~ 3" p)ITL OH, (1) + G, + 30— 3. p)[-©% (1) + 201 - 8, )G, ()]

i=1
Solving the above equation for P;(1) gives the mean queue length of the n’th multiplexer,

which is given by
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" " 1- Pi
o mo, T

T — ? - ! HI Gl 1
No=£0) 2A1-©, ()] 2H(1) H;(l)[l—@'n(l)][r"““) »(0+G, ()]
" . (5.20)
a-Y. pporay 1->p,
+ £l -—= G/
2HI(D[1-©,(1)]  H(1)
where @;(l):d—g—"@ , @:(1):&(25_'1) (5.21)
dZ" z,=l dzn z,=1
oy =G gy G (5.22)
dz, z,=l dzn z,=1
Gm=9%E) o gy Eml@) (5.23)
dz, - do |,

From the Little’s result, the mean delay that a packet experiences at the n’th

multiplexer is given by,

D = (5.24)

- Derivation of the variance of the queue length

The variance of the queue length for the n’th multiplexer requires the second order

derivative of P /(z,) . First, both sides of (5.14) are multiplied with the common
denominator, and then the fourth derivative is taken with respect to z,. After, z, =1 is

substituted, and finally the resulting equation for P)(1) is solved,

97



})"”(1)

1
T 6H! ()[1-6',(1)]

{2(1—ip,)®:'(l)+3H::(l>®: M

+6(1- 3 p [O1 (DG, (D) +©, MG+, (1)H:(1)]} (5.25)
1
3H, (1)

L1
31-0,M)]

+

{—H;"(1>+6<1—ip,-)H;a)E;(n—3H;’<1)P;<1) }

{@'n"(l) +30; (MF (1) +30 *En:,o,-)[ﬂ",ﬁ_l MG, )+ (MH, (D] }

3 2
G
where ©”(1) =d—%§z—") . G'(D) =-d—"—2(fﬁ : (5.26)
dz, |, dz; -
, dE (z s d°H (z , d’T, (o
O B R = N OB )
no gz = n z,=1 @ w=1

The variance of the queue length for the n’th multiplexer, ¥, may be expressed in terms
of the derivatives of its PGF as
v, = Bl)+ Bi() (B M)’ (5.28)
In the next, the derivatives of G,(z,), E£,(z,), H,(z,), I',_ (@), and ® (z,) will
be determined. Since the derivatives of G (z,), E,(z,), H,(z,) may be determined in

an straightforward manner from their definitions in (5.15, 5.17), the details will not be

given here. It only be noted that,

HI(1) = m"z(l_;ﬁff/; M _

Next, the derivatives of I, ,(w) will be expressed in terms of the derivatives of z ().

e, (5.29)

I'_,(w) is the PGF of the busy period of the (n-1)’th multiplexer, which has been

determined in (5.13). Taking the first three order derivatives of both sides of (5.13) with

respect to @ and substituting @ =1 gives,

() =ﬁ;&)(—@ -1 (5.30)

w=1
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2 a’z*_1
rL =2 o ) —2p,,_][ T

j (5.31)

(1) — n ](CU) + 3[1—-11 ](l) n 1((0) ][F,:_l (1) _ ,0,.-1 N dZ:—] (a))j|
dw’ dw

w=}

3 (dz,;;()a))J

w=]

(5.32)

o T I(l)dz” (@)

w=1 w=1

From (5.18), we have ® (z,)=H (z,)I',,(H,(z,)) . Taking the first three order

derivatives of ®,(z,) with respect toz, , and then substituting z, =1, we have

®,(1) = p,(1+T, (1) (5.33)
©’(1) = HI(D[1+ T, (] + p2[20,, () + T, ()] (5.34)
®7(1) = HI[1+ T, (0] +3p,H, O[T, (1) + 20, O] + AAE D +3T0, (0] (5.35)

Finally, the first three order derivatives of z:_l (w) are determined. From (5.12) we
have,

Zp- 1(a)) wH, \(z, )T, ,(0H, (z, -1))' (5.36)

2y1=25 ()
Because the unique root of the equation z, | —wH, (z, ), ,(0H, (z,,))=0 at =1

1s z,, =1, we have,

Z;_l(a))L):l -
Taking the first order derivative of both sides of (5.36) and then substituting w =1 and
noting z, ()| =1, H,,()=1, T,,(1) =1, we have

|

dz:_1 (w)
do

dz,*,_, (w)

=[1+T,, (1)][

w=1
Solving the above equation, we obtain,

dz, (@) 14T,

= (5.37)
do | | 1-p [1+T,O]
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Taking the second order derivative of both sides of (5.36) and then substituting @ =1 and

noting z,_ ,(a))[ =1,H ,(1)=1,T _,(1) =1, we obtain a equation. Solving this equation

2 *
for 4z, (@)

o ~ gives,
d’z, (w)
do’ | |
* * 2
1 dz _(w) y dz _(w)
= 1+ (D] 2 it +H (1 nl 5.38
-5 ‘[1+F 2(1)]{[ + n«Z(){ P do LD [ do ) } ( )

2T, () 4T z(m[l +p —————dz;-'(“’)} }
da

w=1
Taking the third order derivative of both sides of (5.36) and then substituting @ =1 and

noting z,_ ](w)i =1,H,_,(1)=1,T,,(1)=1, we obtain a equation. Solving the equation

dBZ;’l(C’))

for 3
dw

gives,

w=]

d’z, 1(60)
da)3

w=1

— 1+F' 2(1) dZn l(a)) dZZ;—)(a)) . dzn l(a))
= T "‘2(1)]{ n- 1(1)( T ] +3p | ——n - +H ](1)( =1 J

+3H" (1) dz" ](a)) d2d"wlz(w)}

w=1

(5.39)

" " * 3
PILLOTLO [ (@)
1= p,,[1+T,, (1] dw

LACLM+20, 001, 4z, (@)
1= p, (14T, (D)] " do

'[2,0"—] dz;—l (CO) H” I(]){dz l(w)J +pn‘1 dzzr*wlz(w)J
dw dw

w=1

w=1
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The expressions of (5.37, 5.38, 5.39) involve the derivatives of I',_,(w), which is
the PGF of the busy period of the (n-2)’nd multiplexer. This is due to that the (n-2)’th
multiplexer affects the »n’th one through the (n-1)’th multiplexer. Since the performance
of the »n’th multiplexer is affected by all the preceding multiplexers, the PGF of the busy
period of multiplexer-1, 2, ..., (n-1) is needed in order to determine the performance of

the n’th multiplexer.

5.3 Proof of the Solution

In the performance analysis with the alternative solution technique, the unknown
boundary function have been determined following an interpretation of the single
multiplexer result. In this section, it will be proven that the solution obtained through this
technique is correct. This is done by showing that the steady-state joint PGF given in
(5.8) satisfies (2.36), the equilibrium form of the functional equation at the steady state,

which is repeated below,

Q(ln—l ’ln—l > Zn’ yn)

=B, (1){Q(1,,_1 1,0.2,,Y,)+(z, - DO, .1,.,0,.0,) (5.40)

-z,

-1?
n-1>“n> n)—(zn )
z z

n n

+ 00,0, ,,2,.7

Q(On—l ,0,.,0,,0, )} , k=20

First, the steady-state boundary function Q(0,.,,0,,,z,,»,) in the above is

determined. Let us define the transform,
Q(On»l ’On—l b4 Zn > yn ’ (U) = Z Qk (On~] 70n—1 b Zn > yn )a)k
k=0

Then from (5.2) we have
00,,.0,.,,z,,y,,©)
o k
1433 - 0 (0B, ()

k=1 r=1 Zn
o k-1 k-h+1 1 .
+ (Zn - I)Z Z Zryl ¢£ K (k - h + I)Bn (k - h)Qh (ln—] ’ln—l ’On ’On )a)k
k=2 h=l r=l <,

Letting A, , A, denote the separate parts of 0(0,_,,0,_,,z,,y,,®):
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ok
Ay =143 Y V() B, (Rt (5.41)

k=t =l Z

n
k=1 k-h+1

4 =(z, -1, o (k= h+ DB, (k- 1)Q,(,.,.1,.,,0,,0,)0" (5.42)

k=2 h=l r=1 Z,

Then 0(0,,,0,.,,2,,y,,®) may be expressed as,

n—-i2

Q(On—! ’On—l ’Zn ’yn b4 Cl)) = AO + Al
In the next, we will determine both 4, 4, .

- Determining 4,

Substituting from (A.1) in (5.41), we have

Ay =1+2,3 0" (k)B, (k)"
k=1
Substituting for B, (k) from (2.26), we have
=142, Z[’"." }o‘"“‘)<k><cmzfn>"<cznz§n>'"f"a>"
i=0 k=1 l

From (A.3),

n m . . . ;
Ay =1+ z"Z( " ]c;nc;",;-'@‘"‘”(ﬂ;nﬂ;";"w)
; l

From (A.5),
A =142z i mn (Clnx‘ln)i(cn/’{?n)mn—iwr -1 (;"in/’{";;_lw) (5 43)
o rE ) g A el (A ) |

- Determining 4,

Exchanging the order of summations in 4, defined in (5.42), we have,

o k—h+l 1

4= -0z Y LoV ht B,k -1)0, 0,1, 1.0,.0,)0"

h=t k=h¥l r=1 Z,

Letting £ =k — h, we have,

0 o f+]
=(z,-Dz,0.>. —1— " V(U +1)B,(0)Q,04,,.1,,,0, .0 )0 "
k=1 £=1 r=1 Z,
©  {+] o ¢4] 0 1
Because (Z ) = (Z )—(ZZJ R
(=0 r= (=0 r=1 =0 r=1
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0+

4= -1, {zz

0 r=1

ir o (0 +1)B,(00,(4,,,1,,,0,,0,)0"
Zn

~
it
-

h=

<N .
- Z - ¢1( K (I)Bn (O)Qh (l n-1 ’ln—l ’On ’On )a)h }

h=1 Z,

From (5.6) we have,

~

oo (4]

3 _1__ " (¢ +D)B,(0Q,(,.,.1,,,0,,0, )0
Zn

1 (=0 r

o 1
- Z —; Bn (O)Qh (On-l ’On—l ’On ’On )wh }
h=1

n

[Ms

4 =(z, —l)z"{

>
1l

~
1

From (A.1),
A =(z, - 1)z,,{22 " V(£ +1)B,(00,(,.,.1,,.0,.0,)0""
h=1 ¢=0

@ 1
- —B,(09,(0,,,0,,,0,,0, )a)h}

h=1 Z,,

Substituting for B, (¢) from (2.26) and noting that B, (0) =1, we have,

Al = _(Zn _l)z Qh(on—l’on—l ’On ’On )a)h
h=]

m ®© 00 m" e ; i N

+(Zn —I)Z”ZZZ[ l )¢( l)(K-'-l)(cwlnﬂ‘fn) (CZnﬂ’gn) " Qh (ln—l ’ln—l ,O",O")w(] ’

i=0 h=1 ¢=0

Substituting from (A.3),

4 =~(z,-1)Y.0,00,,,0,,,0,,0,)0"
h=1

R mn =I\i -t \m,—i n— i oqm,~i h—
+(zn-l>znZZ[ ; J(Cl,,ﬂq,i)(cmz;w O (A, 255 )0 Ly 11,0,.0,)0"

i=0 h=}
From (5.4)
Al = —(Zn - 1)[Q(On—l ’On—l ’On ?On > C()) - 1]
+ (Zn - l)zn [Q(ln—l ’1 n-1 ’On ’On ’ 60) - l]znl [m" j(cln/’l{rl: )’(CZnﬂ“;t )'”n'i (I)(""‘) (/’{’I;n%ﬂ;_iw)w‘l
=0 \ ¢
From (A.5)
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4 =z, -1[0(,,.9,.,,0,.0,, @) -1]

+(z, -Dz,[00,,.1,,,0,,0,,0) -1 " CinCon T (A R
i=0 1 Zn —ﬂ’lnﬂ?n n~](ﬂ’ln/12n 0))

Now substituting (5.43, 5.44) back in Q(0,_,,0,.,,z,,»,,®) gives us

Q(On—l ’On—l > Zn > yn 4 C())
(Clnﬂi )(CZn/’{'Z ) _’Cl)r ](ﬂ'l ]’
=1
e ZZ( ) n /i’,ln/?’Zn n-— l(ﬂ’l /1;”” ’CU)
Cz Cm rr 1(/1] /1
Zn _ﬂ;nﬂ’;’n ’a)rn»](ﬂ’ln//{‘;nn_‘a))

(5.44)

=0 r=1

+ (Zn - l)zn [Q(ln—] 7ln—] ’On ’On > CU) - 1]: ":(m”)
=0\ ¢
~(z, -D[0(,,,0,.,.,0,,0,, ) —1]

Applying the final-value theorem to the above equation, we obtain the steady-state form

of the boundary function, which is,

Q(Onvl ,0,,-] > zn > yn ) = lciirll(l - a))Q(On—l ’On—l > Zn 2 yn ’ a))

:(Zn —l)an(ln~l >1n~]a0na0n)zn(n?nj C ,C' m, r l(/l‘ /12n ma)), (545)
i=0 ! Z _Anﬂ?n n— ](ﬂ’l X‘Zn a))

- (Zn - I)Q(On—l ’On—l ’On ’On)

Now it is ready to show that the steady-state joint PGF given in (5.8) satisfies the
functional equation in (5.40), which describes the behavior of the n’th multiplexer in a
general tandem network at the steady state. Substituting (5.8, 5.45) in the RHS of (5.40)

gives us,
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Q(ln—] ,ln—],zn’yn)

- B (1){(z" - 1)(1 -y pi)i(”:nJ(Clnﬂ;,,_) icimﬂq) a ;

i=1 i=0

=Y,

o, & \e(m, A)'(Cznﬂz )T, Ay |
—(z -D*1- , : _ .
@ )( 2.7 )Z[ }a A3z, — A A T (B,

+(z, -DEA,,1,,,0,,0,)

Cl m, 11—- /1m 1
—(Z —1) Q(ln ]’ n- ]’On’o )Z( w ]"C 1(11 2 |

)z, = 2,287, (A, ,,'>|yy

A
e

n

Q(On—l ’On—l ’On ’On )

Q(On—] 70n—] ’On ’On )}

Canceling out the two identical terms in the above equation and noting that,

2("1,")0{"@";“" =(C, +GC,)™ =1, and 0(1,,,1,,,0,,0,)=1-)_p, , where the first
=0\ ! il

equation follows from (2.24),

we have,

Q(ln—] ’ln—l’zn’yn)

=B (1){(2 —1)[1 _i pIJi[mn)(C,nﬂ;n_)'ﬂ(;Czﬁn) - !

i=0 1

Yu=Y,

- 1-% p, 13 | Cur) (Cau)™ TR )|
e )(l Zp’)Z( )= 2,25z, = 4, 25T, (B, 37,y

eS8

i=1 i=0

n=Y,

(e (l_ip,)'"( } CLCp T, () | }

= — A, AT (B A

Combining the first term with the third one, and the second term with the forth one on the

RHS of the above equation, we have,
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Q(ln—l ’ln—l’zn’yn)

- B, (1){(zn - 1)[1 - Zp]

m,
i=] i=0

i m,—i
[m") C]nCZn
. i am,—i
i 1= ﬂ’lnﬂ?n ¥,=Y,

"(Z,, "1)2(1 - sz jz’:(m"] ir'n_r)n(j}lnﬂ?: l) m,—i ’ C]"iC’z’:m —i|
i=1 i=0 ! Zn _ﬂ’lnﬂ'Z; n~1 (/11'1/12; ) l_iln/??r'; I)’,.:y,.

Since B,(1)=[X,(1)]™, and only the factors C; C;»” in the above contains y,, the

above equation may be written as,

Q(ln—] 71"—]7Zn’yn)

n O\ [(Ch|, )X, DIUC,,
=(z, —1)(1 -y p,.)Z[m,"] Lo

o )X O

i=1 i=0 1- /,{Tinﬂ’rln;—i
PRI PR I Sl R L, (A0 (5.46)
. [(Ci], )X, DV(C,,], L, )X, @1

1= 4,4
From (2.15, 2.22, 2.24), we have,

c XaW-by o A= XO (5.47)
ﬂ‘ln —lZn llﬂ - /12"

Thus from (5.47) and (2.15), we have,
)X - ., X,m-4,x,0 X, A, X, ()
st " ﬂ’ln - ;{’2n /’{’ln - /?'Zn

Substituting for X,(2) from (2.17) in the above equation, we have,

)X _X, ML, +ta, [+ 0-a, = B)f(z,) -4, X, (1)
¥u=t, ()= A - A,

.

c.,

From (2.22) we have,
byt =6, ta, f,(z,) 5 Ay, =-(-a,-F)/,(z,)
Thus

)X 1) = X, O, + 4,1 A Aoy =40, X, (1) ~ 1 X,)—-4,,
Yo=Y, n A’ln ’“’12,, n /1]" _lz,,

Substituting for X, (1), 4,,, 4,, from (2.15, 2.22) in the above, we have,

(Cl n
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120y, =y,8,—a ), @)+ (8, +a,f, ()
2 (8, +a,f,(z,)f +41-a, - B,)f,(z)

L xm=4,

c.

Therefore, we have

., ., x.m=c,a4, (5.48)

Following similar steps, it is easy to show that,

(CZH y,=Y, )Xn (1) = C2nﬂ“2n (549)

Substituting (5.48, 5.49) into (5.46), we have,
Q(]n—l ’ln—l 2 Zn > yn)

o ol ot

_ ~1N? — . N m” (Clnﬂﬂn)i(chﬂ?n)mn_i n—](ﬂ’;nﬂ';n;—i)
oD (1 20 JZ( i J(l—ﬂéﬂx’;‘;"‘)[zn = A, A T (A, 25770

We may see that (5.50) is same as (5.8), which shows that the steady-state joint PGF
given in (5.8) satisfies the equilibrium form of the functional equation in (5.40). This
proves that the solution is correct. Further, since the system is modeled as a Markov

chain, it has a unique solution; therefore, there are no any other solutions.
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Chapter 6

Tandem Networks with Multiple Types of Traffic

In the previous chapters, it has been assumed that the external arrivals to each
multiplexer in the tandem network are generated by a single type of sources, although the
external traffic for different multiplexers could be of different types. This assumption
may not be suitable for real networks. Because in practice, the input traffic for each
multiplexer may be generated by different types of sources, such as data, voice and video
sources. In this chapter, the results are extended to a tandem network with multiple types

of traffic sources feeding each of the multiplexers.

6.1 Network Modeling

It is assumed that the tandem network model consists of an arbitrary number of
multiplexers, and each multiplexer is fed by a number of different types of sources. Each
type of sources consist of a number of independent On/Off sources, and each On source
generates packets according to arbitrary PGFs. The goal is to determine the steady-state
PGF for the n’th (n>1) multiplexer. First, let us introduce the following new definitions

regarding the more complicated system model:

7,= number of the source types for multiplexer-i, i =1,2,---, n

m, ;= number of type-j sources for multiplexer-i, i =1,2,---,n; j=1,2,---, 7,
p, ;= traffic load of type-j sources for multiplexer-i, i =1,2,---,n; j=1,2,---,7,

p, = traffic load for multiplexer-i, i=1,2,---,n; p, = Zpi,j
=1

Qs ,8,.,]. = parameters for type-j sources of multiplexer-i, i=1,2,---,n; j=1,2,---,7,.

¢, ,= queue length for multiplexer-i at the end of slot £.
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a, ,, = number of On-sources of type-j for multiplexer-i during slot £.

Ay =g Fags s Ao y)

S« = number of packets generated by the 4’th On-source of type-j for multiplexer-i
during slot k. f, ., are independent identically distributed (i.i.d.) from slot to slot for
type-j sources feeding multiplexer-i, with the PGF f, .(z,).

b, ;; = the total number of packets generated by external sources of type that are

feeding multiplexer-/ during slot £.

b,, = the total number of packets that are feeding multiplexer-i from external sources
duringslot k, b, =3'b, ,
=1

c,;,;= a variable that assumes the values of 1, 0 if the #’th source from type-j that is

feeding multiplexer-i in On and Off states in the next slot respectively, given that this
source is On in the present slot.

d,, .= a variable that assumes the values of 1, 0 if 4’th source from type-j that is feeding

hi.j
multiplexer-i is in On and Off states in the next slot respectively, given that this

source is Off in the present slot.

The ¢,, ;, d,,;are i.i.d. Bernoulli random variables with the corresponding PGF given
by:
ci,j(zi)zl"ai,j+ai,jzi s d,-,j(zi):ﬂi,j"'(l—‘ﬂi,j)zi (6.1)

From the above definitions, we have

S'd,,, (6.2)

Jj=1

ik ik m;,
bi,j,k = Z fh,i,j,k ’ e = Zch,i,j +
=1 =1
The evolution of the first queue length is given by,
L}
+ +
Cign = (el,k -1) +b1,k+1 = (fl,k -1) +Zbl,j,k (6.3)
=

And the evolution of the i’th queue length (i >1) is given by,
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Cipn = =D+ +u, =, ~1)" +Zbi,j,k+l +uy, o, 2<i<n (6.4)
Jj=1

where u,, is a random variable depending on whether the previous queue is empty or not,

1 ifl.,, >0 65
YTV 00 ife,,, =0 (65)

In the above equations the notation (x)* denotes max(x, 0).

As discussed in section 2.3, the total effect of the multiplexers preceding the n’th one
has been summarized in the output of the (n-1)’st multiplexer. Thus, in order to determine
the performance of the n’th multiplexer, only the joint system consisting of the (n-1)’st
and the n’th multiplexers needs to be considered. The state of the two multiplexers can be

defined by (¢,_,,.a,_,,.¢,,.4,,) . Letus define Q,(z,,,¥,,,2,,y,) as the joint PGF of

the random variables ¢, ,,a,_,,,¢,, and a,, , then we have

Qk(zn—]’ina]’zn’yn):E[ —-Tkyn—;uzgnky: k] n‘>"2

n-1,Lk n-1,2.k Apot3 .4 nlr,,,k

where ¥, =(¥;,, ¥, ¥, ), and yn =y >yn—12 Vults s Yt )

A1k An 2.k Ap 3k

_.( an,r,,,lt)
yn ’ynZ 7yn3 I 7yn,1',, ?

Then, the joint PGF at slot (k +1) is given by,

n- lk+l"‘a l/¢+l Cppst =)
Qk+l(znl>ynl7 n’yn) E[ ynl Zy yn ]

Following the Markov chain analysis of section 2.2, the functional equation is obtained

that relates the joint PGFs for two consecutive slots for the »’th multiplexer,

Qk+1(1n—1 :Tn—nzmyn)

=Bn(1){Qk(1"-,,T,, vz 1)+, -0, (,..1,..0,,0,) (6.6)
50000, 7B 0,0,,8,,0.8)) L K

where

B,() = H B, B, 1) =[d,, (0 fo, GO, 6.7)

110



La=z,, 4 » La=0 =Ly, =Ly, =1, (6.8)

01 =2, o > 0= =022 =02, =0), (6.9)

0,=z) , » 0,=(=0,3,,=0,y,, =0, (6.10)
Cn,j (yn,jfn,j(zn ))

zv:(ynJ:Yn,l’yn,Z:Yn,Z’”"yn,r,- :Yn,r,,)’ Y, 4 (611)

“ =, b sz

It may be shown that the functional equation given in (6.6) can be expressed as follows,
Qk (1n~—] ’Tn—l > Zn > yn)

= B,(k)+(z, =D B,(NQe.,(1,,T,1,0,,0,)

=
- ;nz,, jz:: B,(NQ., (0"_,',6”7, A (6.12)
Jz_"z__l)ii:Bn (1Q4-;(0,4,0,.,0,,0,) k21,n22

where, S

éU%ZM“ULQJU%”V@aUD,¢JM)=%%%% , B, W) =[x, 0 ©613)

And U, ;(k), X, ;(k) are defined as,
X, k+) =X, (DX, (k)lyi'fzym] with X, (0)=1, X, )= +1-B )y, ,[f,(z)

U, U+ = X, 00, (k), 1 with U, (0 =y, U, =1-a,; +a,y, /)

1

The proof of equation (6.12) can also be done through induction as in the case of

(2.28), and the details will not be given here. In general, (6.12) gives the solution of the
functional equation, except that the unknown boundary function, Q, ; (On_1 ,0,.1,2,,8,( j))

need to be determined.
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6.2 Performance Analysis

In this section, the unknown boundary function in (6.12) will be determined and
then the steady-state PGF of the »’th multiplexer will be obtained. Afterwards, the
performance measures will be determined.

Through the busy period of the (n-1)’st multiplexer, the unknown boundary function

in (6.12) may be written as,

Qk (On 17-(—)n_]7zn7j}—n)

—Z = o (k)B, (k) (6.14)
k~1 k—h+1

+(z, —1)22 Hgo,”l)(k h+DB,(k-mQ,(1,,,1,,0,,0) , k=1
h=1 r=] n

Substituting (6.14) in (6.12), we have
0., ’Tn—l 1205 ¥y)
k-1 — —
= Bn (k) + (Zn - l)z Bn (.])Qk—j (1n—1 ’ ln—] ’On ’On)

=z __lklk—f | .
BN S e = B, () (6.15)

=1 r=1 Z

J
(Z _ 1)2 =2 k= j-V k—j—h+]
n

1 e —
> =" k=~ j-h+1)B,(k-h)Q,0,,.1,,,0,,0,)

=l b=l r=l 2,
1

~ Y B0y (0,10,1,0,0,) k2l

n J=1

The transform of the above equation is defined as,

00,..14,2,,7,,0) =2 0 (1, 1,1,4,2,, 7,0 (6.16)
k=0

From (6.15) we have
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0a,..1,..2,,7,,®)

=14 38,000 +(z, - DY, >3, (NG 1,1:1,4.0,.0,)0"
k=l k=2 j=1
~(z, —l)ikzlkj o (k- ))B,(k)o" (6.17)
k=2 j=I

w k-2 1 e . — _
~(z, _1)222 Z — " k- j-h+1)B (k-h)Q,0,,,1.,0,,0,)0"

3 j=l A=} r=1 Zn

Let us define

Q(l n-1 ’Tn—l ’On ’6n ’ C()) = Z Qk (1n»l ’Tn—l On ’On )a)k
k=0

Q(On_] 76n_1 90,, ,6,, > CO) = Z Qk (On_] 76n_l ’On 76n )a)k
k=0

Following the algebraic manipulations similar to those in Appendix D, equation (6.17)

may be written as,
Q(ln—] ,_1;1_,,2,',5/"”,0))
z mn,j i m, ;=i
l- (Cln,jﬂ’ln,j) ! (CZn,jﬂ'Zn,j) , w
i j

=0 1- Z,W/l "7 g

2n,j

i
+
[

Ty

mnj
wH( )(Cln jA'lnj) (C2" 1/12”!)
+ (2, D00, T,10,.0, ) -1

0 1o T4, 4"
l:wH( " 1)(Cln jﬂ'ln ]) (C2n jﬂQn ])m T :I(wnﬂ’ln ]/1271{; IJ Fn—l(a)ILII iil,j/’l"ln;,f/_ijJ
wonf{ )= =

(1 - CUH ﬂ']n 1/127111 g ){Zn - [a)ﬁ A;I;l,jﬂ;n;:/j'—ii ) n— )[CUH /‘(’ln jﬂ’;nn j_ll )}
Jj=1

~(z, -1*0q,.,,1,,.0,,0,, ) ~1]

(m j l:a)l_[( n.j)(cln jj'lnj) (CZn ]/,Lln j) :l r‘n—l(wﬂ]‘ln J/’{'Zn; ’}

1o L4, ){z —[wHﬂm%z"; J rn_,(wﬂﬂé'n,ﬂ?;;’{” H
j=l L

(6.18)
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_ ﬂn,j +an,jfn,j(zn)—\/(ﬂn,j +an,jfn,j(zn))z +4(l-a,; _'Bn.j)fmj(zn)

2

A

Bora @) B, v, @) Y4 -a,, - B, 1, ()

2n.j T 2

C :l_ 2()’,,,j —yn,jﬁn.j _an,j).f;:,j(zn)+(ﬂn,j +an.j.fn,j(zn))

2 ol v e h, @) HA-a,, - 8,1, )

_1_ + 2()’,.,1 - yn,jﬁn,j - an,j)fn,j (z,)+ (ﬂn,j + an,jf",j (Z"))
2 2'\/(ﬂn,j + an,jfn,j (z, ))z +4(1- Ay~ /Bn,j )fnj (z,)

C, . =

In,j

In order to determine the steady-state PGF of the n’th multiplexer, let us apply the final-

value theorem to (6.18),

Q(ln—l >—1—n—1 ,Z,,,j’_,,) =0, (1n—l ’Tn—lazwyn) = 1‘3311(1 - w)Q(l;M ’Tn—-UZn’yn’ @)

We note that, lim(1 - 0)Q(1,, ,1,4,0,,0,, @) =0(1,.,,1,,,0,,0,)=1-> p,

i=1

where

(-850
pi: plz - . . ] i:1>2>"'n
; ! ; z‘ai,j"ﬂi,j

then,
Q(ln—] ’Tn—l ’ Zn ’in)

7

n mn’j [ _—
n m, & i (Cln,jﬂ’ln,j) ! (CZn,j/’{Zn,j) i
=(Z,,_1)(1*—Zpi)z J=1 J - . .
- | e
J=1

J=1 J

Wwim . . = Tn i m
|:H( l.nJ )(Cln,j]’ln,j )’j (CZn,jA‘Zn,j )mn./' ’ } : rn—l (H A"j"yj/ll

n. i
n,Jj

i=l i=0
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n,j

/ ) (1 - 1_"1 I;;,jl;n;:;—ij )[zn - (1_":[ ﬂ;/;,jﬂ';n;:lj.'_ij J ’ 1—‘n—l (l_n:[ A;Jn,jﬂ‘;n
J=l =1 J=

(6.19)



The above is the joint PGF of the n’th multiplexer. Substituting ¥, = 1 in (6.19) gives
the PGF of the queue length of the »’th multiplexer,

B (z,)=0(,,,1,,,2,1,)

H( ”’}(Cm,ﬂw (o )™

= (z, —1)[1 ’iﬂ)i AL
= ]_H/’{'lnj//{“anj ’

[H( '”J(Cln //11"]) (C2n J;{an)m o :| 1—‘n ]( ) ﬂ'?n,j mr:;}-i/)

J=1 j

—(zn-l)z(l— ) pjz[”j] ,
A (1 m,.,azn;f]{z —[Han,ﬂu;’}-n_[" %H

and C

Y, j=h 2n.j

where C, , =C, =GC,,;

In,j

_Vn.j:]
Next, I', (@) will be determined. From Appendix B, I',(w) can be expressed in

terms of O(1, .1 ,,0,,0,,®). Following the derivation in section 4.2.2, the expression

n’>n?

od,,,1.,,0 6,,,(0) may be determined by invoking the analytical property of function

n=13"n-12Yn>s

Q(ln l’Tn 1> n’ n’

Rouche’s theorem. Therefore, the details will not presented here and only the results are

given,

r’l
ﬂ;”mj
n.j
= 2,=2,(®)

o) (6.21)

Q(lnla—l‘nla : (0)—1

where z, (w) is the root of the equation,

z, —[wﬂ ﬂz",) (wl‘[ ﬂg} (6.22)

From (B.8), we have,
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1 j=1 ’- ¥4 =Z' w
r”(a))=—(1— 1 ): d 2=t (0) (6.23)
w 041,.,,1,.,,0,,0,, )

6.3 Performance Measures for the n’th Multiplexer

In the next, the mean queue length, packet delay and the variance of the queue length
will be determined for the n’th multiplexer. First, let us transfer (6.20) into a more

convenient form:

n G
Pn(zn) = (Zn —1)[1"§p1j[En(zn)+l___—;_7(—z_(nz)-ni]

G,(z,)T,,(H,(z,)) (620
2 2 z ), z
&b (l R "j{F"(Z"“ 1—H, )z, ~®n(z")}
where
i, ( " jJ(Cln _//’{’ln j) (CZn ]A'Zn_/)
E(z)=), A\ Y — (6.25)
= l—lt‘[izln,jﬂlm g
n mnj =~ Iy~ m, .~I
7 (m [H[ i., ](Cln,jﬁm,j)/ (CZn,jﬂ?n,j) " I:I n— 1[1—[ ﬂw jﬂ'lnf/ 1)
F(z,)= Z( ) ! , (6.26)
" [1 H lln J i )[zn - (H /{';Jnjﬂ”;;,/j_ll ) F (l—[ ﬂ’ln jﬂ?nj/ " ]:]
H (Z A‘;nn 4 Gn(zn) = ﬂ(aln,jﬂ?n,j)mmj (627)
0,(z,)=H,(z,)T,,(H,(z,) (6.28)
We note that
EM=0,F =0, H1D=1,G,1)=1,0,01=1 (6.29)

It may be seen that (6.24) has the same form as (5.14). So the performance measures of

the »n’th multiplexer may be determined in the same manner.
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- Derivation the mean queue length and packet delay
First, both sides of (6.24) are multiplied with the common denominator, and then both

sides are taken the third derivative with respect to z,, afterwards substituting z, =1 gives,

—3H,(O[1-0,)]+3H, 16, (1) - 6H (D1 - &, (D]EF(1)

=601 Y. T H; )+ G,1)]+31- Y. p)I-05 () +2(1 - O, ()G, (1)]

i=l

Solving the above equation for P/(1) gives the mean queue length of the n’th multiplexer,

" " 1- Pi
. o _my, %

M= b= ey 2 P mon-e;m OO GO
! k (6.30)
1->p)0u0) 1= p,
+ i=l _ i=) G,"(l)
2H,()[1-0,()]  H,(D)
where @ ()= 22aC)l o gy 4Oulz) 6.31)
n z,=1 Zn 2,=1
2
=) gy TG (6.32)
d" z,=1 dzn z,=1
Gm=20@) gy el 633)
dz, - do |,

From the Little’s result, the mean delay that a packet experiences at the n’th

multiplexer is given by,

D, =—* (6.34)

- Derivation of the variance of the queue length
In order to determine the variance of the queue length for the »’th multiplexer, the

second order derivative of P,(z,) is required. Following the same steps as in Chapter 4,

we have,
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F/(1)

1 c L " "
= SO0 0] {2(1 = 2P O O +3H (O,
+6(1- 3 p (O (G, () +©, ()G + T (O] (1)]} (6.35)
1 m, . C ’ 1 _ " f
YD {— HIW+60- 3 p ) H, DE, 1) =3H OF 1) }
1

+——————3[1~®;(1)]{@Z’(1)+3®2(1)P,,'(1)+3(1—zpj)[?.l" G M+T (WH ] (1)] }

3 2
where ®7(1) = 49,z) ®"§Z”) , GI()= 46,(z,) gz") ,
h z, =l dz" z, =1
3 2
gm=Eda) gy 2 L&) e ) oS @) (63)
n z,=1 dZ” z,=1 dw w=1

The variance of the queue length for the n’th multiplexer may be expressed in terms of
the derivatives of its PGF as,
V, =P+ P 1)~ (P D) (6.37)
The expressions of the mean and variance of queue length, as well as mean packet
require the derivatives of G,(z,), E,(z,), H,(z,), I',,(w),and ® (z,). The derivation

of these derivatives is the same as in the previous chapter. Here details are not given, but

only it is noted that,

1) — Zm - ﬂ,,,)f,,,(l) _, 639

n,j

6.4 Numerical Results

In this section, the numerical results are presented regarding the analysis of tandem
networks with multiple types of traffic. The tandem network is assumed to consist of two
multiplexers, and each multiplexer is fed by two types of Markovian sources. The mean
queue length, mean packet delay and standard deviation of multiplexer-2 are presented

versus its total load in Figures 6.1 - 6.3 respectively. In all of the three figures, two curves
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are presented. The solid-line curves correspond to varying the load of one type of sources
feeding multiplexer-1, while keeping the load for other three types of sources constant.
And the dashed-line curves correspond to varying the load of one type of sources feeding
multiplexer-2, while keeping the load for other three types of sources constant. It may be
seen that for both curves, the mean queue length, mean packet delay and standard
deviation of queue length increase with the total load of multiplexer-2. It also may be
seen that for the same total load of multiplexer-2, the solid-line curves are below than the
dashed-line. As explained before, statistical multiplexing smoothes the traffic. The higher
is the number of multiplexers that traffic goes through, the smoother the traffic becomes
and results in smaller delay and queue length. In solid-line curves, higher proportion of
traffic has gone through more multiplexers than in dashed-line, and this accounts for
smoother traffic. In addition, it may be seen that the difference between solid and dashed
lines is bigger than those figures in previous chapter. It shows that the smoothing effect is

more significant
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Figure 6.1 Mean queue length of multiplexer-2 vs. total load of multiplexer-2
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Figure 6.2 Mean packet delay of multiplexer-2 vs. total load of multiplexer-2
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Figure 6.3 Standard deviation of queue length vs. total load for multiplexer-2
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Chapter 7

Contributions and Conclusions

The modern networks, including the Internet and ATM are based on packet-switched
technology. The long-term objective of modern networks is to provide satisfactory
services for multimedia traffic such as voice, video and data with different QoS in a
single network. In packet-switched networks, statistical multiplexing is performed to
achieve bandwidth efficiency. The switch and router output ports may be modeled as
multiplexers. As packets go through the network from source to destination, the route
they pass through may be modeled as a number of multiplexers in tandem. The studies of
a network connection, which typically consists of a number of multiplexers in tandem, is
of great importance for network design since it helps to understand how the network

traffic characteristics change in the interior of the network.

However, most analytical studies related to network performance focus on an isolated
component in the network because of the difficulty of performance analysis at the
network level. Due to lack of exact analysis methods, most previous studies on tandem

networks have focused either on simulation or on approximate models.

This thesis studies an arbitrary number of multiplexers in tandem. Each multiplexer is
fed by the output of the previous multiplexer as well as external traffic. External traffic is
generated by a number of binary Markov On/Off sources. This Markovian source model
has been known to be good at capturing the correlation in the multimedia traffic. In this
thesis, an exact performance analysis of the studied tandem network model is presented.
The functional equation describing the tandem network has been derived through the
imbedded Markov Chain analysis. The unknown boundary functions is determined, as
well as the solution of the functional equation: the joint PGF of queue length and number
of On sources for any multiplexer at the steady state. The correctness of the solution has
been proven by showing that it satisfies the functional equation in equilibrium. From the

joint PGF, the closed-form expressions for the performance measures of network are
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derived, such as the mean and variance of queue length, as well as mean packet. Finally,
the solution is extended to a more general tandem network with multiple types of traffic
feeding each of the multiplexers. Again, the joint PGF of an arbitrary multiplexer at the
steady state is determined, as well as present the closed-form expressions of performance
measures. The analytical results are compared with those of the simulation, and show that

they match each other very well.

The numerical results are presented regarding the analysis in the thesis. The analysis
and numerical results show the smoothing effect of statistical multiplexing: as the traffic
goes through higher number of multiplexers, it becomes smoother. From the numerical
results, both mean and variance of the queue length and delay drop down. This drop is
more obvious in the case of heterogeneous traffic feeding each multiplexer. The analysis
enables to explain the delicate interaction between traffic smoothing and source
burstiness. When traffic load is kept constant while the number of sources is increased,
the analysis and results show that the burstiness may overweigh the smoothing effect, as

a result, the mean queue length and packet delay may increase.
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Appendix A

Some Results Related to Busy Periods of a
Multiplexer

It is assumed that a busy period of a queue begins and ends with idle slots and two
consecutive idle slots correspond to a busy period with zero duration (see Figure A.1).
Further, two consecutive busy periods is separated by an idle slot and this slot is assumed
to belong to the starting busy period. As a result of this definition, the busy periods are
independent and identically distributed. More details of the definition of busy period can

be found in [20, 23].

buay petiod =0 ([ ’\i: ":i} %
D 1 slots

busy penod = 1 % {i} # {%’5 i
0 ] 2 slals

bosy poricd =2 | — # ' —9 e -
0 1 3 3 shons

Figure A.1 Definition of a busy period
Following the notations in [23], let us define,
&, (j) = Prob( n’th multiplexer has a busy period = j slots), /=0, 1, 2,...

@' (¢) = Prob( »’th multiplexer has r busy periods during an interval of ¢ slots).

2
PO = L), £21, and ¢ (0)=1 (A1)
zn

r=1
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We note that qp(")(f)! _, corresponds to the probability that »’th multiplexer has integer

number of busy periods during an interval of ¢ slots. Next, let us assume that the
duration of the last busy period in the interval is(£— j—1) slots, then, ¢"(¢) may be

expressed recursively as follows,

¢-1
PO =S & (4~ j =D () (A2)

n Jj=0

Next let us define the following transform,
(@)=Y o™ (o' (A3)
¢=1

And define the PGF of the busy period of n’th multiplexer as

T, (0)=) & ()’ (A.4)
=0
From (A.2) and (A.3), we have
o -}
R D NAI L)
n f=t j=0

Exchanging the order of summations, we have
. 1 0 © ] . )
PP (w)=—>" Y & (L-j-De" (j)w’
Zy j=0e=j+l
Letting i=/4—j-1,

o0

OV (@)=3 3 &, O (o

Z, j=0 i=0

From (A.3) and (A.4) we have

O (@) = T, (@)1 + O ()]
V4

Solving the above equation for ®™ (@), we have

ol (@)

" () =

(A.5)
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Appendix B

The Relation between B,(k) and I,(®)

The PGF of the busy period of the first multiplexer, I', (w) , may be expressed in terms
of the derivatives of B,(k). In this appendix, the relation between B, (k) and I, (w) will

be determined.

Because the first multiplexer is not affected by other multiplexers in the network, it
behaves like a single multiplexer that has been studied in [22]. From equation (12) of [22],
we have,

B,(J)
0,(z,,3) = B (k) +(z, —1)2 £.0,,000)
l

The above may be written as,

— )ij-, (0,0)

0. =S B+ 3| AL
=1
o . 0. . T e 18 . .
Substituting 0 for z, and y, results in 5 indeterminacy, so L’Hopital’s rule is applied,

0,(00)= BO (k) + 3 [BU () - BY(H]ee, (0.0) B.1)

1d‘B,())

where the notation B,'”(j) is defined as B” () = T

z;=y;=0

Define the transform of Q, (0,0) with respect to the discrete time £ as,

00.0.0) = 30,0000 (82)
Then from (B.1) we have,

0000,0)= Y B e + 3. 3B ()-BY (), 000"

k=0 k=0 j=1

Exchanging the order of summations,
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0

0000,0) =S BP(k)e* +> S [BU0 () - BV (M., (0,000

0 o0
k=0 j=t  k=j

Letting n =4k — j, the above becomes

0000, =3 BX (0w +3 S [B()- B (D, 0,00
k=0 j

= Jj=l n=0

From (B.2),
00,0, w) = f B (ke + (0,0, w)i B () - B ()’
k=0 =1

Therefore, we have
2 BP (e
0(0,0, ) = ———*=2
1-Y B0 ()-BY ()b

J=1

The above may be written as,

2 BP (e
00,0, w) = — = (B.3)
Z E(k) (k)a)k _ Z E(k)(k + l)a)kﬂ
k=0 k=0
From equation (39) of [23] we have
F(w)=—f1-—L (B.4)
S el 0000,0) '
Substituting (B.3) in (B.4) gives
B® (k + Dot
T, (@) = &2 (B.5)
> B (ko'
k=0
Define
I(@) =Y BP%k+Do* , T,(@)=3 B® k)" (B.6)
k=0 k=0
Then from (B.5) we have
I, (@)
I(w)=—-"—+ B.7
(@) T (@) (B.7)
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Because the derivation of (39) in [23] does not depend on the arrival process of the

queue, the relation in (B.4) applies to any multiplexer in the tandem network, which is

1 1
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Appendix C

Simplification of O(L1,z,,y,,®) Given in (3.22)

In this appendix, Q(1,1,z,,y,,®) given in (3.22) will be simplified. Let us write (3.22)

as the following,

O, z),y,,0)=A, + A + 4, + 4 (C.1)
where
A, =1+Q,(11,z,, yz)a)+iBz (k+Do*" +1—§ii32 (k+1)B" o™ (C.2)
k=1 2 k=1
1-2z, &
A =—"2) >, B,(k+ Db, ; +ay ™ ) (C.3)

(ZZ _1)2 w k-1 k—j k—j = r1ts) "
4, == >35>, B (k+1-£,)B" (r, +2-£,)0,, (1,1,0,0)

—Jj=n

z =2 J= =lR=t,
2 k=2 j—]'ez 1=t (C.4)
1-2. & k=1 k=j k—j ol
42 G By (k+1-£,)R, 1, O, (0,0,0,0)0""
2y k=2 j= 6=n=t,
In , k+l (22 —1)2 5 , k+
Ay =(z, =D Y B, ()0, (1,1,0,0)0* " — - 33 By ()Q1-,(0,0,0,000"" (C.5)
k=1 j=1 2 k=1 j=1

Next, the above terms will be determined one by one.

- Derivation of 4,
Substituting for Q,(1,1,z,,y,) in (C.1) from (2.29), we have,

L2 o] 1 —_ o0

A =1+ B Do+ B,(k +1)0" +—223 B, (k+1) " o™
k=1 Zy k=1

Combining the second and the third terms, we have,

I-z B> B, (k+1)a*

2 k=1

A, =1+ B, (k)o* +
k=1

Expanding B, (k) and B, (k +1) using binomial theorem in (2.26), we get,
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1y

A0:1+i

k=1 i=0

—Z, ﬂ]’":iZ[ )(C] k+1) (Cz k+l)m2

k=1 i=0

[ J(Cuﬂn) (Cpdy)™

This results in the expression of 4,

Ay =1+ i(%](@ﬂn) (Cat)™ @

pra Aoy @
n 1-z, e i(’m] (Clzﬂﬂz) (sz’ﬁz_)mz_i o’
2 i ' 1- 4,45 @

- Derivation of 4

Exchanging the order of summations in 4, gives,

11—z, &K & i )
A] = 2 Z ZBZ (k+1)(bk—_/ +ak—j ! l)wk 1
2y j=k=j4

Lettingn =k — j, we have,

l—z2

Z > By(n+ j+1)(b, +a,B" )"

J=t n=1

X

Expanding B, (n+ j +1) by using (2.26), we have,

l_Z o n+j+ n+ j+1\ my~i m n+j+
2 ZZ[ )(Cl jl) (C222’2]]) ’ (bn+anIB]])a) "

j=l n=1 i=0

3

The above may be written as,

l—Z m . mz—‘ n+ n+l N\ my—i m n+
222[ 2)1_ (G ) (Ca )™ (b, +a, B0
2 i=0 n=l 112

After some algebraic operation, we have,

m

1"2 L [ m ( mz—x i pvmy—igqi amy—i

: ZZ( 2) A BoEr Clzczzl (h A" @) (b, +a, ™)
i=0 n=] 1 - /11

The sbove may be expressed as,

__1_22 ’"z m, Cz”;z"(/'{nﬂ'"z—’ i qmy=i . m _am
A= ( JSEEEE  boaro- prattay 0- )

where a(w) = Z a,0" and b(w) = ana)"

n=0 n=0
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Next, these above transforms will be determined. First, let us determine a(w). Let us

repeat (3.11) here,
j-1

a, =ij_,.ai ,j21,and q, =1
i=0

then from (C.8) we have,

o0

a(a))—1+2a @’ —1+Zij w’

J=1 i=0
Exchanging the order of summations,
a(@)=1+). > f a0’
i=0 =i+l
Letting n= j-—i, we have,

o0 0

a(a))—1+Zana,a) '—1+a(a))Zfa)
Therefore,
a(@) = —— (C.9)

- z f,o"
)
From (3.5, 3.6), we have
o= BB (€10)
Substituting the above in (C.9) gives us,

(@) = 1 _ 1

1- Z-l— B "V (o +ZB(")(n)a) 1_ZLE<">(n+1)w"+‘+ZE<"’(n)w"

n=1 Zz n=0 €3 n=1

From (B.6) in Appendix B, we have,
1 _ Z; _ z,/T,(®)

1- —T, (@)@ +T,(w) -1 (@ -, (@) z, - ol (0)/T,(0)
%

a(w) =

From (B.7) in Appendix B, we have,

2, /T, (@)

A= @)

(C.11)
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Next, the expression b(w) will be determined. Again, (3.12) is repeated here,

b, =g,b, +ij, b,,j=1,and b, =1

Then from (C.8) we have,
o j-l
b(a))~1+2b @’ —1+Zgja)’ +zz _,b,a)’
J=1 J=2 i=1

Exchanging the order of summations,

b(a))—l+Zg @’ +Zz [
i=l j=i+]
Letting n=j—i and substituting for g; from (3.5), we have,

b(w)—1+23‘”(] + Do’ +22fb,.a)"+"

i=l n=l

B+’ +(b(w) - 1wa

I
M8 I

~.
1t
—

Therefore,
1+ BV (j+)o’ =Y f,0"
b(a)) — j=1 — n=|
1—Zf,,a)"
n=l

Substituting (C.9) in the above equation gives,

1+ BV (j+De’ - ZB “ (n+1)e"™ +}:B “(n)w"
1—-—23 “(n+1)o™ +ZB ) (n)w"

Zy n=0

From (B.6) in Appendix B, we have,

1+ (w)-p" ——F (@)o+T,(w)-1
b(w)= %
1——I‘a(a))a)+Fb(a))—1
z

2

The above may be written as,

I (0)-z,B" -T (w)o+z,], ()
~T(w)o+z,[ (o)

b(w) =
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Dividing both the denominator and numerator by I',(w) in the above equation gives,

(z, = )T, (@)/T, (@) = 2, 8" [T, (@) + 2, T, () /T, (@)
2, [, (@)/T, (@) - oT,(@)/T, (@)

b(w) =

From (B.7) in Appendix B, we have,
(2, ~ ) (@)~ 2, 4" [T, (@) + 2,

b(w) = C.12
(@) p—— (C.12)
Substituting (C.11, C.12) back into (C.7) gives,
1-— m (m 2 NP 2 Nmy—i 2 r mz-x
4 = Z; Z[ ‘2) (CpA43) (lsz/lz_z) w ': ?2 (31 T _ﬂ]m; (C.13)
z, ‘=i 1-A, — A, A (l,
- Derivation of 4,
Exchanging the order of summations for 4, in (C.4), we have,
1)2 R S B (rn+l-15) K+l
Z Z ak-j~rzB2(k +1-1£,)B, (r, +2—€2)Q(,2 (1L1,0,0)w
J=b k=j+1 €2=1r2=!’2
_ w o k=j k-j
i Z2 Z D Zak_ B+ 1= LR, O, (0,0,0,0)0"
J=V k=j+1 €,=1 =€,
Letting n =k — j in the above equation, we get,
_1 2 w ® n n _ . )
A, =- (z, -1) 22024, By(n+ j+1-£,)B""(r, +2~£,)0, (1,1,0,0)0""

Z, J=1 n=1 £,=1r=¢,

n n

4y ==l SN Sa, Byn+ j+1-£)BE 0 (0 +2 - £,)0, (11,0,0)0"

Z, J=V §=ln=tyn=t,

1 — [ee] o0 o« .
+—223'3'5" N, B,(n+j+1-£,)R .., 0, (0,0,0,0)0™"

12 o o w i+,
A, =—(Z2Z ) ZZZ Za,ﬁ LB+ j+ )BT (424 )0, (1,1,0,0)" /!
2 Jj=1 ¢

oz, & -
e Z Z Z Qe By i+ 7+ DR, O, (0,0,0,0)0" /"
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Letting £ =r, -, in the above equation, we get,

_1)2 ®© o o i . ‘ .
4=-"0 >33 a By i+ j+ DB (k+2)Q,, (1,1,0,0)00™

i=0 k=0

N
[
.,

n
~
~

un

Mk 2222 e By + j +DR,,0,(0,0,0,0)0

PR SSS B (4 4 DR,,0, (000,000
=k

Zy  jeAl f,=1h=0 i

Letting & =i—k in the above equation, we get,

Zath (h +k+ J +])§](k+1) (k + 2)Ql’z (1,1,0,0)(0’”“[2”“

From (3.23, 3.24), the above equation may be written as,

2 o0 [ ¢ ['e}
4, = —M[Q(LLO,O, w)—1] ZZath (h+k+J +1)§1(k+1)(k + z)a)h+k+j+l
2! j=1 k=0 h=0
l" o0 00 00 '
4175 [Q(0,0,0,0,a))—l]zzzath (h+k+ j+D)R,, 0"
2 j=1 k=0 h=0

Expanding B,(h+k + j+1) by using (2.26) in the above equation, we get,

-1)? Nt AN 1 Y-
4, = (Zzz ) [0(1,1,0,0, ) _l]zzzz(”:z )(sz h2+k+j+l)(czz h;k+/+l)
2 i=0 j=1 k=0 h=0
. ahE(kﬂ) (k + 2)a)h+k+j+l
5000000 15 S5 (" Jewa Y a0
2 =0 =1 k=0 h=0
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my

4=~ 100.100,0)-1 ZZZ(": )CC (o) a, (2057 o)

Z =0 j=1 k=0 h=

(=)

(o) B (ke +2)

(C.14)
-z O m, i pvmy—if qi amy—i m
2(0(0,0,0,0,0) ~1] ZZZ( JCHCZ; (i o) a, (2,257 )
Zy =0 j=1 k=0 h=0
(ﬂ;zﬂ;‘z_lw)k R
Because of,
i +h 3 (k) (k)
S (2,20 o) BE (k+2) = ZB (k + D, 20 o)
k=0
From (B.6) in Appendix B we have,
> (i my—i Yt (k1) _ o [ 4 mz—: (k) o (0)
(o B k+2) =3 (B 2 0) B +1) - BO()
k=0 k=0
=T, (A4 o) - g™
Substituting the above result in (C.14) and noting (C.8) gives us,
1 my—i my—i ﬂ’mzul
4= 1001,00,0)- 1]2[ )Cncz; (A, )—3“——
2 /112)’22
1—~ mz-—ta) _ ml
,,, G 0= c15)
2 [Q(0,0,0,0,w)—llzz( ]CC a0
Z, i=0 1'112/1222
R, A5 @)
where R(w) =D R, 0" (C.16)

k=0

Next let us determine R(w) .
From (3.5, 3.6 and 3.8), we have,
Ry =(2, =D S

1 '
SR,H] = (Zz —1)(Z_gk —gk+1)

2

1
iRkH = (Z2 —1)[_
z

2

B (k+1)-B“ (k+ 1)}

Substituting the above result in (C.15), we have,
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R(w) = Z Bk + 10" —(z, - B* (k + D'

27 k=0 k=0
From (B.6) in Appendix B,
270 or (@) - (2, - D @) -1] (€17)
Z

Let us substitute (C.11, C.17) in (C.15), then we obtain,

R(w) =

__ &) _a(m, (c,zzn)f(c22,122)mz—fw
.Z2r1(’1;2/1;"22—iw) Zz/F (/11 nw
(z, -1’ (C,A,) (—CZ'I/IZ 2ma)r s (C.18)
Z m2 122 - 2 3
e e

A ol (U A~ 0) = 2, + 2, [T, (oy 133 0)
2, = A o3 ol (A, 457 o)

The relation between Q(1,1,0,0,w)—-1 and ©(0,0,0,0,w)—1 may be found through the

following:

Substituting z, = y, =0 in (3.1), we have,

0,(0,0,0,0)= "0, (1,1,0,0) , k=1 (C.19)
If k = 0, from the zero-initial assumption, we have Q,(0,0,0,0) =1=0,(1,1,,0,0).

From the above results and noting (3.23, 3.24), it is easy to find,

0(0,0,0,0,w)—1= B,"[0O(1,1,0,0, w) 1] (C.20)
Substituting (C.20) in (C.18) and canceling out the identical terms, we have,

__ (- ) _ M) (Ciahy) (Cupdyy)™ 02,1 (Ao, A3~ @)
SR ”2( )(1—212%";"@[@ Ao Ay 0T (Ao 2557 @)

(z, - m _ my ) (Ciay)’ (szﬂzz)mz—'
' 2, He100.0) 1]2( i J 1= 4,5 @

2

(C.21)

- Derivation of 4,

Exchanging the order of summations for 4, in (C.5), we have,

4= DE S B (NG, (1000 - B D }fj}ijQ(j)QM,-(o,o,o,O)w“‘

J= k=j j=l k=j
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Letting n =% — j, we have,

4=t - l)i ‘Z B,()Qy (L10.0)0™ " ~ =i Z ZB (NO,,,(0,0,0,0)0™*!

J=1 n=0 Z; im0

From (3.23, 3.24) we have,

A4, =(z, -1D[O(1,1,0,0, ) —- ZB(]) j_ (Zz )

2

Q(co)—l]ZB (N’
Expanding B, (j) from (2.26),

4, = (2, = DIQ(,1,0,0, ) — ”i i(m2 Cpd) (Cp )™

- 100000.0- 185 " ok €t e
my, o m
A3 = (Zz —1)[Q(1,1,0,0, a))—l] Z( 2] CZ";—I (/’{1 mz-—la))]
-EVi00000.0-15 3 .z)szcz”;f"(ﬂizz;";'fw)f
2 i=0 j=l1 4
4, = (z, -D[O(1,1,0,0, a))—-l]Z( l J(C,Mlu) iszm/}iz)’"l"
LIS (Cu) (Cut)"
- [0(0,0,0,0, ) — 1]’20( l ) W

From (C.20), the above equation may be written as,

= (z, - D[Q(,1,0,0,0) - I]Z( i j(c”ﬂ“z) (Coyly)™ ©

]"/112/1;”22—1
(z, = 1) m (1, ) (Cy iy ) (Copoy )™ 0 (C.22)
—_ 2 ]ml[Q(l,l,0,0,a))——l]Z i 127112 i 22m 312
& =0\ ! 1-A,4 @

Adding 4,, 4,, 4,, 4, together from (C.6, C.13, C.21, C.22), we finally obtain,
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Q(]slazzayzﬂw)
[ | (Cp ) (Cppdyy)™ 0
'H;( ij 1= 2,2 o
| my m, (Cu/llz )i(szln)mz—i w;{,:zﬂ,;n;wiwr‘ (1’;2 m;"(l))
(- ),Z ) A=, 47 o)z, — A A5 ol (A, A )

2 2 () (Codiy) (Conen)™™ 0T (B, 5™ 0)
“m-loetoo ”)”I]Z( i J(I—M";"'wnzz = Ty AT, (A, 7 0)]

s 2 Clz 2 i C22/?‘22)mriw
+(z, -D[0(1.1,0,0, @) —”2('" )( Alq—) ﬂ(ﬁzw
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Appendix D

Simplification of 0(1,.,,1,.,z2,,7,,®) Given in (5.5)

In this appendix, the simplification of transform Q(1,_,,1,,,z,,y,,®) givenin (5.5)is

presented. The special case of this transform is also needed in section 4.1.2 and 4.2.1.

First, (5.5) is repeated here,
Q(ln l’ln l’Zn’yn’w)

SEWXCPES D3 38,(N00 1,11.0,.0,)0"
(5,033 S Lo k- B, (et (D.1)

k=2 j=I r=l Z,,
w0 k-2 ko j-lk-j=h+l |
_(Zn _1)2 Z z —r§0r(n—])(k—j—k +l)Bn (k_h)Qh (ln—lsln—l ’On ’On)a)k
=3 = k=l A 2,
© k-l
2.2 B,(NQi-;(0,1:0,:,0,,0,)0"

n =2 j=l

-1?

In the above equation, let us define 4, - A4, to correspond to the separate parts of the

RHS, thus,
4, =1+ B, (k)o" (D.2)
k=1
© k-1
A4 =(z,— 1)2 B,(NO_;(1,151,.4,0, 0,) 0" (D.3)
k=2 j=1
o k-1 k-j I
Ay =~(z, =)D > > — "Dk - B, (k)" (D.4)

k=2 j=1 r=l Zp

oo k=2 k- j-V k= j—h+]

A=—(z, —1)2222 D) = L " V(k—j—h+1)B, (k-hQ,1,,,1 ,,0,.0)0" (D.5)

k=3 j=t h=l  r=l Z,,

k-1

- iZBn(J)Qk ;0,.,0,.,,0,,0,)0" (D.6)

z, k=2 j=1
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Next, each of the above expressions will be determined.

- Derivation of 4,

Expanding B, (k) in A4, using Binomial theorem from (2.26), we have,

(o]

A, =1+ B (k)

k

=]
RS mn i m,~i
=1+ Z( ; }(Cmﬂfn) (O s (D.7)
i=0 k=l
= 1 + 3 m” (Clnﬂ'ln)i(CZnﬂzn)mn_ia)
iz \ 1 1- 2,4 "o

- Derivative of 4,

4, in (D. 3) may be written as

4 =(z,-DY. D B, (N0, (1,,.1,,,0,.0,)0"
j=1 k=j+l

Lettingh =k -j

4 =(z,-1Y. Y B,(NQ,({,,,1,,,0,.0,)0"

j=1 k=l

4, =(z,-D[0,(,..1,..0,,0,,0) -1 B, ()’
f=1

where 0(1,,,1,.,,0,,0,,@) = >_0,(1,,1,,0;,0,)0"

k=0

Substituting for B, (j) from (2.26),

2 m o : o
Al :(Z" _])[Q(ln—l ’1n~1 ’On ’On’w)_l Z( i")(cln;{ljn)l(chﬂ’én)mn w’
i=0 j=I
& (m, \(C,A4,) (Cyp Ay, )™ @
4, =(z,-D\|0Q1,,.1,,.,0,,0,,0)-1 o e D.8
1 ( n )[Q( n=12"n-12~n>"n ) ];( i ) l_ﬂ;nl;n;—xw ( )

- Derivation of 4,

A4, in (D.4) may be written as,
o o k—j

4=, -D3 3 S Lo - B, ket

=1 k=j+1 r=1 2,
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Letting f=k—j

A4, =—(z, —l)i

J=i

2" (OB, (+ o™

~
n

Ms
MN
:N\l’—‘

I%

Substituting for B, (¢ + j) from (2.26)

iiz( ](CIMf“)(cz,,xs“) 1 L o0 gy

J=t =1 r=l

&

1
(=

4, =~(z, = 1)

! n

From equation (A.1)

4, =~(z,-D) ‘Z( )(Cmﬂf“)(cznﬂé“) e (D"

1 ¢=1

1l

=]
e,

il

M§
,MS

i

From equation (A.3)

m, ©

4 ==z, 'DZZ[ )(CM’ ) (Co )™ 0’ @V (4, Ay @

i=0 j=1
From equation (A.5) finally we have,

)Z D\ (Couon) (CopA, )™ 0l AT, (B, A"
A=A, 2 o)z, — A, A T, (A, ﬂ;",:'w)]

(D.9)

- Derivation of 4,

Exchanging the order of summations in 4, in (D.5), we have,

4=, -0 3 S S L 0 B, 0+ 0,0, 11,4,0,.0,)0™
j=b h=} m=1 r=1 4,
Because imzﬂz i%—ii
m=] r=1 m=0r=1 m=0 r=l
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4=, —1)2{iif

L o m 4 B, (m+ )00, 1,1,0,.0, )™
Z"

© @ . ' "y
A3 = _(Zn —1)2{_22?{0]( ])(I)Bn (j)Qh (ln—l’ln—l ’On 7On )a)h !

® o o f _ ' V |
#2233 n:")zi,(05"_”(1?)(C1Mf;'”)'(Czn/lﬁ;”’)'"r'Qh(l,,_,,ln_,,O",On)a)"“””f }

n

Next, " (1)Q,(,.,,1,.,,0,,0,) will be expressed in terms of Q,(0,.,,0,.,,0,.0,).

et
From the definition of ""”(1) in Appendix A, we have,

@!" (1) =Prob (multiplexer-(n —1) has a single busy period during one slot),

Then from the definition of a busy period in Appendix A, we have,

" " (1) = Prob (multiplexer-(n—1) has a zero duration period),

But this is equivalent to,

" (1) = Prob (multiplexer-(# —1) has two consecutive idle slots)

As explained before, O,(1,_,,1,,.,0,,0,) is the probability that the n’th multiplexer is idle
at A’th slot; but given Q,(1,,,1,,,0,,0,) it is known that the (n-1)’st multiplexer must be
idle at (#-1)’st slot and the »’th multiplexer is idle at 4’th slot. Thus from the preceding
explanation, it is easy to conclude that """ (1)Q,(1,.,,1,,,0,,0,) is the probability that
both the (n-1)’st and n’th multiplexers are idle at 4’th slot, which is Q,(0,,,0,,,0,,0,).

Then we have,

o 00 (1, 1:1,1,0,:0,) = 04(0,1,0,.1,0,.0,) (0-10)

Substituting (D.10) in the above 4, gives,
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A=a D { 318 ()0,0,1.0,,.0,,0,)0™

j=t k=l 2y,

o ¢

+ZZZZZ( ) n—l)(e)(cln/l:’ 1+_1) (CZn/?‘F 1+/)m,,—i Qh (1,,_1 71n_1a0,,’0n)w(—l+h+j }

i=0 j=1 h=1 (=] r=l

Substituting from (5.4) in the above,
(z, -1’

Z

A =

[000,,,0,.,,0,,0,,@)- I]ZB ()’

My

—(Z _1) [Q(ln ’, - l’On’On’a)) I]ZiiZ( ) (n— 1)(€)(C1"/11F l+1) (Cznl[ ]+J) ,.—ia)P»H/

i=0 j=l f=1 r=l

From equation (A.1), and substituting for B, (j) from (2.26)

4= ~1) (00,0, .0,.0,,)~ I]Z( )(CM)(CMZ,,) o
i

i 1-4,4," @
-(z,-1)*[0Q,1,,,0,.0,,0)— 1]’"22?2(:[”:")21 0D ()(C, AT (Cy ATy ot
From equation (A.3) =0 j=1 &= r=l n
4 :ELEK[Q(OH 0,.,0,,0,, ) ~1 ”0 (”: ,nz,ln_)" LCZ;Z a))m o

(2, -1’[Q01,,,1,1,0,,0,, @) - 1]22[’” )(CM( N (Co, )T O (A, B w) e’
From equation (A.5)

z o m, \(C C,A4) " o
A3 =( ) [Q(On I’On I’On ’On’a)) 1]2[ )( Inlin)ﬂ('; ;;"3,2
n i=0 “Mp2n

e, - () (Cuy)' (Cy)™ Ty (A3
(0l 00000 1]2( )(l—ﬂ;nza"::‘m[zn—ﬂé Aol (&, ﬂ;"n‘w)]

(D.11)

- Derivation of 4,

Following the same steps as in derivation of 4,, , we have,

A e[ ™) (G4 (o h,) " @
A4 - [Q(On—l ’On—] ’On ’Orﬂa)) l];[ i j 1~ﬂ,{nﬂ;";_ia) (Dlz)

n
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Finally, substituting 4, — 4, in (D.1) and canceling out the two identical terms, we have,
Q(l —l’ln 12 n’yn?a))

(Ch A, ) (Co A, )™ @
- Z( ) 1= A, A

B (Ciuin) (Crudo)™ @

+(z, -D0(,4.1,4,0,.0,,0) - 1]2() T (D.13)
>Z[ }(Cm D) (Coude)™ oA, Ao, (A, A @
A o)z, = A, A T, (A, A @) ]

—(z, -1)° (Ciahn) (Crady)" _'CUF (Ao
e DIt 1]}:( J(l Ao, Ay )z, = Aoy AT (4, ﬂz['a))]
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