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Abstract

Formalization of Uniprocessor and Multiprocessor Scheduling of Real-Time Systems
Using Supervisory Control of Discrete-Event Systems

Vasudevan Janarthanan, Ph.D.
Concordia University, 2007

The theory of supervisory control of discrete-event systems has been applied
to real-time systems. The contribution of our proposed work lies in the development
of a formal constructive method for controlling the preemptive execution of real-time
tasks on both uniprocessor and multiprocessor systems. The set of all possible timed
traces of the system is specified by a discrete timed automaton, where each transi-
tion is associated with an event occurrence or the passage of one unit of time. This
approach allows a unified view of scheduling theory based on the timing analysis of
models of real-time applications, meaning that the problem of determining schedula-
bility and finding out a suitable scheduling algorithm are assumed to be intermingled
issues, with the solution of one in turn is a solution to the other too.

First, a framework for designing universal schedulers for real-time tasks on
uniprocessors based on Supervisory Control Theory (SCT) is presented. For this
purpose, priorities are introduced in SCT and applied to the setting of discrete timed

automata in order to develop a formal and unified framework for task scheduling on

iii



a single CPU. A universal scheduler nondeterministically selects a task for execution
in such a way that all timing constraints are met in a minimally restrictive fashion,
while it contains all feasible deterministic scheduling policies.

We then extend that framework by providing a formal constructive method
for controlling the preemptive and migrative execution of hard real-time tasks while
scheduling them on a set of uniform processors. The methodology relies on the idea
that the model of the scheduled system can be obtained by successive and appropriate
restrictions of controllable actions of a model representing the real-time application.
In uniform multiprocessors, each processor is characterized by its own computing
capacity, with the interpretation that a task that executes on a processor of computing
capacity s for 7 time units completes st units of execution.

Since we represented explicitly discrete time in our scheduler design, model
sizes were considerably large. The complexity in the synthesis of a scheduler using
supervisory control [62] stems from the fact that, with the synchronous product,
the number of states of a composite Timed Discrete-Event System (TDES) increases
exponentially with the number of real-time tasks. We have attempted to alleviate
some of the state explosion problems we had faced while designing schedulers for real-
time systems using supervisory control of discrete-event systems framework [39, 41],

by providing an informal procedure to design schedulers with reduced state space.
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Chapter 1

Introduction

In this chapter an overview of real-time systems in terms of their various constraints
and scheduling techniques are presented. Also a brief introduction to Discrete-Event
Systems (DES), Timed Discrete-Event Systems (TDES) and Supervisory Control
of TDES are provided. Then we introduce the design procedure for schedulers on
uniprocessor and multiprocessor systems, followed by our methodology for solving the

state space explosion problem, which we had encountered during the design procedure.

1.1 Real-Time Systems

Real-time systems [55] are a form of control systems having constraints on the exe-
cution time of their tasks. These constraints are expressed as real-time constraints.
A real-time constraint can be defined as a condition on the timing of enabling, firing,
initiation and termination of system events. A real-time constraint can be expressed
as a boolean condition on the values of clock variables, whose values increase with
time. A real-time constraint of a task could be either the specification of its deadline

or its complete execution.



A real-time system can be designed as a set of tasks that can be differentiated
based on their timing requirements as hard real-time, soft real-time and non real-
time tasks. A hard real-time task is defined as one whose timely and logically correct
execution is considered crucial for the normal operation of the entire system. The
deadline of a hard real-time task is referred to as hard deadline, because of the
criticality of meeting the deadline. Hence it is obvious that missing a hard deadline
can potentially result in a catastrophic system failure. On the other hand, a soft
real-time task is characterized by an execution deadline which when met is desirable,
but not critical for the functioning of the system. The deadline of a soft real-time
task is referred to as soft deadline. Non real-time tasks are those having no real-time
requirements at all.

Real-time tasks are further classified as periodic, aperiodic and sporadic tasks.
Periodic tasks are those that occur, and will have to be executed, at regular intervals
of time. Examples of applications where such tasks are commonly used are nuclear
reactors and aircraft control systems, which are characterized by hard deadlines. On
the other hand, aperiodic tasks are those whose executions are determined by the
occurrence of internal or external events. For example, a task responding to a request
from an external operator can be modeled by an aperiodic task. These tasks are
usually characterized by soft deadlines. Finally, sporadic tasks are aperiodic tasks
that are characterized by hard deadlines. For example, tasks dealing with emergency
requests from a shuttle operator can be modeled by sporadic tasks.

The time domain in a real-time system can be either discrete or dense. Among
the two, discrete-time allows for simpler analysis and design procedures since the
real-time tasks could then be simply taking turns. A smallest measurable time unit
is specified a priori in the discrete-time model. The clock used in our work includes

an explicit tick transition, making time a global state variable. Each tick increments
2



time by some predetermined time quantum. Also, in our model, events between the
i and (i + 1) clock ticks are assumed to occur at some unspecified time between

times ¢ and (¢ + 1).

1.2 Continuous And Discrete Time

In order to formalize the notion of time, two different varieties of time have been
studied in the literature. One of them is the dense (continuous) modeling of time,
wherein the time domain is equated with the set of nonnegative real numbers R*U{0}.
In this model, an event or a transition occurs at an arbitrary time point on the
real scale. Whereas, the discrete modeling of time allows transitions to occur only
at discrete time quantums. Here, the modeling of time is done using the set of
nonnegative integer numbers N. In [12, 36], the authors have done a comparative
study on the relative merits of the two approaches.

If we compare the two timing models in terms of their expressiveness and their
efficiency, then the dense time model is more expressive than the discrete time model.
Further, while modeling delays that are arbitrarily small, it is beneficial to employ
dense (continuous) timing model [12, 36]. Also, by using the dense modeling of time,
there is no need to check if the granularity of the clock is suitable for modeling the
various behaviors of the system; and in case of composing two dense-time systems,
there is no need to check if the granularity of the two clocks match or not.

But for some classes of timed systems, using discrete time model helps in preserv-
ing certain properties. In [35, 36], the authors discuss timed transition systems, while
showing that all qualitative, time-independent and some common quantitative prop-
erties such as time-bounded invariance and time-bounded response are preserved by

discrete-time model. Also, they argue that if a property expressed in a certain timed

3



logic holds in the continuous-time model, a weaker, derived property is guaranteed
to hold in the discrete time model.

However, in [16], the author shows that certain qualitative properties are not
preserved if a discrete-time model is used instead of the continuous time model. In
that paper, the author analyzes combinational circuits, wherein the timing constraints
are expressed as bounded delays which are imposed on the output of each gate. For
acyclic circuits, a discretization quantum is found such that the qualitative behavior
is preserved. But in addition, there also exist certain cyclic circuits whose continuous
time qualitative behavior is not preserved by any discretization.

In terms of efficiency, both discrete and continuous time models have their pros and
cons. But according to [25], practical results for discrete-time models have been found
to be better than the dense-time models. Discrete-time techniques allow efficient
representation techniques from the untimed domain to be used, such as binary decision
diagrams [27]. However, discrete-time techniques tend to be more sensitive to the size
of the constants appearing in the model description, and large constants can result

in state space explosion.

1.3 Real-Time Scheduling

Real-time scheduling is defined as assigning the exact execution times for a set of
real-time tasks such that all the temporal constraints are satisfied. In a real-time
system, the purpose of the scheduling algorithm is to determine the sequence of
execution of the real-time tasks, thereby ensuring their adherence to resource and
timing constraints. While designing a real-time system, the choice of an appropriate
scheduling algorithm or policy depends on factors like task synchronization methods,

number of processors available in the system and the priorities of the tasks. In

4



addition, characteristics of tasks pertaining to a particular application may influence
the choice of a scheduling algorithm. For example, real-time application tasks can be
preemptable or non-preemptable. A preemptable task is one whose execution can be
suspended by other tasks, and resumed later; whereas a non-preemptable task must
run until it finishes its execution, without interruption. Thus, both preemptive and
non-preemptive algorithms have been proposed in [48].

Scheduling may be time-driven or priority-driven. A time-driven scheduling algo-
rithm determines the exact execution time of all tasks. A priority-driven scheduling
algorithm assigns priorities to tasks and determines which task is to be executed
at a particular moment. Depending on the type of priority assignments, scheduling
algorithms can be classified as fixed priority, dynamic priority and mixed priority
scheduling algorithms. When the priorities assigned to tasks are fixed and do not
change between job executions, the algorithm is called fixed priority scheduling algo-
rithm. When priorities change dynamically between job executions, the algorithm is
called dynamic priority scheduling. When a subset of tasks is scheduled using fixed
priority assignment and the rest using dynamic priority assignment, the algorithm is
called mixed priority scheduling.

The scheduling of periodic tasks on a single processor was one of the first schedul-
ing problems analyzed in real-time systems [48]. In that paper, two different ap-
proaches were proposed to solve this problem. The approaches were based on the
assignment of either a fixed or a dynamic priority value to each real-time task. These
two approaches in turn led to the emergence of a number of preemptive scheduling
policies. Among them are Rate Monotonic (RM), Earliest Deadline First (EDF) and
Least Slack Time First (LSTF) policies.

In the RM algorithm, a task is assigned a fixed priority value based on the condi-

tion that shorter the task period, higher the task priority. In [48], the authors show
5



that the RM policy is optimal among fixed priority policies, meaning that for a given
set of tasks, the RM policy always produces a feasible schedule if any other algorithm
which is based on fixed priorities can do so. In the EDF algorithm, a task is assigned
a priority value dynamically based on the condition that earlier the deadline of a task,
higher the priority assigned to that task. In the LSTF policy, a task gets its priority
based on its slack time, which is defined as the difference between the amount of time
(from the current time value) to the deadline of the task, and the amount of time
that the task requires to complete its computation. In the LSTF policy, smaller the
slack time of a task, higher the priority value assigned to that task.

For the purpose of scheduling aperiodic tasks, five different policies were proposed
in [46]. According to the first policy, aperiodic tasks are allowed to do their com-
putations and thereby get scheduled only when no periodic tasks are active. In the
second policy, a fixed priority periodic process is formed in order to serve the aperiodic
task requests. This method is sometimes called polling. While this policy is cyclic,
aperiodic tasks are bursty in nature. This leads to a huge incompatibility problem.

According to [46], the third and fourth policies are Priority Exchange (PE) and
Deferrable Server (DS) policies. In both policies, a high priority periodic server is
used to handle aperiodic task requests. The server preserves the execution time
allocated to it if no aperiodic task requests are pending. This in turn improves the
responsiveness of aperiodic tasks. The only difference between the two policies is in
the way they manage the high priority of their periodic servers. In the PE policy, the
server exchanges its priority with that of the pending highest priority periodic task
if no aperiodic task requests occur at the beginning of the server period. Whereas in
the DS policy, the server maintains its priority for the duration of its entire period.
Therefore, aperiodic task requests can be handled at the servers high priority, provided

that the servers execution time for the current period has not been exhausted.

6



The fifth policy that has been proposed in [46] is the Sporadic Server (SS) policy,
which has been designed to handle the scheduling of aperiodic soft real-time tasks.
This policy is also based on the creation of a periodic server of aperiodic requests,
but the difference is in the lower implementation complexity of this policy compared

to that of PE and DS policies.

1.4 Discrete-Event Systems

A discrete-event system (DES) is a dynamic system that evolves with the occurrence
of events, such as the arrival of a job or the completion of a task. Because of the
complex dynamics resulting from the various interactions between such events over
time, modeling, design, and optimization of DES can be challenging problems. At
the same time, the study of such systems has become increasingly important in recent
times because of modern technological advances and wide use of computers in control
applications. Such systems normally have discrete quantities that must be controlled,
for example, communication networks. In a logical DES, the system is characterized
by a set of states and the transitions (triggered by events) among these states. The
behavior of the system is thus described by sequences of events. The occurrence of
an event, caused by some unmodelled mechanism internal to the system, moves the
system to a new state.

Discrete-event systems have been studied by researchers from various fields for the
last couple of decades. During that time, a number of models have been proposed and
analyzed with respect to the modeling, analysis and control of DES. These models
can be classified as untimed DES models and timed DES models. In the untimed
DES model, only the logical behavior of the system is considered. This means that

the sequence of states visited is of concern; for instance, whether or not the system

7



will enter a particular state, but we do not care when the system enters that state
or how long the system remains there. In a timed model [31], both logical behavior
and timing information are considered. That is, we are concerned not only with the
problem of whether or not the system will enter a particular state, but also with when

the system enters that state and how long the system will remain there.

1.5 Supervisory Control Of Discrete-Event Systems

A discrete-event system, which is considered as a plant, is controlled by a supervisor
that observes the events that occur in the plant. Each time an event is observed,
the supervisor presents the plant with a set of events to be disabled. The supervisor,
while doing that, tries to keep the plant away from forbidden states and prevent
undesirable event sequences from occurring. A common objective of DES designers is
to compute supervisors that ensure that the controlled behavior is within a specified
legal behavior.

Peter J. Ramadge and W. Murray Wonham [54] devised a control theoretic for-
malism that facilitated the study of DES systems. They modeled such systems as
state machines that permit, from an initial state, a set of event sequences or strings
to occur. The set of such strings forms a language that contains every possible event
sequence that can occur in the DES. When a supervisor disables events in the plant,
the resulting behavior is another language (i.e., set of event sequences) called the
closed-loop language. In order to make sure that the controlled behavior of the plant
is within a specified legal behavior, we specify the legal behavior as a legal language
that contains all allowable event sequences. The objective of the supervisor is to
ensure that every event sequence possible in the controlled system is in the legal

language.



Formally, when the plant and specification are represented by languages L and E,
respectively, we say the system or the plant satisfies the specification if L C F, that
is, if every event sequence generated by the plant is acceptable by the specification.
When this is not the case, the objective of supervisory control is to design a super-
visor S that restricts the behavior of the plant in such a way that the supervised
system, whose behavior we denote by K, satisfies the specification, i.e. K C FE. An
important issue in supervisory control is to identify those sublanguages K of a given
language E that can be the behavior of the supervised plant under some supervisory
control. A supervisor is called optimal if it restricts the behavior of the plant to
the supremal controllable sublanguage of the specification language. The supremal
controllable sublanguage is computed in time polynomial in the state sizes of plant

and specification when they are modeled by finite automata.

1.6 Supervisory Control Of Timed Discrete-Event

Systems

In a timed discrete-event system (TDES), the behavior of the system is influenced in
addition by the temporal characteristics of event sequences. As a matter of fact, in a
TDES, the state transition could be triggered either by some unmodelled mechanism
acting on the system, or by the passage of time. Supervisory control of a TDES
[47], [51] in essence means timely disablement or enforcement of certain events in the
transition structure of the TDES such that its behavior meets certain specifications.
A supervisor which prevents events from occurring only when absolutely necessary is
described as minimally restrictive. The minimally restrictive behavior of a supervisor

is expressed in a so-called supremal controllable sublanguage. The work reported here



adopts the framework for supervisory control of TDES originally proposed in [26].
This section summarizes the key concepts essential to the subsequent developments.

A TDES can be expressed as a five-tuple G := (@, %, 6, qo, @m), Where Q) is a
set of states, X is a finite set of events, including a special event denoting a tick of
the global digital clock, the partial function § : QQ x ¥ — @ is a transition function
which determines the new state of the system after the occurrence of an event, ¢
is the initial state of the system, and @), is a set of marker states which can be
interpreted as the completion of certain tasks of the system. Let »* denote the set
which contains, in addition to an empty string, all possible finite sequences over X.
A state g € Q is reachable if there is a string s € X* such that 6(qo, s) = ¢q. A state
q € @ is coreachable if there is a string s € ¥* such that §(qo, s) € Q... A TDES is
trim if all its states are reachable and coreachable.

A TDES can be obtained from an Activity Transition Graph (ATG). An ATG is
an automaton in which each event « is defined with two time bounds, i.e., (@, ly, Uq),
where [, € T and u, € T are the lower and upper time bounds, respectively. The
interpretation for such a definition is that « may occur after [, ticks, and must occur
at the latest after u, ticks. An event is called prospective if 0 < I, < u, < 00, and
remote if 0 < 1, < u, = oo. Each event is thus associated with a timer interval
between 0 and the event’s upper time bound, i.e., T, = [0,u,] for event ¢ (if o is
prospective), or the event’s lower time bound, i.e., T, = [0,1,] for event o (if o is
remote).

The notion of supervisory control of a TDES is based on the concept of control-
lability. Controllability is defined in the context that the set of events in a TDES is
partitioned into a set of controllable events ¥, and a set of uncontrollable events 2,,.
An event is controllable if it can be prevented from occurring at a specific point in a

logical event sequence or in time, and is uncontrollable otherwise.
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In a hard real-time system, an event must occur at the latest at its deadline.
Supervision of a TDES then must include a mechanism for forcing certain events to
occur before a specific time instant. For this reason, an additional type of events,
called forcible events, is defined to describe events that can preempt a tick of the
global clock. In this work, our concern is on tasks having a finite hard deadline.
Therefore, all execution events considered are forcible unless stated otherwise. A
supervisor of a TDES G can be considered as an automaton V that monitors the
states of (G, and enables, disables or forces certain events in G when necessary so as
to influence the behavior of G. The readers are referred to [26] and [62] for a complete

exposition of the theory of supervisory control of TDES.

1.7 Uniprocessor Scheduler Design

Any real-time application consists of a set of tasks that interact with each other, and
the tasks’ executions are subject to various temporal constraints such as completion
times, deadlines, periods, resource sharing and synchronization delays. The crucial
aspect of real-time scheduling is to make sure that these tasks satisfy their temporal
constraints and that the overall system performs correctly according to its specifica-
tion. Given this fact, we propose a framework for designing such schedulers for hard
real-time systems upon uniprocessors based on Supervisory Control Theory (SCT)
for timed discrete-event systems.

In order to design a scheduler, we first model the execution of a set of tasks as a
TDES and then compute the supremal controllable sublanguage of timing constraints
with respect to task TDES to find the desired behaviour of the system. For ensur-
ing tasks’ schedulability, we simply check the supremal controllable sublanguage for

emptiness. Nonemptiness implies that a legal and controllable execution sequence of
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all tasks exists such that all scheduling requirements are met.

The approach followed in this work to design a scheduler is independent of a priori
fixed scheduling policies. That is, the scheduler need not be constrained to follow a
predefined scheduling policy but may adopt its decisions based on the behavior of
the environment and the property to be satisfied, as is the case with the controller
synthesis of [26]. The method for designing schedulers is based on successive restric-
tion of the system to be scheduled by the use of constraints derived from scheduling
requirements.

As in [6, 49, 56], this approach allows a unified view of scheduling theory based on
the timing analysis of models of real-time applications. One of the main contributions
of this work is the synthesis of a universal scheduler, which contains all feasible
deterministic scheduling policies. A universal scheduler nondeterministically selects
a task for execution in such a way that all timing constraints are met in a minimally

restrictive fashion.

1.8 Multiprocessor Scheduler Design

The problem of scheduling hard real-time systems upon multiprocessor platforms has
been extensively dealt with in [18], [19], [20], [21]. However, no formal treatment
has been provided in these works. A formal semantics must be provided so that the
behavior of the scheduler (read supervisor) and the meaning of the specifications are
clearly defined. For the above-mentioned reasons, we have utilized the theory of su-
pervisory control of TDES to formalize and realize the scheduler design procedure
for real-time systems. We synthesize schedulers using the proof by construction ap-
proach, wherein we demonstrate the existence of a scheduler capable of scheduling

tasks on multiple CPUs by providing a method for constructing such a scheduler.

12



We discuss the scheduling procedure of hard real-time tasks on uniform multipro-
cessor [18, 19] platforms based on the assumptions that task preemption and inter-
processor migration are permitted, while intra-task parallelism is forbidden (i.e., at
any instant in time each task may be executing on at most one processor). In uniform
multiprocessors, each processor is characterized by its own computing capacity, with
the interpretation that a task that executes on a processor of computing capacity
s for 7 time units completes s7 units of execution. The scheduler design procedure
for hard real-time tasks on uniform multiprocessors is similar to the one followed in

uniprocessor platform.

1.9 Symbolic Scheduler Design

In {39, 41], we had shown that supervisory control theory (SCT) of timed discrete-
event systems could be applied to the scheduling of hard real-time systems. In par-
ticular, we had presented a formal framework for the synthesis of real-time schedulers
on uniprocessor systems using priority-based supervisory control of timed discrete-
event systems. The execution of a set of tasks was modeled as a Discrete Timed
Automaton (DTA). Then the supremal controllable sublanguage [26, 62] of timing
constraints with respect to task DTA subject to a priority relation was computed to
find all executions in which no deadline was missed. We had also provided a method
for designing schedulers on uniform multiprocessor systems based on SCT [40, 42].
Since we represented discrete time explicitly, model size for each task is consider-
ably large and proportional to its period. The complexity in the synthesis of a sched-
uler using supervisory control [62] stems from the fact that, with the synchronous
product, the number of states of a composite TDES increases exponentially with the

number of real-time tasks. As far as complexity in both time and space is concerned,
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the procedure TDES3 = sync(TDES1, TDES2), which computes the synchronous
product of two TDES, has complexity proportional to the product of the state sizes
of the two machines. Theoretically, the number of states of the synchronous product
of two TDES is less than or equal to the product of their number of states. But in
reality it is often much less than their product for a nontrivial system. Therefore, we
often need to allocate much more space than is actually required to store the result.

One approach to confine this “state explosion problem” relies on the symbolic
representation [13], [28], [38], [50] of sets of states, and computes the set that satisfies
a formula as a fixpoint of a functional on state predicates. In our model, the formula is
a guard for the transition from one state to the next. We have presented an informal
idea to address state space explosion in scheduler synthesis for real-time tasks on
uniprocessor systems using symbolic methods [24]. The scheduler thus designed is a
feasible one for a given set of real-time tasks, and also smaller than the ones designed

with any other known mechanism.

1.10 Contribution Of The Thesis

1. In this thesis, we have utilized the concept of supervisory control theory (SCT)
of discrete-event systems in order to formalize the process of scheduling hard
real-time tasks on single processor platforms. For this purpose, we have provided
a formal framework which helps in synthesizing real-time schedulers on single
processor systems using priority-based supervisory control of timed discrete-
event systems. We name such synthesized schedulers universal since they con-

tain all feasible deterministic scheduling policies. In other words, a universal
scheduler nondeterministically selects a task for execution in such a way that

all timing constraints are met in a minimally restrictive fashion.
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2. We have then extended our formalization technique to multiple processor sys-
tems by presenting a framework for designing schedulers for hard real-time sys-
tems upon uniform multiprocessors based on Supervisory Control Theory (SCT)
for timed discrete-event systems. Our contribution in this respect has been the
development of a formal constructive method for controlling the preemptive and

migrative execution of real-time tasks on a set of uniform processors.

3. As we had considered discrete time models in our scheduler design, the state
sizes were substantially large, and increased exponentially with the number of
real-time tasks. In order to reduce the state space explosion problem in our mod-
els, we have utilized a modified form of symbolic modeling methodology [24],
along with the pre-stable algorithm proposed in [24], for reducing state space
while designing schedulers for real-time tasks on uniprocessor systems. The
main contribution here has been the development of an informal procedure for
uniprocessor scheduler design with reduced state space for both non-preemptive

and preemptive real-time tasks.

1.11 Organization Of The Thesis

The rest of the thesis is organized as follows. Chapter 2 delves in detail into some of
the previous work related to our thesis that has been found in the literature. In Chap-
ter 3, we introduce the theory of priority-based supervisory control of discrete-event
systems, and propose a method for constructing a universal scheduler. The chapter
also provides an example illustrating in depth the procedure followed in designing
a scheduler for hard real-time tasks under various temporal constraints on a single
processor system. Chapter 4 illustrates various multiprocessor set ups, and looks into

specific reasons for considering uniform multiprocessors in our models. Further, it
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presents a formal framework for scheduling preemptive and migrative hard real-time
tasks on uniform multiprocessors, followed by an example to illustrate the design pro-
cedure. In Chapter 5, we provide the framework for scheduler design with reduced
state space using modified symbolic technique. The framework is supplemented by
an exhaustive example that clearly illustrates the procedure followed in designing a
scheduler for non-preemptive real-time tasks with reduced state space. This chapter
also explains the scheduler design procedure under preemptive conditions. Finally in
Chapter 6, we conclude the thesis with a brief note on some of the future prospectives

of our work.
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Chapter 2

Previous Work

Controller synthesis has been studied extensively, both for discrete-time and dense-
time systems. One of the oldest discrete-event frameworks is the one of supervisory
control of discrete-event systems [54]. Within the control community, Ramadge and
Wonham [54] have built an extensive automata-theoretic framework for defining and
solving control synthesis problems for discrete-event systems. In the paradigm of
standard supervisory control theory, the authors have formulated the supervisory
control problem by two languages that correspond to minimal acceptable behavior
and legal behavior, respectively. In this formulation, both general and nonblocking
solutions are well discussed.

Various formalisms have been developed to model timed discrete-event systems,
including [8] and [26]. Work in [26] corresponds to discrete-time using a single system
timer as opposed to [8] where the dense-time model includes several asynchronous
clocks and is more expressive than other formalisms, allowing composition of timed
processes and independent timing conditions for each system component. Here, we
are concerned with timed automata as defined in [26].

The idea of applying synthesis to timed automata was first explored in [60]. Here
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the methods of Ramadge and Wonham [54] are adapted to construct a supervisor for a
dense real-time discrete-event system modeled by a timed automaton using untiming
procedures. The control problem is tackled by completely discretizing the timed
automaton into a finite state automaton and then the discrete synthesis problem is
solved, which is somewhat similar to what we have proposed in our work.

An algorithm for safety controller synthesis for timed automata, based on oper-
ation on zones, was first reported in [49] and later in [13], where an example of a
simple scheduler was given. In these and other works on treating scheduling prob-
lems as synthesis problems for timed automata, such as [4], the emphasis has been on
existence properties, such as the existence of a feasible schedule in the presence of an
uncontrolled adversary. The approach followed in our work for the construction of a
scheduler is somewhat similar to [4, 5, 6, 14, 49, 56], but time in our work is discrete
and it is explicitly represented, as opposed to dense-time which is often implicitly
represented in the aforementioned references. In implicit representation of time, a
set of inequalities over timer variables are used to define conditions on the firing of
transitions (known as guards), as well as to specify timing requirements on the sys-
tem behavior. The method for designing schedulers is based on successive restriction
of the system to be scheduled by the use of constraints defined from the scheduling
requirements.

Ostroff and Wonham were among the pioneers in the modeling and analysis of
real-time discrete-event systems. In [52, 53], the authors had presented a frame-
work /procedure for supervisory control of possibly infinite state real-time discrete-
event systems using timed transition models (TTMs) and real-time temporal logic
(RTTL). TTM has been used to represent the processes of plants and controllers,
while RTTL has been used as the assertion language for specifying the legal plant be-

haviour, and it is shown that the controller indeed satisfies the required specification.
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In [2], the synthesis algorithm computes iteratively, from a constraint K charac-
terizing scheduling requirements, the maximal control invariant K’: K’ = K. The
formula K’ denotes the set of states from which K is guaranteed. The behavior of the
scheduled system is obtained by restricting the controllable actions of the processes
so as to respect the control invariant K'. As in [4, 5, 6, 14, 49, 56], our approach
allows a unified view of scheduling theory based on the timing analysis of models of
real-time applications.

The problem of scheduling the non-preemptive execution of a set of periodic tasks
with hard deadlines on a single processor is considered in [29, 30]. For this purpose,
the authors have used the theory of supervisory control of discrete-event systems
[54]. It has also been shown there that the computation of the supremal controllable
sublanguage with respect to a finite timed discrete-event system can be completed in
polynomial time. The present work is also based on the unified approach, i.e., schedu-
lability check and finding a scheduling algorithm are considered as one problem. But
our proposed approach not only schedules non-preemptive tasks but also preemptive
ones as well.

In [43, 44, 45], real-time behavior is represented using timed automaton which
uses a dense model of time. The control is achieved by prioritized synchronous com-
position of a plant and a supervisor timed automaton. The notion of prioritized
synchronization for the untimed systems has been extended to the real-time setting.
The authors have also shown that the prioritized synchronous composition is associa-
tive and under certain mild conditions, which hold in the supervisory control setting,
can be reduced to the strict synchronous composition by using a technique known as
augmentation.

A methodology for treating the problem of scheduling partially-ordered tasks (task

graph) on parallel machines has been considered in [1]. The authors have shown how
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one can schedule tasks on a limited number of identical machines, while respecting
some precedence constraints. In the framework, the scheduling problem admits a
state-space representation, and an optimal schedule corresponds to a shortest path in
the timed automaton. This work shows how formal state-based models can be used
to express parallel scheduling problems and support efficient algorithms for solving
such problems.

The problem of scheduling hard real-time systems upon multiprocessor platforms
has been extensively dealt with in [18, 19, 20, 21, 32, 33, 34, 58]. It has been shown
there that earliest deadline first remains a predictable and resource-efficient algorithm
to use in multiprocessor systems. Also, through the results in their work, the authors
conclude that scheduling upon multiprocessor platforms is not an obvious extension
of one’s knowledge concerning the uniprocessor case, but a lot more than that. But
no formal treatment has been provided in these works, which is what we seek in our
work.

Our approach to confine the state explosion problem, which we faced while de-
signing schedulers for uniprocessor and multiprocessor systems, relies on the symbolic
representation of sets of states, which in essence computes the set that satisfies a
formula as a fixpoint of a functional on state predicates. In our model, the formula
is a guard for the transition from one state to the next. In [38], the authors illustrate
the working of a symbolic model checking algorithm that works on a quotient of the
region graph that depends on the formula being checked. They have shown how a
symbolic fixpoint approach can be used to test if a guarded-command real-time task
is non-zeno and, if not, how it can be converted into an equivalent non-zeno task.
But this algorithm fails to terminate if no such quotient exists. Also, this algorithm
requires that the explicit representation of discrete structure of the automaton be

constructed a priori.
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In [17], the author has introduced an approximation scheme that further reduces
the complexity related to timing. The work in that paper is based on the observation
that not all the timing information in the description of a timed system is usually
needed to guarantee the satisfaction of a given property. This approximation scheme
has been used in the model-checker RT-Cospan [9]. In [9], the underlying untimed de-
scription of the system is composed with an automaton representing the time bounds,
and only the bounds that are necessary to verify the given property are introduced
in the composition.

In [37], the authors have employed on-the-fly and space-efficient model-checking
methods to solve the state explosion problem. Using the first method on a real-
time program, they explore only the regions needed for checking the satisfaction of
a specification. The second method is used to store only necessary and minimal
information in the memory. But the main drawback in [37] is that in the worst case
situation, the on-the-fly method explores the entire region graph.

The authors in [24] have proposed an algorithm combining the symbolic and on-
the-fly approaches. Their algorithm performs an on-the-fly exploration of the sym-
bolic graph. The authors name the resulting graph as simulation graph, and they
show in their paper that simulation graphs are much smaller than region graphs. They
also perform model-checking for a temporal logic formula using simulation graph in
[24]. We have incorporated the algorithm proposed in [24] in our work for the pur-
pose of designing schedulers for real-time tasks on uniprocessor systems rather than

for model-checking.
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Chapter 3

Uniprocessor Scheduler Design

In this chapter we formalize real-time task scheduling by applying an extension of
Supervisory Control Theory (SCT) of discrete-event systems to real-time models. The
set of all possible timed traces of the system is specified by a discrete timed automaton,
where each transition is associated with an event occurrence or the passage of one
unit of time. We introduce priorities to SCT, and apply them to the setting of
discrete timed automata in order to develop a formal and unified framework for task
scheduling on a single CPU.

The chapter is organized as follows. Section 3.1 introduces the theory of priority-
based supervisory control of DES, which is ultimately used to synthesize schedulers.
Section 3.2 sets up a framework for modeling real-time systems and specifications
based on a timed automata called Discrete Timed Automata (DTA), and proposes a
method for constructing an universal scheduler. Section 3.3 provides a comprehensive
example illustrating in detail the procedure followed in designing a scheduler under
the various task requirements of Section 3.2. Finally, we conclude this chapter in

Section 3.4.
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3.1 Priority-Based Supervisory Control Of Discrete-
Event Systems

In real-time scheduling theory, priorities are assigned to tasks in order to improve
their schedulability. When several tasks are ready for execution, the one with the
highest priority will be executed first. In addition, if allowed, a higher-priority task
can preempt a lower priority task. In this section we formalize priorities in supervisory
control of DES framework. The theory developed will be extended to timed models

in the next section to synthesize supervisors for scheduling real-time tasks.

3.1.1 Priority Relations

In supervisory control of DES [54] the desired behavior of a system is often specified
by a language! E over the alphabet of system events ¥.. After observing a string s
generated by the plant, a supervisor will guarantee that the specification is met by
offering the plant with events from a set 7(s) C ¥ that if executed, the resulting
behavior stays in E, i.e., {s}-y(s) € E. In classical supervisory control theory all
events in the set y(s) have equal “priority”, in the sense that one is nondeterminis-
tically selected for execution by the plant. However, in some applications it may be
desirable to give an event priority of execution over another when they are competing
for a shared resource. A convenient way to state this property is by introducing a

priority relation.

Definition 1 A priority relation P is an antisymmetric relation over ¥, with the
interpretation that (a3, as) € P, denoted by a; < as, when oy has a higher priority

than a;. O

1We assume that all languages are prefix-closed.
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Remark. Priorities are introduced to enhance a controller’s scheduling ability. For
example, a controller assigns higher priorities of execution to tasks with smaller dead-
lines to improve the probability of meeting all the deadlines. As such, it is a reasonable
assumption to define a priority relation between controllable events only. O

The relation < is assumed to be antisymmetric, that is, if as has a higher priority
than ap, then o cannot have a higher priority than a,. In the next subsection we will

see how priority relations can be taken into account in supervisory control design.

3.1.2 Theory Of Priority-Based Supervisory Control

Let ¥ be an alphabet, P C Y. X . be a priority relation, and L and E be two prefix-
closed languages over ¥ representing plant and specification behaviors, respectively.
For the sake of convenience assume for now that E is controllable with respect to
L. Then in the absence of a priority relation E can be thought of as the language
generated by a controller that when coupled with the plant, the closed-loop behavior
ENL is controllable with respect to the plant and satisfies the specification: ENL C
E.

However, not all strings in E N L respect the priority relation P. In particular,
if ¢ < ay and at a string s € EN L both a; and «» are possible continuations of
s in £ N L, then for the priority relation to be respected a supervisor must disable
the event with the lower priority (i.e. a;). The following definition characterizes the

class of languages that respect a priority relation.

Definition 2 Let P C X, x X, be a priority relation and N, M C ¥* be prefix-closed

languages. We say N conforms to P with respect to M, denoted by N +j, P if:

Vs € ¥*Voy, a0 €%, a; < ag Asaz € M = say ¢ N
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O

In the sequel, we set M equal to a controllable sublanguage of ENL and N C M.
The definition states that in the presence of higher priority events in a string of M,
to conform to a priority relation a controller must disable all lower priority events at
that string in V.

Remark. From the above definition it can be inferred that N conforms to P
when, for one reason or another, high priority events are disabled by a controller; in
particular, in order to meet the specification of some legal behavior. Thus, there is no
need to further restrict a behavior by disabling low-priority events when high-priority
events are already disabled. As we will see shortly this makes it possible to properly
define maximally permissive behaviors conforming to a given priority relation. O

When a prefixed-closed language N C ¥* does not conform to P with respect to
M, additional control may be required to remove low priority events that compete
with high priority ones. To this end we define the class of sublanguages of N in which
all low priority events are disabled when they compete with high priority events in
M:

Kp(N; M) ={K C N| K by P}

The following result states that Xp(N; M) contains its supremal element.

Proposition 1 The supremum of Kp(N; M), denoted by ICJTD(N i M), exists and be-
longs to Kp(N; M).

Proof. For simplicity we drop references to N and M. First observe that Kp is
nonempty since § € Kp, and therefore IC}, = |JKp, where | JKp denotes the union of
all members of Kp. To show that [ JKp € Kp, we first note that | JKp C N, which

is immediate since N is an upperbound of Kp and is therefore larger than its least
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upperbound. Let s € £* and a3, s € Y. be such that a; < as. We have:

sa1€U/Cp = sy € K; for some K € Kp

= sap ¢ M; since K by P

Therefore K}, € Kp, as desired. [

Note that if N conforms to P with respect to M then N = KL(N; M). In this
case, priorities of the competing events in N are not comparable.

Recall from classical supervisory control theory [54] that a supervisor that gen-
erates the supremal controllable sublanguage of a given specification language E,
denoted by sup C(E), restricts the system behavior in a minimally restrictive fash-
ion. When a priority relation between controllable events is defined, the language
KL (sup C(E);sup C(F)) is minimally restrictive in the sense that a controllable event
is disabled at a string s € KL(sup C(E);sup C(E)) only when it leads to the violation
of the safety specification E, or else when it competes with higher priority events at
s. Note that since P is defined between controllable events, KL(sup C(E);supC(E))
remains controllable and can therefore be implemented by a supervisory control map

VLT [62).

Corollary 2 Let L and E be plant and specification languages, respectively, and P be
a priority relation. Then a generator for K, (sup C(E);supC(E)) controls the system

in a minimally restrictive fashion, in the sense that K} (sup C(E);sup C(E)):
1. is controllable with respect to L,

2. conforms to P with respect to sup C(E),
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3. is a subset of E/, and:

4. For any supervisor K generating a language K, iof K satisfies (1), (2), and (3)
then K C KL (supC(E);supC(E)). [

3.1.3 Computation of priority-based supervisory control

We assume that M and N are represented by two automata M = (X, zy, X, £) and
N = (Y, y0, X, n), respectively. We would like to compute the language ICL(N ; M) of

the previous subsection.

Definition 3 The prioritized system, denoted by Mp, is a 4-tuple (X, o, %, €p),
where £p : X x ¥ — X is defined on a pair (z,0) € X x X, denoted by £p(x, o)}, if

and only if £ is defined on that pair and
Vo' € 8. 0 < o' = —~¢(z,0")!

in which case £p(x, o) 1= &(x, 0). a

The language generated by Mp has the property that when intersected with any
language N it will produce ICL(N ; M) restricted to M. This is formally stated and

proved in the following proposition.
Proposition 3 Let M, N C X* be prefized-closed languages and P C ¥. X X, be a
priority relation. Then we have:

NNMp=KL(N;M)NM

where Mp 1s the language of the prioritized system. Thus, when N C M we have

KL(N; M) = Nn Mp.
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Proof. Denote M := (X, ¢, %,¢), Mp = (X, z9,%,&p) and N := (Y, y0, 2, 7). We

start by observing that

KL(N;M)n M = KL(N N M; M)

To show NNMp = KL(NNM; M), we must show that 1) NNMp € Kp(NNM; M),
which implies N N Mp C IC},(N N M; M), and 2) N N Mp is an upper bound for
Kp(N N M; M), which implies N N Mp D KL(N N M; M).

1. Since Mp C M it follows that NN Mp C NNM. Let s € ¥* and 0,0’ € &
be such that ¢ < ¢’. If so € N N Mp then so € Mp. Denote x := £p(xg, s) =
&(xzo,s). Since s¢ € Mp we have £p(x,0)!, and therefore it follows from the
definition that —¢(z,0’)!, i.e. so’ ¢ M. We conclude that NN Mp € Kp(N N
M; M).

2. Let K € Kp(N N M; M). We must show K C NN Mp, i.e. forall s € ¥,

SEKiSENnMp

We prove this by induction on the length of s.

- Base: If ¢ € K it follows that N N M # 0; therefore N N Mp # @ and
€ € NmMp

- Inductive step: suppose for all s of length |s| < n we have s € K = s €
NN Mp. Let so € K. We must show soc € NN Mp. Since K + P and

so € K it follows that:

Vo' €eX. 0 <o =>s0' ¢ M (3.1)
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Note that so € K and K € NN M implies soc € N and so € M. In
addition, since K is prefix-closed it follows that s € K, implying by the
induction assumption that s € Mp. Let z := £p(z0,s) = £(x0, s). Since
so € M, we have £(z,0)!, implying by (3.1) that £p(z, 0)!, i.e. so € Mp.

Thus we have shown that sc € N N Mp. |

So far we have shown how priorities can be taken into account when computing a
supervisor for an untimed system. In the next section, we apply our method to real-
time systems by modeling real-time tasks and specifications using a simple extension
of automata called Discrete Timed Automata (DTA). First the execution of a set of
tasks is modeled as a DTA. Then the supremal controllable sublanguage of timing
constraints with respect to task DTA subject to a priority relation is computed to

find all executions in which no deadline is missed.

3.2 Real-Time Systems And Specifications

In this section we set up a general framework for modeling real-time systems and
specifications. DTA is used to model real-time systems and to specify requirements
on their behavior, including timing constraints. Time is assumed to be discrete (as
opposed to dense [8]), and it is explicitly represented in our models (as opposed to

implicit representation).

3.2.1 Discrete Timed Automaton

A Discrete Timed Automaton (DTA) is a four-tuple L := (X, o, X%, ), where X is
the state set, ¢ is the initial state, X! is an alphabet, and § : X x X' — X is a partial

transition function. We assume that X! := XU{t}, where ¥ is the alphabet of system
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events and ? is a special symbol which denotes the passage of one unit of time, or one
tick of the global digital clock. We denote by tickcount a function over the set of all

strings that returns the number of ticks in a string:

tickcount : " — N : s — the number of t’s in s

Time is measured in discrete steps; if = 6(xg, s) and tickcount(s) = n € N then at
state x discrete-time is equal to n while the value of real time could be anywhere in the
real interval [n,n+1). As before, we assume that the system events are instantaneous.

For a DTA to model a real-time system, time always has to have a chance to

advance. We say a DTA satisfies time-progress property if

Vz € X.3u € ¥*. 6(x, ut)!

In our work, we restrict our attention to the class of DTA that satisfies the time-
progress property.

Let L be a prefix-closed language over X.¢. We call L a timed language if

Vse Liuc¥* sute L

It is immediate from the definitions that if L is a DTA satisfying time-progress prop-
erty, then the language generated by L, denoted by L, is a timed language.

An important property of timed languages is that they are closed under arbitrary
union. Then, when the language returned by a control algorithm is not a timed

language, it is guaranteed that a largest timed sublanguage of the behavior exists.
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Formally, for E C ©*" let
T(E) :={K C E|K = K AK is a timed language}

Proposition 4 The supremum of T(E), denoted by T'(E), belongs to T(E).

Proof. First notice that since §) € 7 the set 7 is nonempty and therefore 7' = | J 7.
It can be readily verified that | J7 is prefix-closed and a subset of E. Let s € |7 .

It follows that s € K for some K € 7. Since K is a timed language it follows that

Jue¥*. sut€ K; since K is a timed language

Juek. sutelT,; sinceKQUT

Therefore 71 = | J7 is a timed language. |
Let E’ denote the largest timed sublanguage of E. Then it can be readily shown
that the DTA E' is obtained from E by recursively removing all states from which
time does not have a chance to advance.
In [62] it is shown that the class of controllable and prefix-closed sublanguages
of a given language is also closed with respect to arbitrary union, resulting in the

following corollary.

Corollary 5 Let
CG(E,L):={K C E|\K = KA\K is a timed languageNK is controllable with respect to L}

Then C,(E, L) has a largest element, which we denote by supC,(F, L).

To calculate the supremal element of C,(E, L), we first find the supremal controllable

sublanguage of E' [62]. If the result is a timed language, the procedure terminates.
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Otherwise, we obtain its largest timed sublanguage by recursively removing from
sup C(F, L) all states in which time has no chance to advance, and repeat the above

procedure if necessary.

3.2.2 General Task Model

In this subsection we study a system consisting of n tasks that are to be scheduled
on a single CPU. For i € I := {1,2,...,n} let T; denote a task with an execution
time of v; € N time units. FEach task is modeled by a DTA, so that the composite

task model can be described as:

where the operator || denotes synchronous product [62].

A task consists of several identical instances. Arrival of an instance of a task T;
is denoted by an event a; called arrival of the task T;. We divide execution of an
instance into v; segments, where each segment has a duration of one time unit. While
execution of an instance can be interrupted, a segment—which can be regarded as
the unit of execution—is uninterruptible. We denote the execution of segment j,
j € [1,1;), of any instance of task i by an event e;. In our DTA model of task ¢ we
follow e; by a tick to indicate that the execution of each segment consumes one unit
of the processor time. We introduce a new symbol ¢; to denote the execution of the
last segment of T;. The general model of task T; is shown in Figure 3.1. According
to Figure 3.1, other tasks can always be executed except when the execution of a
segment of the current task is in progress.

For future reference we define sets of events as shown in Table 3.1.
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P ot i

Figure 3.1: General model of task T;. State labels indicate which segment of task i
is to be executed next.

| Alphabet || Description ]
Y = {a;, ¢, e;} || Set of all events of task 4.

Y5 ={ci,e} Set of forcible events of task i.
Yiec:={c, e} Set of controllable events of task 7.
Tiwi=2\Zie Set of uncontrollable events of task 1.
Y=, X Set of events of all tasks.

Y= Y\Y, Set of events of all but task i.
%o == U;_1{a;} || Set of arrival events of all tasks.

Table 3.1: Event sets used for uniprocessor scheduler design.

3.2.3 Task Requirements
Priority

When the execution of task 7 has a higher priority than the execution of task i, task
j will be scheduled for execution first when they both are ready for execution, and if
preemption is allowed, task j preempts task 7 as soon as the execution of the current
segment of task ¢ is complete. This can be modeled in our setting by introducing a

priority relation P C X, x X, defined as:

P = {(¢;,¢), (¢, ¢5), (e, ¢5), (eir €5)}

Events a; and a; are not considered in the definition of P since they are uncontrollable

events.
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Periodicity

A task is periodic if its instances arrive at equidistant moments in time. Assuming
without loss of generality that the first instance always arrives at time zero, the DTA
of Figure 3.2 specifies that arrivals of T; are ; time units apart, where for simplicity
p; = 4.

a;

EP": _,Q,__/’—\‘
ST T D

“\Mai)  S\{a:} S\{a} S} Z\{a:}

Figure 3.2: Specification for making T; periodic with period gp; (p; = 4).

Note that EP" is an environmental constraint in that it is the environment that
forces a; at integer multiples of g; and disables it elsewhere. However, a; is neither
forcible nor controllable, that is, the scheduler yet to be designed can neither force
nor disable any of the arrival events.

Periodicity and other environmental requirements can be expressed by a specifi-
cation automaton E®™V defined as:

EP"

iel

EFenv .

Non-Preemption

When preemption is not allowed, the model of Figure 3.1 needs to be restricted by
requiring that after the execution of T; has started (event e;), other tasks may not be
executed until the execution of T; is complete (event ¢;). This is shown in Figure 3.3.

Let J C I be the index subset of nonpreemptible tasks. The nonpreemption
requirement can then be expressed by an automaton E*® (scheduling constraint)
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Figure 3.3: Specification for making T; nonpreemptible.

defined as:
E'P

jeJ J

Esch —

From a supervisory control perspective, a scheduler is just a supervisor that con-
trols the system in such a way that all logical and timing constraints are met. Ac-

cording to Corollary 5, a supremal scheduler, denoted by S exists and is given by
S := KZKT) (sup Ci(E**", L), sup C;(E*", L))

where L := T}|{E*™V.

The entire design procedure is depicted in Figure 3.4. At first, various tasks are
modeled by task automata as in Figure 3.1. The task automata are then combined to
obtain a composite task model T. Meanwhile, task periods modeled as in Figure 3.2
are combined together to yield the environmental constraint denoted by E®™ in the
figure. Next, the task model T and the environmental constraint E®V are combined
to obtain the plant L. Also, if task preemption is not allowed, the requirements are
specified by the DTA of Figure 3.3, which are then combined to obtain the scheduling
constraint E5? of Figure 3.4. Finally we arrive at the maximally permissive supervi-
sor S by computing the supremal controllable sublanguage of the specification E*"
with respect to plant L in which all competing low-priority evens are disabled. The

supervisor thus synthesized is called a scheduler in real-time community, which is a
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program that dispatches real-time tasks for execution in some specific order. The
scheduler obtained is minimally restrictive in the sense that under the same set of
constraints, any other feasible scheduler will impose additional restrictions on the

system behavior.

Control

—]
Task Ti > ‘ ‘ T
models o
Environmentalpr > ‘ ’ Eenv S

constraints 1 - T
: SuPct(°7°) E: K:P (’) ™
. > Supremal
scheduler
. - sch

Scheduling np—> I ‘ E
constraints i !

-_———>‘

Figure 3.4: Procedure of scheduler design.

3.3 Example

Consider a water vessel as shown in Figure 3.5. Water is let into the vessel through
a valve named wvalve_in and let out of the vessel by a valve named walve_out. The
two sensors water high and water low help in indicating the level of water inside the
vessel. There is also a pump inside the vessel useful in flushing water out of the vessel
through valve_out. It is assumed that valve_out is open if and only if pump is on.

The normal operation of the water vessel system is as follows: Water is let into
the vessel through valve_in when the water level is below the low level (€). As soon
as the water level exceeds the high level (h), the pump is used to drive the excess
water out of the vessel through valve_out.

The various properties of the water vessel problem are:
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Figure 3.5: Water controller.

1. Water should not overflow.

2. Water should not underflow.

3. Positive but limited influx of water when pump is off and valve_in is open.

4. Positive but limited outflux of water when pump is on and wvalve_in is closed.

The above-mentioned problem could be modeled by two periodic tasks which are
operated alternately by a controller or a universal scheduler. To this end let us
define T, : (4,2) and T2 : (2, 1) to be two periodic tasks representing the conditional
opening of valve_in and starting of pump, respectively, where in T; : (p;, 1), p; and v;
stand respectively for period and execution time of task ¢. So, when task T; is being
executed, valve_in can be opened and pump is off. When task T, is being executed,

pump can be turned on and valve_in is closed.
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While periodically monitoring the water level through sensors, the periodic task
Ty opens valve_in and turns pump off if water level is less than ¢. The periodic task
T, turns the pump on and close valve_in when the water level is greater than h.
According to our example, task T, checks for the water level every 4 time units and
if the vessel’s water level is below ¢, valve_in is opened for 2 time units. Similarly,
task T checks for the water level every 2 time units and if the vessel’s water level
is above h, pump is switched on for 1 time unit. The scheduler to be designed is
based on the timing constraints of the two tasks, namely, periodicity and execution
time rather than the events triggering the two tasks. This means that the scheduler
to be designed is time-driven (as opposed to event-driven). Define T := T4||T2 and
E*™ := EY"||E%".

Let us now analyze the set of tasks for the following assumptions:
1. Preemptive scheduling with no priority relation.

2. Preemptive scheduling with priority relation.

3. Nonpreemptive scheduling with no priority relation.

We use the TTCT [61] software tool for analysis and verification of TDES.

3.3.1 Preemptive Scheduling
1) P=90

The automata for the two task models are given in Figure 3.6.
Since the alphabets are made identical, the operation meet in TTCT computes

the synchronous product between the two task models.

T := meet(T;, T,)
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Figure 3.6: Task automata.

The periodicity constraint of the two tasks are shown in Figure 3.7.

ai

R

3
S\ {ar} \{a1} I\{ari} E\{a} E\{a1}

S\{a:} E\{az} ¥\{a:}

Figure 3.7: Automata for periodicity of tasks.

The environmental constraint is calculated by taking the synchronous product of

the two periodicity requirements:

Eenv .= meet (Ela Ez)

With no priority relation defined we have L = T||E®", which is obtained by
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taking the meet of the task model and the environmental constraint.

L := meet(T,E®™)

Furthermore, there are no scheduling constraints, i.e. E*" = %*, and therefore

S := supconC; (L, E*")

returns the largest controllable timed sublanguage of L subject to the environmental

(and scheduling) constraints. The automaton S is shown in Figure 3.8.

t

O
L O
AT

t

Figure 3.8: The universal scheduler for Ty and T, (P =0, E**" = £*).

We call S a universal scheduler. The system controlled by a universal scheduler
can generate all legal event sequences subject to the environmental constraints. In
order to meet the timing constraint of T, the execution of T, is disabled (suspended)
at state 1 while the execution of T; is forced; in other words, at state 1 Ty preempts

T,. This can be verified by the condat function of the TTCT.
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Now suppose the behavior in Subsection 3.3.1 is further restricted by a priority rela-
tion. For example, let us assume that T3 has a higher priority of execution than T}.

This can be represented by the priority relation P, where:

P :={(c1,¢), (e1,2)} (3.2)

The only change compared to the previous case is in the plant model, which is

now equal to

L= TPHEenv

The prioritized model Tp is obtained by removing execution transitions of the
lower priority task T; whenever the execution of the higher priority task T is pos-

sible. This is shown in Figure 3.9.

t

Figure 3.9: Prioritized task.
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The scheduler S is shown in Figure 3.10. Observe that at states 1 and 2, the

execution of T, is disabled because the execution of Ty has a higher priority.

P

\“iO“VCD \ t/o—~@ \
i jl) t
]

t

Figure 3.10: The (supremal) scheduler for T; and T., with P = {(e1,¢2), (c1,¢2)}
and when preemption is allowed.

3.3.2 Nonpreemptive Scheduling

When preemption is not allowed we have Esh := EJP||E;P, while as in Subsec-
tion 3.3.1 assuming that P = @ we have L = T||E°™.
The automata of Figure 3.11 express the non-preemptiveness of the two tasks

under investigation.

t’alaclaa2702 ay, s
R .
E Q ! Q O

02
1
Zt
0

Figure 3.11: Automata expressing the non-preemptiveness of tasks.

The scheduling constraint is calculated by taking the synchronous product of the
42



non-preemptiveness requirement of each task.

E*P .= meet(E}®, E3P)

The supremal scheduler

S := supconCy (L, E5?)

is shown in Figure 3.12.

C2

C1
{O BN as

g o
C2 t

t (5]

Figure 3.12: The (supremal) scheduler for T; and T2 when preemption is not allowed

(P =0).

Observe that when in state 1, task T, would miss its deadline if task T, were
fully executed. Thus, e; is disabled in state 1. Also in state 2 the execution of T,
is underway, and since preemption is not allowed, the execution of task T, must be

disabled.

3.4 Conclusion

Through this chapter, we have introduced the concept of priority-based supervisory

control of discrete-event systems. In particular, we have shown the synthesis of uni-
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versal schedulers for hard real-time tasks on uniprocessor platforms by modeling and
specifying tasks using discrete-timed automata. We have also provided an exhaustive

example in this chapter in order to illustrate the synthesis procedure.
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Chapter 4

Multiprocessor Scheduler Design

In this chapter, we present a framework for designing schedulers for hard real-time
systems upon uniform multiprocessors based on Supervisory Control Theory (SCT)
for timed discrete-event systems. The contribution of this work lies in the develop-
ment of a formal constructive method for controlling the preemptive and migrative
execution of real-time tasks on a set of uniform processors. We synthesize schedulers
using the proof by construction approach, wherein we demonstrate the existence of a
scheduler capable of scheduling tasks on multiple CPUs by providing a method for
constructing such a scheduler.

The chapter is organized as follows. Section 4.1 illustrates various multiprocessor
machines, and looks into specific reasons for considering uniform multiprocessors in
our models. Section 4.2 describes a framework for modeling hard real-time tasks as
TDES and for synthesizing a supervisory control for such tasks on uniform multipro-
cessors. Section 4.3 provides an example illustrating in detail the procedure followed
in designing a scheduler under the various task requirements of Section 4.2. Finally,

we conclude this chapter in Section 4.4.
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4.1 Types Of Multiprocessors

As the name indicates, in multiprocessor platforms, one can execute tasks on one of
the many processors available for utilization. In most of the early work in the liter-
ature on real-time scheduling on multiprocessors, it was assumed that all processors
were identical in terms of their processing/computing capacities. However, recent
work published by scheduling theorists identify two different kinds of multiprocessors

based on their computing capacities:

1. Identical Multiprocessors: Identical multiprocessors are those in which all the

processors have the same computing capacity.

2. Uniform Multiprocessors: In uniform multiprocessors, each processor is charac-
terized by its own computing capacity, with the interpretation that a task that
executes on a processor of computing capacity s for 7 time units completes st

units of execution.

We have considered the uniform multiprocessors in our work since we believe
that they could be used for designing many practical application systems in the real
world. Furthermore, using this kind of multiprocessors during modeling provides the
application system designer the freedom to use processors of different speeds, rather
than constraining him/her to always use identical processors.

Further, as technology is fast improving, newer and faster processors are developed
all the time. In order to improve the performance of a system, it is crucial to upgrade
the system with faster processors. If we have uniform multiprocessors model, it
would be easier to just replace the slower processors with the new faster ones, and
keep the ones that are sufficiently fast intact. Whereas, if our model was identical

multiprocessors, it becomes imperative to change all the processors simultaneously.
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Assumptions

While designing schedulers for hard real-time systems upon uniform multiprocessor

systems, we have made the following assumptions on task execution:

1. Task preemption is permitted, meaning that a task executing on a particular
processor may be preempted prior to the completion of its execution, and its

execution may be resumed later.

2. Task migration is permitted, meaning that a task that has been preempted
on a particular processor may resume its execution on the same or a different

Processor.

3. Task parallelism is forbidden, meaning that each task must execute on at most

one processor at any given instant in time.

In the next section, we revisit the timing model of our work as was explained
in the previous chapter. We model real-time tasks and specifications using a simple

extension of automata called discrete timed automata (DTA).

4.2 Timing Model

This section closely parallels Section 3.2; some parts are repeated for completeness’
sake. Time in our work is measured in discrete steps. In order to account for real-time
systems, time always has to have a chance to advance without ever being blocked. We
call this the time-progress property of DTA, which excludes non-realistic executions
where time does not have a chance to advance. A DTA is considered to satisfy the
time-progress property if

Vz € X3Ju € T*. §(x, ut)!
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Let L be a prefix-closed language over 3*. We call L a Timed Language (TL) if

Vse L3u e ¥* sut € L

It is immediate from the definitions that if L is a DTA satisfying the time-progress
property then the language generated by L, denoted by L, is a timed language.

An important property of timed languages is that they are closed under arbitrary
union. This property is essential when the language returned by a control algorithm is
not a timed language. Then this property guarantees that a largest timed sublanguage

of the behavior exists. Formally, for E C T* let

T(E) = {K C E|K = K AK is a timed language}

Proposition 6 The supremum of T(E), denoted by T'(E), exzists and belongs to
T(E).

Proof can be found in [41].

Let E' denote the largest timed sublanguage of E. Then it can be readily shown
that the DTA E’ obtained from E by recursively removing all states from which time
does not have a chance to advance satisfies the time-progress property.

In [62] it is shown that the class of controllable and prefix-closed sublanguages of
a given language is also closed with respect to set union, resulting in the following

corollary.

Corollary 7 Let

C(L,E):={K CE\K=KAK is cont. wr.t. LAK is TL}
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Then C,(L, E) has a largest element, which we denote by sup C;(L, E).

To calculate sup C;(L, E), we first find the supremal controllable sublanguage of E
[62]. If the result is a timed language, the procedure terminates. Otherwise, we obtain
its largest timed sublanguage by recursively removing all states of supC(L, E) from
which time has no chance to advance, and repeat the above procedure if necessary.
The fact that this iterative procedure computes the largest timed sublanguage of E
that is controllable and prefix-closed is demonstrated below.

Let p and q be predicates on languages over ¥, that is p,q : pwr(X*) — {T, F'}.
For E C ¥* define

P(E) = {K C E| p(K)}

Q(E) :={K ¢ E| ¢(K)}

Note that
P(E)NQ(E) = {K C E| p(K) A q(K)}.

Assume that each predicate is closed under arbitrary union. It follows that
P(E)" € P(E), Q(E)' € Q(E) and (P(E)NQ(E))' € P(E)NQ(E)

where for K C pwr(X*) the supremum of K, denoted by KT, is the union of all

members of K, that is

ICT:UK.

KeK
We would like to show that if we have procedures ¥, and ¥, to compute P(E)! and
Q(E)T, respectively, then (P(E) N Q(E))! can be computed by iteratively applying
¥ =W¥,0V¥, on E until a fixed-point is reached.
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To this end let

¥, : pur(L*) — pwr(X*) : E v P(E)!

T, : pwr(T*) — pwr(L) : E — Q(E)!

and W := ¥, o0 U,

Lemma 8 The maps U, ¥, and ¥ are contractive and order-preserving.

Proof. Contractiveness of ¥, is immediate from the definition. To prove that it is
order-preserving, let E; C E,. We must show that U,(E;) C ¥, (E,), or P(E;)! C
P(E,)T, i.e. P(E,)! is an upperbound for P(E)).

Let K € P(E,), ie. K C E, and p(K) (is true). It follows that K C E; and
p(K), ie. K € P(E,), and thus K C P(E5)’, i.e. we have shown that P(E,) is an
upperbound for P(E,), as desired.

To show that ¥ is order-preserving, let Ey C E5. Then

U(E1) = Tu(Vy(En))
C VU, (P, (Ey)) (¥, and ¥, are order-preserving)

= V(E)

Lemma 9 For E C ¥* let
fix¥(E) = {M C E| ¥(M) = M}

We have fiz¥(E) = P(E) N Q(E) and therefore v¥(E) = (P(E) N Q(E))!, where
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vU(E) denotes the greatest fized-point of ¥ that is smaller than E.

Proof. (C) Let M C E be a fixed-point of ¥, i.e.

U,oU,(M)=M

We argue that M is also a fixed-point of ¥, and ¥,. Since ¥, and ¥, are contractive

maps we have:

M = U, (Wy(M)) C Wy(M) C M

Thus ¥,(M) = M, which in turn implies ¥,(M) = M. It follows that

M =V, (M) = P(M)' ¢ P(M) C P(E)

Similarly, M € Q(F) and therefore M € P(E) N Q(E).

(D) Let M € P(E)NQ(F). It follows that M C E, and that p(M) and ¢(M)
are true. Since M is an upperbound of P(M) and M € P(M), it follows that
U,(M) = P(M)! = M, iie. M is a fixed-point of ¥,. Similarly, we have that
U, (M) = M. It follows that

ie. M € fix¥U(E). [ |

Theorem 10 Let the sequence {¥*(E)}ien terminates at i = ¢*, i.e. U TYE) =
U (E). Then ¥ has a greatest fized-point that is smaller than E, and vV (E) =
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Proof. We have:
I (E) = ¥ (E)

i.e. ¥ (E) is a fixed-point of W. It remains to show that if K C F is any fixed-point
of ¥ then we have K C U*(E). Since K C E, applying ¥ to both sides of the

inequality ¢* times will yield:

*

K =¥ (K) C ¥ (E)

That completes the proof. [ ]

4.2.1 Basic Task Model

In this subsection we study a system consisting of n tasks to be scheduled on m
uniform processors. Let I = {1,2,...,n} be an index set, and let T; denote a task
with an execution time of v; € N time units. We use the TTCT [61] software tool for
analysis and verification of timed discrete-event systems. Also, the function names
meet and sup written in typeset font in this work are procedure calls in TTCT.

Each task is modeled by a DTA, so that the composite task model can be described

where || denotes meet [62].

A task consists of several identical instances. Arrival of an instance of a task T;
is denoted by an event a; called arrival of the task T;. We divide execution of an
instance into v; segments, where each segment has a duration of one time unit. We
denote the execution of segment j, j € [1,1;), of any instance of task ¢ by an event e;.
We introduce a new symbol ¢; to denote the execution of the last segment of T;. The
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complete model of a task T;j is shown in Fig. 4.1. Note that suffix j has been added
to e; and ¢; to indicate the execution of task T; on processor 7 € J, and a special
event n is used to “reset” the processors, i.e. allow a processor to return to its initial

state when execution of the tasks are all complete.

hn Py )y

{cij}ies

Figure 4.1: Complete model of task i (1;=2).

For future reference, relevant alphabets are defined in Table 4.1. As before, ¢

superscripts an alphabet’s name when it is included in the alphabet.

| Sets Of Events {| Description |
¥ :={ai, €55, ¢} jes || Set of all events of task i.
i 5 :=1{eij, cij}jes Set of forcible events of task i.
Yic = {eij, cij}ies Set of controllable events of task s.
i = {ai} Set of uncontrollable events of task 1.
L=, %, Set of events of all tasks.
o= %\Y; Set of events of all but task <.

Table 4.1: Event sets used for multiprocessor scheduler design.

4.2.2 Task Requirements

Release Time

The tasks to be scheduled on the given set of uniform processors are released at
different instances of time. For example, the DTA of Fig. 4.2 specifies that the only

instance of T; arrives after two time units.
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Figure 4.2: Specification of T; with release time of two time units.

The composite release time model can be described as:

Resource Requirements

Since we have considered uniform multiprocessors (CPUs), the DTA should depict
the varying capacities (speeds) of the CPUs. The DTA shown in Fig. 4.3 specifies a

CPU indexed j with speed s = 2.

Stn s r,n

n!
{eijs cijier _Q{eu,cu}iel
A

CPUjZ —

t

Figure 4.3: Specification for a CPU; with s = 2.

Resource requirements can be expressed by a specification automaton E™®® defined

E =|| CPU;

jeJ

where J = {1,2,...,m} is the index set of all CPUs.
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Deadline Requirements

Since hard real-time tasks are studied in our work, each of these tasks is characterized
by a stringent deadline. The deadline requirement can be expressed by an automaton

Es® (scheduling constraint) as shown in Fig. 4.4.

3 PN % % Zt\{Cij}
I eI eI
. L U

Figure 4.4: Specification for T; with deadline of four time units.

Deadline requirements are expressed by a specification automaton E*°® defined

as:

ESCh = Di

i€l

According to Corollary 7, a supremal scheduler, denoted by S exists and is given
by
S := supC(L, E**")

where L := T||R||E**s.

The entire design procedure is depicted in Fig. 4.5.

T; :: ’ ’
.
- Control

R

CPU; — I | ome [ r

Supremal
scheduler

B ||

Figure 4.5: Procedure of scheduler design.
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4.3 Example

Consider T : (2,3,4), T2 : (1,5,5) and T3 : (0,8, 7) to be three hard real-time tasks
to be scheduled on two CPUs named CPU; and CPU, of speeds 3 and 2, respectively.
In T; : (15,4, d;), 74, v; and d; denote respectively the release time, execution time
and deadline of task . A CPU speed of 3 means that any task running on it can
execute 3 segments in one unit of time. Define T := T4||T2||Ts, R := R4||R2||Rs
and Er** := CPU,;||CPU,.

Tasks are modeled as in Fig. 4.6, Fig. 4.7 and Fig. 4.8.

t 11 t t

{e1;} {e1;}

{c15}jea

Figure 4.6: Task T;’s automaton.

RIS > A > TS > S > S >

2 3
{e2;} {e2;} {e2;} {e2;}

{c25}ieq

Figure 4.7: Task T5’s automaton.

{c3j}iea

Figure 4.8: Task T3’s automaton.
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Define:
Ti2 := meet(T,, T2); T := meet(Ty2, Ts).

The release time specifications for Ty and T5 are shown in Fig. 4.9 and Fig. 4.10

respectively.

R a&_t—./%t {%al 8

IMai}  E\{a1} 2\{a1} Z\{a1}

Figure 4.9: Specification for the release time (r;) of T;.

Re' OO0
SRNGRANS

S\{az}  B\{a2} %\{as}

Figure 4.10: Specification for the release time (rz) of Ta.

Since the release time of T3 is zero, the release time constraint is computed by

taking the meet of the release times of T and Ts:
R :=meet(R;, R>)
The task model with the release time constraints is:
TR := meet(T,R)

The resource constraints of the individual CPUs can be modeled according to the
automaton of Fig. 4.3. CPU; and CPU, are modeled by the automata of Fig. 4.11

and Fig. 4.12, respectively.
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hn z = s,n

CPU;: -Q{eil, ci1}iel @{eil, Cz”l}iEI

Figure 4.11: Specification for CPU; with s = 3.

b)) x,n

Ttn
n)
. {ei2, cia}ier {ei2, cin}ier
CPU,: _,@ g R

>

t

Figure 4.12: Specification for CPU; with s = 2.

The resource constraint is computed by taking the meet of the CPU requirements:
E™ := meet(CPU,, CPU,)
Now the plant is given by:
L := meet(TR, E*)

The scheduling constraint is calculated by taking the meet of the deadlines of the
three tasks. Thus, following the model of Fig. 4.4, the specification for deadlines of
the three tasks are expressed by the automata of Fig. 4.13, Fig. 4.14 and Fig. 4.15.

3} » b 2 =N\{eu,az}
ESChl: E 2t E Et E 2t t

Figure 4.13: Specification for deadline of T;.
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b3 b)) b3 5 b B8\ {e21, 22}

Esch2: t t t t t
Figure 4.14: Specification for deadline of T5.

p) by by b x by z T8\ {31, 32}
po S G 3 G e

Figure 4.15: Specification for deadline of Tj.

Define:

Eschu = meet(ESChl, Eschg); Esch = meet(ESCh”, Eschs).

After modeling the tasks and their scheduling requirements, we compute

S := supC; (L, E*")

which returns the largest controllable timed sublanguage of E*°* N L subject to the
scheduling and resource constraints.

One of many feasible schedules contained in S is shown in Fig. 4.16. Recall that
the computing capacities of the two processors are different. CPU; has a processing
speed of 3 while that of CPU; is 2. Also, the arrival of tasks, denoted by a;, a,
and a3z, do not take processor time. Only the actual execution of tasks cause the
advancement of processor time. The upward and downward dotted arrows indicate
task migration between the two processors.

The corresponding Gantt diagram is shown in Fig. 4.17.
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Figure 4.16: Multiprocessor scheduler.
T3 T T T3
CPU1
0 1 2 3 4
T3 LY
CPU2
1 2 3 4

Figure 4.17: The (supremal) scheduler for Ty, T, and Ts.

4.4 Conclusion

In this chapter, we have applied our framework (from the previous chapter) based on
the theory of supervisory control of discrete-event systems on uniform multiprocessor
systems. In that respect, we have presented the synthesis procedure for schedulers of
real-time tasks on uniform multiprocessor platforms. A comprehensive example has
also been provided in this chapter to illustrate the scheduler synthesis procedure. In
the next chapter, we try to alleviate the state space explosion problem we had come
across in our scheduler design procedure (due to discrete-time model of the real-time

tasks) by applying a modified form of symbolic analysis.
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Chapter 5

Modified Symbolic Scheduler

Design

We consider a modified form of symbolic modeling methodology [24] to alleviate some
of the state explosion problems we had faced while designing schedulers for real-time
systems using supervisory control of discrete-event systems framework [39, 41]. In
this chapter we attempt, rather informally, to address the problem of state space
explosion in scheduler synthesis using symbolic methods. We first define some of the
basic concepts about region and simulation graphs in Section 5.1, and then provide
a framework for scheduler design with reduced state space in Section 5.2. In Section
5.3, we explain the modeling of real-time systems and specifications based on timed
automata under non-preemptive assumption. A comprehensive example illustrating

in detail the procedure followed in designing a scheduler for non-preemptive real-

time tasks with reduced state space is presented in Section 5.4. Even though we
utilize the proof by construction approach for scheduler synthesis, in the absence of
a formal design procedure for reduced state space schedulers, we employ the concept
of zone automata [7, 10, 11] to check the correctness of the synthesized scheduler. In
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Section 5.5, we explain the scheduler design under preemptive conditions. Finally, we

conclude this chapter in Section 5.6.

5.1 Basic Definitions

5.1.1 Symbolic Discrete Timed Automaton

In order to reduce the state space in our scheduler design, we have incorporated a
slightly modified version of discrete timed automaton (DTA) to model a real-time
task in this chapter. We refer to it as symbolic DTA and is expressed as a four-tuple
TA = (C,S,%, E). In the tuple, C is a set of timer variables, which in our task
model are variables denoting periods (p) and execution times (c) of the tasks. S
in the tuple is a set of states and X is a finite set of events. Let T¢ be the set of
timing constraints over C (that is, completion of execution times of tasks within their
periods). E in the tuple for TA is a finite set of transitions of the form e = (s, g, ¢, &),
where s,s' € S are the initial and final states, respectively, g € T is a guard on the
transition between states and ¢ C C' is a set of timer variables to be reset.

Consider a real-time task T with execution time 2 and period 3 to be modeled as
a symbolic DTA. Fig. 5.1 illustrates the task automaton model.

r=3-on/z=y:=0

n

r L ()

z=y:=0 % b/y:=0 U y=2-—e 992

Figure 5.1: Symbolic DTA of task T.

In Fig. 5.1, (z,y) € C are the timer variables representing the execution time and
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period of task T. S = {qo, ¢1, g2} is the set of states and ¥ = {b,e,n} is a finite set of
events, where b and e denote respectively the beginning and the end of execution of
a task, and n is an event that marks the beginning of a new cycle for the current or
other tasks in the system. The guard g is assigned based on the timer variables of T.
For example, in the figure, the guard on the transition from state ¢, to qq is z = 3,
meaning that event n would occur only when the period of task T (denoted in the
figure as z) is reached. A more detailed explanation of the various events of Fig. 5.1
is given in Section 5.3. The equivalent discrete timed automata for task T in which

the passage of time is explicit is shown in Fig. 5.2.

Figure 5.2: Equivalent DTA of task T.

5.1.2 Region Graph

The region graph [24] is defined as a quotient structure that is induced by an equiv-
alence relation on the timed states of a timed automaton. Two timed states are
considered equivalent if they have the same control location, with all their clock val-

ues (timer variables) matching on their integral parts and have the same ordering
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of their fractional parts. Clocks that exceed a certain value, which can be taken as
the maximal constant in the description of the automaton, are considered equivalent.
In region graph, a node is referred to as a region having a set of equivalent states.

Formally, a region graph can be defined as follows.

Definition 4 Let TA be a symbolic timed automaton, S be a finite set of states, C
be a finite set of timer variables with |C| =: N, and T¢ be the set of timing constraints
over C. Let k; be the (largest) constant to which ¢; € C is compared, i =1,2,..., N.
The region graph of TA, denoted by RG(TA), is a finite graph, in which nodes are
regions given as r = (s,v), where s € S and v € [[,[0, ki] is the vector of values of
variables in C, and edges are transitions between the nodes which denote the passage

of one unit of time (a tickof the global clock). a

Fig. 5.3 shows the region graph for the symbolic DTA of Fig. 5.1.

[
Yy
t
16( t 17J t 18 t 19 t 20
t t t t ¢
1 13 14 15
l]< %J bf 2y
t t t t ¢
6(J 7 9 0
t t t
t t
C/ & & >
1 2 3 4 5 T

Figure 5.3: Region graph of task T.
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The timer variables of task T, namely, execution time and period denoted by z
and y, form the axes in the region graph. The different regions in the graph denote
the values of timer variables in the symbolic DTA. For example, region 6 denotes

= 0 and y = 1, meaning that with one time unit has already gone by, T has been
executed for one time unit. As the graph indicates, a tick of the global clock moves
the graph from region 6 to region 12. As another example, in region 16, the timer
variable y has reached its limit, and thus subsequent ticks do not increment the value

of y.

5.1.3 Modified Symbolic Graph

The size of a region graph is exponential in the sizes of constants in a timed system.
In order to reduce the number of regions from the region graph, we have come up
with a graph that groups identical states (with different timing parameters) into a
single region set. We refer to it as the modified symbolic graph. It is constructed by
combining the different event transitions portrayed in the symbolic DTA model with
the timing representations of the regioh graph. In other words, the modified symbolic
graph is obtained by considering the different transitions that could be traversed
based on the various events of Fig. 5.1 while satisfying the timing constraints.

Fig. 5.4 enumerates the modified symbolic graph of task T. It consists of the
various states as in Fig. 5.1 along with the values of the timer variables for period
and execution time from the region graph. For example, (go,1) means that at state
go the system is in state ¢y of the DTA and region 1 of the region graph, i.e. the
timer variables of task T, namely, x and y, are equal to zero, i.e. they have just been
reset. All nodes or regions (as in region graph) having the same state component are

clubbed together into a region set. For example, in Fig. 5.4, different nodes having

65



t t t R
Sqo, D—" (g7 — (g 13) — (9,19 0
b b b b
@b @2 (@3 @p4)
t t t
(CH)) p 8 @9

t \: Rl

@@y 13) (ay, 14)

e

(g 14) Ry

Figure 5.4: Modified symbolic graph of task T.

state qo are clubbed into a single region set Ry. This considerably reduces the number

of regions in our scheduler design.

5.1.4 Simulation Graph

The modified symbolic graph helped us in reducing the number of regions from what
we had in the region graph. But still, the number of nodes in the modified symbolic
graph were large because of the explicit representation of “tick (t)”. In [24], the
authors have illustrated a methodology based on symbolic modeling of tasks, that
reduces the size of the system state space caused by region graphs. The authors call
this the simulation graph, where nodes are “region sets” and only discrete transitions
are explicit, while time passes implicitly inside the nodes, meaning that “tick (t)”
could be removed from the graph altogether. We incorporate the concept of simulation
graph from [24] in our work in order to reduce the number of nodes created because of

the explicit “tick (t)” transition. The simulation graph is formally defined as follows.

Definition 5 Let TA be a symbolic timed automaton and Ry be an initial region set,
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then the simulation graph SG(TA, Ry) is the graph reachable from Ry by computing
regions reached through a finite sequence of timed transitions, followed by discrete

transitions. g

Fig. 5.5 illustrates the simulation graph of task T.
b
€
Figure 5.5: Simulation graph of task T.

5.1.5 Pre-Stable Condition

Further reduction of state space in our scheduler design is achieved by applying the
pre-stable condition given in [24] on the modified symbolic graph (Fig. 5.4). Formally,

the condition is defined below.

Definition 6 Given two region sets R and R’, and a transition T, the region set R

is said to be pre-stable with respect to R’ for T iff for every node r1 in region set R

there exists a node r, in region set R’ such that r; is a T-successor of r;, i.e. it can

be reached by a sequence of tick steps, followed by a T transition. 0O

We refer to the graph obtained by applying the pre-stable condition on modified

symbolic graph as pre-stable modified symbolic graph, which is shown in Fig. 5.6. In
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Fig. 5.6, region set Ry’ is a subset of region set Ry of Fig. 5.4.

t
(@ D— (@7
o
b

t

\

@y, 19)

[

R,

(ay 14)

Figure 5.6: Pre-stable modified symbolic graph of task T.

The corresponding pre-stable simulation graph is presented in Fig. 5.7.

5.2 Framework for Scheduler Design with Reduced

State Space

Our framework for scheduler design with reduced state space based on modified sym-
bolic and simulation graphs is shown in Fig. 5.8. The real-time tasks (for simplicity of
presentation we consider only two tasks T; and T2) to be scheduled on a single pro-
cessor are first modeled as timed automata and then synchronized to get a composed

automaton T.

The operation sync in TTCT [61] computes the synchronous product between the

task models.

T := sync(Ty, T2)
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3

Figure 5.7: Pre-stable simulation graph of task T.

The composed automaton is then synchronized with the specification automaton

to arrive at the automaton TS.

TS := meet(T, S)

The modified symbolic graph is obtained by considering the different transitions
that could be traversed based on the various events of the composed task automaton.
The modified symbolic graph of the composed model of T; and T, consists of the
various states of TS along with the values of timer variables for period and execution
time of the two tasks.

The simulation graph is the graph that computes the regions reached from a region
set by a finite sequence of timed transitions followed by a task transition, and is finite
since there is a finite number of regions. From the modified symbolic graph, we arrive
at its simulation graph by removing explicit passages of time (or tick events) and
explicitly representing task transitions only.

In order to reduce the state space in the composed tasks’ modified symbolic graph,
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Modified Symbolic Graph (TS) * Simulation Graph (TS)
applying pre—stable
condition
/ . .
. . removing ticks i .
Pre—Stable Modified Symbolic Graph (TS) > Pre—Stable Simulation Graph (TS)

Figure 5.8: Framework for reducing state space.

we apply the pre-stable condition given in [24]. According to this condition, given
two nodes R and R', and a transition T, R is pre-stable with respect to R’ for T iff
every region in R has a successor in R’ based on the transition 7. We call the graph
obtained after applying the pre-stable condition pre-stable modified symbolic graph.

The pre-stable modified symbolic graph is a scheduler for the two tasks, and
this can be compared with the scheduler design of [39, 41], but with a reduced state
space. The pre-stable simulation graph is then obtained by removing explicit passages
of time (or tick events) from the pre-stable modified symbolic graph and explicitly

representing task transitions only.
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5.3 Modeling of Real-Time Systems Under Non-

Preemptive Assumption

In this section we study a system consisting of n tasks to be scheduled on a single
processor. Let I be an index set, and let T; denote a task with an execution time of
¢; € N time units. Each task is modeled by a symbolic timed automaton, so that the

composite task model can be described as:

where || denotes synchronous product [62]. For simplicity we assume that n = 2,
although the results can be generalized to arbitrarily large values of n.

A task is modeled using three main events: beginning of execution, completion
of execution, and arrival of the next cycle. Beginning of execution of a task T; is
denoted by an event b;, which resets its execution timer to zero. Event e; is used
when execution of T; is complete, while event n is used when either T; or another
task in the system reaches its period. Also, z; and y; are the timer variables for period
and execution time of Tj, respectively. The complete model of the two tasks T; and
T, are shown in Fig. 5.9 and Fig. 5.10.

Ty=p1—n/z1=y:=0

n

m (2
O D:

1 =y =0 bl/yl =0 Yy1=C — €1

Figure 5.9: Task model of T}.
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To=py = n/Ts =1y =0

T,

— O - -

T2 = Yo =0 bg/yz = Yo = Co — €9

Figure 5.10: Task model of Ts.

The composed automaton model is obtained as in Fig. 5.11.

T := sync(Ty, T2)

d9 b 91 €1 q3

Figure 5.11: Composed automaton of tasks T, and Ts.

The automaton portraying the specification for scheduler design for non-preemptive

set of tasks is given in Fig. 5.12. It simply states that if, say, the execution of T,
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has already started, the execution of T, cannot begin until after the first execution

is complete.

€1,€2

b1, b2
n n

Figure 5.12: Specification for non-preemption of Ty and T.

The scheduler automaton of tasks T; and Ts is obtained by taking the syn-
chronous product [62] of specification with the composed task model, as depicted in
Fig. 5.13.

TS := meet(T, S)

90 b a el q

O -0 -0

Figure 5.13: Automaton used to design schedulers with reduced state space.
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The composed model of Fig. 5.13 could be used to design a scheduler based on
state description and task events. But then this would lead to an exponential growth
of states with an unmanageable number of transitions. In our modified approach
of symbolic scheduler design, we first enumerate the state space and then apply the
pre-stable condition to reduce the state space by removing the paths leading to states
having no successor. This in turn removes the transitions along those paths. A state
in the composed task model does not have a successor when one of the tasks misses
its deadline at a particular state, which could be calculated based on the values of

the timer variables of task periods and execution times.

5.4 Example

In this section, we will provide a comprehensive example to illustrate in detail the
procedure followed in designing a scheduler. Consider T; : (2,1) and Ts : (4,2) to
be two hard real-time tasks to be scheduled on a single CPU. In T; : (p;, ¢;), p; and
¢; stand respectively for period and execution time of task <.

The task automata for T; and T3 are shown in Fig. 5.14 and Fig. 5.15.

r1=2->n/ry =y =0

Ty

—» - -
O O

1=y :=0 bi/y1 =0 n=1—e

Figure 5.14: Task model of T};.
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T

() o

Te =Yg :=0 ba/ys2 :=0 Y2 =2 — e

Figure 5.15: Task model of T,.

The composed automaton is obtained as in Fig. 5.11 and the specification au-
tomaton is as illustrated in Fig. 5.12. The scheduler automaton of tasks T; and T,
obtained by taking the synchronous product of specification with the composed task
model is as given in Fig. 5.13. The composed model of Fig. 5.13 could be used to
design a scheduler based on state description and task events.

Fig. 5.16 enumerates the modified symbolic graph of composed model of the two
real-time tasks T; and T. It consists of the various states as in Fig. 5.13 along
with the values of the timer variables for period and execution time for the two tasks.
For example, ¢,0000 means that at state qp, the timer variables of tasks T; and T,
namely, x;, ¥, T2 and y,, respectively, are equal to zero, i.e. they have just been reset.
The modified symbolic graph is then obtained by considering the different transitions
that could be traversed based on the various events of Fig. 5.13 while satisfying the
timing constraints.

According to Fig. 5.13, from state qq, either event b, or event by could be executed.
In Fig 5.16, we have considered event b, first.

The region sets in Fig. 5.16 denoted by Ry, Ry, etc., have nodes with time (por-
trayed by the tick event) passing explicitly between them. One can observe that

transitions from some of the nodes inside these region sets are not portrayed beyond
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Figure 5.16: Modified symbolic graph of the composed task taking event b, first.



a certain point. For example, consider node ¢,2022 in region R; of the figure. In that
node, the timer variables for task T, namely, period (z;) and execution time (y;)
have values 2 and zero, respectively (meaning that two time units have elapsed with
task T; never getting a chance to run), while the timer variables of task T2, namely,
x2 and y, have values 2 and 2, respectively (meaning that task T2 had been executed
for two units of time). From that node, no more transitions have been illustrated
because task T; had already missed its deadline (since it must have been executed
for one time unit before 2 units of time had elapsed), meaning that the path traversed
from that node would not provide us with a feasible scheduler.

Instead of taking b, if event by is executed first by the scheduler, the modified
symbolic graph in Fig. 5.17 illustrates that a feasible schedule does not exist. Region
set Rs in the figure has all its regions blocked, meaning that they could not propagate
further because the deadlines of either or both tasks are missed. This provides us

with insight that a feasible schedule must start with event b;, and not with event b,.

t t
q0000—= q1111—= q42222 | Ry
b b b
q 2os):o q, 11\1:0 q 22<2:0
qu111t qzzz:nt q2333\1: R,
952222 q,3332 q,4442
© ) )
q422<2‘ q43332 q 44442
t t t R
2
q43333 q 44443 445553
by b, by
Y y
q2022 q43032 q 44042 R;

Figure 5.17: Modified symbolic graph of the composed task taking event b, first.
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The simulation graph is a graph that computes the regions reached from a region
set by a finite sequence of timed transitions followed by a task event, and is finite
since there is a finite number of regions. This is obtained by enumerating nodes as
region sets while making only the task transitions explicit. Time passes implicitly

inside the nodes as shown in Fig. 5.18.

Figure 5.18: Simulation graph of the composed tasks.
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In order to reduce the state space in the composed tasks’ modified symbolic graph,
we apply the pre-stable condition [24] to the modified symbolic graph of Fig. 5.16. We
call the resulting graph pre-stable modified symbolic graph. The pre-stable modified
symbolic graph, shown in Fig. 5.19, is a scheduler for the two tasks, and this can be

compared with the scheduler of [39, 41], but with a reduced state space.

R’
0000 0
430
b
1y
q70000
N Rj
qq111
€1
q31111 R%
)
q5111t0
\ R3
q52221
n n
0021
qz\{ R’6
q,1132
©
q41132 | R%
b
1032
16° % R’8
q42143

€
q,2143 |Ry

Figure 5.19: Pre-stable modified symbolic graph of the composed tasks (b; is taken
at the initial state).

The region sets obtained in the pre-stable modified symbolic graph are subsets of
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the corresponding region sets in the modified symbolic graph. For example, R C Ry
and R} C R;, and so on. We obtain region R} by removing the states go1111 and
2222 from R, since event and tick transitions from these nodes do not lead to a
valid scheduling sequence. On the other hand, the state ¢,0000 is part of the region
set Ry since it is possible to reach the initial state by taking a sequence of event and
tick transitions, thereby forming a closed path as per the pre-stable condition of [24].

The corresponding pre-stable simulation graph is obtained by removing explicit
tick transitions from Fig. 5.19, and representing region sets by nodes, as shown in

Fig. 5.20.

Figure 5.20: Pre-stable simulation graph of the composed tasks (b; is taken at the
initial state).
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To verify the feasibility of our designed scheduler, we employ a model checking
approach based on zone automata [7]. A zone is defined as a set of possible values
for variables in a given state. Assume that a transition labeled with o is eligible at
state s € S. If ¢ is guarded by g, we denote by G a subset of N™ that makes the
guard formula g true. If we denote by V' the set of possible values for variables in C
at state s, then o is enabled at s if VNG # 0.

Fig. 5.21 illustrates an automaton model of our scheduler, as obtained in Fig. 5.20.
Instead of region representation, we outline state notations in Fig. 5.21 for simplicity

in understanding.

Figure 5.21: Automaton of the scheduler.

Zonal representation of our scheduler automaton based on guards on the transi-
tions is shown in Fig. 5.22.

The figure depicts zonal changes in terms of timer variables for both tasks resulted
from the occurrence of an event. In the figure, axis z; denotes the timer variable for
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Figure 5.22: Zonal representation of the scheduler automaton.
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task T;’s period and axis y; for its execution time, while axis x, denotes the timer
variable for task T3’s period and axis y, for its execution time.

In Fig. 5.21, state qq is the initial state with timer variables of tasks T, and T,
reset. Hence in Fig. 5.22, the zones for both tasks consist of straight lines y; = x;
and y; = z3. When event b, is executed, the zone representing task T, has y; reset
to zero while z; continues to increment with time. After y, is reset, both z; and
y1 uniformly increment with time, thus the corresponding zone is the lower triangle
described by 0 < y; < x; (note that x; and y; are nonnegative integers). At the same
time, the zone for T, still exhibits a straight line since no event of this task had yet
been executed.

Before executing the next event e; of task T;, the values of its timer variables,
namely x; and ¥, are checked since the event is guarded by those values. In other
words, the guard for event e; has to be satisfied before it can be enabled. In particular,
for enabling event e;, the value of y; has to be equal to one. In the zone representation
of Fig. 5.22, for finding out whether event e; could be enabled at this state ¢; or not,
we draw the guard formula y; = 1, which is a straight horizontal line, and check if
this line intersects the lower triangle zone (formed due to previous event transition).
From Fig. 5.22, it is clear that the straight line y; = 1 does intersect the triangle,
meaning that the relationship V N G # 0 is true. Hence event e; is enabled at that
state and the corresponding change in the shape of the triangle after e; is taken is
depicted in Fig. 5.22.

Then event by’s execution doesn’t change the zone for T; while that of T2’s has
Yo Teset to zero and x5 could get incremented by any number of time units. The same
reasoning could be applied for the rest of the event transitions in Fig. 5.22. While
executing the final event transition of n based on the automaton in Fig. 5.21, the

timer variables of both the tasks’ zones get reset, since both of them satisfy the guard
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on event n. This takes us back to the zone from where the transition sequence had
initially started, thereby validating the feasibility of the scheduler in Fig. 5.21.

Fig. 5.23 illustrates an automaton model of another proposed scheduler, and
through zonal methods we will now verify the non-feasibility of this scheduler.

90 b 91 e 43
Q— ~O ®

47

Figure 5.23: Automaton of a non-feasible scheduler.

Applying the reasoning used in Fig. 5.22 on Fig. 5.24, we reach a stage in the zonal
graph sequence (based on the event transitions of the automaton in Fig. 5.23), where
the transition gets blocked and does not take the automaton back to its initial state,
thereby validating the non-feasibility of the scheduler in Fig. 5.23. The blocking in
Fig. 5.24 happens while trying to execute the event n. The reason for the blocking
is that event n cannot be taken as per Fig. 5.23, since the value of timer variable x;

has exceeded its guard of two.
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Figure 5.24: Zonal representation of a non-feasible scheduler automaton.
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5.5 Modified Symbolic Scheduler Design for Pre-
emptive Real-Time Tasks

This section presents the design of a scheduler for a preemptive set of real-time tasks
using the modified symbolic method. At first, we provide the various automata
required for modeling the tasks under preemptive assumption. Fig. 5.25 illustrates
the automaton of task T;; except for extra events s; and r,, and an extra variable
21, the automaton is similar to the one under the non-preemptive assumption. Event
s is used when a task gets preempted while its execution is not yet complete. Event
s is called a suspend event. When event s occurs, the current execution value of the
task is stored in a variable. Variable z is used to store the value of preempted task’s
execution time; in other words, it records how much of the task has been executed
thus far. Event r is used when a preempted task resumes its execution and is referred
to as a resume event. When event r occurs, the stored value of the task’s execution

is retrieved from z and the task continues its execution until its completion.

Ty =p—n/r; =y =0

T

— () - -

1=y :=0 bi/y1 :=0 Y1 =Cc— e

y1<C—">81/Zl =11 7'1/3/1 =2z

Figure 5.25: Automaton of Task T; under preemptive assumption.
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The automaton for task T, is depicted in Fig. 5.26.

Ty =p—n/zy=1y =0

T
2 ()

To =Yy =0 ba/ys =0 Yo =C — €5

Y2 <C— s2/zm =1 T2/Y2 = 2

Figure 5.26: Automaton of Task T under preemptive assumption.

We provide the specification automaton for preemptive tasks in Fig. 5.27. It states
that when the execution of a task is started (b;) or has just been resumed (r;), the
other task cannot begin its execution until after the execution of the first task is
complete (e;) or is suspended (s;).

€1, €2, 81, 52

Spec:
() -

b1,b2, 11,72

Figure 5.27: Specification for preemptive tasks.

The composed automaton model is shown in Fig. 5.28.

T := sync(T,, T2)
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Figure 5.28: Composed automaton of tasks Ty and T,.
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The automaton that could be used to design schedulers for tasks Ty and T, with
reduced state space is obtained by taking the synchronous product of specification

with the composed task model, which is depicted in Fig. 5.29.

TS :=meet(T, S)

where T is composed automaton model and S is specification for task’s preemption.

Figure 5.29: Automaton used to design schedulers with reduced state space.
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Fig. 5.30 enumerates the modified symbolic graph of composed model of the two
tasks under preemptive assumption. It consists of the various states as in Fig. 5.29
along with the values of the timer variables for period and execution time for the
two tasks. For example, ¢,0000 means that at state qo, the timer variables of tasks
T, and T, namely, z;, 1, 2 and y, respectively, are equal to zero i.e. they have
just been reset. The modified symbolic graph is then obtained by considering the
different transitions that could be traversed based on the various events of Fig. 5.29
while satisfying the timing constraints.

The region sets in Fig. 5.30 denoted by Ry, R;, etc., have nodes with time (por-
trayed by the tick event) passing explicitly between them. One can observe that
transitions from some of the nodes inside these region sets are not portrayed beyond
a certain point. For example, consider node ¢92022 in region Rj of the figure. In that
node, the timer variables for task T;, namely, period (z;) and execution time (y,)
have values 2 and zero, respectively (meaning that two time units have elapsed with
task T; never getting a chance to run), while the timer variables of task T, namely,
x9 and y» have values 2 and 2, respectively (meaning that task T2 had been executed
for two units of time). From that node, no more transitions have been illustrated
because task T; had already missed its deadline (since it must have been executed
for one time unit before 2 units of time had elapsed), meaning that the path traversed
from that node would not provide us with a feasible scheduler.

Also, in Fig. 5.30, from region Rs, event s; could also be executed but has not been
depicted in the figure. This is because, suspending T; would obviously lead to the
execution of task Ta, thereby resulting in the missing of its deadline. For example,
from node ;00000 in region set Rs, executing event s; will result in the suspension
(preemption) of T; without the completion of its execution, and thereby leading to

the missing of its deadline.
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Figure 5.30: Modified Symbolic graph of the composed tasks.
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Next, the simulation graph is obtained by enumerating nodes as region sets where
only task transitions are explicit, while time passes implicitly inside the nodes as

shown in Fig. 5.31.

Figure 5.31: Simulation graph of the composed tasks.

The pre-stable modified symbolic graph of Fig. 5.32 is a scheduler for the two
tasks, and this can be compared with the scheduler of [39, 41], but with a reduced
state space. The region sets obtained in the pre-stable modified symbolic graph are

subsets of the corresponding region sets in the modified symbolic graph.
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Figure 5.32: Pre-stable modified symbolic graph of the composed tasks.
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The corresponding pre-stable simulation graph is obtained by removing explicit
time transitions from Fig. 5.32, and also representing region sets by nodes. This is

shown in Fig. 5.33.

Figure 5.33: Pre-stable simulation graph of the composed tasks.

5.6 Conclusion

This chapter provided a formal framework for the synthesis of schedulers for hard
real-time tasks on single processor platforms with a reduced state space. For the
purpose of state space reduction, we had utilized a modified form of symbolic graph

called simulation graph [24] and applied the pre-stable condition [24] on it. We then
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employed the concept of zone automata for verifying the designed scheduler. Also, in
the chapter, we have extended the scheduler design procedure under the preemptive

assumption.
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Chapter 6

Conclusion and Future Work

We have shown that supervisory control theory (SCT) of discrete-event systems can be
applied to the scheduling of hard real-time systems. In that sense, we have presented
a formal framework for the synthesis of real-time schedulers on uniprocessor systems
using priority-based supervisory control of timed discrete-event systems. Then we
applied SCT to design schedulers for uniform multiprocessor systems. Such a formal
theory helps in a systematic approach to problem solving and presents a rigorous tool
for analysis and synthesis of real-time systems.

The method for designing schedulers is based on successive restriction of the sys-
tem to be scheduled by constraints defined from scheduling and environmental re-
quirements. This approach allows a unified view of scheduling theory based on the
timing analysis of models of real-time applications. Using this method, the problem
of finding out whether a set of real-time tasks are schedulable or not, and also the
problem of finding out a suitable scheduling algorithm are treated as dual in nature:
if we find out a solution to the schedulability problem, it necessarily implies that we
have a solution for the type of algorithm to be applied, too.

There are known limitations associated with our choice to explicitly represent
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discrete time. Namely, model sizes are considerably large when time is explicitly
represented, and since the granularity of time has to be fixed a prior:, discrete-timed
models are less flexible in expressing timing constraints than dense-time models. Yet
we believe our choices make scheduler synthesis algorithms easier to conceptualize
and lead to more efficient design procedures. We believe that the method is tractable
for non-trivial systems of medium size. As the synthesized schedulers are maximal,
i.e., they contain all the schedules satisfying the given property, simpler deterministic
schedulers could be obtained by eliminating nondeterminism.

Also in our work, we have presented a framework based on modified symbolic
methodology for designing schedulers with reduced state space for hard real-time
tasks on single processor systems. The procedure followed in our scheduler design
approach with reduced state space is rather informal, but we hope that the presented
framework would be an interesting idea for future work on formalization of real-time
schedulers with reduced state space. We have utilized the algorithm presented in [24]
in order to manipulate sets of states, rather than individual states. Due to lack of
formalism in our synthesis approach for reduced state space schedulers, we verify their
correctness using the concept of zone automaton. Another contribution of our work
has been the consideration of both non-preemptive and preemptive set of real-time
tasks. In comparison with the universal scheduler obtained in [39, 41], we found the
pre-stable symbolic scheduler obtained in this work to be far smaller in size, thereby

handling the state space explosion problem that we faced in [39, 41].

6.1 Future Work

1. As part of our future work, we intend to relax some of the assumptions we

had made while designing schedulers for multiprocessor systems. In particular,
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we would like to investigate the scheduler design by including factors such as
real-time task parameter size and intra-task parallelism, which could pose much

bigger challenges in the design procedure.

. We would also like to explore the possibility of applying our scheduler design
procedure on identical multiprocessors, wherein all processors have identical
computing capacities and one thus can hope for developing simpler design al-

gorithms.

. We would also be trying to explore the possibility of using Zone Automata for
synthesizing schedulers rather than for verifying them. For example, in our
current work, we had used the zonal representations for verifying the feasibility
of schedulers, which were already synthesized and modeled as automata using
the modified symbolic method. Now it would be interesting to see if it was
possible to get a scheduler with reduced state space directly from the composed

task model using Zone Automata.

. We would also like to develop a software to automate the symbolic approach,
using more realistic models of real-time systems (taking into account depen-
dency through resource sharing and precedence graphs, which can be readily
expressed as specifications of environmental constraints). Of course, the devel-
opment of software is only possible after formalizing the design procedure for

reduced state space schedulers.
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