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Abstract

Video Object Detection Using Fast And Accurate Change Detection And Thresholding

Chang Su

Video object detection is an important video processing technique. Change de-
tection and thresholding based video object detection techniques are widely used due
to their efficiency. However, change detection and thresholding in real-world video
sequences is challenging due to the complexity of video contents and of environmen-
tal artifacts. This thesis proposes a color-based change detection and a video-content

adaptive thresholding method for accurate and fast video object detection.

The proposed color-based change detection algorithm is based on the YUV color
model, which has been proved as the most effective color model for object detection.
First, frame-differencing is carried out in each channel of a video frame. Then, the
pixel intensities in both gray-level channel Y and the color channels U and V of the
difference frames are statistically modeled. Second, based on the statistical model of
the gray-levels in Y channel, an entropy-based blocks-of-interest scatter estimation
algorithm is proposed for locating the frame blocks potentially containing moving
objects; and based on the statistical models of the color intensities in color channels,
a statistical model of the maximum-intensity between U and V channels are obtained.
Third, significance test is applied to the detected blocks-of-interest in both gray-level
channel and color channels based on the gray-level statistical model of Y channel and
the maximum-intensity statistical model of U and V channels. The gray-levels of the
non-significant pixels in Y channel but significant in the U or the V channels are
then compensated according to their significance probabilities in the color channels.

Finally, change masks can be obtained by a thresholding algorithm.

The proposed thresholding algorithm for change detection is based on a change re-

gion scatter estimation algorithm and a video-content assessment algorithm to detect



v
the empty frames and estimate the strength of local unimportant changes. According
to the proposed video-content assessment, the global threshold of a difference frame
is discriminatively computed. For an empty frame, a noise-statistic based threshold-
ing algorithm with a low false alarm is applied to obtain the threshold. Otherwise,
the global threshold is obtained by an optimum-thresholding based artifact-robust
thresholding algorithm.

Experimental results show that 1) with the support from the scatter estimation of
the blocks-of-interest, the proposed change detection algorithm is efficient and robust
to multiple video contents; 2) the proposed thresholding algorithm clearly outperforms
the widely used intensity-distribution based thresholding methods and more efficient
and more stable than the state-of-the-art spatial-property based thresholding methods
for change detection; and 3) the video object detection technique consisting of the
proposed change detection and the proposed thresholding algorithms is robust to
artifacts and multiple video contents, and is especially suitable for real-world on-line

video applications such as video surveillance.
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Chapter 1

Introduction

1.1 Motivation

In recent years, content-based video systems are driven by the trends of both technol-
ogy and markets, and are widely used in many applications, including video coding [1],
surveillance [2,3], machine vision [4], and medical diagnosis [5]. Compared to the tra-
ditional pixel-based and block-based systems, the content-based video systems are,
in general, more efficient and more accurate [6].

Video object detection (VOD) is the core of any content-based video system. A
VOD technique detects the regions in a video frame that have different semantic
meaning based on some criteria (e.g., motion). VOD is usually the first step toward
the high-level goal of video-content understanding, e.g., object tracking, event detec-
tion, and machine vision. Any failure of VOD may serious affect the performance of
the whole video system, and lead to unreliable final outputs. An ideal VOD method
should be 1) precise, 2) efficient, and 3) automatic.

Many VOD algorithms have been proposed in literatures. However, classification
of the VOD algorithms varies significantly in literatures [7,8]. After investigating

many algorithms, we classify VOD algorithms into four categories: 1) model-matching
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based, 2) spatio-temporal based, 3) motion-parameter (or motion estimation) based,

and 4) motion-adaptive based.

Model-matching based VOD [9,10] models video objects as a set of features, or
predefined templates. Then VOD is performed by finding the best match between
video frames and the object models (or templates). In real-world applications, fea-
ture abstraction is often degraded by object occlusion or distortion. While a robust
model-matching VOD algorithm is, in general, very time consumming. It may fail
when a video sequence contains multiple occluded moving objects. Therefore, model-

matching VOD methods are seldom used in on-line applications with multiple objects.

Spatio-temporal based VOD [11-14] generally computes an initial object mask
according to temporal measures (e.g., the motion energy) first, then refine the initial
object mask by spatial operations. Spatial morphological operations and watershed
segmentation techniques are often involved. However, the computation of temporal
measures are complex and time consumming. The spatial (such as morphological)
operators used in those algorithms may degrade the quality of object details, especially
the edges of objects, which may play a pivotal rule in the later processing such as
contour tracing. Although some detail-protected morphological operators have been

proposed, e.g., [15], their computational complexity is high.

Motion-parameter based VOD algorithms [16-19] are very popular in video ap-
plications. They compute the object masks of a video sequence by analyzing the
motion vectors. First, the motion parameters of a video sequence are estimated by a
motion estimation algorithm. Then, each frame of the video is classified into multiple
regions with coherent motion features according to the estimated motion parameters
thus object masks are obtained. Although motion-parameter based VOD methods
are widely used, they are seriously coupled with motion estimation algorithms which

often suffer from non-rigid, occlusion, and aperture problems [8] where estimated
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motion fields are inaccurate. In addition, motion-parameter based VOD methods
are, in general, computationally expensive due to the time consumming motion esti-
mation procedures. Although some fast motion estimation algorithms [20,21] exist,
their computational complexities and system requirements (e.g., the size of memory
buffers) are still relatively high. Thus the motion-parameter based VOD methods

have difficulties to be applied in on-line applications.

In motion-adaptive (or change-adaptive) VOD, instead of explicitly estimating
motion parameters or modeling video objects, they detect regions of change between
the current frame and a reference frame of the same scene taken at different time
instants. Change (or binary) masks are initially computed based on either frame
differencing or background modeling, and the object masks are then obtained by

post-processing procedures such as morphological operations.

Compared to other video VOD categories, motion-adaptive VOD methods have
many advantages. Motion-adaptive VOD is, in general, the most efficient compared to
other methods. Motion-parameter based VOD has difficulties to detect non-rigid, slow
moving, moving-then-stopping, or new appearing objects, yet the motion-adaptive
VOD can perform well for such video objects by applying background estimation

techniques.

A change (binary) mask obtained by a motion-adaptive method may contain not
only the regions caused by the important changes, e.g., moving objects, but also
the regions caused by the unimportant changes, including noise, shadows, partial
background movement, or local light changes due to door opening. The unimpor-
tant regions in change masks lead to artifacts and eventually degrade the quality of
object masks. Any artifacts in change masks will increase the workloads of the subse-
quence high-level postprocessing and decreases the quality of the final object masks.

Accurate change detection or background modeling methods are thus essential in
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motion-adaptive VOD. If a change detection or a background modeling algorithm
uses thresholding to binarize difference frames, then high-performance thresholding
is also essential.

An ideal motion-adaptive VOD technique should be 1) robust to the unimportant
changes, 2) spatially stable to obtain accurate change masks, and 3) computationally
efficient. In this thesis, we propose a motion-adaptive VOD technique, that is based

on change detection and thresholding, which meet these three criteria.

1.2 Definition

e Important changes and unimportant changes: we regard the changes caused by
moving objects between the current frame and a reference frame as important
changes. Changes due to other factors such as noise, illumination changes, shad-
ows, local light changes, partial background movement, etc., are unimportant

changes.

e Global unimportant changes and local unimportant changes: the unimportant
changes which globally affect the intensities of a video frame, e.g., the changes
caused by noise, are regarded as global unimportant changes. If the unimportant
changes only affect local areas of a video frames, e.g., the changes caused by

shadows, they are regarded as local unimportant changes.

e Noise: there are many types of noise exist in video frames. For example, photon
shot noise is caused by the random-arrival photons at the camera sensor which
is governed by Poisson statistics. Other types noise include output amplifier
noise, camera noise, etc. Due to the high counting effect of photon arrivals and
according to the central limit theorem, the aggregate noise effect can be approx-

imated by Gaussian statistics. In addition, the additive white Gaussian noise
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Figure 1.1: The false alarm of a pdf.

is the most common noise model for terrestrial TV broadcasting. Therefore, in

this thesis, we assume the noise in video frames as AWGN [22,23].

e Artifact: any factors that cause unimportant changes are artifacts, such as
noise, illumination changes, shadows, local light changes due to door opening,

partial background movement due to tree leavies waving.

e Change (binary) mask: a change mask identifics the locations of the pixels that
are have significantly different intensities or color between the current frame
and a reference frame. The changed pixels in a change mask may caused by

either important changes or unimportant changes.

e Object mask: an improved change binary mask, where only the pixels caused

by important changes are contained, are then called an object mask.

e False alarm: in statistics, false alarm a, 0 < o < 1, is the area under the
probability density corresponding the right side of a threshold. Fig.1.1 shows

an example of a false alarm, where p(-) is the pdf of a distribution.
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1.3 Related Work

In this section, we review motion-adaptive VOD techniques that are related to the
proposed VOD method. Detailed related work review to change detection and thresh-
olding is given in chapters 2 and 3.

Due to the simplicity and low computational cost, motion-adaptive VOD tech-
niques are widely used in real-time video applications [24]. They follow a similar
strategy to obtain object masks shown in Fig.1.2: preprocessing, change (or motion)
detection, reference-frame updating, and postprocessing. The goal of the preprocess-
ing is to improve the quality of an input frame or perform necessary transformations
for later processing. Examples are noise reduction, noise estimation, and global mo-
tion estimation and compensation. Change (or motion) detection detects the changes
between an input frame (i.e., the current frame) and a reference frame (either a back-
ground frame, or the previous frame). If a background frame is not available, or the
video conditions (e.g., illumination) vary, background update algorithms are often
applied to update the background. Since the change/binary masks obtained by the
change detection stage may include unimportant changes, (which lead to spurious
blobs, gaps and holes), spatial (e.g., morphological) and temporal operations (e.g.,
change consistency testing) are often employed in a postprocessing stage to improve
the reliability of the change masks. The improved change masks are then called object

masks since the better resample the physical objects.

1.3.1 Change-detection based VOD

In the past decade, many change detection (CD) algorithms have been proposed
in literatures. Radke et. al [25] give a good survey of the CD methods. In this
thesis, we classify the CD based VOD algorithms into two categories, 1) differencing-

thresholding based, and 2) statistical based.
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Binary
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Figure 1.2: The flow diagram of motion-adaptive video object detection

Differencing-thresholding based CD

Frame-differencing (FD) is still popular in CD algorithms due to its simplicity and
efficiency. Its basic idea is to 1) obtain the difference frame between the current frame
and a reference frame by FD followed by some spatial filters such as maximum filters,
and 2) detect regions of change in the difference frame by thresholding [24]. Spatial
(e.g., morphological) filters are often involved to improve the quality of region (binary)
masks obtained. The reference frame can be either a background frame (the CD is
then called background subtraction) or the previous frame (the CD is then called
temporal differencing) of the input video sequence. Background subtraction is more
effective than temporal differencing in detecting changes under complex video object

motion, e.g., occlusion, disappearance, new appearance, and non-rigid motions.

C. Kim et. al [26,27] detect regions of change in difference frames as follows. First,
a robust double-edge map is computed based on temporal differencing CD, then the
edges belonging to the previous frame are removed. Object masks are obtained from

the remaining edge map, i.e., the moving edges.
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The method in [24] obtains first the difference frame between the current frame
and a background frame by frame-differencing followed by a spatial low-pass filter
and a spatial maximum filter. Then the change mask is computed by thresholding
the difference frames. To improve the reliability of the change masks, spatio-temporal
adaption is applied to adaptively compute the thresholds. Second, an edge frame is
computed by applying a morphological edge detection algorithm to the change masks.
A complex-contour tracing algorithm is then applied to the edge frame, and result in
the contours map of the moving objects. The object labels are finally obtained by

contour filling.

T. H. Chen et. al [28] used both background subtraction and temporal differenc-
ing. For each current frame, the two change masks of background subtraction and
temporal differencing are obtained, respectively. An initial object mask is then ob-
tained by applying four object-region detection rules to the two change masks. The
final object mask is then computed by refining the object boundaries in the initial

object masks. The background frame can be updated according to the object mask.

Although frame-differencing methods are efficient, they are sensitive to unimpor-
tant changes caused by noise, shadows, and or local light changes. Statistical CD

aims at making CD more robust to unimportant changes.

Statistical CD

The statistical CD computes change masks by statistical classification algorithms.
First, a statistical CD statistically models the properties of video frames (e.g., noise)
under some hypothesises. Based on the statistical models, decision rules (e.g., the
Bayes rule) are then applied to each pixel of a video frame to classify it into either
changed or unchanged class. Due to the robustness to the unimportant changes,

statistical based CD algorithms significantly improve the quality of change masks.
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Significance test CD is a widely used statistical CD [20-31]. Generally, the sig-
nificance test of a given pixel can be performed based on two competing hypotheses,
the no-change hypothesis Hy, where we assume that the difference between the cur-
rent frame F,, and the reference frame R, is caused by noise only, and the changed

hypothesis H;. Significant test CD is based on Hy, and can be carried out as
P(Dy(i)[Ho) 270 p, (1.1)

where p(-) is a conditional probability density function (pdf), i is the spatial location
of a pixel, D, is the frame difference (signed) between the current frame F, and
the reference frame R,, p, is a relatively high probability and can be computed
from a desired false alarm. To improve the robustness of the classification to noise,
significance test is usually performed on a block centered at i.

Significance test can be performed on pixel-wise or block-wise. Pixel-wise signifi-
cance test is efficient, but it is sensitive to unimportant changes. Block-wise signifi-
cance test is more robust to the unimportant changes than the pixel-wise significance
test, it is time consuming.

A. Ach et. al [32,33] model the intensity distribution of D,(i) under H, as a
Gaussian distribution with zero mean and variable o2. To robust significance test,
the block-wise significance test is used. The statistic of the block-based significance
test follows a x? distribution. The decision threshold is then determined by the x?
table with a specific false alarm. Examples of the significance test CD based VOD are
in [34-37]. In addition to CD under Hy, statistical based CD can also be performed
under H,, e.g., [33,38].

Since significance test CD only takes noise into account, it is sensitive to lo-
cal unimportant changes, e.g., shadows, local light changes, and partial background

movement such as leaves waving. Therefore, the VOD methods based on the signifi-
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cance test CD have difficulties to be applied to the outdoor systems.

Significance test CD has difficulties when being applied to real-world video sys-
tems. The test algorithms based on hypothesis Hy assumes that the artifacts in
unchanged areas of a difference frame are only caused by noise. Since the artifacts in
real-world video sequences are caused by not only noise but also other global unim-
portant changes (e.g., illumination variation) and local unimportant changes (e.g.,
shadows). The H, based significance-test CD is very sensitive to such non-noise ar-
tifacts. While the testing algorithms based on H; have difficulties on estimating the

paremeters of the statistical models when being applied to real-world applications.

1.3.2 Background-modeling based VOD

In background-modeling based VOD, the background of a video sequence is first
adaptively modeled. Then change (binary) masks are computed based on the back-
ground model by a CD algorithm, e.g., frame differencing, or statistical classification.
Finally, object masks are obtained by postprocessing where high-level analysis for

object refinement and artifact reduction are involved.

Binary-mask based background modeling

The simplest way to dynamically model the background of a video sequence is to
estimate the background based on the estimated change binary masks in the difference
frames.

E. P. Ong et. al [39] compute object masks based on background subtraction
and updating. First, change masks of a video sequence are obtained by background
subtraction followed by thresholding. Then the reference (background) is updated
by temporal averaging algorithm based on the change masks. Third, the moving

edges are obtained by edge differencing between the current frame and the updated
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reference frame. The object masks are finally obtained by abstracting individual
connected components from the edge map and refining them using a graph-based

edge linking algorithm.

Similarly, J. Zhang et. al [40] also detect moving objects using background updat-
ing. After obtaining the change mask of the current frame by background subtraction,
they update the reference frame by thresholding two memory matrices, which are com-
puted from change masks. Then, moving edges are obtained by an edge differencing
method between the reference frame and the current frame. To improve the quality
of moving edges, morphological filters and a connected component analysis algorithm

are employed.

Temporal-median based background modeling

Temporal median filter technique is a common used background modeling method in
VOD algorithms. R. Cucchiara et. al [41] obtain a background model by computing
the temporal median of each pixel of L frames in memory buffer. Change masks are
then obtained by thresholding the frame difference between the adaptive background
model and the current frame. Blob analysis for detecting moving objects, shadows
and ghosts is carried out by applying a set of decision rules to the region-based
labeled change masks, and eventually obtain the object masks. D. Farin et. al [42]
also propose an VOD algorithm based on temporal median filter based background
modeling. Although temporal median filter based background-modeling is efficient
and effective, they are sensitive to the video contents, e.g., the moving directions

objects.
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Statistical background modeling

An effective background modeling approach uses statistical properties of changes be-

tween frames.

A. Cavallaro ef. al [43] and H. Han et. al [44] model the background of a video
sequence as a single Gaussian distribution. Foreground pixels are determined by test-
ing if their intensities are matched with the Gaussian model. However, the video
conditions are complex in real-world applications. Modeling background with a sin-
gle Gaussian distribution may fail for the video sequences containing serious object

occlusion, shadows, local light changes, etc.

C. Stauffer et. al [45] employ a mixture Gaussian distribution to model the back-
ground of a video sequence to overcome the problems mentioned above. They consider
the value of a given pixel as a pixel process and model the recent history of each pixel

{Fi(i), F»(i),--- , F},()} as a mixture of K Gaussian (MOG) distribution

P(Fo()) = Y win - 0(Fu(i). ftkns S (1.2)

where K is the number of Gaussian distributions, wy, is the portion of the data
accounted for the k-th Gaussian distribution, and n(F,(i), ptkn, Zk) is the pdf of the
k-th Gaussian distribution with the mean py , and variance X ,. For each given new
pixel F,(i), a matching detection is applied to find a match between F,(i) and the
K exist Gaussian distributions. If no match are found, the weight wy , of the least
probable Gaussian distribution is updated by a pre-defined learning rate. Otherwise,
Pk, and Xy 5 are updated based on F, (i) and a learning factor. The first few Gaussian

distributions are then chosen as the background model.

The background-modeling algorithm proposed in [45] works well for VOD methods

in real-world applications such as video surveillance [46], and becomes the standard
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formulation for the mixture approach of VOD algorithms in recent years. However, it
is sensitive to the local unimportant changes such as shadows. Another shortcoming
of [45] is that it has slow convergence when one of the Gaussian distributions adapts
to a new cluster. To overcome these problems, many revised MOG CD based VOD
algorithms are proposed. For example, P. Kaewtrakulpong et. al [47] propose a
new algorithm for updating the component parameters as well as a moving shadow
detection algorithm, Z. Zivkovic [48] introduce the dynamic learning rate to cope with
the problems caused by transient components and an adaptive algorithm algorithm
to determine the number of components. D. S. Lee et. al [49] proposes an effective
learning algorithm to overcome the slow convergence problem of [45] and improve
the estimation accuracy. A component classification algorithm based on a posterior

probability analysis is also proposed in [49].

In addition to modeling the pixel intensities as shown in [45,47-49], the back-
ground model can also be obtained by modeling textures. M. Keikkila et. al [50] pro-
pose an VOD method based on texture-based background modeling algorithm. First,
a pixel in a video frame is modeled by a set of local binary pattern (LBP) histograms
with different weights. Second, the LBP histogram of the pixel located in the same
position in a new frame is compared to the LBP model histograms. If matches are
found, the best matching model histogram as well as its weight is updated adaptively
with a user-settable learning rate. Third, according to the persistence of the back-
ground LBP, the histograms with relatively high weights are selected as background
histogram. The detection of moving objects is done before background updating by

testing if their LBP histogram matches at least one background histogram.

The background-modeling based VOD methods are usually sensitive to the video
contents. They may suffer when the moving directions of objects are parallel to

the axes of the camera. They are also sensitive to the local unimportant changes.



1.4. OVERVIEW OF THE PROPOSED VOD METHOD 14

This is because that local unimportant changes usually statistically different from
the background thus the VOD methods may mistakenly classify a local unimportant

change as an important change.

1.3.3 Hybrid methods

Y. Feng et. al [51] compute the moving edges in video frames by thresholding the
edge-distance between the difference edge maps generated based on frame-differencing
CD and the edges of the original frames. The edges in the original frames with
the edge-distance less than the threshold are regarded as the moving edges. Then
Kim’s [26] object detection algorithm is applied to the moving edge maps thus obtain
the object masks. G. Zhang et. al [52] detect video objects based on both motion-
parameter estimation and change detection. First, a coarse video mask is obtained by
thresholding the fuzzy matrix, which is obtained based on the change mask and the
estimated motion field of a video frame. Then the initial object mask is then obtained
by filling its coarse version. Postprocessing is employed to refine the initial object
mask. Although the method is robust to multiple video contents, it is computational

expensive for including both CD and motion parameter estimation.

1.4 Overview Of The Proposed VOD Method

We propose a VOD method based on an effective color-based CD algorithm and an
artifact-robust thresholding algorithm for CD.

The proposed CD algorithm aims at 1) presenting a fast and accurate solution
to the problem when the foreground and the background of a video sequence are
similar in gray-level, and 2) improving the robustness of change masks to strong

local-unimportant such as shadows and local light changes due to door opening. The
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YUV color model is employed in the proposed CD algorithin for effective CD [53].

First, frame-differencing followed by absolute-value operation is performed in each
of Y, U, and V channels thus obtain the difference frame of each channel. To improve
the robustness of the CD to unimportant changes, the gray-levels in Y channel and
the color intensities in U and V channels are statistically modeled as a Gaussian
distribution (Y) and two exponential distributions (U and V). The statistical model
of the maximum color intensities between U and V channels is then obtained based on
the two exponential distributions. Second, an entropy based scatter estimation of the
blocks-of-interest (BOI) (in short, BOI estimation) is applied to the difference frame
of Y channel to indicate the frame blocks which potentially contain moving objects.
Third, a significance test algorithm is applied to the pixels in BOI based on the
obtained statistical models. The gray-levels of the pixels which are non-significant
in the Y channel but significant in U or V channel are compensated according to
their significance probabilities in chrominance channels. Finally, the change mask is
obtained by applying a thresholding algorithm to the gray-level compensated frame

difference.

Note that the proposed BOI estimation is independent of the proposed CD method.
It can be also employed in other content-dependent video applications, e.g., video-

content assessment [1].

The proposed thresholding algorithm is for CD aims at improving the robustness
of change masks to both global unimportant changes (e.g., noise and illumination
changes) and the local unimportant changes (e.g., shadows and local light changes).
First, a video-content assessment algorithm based on the BOI estimation mentioned
above is proposed to 1) detect the empty frames where no moving objects or only
extremely small moving objects exist, and 2) adaptively estimate the strength of

the local unimportant changes. The strength of the local unimportant changes is
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defined as the intensity-variance in this thesis. Then a content-adaptive thresholding
algorithm is proposed to discriminatively compute the global threshold binarize the
difference frame. If the current frame is an empty frame, we compute the threshold
by a noise-statistic based thresholding method with a low false alarm. Otherwise,
we compute an initial threshold based on the analysis of optimum thresholding, and
then refine the initial threshold by adapting it to the strength of local unimportant

changes.

1.5 Summary Of Contributions

Effective fast color-based change detection

An entropy-based scatter estimation of the blocks-of-interest of video frames.

An exponential-distribution based statistical model for the pixel intensities in

chrominance channels of difference frames under no-change hypothesis.

¢ A maximum-intensity distribution based significance test algorithm for pixel-

classification in chrominance channels under no-change hypothesis.

A color-based gray-level compensation algorithm based on the significance prob-

ability of maximum-intensity of difference frames.

Fast and artifact-robust thresholding for CD

e A fast video contents assessment algorithm based on the blocks-of-interest scat-

ter estimation and noise estimation. This algorithm consists of
- a simple but effective empty frame detection algorithm

- a fast local unimportant changes measurement
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e A fast optimum threshold estimation for CD without statistical parameter es-

timation.

e A video-content assessment based discriminative thresholding algorithm for CD.

Also several widely used thresholding algorithms [54-57] for CD are studied and
implemented, and their performance is compared with the proposed thresholding

method.

1.6 Thesis Organization

This thesis is organized as follows. Chapter 2 describes the proposed color-based
CD algorithm and presents related work. Chapter 3 presents the proposed video-
content adaptive thresholding algorithm and its related work. Experimental results
to CD and thresholding are present in Section 4.3 and 4.4 of Chapter 4. Comparion
between the proposed VOD approach (combine the proposed CD and the proposed
thresholding) and a state-of-the-art VOD algorithm [49] are given in Section 4.5 of

Chapter 4. Conclusion and further works are given in Chapter 5.
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Chapter 2

Effective Fast Color-based Change

Detection For Object Detection

This chapter is organized as follows. Section 2.1 describes the commonly used color
models. Section 2.2 presents the related work. Section 2.3 presents an overview
of the proposed CD algorithm. Section 2.5 presents a fast blocks-of-interest scatter
estimation algorithm for detecting the frame blocks potentially containing moving
objects. The details of the proposed algorithm are given in Section 2.6. Section 2.7

summaries this chapter.

2.1 Color Models For Video Object Detection

Color information is becoming widely used today in video processing due to accuracy.
Different color models are used. The RGB model is the most commonly used color
model in practice, and used in all three TV systems (NTSC, PAL, and SECAM)
as primary color [6]. It describes a color by three components, i.e., red, green, and
blue. Although the RGB model is suitable for capturing or displaying video frames,

it does not separate the luminance component and chrominance components. This
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is disadvantageous for video object detection due to the dependence between the

illumination and the chrominance components.

To separate the illumination component and the chrominance components in video
frames, several color models are proposed. The HSV model describes a color by hue,
saturation, and value. Hue component is related to the gradation of color within
the visible spectra of light. Saturation component describes the purity of a hue. In
general, high saturated hue leads to vivid color, and low saturated leads to muted and
gray. Value component is the brightness of the color. The HSV model is commonly

used in computer graphics applications.

The CIE XYZ model is obtained from the RGB model as shown in (2.1) and
it separates the illumination and chrominance components by using the luminance
component Y and chrominance components X and Z. It can specify almost all visible
colors, however it is not realizable by actual color stimulation [6]. Therefore, the XYZ

model is not directly used in practice but used to define other color models, e.g., the

YUYV color model.

X 2.365 —0.515 0.005 R
Y | = —0897 1426 —0.014 G |- (2.1)
A —0.468 0.089  1.009 B

The LUV model, where L is the luminance component and U and V are chromi-
nance components, is proposed to describe all the colors visible to the human vision
system. First, the RGB model is converted to the XYZ model, and then the LUV
model is obtained based on the XYZ model. The LUV color model is efficient for video
object detection, however, A. Chikando et. al [53] show that it does not outperform

the YUV color model.

The YUV color model represents the luminance by component Y, and two color-
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difference based chrominance components by U and V. Although YUV model is used
in PAL, the color models used in NTSC and SECAM systems are also derived from
YUV model [6]. Based on the relation between RGB model and the XYZ model as
shown in (2.1), we can get the Y component. The U and V components are computed

based on color differences B — Y and R — Y, respectively. The convertion between

the RGB model and the YUV model is then

1% 0.299 0587 0.114 R
Ul=1-0147 —0.289 0.436 G|, (2.2)
174 0.615 —0.515 0.100 B

where R, G, and B are normalized R, G, and B intensities after gamma-correction.

After investigating the most frequently used color models such as RGB, HSV,
YUV, etc., A. Chikando et. al [53] show that the YUV model is more efficient for
object detection compared to other color models (e.g., RGB model). This is because
the distributions of the different object regions in a video frame described the YUV
format have less overlap than the distributions of the same object regions described

by other color models. We therefore use the YUV color model in this thesis.

2.2 Related Work

Change detection (CD) can be carried out in both gray-level and chrominance chan-
nels. Due to their low complexity (both storage and computation), most CD methods
are gray-level based, e.g., CD in [32,33|. However, gray-level only contains illumi-
nation information of a video frame thus the gray-level based CD suffers when the
foreground and the background of a video sequence are similar to each other in gray-

level. This is very often happened in real-world video applications. A color frame can



2. Color-based CD 21

provide much more information than a gray-level one. Since a recognizable object
is, in general, different from the background in at least one chrominance channel,
color information is a good aid for accurate CD in real-world video sequences. As the
computational abilities of computer systems increase in recent years, color-based CD

methods become more and more popular.

Color-based CD methods can be classified into three categories: 1) logic-operator
based, 2) color-distance based, and 3) color-vector modeling based color CD. The
logic-operator based color CD is the simplest solution to employ color information
in CD. First, change detection is carried out in all chrominance channels of a video
frame thus obtain the change mask of each chrominance channel. Then, the final
change masks are obtained by combining all the change masks of different chrominance

channels by logic operators, e.g., “OR”, “AND”.

Logic-operator based color CD can directly use gray-level based CD methods
[24,32,33]. A. Cavallaro et. al [58] propose a color-edge based CD. The difference
frame of each chrominance channel is obtained by simple-differencing CD first. Then
the Sobel edge detector is applied to each difference frame, and the moving edge mask
is obtained by combining all edge maps obtained in different chrominance channel by
logic “OR” operator. The change mask is finally obtained by a morphologic filling
filter. Stefano et al. [59] propose a content-adaptive CD using image structure and
color, and they also compute a frame-level change mask by combining all change

masks of chrominance channels with logic “OR” operator.

Logic-operator based color CD is simple. However, it is computationally and
storage expensive since it performs CD in all chrominance channels. Another disad-
vantage of the method is that it is very sensitive to artifacts. For example, when
“OR” operator is used, the false positives in the change masks of any chrominance

channels will be included into the final change mask, and when “AND” operator is
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used, the false negatives in the change masks of any chrominance channel will be

included into the final change mask.

To improve the efficiency and the robustness of logic-operator based color CD, T.
Alexandropoulos et al. [60] propose a block-wise cluster-distance based CD method
for real-time video applications. First, they statistically model the noise in video
frames by a block clustering algorithm, then the change masks of each chrominance
channel is obtained by thresholding the cluster-distance between a given frame block
and the largest cluster which carries noise model information. The final change mask
is then obtained by applying logic “OR” operator to all change masks of different
chrominance channels. The algorithm is proposed for real-time video surveillance

applications in public.

The color-distance based color CD performs CD based on the color distance be-
tween the current frame and the reference frame in color space, e.g., the RGB space,
or YUV space. Instead of computing the intensity difference in each chrominance
channel, the color distances of the pixel pair between the current frame and the ref-
erence frame are computed first. Then the change mask is obtained by statistically
classifying the color-distance into different categories. The Euclidean distance and the
Mahalanobis distance are often used in the CD method. Y. Hwang et. al [61,62] pro-
pose a color-based CD based on Euclidean color distance. First, they model the pixel
intensities in each chrominance channel as a generalized exponential model (GEM).
According to the GEM, they deduce the statistical model of the Euclidean color dis-
tance between the current frame and the reference frame under hypothesis H,. Based
on the statistical model of color-distance, change masks are obtained by a pattern

classification algorithm.

The color-distance based CD comprehensively takes color information from dif-

ferent chrominance channels into account instead of independently performing CD
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in each chrominance channel like logic-operator CD does, thus it improves the ro-
bustness of the change masks to artifacts. However, the distance computation is also
time consumming, and the CD method is not an efficient solution for big-size video
sequence. Also, the color-distance measure is sensitive to local unimportant changes.

The color-vector modeling based color CD is very popular in video surveillance
applications due to its temporal stability and the robustness to global unimportant
changes. First, the intensities of a pixel in a video frame in all chrominance chan-
nels are statistically modeled as a vector random variable and described by the pdf.
Then the change mask is obtained by statistical CD algorithms. The recently wide
interested background-modeling VOD algorithms [45, 49, 63] are good examples for
the applications of color-vector based CD. E. Durucan et al.’s color Gramian ma-
trix based color CD [64] is an another example of the color-vector based algorithm
but without statistically modeling color vectors, however, the Gramian-matrix based
method is extremely computationally expensive and sensitive to artifacts.

The disadvantages of the color-vector modeling based color CD are 1) they are
sensitive to local changes since even slight local changes may lead to significant differ-
ence between the current frame and the reference frame in one or more chrominance
channel, e.g., shadows. Statistical classification may mistakenly classifies such unim-
portant changes into foreground. This will increase the workload of the postprocess-
ing; 2) the parameter on-line estimation for statistically modeling the color-vector is

time consumming, and may need long time to reach convergence.

2.3 Overview of Proposed Algorithm

In this chapter, we propose to introduce color information into gray-level CD to
overcome the problems of 1) inaccuracy caused by similarity between foreground and

background in gray-level, 2) unimportant-change sensitivities in different channels, 3)
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computational and storage load using the three channels. Different from the previous
color-based CD work, we content-adaptively include color information into gray-level
CD by a gray-level compensation algorithm without performing CD in all channels

or compute color-distances.

The proposed algorithm is based on the observation that a recognizable object in
a color video sequence is different from the background in at least one of the channels

Y, U, and V.

As shown in [25], the changes existed in a difference frame D,, can be classified
into two categories, one is the important changes which are caused by object motion,
the other is the unimportant changes which may be both global (e.g., noise, and
illumination changes) and local (e.g., shadows, and local illumination changes due to

door opening).

Fig.2.1 shows the flow chart of the proposed algorithm. First, three difference
frames D), DV and DY are obtained by frame-differencing followed by the absolute-
value operation, and a spatial average filter with size w x w in the Y, U, and V
channels between the current frame F,, at time instant n and its reference frame R,,.
The spatial average filter is important to reduce noise, and its size w can be 3 or
5. The gray-levels in the Y channel under hypothesis Hy is statistically modeled
as a Gaussian random variable (RV), and the color intensities in U and V channels
under Hg are modeled as two exponential RVs by taking not only noise but also other
unimportant changes into account (Sec.2.6.1). A maximum-intensity (MI) statistical
model between the U and the V channels is then obtained to statistically detect the
significant changes in U and V channels. Second, based on the statistical model of
the Y channel, a blocks-of-interest (BOI) scatter estimation algorithm (Sec.2.5) is
proposed to indicate the frame blocks that potentially contain moving objects in DY .

Third, the pixel-based significance test algorithms based on the Gaussian model of the
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Y channel and the MI model of the U and the V channels are applied (Sec.2.6.2) to
the BOI, and the proposed gray-level compensation algorithm (Sec.2.6.3) is applied
to the pixels which are non-significant in the BOI blocks of DY but significant in
DY or DY according to the significance probabilities they have in the chrominance
channels. Thus, the gray-level compensated difference frame D}* is obtained. Finally,
the change masks are obtained by a classification algorithm such as thresholding [55]

or statistical classification [32,33].

2.4 Computation of Difference Frames

Difference frames are the base of the proposed as well as most change detection
methods. A difference frame may be signed or unsigned dependent on its applications,
and an unsigned difference frame can be obtained from its signed version. A signed
difference frame Dn is obtained by frame differencing between the current frame F;,

and a reference frame R, as

where i is the spatial location of a pixel.

Although a signed D, can be used in statistical CD methods, where statistical
classification algorithms are used to obtain change masks, it can not be used in frame-
differencing and thresholding based CD methods (e.g., simple-differencing CD). This
is because the important changes in a signed D,, between different frames may be
either positive or negative, and a threshold obtained by a thresholding method may
mistakenly classify the negative important changes into the background. By applying
the absolute-value operation to a signed D,, we can obtain an unsigned difference

frame D, where only positive values exist. Thus the change mask of an unsigned D,
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Figure 2.1: Flow chart of the proposed algorithm.
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can be obtained by both statistical-classification based and thresholding-based CD

methods. In this thesis, we use unsigned difference frame D,, as

Dy (i) = | D (). (2.4)

2.5 Blocks-of-interest scatter estimation in Y

In this section, we first propose an entropy-based algorithm to estimate the scatter
of the BOI in a difference frame. This is important for further content-dependent
processing of the proposed approaches. The goal of BOI estimation is to indicate the
frame blocks which contain strong changes thus potentially contain moving objects.

The BOI estimation is a pivotal step in the proposed CD algorithms.

Objects in video sequences have either smooth surfaces or textures. Compared
to pixel intensities belonging to background regions in a difference frame, the pixel
intensities belonging to object regions have 1) relatively high difference values if the
objects have smooth surfaces, and/or 2) relatively large range of variation if the
objects have textures. The two properties of the object regions can be statistically
represented by the mean and the variance of the pixel intensities. Therefore, the BOI

estimation can be done by analyzing the statistical descriptions of frame blocks.

2.5.1 Statistical modeling of gray-level in difference frames

The values in a signed difference frame D, (given in Eq.(2.3)) can be between —255
to 255 where 1) low absolute values (e.g., —5 to 5) are high probable caused by noise
and classified as no-change areas; and 2) high absolute values (e.g., —6 to —255 or 6 to
255) are high probable caused by moving objects or by strong artifacts such as sudden

illumination charges and classified as changed areas. Thus the intensities modeling
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in difference frames is usually performed in the two competitive hypothesises, the
no-change hypothesis Hg and the changed hypothesis H;. The no-change areas in
signed D,, can be modeled as a Gaussian RV with zero mean and variance of, and

the changed areas in signed D, can be modeled as a Gaussian RV with zero mean

and variance o2 [32,33].

Under no-change hypothesis H,, to obtain the statistical model of the gray-levels
in an unsigned difference frame D,,, we first obtain the statistical model of a signed
difference frame D,,. Based on the assumptions that the noise in a video sequence
is AWGN, we model the noise in F,, and R, as two independent identical Gaussian
RVs X; and X, with zero mean and variance o2. Under H,, the noise in the signed

difference frame Dn can be modeled as a RV X as
X =X;-X,. (2.5)

Since the output of a linear function of two Gaussian RVs is still a Gaussian RV [65],

X is a Gaussian RV. The mean of X is
E[X]= E[X; - X,] =0, (2.6)

and the variance of X is

Var[X] = E[X?] - E[X]?, (2.7)

since E[X] = 0, we have

Var[X] = E[X;- X,)?] (2.8)
= E[X3] - 2B[X;X,)+ E?[X,].

v?

Because X and X, are RVs with zero mean and variance o2, we have E[X?] and
f f
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E[X?] are equal to ¢%. Since X; and X, are independent, we get
E[X;X,] = E[X]E[X,] = 0. (2.9)

Eq.(2.8) becomes
Var[X] = 202 (2.10)

Therefore, X is a Gaussian RV with zero mean and variance 202, and the pdf of X
is then
. 1 _ 2%
X ~ me 405 . (2.11)
After applying the absolute-value operation to Dn, the unsigned difference frame
D,, is obtained (given in Eq.2.4). Compared to D,,, the occurrence of a specific
intensity value in D, is statistically doubled since a negative difference value in D,
is converted to a positive difference value with the same absolute Vélue. Assume that

the gray-levels in D, is modeled as a RV X, X > 0, from (2.11) we get the pdf of X
as [57]

2 -
X ~ e ¥, X >0, 2.12
Tyt X 20, (2.12)

where o = 202, and o2 can be obtained by a noise estimation algorithm such as [66].

Gray-level modeling in changed areas is challenging due to the complexity of
video contents. Simulations in [32, 33] show that the difference values in a signed
D,, under both H, and H; can based modeled as two zero-mean Gaussian RVs with
different variances. We obtain the gray-level statistical model in unsigned D,, under
H; based on the Aach et. al’s gray-level model in signed D, under H; as follows.
Under hypothesis H,, assume that the difference values in signed D,, is modeled as a
Gaussian RV X, with zero-mean and variance o2 [32,33]. Similar to the derivation

of (2.12), the gray-level in unsigned D,, under H; is then modeled as a RV X with
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the pdf

a3~

2 _ =
e 20

1

o

Xo ~

Xc >0, (2.13)

Vero,
where ¢2 is the variance of the changed areas in signed D,.. As having been proved
in [32,33,57], 02 > o2. This means that the intensity variation in the object regions

is much greater than the intensity variation in the background regions.

2.5.2 BOI scatter estimation

The BOI scatter estimation is based on the statistical models of the gray-levels in D,
under Hy and H;. We first divide D,, into blocks Wy, k= 1,2,-.- | N, of equal size,

N is the number of blocks in a frame.

From (2.12) and (2.13), the means of X and X are

22

BIX] = [ 2ge e
= —20b I:e_gg]oo
Ve 0 (2.14)
= J/2q,
E[Xc] = 20'(;.

As can be seen, in (2.14), E[X¢] > E[X]. Therefore, we can detect if a frame block
potentially contains moving objects by testing if the mean and the variance of the
frame block are both high enough. However, the variance of a block may change
greatly for different block size, and the variance computation is computationally ex-
pensive.

The entropy of a random variable is the expected value of the uncertainty of the
outcomes of the random variable [65]. Therefore, entropy is good measure to test
the uncertainty of a random variable. It is suitable for detecting if the intensities

in a frame block vary drastically. If the block is an object block, then this block
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shows either high entropy in the difference frame if the original object has texture,
or high mean (in both cases where the original object has either texture or smooth
surface). For reliable estimation, we combine the entropy measure and the intensity

mean measure to detect BOI frame blocks.

First, we compute the differential entropy Hyx of X under no-change hypothesis
Hy as

Hx = — /_OO px(z)In(px(z)) dx = —E[In(px(z))], (2.15)

where px(z) is the pdf of RV X, and In(-) is the natural logarithm function. From
(2.12), we get

Hx = —fOOOQJQ%Gbe_;g -ln2\/%gbf 28 dz
= —In—2— 1 o xQe_%Z dzx (2.16)

Vorar T Vara3 Jo
= IIn(imeot).

From (2.16), we note that the value of Hx depends on of, where ¢} = 202.
Theoretically, Hx should be constant for each block in the unchanged areas in a
video frame with a know noise level. Since the intensity variation in the changed
areas is much more greater than the intensity variation in the unchanged ares [32,33],
i.e., 02> o2, we can detect a block-of-interest by testing if the block entropy H% of

W, is high enough compared to Hy.

Block entropy H% can be obtained from (2.15). Since the block histogram is an
estimation of the real pdf of the intensities in a block, in practice, we compute the

entropy H% of the k-block in D,, as

9mazx

Hy == hu(9) In(hu(9)), (2.17)

where g is a gray-level, h,(g) is the probability of gray-level g in Wy, and g4, is

the maximum non-zero frequency gray-level in h,(g). From (2.16), we note that the
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entropies of the blocks belonging to the background should be similar to cach other,
i.e., their value are stable. An effective and efficient way to detect BOI is to test if

H% is greater than a threshold T..

From (2.16), we can simply set T, = Hy, however, this is not reliable in real-
world applications because the non-zero intensities in the unchanged area in D,, are
caused by not only noise but also other artifacts (e.g., illumination changes, shadows,
etc.), the HY of a background block may greater than Hyx. For robust BOI scatter
estimation, we adaptively estimate T, as follows. First, we sort { H%} in descending
order to obtain an unimodal curve of block entropy. Then, we apply the unimodal
thresholding algorithm in [67], which is proposed for fixing the corner of an unimodal

distribution curve, to fix 7T..

The entropy-measure is suitable for detecting BOI when the original objects have
textures. By taking the case that the original objects have either smooth surfaces or
textures, we classify a block Wy in a difference frame D,, (given in Eq.2.4) to be either
BOI W¢ or background blocks W} as follows: we regard Wy as a W{ if its intensity
mean ji is higher than a very high threshold t;; or its u; is higher than a relatively
high threshold ¢, and its H% is greater than T, otherwise, we regard the Wy as a W,

ie.,

o L > ) V> ) A > ) 019

W . otherwise,

where t; and t, are two thresholds, and ¢; > t,. The values of ¢; and ¢; can be

determined adaptively to o} as

ti = ajop

(2.19)

ta = a0,

where a, and a, are two coeflicients and can be determined by the significance
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test algorithm with two desired false alarms «,, and a,,, respectively (sce details

in Sec.4.3.1).

In this thesis, an average filter is used in the computation of obtaining D,,. Since
o2 = 202 and o2 is estimated from the original frame, the value of ¢} is not affected
by the average filter. Thus, we improve the robustness of the BOI estimation to noise

by using the average filter, which reduces the noise variance in D,,.

Fig.2.2 shows the output of the proposed BOI estimation algorithm applied to
the video sequences “Road”, “Ekrlb”, and “Intelligent room”. As can be seen, the
proposed algorithm can successfully detect the BOI in difference frames. Note that

pixels in BOI may belong to an object or to a background. This is decided in Chapter

(a) (b) () (d)

Figure 2.2: BOI estimation, (a) and (c): the original frames of “Road” (Fs and Fsy4),
“Ekrlb” (Fy and Fjsps), and “Intelligent room” (Fi43 and Fss), (b) and (d): output
of the proposed BOI estimation algorithm applied to (a) and (c), respectively.
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2.6 Content-adaptive color CD

2.6.1 Statistically modeling DY, DY and DY

n?o

Based on the statistical model of the gray-level distribution of D,, under H, in (2.12),

we model the gray-level distribution of DY under H, as a Gaussian RV Y with the

pdf

2 -4

e @b, Y >0, 2.20
\/27T0'b ( )

where 07 = 202, and ¢2 is the noise variance in the original frame F,.
b v v

YN

To avoid including artifacts in U and V channels into the final difference frame,
we take not only noise but also illumination changes and shadows into account when
modeling the maximum intensity (MI) distributions between DY and D} under H,.
Maximum-intensity distribution is defined as the distribution of the maximum value
in each intensity pair (u,v) of a pixel in the chrominance channels, u and v are color
intensities of the pixel in U and V channels, respectively. First, we model the color
intensity distribution in DY and DY under Hy. Note that DY and DY only have
positive values due to frame differencing followed by absolute-value operation. For
precise significance-testing, the tail sections of the models must be consistent with the
intensity distribution of DY and DY under Hy. In this thesis, we model the intensity
distributions of DY and DY under H, as two exponential RVs U and V, respectively,

le.,

U ~ e tut
(2.21)
Vo~ Ae Y,

where A, and )\, are the mean of the U and V/, respectively. We choose exponential
pdf for U and V because the tail sections of the pdf match the intensity distributions
in DY and DY well. Fig.2.3 shows an example of intensity modeling in DY and DY

under H, using 30 frames of video “Hall”. In Fig.2.3, we first compute the histogram
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over 30 frames, and then compare it with the theoretical pdf in (2.21). As can be seen,
the tail sections of the exponential models are more consistent with the real intensity
distribution than the Gaussian models does under Hy. Fig.2.4 shows another example

which confirms our observations in Fig.2.3.

0.7 - — . 0.4 P o
intensity distr. of D: ' intensity distr. of D":
0.6 ~modeling D: as exponentialy 0.35 modeling Dx as exponentiail|
0 5; modeling D: as Gaussian 0.3+ modeling D‘n' as Gaussian
> | 2025
= 04 = 4
o £ 1t
s | 3 02r¢
O 0.3i¢ =3
o o 0.15f
0.2r 01
S 5
0 - \'J“"‘“’V"' N N R eI DN D N RO 0 - Sencenases % WD OORODEEIETO0T
0 10 20 30 40 50 0 10 20 30 40 50
Intensity value Intensity value
(a) Modeling in DY (b) Modeling in DY

Figure 2.3: Comparison between Gaussion and exponential for modeling intensity
distributions under H, in chrominance channels (video “Hall”).
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Figure 2.4: Comparison between Gaussion and exponential for modeling intensity
distributions under Hp in chrominance channels (video “Ekrlb”).

Let Z = max(U, V'), then under Hy, the cumulative distribution function (cdf) of
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Z is
Fy(z|Hy) = P|Z <zH
z(2[Ho) 1Z < 2|H] (2.22)
= Plmax(U,V) < z|H,).
Since U > V and U <V are mutually exclusive to each other, we have
Pmax(U,V) < z|Ho} = P[(U<z,U>V)U(V <2z, U<V) (2.23)

= PlU<zlU>V]+ PV <z|U<V].

Because U and V are independent [61,62], and Z > 0, we have

Fz(z|Ho) = [ pu(u)py(v) dudv
D) (2.24)
= 1- 6_’\"2 o e—)\vz + 6_()‘“+)‘”)Z,

where py(u) and py(v) are pdf of U and V shown in (2.21), and D(z) are integral

region for the function max(U, V).

2.6.2 Significance test

Significance test is based on the no-change hypothesis Hy. For a given pixel, sig-
nificance test estimates how well its intensity value matches the hypothesis Hy. If
it matches Hy well| it is a non-significant pixel and high probably belongs to back-
ground, otherwise it is a significant pixel and high probably belongs to foreground.
A false alarm « is used to determine if the pixel matches Hg well. A false alarm « in
significance test is such a value that one can (1 — ) x 100% sure that the no-change
hypothesis Hq for a given pixel is rejected. Thus the pixel is significant and should

be classified as a changed pixel.

Significance test can be carried out based on either pixel-wise or block-wise. Block-

wise significance test is more reliable than pixel-wise test, and usually used to directly
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obtain change masks from the test results [25,32,33]. However, a block in a block-wise
significance test may include pixels from both important changes and unimportant
changes. This may result in spurious blobs in change masks because decision is made
based on all pixels of a block. Also, the block-wise significance test is computationally
expensive due to the block-based square computation. Significance test in this section
is to fast fix the significant pixels instead of getting change masks, therefore, we use
the pixel-wise significance test.

Significance test is first performed in the BOI of DY under H,. We regard a pixel

iin DY with gray-level g; a significant pixel if g; is high enough, i.e.,

PlY < gi|Ho] > pn, (2.25)

where p, is a high probability (e.g., 0.9975) that is computed by a false alarm «,
prn = 1 — as. A low false leads to a high p, thus improves the robustness of the
significance test to artifacts, but it may lead to lose some relatively weak important
changes. A high false alarm leads to a low p, thus avoids to lose many important
changes, however, it may lead to mistakenly classify some relatively strong unimpor-

tant changes as important changes.

From (2.20), we get

9i 1 32 Dh
PlY < gilHo]l = | —=—F—e *bdy <. 2.26
Y <ot = " ey < b (2:20
(2.26) gives
Gi D
Q (\/50) < (0.5— ?), (2.27)

where Q(-) = 1 — ®(-), and ®(-) is the standard Gaussian cdf. We can determine if
i is significant by testing if g; satisfies (2.27), e.g., for p, = 0.9975, (2.27) gives that

i is significant if g; > 4.270,. (In this thesis, 02 is estimated by the noise estimation
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method in [66].)

Similarly, significance test in DY and DY is performed by testing if s; = max(DY (i), DY (i))
with i is the spatial location of a pixel in chrominance channel is high probable greater
than Z, i.e.,

P[Z < si|Hol > pn. (2.28)

Note that the i in DY (i) or DY (i) may not be the i in DY (i) because the size of DY
may not equal to the size of DY and DY. From (2.24), we can determine if pixel i is

significant in chrominance channels by testing if (2.29) is satisfied.

e et e o= QutAe)si o (1 — pg). (2.29)

2.6.3 Color-based gray-level compensation

A pixel in BOI may be significant or non-significant (e.g., the artifact or noise). Pixels
classified as non-significant in BOI of D} but significant in DY and DY belong to
objects but have similar gray-levels as the background. We compensate the gray-levels
of those pixels based on their significance probabilities p, in chrominance channels,
where p, is

ps = Fz(si|Ho), (2.30)

and s; = max(DY (i), DY (i)). Thus, we compensate the gray-level g; of a pixel i using
g = g t+ac-Gs, (2.31)

where g; is the original gray-level of i in DY, ¢ is the compensated gray-level of i,

Y
ny

G is the gray-level that a significant pixel high-probably have in D}, and a. is a
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compensation coefficient that is determined by p, using a quadratic function as

a, = (M)Q, (2.32)

1 — pn

where pj, is the high probability in (2.25), and p; is as in (2.30). We can see in (2.32),
the more significant a pixel in chrominance channels is, the higher the p; is, thus the

higher the a, is.

The simplest way to get the value of G is to set it to the maximum gray-level in
DY . However, this is not reliable because some artifacts may generate very high gray-
levels in D). A reasonable way to estimate G is based on the gray-level distribution
of DY with a desired false alarm ag¢ (e.g., 0.0025), or it can be obtained by the
statistical model of the gray-level distribution of D} under change hypothesis H;. In
this thesis, G is the minimum gray-level which satisfies (2.25). Since the histogram
is the estimation of a real pdf, we can estimate the probability given in (2.25) by using

the histogram hy(g) of D,,. From (2.25), G, is the minimum gray-level that satisfies

Gs

S halg) > (1 - ag), (2.33)

g=0
where ¢ is a gray-level.

The proposed gray-level compensation in (2.31) maps the significant intensities
in the U and the V channels to the gray-level channel thus avoid the computation-
ally expensive multi-channel CD [58-60] or computation of color-distance [61, 62].
Based on the pixel-wise significance test with the different statistical models in Y and
chrominance channels, the proposed CD algorithm is robust to the noise in difference
channels. With the aid from BOI estimation, the proposed CD performs gray-level
compensation only in BOI thus it is robust to the local unimportant changes in the

background.
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2.7 Summary

A gray-level compensation based color change detection algorithm is proposed for fast
video object detection in this thesis using the YUV color model. Under no-change
hypothesis, the gray-level distribution of Y channel and the maximum-intensity distri-
bution in U and V channels are statistically modeled. Based on the scatter estimation
of the blocks-of-interest, pixel-based significance tests are performed in the blocks that
potentially containing moving objects using the statistical models. The gray-levels of
non-significant pixels belonging to the blocks-of-interest are compensated based on
their significance probability if they are significant in chrominance channels.

The proposed BOI scatter estimation detects the frame blocks that potentially
contain moving objects thus focus the later processing steps on the BOL It not only
significantly decreases the data volume to be processed but also improve the robust-
ness of the proposed VOD method to the artifacts in the background area. The
significance test in the Y channel with the Gaussian statistical model and in the
chrominance channels with the exponential distribution based maximum-intensity
statistical model efficiently detects the pixels that high probably belonging to moving
objects but similar to the background in gray-level. By adaptively compensating the
gray-levels of those pixels, the quality of the change masks are significantly improved.

As will be shown in chapter 4.3.2, color information significantly improves the
change detection in cases where objects have similar gray-levels as the background.
It also shows that complex operations are not necessarily need to be performed in all

chrominance channels when using color information in video processing.
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Chapter 3

Proposed Thresholding For Change

Detection

The structure of this chapter is: introduction and related work are presented in
Section 3.1 and 3.2, respectively; Section 3.4 presents the proposed video-content
assessment algorithm. Section 3.5 describes the proposed thresholding algorithm in

detail; Section 3.6 summaries the chapter.

3.1 Introduction

Due to its simplicity and efficiency, frame-differencing based change detection (CD)
methods are still popular in many video application systems, including surveillance
[24,68], coding [69], and noise reduction [70]. Thresholding plays a pivotal role in
frame-differencing based CD.

Global thresholding is the simplest but the most efficient thresholding algorithm
for CD. It classifies the pixels in a difference frame D,,, the output of frame-differencing
based CD, into two categories by testing if their intensities are greater or less than a

threshold T,, at time instant n. The pixels whose intensities are greater than 7T, are
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marked as the changed pixels. Thus, the change mask B,, (binary) of D,, is obtained,
ie.,

) 1 D,(i)>1T,,

0 : otherwise,

where i is the spatial location of a pixel in D,,. Object masks can be obtained from
B,, by a post-processing procedures such as contour tracing followed object filling [24]
or morphological operations [39].

The threshold 7, in (3.1) is a critical parameter in frame-differencing based CD.
The non-zero pixels in D,, are caused by, not only the important changes, e.g., motion
of objects, but also by unimportant changes, e.g., noise, illumination changes, shad-
ows, or local light changes due to door opening. A relatively low threshold can give
relatively complete regions of change (RCG) but may include many spurious blobs
in change masks. A relatively high threshold generates few spurious blobs in change
masks, however, it usually loses parts of objects. An ideal thresholding algorithm for
CD should be 1) artifacts robust, 2) temporally stable, and 3) has low computational

cost.

3.2 Related Work

Although many thresholding methods have been proposed in the literature, most of
them are proposed for intensity images (54,55, 71]. Different thresholding algorithms
make different assumptions about image contents [72]. However, when being applied
to difference frames, the assumptions that these thresholding algorithms make for
intensity image contents will no longer hold. A typical example is that Ridler et.
al [71] assume that the histogram of an image is bimodal thus a global threshold can
be obtained by iteratively computing the average value of the mean of each of the

two classes of the histogram. However, the histogram of most of difference frames
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are unimodal [67]. Rosin et. al [57,72] have shown that most of the thresholding

algorithms proposed for intensity images are not suitable for CD.

After investigating many thresholding algorithms subjectively and objectively,
Rosin et al. [57,72] recommend three thresholding methods which perform best for

CD: the Kapur, the Euler-number, and the Poisson-noise model thresholding.

The Kapur thresholding [55] is a gray-level distribution based threshold algorithm.
It obtains a threshold by maximum entropy criteria. It assumes that two classes of
events, i.e., the changed regions and the unchanged regions, occur in a difference
frame. Each event can be described by a probability density function (pdf). The
threshold is then selected such that the sum of the entropy of the two pdfs is maxi-
mized. The Kapur thresholding performs well for many difference frames, however, it
is sensitive to the variation in contrast between the foreground and the background

of a video sequence.

The Euler-number thresholding 73] is based on the assumption that the number
of RCG in a difference frame will tend to be stable over a wide range of thresholds.
When applying a low threshold to a difference frame, the number of RCG is high since
many small RCG generated by noise or illumination changes are included into the
change mask. As the threshold increasing, the number of RCG decreases rapidly, and
become stable when the threshold is high enough. In practice, the number of RCG
is usually replaced by the Euler number of the frame [56]. Thus, a threshold can be
obtained by finding the corner of “Euler-number vs. threshold” curve. A searching

algorithm for fixing the corner of a curve is proposed in [67].

Poisson-noise model thresholding [57] is based on the assumption that the number
of observations in a difference frame (i.e., number of the pixels over a threshold) follows
Poisson distribution. A difference frame is divided into N blocks first, where N is

an integer. The number of observations of each block is then counted. The relative
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variance of the difference frame is then defined as the ratio between the mean and the
variance of the numbers of observations. Since a Poisson distribution has its mean
equal to its variance, the relative variance of a Poisson distribution is equal to 1.
The RCG in the difference frame occur as clusters, this leads the relative variance
greater than 1. A reasonable threshold of the difference frame is selected such that
the relative variance is maximized.

The Euler-number and the Poisson-noise model thresholding methods are based
on spatial properties of diffcrence frames. Simulations in [57,72] have shown that
the two thresholding methods perform well for difference frames. However, compared
to the Kapur thresholding, the Euler-number and Poisson-noise model thresholding
methods are computionally expensive, and thus not suitable to real-time applications.
L. Snidaro et. al [74] present a fast algorithm to accelerate the computation of the
Euler numbers. This makes the Euler thresholding faster than in [56]. The two
spatial-properties based thresholding methods are sensitive to the spatial properties of
a difference frame and may be not stable under multiple video conditions, e.g., serious
shadows. In addition, Poisson-noise model thresholding is a parametric algorithm
with the parameter as the number of frame blocks, N. It is very sensitive to V.
A carefully manually selected N is required in practice. This makes the Poisson-
noise model thresholding is not suitable for on-line video systems. In this thesis, we

implement the Poisson method using N = 32 that recommended in [72].

3.3 Overview Of The Proposed Thresholding

In this chapter, we propose a fast artifact-robust thresholding algorithm based on
video-content assessment. We assume the noise in F), is additive white Gaussian noise
(AWGN) [22, 23] with zero mean and variance o2 estimated, e.g., by the algorithm

in [66]. We define the video frames which do not contain any important changes, or
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only contain extremely small size important changes as empty frames.

As shown in [25], the changes existed in a difference frame D,, can be classified
into two categories, one is the important changes which are caused by object motion,
the other is the unimportant changes which may be both global (e.g., noise, and
illumination changes) and local (e.g., shadows, and local illumination changes due to
door opening). The basic idea of the proposed artifact-robust adaptive thresholding
algorithm is to fix such a threshold that suppresses most unimportant-changes while
protects most important changes based on the assessment of video contents.

Fig.3.1 shows the block diagram of the proposed algorithm. First, a difference
frame D,, resulted from a CD method is divided into K equal-sized blocks {W;},
where K is an integer. Then a video-content assessment algorithm (Sec. 3.4) is
applied to obtain a content description of D,, including 1) the scatter of the blocks-
of-interest (BOI), 2) if D, is an empty frame D¢, and 3) the strength of the local
unimportant changes (LUC) compared to noise level in D,, (i.e., local unimportant
changes measurement). Then, based on the video content assessment, each frame
block Wy. k =1,2,--- | K, is marked as either a region block W, which potentially
containing moving objects, or a background W? which are high probable that only
contain background regions (see Eq.(2.18)). A discriminative global thresholding
algorithm is then applied to D,. If D, is an empty frame, a noise-statistic based
thresholding (Sec.3.5.1) with a low false alarm « is applied to obtain the global
threshold T? of D?. If D, is non-empty, threshold 7, is obtained by a LUC adaptive
thresholding algorithm (Sec. 3.5.2).

3.4 Proposed Video-content Assessment Algorithm

Video-content assessment includes BOI scatter estimation, empty-frame detection,

and local unimportant changes (LUC) measurement. The BOI scatter estimation
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Figure 3.1: Flow chart of the proposed thresholding algorithm. D,, is the output of
a frame differencing based CD method.

is described in Sec.2.5. After BOI scatter estimation, the frame blocks in D, are
classified into two categories: background blocks W} and significant changed blocks
W¢ which potentially contain moving objects, as shown in (2.18). Empty-frame
detection and LUC measurement are performed based on the BOI scatter estimation

as follows.

3.4.1 Empty-frame Detection

For real-world video sequences, two video conditions may lead to empty frames, one
is no object exists in a frame, the other is that the size of the objects are too small

to be detected. An important application of the proposed BOI scatter estimation
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algorithm (Secction 2.5) is empty-frame detection, where the video frames without

any changes, or only contain extremely small changes are detected.

Based on the BOI scatter estimator given in (2.18), we can easily determine if D,
is an empty frame D? by counting the number of W¢. We regard a D,, as a D¢ if its

all blocks are marked as W} by (2.18).

3.4.2 Local unimportant changes estimation

The LUC is one of the primary factors that seriously degrade the quality of change
masks. The intensity distributions of LUC are, in general, different from both the
intensity distribution of the background and the intensity distribution of objects.
Thus a global thresholding algorithm may seriously underthreshold a D,, by classifying
the LUC into the foreground, or serious overthreshold a D,, by using a relatively high
threshold for removing all LUC. To obtain reliable change masks, the estimation of

the strength of LUC is important for content-adaptive thresholding algorithms.

In this section, we propose a fast algorithm to estimate the strength of LUC in
terms of the noise variance o of the difference frame D,. First, we assume that
the non-zero pixels in a signed difference frame D, under Hq are caused by only
LUC. Since Aach et. al [32,33] have shown that the changed areas (including both
important and unimportant changes) can be modeled as a Gaussian distribution in
signed D, (see page 30), we can model the pixel intensities in signed D,, under H, as
a Gaussian RV X, with zero mean and variance 2. Thus, the intensities in unsigned
D,,, which is obtained by applying absolute-value operation to D,,, can be modeled

as a RV X, with the pdf (see details in Sec.2.5.1)

2

2 -

X, ~ e ¥, X;>0. 3.2
SN o L= (3:2)
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Thus from (2.16) the entropy of X; is
1
Hx, = 3 In(=meo; ). (3.3)
Let 07 = Ky - of, then (3.3) becomes

Hx, = iln(imec?)+ ilnk
l 27 2n 2 (3.4)
= HX + %In Ki.
Hy is the entropy of noise in D, and is defined in (2.16). The factor «; is less or
equal 1 if LUC is non-dominant compared to noise, or greater than 1 otherwise, as
shown in(3.5)

ky = 20T Hx), (3.5)

where Hx is the entropy of X under H, that assume the non-zero pixels are only
caused by noise, and Hy, is the entropy of X; under H, that assume the non-zero
pixels are only caused by LUC. As can be seen in (3.5), for a known noise level, the
higher Hy, is, the higher x; is, thus the stronger the strength of LUC is. Therefore,

factor k; is a good measure of the strength of LUC.

In practice, k; can be estimated from the background blocks {W}} (given in
Eq.(2.18)) as follows. First, based on the assumption that non-zero pixels in D,
under Hy are caused by LUC only, we approximate Hyx, of each W? by computing the
block entropy Hk,, which can be computed based on the block histogram by (2.17)
(see page 31). Then, we get the factor k¥ of each W} from (3.5). If D,, contains very
weak LUC, i.e., the statistical distribution of X, is the statistical distribution of noise
X, Hx, will be similar to Hx, and &, is close to 1. Here, Hx is computed by (2.16),
where af = 20,. and the noise variance o, in the original frame can be estimated

by a noise estimation algorithm, e.g., [66]. If D, contains serious LUC, Hy, will be
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much more greater than Hx, and x; > 1. The value of Hx can be computed by
(2.16), where the noise variance of the original frame is estimated via [66]. Finally,

k; is obtained by averaging all factors of {W}}, i.e.,

2(HX —H
K/;‘. — e ( X, X),
_ 1 k (3.6)
K = ﬁ)}c; Ky
Wie{w}}

where N? is the number of W}.

3.5 Discriminatively Thresholding Region And Back-

ground Blocks

The proposed thresholding algorithm discriminatively takes differcut thresholding
strategies for different video contents. For the empty video frames, a noise-statistic
based thresholding strategy is employed to compute a global threshold which sup-
presses most unimportant-changes but protects the small size important changes. For
non-empty video frames, a LUC adaptive thresholding strategy is applied to obtain

an artifact-robust threshold.

3.5.1 Thresholding empty or almost empty frames

The simplest way to threshold an empty frame D¢ is to set all the pixels of the frame
to zero. However, this is not a robust solution for the video sequences containing
extremely small objects. Therefore, we compute the threshold T'¢ for an empty frame

by a noise-statistic based algorithm, where T/ is highly probable higher than the
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pixels of an empty frame, i.e.,

PIX <T? > px, (3.7)

where X = D#(i) is the intensity value of a pixel located at i, and p; is a high

probability value.

The RV X is given in 2.12, we get

PX <T?| = 2

2.7
e b dx. 3.8
0 AV 271’0(, ( )

Let z = = from (3.8), we get

PIX <T9] = 2[5 pme "t du

22

- f;:? —\/2%0,,6‘5;‘? dz]
22
= I—Qf;_?#e‘?dx
p
= 1-2Q(%)

where Q(-) = 1 — ®(-), and ®(-) is the cdf of standard normal distribution. From
(3.7), we get Q(%) < l‘—f—". In statistics, false alarm o, 0 < o« < 1, is defined
as the area under the probability density corresponding no-change hypothese to the
right side of a threshold. False alarm is often used to yield an acceptable detection
probability in significance test [32]. Therefore, p;, can be determined by a false alarm

Qe, 1.6, pp =1 — ae. Thus, we get
Q) < —. (3.10)

Using the Q-function table [65], we can find a value ¢ which satisfies Q(q) = 4.

Since the Q-function is a non-increasing function, P[X < T¢] > p, is equivalent
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to i—’z > q, where the standard deviation ¢, can be computed from the standard
deviation of the noise in the original frame o, as ¢, = v/20,, [57]. Thus, the threshold
of D¢ should satisfy

T? > qoy. (3.11)

The T? obtained from (3.11) only takes noise into account. In real-world video
sequences, the non-zero pixels in D¢ are not only caused by noise, but also by illumi-
nation changes and unimportant local changes. Taking them into account, we refine
T? as

T? = u + qo, (3.12)

where p¢ is the intensity mean of D?, and ¢ can be determined by a low false alarm

a. (see Sec.4.4.1).

3.5.2 Thresholding non-empty frames

For a non-empty difference frame, we compute the threshold 7}, by two steps as shown
in (3.13): first we estimate the optimum threshold T, of a D, based on the assumption
that the non-zero pixels in background regions are only caused by noise, then we refine
T, by an adjusting factor +; according to the measurement of the strength of LUC

(estimated using Eq.(3.6)) to obtain the artifact-robust threshold of D,,
T, =T, +, (3.13)

where T,'l is for suppressing the global unimportant changes which are mainly caused
by noise, and +; is for suppressing LUC, which may be caused by artifacts such as
shadows, local light changes, or partial background movement.

Only by taking noise into account, we can fix an initial threshold 7|, which is

estimated based on the intensity distribution in the blocks-of-interest {W} as follows.
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The intensity distribution in {WW¢} detected by BOI scatter estimator can be modeled
as the mixture of the distribution of the noise and the distribution of the important
changes in D,. Since the no-change hypothesis Hq and the changed hypothesis H,
are mutually exclusive, the distribution of the intensities in {WW¢} can be obtained by

using the total probability theorem, the pdf of the mixture distribution is then
p(za) = Py x po(za|Ho) + P X pe(Ta|H1), (3.14)

where z4 is the intensity of a pixel belongs to {Wf}, note that the {W(} are the
blocks detected by the BOI scatter estimate instead of the moving objects areas, as
shown in Fig.2.2 (see page 33), they may contain both changed and unchanged areas;
P, and P, are probabilities of the changed and unchanged areas in {W}}, respectively;
p(-) and p.(-) are the pdf of the intensity distributions under the condition Mgy and

‘H1, respectively.

We have shown that the pdf of the intensity distribution under hypothesis H, is
given in (2.12), and the pdf of the intensity distribution under hypothesis H; is given
in (2.13). Based on (2.12) and (2.13), we get

2 2
2P, -4 2P, _=
b e =} e 22, (3.15)

o

p\xg) =
(za) 2moy 210,

As can be seen in (3.15), p(z4) is determined by four parameters, the probabilities P

and P,, the noise variance o} in signed D,,, and the intensity variance of the changed

areas o>

in signed Dn The value of P, and P. are related to video contents. For
example, to the video sequences with small size objects, P, may be greater than
FP,., while to the video sequences with big size objects, P, may be smaller than P,.
Assume that the occurrence of the changed and the unchanged areas have the same

probability, we set P, = Pc = 0.5 in this thesis. The value of o7 can be estimated
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by a noise estimation algorithm, e.g., [66]. The value of ¢2 is difficult to estimate,
however, we know o2 > o2. The simulations in [32,33] show that 02 > 10002. As
will be shown later in this section (page 56), we need not estimate o2. Fig.3.2 shows
the examples of the theoretical intensity distributions given in (3.15) with different

parameters but P, = P. = 0.5.

005

0 T e e ok T 0 B i
30

(a) o} = 4.11, and (b) 0 = 4.11, and (c) o} = 8.206, and
a2 = 15007 o2 = 10002 02 = 1200}

Figure 3.2: Examples of the theoretical intensity distribution in W¢ with different
parameters and P, = P. = 0.5.

For a threshold ¢ (e.g., T, in (3.13)), the probability of error e, in classification of

important and unimportant changes can be computed based on (3.15) as

2 2

00 1 _ 3 t 1 _ "4
€ :2P/ e *bdx +2Pc/ e 2% dxy. 3.16
N Vere, ‘ 0 V2ro. ‘ (316)

Let x, = i—: and r. = *¢, we have
C

e = zp,,Q(aib) + %erf(ai), (3.17)

where erf(-) is the error function of a Gaussian RV. As can be seen in (3.17), Q(-) is
a non-increasing function, and erf(-) is a non-decreasing function. Therefore, both a
too low t and a too high ¢ may greatly increase the classification error since it may
greatly increase the value of Q(-) or erf(-), respectively.

An initial threshold 77, in (3.13) can be fixed by minimizing e,. We use Fermat’s
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theorem to fix an optimum ¢ that minimizes ey, i.e., T,/l. First, we take the first-order

derivative of (3.17), i.e.,

de, 2P, -%£, 2P, _ 2
—_— = = e % + e 29t 3.18
dt V2roy V2o, ' ( )
second, we set (3.18) equal to 0, we have
P, 2 B e
I LR ) (3.19)
O¢ Jp

Since 02 > a§ [33], we assume o. = k.03, where k. is a real number which represents

the variance ratio between the important changes and the noise in D,,, and . > 1.
Solving (3.19) for t, we get

t2 Pb fi2
L = 2In(2k,) - 3.20

Since (K—;‘E—) ~ 1 when k. > 1, we get the relationship between t and o} as

t P,
=1/2In(=kK,). 21
= /2(F) (3:21)

Fig.3.3 shows the Uib vs. kK. curve, where k. varies from 20 to 1000, and P, = P,

As can be seen, the value of Uib varies in a relatively small range when k. varying in

a large range, i.e., Uib is relatively stable compared to k.. Then the initial threshold

T, in 3.13 can be obtained from (3.21) as

p B
T, =0y - ,/21n(F%C). (3.22)

It is difficult to estimate the variance of important changes ¢2 in D,, due to the

complexity of the video contents, thus it is difficult to estimate k.. We can estimate
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Figure 3.3: The (—f; vS. k. curve (k. varies from 20 to 1000, and P, = P.).

T’ by using the stabilization fact of oib shown in Fig.3.3 as follows.

First, we estimate the range that an optimum threshold ¢ may vary in a non-empty
D,. From (3.21), we get that when k. varies from 20 to 1000, ai,, varies from 2.45
to 3.72, i.e., the threshold ¢ varies between 2.450, and 3.720,, where o7 = 20,, and
o, is the noise variance in the original frame. As can be seen, t depend on the noise
level in a video frame. Second, we fix the location that the range of ¢ in the intensity

distribution curve of D,,. We note that under no-change hypothesis Hy, the cdf of

the intensity distribution in D,, can be obtained from the pdf given in (2.12) as

x 2 _
P(X <z)= / e ¥ de’, X>0. (3.23)
0 27T0'b
Let 2" = :—;, (3.23) becomes
x 5% 2 2
P(X < )= ez di”, X>0. 3.24
(X < Ub) /o V27 ' - (324)

From (3.24), we convert the pdf given in (2.12) to the pdf as

e" 2, 1">0, (3.25)
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as shown in Fig.3.4. As can be seen, the range that ¢ varies between 2.450, and
3.720, is located at the corner of the distribution curve. Thus, without statistically
estimating k., T, can be efficiently estimated by fixing the corner of the distribution

curve of the noise in D,,, as shown in Fig.3.4.

0.8

07|
0.6+
optimum

0.5+ ';_ threshold

0.4

p(x/o,)

0.3¢
0.2}

0.1} "\

Figure 3.4: The pdf of :—b and the range that ¢ varies.

In real-world video applications, the real pdf of the intensity-distribution in {W¢}
may be different from the pdf given in (3.15) because (3.15) only takes noise into
account. The histogram of {W} is an estimation of the real pdf of {W¢}. Fig.3.5
shows the histograms of the {W¢} in three frames of three real-world video sequences
with different video contents. Comparing Fig.3.2 and Fig.3.5, the histograms shown
in Fig.3.5 are similar to the pdf given in (3.15) with 02 >> ¢2. Thus, we estimate the
initial optimum threshold 7, from the histogram of {W;}.

The histogram of the BOI {W{} is obtained based on the BOI scatter estimation,
and denoted hS,(g). Then we assume that the distribution located in the low gray-
level partition of the histogram is caused by the global unimportant changes (GUC)
including noise and slight illumination changes, since the important changes are usu-
ally stronger than the unimportant changes in difference frames. The distribution

can be determined by fixing the dominant distribution in the histogram partition
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(a) “Hall” (Fi40) (b) “Take object” (Fa43) (c) “3Meet” (Fr)

Figure 3.5: The histograms of {W¢} in different video sequences ((a) video “Hall”
with o2 = 4.583, (b) video “Take object” with g7 = 2.872), and (c) video “3Meet”
with o? = 2.061.

[0, g] where g is the minimum gray-level that satisfies > hS(g) > p,, where p, is a
pre-defined probability between 0.3 ~ 0.5. We set p, = 0.5 in this thesis. Finally, the
thresholding algorithm proposed in [67] is applied to the distribution of the GUC to
fix the corner of the GUC distribution curve.

Recall that the final threshold in (3.13) is T}, = T, +v. We determine the adjusting
factor v, in (3.13) to suppress the the LUC in D, without damaging the important
changes. To improve the robustness of 4, to multiple video contents, we compute -,
adaptively to the strength of the LUC. The higher the LUC are, the higher the -,
is. As can be seen in (3.5), x; can be used as a measure of LUC. The higher &, is,
the more significant the LUC are compared to noise. If x; < 1, i.e., the LUC are not
significant in D,, compared to noise, 7; should be relatively low. Otherwise, +; should
be relatively high and set adaptively to m, i.e., the standard deviation of X; in
(3.2). Thus, v, is

C, Dok <1
= (3.26)

av/ ko 1 k> 1,

where C} is a constant between 0 ~ 5, in this thesis, we set ;, = 3, and q; is a
multiplication factor can be adaptively estimated by a desired false alarm «; (see

details in Sec.4.4.1).
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3.6 Summary

Frame differencing followed by thresholding is an efficient change detection method,
however, it does not outperform advance statistical change detection due to sensitivity
to noise, illumination changes, and local changes. A fast artifact-robust thresholding
algorithm is proposed in this chapter based on video content assessment. First, the
scatter of the blocks-of-interest are estimated. Second, an initial threshold is esti-
mated based on the analysis of optimum thresholding to suppress global unimportant
changes. Finally, the global threshold is obtained by adjusting the initial threshold
according to the strength of local unimportant changes. To improve the reliability
of object masks, an empty frame detection is employed to make the global threshold
adaptive to different video conditions.

The proposed video-content assessment method detects the empty frames which
are often happened in surveillance applications, and measures the local unimportant
changes in terms of the noise variance. Thus it greatly improve the robustness of the
proposed thresholding method to video contents by aiding the proposed discriminative
thresholding algorithm.

As shown in chapter 4.4, the proposed thresholding method is more precise than
the intensity-distribution based thresholding, and more stable and much more efficient

than the state-of-the-art spatial-property based thresholding methods.
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Chapter 4

Experimental Results

In this chapter, we evaluate the proposed methods by applying them as well as the
reference approaches to real-world video sequences in both subjective and objective
ways. Section 4.2 describes the objective measures we used in this chapter. Section
4.3 evaluates the proposed change detection (CD) algorithm, Section 4.4 evaluates
the proposed thresholding algorithm. The video object detection consisting of the
proposed CD and the proposed thresholding algorithm is evaluated in Section 4.5.

Section 4.6 summarizes the chapter.

4.1 Video Sequences Used

Fifteen real-world indoor and outdoor test video sequences containing different video
contents are used in our simulations. Most video sequences used are publicly available

and widely used in video object detection literatures. The indoor video sequences are

1. “Hall”: 300 frames of size 352 x 288, stable illumination, low noise level, and

some local light changes.

2. “Intelligent room”: 300 frames of size 320 x 240, serious shadows, and consid-
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erable variation in the contrast between the foreground and the background.

3. “2Meet”: 690 frames of size 320 x 240, considerable shadows, low contrast

between the foreground and the background.

4. “Ekrlb”: 678 frames of size 360 x 244, multiple objects, serious local changes,

very low contrast between the foreground and the background.

5. “Stair”: 1475 frames of size 352 x 288, serious local changes, relatively high
noise, and considerable variation in the contrast between the foreground and

the background.

6. “Put object”: 655 frames of size 320 x 240, well illumination, considerable

variation in the contrast between the foreground and the background.

7. “ScriptLab2”: 2283 frames of size 360 x 240, many empty frames, and very low

contrast between the foreground and the background.
8. “Tennis”: 53 frames of size 720 x 576 with zoom global motion.
The outdoor video sequences are

1. “Survey”: 1000 frames of size 320 x 240, multiple objects, serious local changes
and noise, high variation in contrast between the foreground and the back-

ground.

2. “Road”: 300 frames of size 352 x 288, multiple fast moving objects, partial
background movement, parts of the foreground are similar to background in

gray-level.

3. “Vand_paint”: 299 frames of size 320 x 240, fast moving objects, and illumina-

tion changes.
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4.

“Vnj”: 293 frames of size 360 x 244, multiple moving objects as well as serious

illumination changes, shadows, and partial background movement.

“Snow”: a shot of 427 frames with size 320 x 240, captured on-line at the
Ste-Catherine street, Montreal, by VidPro member A. Firas, multiple moving

objects, serious background turbulence.

“Pavement”: a shot of 3000 frames with size 320 x 240, captured on-line near the
cross of the Ste-Catherine street and the Rue Ste-Mark, Montreal, by the author,
well illuminated, multiple moving objects, serious shadows, and considerable

variation in contrast between the foreground and the background.

“Car”: 60 frames of size 720 x 576 with rotational and translational global

motion.

Five real-world video sequences are used as training video sequences in our sim-

ulations to experimentally determine the parameters that need to be pre-defined in

the proposed methods, e.g., the false alarms. The training video sequences are

1.

Indoor “3Meet”: 929 frames with size 384 x 288, small size objects, serious local

changes and illumination changes.

Part of indoor “Intelligent room”: The first 81 frames are empty frames, and

used in training set. The non-empty frames are not in the training set.

Outdoor “Roadl”: 300 frames with size 352 x 288, multiple fast moving objects,

and parts of the foreground are similar to background in gray-level.

On-line “Cross-St-Catherine”: a shot of 2000 frames with size 320 x 240, cap-
tured on-line at the cross of the street Ste-Catherine and the Rue Ste-Mathieu,
Montreal, well illuminated, multiple moving objects, considerable variation in

contrast between the foreground and the background.
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5. On-line “Cloudy”: a shot of 3017 frames with size 320 x 240, captured on-
line on the Ste-Catherine street, Montreal, under illuminated, multiple moving
objects, and considerable variation in contrast between the foreground and the

background.

4.2 Objective Evaluation Measures

Visually evaluating the output of a video processing system is widely used in litera-
tures. The performance of the video processing system is subjectively evaluated based
on the observations of the viewers. However, subjective evaluation is not always reli-
able due to the limits of the human vision system (HVS). A typical example is that
the sensitivities of a HVS to video frame quality may decrease after a long time ob-
servation due to tiredness. It is important that objectively evaluate the performance
of a CD method. Ground truth plays a pivotal rule in objective evaluation of CD
methods.

A ground truth is such a video frame where the pixels are correctly classified into
objects and the background. Fig.4.1 shows an example of a ground truth. Ground
truth is necessary for many objective measures. Although many methods have been
proposed to generate ground truth, e.g., [75], it is difficult to generate ground truth for
real-world video sequences. Manual annotation is the most common way to generate
ground truth for real-world video sequences. Based on the ground truth of a video,
many objective measures can be computed to evaluate the performance of a CD
method.

An important application of the ground truth is to compute the classification-
based objective measures. The basic of a classification based objective measure is
Cap, the number of pixels belonging to class A that have been classified as class

B. For binary images, (A, B) = (0,1), and c¢y; is true positives (TP), cgp is the
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(a) Original frame 45 {b) the ground truth of (a)

Figure 4.1: An example: the ground truth for frame 45 of video “Hall”.

true negatives (TN), cp; is the false positives (FP), and c¢jo is the false negatives
(FN). Based on Cyp, several advance objective measures are computed and widely

used [25,57,72]. They are
1. Percentage correctly classified (PCC)

TP+TN

POC = 4 FP TN T PN (4.1)
2. Yule coefficient (YC)
Ye= ITPI;—PFP + TNTJiV v (42)
3. Jaccard similarity coefficient (JC)
JC=7p7 §£+ FN’ (43)

The higher the three advance measures are, the better the performance of a CD
method is.
Ground truth is not necessary for some objective measures. Erdem et al. [76]

propose three objective measures which need not ground truth. However, the per-
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formance of the measures are tightly coupled with the motion estimation and the
contour tracing algorithms they used. Therefore, they may not always reliable in
real-world applications due to the complexity of video contents. In this chapter, the

classification based measures are used for evaluating the proposed approaches.

4.3 Evaluation of Change Detection Under Back-
ground Subtraction

Here, we show the effectivity of the proposed CD algorithm for including the color
information into CD. We visually compare the change masks computed by the pro-
posed color CD method with the change masks obtained by gray-level based simple-
differencing CD in Sec. 4.3.2. Second, we evaluate the performance of the proposed
CD method by applying it as well as the recently proposed Alexandropoulos (Alex.)
CD method [60] to seven real-world video sequences containing different video con-
tents in Sec. 4.3.3. We select the Alexandropoulous CD as the reference method
because it is 1) an artifact-robust color-based CD (based on cluster-distance classifi-
cation in each chrominance channel), and 2) real-time.

The seven real-world video sequences used in this section are “Hall”, “Intelligent

room”, “2Meet”, “Ekrlb”, “Put object”, “Road”, and “Vnj” (see Section 4.1).

4.3.1 Algorithm parameters

The proposed CD method include following parameters: 1) the size of the spatial
average filter for reducing noise used in frame differencing (page 24), 2) the number
of frame blocks in BOI scatter estimation (page 30), 3) the block mean thresholds ¢,
and ty for BOI estimation (see Eq.(2.18)), 4) the low and and the high false alarms

for computing t; and t; (see Eq.(2.19)), and 5) the false alarm «, to compute the
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high probability value pj, for significance test (see Eq.(2.25) and Eq.(2.28)). Training
video sequences “3Meet”, “Roadl”, “Cross-St-Catherine”, and “Cloudy” are used to

estimate the parameters.

The size of the spatial average filter can be set to 3 x 3, 5x 5, or 7 x 7. However, a,
big filter size tends to degrade the object boundaries thus degrade the object details.
In our simulations, we set the size of the average filter to 3 x 3. The number of blocks
in D,, can be set from 4 x 4 to 20 x 20. However, a low block number leads to the
big block which may contain many background areas, and a high block number leads
to a small block containing few pixels, thus the BOI estimate becomes sensitive to
relatively strong artifacts. In our simulations, we divide a frame into 10 x 10 blocks.
In significance test given in (2.25) and (2.28), a high false alarm o may mistakenly
classify the relatively strong artifacts as important changes, and a very low a, may
lose some relatively weak important changes. Based on experimental results obtained
from the four training video sequences, we set o, to 0.0025. The block mean thresholds
t; and tp in (2.18) are automatically computed by (2.19), and the factors a; and a,
are determined automatically by two different false alarms «;, and «y,. Simulations
in training set suggest that a,, € [0.0001,0.0004] and oy, € [0.1,0.3]. Similar to the
analysis of o, mentioned above, we experimentally set a;, = 0.0002 and «a;, = 0.2
thus a; = 3.7 and a; = 1.3 using the Q-function table [65]. Note that very low
noise in a video leads to a low of thus t; and ¢, become low. This may mistakenly
classify some blocks with serious local unimportant changes as BOI. To improve the
robustness of the BOI estimator, based on observing the means of BOI in the training
video sequences, we experimentally set the minimum possible values of t; € [12, 1§]
and ty € [5,10]. In this thesis, we use t; = 15 and t; = 7.5. The above values were
used in all simulations we carried out. The major parameters that the proposed CD

method depends on are %, t5, and «;.
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4.3.2 Usefulness of adding color to gray-level CD

To show the effectivity of the proposed CD compared to the gray-level based CD,
video “2Meet” and “Ekrlb” where the foreground and the background are similar to
each other in gray-level are employed. The thresholding algorithm proposed in [77] is
used to obtained the binary frames. Fig.4.2 shows the comparison results of “2Meet”.
As can be seen, there are considerable holes and gaps existed in the change masks
obtained by the gray-level based simple differencing CD due to the similarity between
the foreground and the background. The proposed method successfully overcomes the

problem and obtains clear and complete change masks.

(a) Org. (b) proposed CD (c) gray-level CD

Figure 4.2: Comparison between the prop. CD and gray-level CD applied to “2Meet”
with the original frame Fyy5, and F3sg.

Fig.4.3 shows comparison results of “Ekrlb”. As can be seen, without the aid of
color, simple-differencing CD mistakenly divides an object into several parts by the
gaps caused by the similarities between the objects and background in gray-level. The
proposed method significantly improves the quality of the change masks by including
color information into CD.

As having shown in Fig.4.2 and Fig.4.3, the proposed algorithm effectively intro-

duces the color informant to CD, and obtains the content-robust change masks.
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A

(a) Org. (b) proposed CD (c) gray-level CD

Figure 4.3: Comparison between the prop. CD and gray-level CD applied to “Ekrlb”
with the original frame Fg5, and Fjy5.

4.3.3 Comparison between color-based CD methods

In this section, we compare the proposed CD algorithm with the recently proposed
real-time cluster-distance based Alexandropoulos CD method [60]. A fast thresh-
olding algorithm proposed in [77] is applied to the proposed CD method to obtain
binary frames. Five real-world video sequences, the indoor “2Meet”, “Ekrlb”, and

“Put object”, and the outdoor “Road”, and “Vnj” are used in the simulations.

Fig.4.4 shows the comparison results of video “2Meet”. As can be seen, the
proposed CD performs best. It obtains complete and stable change masks for video
“2Meet” where the unimportant changes such as shadows are serious and the contrast
between parts of the foreground and the background is low. The [60] CD also works
well under the case that the foreground is similar to the background in gray-level,
however, it is sensitive to the shadows and includes considerable spurious blobs into
the change masks.

Comparison results of video “Ekrlb” are shown in Fig.4.5. The proposed CD
clearly outperforms the [60] CD method. Since the [60] CD performs CD in each

chrominance channel of a video frame, it is sensitive to the artifacts in any color
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(a) Org. | (b) prop. CD (c) [60] CD

Figure 4.4: CD Comparison applied to “2Meet” with the original frame Fjgy, F3q3,
and F375.

channels. Although it can obtain the complete moving objects, it includes serious

spurious blobs caused by the local unimportant changes into the change masks.

Fig.4.6 shows the comparison results of video “Put object”. Although both of the
CD methods obtain stable and complete change masks for the video, the proposed
CD method is more robust to the artifacts than the [60] CD method. The [60] CD is

sensitive to the shadows and includes many spurious blobs into the change masks.

Fig.4.7 shows the comparison results of video “Road”. As can be seen, both of
the CD methods performs well. However, the [60] CD is sensitive to the shadows and

includes considerable spurious blobs. The proposed CD performs the best.

The comparison results of “Vnj” are shown in Fig.4.8. Serious local unimportant
changes caused by shadows and partial background movement are existed in the video.

Although the proposed CD method includes some spurious blobs caused by the partial
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(a) Org. (b) prop. CD (c) Alex. CD

Figure 4.5: CD Comparison applied to “Ekrlb” with the original frame Fgo, F301, and
Fiy10.

movement of background, it outperforms the [60] CD for the video. The [60] CD is

sensitive to shadows and include many spurious blobs into the change masks.

4.3.4 Objective evaluation

In addition to the visually evaluation, we objectively evaluate the proposed CD al-
gorithm as well as the two reference CD methods by the objective measures PCC,
YC, and JC introduced in Section 4.2. The objective evaluation is performed based
on video “Hall” and “Intelligent room” for which the ground truth sequences are
available.

Fig.4.9 shows the objective comparsion results of the two CD algorithms. All the
three objective measures clearly show that the proposed method outperforms the [60]

CD.

Fig.4.10 shows the objective measures of the two CD algorithms for video “Intel-
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(a) Org. | (b) prop. CD (c) [60] CD

Figure 4.6: CD Comparison applied to “Put object” with the original frame F43,
Fa10, and Fiya.

ligent room”. The PCC' measure shows that the performance of the proposed and
the [60] CD are similar. Both Y'C and JC measures show that the proposed CD out-
performs the [60] CD at most frames, and they have similar performance when the
size of moving objects are small (see the objective measures between frame 150 and
200). The problem can be solved by applying more video-content robust thresholding

algorithm, see Sec.4.4.2 and Sec.4.4.4 for details.

Fig.4.11 shows the objective evaluation of video “Ekrlb”, where shadows and par-
tial background movement are serious, and the foreground is similar to the background
in both gray-level and chrominance channels. As can be seen, the proposed algorithm

works stable and clearly outperforms the [60] CD.

Without performing complex CD in all chrominance channels of a video, the pro-

posed method improves the quality of gray-level CD while it slightly increase the
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(a) Or. (b) prop. CD (c) [60] CD

Figure 4.7: CD Comparison applied to “Road” with the original frame Fiis5, Figo,
and F251.

computation time. Under Linux OS using C++, the average computation time of the

proposed algorithm for CIF video sequences 0.0456s per frame (including threshold-
ing). The [60] CD method requires 0.0518s per frame.

4.3.5 Analysis of the algorithm performance and its limita-
tion

Our simulations show that color information significantly improves the change detec-
tion in cases where objects have similar gray-levels as the background. The proposed
change detection method employs the color information by compensating the pixel
intensities which are non-significant in the blocks-of-interest in gray-level channel but

significant in chrominance channels. Experimental results show that the proposed
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(a) Org. (b) prop. CD (d) [60] CD

Figure 4.8: CD Comparison applied to “Vnj” with the original frame Fq7, Figs, and
Fige.

change detection method effectively include the color information into CD and per-
forms well for real-world video sequences. Due to the proposed scatter estimation
algorithm of the blocks-of-interest, the proposed change detection method is robust
to multiple video contents. The reference change detection [60] is proposed for real-
time application. It is sensitive the unimportant changes in video sequences.

The proposed CD method has two limitations. First, for fast CD, the BOI scatter
estimation is only performed in Y channel. It may miss the BOI if two conditions
apply 1) the foreground and the background are very similar in gray-level and 2)
the foreground has uniform gray-level (i.e., no texture). Second, if strong unimpor-
tant changes around object boundaries in Y are detected inside BOI and they are
detected as important changes in chrominance channels then the proposed CD will
classify these strong unimportant changes as important changes. A possible solution

is discussed in Sec.5.2.
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4.4 FEvaluation Of Thresholding

The evaluation of the proposed thresholding algorithm is performed by applying it as
well as three reference thresholding methods to real-world video sequences contain-
ing different video conditions. The three reference methods, i.e., Poisson-noise-model
(Poisson), stable Euler-number (Euler), and Kapur methods, are shown in [57, 72]
to perform best for change detection. (Our simulations confirm as in [72], that the
classical Otsu [54] thresholding performs poorly for change detection.) In this sec-
tion, a fast CD method proposed in [24] is applied on nine video sequences (“Hall”,
“Intelligent room”, “ScriptLab2”, “Stair”, “Tennis”, “Survey”, “Vand_paint”, “Vnj”,
and “Car”) to obtain the difference frames.

In this section, A background frame BK, is used to obtain the difference frames
of each video. Although BK, may be not available in some real-world applications,
many background abstraction (or updating) algorithms [78,79] had been proposed in
literatures. A real-time background abstraction algorithm proposed in [80] is used in
this thesis to obtain the background frames for on-line testing video sequences.

The parameters of the proposed thresholding do not changes for different video

sequernces.

4.4.1 Algorithm parameters

The proposed thresholding method needs four parameters: 1) the probability p, for
fixing the dominant distribution in low gray-level partation of a histogram (page
57), 2) the false alarm a. for significance test in empty frames in (3.10), 3) the
constant C; for getting the adjust factor v, in Eq.(3.26) (for the video frames with non-
significant local unimportant changes), and 4) the multiplication factor a; for getting
v in Eq.(3.26) (for the video frames with significant local unimportant changes). In

the training video set, the empty frames in video “3Meet” and “Intelligent room” are



4. Results 77

used to estimate e, video “3Meet”, “Roadl”, “Cross-St-Catherine”, and “Cloudy”

are used to estimate other parameters.

Based on observing the intensity distribution of the non-empty frames in video
“3Meet”, “Roadl”, “Cross-St-Catherine”, and “Cloudy”, we experimentally estimate
p, € [0.3,0.5], we use p, = 0.5 in this thesis. To robustly thresholding empty frames,
the false alarm a. should be very low. We tested considerable values of . between
5.0 x 1076 to 5.0 x 1072 using the empty frames of video “3Meet” and “Intelligent
room”, and experimentally set a. = 2.5 x 107%. From (3.11), we get that ¢ > 5.96
in Eq.(3.12) and in our simulations, ¢ is set to 6.25. For the D, with significant
LUC (x; > 1), the adjust factor +; should be adaptive to the intensity distribution
of D,. This is because if the intensities in IJ,, vary in a relatively small range, i.e.,
the intensity distributions of the important and the unimportant changes are close to
each other, ~; should be relatively low to protect the important changes; otherwise, ~,
should be high to suppress the local unimportant changes. The value of +, is depended
on the factor a;, and from (3.26), we note that a; can be determined by a desired
false alarm ;. By using the training video sequences “3Meet”, “Roadl”, “Cross-
St-Catherine”, and “Cloudy”, we tested a set of values of a;, and experimentally
estimated that a; was between 0.2 and 0.0004. Using the Q-function table [65], we
can get that a; is between 1.25 and 3.54. To automatically compute a; and avoid
looking up the false alarm in the Q-function table frequently, we approximate a, by a
linear function shown in (4.4) according to the maximum intensity that a pixel may

have in D,,, i.e., the G, obtained by (2.33) (see page 39). Thus we have

!

a, = 0.083-G, -5,
1.25 : a; < 1.25
@ = { aq : 1.25<a <354

3.54 : a > 3.54.
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We use the same parameter values in all simulations.

4.4.2 Subjective evaluation under background subtraction

Fig.4.12 shows the comparison results of “Intelligent room”. Since only the empty
frames in the video are in the training set, it is fair that we compare the binary results
of the non-empty frames obtained by the proposed as well as the reference methods.
As can be seen, the proposed algorithm performs the best. The Euler method is
the next best, however it is sensitive to LUC such as shadows. The Poisson and the

Kapur methods are not stable and lead to seriously overthresholding.

{ {

(a) Org. (b) proposed (c) Euler (d) Poisson (e) Kapur

Figure 4.12: Comparison applied to “Intelligent room” with the original frame Figs,
Fy33, and Fig;.

Fig.4.13 shows the comparison results of “Script2, which is challenging due to
the similarities between the background and the foreground. Although slightly over-
thresholding the video, the proposed algorithm performs the best. The Euler method
suffers due to its high sensitivity to shadows and local light changes. The Kapur
method overthresholds the video thus loses parts of objects. The Poisson method is

not stable. It underthresholds some frames while overthresholds some others.
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(b) proposed (c) Euler (e) Kapur

Figure 4.13: Comparison applied to “Script2” with the original frame Fy5, Fyg, and
F193.

Fig.4.14 shows the superiority of the proposed algorithm with video “Stair”. As
can be seen, the proposed algorithm performs best. The reference methods breakdown
for the empty frames. The Euler method includes many spurious blobs caused by
shadows and local light changes. The Poisson method is not stable for failing in some

frames. The Kapur method seriously overthresholds the video.

(a) Org. (b) pro;gosed (c) Euler (d) Poisson (e) Kapur

Figure 4.14: Comparison applied to “Stair” with the original frame F3, Fygy, and
Fega.
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The comparison results of “Survey” is shown in Fig.4.15. The proposed algorithm
performs best and obtains the clear and stable change masks. The Euler and the Pois-
son methods are not stable that they underthreshold some frames yet overthreshold

some others. The Kapur method tends to overthreshold the video.

(a) rg. (b) proposed (c) Euler (d) Poisson (e) Kapur

Figure 4.15: Comparison applied to “Survey” with the original frame Fiy1, Fgoe, Fgss,
and F716

Fig.4.16 shows the comparison results of “Vand_paint”. We can see the proposed
and the Euler methods performs best, however the Euler method is sensitive to the
shadows. The Kapur method overthresholds some frames. The Poisson method

performs poorly due to seriously overthresholding.

The comparison results of “Vnj” shown in Fig.4.17 also show the superiority of
the proposed algorithm. As can be seen, although including some spurious blobs
due to the serious LUC, the proposed algorithm performs best. The Kapur method
seriously overthresholds the video. The Euler and the Poisson methods are sensitive
to the LUC and breaks down form quite a few frames. In addition, all reference

methods break down for the empty frames.
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(a) Org. (b) proposed (c) Euler (d) Poisson (e) Kapur

Figure 4.16: Comparison applied to “Vand_Paint” with the original frame Fg5, Fia9,
and F146.

4.4.3 Subjective evaluation under global motion compensa-

tion

In this section, we evaluate the proposed thresholding method with the video se-
quences “Tennis” and “Car” with global motion (GM). The global motion estimation
algorithm proposed in [81] is employed to compensate the global motion. Then the
CD method in [24] is applied between the current frame and the GM-compensated

frame.

Fig.4.18 and Fig.4.19 show the output of the proposed thresholding for video
“Tennis” and “Car”. As can be seen, the proposed thresholding is able to detect
important changes and disregard unimportant changes, e.g., the spurious blobs caused
by the inaccurate GM estimation and compensation. Since the Euler thresholding
clearly outperforms the Poisson and the Kapur thresholding methods as shown in
Sec.4.4.2, we only applied it to the two video sequences. Experimental results show
that the performance of the Euler method is similar to the proposed method, but the

proposed method is over 70 times faster than the Euler method (Note: the two video
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(a) Org. (b) proposed (c) Euler (d) Poisson (e) Kapur

Figure 4.17: Comparison applied to “Vnj” with the original frame Fi79, Fig1, and
F1.

sequences are of frame size 720 x 576).

4.4.4 Objective evaluation under background subtraction

In addition to the subjective evaluations, the proposed algorithm and the reference
methods are evaluated objectively by applying objective measures to the change
masks they generated. In Section 4.2, three true/false positives and negatives com-
parison objective measures PCC, YC, and JC are introduced. In this section, we
will use YC and JC measures since PCC measure may suffer when video sequences
contain relatively small changes [72].

We have shown in the subjective evaluation in Sec.4.4.2 that the proposed and
the Euler algorithms clearly outperform the Poisson and the Kapur methods. In this
section, we will show the sample of objective comparison results between the proposed
and the Euler methods. Fig.4.20 shows the PCC, YC, and JC measures of “Hall”.
As can be seen, the performance of the proposed and the Euler methods are similar,

but the proposed method is slightly better than the Euler method.

The superiority of the proposed algorithm is shown in the objective comparison
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(a) Org. (b) binary mask

Figure 4.18: Comparison applied to “Tennis” with GM, the original frame F};, Fjo,
and F44.

(a) Org. (b) binary results

Figure 4.19: Comparison applied to “Car” with GM, the original frame Fg, F3;, and
F41.



4.4. EVALUATION OF THRESHOLDING

0.985};

0.9}t

PCC Value

]
0.975
097}

0.965}

0.96
0

5‘0 160 1.%0 2(‘)0 250 300
Frame Number

(a) PCC measure

06}

05¢

YC Value

5I0 1(‘)0 15;0 260 250 300
Frame Number

(b) YC measure

JC Value

03}

e et

e e

o2}

—3 -6

01

- Prop. |1
— ¥ — Eufer

Figure 4.20:

50 160 150 2(‘)0 250 300
Frame Number

(¢) JC measure

Objective comparison applied to “Hall”.

84



4. Results 85

Table 4.1: Relative average computation time.

Video || Prop. || Poisson || Clas. Euler || Kapur
CIF 1 40.02 179.07 1.98
SIF 1 37.07 103.84 1.83

using the non-empty frames of “Intelligent room”. Fig.4.21 shows the objective com-
parison results of the video. As can be seen, All objective measures show that the
proposed algorithm is clearly better than the Euler method. In addition, the PCC
measure shows that the proposed method clearly outperforms the Euler method for
the empty video frames due to the proposed empty-frame detection algorithm. Note
that the first 81 frames of “Intelligent room” are empty frames and used as training

data.

Table 4.1 shows the average relative computation time of the video sequences used
in our simulations. As can be seen, the efficiency of the proposed method is about
37 times higher than the Poisson method, over 103 times higher than the classical
Euler method, and slightly higher than the Kapur method. As we have shown, the

performance of the proposed method is much better than the Kapur method.

As shown in [74], the fast Euler thresholding is 12.5 times faster than the clas-
sical Euler thresholding and gives the same results. But 1) the system requirement
(e.g., the memory buffer size) of [74] is much higher than the proposed algorithm,
2) as shown in Fig.4.14, we have seen that the Euler method is sensitive to local
unimportant changes, and 3) the proposed method is still faster than the fast Euler
method. The fast Euler method runs a 25 frames per second per 256 x 256 frame
while the classical Euler method only runs at 2 frames per second on a 1G Hz CPU.
The proposed method runs at 1162 frames per second per 352 x 288 frame while the

classical Euler method runs at 6.49 frames per second on a 3G Hz CPU.
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Figure 4.21: Objective comparison applied to “Intelligent room” (the first 81 empty
frames are used in training set).
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4.4.5 Analysis of the algorithm performance and its limita-
tion

Eight real-world video sequences are used to evaluate the proposed artfact-robust
thresholding as well as the three state-of-the-art thresholding methods. Both vi-
sual assessment and objective assessment have shown that the proposed threshold-
ing method is more robust and precise than the intensity-distribution based Kapur
thresholding, and more stable than the spatial-property based Poisson and the Euler
thresholding. The Kapur method is sensitive to gray-level distribution, which may
be seriously affected by noise and local unimportant changes (LUC). The Poisson
and the Euler methods are not temporally stable, and sensitive to LUC. The compu-
tational time consumming of the Poisson and the classical Euler methods are much
higher than the proposed algorithm, and the fast Euler thresholding does not im-
prove the robustness of the Euler method to LUC. Further more, the Poisson method
is sensitive its parameter, and it breaks down at empty frames.

The limitation of the proposed thresholding method is that it is not sensitive to
small size important changes. The small size important changes in a video frames are
usually appeared similar to local unimportant changes, thus the proposed thresholding
may overthreshold the frames by suppressing the local changes. This may be more
worse for some extreme video conditions, e.g., a video sequence contains very small

size important changes but with serious shadows.
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4.5 Combined CD and Thresholding (VOD)

Based on the proposed CD algorithm and the proposed thresholding method, an “one-
pass” video object detection (VOD) is built for fast video applications. A background
frame BK,, is used in this section. For the video sequences whose background frames
are not available, a fast background modeling algorithm proposed in [80] is employed

to obtain the background frames.

Four video sequences (“2Meet”, “Ekrlb”, “Pavement”, and “Snow”) containing
different contents are used in subjective evaluation, and three video sequences (“Hall”,
“Intelligent room”, and “Ekrlb”) with ground truth sequences are used in objective
evaluation. An improved background modeling based Lee VOD algorithm [49] based
on the widely used Stauffer background-modeling VOD method [45], is used as the
reference object detection method in this section. Note that [49] uses color-vector
modeling based CD technique. It automatically updates the background frame while
the proposed method use a fixed background frame. Note also that [49] includes
postprocessing steps (e.g., data validate and components connection) that we do
not implement to keep the comparison fair because the proposed method uses no

postprocessing.

Fig.4.22 shows the comparison results of “2Meet”. As can be seen in Fig.4.22, the
proposed VOD method clearly outperforms the Lee VOD method at the integrality of
the object masks and the robustness to video contents. The Lee VOD method loses
parts of objects due to 1) the similarity between the foreground and the background
in both gray-level and chrominance channels, and 2) the sensitivity to video contents.
The video-content sensitivity of the Lee method is shown by the dependence to the
moving directions of the video objects. In “2Meet”, the moving directions of the
two people is almost parallel to the axes of the camera, thus the pixels of parts of

moving objects may vary their intensities very slow. This leads to the mistakenly
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classification that the Lee method mistakenly classify some foreground regions into
background regions. Also, the Lee VOD is sensitive to the local unimportant changes.
We can see considerable spurious blobs are included into the object masks caused by

shadows in Fig.4.22.

(a) Org. (b) proposed VOD (c) Lee. VOD

Figure 4.22: Comparison between the proposed VOD and the Lee VOD applied to
“2Meet” with the original frame Fyog, Figo, and Fisg.

Fig.4.23 shows the comparison results of “Ekrlb”. As can be seen, the proposed
VOD method shows its superiority in the challenging video containing serious local
changes, and considerable variation in contrast between the foreground and back-
ground. The object masks obtained by the proposed VOD method are stable and
complete. The Lee method is sensitive to the local changes and suffers due to the
similarity between the foreground and the background in both gray-level and chromi-

nance channels.

Video “Pavement” and “Snow” are on-line surveillance shot at the Ste-Catherine
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(a) Org. (b) proposed VOD (c) Lee. VOD

Figure 4.23: Comparison between the proposed VOD and the Lee VOD applied to
“Ekrlb” with the original frame Fyy, Fogo, and F3gp.

Avenue, Montreal, Quebec under different video conditions. Fig.4.24 shows the com-
parison results of “Pavement”. Although both of the VOD methods can obtain the
complete object masks, the Lee method is sensitive to the shadows thus includes con-
siderable spurious blobs into the object masks. The proposed VOD method performs

well for the video.

Video “Snow” is very challenging since it contains serious background turbulence
caused by snow fall. As can be seen in Fig.4.25, the performance of the two VOD
methods are similar, however, the Lee method includes quite a few spurious blobs

caused by shadows. The proposed method is more robust to the video contents than

the Lee method.

We also objectively evaluate the two VOD methods by applying them to three real-
world video sequences whose ground truth sequences are available. Fig.4.26 shows

the objective comparison results of “Hall”. As can be seen, the PCC measure and
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(b) proposed VOD (c) Lee. VOD

Figure 4.24: Comparison between the proposed VOD and the Lee VOD applied to
“Pavement” with the original frame Figsg, Fha36, and Foeq:.

the YC measure show that the performance of the proposed method is similar but
better than the Lee method. The JC measure clearly shows that the proposed method

outperforms the Lee method.

The objective comparison results of “Intelligent room” shown in Fig.4.27 show the
superiority of the proposed VOD method. As can be seen in Fig.4.27, all the three

objective measures show that the proposed method significantly outperforms the Lee

method. Note that the first 81 frames of the video are used in training set.

Fig.4.28 shows the objective comparison results of challenging video “Ekrlb”. As

can be seen, the proposed method significantly performs better than the Lee method.
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(a) Org. (b) proposed VOD (c) Lee. VOD

Figure 4.25: Comparison between the proposed VOD and the Lee VOD applied to
“Snow” with the original frame Fy3;, F377 and Fjeg.

4.6 Summary

The proposed color-based gray-level compensation change detection algorithm, the
proposed video-content adaptive thresholding algorithm, and the combined video ob-
ject detection are evaluated both subjectively and objectively in this chapter. Four-
teen real-world video sequences containing different video contents are used to testing

the proposed approaches.

Simulations of change detection show that the proposed change detection algo-
rithm effectively introduces the color information into change detection without per-
forming complex computation in all chrominance channels. Based on the support from
the proposed blocks-of-interest scatter estimation algorithm, the proposed change de-
tection is robust to both global and local unimportant changes, and significantly

improves the quality of change masks.
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Figure 4.27: VOD Objective comparison applied to “Intelligent room”
frames are used in training set).
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Simulations of thresholding show that the proposed thresholding algorithm is ro-
bust to multiple video contents. The proposed thresholding algorithm is more precise
than the intensity-distribution based thresholding methods without increasing com-
putation time, and more stable and much more efficient than the spatial-property
based thresholding methods.

The video object detection consisting of the proposed change detection and the
proposed thresholding algorithms clearly outperforms the background-modeling based
reference method. On one hand, the proposed system is very sensitive to color infor-
mation thus it successfully detects the objects which are similar to the background
in all chrominance channels without including more spurious blobs into the object
masks. On the other hand, the proposed system is robust to multiple unimportant
changes. It works well under non-serious shadows without any supports from high-
level analysis, while the reference method suffers in such a case.

Due to its efficiency and its robustness to artifacts, the proposed methods are

suitable for on-line real-time video applications.
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Chapter 5

Conclusion And Future Work

5.1 Conclusion

Motion-adaptive video object detection using change detection is efficient. However,
change detection in real-world applications is challenging due to the complexity of
video contents. In this thesis, we propose a content-adaptive video object detection
algorithm consisting of change detection and thresholding.

The proposed fast color-based change detection algorithm uses the YUV color
model, which has been proved as the most effective color model for video object de-
tection. First, frame-differencing followed by absolute-value operation is performed in
Y, U, and V channels of a video frame to obtain the difference frames of each channel.
Under no-change hypothesis, the gray-levels in the Y channel are modeled as a Gaus-
sian random variable, and the unimportant changes in the U and the V channels are
modeled as two exponential random variables; then the maximum-intensity statistical
model between the U and the V channels is then obtained. Second, an entropy based
block-of-interest scatter estimation algorithm is proposed to locate the blocks in a
frame potentially containing moving objects in the Y channel. Significance test com-

putation is then applied to the blocks-of-interest in Y. The gray-levels of the pixels
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which are non-significant in the Y blocks-of-interest but significant in the U or the V
channel are statistically compensated based on their significance probabilities in color
channels. Experimental results show that the proposed change detection algorithm is
robust to complex video conditions, and without performing change detection in each

color channel, the proposed change detection is efficient for real-world applications.

The proposed artifact-robust thresholding algorithm for change detection is pro-
posed based on video content assessment. Using the proposed blocks-of-interest scat-
ter estimation algorithm, a video-content assessment algorithm is proposed to 1)
detect if a video frame is an empty frame, and 2) estimate the strength of local unim-
portant changes. According to the video-content assessment, the global threshold
of a difference frame is computed discriminatively by a noise-statistic based thresh-
olding method for the empty frames, or a local-artifact robust thresholding method
for the non-empty frames. Experimental results show that the proposed threshold-
ing algorithm is more precise and more robust to video-contents than the intensity-
distribution based thresholding, and is more stable than the spatial properties based

thresholding methods for change detection.

The combined proposed change detection and the thresholding algorithms is com-
pared to a state-of-the-art motion-adaptive video object detection using background
modeling. The proposed algorithm is 1) more sensitive to the important changes in
both gray-level and chrominance channels thus it obtains more stable and complete
change masks, and 2) more robust to the local unimportant changes such as shadows

thus it outputs less noisy change masks.

This work has shown that 1) using color information for change detection can
significantly improve the accuracy of change masks, 2) it is not necessarily to perform
complex change detection in all channels, and 3) it is possible that implement fast and

accurate video object detection for real-world video applications without explicitly
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estimating the statistical model of local unimportant changes. Also we conclude that
although thresholding is a very simple operation but if carefully designed it can be

both efficient and accurate for classification.

5.2 Future Work

To further improve the performance of the proposed methods, the following steps to

enhance can be implemented:

1. Improve the scatter estimation of blocks-of-interest: To efficiently detect the
frame blocks potentially containing moving objects, the proposed scatter es-
timation of block-of-interest (BOI) is carried out in gray-level channel only.
It may lose some BOI where the foreground is similar to the background in
gray-level. We propose to include color information into the BOI estimation to

improve the reliability of the algorithm.

2. Improve the gray-level compensation: The proposed color-based gray-level com-
pensation algorithm is robust to the unimportant changes in non-ROC blocks
since it only compensates the gray-level in BOI. However, it may be sensitive
to strong unimportant changes such as serious shadows around the boundaries
of objects. We propose to include the statistical models of shadows into the
gray-level compensation to improve the robustness of the proposed algorithm

to serious shadows.
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