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ABSTRACT

Nonlinear Interaction of Piles-Soil-Raft
During Consolidation

Rongchang Yang, Ph.D. Candidate
Concordia University, 2007

In the literature the analysis of piles-soil-cap interaction received little attention from the
geotechnical engineering community. This is mainly due to the complexity of the
problem and the difficulties involved in experimental and analytical modelling. This
thesis presents highly sophisticated analytical and numerical models to investigate the
problem stated and incorporating the pore water pressure dissipation, which takes place
during the consolidation process for the plane-strain, axi-symmetrical and three
dimensional cases. Furthermore, the theories developed estimate the nonlinear load-
settlement relationship of pile-soil-raft interactive foundation, the proportions of loads
carried by the raft and piles, the increasing process of the ultimate bearing capacity of
piles and the effective stress changes which take place in the soil mass.

Evaluation of piles—soil—caps interaction during pore water pressure dissipation and the
consolidation process may positively impact on the foundation settlement and the load
sharing mechanism. The interaction is a nonlinear operation which involves the piles in
the group, soil surrounding the piles, piles’ cap (raft), and excess pore-water pressure
(EPWP) in the soil.

In the literature, due to the complexity of the problem stated, the role of the pore water

pressure was ignored and accordingly, the raft will share the foundation load when the
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piles reach the ultimate load. Under this condition, the sharing ratio of the soil-piles load
does not change during consolidation and further overestimates the contribution of the
raft to the total load.

This thesis presents a nonlinear method of analysis to evaluate the load sharing ratio
during the consolidation process and accordingly as a result of the pore water pressure
dissipation. The proposed analysis establishes the load-sharing ratio as a function of the
load level and load location on the raft. The initial pore water pressure distribution after
pile driving was also investigated. It was noted that the pore pressure generated during
driving is not only due to cavity expansion but also due to an increase in mean total stress
caused by the skin friction along the pile’s shaft and on the pile tip. Furthermore, the pore
pressure generated by the residual forces is relatively small and can be neglected. The
analysis of strength-stress relationship shows that the excess pore pressure generated
during pile driving increases almost linearly with depth, which confirms field
measurements. Furthermore, fractures in soil during pile driving make the excess pore
pressure fall to a stable level equivalent to the effective overburden pressure. This
becomes a major factor, which should be considered in the estimation of the excess pore

pressure generated within the pile group.

Analytical models are developed to simulate the cases of pore pressure dissipation for
plan-strain, axi-symmetrical and rectangle-area problems with only horizontal
permeating, and 3-D dissipation problem for uniform soil. Moreover, the numerical
inversion of Laplace transform to find solution of pore-pressure dissipation in layered soil
is presented. The changing process of the ultimate bearing capacity of pile foundations

due to the interaction process is presented. The proposed theories are practical and easy
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to use. Furthermore, charts for the consolidation level for a pile group and pile length are

also given in this thesis.

The simplified and convenient interaction analysis methods established in this thesis were
validated using the results obtained by a sophisticated numerical model. This method is
capable to estimate the load-settlement curves of pile-soil-raft nonlinear interactions and

accordingly, the variations of load sharing proportions.

Key words: piles—soil-raft interaction, pore-water pressure, initial distribution models,

nonlinear analyses, consolidation process, numerical methods, effective stress analysis
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LIST OF SYMBOLS

The following symbols are used in the thesis:
A= area of raft
As= Skempton pore-pressure coefficient A at failure
A= total section area of the pile group
A,= the section area of pile
a = radius of pile
a,y = average coefficient of settlement of soil in area of load
ac = width of foundation column
B = width of foundation (or raft), =2b
Bo= the distance between a edge pile and another edge pile that is opposite to center axle
b = half of foundation width;
side length of section of square pile
BEM = Boundary Element Method
C, = compression index of soil
Ch, Cy = horizontal, vertical consolidation coefficients, respectively
C, , C. = coefficients of the ultimate resistance to the soil sliding around a pile
C; = swelling index of soil
¢ = soil cohesion;
C,3 =3-D consolidation coefficient of soil
Cmn = parameter of m, n term of series
¢y = undrained shear strength of soil
D, D¢ = depth of embedment form ground surface to foundation level
D, = relative density
d = diameter of pile;
the depth of raft bottom
deq=\/(4Ag/1t)=1 .13\/Ag, equivalent diameter of the pile group
E = deformation modulus of soil
Eeq=EsH(Ep-Es)(Ap/A,), the equivalent modulus of of the pile group
E, = elastic modulus of pile

E; = deformation modulus of soil
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Es12 = compression modulus of soil between pressure 100~200KPa (1~2Kg/cm2)

E,. = drained deformation modulus of soil

E, = undrained elastic (immediate) deformation modulus of soil

E.: = unload-reload elastic modulus of soil

e = base of natural logarithms (=2.7182818284590452353602874713527);

e; = void ratio of soil

EPWP = Excess Pore Water Pressure

F; = safety factors of subsoil

F; = total safety factor of pile-and-soil system

F.E. = finite elements

FEM = Finite Elements Method

FLM = Finite Layer Method

{Fp} = load of cap element

.fs = ultimate friction stress of pile (shape factors)

J» = ultimate bearing capacity of pile base

Gy, Gi, G,y = Shear modulus of soil at pile base,

Gs = specific gravity of soil

GSDT = Generalized shear-displacement theory

H,, Hq, H, = incremental bearing capacity coefficients effected by soil cohesion, depth of
raft, and width of raft, respectively

hi = thickness of the k-th layer of the layered soil;

(1+2k)x
2R

= %7-{ for permeating bottom, or = for impermeating bottom boundary

Ip, I = respectively, plastic index and liquid index of soil

i = imaginary number (=v/-1)

ir = hydraulic gradient of the k-th layer of soil

J

Jo, J1, J2 = Order 0, 1, 2 Bessel functions of the first kind (column), respectively

jo, j1 = Order 0, 1 Bessel functions of the second kind (sphere), respectively

Ky, K, = hydraulic conductivity of the soil in horizontal, vertical directions, respectively

Ky = rest earth pressure coefficient
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Kr = complex stiffness of piles and raft
K; = stiffness of raft
K, = stiffness of group piles
k; = the pile-head stiffness of a single pile
[K;] = pile stiffness matrix
L, [ = length of pile
! = distance from 0 point to the point that initial excess pore pressure is zero
M = substitution used for integration
N = substitution used for integration
N, Ng, Ny = ultimate bearing capacity coefficients of soil
n = number of piles;
numerical term of series
np = number of cap load elements

n, = number of pile load elements.

OCR = overconsolidation ratio

P = resultant force acting on surface

Py = the design load

P; = the load carried by the raft corresponding to allowed settlement S,

P, = ultimate shaft resistance of all pile

Py, P, = forces of pile top and pile base, respectively

P,= U Zf;Al; + f,Ap, Ultimate bearing capacity of a single pile (UBCP)

P.,.= P,(t), UBCP at some time ¢ after pile driving

P,;= the initial UBCP estimated by dynamic penetration resistance (due to thixotropic
residual strength) during pile driving

P,y = P,0), a theoretical static UBCP at the exact time that driving ends

p = perimeter of pile section

Po =&sqa -YD, additional pressure on the bottom of raft

pr = pressure on the bottom of raft

p-w.p = pore water pressure

Q = total load of both upper structure and foundation
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Q; = total load beard by soil

Qp = total load beard by piles

Q. = total ultimate bearing load capacity of both piles and soil under raft

Q(z) = unit permeatability in soil at depth z

q = using-in-design pressure of soil under raft

Ja = qu/Fs, allow bearing capacity of soil

¢u = ultimate bearing capacity of soil

qur = Ultimate bearing capacity of soil under raft

Aqy = increment of soil bearing capacity for piles’ resisting to the soil sliding around piles

q,= a variable after Laplace transform and finite Fourier series transform

R = the range radius of plastic field;
boundary range of excess pore pressure.
R; = ratio of the settlement of pile group to that of single pile
Ry, Ry, R, = boundary range of excess pore pressure, respectively in x, y, and z direction
r = radical or polar coordinate
1o = radius of pile shaft
1y, = radius of pile base
T, = an equivalent radius calculated from the area of raft associated with each pile
S = piles’ center space;
the settlement of foundation
Sa, Sp = settlement at point A, B in foundation
Sa = allowed settlement
Sp =settlement of the soil at pile base
ASg1. = compressive displacement of the soil between the top and the base of pile
ASpg =elastic deformation of the pile body
{S} = the displacement of the soil under raft and around piles
{Sg} = the settlement and load of cap element
{S,} = the displacement of piles
SAM = Simplified analytical methods
SDT = Shear-displacement theory

{AS} = displacement difference between calculating point and cap bottom, i.e. pile head
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s = piles’ center space
& =deformation of pile-end punching into soil at the pile base
[85], Os;j = the soil flexibility matrix, and its coefficients
T= C,t/R; ,or Cit/R?,
time factor of excess pore water pressure dissipation or consolidation of soil
t = time length from the date of driven pile to considering date
U = consolidation degree of soil;
perimeter/circumference of pile
UBC=Ultimate Bearing Capacity
UBCP= Ultimate Bearing Capacity of Pile
UBCS= Ultimate Bearing Capacity of Soil
u = pore pressure in soil
uo = initial pore pressure in soil
oo, Ugb, Uom = 1nitial excess pore pressure at z = 0, b,, and 1,, respectively
Aup, = maximum excess pore pressure
w (%) = moisture content of soil
X, y = coordinates of x, y axle
z = soil depth from surface, coordinates of z axle
A = increment
® = o, t0,10y, total sum of stresses G,, G;, Gy
11, T2, T2, oz = four elements of metrix 1]
[A] = metrix [A]
T = multiplication sign for all the numbers in a range expressed by subscript multiply
with one another.
®=
¥ = summation sign to add all the numbers in a range expressed by subscript.

"." = cause, due to

..= hence, or therefore

a = failure ahgle between failure plan and horizontal surface
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ap = the ratios of pile-base load to pile-head load

oy, = the ratios of pile-base load to pile-head load near to plastic or ultimate state

ar= 0.707(3A¢1) = Henkel's pore-pressure coefficient at failure
o, = numerical values which makes order 0 Bessel functions of the first kind Jy(a,,) = 0
(positive zeroes)
., = interactive factor of pile to raft
B = another Henkel's pore-pressure coefficient at failure
x = Ac,'/ Au=0.5+p
O = deformation of pile-end punching into soil at the pile base;
[Sss]nbxnp, [SSP Tnbxnps [SPS]npxnb and [ESPP]annp = respectively interactive flexible coefficient
matrixs of soil—soil, soil—pile, pile—soil as well pile—pile element points
€, €, €9 = strains in vertical (z), radial (r), and angle () directions
¢ = initial friction angle of soil
v = soil unit weight;
shear strain
Yo = average effective unit weight of soil above the bottom of foundation
ve = effective unit weight of soil under the bottom of foundation
v¢= unit weight of foundation
N =r1y/1,, ratio of underream for underreamed piles
Mg = pile-group efficiency coefficient
Mr =1+Aqu/qur increment factor caused by pile’s resisting action on soil moving laterally
I={ = length of pile
¢ = initial friction angle of soil
A =Ey/ G , pile-soil stiffness ratio
A=Qs/Q= E,q.A/Q=Es, the proportion of load carried by the raft
I, v, vs = Poisson's Ratio of soil

pl=( /ro)\/(Z/Ql) , measure of pile compressibility

7= pi (= 3.14159265359)
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0 = angle coordinate

P = G,y /Gy, variation of soil modulus with depth;

= ,/r’ +(z- D)’ , distance between calculated point and pile tip, polar coordinate;
= 1/1.
o = normal stress
Oy, Oy, G, = stresses in X, y, and z (vertical) directions, respectively
o3, Or, Op = stresses in vertical (z), radial (r), and angle (0) directions, respectively
o(z) = o(z) + op(2), vertical additional stresses at depth z
o(z) = additional stress caused by raft additional pressure p,,
op(z) -—---- additional stress caused by all pile load Q,
o’y = initial vertical effective stress in soil
= shear stress
T. = shear stress at limit elastic shear strain of soil around pile.
T¢ = shear strength of soil, ultimate unit frictional resistance of pile shaft.
T, = shear stress in r = C (a constant) or z = C plan
o = range radian of each pile around the center of circle raft
€ = G, /Gy, =ratio of shear modulus of soil at end-bearing for end-bearing piles
&s =0/qa =qFs/qur, Utilization ratio of soil bearing capacity
&p = raft-effect factor
W =q.A/Q=quA/(FsQ), Satisfaction degree of natural soil bearing capacity
v 1(X)=u(x,0), wa(x)=ulx, y,0), wi(x)=u(x, y, z,0), initial distribution of pore pressure
C = In (ry/ro) = In{ (0.25+E[2.5p(1-05)-0.25] ) 1 /1, }, measure of influence radius of pile
£ = complex parameter in the procedure of Laplace transform and finite Fourier series

transform

0 = partial derivative
I = integral

oo = infinite value

XXX



F= F=0 (F)=01[0 (F)] =0 [0 (F)] = the compositive transform by Laplace
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F = O (F) = finite Fourier series transform
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sh( ), ch() = hyperbolic sine and cosine function, respectively

[Alx, [Blx, [I'], [A] = matrix

XXX1



CHAPTER 1

INTRODUCTION

1.1 Preface

Building design has two main components: (1) the design of the superstructure and (2)
the design of foundations. The superstructure is assumed to produce predetermined
column and wall loads that the foundations are required to carry. The applied loads cause
foundation settlements; the non-uniform settlements of the foundation’s elements cause
secondary internal forces in the structure’s components, due to the inevitable interaction
between the structure and the foundation. Secondary settlements may also occur due to

the interaction between the foundation, its various elements and the surrounding soils.

One of the outstanding unsolved problems is the non-linear interaction among the piles,
the soil and the cap (piles-soil-cap). This can be achieved only if the load-deformation
characteristics of beams, columns, walls and the surrounding soil during the loading
process are known. However, this mechanism is a very complex one and, in practice,
engineers have developed simplified theories and empirical formulae, which tend to be
over-conservative. The secondary internal forces experiences by the structure’s
components, caused by non-uniform displacement of the foundation, can lead to their
failure. In order to avoid such situations, designers have empirically increased the
thickness of the foundation’s raft and increased the stiffness of the subsoil system (pile-
soil) by increasing the number and length of piles, which produce over-conservative

designs.



Engineers often assume that the differential settlement between foundation’s elements is
relatively small, the foundation is rigid, and the secondary internal forces in components
of the upper structure are accordingly quite small and that they can be dealt with using an

adequate factor of safety.

Piles embedded in soil provide reinforcement to the soil, increase its load-bearing
capacity and modify its deformation behavior, similar to the reinforcement of concrete.
Piles are also one of the oldest traditional foundation forms used to overcome the
difficulties of building on soft soils and they have been widely used and various types

have been developed for use in building and civil engineering projects.

The understanding of the interaction between the pile foundation and the surrounding soil
has recently been greatly advanced. Under permitting ground conditions, load sharing
effects of the interaction of piles—soil-cap can be applied to improve the economy of
design. The increasing demand of reliable prediction of a pile design’s behavior has
stimulated more sophisticated research into the piles-soil-cap interaction, which is the

subject of this research study.

While a sufficiently accurate analysis of the effects of reinforcement can be obtained in
concrete, the extended-continuum nature of the embedded piles in soil makes the analysis
of the reinforcement effect much more difficult. This can be explained by the fact that the
behaviors of piles, soil and cap are non-linear interactions, which include soil nonlinear

stress-strain characterization, pile shaft, base ultimate strength theories and pile-soil



interaction theory. This is difficult at best, as soil is a compounded geological body that is

not uniformly distributed and is not ideally elastic-plastic on a stress-strain relationship

except for dilatation/shrink behavior, which is associated with a pore water pressure
increase caused by shearing. Furthermore, the components of the piles, cap and soil

(including pore-water pressure) involved in the mechanism can influence each other, such

as:

(1) Weakening the friction of the upper part of the pile’s shaft, due to the displacement
difference of the pile-soil caused by the cap (a direct effect of the cap’s load on both
the soil under the cap and around the piles).

(2) Enhancing the pile’s shaft friction strength and the bearing capacity of the pile base,
due to an increase in effective normal stress caused by the load applied on the soil
both under the cap and around the piles.

(3) Increasing action on the soil capacity due to the resistance of the piles to the soil
sliding around the pile.

Additionally, the pore-water pressure development in the soil, due to pile driving and pile

interaction, and its dissipation with time is regarded as a complex mechanism besides the

fact that geotechnical parameters and in-situ stress state may change due to pile

installation and continue to change afterward with time.

1.2 Research Objectives
This thesis will review pertinent literature on the subject matter, develop a model for
piles-soil-cap interaction and develop the mathematical formulations to simulate the

interaction’s complex mechanism.



In order to achieve the above mentioned objectives, the following steps will be followed:

1-

2-

To conduct and report a literature review related to the subject of the thesis;
To develop a mathematical model to simulate the initial pore-water pressure
developed in the surrounding soil mass during the driving of piles and its
dissipation with time;

To derive the analytical or numerical model to predict the excess pore-water
pressure dissipation with time in uniform and layered soils;

To develop numerical models to analyze the piles—soil-cap non-linear
interaction before, during driving and over a period of time;

To validate the results using the existing available results in the literature;

To propose a simple and practical method that predicts the influence of excess

pore-water pressure dissipation on the behavior of piles-soil-cap interactions.

1.3 Scope (Organization) of the thesis

This thesis is composed of the following chapters:

Chapter 1 gives an introduction of importance of considering pile-soil-cap interaction in

design; background of the interaction, and the objective of this thesis.

Chapter 2 reviews the previous literature on reported tests and observations of pile group

and piled foundations, the methods of simplified, approximate computer-based and more

rigorous numerical analyses, and effects of EPWP (excess pore-water pressure) in the

interaction.



Chapter 3 sets up a numerical model for analyzing pile-soil-raft system in a Hybrid
method combining the finite layer method with the generalized shear-displacement theory
without consolidation factor, runs tests for validation, analyzes some cases and presents
general conclusions.

Chapter 4 presents the investigation of the excess pore pressure caused during driving
single pile and afterward with a theoretical calculation method based on existing
observations and experience, and gives methods for estimating the initial pore pressure
distribution due to driving group piles and case analysis.

Chapter 5 presents analytical solutions of pore-water pressure dissipation for plane-
strain, axi-symmetrical and rectangle-area problems with only horizontal permeating, and
3-D dissipation problem for uniform soil, establishes numerical Laplace-Fourier integral
transform and its inversion method calculating pore-water pressure dissipation for layered
soil.

Chapter 6 investigates the changes in the effective stresses in the soil around the pile due
to pore pressure dissipation and the interaction, and presents the formulations for
estimating the ultimate bearing capacity of piles (UBCP) in the system.

Chapter 7 presents the theory for predicting settlement of the system; which is divided
into four parts: two immediate settlements from raft-bottom pressure and from pile-top
load and two consolidation settlements caused by remnant EPWP of driving and by raft-
bottom pressure.

Chapter 8 presents the analyses of two case histories: one is to estimate the increment of
the UBC of a single pile due to the dissipation of EPWP from pile driving, another is to

analyze the changes of the loads shared by piles and raft and further the settlement in the



pile-soil-raft interaction, presenting comparative analyses of the results produced by
different methods with or without EPWP effects, due to the driving and raft-bottom
pressure. In this analysis, the methods developed in Chapter 6 and 7 are used, and
accordingly important conclusions are drawn.

Chapter 9 presents the contributions and conclusions on pile-soil-cap interaction drawn

from this study and recommendations for future research.



CHAPTER 2

LITERATURE REVIEW

2.1 Model Tests and Empirical

The first to discuss pile group interaction is on group efficiency and group settlement
action before 1950°. It has been recognized that for some time that the ultimate load
borne by a group is not simply that of a single pile multiplied by the number of piles in
the group (Sooysmith, 1896). Press (1933) test on piles in pairs in sand, and Swiger
(1941) a row of three piles, also in sand. Masters (1943) gave the results of full-scale
loading test on a few groups in clay. According to Bolin (1941), Feld (1943), Seiler &
Keeney (1944), Converse-Labarre formula gives the efficiency of a pile group from the
spacing and layout, based on the idea that adjacent piles interfere to an extent which is
dependent on their spacing. Skempton (1952, 1953) discussed the settlement ratio of pile

groups in sand, taking a series of examples from practice for which data were available.

Since 1957 activity in pile group studies has increased considerably. Zeevaert (1957)
presented a study on compensated friction-pile foundations. Model tests have been
carried out to determine group efficiency factors in homogeneous sand (Whitaker 1957;
Fleming 1958; Kezdi 1960). Furthermore, both Whitaker (1960) and Saffery and Tate
(1961) investigated the case of pile-group-cap foundation. Sowers et al. (1961) and
Hanna (1963) studied the case of free-standing pile groups in clays. A summary of some

of these tests was presented by de Mello (1969), and the load distribution on piles in a
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group was given by Whitaker (1970). More reports on settlement-reducing piled
foundations appeared at the end of the 1980s. Afterward, some field measured and
experimental data were reported (Lin et al, 1989; Tong et al, 1989; Nan, 1991; and

Sommer, 1993).

2.1.1 Model Tests

Whitaker (1957) reported that the capacity of a pile group in clay is always less than the
product of the total individual piles capacity, whereas that of sand was usually more. He
also indicated the existence of two types of failure: (1) the failure of individual piles
within the pile group and (2) the block failure of the pile group. For a given length and a
given number of piles in a group, there was a critical value of spacing at which the failure
mechanism changed from block failure to individual pile failure. For spacing near to the
critical value, failure was in the form of vertical slip planes around the perimeter of the

block; For wider spacing, the piles individually penetrated the soil.

Fleming (1958) examined the case of square pile groups in dry sand. His findings
confirmed the general trends of the small-scale field tests reported by Kezdi (1957). That
is, the types and characters of soil and pile spacing control the group’s efficiency. For a
foundation of a given size, increasing the number of the piles does not increase the total

ultimate capacity of the group when piles are spaced below the critical value.

Hanna (1963) conducted model tests on pile groups which confirmed Whitaker’s findings

(1957). Furthermore, he indicated that the settlement of a group of piles can be much



greater than the settlement of an individual pile, which is caused by the pile-pile
interaction, and accordingly, larger factor of safety for the design of a single pile is

required in order to control group settlement.

Cooke et al (1979) presented a series of field tests performed on instrumented rows of
two and three tubular steel piles installed at close spacing in London Clay. However, this
investigation failed to assign in the nonlinear state near to the ultimate load. The
comparison results show that the calculated value of the interaction using the elastic

theory is relatively higher than the measured values.

Liu et al (1994) reported that the behaviors of shaft resistance, base resistance and soil
reaction beneath the cap of pile groups vary with pile spacing, arrangement and

the ratio of pile length over cap breadth. Test results indicated that the cap-pile-soil
interaction lead to a reduction in the shaft resistance and an increase in base resistance.
Furthermore, the soil reaction beneath the cap increased with both increasing pile spacing
and load. Under working load (less than half of the pile’s ultimate bearing capacity), the
efficiency of the pile group in soft soil usually reaches an approximate value close to or
greater than 1. The low-set cap effect reduces the upper pile’s shaft resistance, increases
the base resistance. And its load-settlement curve shows a gradual drop rather than the

steep drop seen in the curve of high-rise caps.

Horikoshi & Randolph (1996) performed centrifuge tests of model piled raft foundations

in order to examine the role of a small centered pile group in reducing the settlement of



the raft. The results showed that a small low-set cap increased the total bearing capacity
significantly due to the load transfer to the soil through the cap. These results differ from

those of the elastic numerical analysis conducted by Butterfield & Banerjee (1971a).

2.1.2 Field Measured Data and Case Histories

Zeevaert (1957) described the design and performance of a compensated friction pile
foundation that reduced the settlement of buildings on the highly compressible volcanic
clay in Mexico City. The settlement observations and subsoil investigation revealed that
the settlement was much smaller as compared to the estimated settlement for the same
foundation without piles. A great economy was achieved because the friction piles carried
only a fraction of the building’s total load. Moreover, since the piles were designed
without support from deep strata, the undesirable feature of sidewalks settling away from
buildings, caused by the well known ground surface subsidence of Mexico City, was

eliminated.

Lin Bai et al. (1989) reported their experience with piled foundation in Shanghai and
Wenzhou, China. Through observations of the coordinated deformation between piles
and soil beneath the cap, they suggested that the dualistic simultaneous equations are

suitable for solving the settlement for sparse piled foundation.

Tong et al. (1989) presented the following results based on their observations:
1) Up to 70% of the load is transferred from the top of a pile in a group to its base. This

is about twice the value that can be transferred to an isolated pile. In the case of half
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the ultimate pile bearing capacity, the shaft friction developed in the pile group is
only 45-60% of that of an isolated pile.

2) Even in a conventionally designed piled raft, about 88% of the building load is
supported by the piles, and the remaining (about 12%) by the soil beneath the cap.

3) The contribution of the reaction pressure at the bottom of the cap is of a saddle shape,
that is, it is larger near the corners and edges and smaller near the inside of the cap.
Similarly, the largest observed loads of the top, shaft and base of the piles occur on
the corner piles, the second on the side piles, and the smallest on the inner piles.

4) In the case that a building’s total load (minus the buoyant force of water on the
foundation) does not exceed the ultimate bearing capacity of the pile group, the
settlement of the short-pile foundation is mainly caused by the compression
deformation of soil under the pile base, and the effect of the punch deformation of the

piles of low-set cap is quite smaller.

Nan (1991) reported the case of a seven-story building supported by a sparse piled raft.
When the spacing between piles was 7 to 8 times the pile’s diameter, it was found that
piles shared 47% of the total load at 70 to 90 % of the ultimate load and that the raft
shared 53% of the total load. The foundation settlement was 6 to 10mm at the time of

construction completion and 12mm after two years.

Sommer (1993) reported the case of the 256 m high Messe-Turm, Europe’s tallest high-
rise building, which rests on a piled raft foundation on Frankfurt clay. He describes both

the “locked stresses” after the excavation and the negative skin friction due to the
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compression of the raft subgrade by the “wet-load” of the concrete. He also indicates that
piles shared 61 to 75 % of the total load when near the ultimate load of the piles, while
the designer indicated that the piles would share 33% and that the raft would share 67%
of the total load. The percentage of the load actually carried by the piles is twice that of
the design value used or the working load of the piles, which is half of the ultimate

bearing capacity (UBC) of the pile group.

2.2 Simplified Design and Analysis Methods

With the exception of Zeevaert’s design and study of compensated frictional pile
foundations (1957), many engineering practices emerged after the 1980s for spare pile
foundations, settlement-reducing piled foundations, and foundations designed according
to the concept of piles-soil-raft interaction. In other words, analysis methods for the
piles—soil—cap interaction appeared afterward. Randolph (1983, 1994) developed very
convenient approximate equations to determine the stiffness of a piled-raft system and the
load-sharing between the piles and the raft. Poulos (1991, 1994) developed the strip-on-
springs and the plate-on-springs approaches. Zai (1992) presented a simple formula
which verifies the stability and settlement of piles-soil systems. Burland (1995)
developed a useful simplified design process, in which the piles act as settlement reducers
and develop their full geotechnical capacity at the design load. Yang and Zai (1995,
1996) presented formula that estimate the increments of the soil’s ultimate bearing
capacity under sparse pile foundation for the resistance of piles to soil sliding around

them.
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Randolph (1983, 1994) developed approximate equations to estimate the stiffness of a
piled-raft system and the load-sharing between the piles and the raft. The equation for the
overall stiffness of the piles and the raft, K, is:

Ky r020,K,
2
1-0l (K, /K,)

(2-1)

The equation to determine the load proportion carried by the raft is:

_ Qr _ (1 —-a, )Kr
0,+0, K,+(-2a)K,

(2-2)

where:
K, = stiffness of raft
K, = stiffness of group piles

oyp = interaction factor of piles to raft.

The raft stiffness K, can be estimated via elastic theory, such as, for example, the
solutions of Fraser and Wardle (1976) and Mayne and Poulos (1999). The pile group
stiffness K, can also be estimated using elastic theory, such as those described by Poulos

and Davis (1980), Fleming et al (1992) and Poulos (1989).

K, = 2.25GB/(1-vy) (from Poulos & Davis 1974) (2-3)

K,~k;n'" (Fleming et al 1992) (2-4)
where, k; is the pile-head stiffness of a single pile; n is the total number of piles; the
exponent e lies between 0.4 and 0.6 for most pile groups, determined by the given charts

on page 193 of Fleming et al (1992).
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The pile-raft interaction factor o, can be estimated as follows:

_In(r, /7,)
S

o~ 1 (2-5)

Where 1. is an equivalent radius, calculated from the raft area associated with each pile.
Clancy & Randolph (1996) performed a more rigorous analysis on the subject matter and

reported that as the group size increases, the value of o, tends toward a constant value of

about 0.8, i.e.:
1-0.6(K /K
- (K,/K,) (2-6)
1-0.64(K,/K ) P
r=0J0= P 0.2 K, @-7)

P+P, 1-08(K,/K,)K,

It should be noticed herein that the above formulae produce reasonable results only in the
elastic state of the pile-soil system whereas they produce an overestimate for a system in

the elastic-plastic state because of the pile-soil nonlinear relationship.

For the case where piles are designed to act as settlement reducers and allowed to develop
their full geotechnical capacity at the design load, Burland (1995) developed the
following simplified design procedure for pile-raft systems:

1) Estimate the total long-term load-settlement relationship for the raft without piles (see

Fig. 2-1). The design load P, gives a total settlement S,.

2) Assume an acceptable settlement S,, which should include a margin of safety.

3) P, is the load carried by the raft corresponding to S,.
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4) The excess load Po-P; is assumed to be carried by the settlement-reducing piles. The
shaft resistance of these piles will be fully mobilized and therefore no factor of safety
is applied. However, Burland suggests that a mobilization factor of about 0.9 should
be applied for a “conservative best estimate” of ultimate shaft resistance, Py,.

On this basis, the number of piles required can be estimated as follows:

n = (P,—P;)/(0.9P,) (2-8)

Furthermore, if the piles are located below columns that carry a load in excess of the

group capacity, Py, the piled raft may be analyzed as a raft with reduced column loads.

The column’s reduced load Q; is calculated as:

Q~=Q-0.9P, (2-9)

Where, Q = total column load.

LoadP }
» Estimated
Design . p | load settlement
load 70 | curve for raft
| _ |
P, A
: : S, = allowable settlement
|l Piles to cany load excess
Lo of (Pg - P})
|
|
4 -
S, S
a "0 otal settlement S
{a) Load settlement curve for raft Reduced column load
Column load Q T Qq =Q-09P,
| ot Raft £
Pile ultimate
shaft capacity ~_|
s ® T“;;;;:é fzcﬁ“on of (c) Equivalent raft section

Fig. 2-1 Burland’s Simplified Design Approach (Burland 1995)
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It should be noted that the above method neglects many other factors, such as the
additional settlement caused by the pile load, similar to the method suggested by Zai
(1992), for the case where the center spacing between piles is quite large, S> 8d.
Moreover, Burland’s method does not consider the change of the bearing capacity of both

soil and piles due to the changing pore pressure in the soil

Zai (1992) presented a simple formula to check the stability of the piles-soil system. The

said formula was modified by Zai & Yang (1994), as follows:

& = 77rqu‘A + ngnl)u

F(:
Q Q

=1.111 + M, F—1.111E)y  (2-10)

Where,
F; = safety factor of the piles-soil system;
Q = total load of both upper structure and foundation;
Q. = total ultimate bearing load capacity of both piles and soil under raft;
N:= increment factor for soil capacity for the lateral movement of pile.
N =1+Aqu/qu=1.1~1.3 (Yang 1995);
Mg is the group coefficient (for piles’ with a center spacing, S> 6d (d=pile’s diameter) or
in the case of a pile load P equal or close to Py, ng~1.;
1, is number of piles in the group;
P, is the capacity of a single pile;
£s=q/q2=qFs/qus, 1s a ratio of soil bearing capacity;

q uses the in-design pressure of soil under raft;
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ga= qu/Fs (F; is soil factor of safety), is the allowed bearing capacity of soil;
qur 18 ultimate bearing capacity of soil under raft;

F; is the safety factor of a soil’s bearing capacity for swallow foundation;
¥ = qA/Q = quA/(F;Q) represents satisfaction degree of the soil bearing capacity;

q = qa;

A is area of raft.

The formula (2.2-10) is actually simplified to the following form:

Fi=ng/ &, + (MFs—Eny/ Ep)w (2-11)

where, & is the factor that accounts for the effect of the cap on the capacity of the group.

From Equation (2-11), setting £,=0.9 (recommended by Zai 1992 and Burland 1995) and

ng=1.0 yields the relationship between F, and & as well as y, e.g., (2-10) as shown in

Table 2.1.

It can be noted from Table 2.1 that when n,Fs= 2.5, the satisfaction degree of soil bearing
load ¢ = q,A/Q >0.5 and the utilization ratio of soil bearing capacity & = q/q.< 0.6. The
total safety factor of a pile-soil system can be satisfied if F>2. When n,F; increases, the

satisfaction degree of soil bearing load will decrease and the utilization ratio of soil

bearing capacity will increase.
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The satisfaction degree of soil bearing capacity,y, can be determined at the design stage.
By selecting the utilization ratio of soil bearing capacity &; from Table 2.1, the sharing

ratio of soil-bearing loads (the proportion of load carried by the raft), A can be calculated

as follows:

A=&s (2-12)

The number of piles can be then determined using the following equation:

w=0-5v) 73 (2-13)

Knowing A and n,, the settlement of the entire piles-soil system can be checked for the

following cases:

(1) When the piles’ center spacing S> 8d, the compression of the soil between the pile top
and the pile base ASgy. is >95% of the total settlement of foundation (Zai 1992), therefore,
the effect of piles can be neglected. The settlement is then calculated assuming the
pressure on the bottom of the raft p,=£,q, -yD to be p; and using elastic theory formula or

the method proposed by Das (1999).

(2) For a general case, the individual settlements caused by the raft pressure p, and by the

piles’ load can be calculated using the following:

Qp = &Py = (1 —&y) Q = &n (UZf5AL + frAp)  (2-14)
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F; value when n,F=2.5 (from Zai, 1992)

Table 2-1 Safety factor of pile-soil system

v 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Es
0.1 1.35 1.59 1.83 2.07 231 2.54 2.78 I 3.02 326  3.50
0.2 134 157 179 | 202 225 248 | 271 293 | 316 339
0.3 133 154 176 198 | 219 241 | 263 284 | 306 3.8
0.4 132 152 173 193 | 214 234 | 255 276 296 | 3.17
0.5 1.31 1.50 1.69 1.89 2.08 2.28 2.47 2.67 2.86 3.06
0.6 1.29 1.48 1.66 1.84 2.03 221 2.39 2.58 2.76 2.94
0.7 128 146 163 180 197 | 214 232 249 | 266 2.83
0.8 1.27 1.43 1.59 1.76 1.92 2.08 2.24 2.40 256 272
0.9 1.26 1.41 1.56 1.71 1.86 2.01 2.16 2.31 246 | 2.61
1 1.25 1.39 1.53 1.67 1.81 1.94 I 2.08 2.22 2.36 2.50
F; value when n,F=3.0 (by equation 2-22)
w1 01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
s
0.1 1.40 1.69 1.98 2.27 2.56 2.84 3.13 342 371 4.00
0.2 1.39 1.67 1.94 2.22 2.50 2.78 3.06 333 3.61 3.89
03 1.38 1.64 1.91 2.18 2.44 2,71 2.98 3.24 3.51 3.78
0.4 1.37 1.62 1.88 2.13 2.39 2.64 2.90 3.16 341 3.67
0.5 1.36 1.60 1.84 2.09 2.33 2.58 2.82 3.07 3.31 3.56
0.6 1.34 1.58 1.81 2.04 2.28 2.51 2.74 2.98 321 3.44
0.7 1.33 1.56 1.78 2.00 222 2.44 2.67 2.89 3.11 3.33
0.8 1.32 1.53 1.74 1.96 2.17 2.38 2.59 2.80 3.01 3.22
0.9 1.31 1.51 1.71 1.91 2.11 2.31 2.51 2,71 291 3.11
1 1.30 1.49 1.68 1.87 2.06 2.24 2.43 2.62 2.81 3.00
F; value when n,F=3.5 (by equation 2-22)
v 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
£
0.1 145 1.79 2.13 2.47 2.81 3.14 348 3.82 416  4.50
0.2 1.44 1.77 2.09 2.42 2.75 3.08 3.41 3.73 406 4.39
03 143 1.74 2.06 2.38 2.69 3.01 333 3.64 396 4.28
04 1.42 1.72 2.03 2.33 2.64 2.94 3.25 3.56 38 4.17
0.5 1.41 1.70 1.99 2.29 2.58 2.88 3.17 3.47 376 4.06
0.6 1.39 168 196 | 224 | 253 281 | 3.09 338 | 3.66 3.94
0.7 1.38 1.66 1.93 2.20 2.47 2.74 3.02 3.29 356 3.83
0.8 1.37 1.63 1.89 2.16 2.42 2.68 294 3.20 3.46 3.72
0.9 1.36 1.61 1.86 2.11 236 2.61 2.86 3.11 3.36 3.61
1 1.35 1.59 1.83 2.07 231 2.54 2.78 3.02 3.26 3.50
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In order to obtain the total settlements, one must sum the individual settlements
calculated with the above equation. Otherwise, the additional vertical stresses 6(z) can be
calculated at different depths under a given point on raft, as

o(z) = o1(2) + 0,(2) (2-15)
Where,
o,(z) is the additional stress caused by p,, and

op(2) is the additional stress caused by Q,, which can be determined according to Geddes

(1966).

One should then add up the settlements of the stratified layers, based on one-dimensional

consolidation settlement equation (Das 1999)

The total safety factor method based on equation (2-11) considers many factors, including
the increment factor of soil bearing capacity caused by a pile’s resisting action on
laterally moving soil, which can be determined by equations (2-17) or (2-24), and also
including the decreasing effect factor of a cap on the pile’s ultimate bearing capacity, to

be defined in Chapter 3 as per equations (3-21) to (3-23).

An increment of soil ultimate bearing capacity for shaft resistance, Aq,, can be
determined (Yang & Zai 1995, 1996) as follows:

Aqy = (HgyoD + HyypB/2 + He-c)d/S (2-17)
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where,
d = diameter of circle pile-group or the width of a square group;
S = space between piles’ centers;

B = width of strip foundation (or raft);

Hg, Hy, and H, are determined by the following formulae:

Hy = CpKOT(é2 -1/ sin’at

Hy = 2/3- C,KoT(&’ - n’)/ sin’a > (2-18)

H, = C. T(€? - n’)/ sin’a.
and

£ = cosg-¢/ e 3\

n = (1-Ry) cosa, Ry=B,/B

K, ~ 1-sin@ > (2-19)

T=1/(1+K/tg’a), K. =tg*(45°-¢/2)

o = (/4 - ¢/2)(1+mg), mg = 0.5 J

B is the distance between two edge piles, or two times the distance between an edge pile
and the center axis of the group (or the raft).
€: can be calculated according to following iterative formula:
& = arcsin[(1-By/B)sino-e™ @ *&° | (2-20)
C, and C; are coefficients of the ultimate resistance to the soil sliding around a pile (Zhu

and Shen, 1990).
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e(fr/2—¢)tg<o e—(/r/2+<o)tg<o
Cp = - - - +2tgp (square pile)
l-sing  l+sing

3 2
C,= 1 Cppo = e(ﬂ'/Z—(D)tg¢{3tg¢sln/j +(2tg°p—1)cosu L _COsH :|

= dtg’p+1 1+sing (2-21)
f— 2 — 1 1
4 o (/2eovee 3igpcos (22tg p-Dsinp sm. )2 (circular  pile)
dtgp+1 1+sing
Where, p = n/4—¢/2;
C,/1gp (for ¢#0, )
Co= 142 (for @=0, circular pile) (2-22)
4+ (for ¢=0, square pile)
and Ae = Cpc/Cpp = 0.80  (when ¢ = 0 ~ 40°) (2-23)

For circular foundations, Ag, can be determined using the following formula (Yang & Zai
1996)
Aqu = (Hq¥oD + Hyv8B/2 + He-0)Tod/S (2-24)

where, S= ©®B/2, ®=27/n; n is the number of piles around circular raft center;

2
1+ 2 (2% _y)
T, 24" " (2-25)
o 1+sin@
I+ —
24 2 —-sin@

Teo=0.92~1.05 when ®=0~90° and ¢=0~35°.

Hq, Hy and H, are same as given in formula (2-18); however, the parameters are changed

to the following form:
T = 3/[2°(1+K/tg*a)] (2-26)

o =Tn/4 (2-27)
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€ can be calculated according to the following iterative formula, which is different from

equation (2-13):

& = arcsin[(1-B/B)sin(n/4)-¢ ™40 /2) (2-28)

2.3 Approximate Computer-Based Analyses

The approximate computer-based methods include the following two broad approaches:

the “strip on springs” approach and the “plate on springs” approach.

2.3.1 Strip-on-springs approach

A typical method in this category is that presented by Poulos (1991), in which a section
of the raft is represented by a series of strip footings and the supporting piles by springs,
as shown in Fig. 2-2. An approximate allowance is made for all four components of the
interaction (raft-raft, pile-pile, raft-pile, and pile-raft). The effects of the parts of the raft
located outside of the strip section are taken into account by computing the free field soil

movements due to these parts and the interaction of these parts within the strip section.

This method has been shown to give settlement which is in reasonable agreement with
more complete methods of analysis. However, it does have some significant limitations,

as it does not consider torsional moments within the raft and it does not provide
consistent settlement at a point when strips in two directions both acting through that

point are analyzed. The method was also used by Zai (1992) and Katzenbach et al (1998).

23



| T

{a) Actual pile

(b) Pile |
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representation
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-
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— At element representing pile :
™ a) Stiffness is increased
b) Pile force is "smeared” over element
¢) Limiting compressive and tensile pile-soil
stresses are computed from compressive
and tensile capacity of pile respectively

Fig.2-2 Strip-on-springs approach (Poulos, 1991)

2.3.2 Plate-on-springs approach

In this approach, the raft is represented by an elastic plate, the soil by an elastic
continuum and the piles are modeled as interacting springs, similar to those employed in
the program for piled strip. The method is restricted to the analysis of the foundation’s
elastic response.

Some early approaches within this category, e.g. Hongladaromp et al (1973), neglected

some of the interactions and hence gave values too large for pile-raft stiffness, as revealed
by the studies of Brown and Wiesner (1975). Poulos (1994) employed a finite difference

method for the plate and allowed for various interactions via approximate elastic
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solutions. Allowance was also made for the effects of piles reaching their ultimate
capacity, the development of bearing capacity failure below the raft, and the presence of
free-field vertical movements acting on the foundation system (Clancy & Randolph,

1993; Poulos, 1994; Viggiani, 1998; Anagnastopoulos & Georgiadis,1998).

2.4. More Rigorous Numerical Analysis

In the analysis of the piles—soil-cap interaction, the soil flexibility matrix piles and the
cap stiffness matrices can be determined on the based of discrete elements of raft and

piles. The latter two stiffness matrices can be formulated by the elastic theory.

2.4.1 Soil flexibility matrix
The soil flexibility matrix, i.e., [3],
{S}= [8s]-{F} (2-29)
Where,
{S} is the displacement of the soil under the raft and around the piles;

{F} is the raft-load and pile-fictitious soil tractions.

The matrix coefficients d; can be established by the following methods:

1) Finite element method (FEM)
In FEM, a variety of nonlinear or elastic-plastic constitutive soil models can be utilized,
and factors such as soil non-homogeneity and anisotropy can be taken into consideration

(e.g., Desai 1974; Ottaviani 1975; Chow 1987; Lee et al 2002). Undoubtedly, the FEM is
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considered as one of the most powerful approaches for analyses of the behaviors of pile
groups. The technique can also simulate the complete history of the pile construction
procedure, i.e. the processes of pile-group installation, dissipation of pore water following
the installation, the reconsolidation of soil, etc. Such analyses are invaluable in leading to
a better understanding of the behaviors and mechanism of groups of pile—soil—cap
interactions. However, it is rather unlikely that FEM will readily be applied to the
problems of a large pile group because of the complexity of the pile-group—soil-cap
system and its high computational requirements. Another problem of FEM is the
volumetric locking behavior in the analysis of ultimate state. Fig. 2-3 shows that Node A
is fixed by the requirement of volume-preservation, or limited by the requirement of
dilatant’s /contracting plastic flow. The volumetric locking of 8-node elements is similar
as that of 3-node elements (Fig. 2-4). The limitation of 8-node elements on foundation
ultimate analysis is shown in Fig. 2-5, which results in overestimating the bearing

capacity coefficient.

Volumetric locking must be taken into account during the development of numerical
models. Currently, three-dimensional FEM for large pile group are mainly limited to

elastic problems.

fixed

X T : -

Fig.2-3 Volumetric Locking of 3-Node Element
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2) Boundary element method (BEM)

BEM is based on Mindlin’s elastic theoretical solution as the kernel function to capture
soil mass responses. That is, the soil displacements are obtained by using Mondlin’s
equation for the displacements within a soil mass caused by loading within the mass.
Details of the complete analysis are given by Butterfield & Banerjee (1971a, 1971b),
Banerjee (1978), Banerjee & Davis (1977), Poulos & Davies (1980); Lee et al (1990) and
Mandolini & Viggiani (1997). If conditions at the pile-soil interface remain elastic and no
slip occurs, the movements of the pile and the adjacent soil must be equal. Since BEM is
based on the elastic theoretical solution, the method is strictly applicable only to the case
of an ideal soil and cannot be used in nonlinear, non-homogenous and anisotropic

mediums, which is its main shortcoming.

3) Finite Layer Method (FLM)

In FLM, non-homogenous and cross-anisotropic layered mediums can be taken into
consideration. This was considered as the greatest advantage of this method, because
natural geological soils often appear as cross-anisotropic layers, and soil displacement
fields are represented by the product of complex polynomial and series-expansion
functions, e.g., (i) discrete Fourier series (Zhang & Zhao et al 1981, 1982; Zai 1989; Lai
& Booker 1989); (ii) Hankel transform, i.e., Bessel functions of first kind series (Small &

Booker 1986; Lee & Small 1990). The former functions can respectively be used (i) to
analyze a rectangular load area and (ii) to analyze a circular load area. However, FLM is
not applicable to nonlinear materials, since it is based on the assumption of ideal elastic

layered soil.
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4) Simplified analytical methods (SAM):

(a) Transfer-Function Method (TFM)
TFM, or the so-called t-z curves method, uses the load-transfer function to describe the
pile-soil deformation behavior (Coyle & Reese 1966; Kraft et al. 1981), shown in Table
2-2. This category is actually Winkler’s idealization of soil, i.e., coefficients 6ij=0 at i=j,
only dii#0, which means that the method cannot consider the interaction of pile-pile or
pile-raft; but it is attractive due to its flexibility, enabling non-linear analyses and non-

homogeneous soil conditions.

(b) Shear-displacement theory (SDT)
SDT assumes that the distribution of the displacement and shear stress in the soil around
the pile can be idealized as a concentric cylinder, i.e. t©(r) = toro/r, (Cooke 1974, 1979 and
1980). These assumptions were further validated by a finite-element-method analysis
performed by Randolph & Wroth (1978). In this analysis, the vertical displacement of the
soil, S, caused by the shaft shear stress 1, can be derived as a logarithmic relationship

with the radial distance away from the pile shaft in the elastic medium, i.e.

S, = r—"GT-z—ln(rlJ = Cs1, (see Table 2.2). This relationship has been widely applied to
o

analyze the pile-pile interaction (e.g., Randolph & Wroth 1979, Chow 1986; Lee 1993;
Guo & Randolph 1999; Lee & Xiao 2001; Shen & The 2002), assuming the relationship
to be in a nonlinear medium (as shown in Table 2.2). Those linear and nonlinear
relationships form some of the so-called t-z theory curves. The above simplified methods

can only be used to analyze single piles, or at most to capture the responses of soil mass
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around other piles at same depth, but not to calculate the interaction between pile shaft

and pile end or cap bottom.

(c) Generalized shear-displacement theory (GSDT)
In GSDT, the shear-displacement theory is extended to derive the elastic displacement
field and the plastic shear displacement in soils around the pile’s shaft (Zai & Yang
1993a, 1993b; Yang & Zai 1994); accordingly, the soil elastic and plastic deformations
are separated. The former deformation can be directly obtained from the elastic solution
or FEM’s results, which involves the interaction between any two points on the piles or

the raft.

5) Combination methods (Hybrid methods)

Hybrid methods are developed to analyze the pile-group interaction, e.g., a combination
of the elastic shear-displacement method (SDT) with nonlinear transfer function (Lee &
Xiao 2001) can be used to analyze the behavior of piles with high-set caps but cannot
analyze the interaction of pile--raft; a combination of BEM and Koyasu’s transfer
function (Meng 1999); a combination of FEM and Koyasu’s function (Lee et al 2002).
The above did not involve pile-raft interactions. Actually, the combination of BEM (or
FLM) with z-t curves can be use to analyze pile-raft nonlinear interactions (Zai & Yang
1993a, 1993b; Yang & Zai 1994). Hybrid methods overcome the volumetric locking
problem of FEM in the analysis of ultimate state, the restriction in nonlinear analysis of

BEM and FLM, TFM’s failure to consider the interaction of pile-pile or pile-raft, and the
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shortcoming of SDT(or GSDT)’s, which does not allow for the calculation of the
interaction between pile shaft and pile end or cap bottom.

According to hybrid methods, the elastic-plastic flexibility coefficients to analyze pile-
group interaction are set such that d;(i # j) is for elastic resolution (modified) and &;; is for

non-linear resolution:

{ASp} = [8ep]- {AF}}; (2-30)
Bepij = Ocij  (i#1); (2-30a)
Oepii = Oecii TOpii (i=j) (2-30b)

Where

depij = €lastic-plastic flexibility coefficients

deij = elastic flexibility coefficient from the resolution of elastic theory or FEM, BEM,
FLM

dpii = plastic flexibility coefficient from GSDT

depii can be obtained directly from TFM too (Yang and Zai, 1994).

Moreover, actual soil is not a completely elastic medium and cannot bear extensive stress.
It behaves partly as a Winkler model (or Winkler foundation, Das 1999), so the elastic
solution overestimates the pilegroup—soil—pilecap interaction. It can be seen from the
deficiency between the experimental pile-soil interaction coefficient (Cooke at el 1980)

and the computed data (Poulos & Davis 1980) as Fig. 2-6.
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Table 2-2 Load Transfer Functions of pile shaft (t-z curves)

Based on t--y

Transfer function

From relationship (7o -- S relationship) Notation
K----coeffient of lateral
—RS pressure
Kezdi.A(1957) | Field pile test data 1o =Kyztgd | 1-exp) 3 R----coeffient
=S to----shear stress on pile
Koyasu (1956) Field pile test data T0=S/C;< 1, T,----ultimate shear stress
K, A---—-emperimental
Gardner(1975) Field pile test data To =A-S/(1/K+S/1,) constant
Vijayvergiva
(1977) Field pile test data T =T ma(2yS/S, -S/S,) S,----critical displacement
. Ko---initial spring modulus
Desai etc(1987) g . (K, ~K)S +K,§  [Kr—final pring modulus
1eld pile test data mY/m P---yield load
(1 + I(K" -K)S1P, | )l m----index of curve
Lee & Xiao Lab test Data s =% | C,7y,Cs= _r"_h{r % ) a,b----test coefficients
e ° ----501l shear modulus
2001 1-b7 G ToJ  |G----Soil sh dul
Cooke To---- rad'ius qf pile
(1974,1979) y=1/G A ln( m ) CTo r,----radial distance
G from pile centre
T
Randolph(1977) Y= R, rm r R )/ T, G;---initial shear modulus
Kraft etc (1981) G| 1- - t;-—--failure shear stress
Ty TO f / R ---failure ratio
AT
Ay =
Chow(1986) r-R, Y AS= AToro '1 pA-1) A = tw/ro;
Gy 1-— 1-8) G-pa-pj [p=tRix
S
N &Novak e 7 G,---initial t t sh
aggar &Noval B s-—-initial tangent shear
(1994) Ypo -7 g=lof h{———r"' /7o =1y j Modulus
Ye=1/Gs , N=1/1¢ Gs -7 Mo = To/Tr
m
Richwien & y=B1", S=B —(—rgﬁ—)—— —”{_—1— m----material constant
Wang(1999) By, /1" m—1 rg
7 G.---¢lastic shear modulus
L at T,<T<T, AS.= T,ATo In T +11: T.----critical shear stress
. Stepevwse linear model e > "G o T, ’ at elastic phase
Zai & Yang AY*=AT/G,, at 1<, . B - T,----critical shear stress
(1993a,b) VP=AT/Gy;, at T.<1<T, [ T2TST ASy= at 1* plastic phase
AP=AT/Gp,, at <1<ty 1 T 2 1 Ty 1---- failure shear stress
=T,Tp a—‘ ln T G T_" +1 Gp1,Gp 2—---sh§ar modulus at
Pl e 1¥ & 2" plastic phases
1, At Ge---¢lastic shear modulus;
Y=1/G,; AS,= 0 R;----shear failure ratio;
Yang & Zai = 4 _F A=R¢ /15
(1994) cl1 R;7) G, A | T, : Gy=Ge/(1-1);
— — | In| — |+ _ .
0 Tf 1—- A. Te B RFTO/Tfa
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Field measured interactive coefficient
I - - - - Theoretical calculated result (Poulos & Davis)

Fig 2-6 Theoretical Curve vs. Experimental Curve

2.4.2 Pile Stiffness Matrix and Treatment Methods
In the three-dimensional finite element method (FEM), piles are separated into cubic
element bodies, but in BEM or FLLM, piles can be separated into discrete one-dimensional
element raps under vertical load. There are two methods to establish one-dimension piles’
stiffness (or flexible) matrix.
A. Directly establishing pile stiffness matrix
The pile stiffness matrix, [K;], is based on Bernoulli-Euler’s beam theory and is easily
available in literature (Poulos & davis 1980; Smith & Griffith 1988):

[Kpl {Sp}={P} — {Fp} (2-31)
Where, {S,} is {P}={Py,0,0,...... 0}a', Py is the load at the pile head; {Fp} is the pile-
fictitious soil traction, i.e., some parts of {F}.
B. Directly establishing pile flexibility matrix

The pile flexibility matrix, [8p1], is defined by the following equation:

{As}=[8,']-{Fp} (2-32)
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Where{As} is the displacement difference between a calculating point and the cap
bottom, i.e. pile head, and [8p1]¢[Kp]']. If Sp is the settlement of the cap bottom or pile
head, {S,}= Sg- {As}. This means that equation (2-32) can be directly added to (2-29),
but equation (2-31) cannot. The [8p1] can be derived by adding displacement differences

between two conjoint sections of pile from pile head to calculating points, which is

shown by Lee & Xiao (2001).

C. Variation approach

Another discrete treatment of pile is the variation approach (Shen et al, 1997, 1999, 2000,

2001), which sets

Sz= TiiBy-z /0" (2-33)
and

5= T ay(z; 107, i=1,2,...,np; (2-34)

Where / is the pile length and n,, is the number of piles.

This approach allows the pile to be divided into sections, i.e., k; or kj is 3 or 4, and it can
give better precision. This approach has not been used in nonlinear or elastic-plastic

medium cases.

2.5 Effects of Pore-water Pressure on Pile-soil-raft Interaction
As indicated above, the behavior of pile-soil-raft interaction is greatly influenced by the
pore-water pressure and its dissipation in soil with time. To clarify this influence, the

initial contribution and dissipation of the excess pore-water pressure (EPWP) during the
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whole process from the end of pile driving to the completion of consolidation after

construction of supper structure, should be considered.

2.5.1 Pore pressure developments during driving
A number of measurements of the excess pore pressure developed in a soil because of
pile driving have been performed (Bjerrum et al. 1958; Bjerrum & Johannessen,1960;
Milligan et al. 1962; Lambe & Horn, 1965; Lo & Stermac, 1965; Orrje & Broms, 1967;
Hanna,1967; Koizumi & It0,1967; D’Appolonia & Lambe,1971).The results of the
measurements of pore pressure at the pile face in many of these papers have revealed
common results such as the excess pore pressure’s decrease which may become equal to
or even greater than the effective overburden stress. However, the induced excess pore
pressure decreases rapidly with distance from the pile (Fig. 2-7).
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from the Pile (Poulos & Davis, 1990)
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Lo & Stermac (1965) derived an expression of the maximum pore pressure distribution
near the pile surface, based on the hydraulic failure (crack) of a radial zone of soil around

the pile:

Au, = [1 —K, + (é’i} }a'vo (2-35)
P Jn

where Ky is the coefficient of earth pressure at rest in the intact clay; (Au/p’)y, is the ratio
of excess pore pressure to the initial consolidation pressure p’ measured in a conventional

consolidated-undrained triaxial test and generally assumes values in the order of 0.6-0.8.

D’Appolonia & Lambe (1971) derived another form of Lo & Stermac’s expression,

namely,

A, _ [(1 _K,)+ 2 }Af (2-36)

O-VO v0

Where

Au,, = maximum excess pore pressure;

K, = in-situ coefficient of earth pressure at rest,
¢y = undrained shear strength,

Ag = pore-pressure coefficient A at failure;

o’y = Initial effective vertical stress in soil.

Based on theories of expansion of spherical and cylindrical cavities in ideal elastic-plastic

soils with Mohr-Coulomb yield criterion, Vesic (1972) suggested the following:

c r
36

In the plastic field: du = 2Ln(£J +0.817a » (2-37)
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Au RY
In the elastic field: — =0.817a f(—] (2-38)
r

Cu

and R=r, £ (2-39)
2(1+ p)c,

Where R is the radius of the plastic field; ry is radius of pile; o is Henkel's pore-pressure

coefficient at failure, and o= 0.707(3A¢1).

Carter et al (1979) and Randolph and Wroth (1979) presented the following expression
for soil with the Modified Cam-clay model (generated excess pore water pressure is equal

to the increase in mean total stress):

Au= 2cuLn(£) (2-40a)
r

However the model of Eq. (2-40) has two shortcomings: one is no account taken of pore
pressure generated due to pure shear; another is inability to link soil strength and its
change with the current effective stress state and stress history of the soil. For the work
hardening soil model, the value of the mean effective stress changes during shearing.

Randolph et al (1979) presented the following expression
R
Au = 2c,‘Ln(—) +(p'i—p'y), o<r<R (2-40)
r

Where pi' and p{ are the mean effective stresses around the pile before and after pile

driving respectively.

Poulos & Davis (1980) suggested the following procedure as a rapid and practical means

of estimating the excess pore-pressure distribution
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Au = Au, (5) (2-41)

r

Where R = 3a to 4a for normal clays or 84 for sensitive clays (a is the pile radius); Auy, is

estimated by equation (2-35), and equation (2-41) is of the same form as (2-40).

Tang (1990) proposed the following uniform expression for the initial excess pore-

pressure based on field data,

Ay = At Ln(ﬁ’-’”_) (2-42)
Ln(w) r

in which o is the extended radius coefficient. It should be noted that beyond r/ry =, the

excess pore pressures are virtually negligible.

Yao & Wu (1997) suggested that the soil is an ideal elastoplastic body which obeys the
Mohr Coulomb failure criterion; and that when the soil is in limit equilibrium state during
pile driving, the horizontal radial stress is the maximum lateral stress increment produced
by driving.

Thus, they determined the initial excess pore-pressure expression as:

Plastic area (r < R): Au,=Aoc, A= l(l -K, )7'h +2c, }A (2-43)

14

Elastic area (r > Rp): Au, = Au p(}r_] (2-44)

Luo (1997) assumed that tangential stress in a soil around a pile is equal to the radial
stress at the end of driving and that the undrained shear strength of the soil increases

linearly with depth. Based on the Mohr-Coulomb failure criterion and Henkel’s formula,
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an approximate formula to predict the excess pore pressure was obtained:
In %)
r
h{fﬁ’ﬁ]
Rp

Where m is the linearly increasing factor of the undrained shear strength of the soil,

Au=(1-K,+24m)y'h

(2-45)

m = Acy/Az.

Chen (1999), basing himself on the field data and the limit equilibrium theory, assumed
that both the pile lateral pressure and the friction resistance increase linearly with depth.

Their distribution is shown in Fig. 2-8 and the expressions are as follows:

2] o Po
=+t —t
f/-‘—-\ P .
' L
L R
L —
TN 4
, AN I .
aq  z 24
Fig. 2-8 Calculation Model (Chen 1999)
po=pot Pz =py v K yz (2-46)
T, — T, ,
T, =-Ty———z2z=—(c, +K 7 ztanp) (2-47)

Where:
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P,, P, -~ lateral pressures respectively at pile top and pile tip;
7,,7, --— frictional stresses respectively at pile top and pile tip;
c,,® ---- cohesion and friction angle in pile-soil contacted surface;

K ,---- soil passive earth pressure coefficient.

Thus, a three dimensional analytic solution is obtained, namely:

Plastic area (r < Rp):

su=1120c-K yrtang)in e + S22 |+ 081 2-4
u—g c-K,yrtang n7+72 +0.817a ¢ (2-48)
Elastic area (r = R;):
’ 2
Au=0817a-c- (—O—j (2-49)
14

The Au(r) curves obtained from equations (2-48) and (2-49) are not continuous. In fact,
the value of Au in elastic area by Eq (2-49) is quite small; therefore Chen (1999)
suggested that Eq. (2-48) can be approximately used in whole area. Modifications to the

formulae (2-48) and (2-49) based on the results of the model test were obtained:

. R
pu=—11120¢, - K yr tang)ln "2 + ¢, = |+ 2.450 ¢, Hin @2 (2-50)
3Inw P % ¥ r

According to the experience of Bjerrum & Andersen (1972), a state where Au,, > ¢°,, is
maintained for a very short time (five minutes) in normally consolidated soil. This is due

to the action of hydraulic fracturing in soil under high pore pressure leading to negative
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total effective stress in soil; e.g., K,6'y, + Aoy < 0 or ¢’y + Ao, < 0, changing into

situation of Auy, < 67y,

The field data of statically driven piles in the Shanghai Subway Project (Chen, 1999)

demonstrated that Auy, = (1.1~1.4)c°,,, as well as a stable value for Aup =~ 1.16"y,.

For pile groups, the pore pressure distributions around individual piles may be
superimposed but the pore pressure cannot exceed Au,,, as found by Lo & Stermac
(1965).

Azzouz and Morrison (1988), Masood and Mitchell (1993), Lunne et al(1986), Kalsarud
and Haugen (1985), and Huntsman & Mitchell (1986) respectively measured stresses and
excess pore-pressure around piles by using PLSC (Piezo-Lateral Stress Cell) and CPT
(Cone Penetration Test) and found that stresses and excess pore-pressure linearly increase

with depth.

2.5.2 Dissipation of Excess Pore Pressure after Driving

Soderberg (1962) proposed a relatively simple solution for estimating the rate of
dissipation of excess pore pressures around a driven pile. It is assumed that dissipation
occurs radially only; the vertical dissipation that may occur near the top of the pile can be

ignored. The relevant equation of consolidation then becomes

Ou 8*u 106u
ot h(@rz rar] ( )
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The above equation (2-51) may readily be written in finite differential form (Gibson &

Lumb, 1953), and can be solved by other numerical methods.

Poulos & Davis (1980) compared the theoretical results produced by equation (2-51) with
an empirical relationship suggested by Radugin (1969). They reported that there is some
difference between the shapes of the curves, but they are generally in sufficient
agreement to suggest that the simple consolidation analysis may provide a reasonable

estimate of the rate of increase of load capacity.

More rigorous analysis of the stress change, excess pore pressures and subsequent
consolidation around a single driven pile in clay has been presented by Wroth et al.

(1979).

Based on a mechanical model for soil re-consolidation after pile driving (Esrig et al,

1977), a simple analytical solution for single pile is presented (Tang 1985, Zhu & Tang

1986):

u(p,t) = (2-50)
S P 3-w(4Y
Ln(a))z 1- COSA )jO(ﬂ’ ijxp[——-l—;(;) T:| m

where, J; and jj respectively are the cylindrical and the spherical Bessel functions of the

H
[\

first kind; a; and A; respectively are the i-th values of infinitely many positive zeros
solutions, x=a;, y=4;, i=1,2,.., of equations Jy(x)=0 and jy(y)=0, and A; = iz because of jo(y)
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kE

= sin®)y; p = vro, T = Ctfry> (where C=————
3Yw(1_2u)

), ® = Rro ; m =1 for

axisymmetrical problems, m = 2 for sphere-symmetrical problem.

2.6 Discussion

From the previous research, field tests and case studies, some useful findings for
foundation design can be reported, although they tend to be rather conservative with
respect to both design and calculations. The main advantages of the sparse piles and raft
systems include the reduction of the number of piles and the use of the soil bearing
capacity up to its maximum, the gradual development of settlement, and the increase of

pile bearing capacity when excess pore-water pressure dissipates in the soil.

The analysis of the piles-soil-cap interaction is meaningful for the improvement of theory
and practice on the design of foundation engineering. However, there are several complex
problems in performing the analysis, especially in evaluating the excess pore-water
pressure dissipation in soil around a group of piles and its influence on the settlement and

the bearing-load behaviour of the pile group-soil-cap system.

The mechanism of the pile-soil-cap system is interactive (including pore-water pressure);
i.e. they are affected by each other, such as, (1) the weakening action on the friction of
the pile shaft (upper part of piles) due to the limitation of displacement difference of pile-
soil caused by the cap (actually, by the cap’s load acting on the soil under the cap and
around the piles), (2) the enhancing action on the friction strength of the pile shaft’s and
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the bearing capacity of the pile base due to increase in the effective normal stress caused
by a load acting on the soil under the cap, around the piles and other piles, and (3) the
increasing action on vertical soil’s ultimate bearing capacity due to the resistance to soil
sliding around a pile; hence, it requires quite a big capacity, computer speed and high
computational technology. This is especially the case for the mechanism of the pore-

water pressure change during the pile group driving and over time.

2.7 Background of Pile-Soil-Cap Interaction

The facts presented in Fig. 2.9 show the principle of pile-soil-raft interaction design, that
is, only if pile load reaches or is near to ultimate bearing load, the pressure of raft bottom

will share a great load.

In Fig. 2.9(a), the piles carry loads in the elastic state, usually under half the load of the
piles’ ultimate bearing capacity. The settlement difference between the pile and the soil
around the pile is very small. For soil settlement to reach the same value of pile
settlement, only a small surface pressure on the soil is required. This phenomenon has

been demonstrated in numerical analysis of elastic media by Butterfield and Banerjee (1971a,

1971b).

It is therefore not necessary, in a regular design of pile foundations, to consider that the

soil around the piles shares the load of the upper structure.
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The raft shares very
small pressure

Piles carry loads
in elastic state

| | | | | |

a) Working loads applied on piles equal to half the ultimate bearing capacity
(Elastic state)

- The raft shares great
Pﬂes bejar loads pressure
in plastic state

~L ¢

b) Working load applied on piles almost reaching ultimate bearing capacity
(Plastic state)

Fig. 2-9 Relationship between the Bearing Load of Piles and Soil
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In Fig. 2.9(b), the piles carry loads in the plastic state (the piles’ load is near the value of
the ultimate bearing capacity of the piles). In imaging case of a high-set cap, the
settlement difference between the pile and the soil around the pile is quite big, thus in the
case of the low-set cap, a great surface pressure on the soil is required for the soil
settlement to reach the same value of pile settlement needs. The surface pressure on the
soil is provided by interactive raft in case of low-set cap. Only in this state does the pile-

soil-raft interaction design have engineering meaning.

The following approximate theoretical analysis also describes the pile-soil-raft interaction
design principle. From Fig. 2.10, the settlement on the pile at point A is:
SA=ASpe+ 3 + Sp (2-51)
where S, = the settlement at point A on the pile;
ASpg = the elastic compressive deformation of the pile body between the top and
the base of pile;
O = the deformation of pile-end punching into soil at the pile base;
Sp = the settlement of the soil at pile base.
At the bottom of the raft, the settlement at point B is given by:
Sp = ASgp, + Sp (2-52)
Where ASg, is the compressive deformation of the soil between the top and the base of
the pile
When the settlement at point A is equal to that of point B (e.g., So = Sg), the following
relationship is obtained:

OASg, = ASpg + & : (2-53)
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Fig.2-10 Loads and Settlements of Pile-Soil-Cap System
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Fig. 2-11 Additional vertical stress caused by piles (from Zai & Zai 1993)
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The elastic deformation of the pile body ASpg is very small. Likewise, it can also be
proved that d is also very small in the elastic phase of the pile load—settlement. Therefore,
the compressive deformation of the soil under the raft ASg is quite small. Moreover,
ASg;, is mainly created by the pressure p, on the bottom of raft, which is due to the pile-
shaft frictional stress and the pile-base pressure that cause negative (or tensile) additional
stresses on most of the pile’s depth and cause very small compression (shown in Fig. 2-
11).

5

aav(l_vz) B

pr~ (2-54)

Where E; is elastic modulus of soil, v, is Poisson’s ratio of soil.

Equation (2-54) proves that p, is small, because ASg; is quite small, in the elastic level of
piles’ load-settlement. According to Fleming et al. (1992), the following relationships
exist in the elastic phase between ASpg, 6, ASgy, the forces of the pile top, P and the pile

base, Py, and the pressure of the raft’s bottom, p;:

1-v, F,
o= bt imoshenko oodi 2-55
iG, 7, (Timoshenko & Goodier, 1970) (2-55)
1 4
ASpg= —(P, + F,)" (2-56)
E_ A
PP
2
ASq=a, =% B.p (2-57)
s1
an 1
F, — ( _Ub)§ Ch(ﬂf) =a (2-58)

P 4n +27rp.th(,u-£).£_
A-v) ¢ put
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l1-v, a"Q

=46, JaBLix (2-59)
Where 1= ryry (ratio of under-ream radius, for under-reamed piles)
E=G /Gy (ratio of end-bearing modulus, for end-bearing piles)
p =Gy /G, (variation of soil modulus with depth)
A=Ey/ G (pile-soil stiffness ratio)
€ =1n (rn/15) (measure of radius of influence of pile)

ul = (1 /ro)N(2/EN)  (measure of pile compressibility)
It should be noted that , and 7y are the radii of the base of the under-reamed piles
and of the shaft respectively. The variation with depth of the soil’s shear modulus
is idealized as being linear Gibson’s soil by the following relationship: G=Gy+mz,
where z is the depth. There is also a possibility of a sharp rise in the value of Gy,
for levels below that of the pile base, that is for
Gav=Gl=12=Gip;
G =Glz112;
m = {0.25+E[2.5p(1-v5)-0.25]}/ (Randolph & Wroth 1978);
L; and vy, are Poisson’s ratios of soil for depths where z < / and for levels below
that of the pile base respectively;
o’ is the a value calculated with an equivalent larger pile (pier), which has an
equivalent modulus Ee,= EH(E,-E)(Ay/Ag) and an equivalent diameter deq
=\/(4Ag/n) =1.13\/Ag, where A, is area of the pile group and r,= deq /2 (as per
Randolph 1994);

I is the length of piles; and
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B, L are breadth and length of the section of the equivalent pile (pier).
The following two examples will be used to depict the reasons why an analysis of pile-

soil-raft interaction is nonlinear and piles-soil relationship is in the plastic state.

Example 1

A 6 m x 6 m raft uses 4 x 4 piles with pile length L = 20 m, pile section area
Ap =04 m x04 m = 0.16 m? (equivalent diameter deqg = 0.45135 m), pile modulus
E, = 28 000 MPa and the following soil parameters: G,y = G; = 12 MPa, v, = 0.35
(Es= 32.4 Mpa), G, = 40 Mpa, vg, = 0.25 (Es, = 100). Therefore, n =1, & = G,/ Gy = 0.30,
A =Ey/G = 2333, p=G,/Gi=1 and £ = In (1n/1,) = 4.4. From equations (1-1) to (1-8),
one obtains a value for a= 0.078 (=7.8%) in the elastic state.

Assuming a pile working load P;= 800KN, then P, = aP; = 62 kN. Using equations (2-55)
and (2-56), it is found that 6 = 1.30 mm and ASpg= 1.925 mm. From equation (2-53), it is
found that ASg; = 8 + ASpg = 3.225 mm. Finally, using equation (2-57), it is determined

AS E,

= 20.456 kPa (real value p,=p,A/(Ar-npA,)=1.076p,; where ps is

the idealized value of raft bottom pressure without piles). Therefore, Q, = 16P, = 12800
kN; Qr= Aipr = 736.4 kN and Q/(Q,+Q;) = 5.44%, which is very small.
If large pile bearing loads are allowed to develop in the plastic phase, the value of

6 will greatly increase and that of p, can also become quite large.
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Example 2

Assuming a 4-pile load P; of 1600 kN (which is close to the ultimate bearing capacity) for
the case presented in Examplel, o — 0.2, P, > 0.2 x 1600 kN = 320 kN (where
op = Py/Ap = 2000 kPa), then ASpg=4.29 mm; supposing 6 =2 cm =20 mm yield ASg =
d + ASpe = 24.29 mm. Although pile-soil relationship is in yield state, raft-soil is still in
elastic state. Using equation (2-57), p: = 154.1 kPa, which is about 7.5 times the value
obtained in Example 1. Q,= n,-P;= 6400 kN and Q;= A,p,= 5547.6 kN and so Q,/ (Q, +

Q) = 0.46 = 46%, which is approximately 11.7 times the value obtained in Example 1.
PP

The comparison of the above examples, seen in Table 2-3, shows that in cases where the
pile load reaches up to near ultimate bearing load, the pressure of raft bottom will share
greater loads than that in the elastic state, such as under half the ultimate bearing load of

the piles. Therefore, any analysis of pile-soil-raft interaction has to be in a nonlinear or

plastic state.

Table 2-3 Comparison of examples in elastic state and in plastic state

Examplel (pile in elastic state)

Example 2 (pile in plastic state)

n,= 16
P,=P,/2 = 800 kN

n,=4
P=P,~=1600KN

o = 7.8% (equation 1-8)

0=0.2 (ultimate state)

Q=Q,+Q=13536KN
A=Q/Q= 5.44%

P,=aP, =62 kN Py=aP, = 320KN (0p=q,~2MPa)
=130 mm =20mm
ASPE =1.925 mm ASPE =4.29mm
ASgL = &+ASpe = 3.225 mm ASgi= 6+ASpe =24.29mm
Sp=3.391 mm Sp=2.380mm
S;= ASg +S, = 6.62mm S,;=ASg +8,=26.67mm
Q,=16P,= 12 800 kN; Q,=4P=6400KN;
pr = 20.5 kPa p=154.1KPa
Q.= 736 kN Q=5548KN

Q=Q,+Q=11948KN
A,=Q/Q= 0.46= 46%

Sz/s 1=4‘03
pr2/ pr1:7-5
}\.2/;\.1= 11.7
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2.8 Prospective of this research

Based on the analysis of the piles-soil-cap interaction, the literature review related to the

analyses of the pile-soil-cap, the nonlinear interaction and the governing factors, it can be

seen that the current methods of analysis and design does not include the excess pore-

water pressure dissipation and, accordingly, its influence on pile group-soil-cap

interactive system. The objective of this study, therefore, is to develop an analysis

method that incorporates the following considerations, mainly:

1) Excess pore-water pressure dissipation in pile-soil-raft system

2) The increase of the soil shear strength with soil consolidation

3) The increase of soil deformation modulus with soil consolidation

4) The rate of raft sharing load decrease and pile sharing load increase with soil
consolidation

5) Foundation settlement associated with the excess pore-water pressure dissipation
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CHAPTER 3
ANALYSIS OF PILE-SOIL-RAFT SYSTEM

WITHOUT CONSOLIDATION FACTOR

3.1 General

In this chapter, a numerical model is developed to examine the mechanism of nonlinear
pile-soil-raft interaction. Analyses are performed for the cases of (1) a single pile, (2) a
one-pile raft, (3) a nine-pile high-set raft and (4) a nine-pile low-set raft, based on the
previously described Hybrid method of FLM and GSDT, which combines the finite layer
method (FLM) with generalized shear-displacement theory (GSDT). The evaluation of
the pore water pressure (p.w.p.) dissipation and the correspondingly analysis of the pile-
soil-raft nonlinear interaction in the state of p.w.p dissipation will be presented in

Chapters 7 and Chapter 8.

3.2 The Basic Equation of a Piles-Soil-Cap Interactive System

(a) Interactive flexibility coefficient matrices
The soil flexibility matrix, i.e., [s],
{S}=[5s]-{F} (3-1)

Equation (3-1) is converted into equation (3-2)

where, {Sz} and {Fg} are the settlement and load of cap element respectively; {Sy} and

{Fp} are the settlement and load of pile element, respectively; [6ss]nbxnp, [Ssp]nbxnp, [SPS]npxnb and
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[6™ ) are respectively the interactive flexibility coefficient matrices of soil—soil,
soil—pile, pile—soil and pile—pile element points; n, is the number of cap load
elements, n, is the number of pile load elements. They can be established by the above
FEM, BEM or FLM based on elastic theory. The flexibility coefficient 5XF can be added
to plastic displacement coefficients, based on the generalized shear-displacement theory,
to analyze pile-soil-raft nonlinear interaction (Zai & Yang 1993a, 1993b; Yang & Zai

1994).

Because actual soil is not elastic and cannot bear tensile stress, partly like the Winkler
model, the elastic solution overestimates piles—soil—cap interactions, as shown in Fig. 2-
6. Based on the figure, the modified factor of pile-pile or pile-soil settlement interactive
factor can be obtained

fp =a™ (3-29)
in which, o = 1.11 when r,,, =12d. The curve obtained from equation (3-2a) is illustrated

in Fig. 3.1.

Same, the soil-soil settlement interactive coefficient should be modified as

fis =B (3-2b)

Where: = 1.5, B= +/4, the curve obtained from equation (3-2b) is shown in Fig. 3.2.
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(1) The measured from Cooke at el (1980);

(2) The elastic theoretical solution from Poulos & Davis (1980);
(4) Interaction factor o= 0.56[ 1-In(2r/d)/In(24)] for modeling (1);
(5) Interaction factor a= 0.62[1-In(21/d)/In(80)] for modeling (2);
(6) Modified factor f;, = 0.95(1 -1/d/24)"* for modeling (3)=(1)/(2);

Fig. 3-1 Interaction factor o, and Modified factor f;,
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Fig.3-2 Interaction factor o and Modified factor f;
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(b) Basic Equations for Interaction Analysis

Finding the inverse of the flexibility matrix of equation (3.1), i.e. [8,]'=[Kj], one obtains
KSS KSP SB B FB
< - o
Extending [Kp] of equation (2.31) with zeros into the same number of element as
equation (3-3), and then adding extended equation (2.31) to equation (3-3) yields
equation (3-4):

Ess K_SP ' S| _ [Fs ]
5 B -

ie, [Ksp] - {S} = {F} (3-4°)
Where, {Fg} = {Fg}+{P}, which is compound forces of the load of the cap element and
the load at the pile head. Separating (3-4), the equation is transformed as follows:

[ K¥)-{Ss} + [ K¥]-{Sp} = { Fg} (3-5a)

[ K™} {Ss} + [ K"]-{Sp} = {0} (3-5b)
Equation (3-6) is obtained from (3-5b):

{Se} = -[K"T[K"]-{Sn} (3-6)
Substituting equation (3-6) into (3-5), one obtains

{E} =((K*] - [K"I[K™1"-[ K"])-{Sa} (3-7)
Setting [K]=[ K%] - [ K>")-[ K*1"-[ K™], equation (3-7) becomes

[K]-{Ss} = {Fs} (3-7b)

Separating equation (3-4) into (3-7) is known as the sub-structure method.
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(c) Basic Equations for a flexible piled raft
The stiffness matrix of a cap is [Kg],

[Kg]-{Ss} = {Ts} (3-8)
where {Tp} includes the compounded loads of the upper structure and
{Ts} = {T1, T2, ... Tuv} T, ({Ti} = {Qi, Moxi, Moyi} T, i = 1,2,....,nb), and {Qi} = {Qi} - { F}.
Qi, Moxi and Mgy, are the force; the cap element node’s rotating moments for the X-axis
and the Y-axis respectively.
{Sg} = {Si, 6x, Oyi}, where S;is just an element of {Sg}, and 0,; and 0,; respectively are

the rotary angles rotating in the X and Y axis.

Therefore, [Klubxnb of equation (3-7b) is extended into [K’]anb)x3nb), and then added to
equation (3-8), forming

[Kg]-{Ss} = {Ts} (3-9)
Where [Kg] = [Kg]+ [K']; in {Tg}, {Ti} = {Qi, Moxi, Meyi}T, so that {Tg} does not include

{Fg}.

From equation (3-9), we get a solution for {Sg}. {Sp} can be used to find the internal
forces of the cap; {Sg} belonging to {Sg} is substituted into equation (3-6) to get the pile
element settlement {Sp}; {Sg} and {Sp} are then substituted into (3-4) to obtain {Fg} and

{Fp}, which are the loads on the soil under the raft and around piles respectively.

Non-linear or elastic-plastic interactive solutions should adopt the stepwise—increment

calculation method.
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(d) Basic Equations for a rigid piled raft
It is necessary again to find the inverse of the stiffness matrix [K] of equation (3-7b), i.e.,
[8] =[K]", and by introducing the condition for a rigid raft, the basic interactive equation

is expressed as follows,
[5] -[AT] (Fg _Jo
W o TVl e

in which, [A] = |x; x, - - Xw |3 Xis ¥i, 1 = 1 ~ nb, are node coordinates of cap
Yy Y2 oot Y nb

elements; {V} = {Sy, 6y, 6y }T, Wy is the vertical displacement of the coordinates’ origin;
Oy, 9y are the respective X and Y direction gradients (angles of inclination) of the cap;
{M} = {Qo, My, M,} T the external load Q,, the moments rotating the X-axis and Y-axis.
By solving equation (3-10), one gets the solution for {Fg} and {V}. The settlement for
each point of the cap can be expressed as:
Sgi = So+ OxX;+ 6y-y;i (i=1~nb) (3-11)

Substituting {Sg} into equation (3-6), we get the settlement of the pile node {Sp}.
Substituting {Sg} and {Sp} into equation (3-4), we get loads of cap and pile element

point, i.e., {Fg} and {Fp}. Loads acting on pile heads can be found by {Fg} - {Fg}.

The above can also be achieved by finding the inverse of the stiffness matrix [K] of
equation (3-5) (i.e., [8]=[Ksp]'1), or by adding equation (2.32) to (3-1) (i.e., [8]=[ds]+
[8p1]), and applying the condition for a rigid raft, one directly gets {Sg} and {Sp}.
Equation (3-10) in this case becomes (nb+np+3)x(nb+np+3), requiring more initial

computer storage space.
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3.3 Running Tests for Validations

Selecting the Hybrid methods, my existing program was modified and executed
according to the previously mentioned FLM and GSDT. Now this program can just
analyze piles-soil-raft nonlinear interactions without considering the influence of pore
pressure and its dissipation. The running tests involved responses for a load action on a
plate without a pile, on a rigid pile, and on a compressible pile. Those responses may be

validated by comparison with existing theoretical solutions or actual experience.

Test 1

A point force Q=1000KN acting on a 1.0 m x1.0 m square plate on soil with an elastic

E : .
modulus E;= 2500 Kpa (i.e., G= 20 : ) = 1000Kpa), a Poisson’s ratio p = 0.25, and a
TH

soil thickness (bottom depth) H = 50m. According to elastic theory on half-infinite

spaces, the plate settlement is defined as being:

—_— 2 —_—
4 E 2.

s

S=

=
wliVe;

(3-18)

Q

Where D is the diameter of the circular plate, D =1f—4-Area = 1.1284 v Area, p is the
T

average load area, Q is the point force, where Q = pxArea. Then, D = 1.1284 x V(1) =
1.1284 m. According to equation (3-18),

_1-025 1000

= X =0.3324m
2x1000 1.128

The computed settlement result is of 0.3078 m, which is fairly close to 0.3324 m (a

portion of the difference can be attributed to the difference between the half-infinite
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space theory and the finite compressible layer theory), shown in Table 3-1, basically

proves that the program is feasible.

Test 2

Q = 1000 kN acting on a rigid pile, its length L= 20 m, its section bxb= 0.4 m x 0.4 m,
(equivalent diameter d = 4 x b/n = 0.5093 m for the circumference, and d” = 1.1284 x b =
0.45136 m for an area section). The soil around the pile is the same as in Test 1.

According to Poulos & Davis (1980), the pile’s settlement is defined by:

P
S=——1 3-19
5 d (3-19)

Where, I = Iy Rk Ry Ry Ry, of whom the meaning and value of each component is given in
pages 87 to 89 of Poulos & Davis (1980). For //d = 20/0.5 = 40, I, = 0.043, Rk = R, = 1.0,
Ru=0.84, Ry= 0.92 when Poisson’s ratio p = 0.25. Then, [ = [(RkRyRpRy = 0.043 x 0.84

x0.92 = 0.04047. Thus, S = ﬂx 0.04047 = 0.03174 m. The computed result is

2500x0.51

0.03034, which is very close to 0.3174 (Table 3.1). Therefore the program is good.

The following two figures in Fig.3-3 are respectively the axial force P, and the shear
stress T, (t in the figure) with changing depth z. From these figures, one can see that shear

stress on the rigid pile is developed from the lower part of the pile shaft.
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Test 3

The pile in Test 3 was set as being compressible, with an elastic modulus of the pile E, =
250Mpa (i.e., the ratio of modulus K = E;,/ E&= 1000). As per Poulos & Davis (1980), Rk
~ 1.28,1=10.04047x1.28 = 0.05180, then S ~ 0.3174x1.28 = 0.04063 m.

The computed settlement, as a result of it, is 0.04024 m, which is close to 0.04063 m

(shown in Table 3.1). The program is therefore also accepted.

The axial force P,(z) and shear stress t,(z) in the compressible pile case differs from
those in incompressible pile cases, shown in Fig. 3-4. A comparison of Fig. 3-3 and Fig.
3-4 demonstrates that the shear stress on a rigid pile (Test 3) develops from the lower part
of a pile shaft; while that on a high compressible pile develops from the upper part of the
pile (shown in Fig. 3-4). A similar phenomenon is seen for a rigid pile from the result of a
low compressible pile, as shown in Fig. 3-7(c) for Case 2, in which the pile elastic

modulus is quite high, E, = 22Gpa, so that Fig. 3-4 is close to behavior of rigid pile.

Table 3-1 Comparison of the computed and the theoretical values

The calculated The theoretical
(finite compressible layer) | (half-infinite space theory)

Test 1 S$=0.3078m S$=0.3324m

a 1.0x1.0m?square plate
Test2 $=0.03034m $=0.03174 m

a rigid pile with 20x0.4° m* ' )

Test 3

a compressible pile with S=0.04024m S=0.04063m

20x0.42 m®
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Test 4

Q= 4900KN, the rigid plate is 7 mx7 m, with the same soil conditions as in Test 1. The
acting pressure distribution on the bottom of the plate is observed and is found to be in

agreement with the actual case, shown in Fig. 3-5.
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Fig. 3-5 The Computed Distribution of the Pressure on the Bottom of Raft

Test 5

In order to examine the calculated displacement coefficient of soil along different
distances r, one sets one unit load acting on a square area, calculates the displacement at
each point away from the centre of the load area as shown in Fig. 3-6. The soil elastic
modulus Es and Poisson’s ratio are the same as in Testl. The calculated range length of
the finite layer, i.e., Lg is taken 40m and 60m; the maximum of the distance of the
affected point r;; is 19m. The result is shown in Fig. 3-7 (a, b).

From the figures, several regularities are found. First, when the distance of the affected
point 1;j is close to half the calculating range length of the finite layer, i.e., Lg/2, the

coefficient value will be underestimated. Therefore, in general, Lg must be larger than
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two times the furthest distance of the affecting point and an unstable value which can

take two to four times the square root of the load area, ie. Lg > 2 X[rmx +

(1to2)x +/ Area ]. Second, when Nr, selected maximum number of the finite Fourier

series, is small, the coefficient value of the furthest affected point will be a wave along
the distance; from Fig.3-7(a), the wave appears at a distance of 5x +/ Area . The larger the

distance r is, the wavier the coefficient. Although the coefficient value wave is very

small, it also causes larger pressure waves on the bottom of raft. Third, the Nr keeping
from coefficient wave is related with Lg. At Lg equal to 40+/ Area , the coefficient value

creates a wave 1f Nr is 20, but not if Nr is 40. If Lg is equal to 60 JArea , the coefficient
value creates waves if Nr is 40, but not if Nr is 60; i.e. large Lg needs large Nr to escape
from coefficient wave. However, large Nr increases the computing time of computer.
Therefore, when one applies FLM while adopting the Fourier series and calculates the
interaction of raft and soil, it is necessary and very important to try to run the program

and determine the calculating range length Lg and the number of Fourier series Nr.

Fourth, when the affected distance rj; is more than 12x JArea , the affected coefficient of
settlement can be taken as being zero.

In the past, one could only take the approach where Nr = 10 to 15 because of the
available computers’ speeds, which often causes the wave values of the computed

pressures on the bottom of raft to be along different place of the axis.

Fig. 3-6 Calculation Points Measured from the Loading Area Centre
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3.4 Cases Analysis and Inference
The following presents the various numerical investigations that were carried out on piled
raft models in order to explore the raft effect of pile-soil-raft interaction on settlement,

load sharing, development of pile bearing capacity, etc.

Case 1

In this case, a rigid raft having dimensions of BxB= 2.40 m x 2.40 m; the pile is the same
as that of Test 4 in Section 3.3, and so B/d = 4.71 (or B/b = 6.0).

The objective of this case is to examine how much the load will be shared by the raft. The
total load Q (a point force acting on the center of the raft) was set to 1000 kN. Upon
running the program, a settlement result of S = 0.2856 m was obtained, which represents
a decrease of 16.81% compared with a pile without a cap or with a high-set cap; the load
shared by the raft is p, = 25.91(KPa), i.e., Q, = 149.24 kN, 14.92% of the total load. The
axial force P,(z) and the shear stress t,(z) in the compressible pile case differ from those

in incompressible pile, as shown in Fig. 3-8.

From Fig. 3-8, one can see that the decreasing effect of raft on a pile extends up to a
depth that is larger than the width of the raft in an elastic state. However, in non-linear or
plastic states, it was seen that the depth of the raft-decreasing effect has a limit which is at

a= depth equivalent to the raft width in Cases 2 and 4.
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Case 2
All of the tests performed within the scope of this case aimed at trying to calculate the non-
linear interaction of pile-soil. First, a program run was performed for a single pile, which is a

reinforced concrete pile, Lxbxb = 20x0.4x0.4 m’, its elastic modulus E,=22 GPa.

Soil conditions:

Soft soil is found from 0.0 m to 20.0 m, E;=2.5 MPa, with a soil shear strength 1:= 40 kPa
and a linear-elastic critical shear stress 1.=20 kPa.

At depths ranging from 20.0 m to 50.0m, better soil is found with E;= 5 MPa, a pile base
ultimate bearing capacity opr= 1000 kPa, the linear-elastic critical pile-base stress 6y, = 450

kPa. The total ultimate bearing capacity of the pile P,= 1440 kN.

The modeling relationship between the shaft shear stress and the plastic displacement is

adopted from the model of Yang & Zai (1994).

Upon running the program, the following results were obtained:
1) Load-settlement nonlinear curve shown in Fig. 3-9 (a)

2) Pile axial force P,(z) and shear stress on shaft 1,(z) curves shown in Fig. 3-9 (b, ¢)

From the above results, it can seen be that some of the shear stress’ contribution in the elastic
state is similar to that of a rigid pile, whose shear stress develops from the lower part of the
pile shaft. Even in load-settlements in a nonlinear state, shear stress from the lower to the
upper part of the pile is almost a uniform contribution. This surmises that the form of the

load-settlement nonlinear curve of a pile that is almost rigid might be similar to that of the
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shear stress t-z curves, which are shown in Table 2.2. In fact, Chin (1972) once considered
truly rigid piles to estimate the ultimate bearing capacity (UBC) of piles; upon this basis,
Fleming (1992) adopted the assumption of a rigid pile to establish the load-settlement

relationship of a pile. All of the obtained results were in agreement with the test data.
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Case 3

A piled raft has dimensions BxB = 3.2 m x 3.2 m. The pile and soil conditions are the

same as those of Case 2. That is B/b = 3.2/0.4 = 8, B/d = 6.28. The calculated results are

the following:

1)

2)

3)

4)

5)

6)

The load-settlement curve shown in Fig. 3-10 (a).

The pile axial force P,(z) and the shear stress on the shaft t,(z) curves shown in Fig.
3-10(b, c).

The pile-head load versus the pile-end settlement and the total settlement curves
seen in Fig. 3-10(d) and Fig. 3-10(e).

The pile-end load (Py) - the total load (Q), as well as the total settlement (S) curves
shown in Fig. 3-10(f; j).

The pile shaft load (P, = Po-Py) develops with total load(Q), as well as the total
settlement (S) curves shown in Fig. 3-10(g, k);

The load of the raft, Qs, as well as the raft load percentage (hs = Qs/Q, %)

developed with total load Q, as seen in Fig. 3-10(h, 1)

From the figures mentioned above the following observations can be made:

1) For high-cap foundations (case 2), the settlement development with bearing load will

suddenly drop at ultimate state when the load of the pile reaches or exceeds the

failure load, shown in Fig. 3-10(1); whereas for low-caps (case 3), settlement

gradually develops, even when the load on the pile head is close to, reaches or

exceeds the ultimate value of the pile bearing capacity, because the cap bears the
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2)

3)

4)

excess load increase close to or after reaching the ultimate state, shown in Fig. 3-
10(1).

In the elastic phase of the load-settlement relationship of a pile-soil system, the raft’s
decreasing action on the shear stress (frictional) development of the upper part of the
pile shaft is evident. This decreasing action obviously weakens as the load on the pile
develops close to failure or ultimate, shown Fig. 3-10(c) 1(z) curves. In this case, the
raft’s decreasing factor &, = Po/P, = 1400/1440 = 0.9722 ~ 1 due to the small width of
the raft.

The affecting depth of the decreasing action z, ~ B; the reducing value of pile’s final
bearing capacity for a raft’s decreasing action, AP,,=P,-Po= "41r2; (estimated by
frictional stress (z) are f(z°) curves in the ultimate state). In the case where APy, ~ 40
x 3.2/3 = 42.7KN, the estimate agrees with the numerical modeling value from, and
near 40KN, the numerical result? The raft’s decreasing factor £, = Po/Py = (Py-APyw)/Py
=1397/1440 = 0.9701, near the modeled value of 0.9722.

The sharing ratio of the raft’s bearing load A; = Qs/Q is constant. In the elastic phase,
it varies with the development of the elastic-plastic state of the load-settlement of a
pile-soil system, and finally it increases up to a constant incremental rate at the pile’s
ultimate state so long as the load-settlement relationship of the raft-soil system is still

in the elastic state, as shown in Fig. 3-10(h, 1).
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Case 4
A high raft (i.e. the bottom of a raft that does not come into contact with the soil) with 9
piles at a spacing of s = 2.4m. The raft has dimensions BxB = 7.6 mx7.6 m. The piles and
soil condition are the as same as those of Test 7 or 8, i.e. s/b = 6. The total ultimate
bearing Load Q,=9P,=12.96MN.
The calculated results are:
1) The total load-settlement curve as seen in Fig. 3-11(a).
2) The load of pile head - the total load curve shown in Fig. 3-11(b).
3) The pile-base load - the total load curve as seen in Fig. 3-11(c).
4) The pile shaft load (Pg, = P,-Py,) develops with the total settlement (S) as shown in
Fig. 3-11(d).
5) The ratio of the pile-base load to pile-head load, i.e. oy, develops with the total
settlement shown in Fig. 3-11(e).
6) Axial force Pz(Z) and shear stress on shaft tz(Z) curves of corner, edge and centre

piles shown in Fig. 3-11(f~k).

From Fig. 3-11(e), it can be seen that the ratios of pile-base load to pile-head load vary

according to their location on the raft, even in the elastic phase. However in engineering

design, engineers often take the ratio as a constant which is not reasonable.
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Case 5
A low raft (i.e. the bottom of the raft comes into contact with the soil) with 9 piles. The
raft is the same as that in Case 4. The piles and soil conditions are the same as those of
Cases 2 and 3, i.e., raft B x B="7.6 m x 7.6 m; pile space s/b =2.4/0.4 = 6.
The calculated results are as follows:
1) The load-Settlement curve shown in Fig. 3-12(a).
2) The load of the raft, Q;, as well as the raft load percentage (A = hy = QJ/Q, %),
developing with the total load Q shown in Fig. 3-12(b, c).
3) The load of pile head - the total settlement curve shown in Fig. 3-12(d).
4) The pile-base load - the total settlement curve shown in Fig. 3-12(e).
5) The pile-shaft load (Py, = Py-Py) develops with the total settlement (S), shown in
Fig. 3-12 (f).
6) The ratio of the pile-base load to the pile-head load, i.e. oy, varies with the total
settlement in Fig. 3-12 (g).
7) The axial force P,(z) and shear stress on the shaft 1,(z) curves of corner, edge and

centre piles shown in Fig. 3-12 (h to m).

From the above figures, the following conclusions can be drawn:
1) Just as for the comparison between Cases 2 and 3, comparing the settlement

behaviour of high-raft pile group of Case 4, shown in Fig. 3-11 (a), when the pile-
head load is close to its ultimate value, shown in Fig. 3-12(d), the settlement

development with total load Q does not drop suddenly but drops gradually, as
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2)

3)

4)

5)

seen in Fig. 3-12 (a). The advantage of considering a raft’s action on load sharing
of the upper structure is clear.

The load shared by the raft and its sharing ratio to total load Q behave in the same
manner as observed for Case 3, this may be due to their both having the same raft
sharing area ratio, i.e. B/b in Case 3 is equal to S/b in Case 5 (S is the space
between pile-center to pile center).

Comparing Fig. 3-11 (e) with Fig. 3-12 (g), one can see that the ratios of pile-base
load to pile-head load in elastic state are affected not only by their location on the
raft, but also by the raft’s width. However when the load of piles is near to plastic

or ultimate state, the ratios tend to a stable theoretical value,

Olbu = Pru/Pou = Oor Ay/[ & p(Gbr AptTrpL)]

_% b %y b ]
oLt o

In the case, the value oy, = 0.125/[0.94(1+0.125)]=0.118.

The action for a decreasing raft frictional stress of a pile’s shaft is greater than
that of Case 3 (small raft case). This is due to the width of the raft being larger
than that of Case 3. In the elastic phase, the action even causes the upper part of
the centre pile to demonstrate negative frictional stress, as shown in Fig. 3-12(/).
However, in the non-linear phase, the action gets smaller with the development of
settlement.

The raft-effect factors of a pile are £, =0.903 for a center pile, 0.944 for corner
and/or edge piles, and their average f—p=0.939. They are close to a value of 0.9,

which is recommended by Zai 1992 and Burland 1995. One should be aware that
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6)

the program discussed within this research paper does not consider the shear
strength increment caused by an increased normal stress on a pile’s shaft due to
the pressure of the raft’s bottom. Otherwise, according to Katzenbach(1998), &,
will be much greater than 1.

From Fig. 3-12 (h to m), one sees the decreasing effect of the cap on the pile’s
UBC, which reaches its limit in the range where the depth is equal to the cap
width for center piles, e.g., z¢~ B = 7.6 m, whereas for edge piles and corner piles,

the range depth is of about 0.75 the cap width, e.g., zs~ 0.75B = 5.7 m.

According to the following definition,

Ep= 1-APy/Py (3-21)
AP, is the value of the pile’s total frictional force decrement caused by the effect
of the cap; P, is the UBC of a single pile that is not affected by decreasing cap’s
effect. Thus,

AP;=0.331¢pB (for center piles) (3-22a)

AP=~0.257¢ pB (for edge or corner piles) (3-22b)
Where the value of ¢ is taken as 1(z)|, - g for center piles and t(z), - 0758 for edge
or corner piles, p is perimeter of pile section
In Case 2, only for center piles, AP, ~ 0.331; pB = 0.33x40x1.6x3.2 = 67.6 kN,
and &p = 1-APy/Py = 1-68/1440 = 0.95, which is close to the calculated value of
0.97.
In Case 4, for center piles, APy~ 0.331; pB = 0.33x40x1.6x7.6=160.5 kN, and &,

= 1-AP,/P, = 1-160.5/1440 = 0.89 (which is extremely close to 0.90); for edge or
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corner piles AP, = 0.25t:UB = 0.25x40x1.6x7.6 = 121.6 kN, &, = 1-AP,/P, = 1-
122/1440 = 0.92 which is close to 0.94.

The above two cases show that the estimates provided by equations (3-21) and (3-
22) for the raft-effect factor of piles, &, are feasible.

In the case of uniform soil, P,= oyr ApttepL (L = length of pile),

0.33B/L
Oy b
T, 4L

Ep=1-APy/P,= 1- (for center piles) (3-23a)

1+

0.25B/L

1+gl£_é_
T, 4L

Ep=1-APy/Py=1- (for edge or corner piles) (3-23b)

Theoretically, opr/cy = Ops/1= 9. But actually, usual Gpe/1r=12~25 (Meng,

1999). Therefore, ‘-’-”fizb—z (3~6)b/L. When L/b > 30~60, ﬂ%z (G~6)b/L <

Ty Ty
0.1, then Ep=1-(0.25~0.33)B/L (3-23¢)
From equations (3-23), it can be noted that the raft-decreasing-effect factor of the
pile, &, is actually a function of B/L, e.g., the ratio of the cap width over the pile
length. Hence, taking &, to be 0.9, the value recommended by Zai 1992 or

Burland 1995, does not take into account the factor, and it is not reasonable for

some cases, such as small caps and long piles, or big caps and short piles.
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3.5 Discussions

When FLM adopting the Fourier series and calculating the interaction of raft and soil,
larger Lg (calculating range length) needs larger Nr (selected maximum number of the
finite Fourier series) to escape from coefficient wave. Because large Nr increases run
time of computer, it is necessary and very important to try to run the program and

determine the calculating range length Lg and the number of Fourier series Nr.

For high-cap foundations (case 2), the settlement developed with bearing load will
sharply increases at ultimate state when the load of the pile is up to or exceeds the failure
load; whereas for low-caps (case 3), settlement is gradually developed even when the
load on the pile head is close to, reach or exceeds the ultimate value of the pile bearing
capacity, because caps bear the excess load increases close to reaching or after reaching

ultimate state.

In the elastic phase of the load-settlement relationship of a pile-soil system, the raft’s
decreasing action on shear stress (frictional) development on the upper part of the pile’s
shaft is evident, and it also obviously weakens as the load on the pile develops at or close

to failure or ultimate bearing capacity.

The decreasing effect of a cap on a pile’s UBC is limited in the range of the depth that is
equal to the cap width of the center pile, e.g., zc~ B, whereas for edge piles and comer
piles, the range depth is of about 0.75 of the cap width, e.g. zr= 0.75B. The reducing

value of a pile’s final bearing capacity for a raft’s decreasing action, APy, = P-Po~ V51525,

93



is estimated by frictional stress 1(z) ~ f(z?) curves in ultimate state. The factor of the
decreasing effect of a cap on a pile’s UBC, &, = 1-AP./P,, can be estimated by equations

(3-21) to (3-23).
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CHAPTER 4

PORE PRESSURE CAUSED BY DRIVING PILE GROUPS

4.1 Initial Distribution of Pore Pressure Developed During Driving

The Excess pore water pressure (EPWP) induced during the procedure of single pile
driving is different from the EPWP distribution at the end of pile driving. This difference
is attributed to a decrease in the shaft’s resistant frictional stress and the base resistant
force of the pile, which seem to disappear upon load removal of the pile top at the end of
pile driving, which is accompanied by some residual pile tip resistance and negative
frictional stress of the pile shaft, as shown in Fig.4-1. However, the excess pore pressure
data measured during the procedure of single pile driving is useful in clarifying the stable

initial excess pore pressure distribution caused by pile driving after its completion.

pm Pou
—‘\JL/’ AL T~ T~— . A __&'(z)
I\ Soil \l l’
Pile| = 1,(z) , b
Pile wlz) Pile) = Pite
. (i)
I, JA ) F,
| NA | ; | L
T Pu /I\ Pu T
By P
z
(a) Loading during pile penetration (b) After unloading and pile penetration

Fig. 4-1 Stress State of Pile and Soil during Pile Driving and After Unloading
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4.2 Excess Pore Pressure Induced during Single Pile Driving

Roy et al (1981) gave the field pore pressure observed from various cells fixed on a pile
during its penetration. The interpretation of the field data usually is the theory of
expansion of spherical and cylindrical cavities in ideal elastic-plastic soil possessing both
cohesion and friction as presented by Vesic (1972). That is, the generated pore pressure
around the pile tip, Auy, is the result of the expansion of a nearly spherical cavity in the

intact clay and it may be estimated from the theoretical solution for spherical cavity

expansion:
R
Au_ 4Ln(—”—) +0.94c, (4-1)
c, p
R
v N N (4-1°)
r V2(+p)c,

in which R, is the extent radius of the plastic zone around the pile axle, p is the radius

from pile tip to calculating point, p =./r* + (z — D)* , z is depth of calculating point, D is
depth of pile into soil, ry is the radius of the pile and oy is Henkel’s pore pressure

parameter (Henkel 1959).

The pore pressure maintained along the pile wall during the pile penetration, Aus, is much
less than Au,, and may be estimated from the cylindrical cavity expansion theory, whose
provided parameters should account for the effect of clay destructuration resulting from

pile penetration.

R
Au_ 2Ln(—l) +0.8172, (4-2)
C r

u
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R
SN | B (4-2°)
I 20+ p,)-c,

An estimate of Aug can be made from the solution proposed by Lo and Stermac (1965),
which is based on the assumption that the pore pressure increase is caused by two
phenomena: (1) an increase in mean total stress (Aug; = (1-Kp)oyo’) and (2) the shearing
of the soil due to large strains around the pile (Aug; = (Au/p )m'0yvo’). Consequently, the
driving pore pressure Aug in normally consolidated clays may obtained from Aus = [1-Kj
+ (Au/p’)]-ow’. Its modification to account for the eventual pre-consolidation of the clay
should be rewritten as
Aus= (1-Ko)ovo” + (AWP )Gy (4-3)

2

where K, is the coefficient of earth pressure at rest in intact clay, oy’ is the vertical
effective stress, (Au/p’)n 1s the ratio of excess pore pressure to the initial consolidation
pressure p’, that was measured in a conventional consolidated-undrained tri-axial test and

generally assumes values in the order of 0.6-0.8 and finally o, is the pre-consolidation

pressure.

Although the pore pressure computed from Equation (4-3) agrees remarkably well with
the observation from Roy’s field test, the interpretation mechanism of equation (4-3) is

not clear.

When compared with Lo and Stermac’s assumption (1965), equations (4-1) and (4-2)
neglect the increase in mean total stress caused by shear stress on the interface between

97



the pile and soil that is maintained along the pile wall during penetration. This factor can
be taken into account using the formulae developed by both Mindlin (1936) and Gedds

(1953, 1966) and modifying Vesic’s cavity expansion theory application.

The increase in mean total stress is defined by the following equation A® =
Ao, +Ac+Acy, where Ac,, Ac; and Acy and Ay, are caused by a point load Py, applied at
the pile tip, uniform skin friction along the pile (total load P,) and linear variation of skin
friction (total load Py), shown in Fig. A-1 in Appendix A.
Ac =Ly Pyt Iy Py+ 1, Py )
A= Ly Po+ Ty Pu+ It Py (4-4)

Acg=lg.p Pyt Ig.u Pu+ Ip Py

ATrZZIT-b Pb+ It-u Pu + I‘r-t Pt ?
in which, Ly, Lu, I, b, Lew, Ity o, Io-u, Tou, and Loy, Lo, Loy all are stress coefficients

expressed in dimensionless form and whose definitions can be obtained from Geddes

(1966) in Appendix L

Therefore, based on Lo and Stermac’s assumption (1965), the pore pressure increase
caused by the increase in mean total stress can be expressed as
Au; = BAD(r,z; D)/3 = (Ao, +Ac,+Ace)/3
= (Lap+ o Hown)Po/3+ Ty + Ly + Too)Py /3+ (I + L + 1o )P/3 (4-5)
The second part of the pore pressure increase, caused by the shearing of the soil due to

large strains around the pile, should be expressed by Equations (4-1) or (4-2):
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R
Near the pile tip, D = z~z+10 r, Auyp=Aug, = ¢,| 4Ln| £ |+ 0.94 f} (4-6)
L P
, L (R
Along the pile, for D < z-10r, Aws= Aup = ¢ | 2Ln| —= |+ 0.817 f} 4-7)
N .
one can assume D = z-10rp~ z,
Auy= Aupp [1. - (z - D) / (10r9)] (4-8)
and for D <z-10ry, Auy;=0
Therefore, Au= BAD(r,z; D)/3+Auy(r,z;D) 4-9)

From Roy’s data, intact clay exhibits an E,/c, ratio in the order of 900, whereas clay
which has been remolded or “destructured” during cavity expansion at the pile-tip level,
Leroueil et al (1979) report a reduction in the order of 50% for E,/c, and of 30% for c,,
and the following pore pressure parameters: f=1, a~=0.35 (obtained from a CIU test).
According to in situ vane strengths, taking c,=5+3*z (kPa), and the point resistance and
skin friction measured during the driving of piles, P, = 0, P, = 6.5 kN and P, = 3.67 +

1.67*z (kN).

Fig. 4-2 is calculated from equation (4-9) and the measures from Roy et al (1981) for

different measured depths z and the same radius distance r=0.3m.
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Fig. 4-2 The measured from Roy et al (1981) and the calculated by this thesis

Fig. 4-3 is a comparison of the pore pressure observed by Roy et al (1981) and the values
computed using the method presented in this paper for two depths, z = 3.05m and z =
6.10m, and different radius distances surrounding the pile (pile tests 3 and 4). The
comparison in the figure indicates that it is reasonable to use Equation (4-5) to displace
the experimental term (1-Kg)oy’ found in Equation (4-3) based on Lo and Stermac’s

assumption (1965).

Therefore, it can be accepted that the stable initial excess pore pressure distribution with
radial distance, caused by pile driving and remaining after the end of pile driving (after
having removed the load on the pile top), can be expressed by Vesic’s pore expansion
theory, namely equations (4-1) and (4-2), if the effect of residual resistance of pile after

driving is not considered.
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4.3 Effect of Pile Residual Resistance on the Pore Pressure

The stable initial excess pore pressure distribution following the end of pile driving is
possibly affected by the residual toe resistance and shaft resistance of the pile. Presently,
research on residual resistance of pile driving force is limited to sand, since residual
resistance of pile driving in clay is thought to be quite small. Actually, even if one
considers a pile’s residual force, one finds that the residual force’s influence on the initial
excess pore pressure distribution caused by driving is not large. This is because both the
shaft’s frictional resistance and the tip resistance of the pile is small when the soil around

pile is disturbed during pile penetration.

(a) Effect of residual force
In Fig. 4-1(b), the total shaft residual force P, and the total residual resistance of lower

part P, are defined as follows:

l'l
Py= [(r,0 +a.2)dz~F, =1, + %a,lj -F,

z=0
: 1
P= [(r,0 +@,2)dz—F,+ B, =7,,(~1) +oa (P =I)-F +P,
z=l,

Due to the effect of equilibrium forces, P,= P,; F,, = F,; and Py, < Py, thus,
z-uOln + %arlj - EI < TuO(l - ln) + %ar(lz - lr?) - E + Byr
When Py, < Po, =7, + a1’ /2, Fy ~Fy; and Py~ Ppy

2t vall= 1, ]+ %oz,l2 +P, (4-10)
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2 2
If a.> 0, ln=\[(f—"ﬂ] f Tl (L By T (4-11)
(94

194 2 « a

=0, ,,,zz[,ﬁ] @12)
2 T,0

Equations (4-11, 12) are correct only when Py, < Pg,=17,,/ + cr,l2 /2, namely the case of a
mainly frictional pile.
When Py, > 7,/ + @,I* /2, which is a case of a mainly end-bearing pile,

1,=1,and Py, = Py,=1,l +a 1>/ 2< P, (4-13)

(b) Case calculation

Pile length / = 20 m, pile section b x b = 0.4 m x 0.4 m, disturbed soilz,y = 20 kPa, a; =

2.2 kPa/m, Py, = quuAp= 1000 x 0.16 = 160 kPa.

A
Equivalent radus of pile rp= |2 = b 0.5642x0.4 = 0.2257 m

T Iz
Phu < Poy=1,00 +a,I* /2 =20x20+2.2x20%/2 = 840kN

Using (4-11), [, = 14.09 m
The increase in mean total stress
Ac=[AD(r,z; [) — 2AD(1,z; 1,)]/3

= (Iz-b+Ir—b +19-b)leu/3+ (Iz-u + Ir—u + IG-u) lTuol /3+ (Iz-t + Ir-t + IG-t)I arlz /6

"(Iz—u + Ir—u + Ie-u) In Tuol,, /3 - (Iz-t + Ir—t + I(—)-t)ln afl,,z /6
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The result of Ac,(r, z), shown in Fig. 4-4, demonstrates that Acy, is small when it is

caused by residual forces; it is of the order of 10 kPa for pore pressure caused by cavity

expansion.
14
12 Z\
3] / :
g o ;\ —o—1/2=0.01
s !,5 \ —m--112=0.02
g 8 i
g 1
s i r/z=0.05
2 T
-y A A A A A WO A N A N g - 12=0.075
g 4
TR
2 X —%—1/2=0.10
2 1 =\
g 2 N -
: 7N
N e | (R S S P Y
2
0 5 1 15 20 25 30 3 40
depth, z /m

Fig. 4-4 Aoy, caused by residual forces

(c) Forms for Expressing the Initial Excess Pore Pressure

Fig.4-5 is a comparison among different expression forms, equations (2-37) to (2-49), for
excess pore pressure caused by pile penetration, both theoretical and experimental. The
comparison illustrates that there are some differences between the different expressions
for excess pore pressure and between its mathematical expression and its measured value.
It is therefore important to determine the mathematical expression of the initial excess
pore pressure based on the measured or test results. Fig.4-5 also shows that the uniform
formula (2-42) is the best better fit when compared to measured values. Another suitable

form is the exponential model, defined as follows:
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—AA—uL—l'; = exp{— a(;o— - lﬂ (4-14)

1.00 -sesvg
\ \ —+— Poulos & Davis (1980), R=4d
0.90
g \ —=— Vesic & Randolph, E/cu=900
0.80 *
\ —a— Uniform formula, Rm=30r0
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~s Y a0 & Wu (1999), Rp=3d
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Fig. 4-5 Different Initial Pore Pressure Distribution Expression

4.4 Initial Excess Pore Pressure Distribution with Depth

The pore pressure in a plastic field can be expressed by (Vesic 1972 and Randolph et al

1979):
R
Au_ 2Ln(—”j+0.817af (4-15)
c, r
R
in which, —£ = \/—17 _—F  _|E (7o is the pile radius).
T 2(1+p,)-c, 3c,
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For normally consolidated clay, many experimental relationships exist between ¢, and

G,’, such as the following: Skempton (1957) where u —0.11+0.0037PI (po 1s effective
p,

vertical overburden pressure 6,”); Chandler (1988) determined Su=0.11+ 0.0037PI (Dc

P,
is pre-consolidated pressure; for normally consolidated clay, p.= pp=0,’), Mesri (1989)

Cll p—

defined -~ =0.22 and finally Bjerrum and Simons (1960) found G - ALI).
P. p.

. . . c : .
It is now necessary to set up the relationship between —“- and the soil’s effective inner

'
v0

frictional angle ¢’ for normally consolidated soil according to three different paths.

(a) Laboratory consolidation test model
Stress path: from initial confining stress 6’ = (671016 30)/2 = (0’1010 v0)/2 to failure. In
Fig. 4-6, u, = A, (Ao, + Acy), =24,c,; 0',=0'y+c, —u, =a'y+(1-24,)c,

C c

u

o', o\ +(1-24,),

=tga'= Sin¢g'

Sing o' (4-16)

or c, = —- 0,
1-(1-24,)Sing'

Where ¢’ is the initial consolidated stress (effective confining pressure), one can take

_1+2K,

2

Go

o, for soil around the driven pile and ¢’y = q + ydw + 7’z. The long-term

surface load q=10 ~ 20 kPa usually for the site at street level. d,, is the depth of the

underground water level, y is the unit weight above water level and y’ is the unit weight

below the water level, y* =7 — yy.
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Therefore

Sing' 142K,
c, = — lo
1-(1-24,)Sing' 3

(4-17)

142K, Sing'
3 1-(1-24,)Sing'

Au

R
{2Ln(—l] + 0.817a'f} (q+y,d,+7%) (4-17a)
r

(b) Ky consolidation test model
Stress path: from initial consolidated stress (67h0,6°vo) to failure.
In Fig. 4-7, line K’ is the initial consolidated line; line K ’ris the failure line.

K’o= (1-K;)/(1+ K}) ; 0= Svw(1+K)/2; 10=K’900= 6vo(1 Ko)/2; Ac1/2=c,~K G,
u,= A, (Ao, —Aoy) = A Ao, =24(ci-K 00);
o,=0, +—A%—uf =0, +A;i—AfA0'1 =0, +(%—Af)AO'1

= o34, | 26e, - Ki)=-0-24 K oy 24, Y,

C C

L . _ 1ga’'= Sing
o, +U-24)K oo +(1-24,)c, © 4
1= (1-24)K.
¢ =024k g
1= (1-24,)Sing'
1—(1-24)K,
or o =022 g 14K (4-18)
1—(1-24,)Sing
Thus,

Au

1-(1-24,)K,'}|Sing' R
— 1+K0 .[ ( f) 0 ] ln(o 2Ln A +0'817af .(q-{.—}/wdw +}/,’Z) (4"183)
2 1-(1-24,)Sing’ r
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Fig. 4-8 Stress and Pore-pressure Path C
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(¢) Column expansion failure model
Stress path: from initial consolidated stress (6°40,0’vo) to column expansion failure.
In Fig. 4-8, the initial consolidated stress is ¢’y = o’y (1+Ko)/2 and 19 = K’¢07y =
o’ vo(1-Ko)/2; According to Vesis (1972), the failure state stress is 61y= 6y = 6"y tAC, =
6’ hot2cuLn(Ry/r)+cy, 63y= Oy = G’ notACe=0no +2c,Ln(Ry/r) — cu; AG1= Ao, = 2c,Ln(Ry/7)
+cu, A3 = Ay = 2¢,Ln(Ry/r) — cu; of = (01103)¢2 = Koo vo+2c,Ln(Ry/r); (Aci-Acs); =

Ac-Ace =2cy; u, =2c,Ln(Ry/r)+0.817ac, ;
5.6 A= 0p-u, = Koow=0.817ar,;

C C

Thus, L = 4 =tga'= Sin¢g'
o, Kou-081Ta,c, © v
¢ = KSing” (4-19)
1+ 0817 Sing'
. 1 R
or  Au=— RSP 1), 0.817a, |-(g+7,d, +7%) (4-192)
1+0.817a,Sing' r

However, because 6°4< 6y, €.g8., this is in over-consolidated state, line K’s does not
intersect at A but at B. It leads under-estimate of ¢, and Au.

Assuming 6’g = 6= G v(11Kp)/2,

Thus, - __ 2 =1ga'= Sing'
o'y (K,+Do'y,
tu = (Kot1)o" o Sing’ 12 (4-19°)
R
Au = ﬁziﬁsmgo'[un(—ﬁ} + 0.817af] (q+7.d, +75) (4-19b)
; |
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Table 4-1 Properties of deposits within the soil of #3 Subway of Shanghai City

Soil and No. | Thick w Ysat € S, Esi2 ¢
(m) (%) | (KNim?) (Mpa) (°)
(1) Sandy Silt 7.5 31.8 18.9 0.88 0.98 3.8 28
(2) Mucky Clay | 5.1 64.4 171 149 0.99 3.0 27
(3) Silt 11.6 43.3 17.8 1.21 0.98 3.2 28
(4) Silty Clay 43 238 20.0 0.69 0.98 35 31
(5) Silty Sand 8.1 28.8 19.0 0.83 0.99 3.7 32

Now checking formulae (4-17a) to ( 4-19a) using the field measured data from
penetrating pile test #3 on the Shanghai City Subway in China (Chen 1999), with a
square pile section of 0.45 m x 0.45 m, made of reinforced concrete and having a length
of 30 m. The groundwater table d,,~ 1.0 m below ground level. Deposits of soil layer are
shown in Table 4-1. The pore-pressure meter is 0.8m away from the pile’s axis. The

depths of the measured points are 3.75m, 10.01m, 18.4m, 26.35m, 30.00 m.

The following are the average values of the various soil parameters: 7' =8.33 kN/m?, ¢'

=29°, E,_,=3.44 MPa, ¢, =20 kPa and A;=0.9.

Empirically, taking Poisson’s ratio p = 03; Ko = 1-Sine’=0.5152, K’ =

(1- K,)/(1 + K,) =0.32. The equivalent radius of the pile ro=+/b>/7 = b/\Jx =0.5642b =
2

0.2539m. Theoretically, the soil’s elastic modulus is defines as being E =(1—%‘-}Esl_2
-u

but this is usually not correct. For soft clays, it is known that E > = E)_5. Therefore, one
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can assume that E =~ (1.1~1.2) E,, = (1.1~1.2)x3.44 = 3,78~ 4.13 MPa. a;= 0.707(3A¢

1) =1.202. (e.g. r = 0.8 m). The long-term surface load q ~ 20 kPa.

Hence,

(3.78 ~ 4.13)x10°
L 200+ 4, )c,, 2x(1+0.5)x 20

=7.94~8.4 ~ 8.2;

R, R
“rlo (7.94~8.4)x0.254/0.8 = 2.52~2.667 = 2.6

_r
roon

Using (4-17a),

.y R
Ay 12K Sing 2Ln| =2 |+0.817a, |-(q+7,d, +7%)
3 1-(1-24,)Sing’ r

~ 0.6768x0.3493%2.893057x(29.86 + 8.33z) = 22.86+7.53z (KPa)

Using (4-18a),

1-(1=24,)K,'1Sing' R
pu =Ko LU 2K ) (R ) 08176, |-(q + 70, + 72)
2 1-(1-24,)Sing¢' r

~ 0.7576%0.43875%2.893057%(29.86 + 8.33z) = 28.7+8.01z (kPa)

Using (4-19a),

L R
_ K,Sing . 2Ln| £+ 0817, |- (g +7,4d,+72)
1+0.817¢c Sing' r '

~ 0.16921x2.893057%(29.86 + 8.33z) = 14.62 + 4.08z (kPa). It is too small.

Using (4-19b),

R
Au = (Kz“)sl ¢|:2Ln[ f’)+o 8170:1} (q+7.d, +7%)
14

=0.3673%2.893057%(29.86 + 8.33z) = 31.73+8.85z (kPa).
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Comparing the above three estimate equations with field measured data shows that the

estimate for pore pressure generated during pile driving using Equation (4-18a) is

acceptable, as shown in Fig. 4-9, whereas the use of Equation (4-17a) gives an slight

under-estimate, Equation (4-19a) yields an half under-estimate, and Equation (4-19b)

yields an over-estimate. Only the calculated value for the pile tip differs from the

measured one, and so one should use 3-D spherical expansion theory for this point, that

1s:

P

R
Au=c, {4Ln(

r

)+0.94af}

Here R, differs with R in (4-15) or (4-17a~19a),

R
Yol = —E -, G oG E5=500~1000; Taking E/z = 900 for
1A 20+ p)7, T, c+q'tang

silty sand;

(4-20)

450
400

350

B

[

I

I

' —e— The effective overburden stress
~#--The measured excess pore water pressure
—4— The estimated EPWP by this thesis Eq. (4-17a)
- The estimated EPWP by this thesis Eq. (4-18a)
—*— The estimated EPWP by Chen (1999)

----- »-- The estimated EPWP by this thesis Eq. (4-19b)

|

20

25

30

Fig. 4-9 Measured and Predicted Excess Pore Pressures with Depth

112



R , R R
—+ = B 20 =6.694; L = Z2 0~ 6,604 x 0.254/0.8 =2.1253
I 3r, 3 roorr

Using (4-17),

. L] R
Ay = 1+2K0 Sznq) - 4ln £ +0.94af -(q+}/wdw+}/'z)
3 1-(1-24,)Sing' r

~ 0.6768x0.3493x4.14x280 =274 kPa;
which is much smaller than the measured value of 419 kPa

Using (4-18),

Au

14K, [ —(1—2Af)Ko']Sin¢'[ 4Ln(_1_e£
r

+09%a, |- (q+7,d, + 7"
2 1—(1—2Af)Singo' j f] (g+7.4d,+72)

=(.7576%x0.43875%4.14x280 = 385 kPa;
which is more near to the measured value 419 kPa.

Using (4-19),

Au=1+KO

R
. Sinqo'[4Ln(—’i) + 0.94af] (g+7.4,+7%)
r

=0.3673x4.14x280 = 426K Pa;

which is slightly higher that the measured value 419 kPa.

This shows that equations (4-18) and (4-19) can be used to estimate additional pore
pressure from pile driving at the pile tip. Equation (4-18b) is simply Wroth et al’s method

(1979).

Some field measured data, seen in Fig. 4-10, also show that the excess pore pressure

generated by pile driving increases almost linearly with depth.
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Similarly, Azzouz et al (1988), Magsood et al (1994), Lunne (1986), Kalsarud and
Haugen(1985) all measured stresses and excess pore-pressure around piles using Piezo-
Lateral Stress Cells (PLSC) and Cone Penetration Tests (CPT) and found that stresses

and excess pore-pressure increase linearly with depth.

4.5 Initial Pore Pressure Distribution Due to Group Piles Driving

The initial distribution of excess pore water pressure (EPWP) from the group pile driving

can be estimated based on the distribution of EPWP due to single pile driving.

4.5.1 Method of Estimation

According to the fundamental research and observations on excess pore pressure caused
by the group pile construction (Tang 1990; Yang, Wu and Fi 1996; Zheng et al 1998; Mu
1998), the following general rules can be established:

(1) Zheng et al (1998) proved through the centrifugal model test that excess pore
water pressure produced in soil differs according to the order of pile driving; it is larger
for piles driven from the outside edges and corners to the inside (center). Regardless of
the pile driving order, excess pore pressure finally tends to reach a similar stable value.
(2) In the internal piles of the pile group, excess pore pressure near the center pile is
obviously larger than that of the side piles; in the exterior piles of the pile group, excess
pore pressure distribution, similar to that of single piles, decreases rapidly with the
distance from side piles.

(3) During construction, excess pore pressure in the pile group has a tendency to
gradually increase, but it is limited by one maximum value. Much of the measured data
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Fig. 4-11 Pore Pressure Change at Different Depths during Driving Procedure
(From Tang 1990)

indicates that the instantaneous maximum excess pore pressure may reach (1.5~2.0)y’h
and may even reach up to (3~4)y’h. However, some time (5-10 days) after the end of pile
driving, the pore pressure value at the same depth tends to finally stabilize.

(4) With increasing depth, the stabilized value of excess pore pressure increases and
approaches that of the effective overburden pressure ¢’y (= y’h). Because effective stress
increments in soil are a function of pore pressure and effective tangential stress, 6’9, can
possibly be negative. When a negative effective tangential stress surpasses the extent of
the soil’s strength, vertical and horizontal fractures may appear in the direction that
reduces effective stresses, such as the appearance of hydraulic cracks. Once the excess
pore pressure drops to be of the order of the effective overburden pressure o’y, the

fractures close, and the excess pore pressure is stable, as shown in Fig. 4-11.
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There are some methods that one can use to pre-estimate the initial excess pore pressure

caused by driving group piles:

(a) Equivalent-pile method

In case of the number of piles is more than 3 - 4, excess pore pressure on the inside of the
pile group tends to reach a definite maximum value, the conception of an equivalent pile
can be used to estimate some of the excess pore pressure’s influence, caused by the
driving of a group pile, on a pile outside of the pile group. The principles of the method
are the equal total section area and the invariable shape-centre position of piles shown in
Fig. 4-12. Thus, group piles are assumed to be an equivalent pile, and excess pore
pressure of a pile group can be calculated by the means of the computational method and
processes of a single pile. The method should not be used to estimate the value at internal

points of the pile group.

equivalent pile Xe Q
\‘.__

actual pile

Computational point

Fig. 4-12 Equivalent-pile Method
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(b) Superposition method:
The excess pore pressure on the inside of the pile group, u,(¢), is equal to the sum of all

the values individually caused by each pile,
ug(t)=Ml'n{Zui(ri9t_ti)’ Aum} (4'21)

in which,
u, ({) --- excess pore pressure from the construction of group piles at a given time and

location;

u; ---- excess pore pressure at the calculation point from the i-th pile; equation u(r;, t) is
defined in chapter 5.

t, ----the computation time, where t; is the time at which the i-th single pile enters the
soil (£ 2¢,);

h ---- depth of the calculation point

For a more general case, neglecting the construction procedure and time factor, the initial

excess pore pressure can be estimated by using the following formulae:

Using Poulos & Davis’s formula (2-41),

ug = iui(ri 0) = AumRzi;l7 (4-22)

i=} Y

Using uniform formula (2-42)

Au_ & ¥, Au <
m Lnl =2 =""n| uLn(wr.)— L .
Lna)z n( r, ) an[n n(en) Z,: n(r,)]

T

i=1

ug =D u(r.0) =
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_ Ay Ln[ (ary)" ] (r: < aoro) (4-23)

A case of four piles with pile-pile space S is considered, shown in Fig. 4-13, where the
construction procedure and time factor are neglected. Thus, the initial excess pore

pressures from the driving of the four piles at points A and B are estimated.

Fig. 4-13 Superimposition Method for Four Piles
Using Poulos & Davis’s formula (2-41) and (4-21),

4 R\
u,= zi:u,.(r,.,O)=4Aum(m)

2
=8Aum(§) < Atty = S>S~2v2R=2.83R (4-24)

119



IfR = 4~8, then
S > Se=(11.3~22.6) 1o = (5.7~11.3)d (4-24%)

(d is the diameter of the pile).

s = 2 (7,0) =24 (Slf )2+ (IS/z)

2
= 9.6Aum[£) < Au,
S

2

= S28 =3.10R =(12.4~24.8) 1y = (6.2~12.4) d (4-25)

Using Tang’s formula (2-42) and (4-23),

_ 4 _ Au, r,
uA—Zu,.(r,.,O) 4Ln(a))L [S/\/—)

- i o o'y
= S>S=+20r, (4-26)
If w=20~30, then
S > S=(13.4~18.1) 1y = (6.7~9.1)d (4-26%)

4 Au r. Au or.
— ) .,0 =2 m_ T 0 {42 m 0
o = 2lr0)=2 "(S/z) Ln() (sf /2j

= 4 Dl Ln( o )~2 B 10l J5) < Auty

Ln(w) S/2 Ln(w)

20)0.75

2
2 Sc= ‘{/5—(0 wry = 5025

r,=(12.6~17.2) 1o = (6.3~8.6)d (4-27)

According to equations (4-24) to (4-27), when the number of piles is > 4 and S < (6~12)d,

for a general pile group situation for, the initial excess pore pressure reaches Au,,.
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Similarly, for cases of three (Fig. 4-14) and nine piles (Fig.4-15), one can observe some
similar results, as shown in Table 4-2.
It should be noted that when using Equation (4-23), one must check if #; is larger than

ary. If ; > wry then one should take r; = wry. For example, the calculation for the critical

pile space S, for ug=Au,, for a 9 piles case is shown in Fig.4-15.

Ua _—_A m I n (a)’?) Aum [Ln(wro) —Ln E}<Aum

Lno ( sf(sf¢s)| Lno| "\ S 32

1
= S Sc=(—;—§—)9w%r0=0.9097w%r() = (13.04~18.70)r,

But, Ias=Trae="Ta7="rag=~/% $=1.5811S=1.5811x13.04 1,=20.62 r>0r, (©=20)

or Tas=Tas=ra7=Tag =1.5811S=1.5811x18.70 1;=29.57 rp<ory (0=30)
Hence, when @ = 20, set r45~r49 =¥y, the case is as the same as the case of 4 piles; when

®=30, set rag =Or), then

8
Up= Au,, Ln (@r,)’ = Au {Ln( S ) Ln25:]<Aum

Lno ( S)“(\/ss)4 Lno
= S 2S,=42257w*r,=0.94570°r, = 18.51

For point B, we may find that only rge~rge >0r, (0=20~30). Hence,

g = Aum (a)ro) _ Au, {Ln( 20r, js —Ln(l 5):| < Auyy,
Lna) (2 S)2 (\/_5)2(3 S) Lno S

= S>S.= 2x15 o', = 1.1636w°r,=(12.8~17.T)r,  (shown in Table 4.2)
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Fig. 4-14 Superimposition method

for three piles

X®,

Fig. 4-15 Superimposition Method for nine piles

Table 4-2 Critical pile spacing S, when ug=Au,,

Cases Poulos & Divis Uniform fomula
fomula R=(3~8)ry o = 20~30
Point | S;=3.0 R s. =30,
A =(9.0~24.0) r0 = (12.8~16.7)r0
=(4.5~12.0)d =(6.4~8.4)d
, | Point S.=3.06 R Sc=1.6654 w”r,
los | B =(9.2~24.5) r, = (12.3~16.1)r,
pies =(4.6~12.3)d =(6.1~8.0)d
Point | S.=2.83R Sc=1.3747 0”'r,
c =(8.5~22.6) 1o = (10.1~13.3)r,
=(4.3~11.3)d =(5.0~6.6)d
Point | S.=2.60 R Se=207r,
A =(7.8~20.8) o = (13.4~18.1)r,
:"es =(3.9~10.4)d =(6.7~9.1)d
Point | S;= 3.10 R S=2x5"% 0" r,
B =(9.3~24.8) 1, =(12.6~17.2) 1o
=(4.7~12.4)d =(6.3~8.6)d
Point | S;=3.13 R Se= 20, ~0.945 1,
9 |A =(9.4~25.0) g =(13.4~18.5) 1o
piles =(4.7~12.5)d =(6.7~9.3)d
Point | S,=3.31 R S:=1.1636 0% r,
B =(9.9~26.5) 1, =(12.8~17.7) 1o
=(5.0~13.4)d =(6.4~8.9)d
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The critical pile spacing S. of cases more than 9 piles should be slightly bigger than that

of 9-pile case and thus can be theoretically determined for the 9 piles case, shown in

Table 4-2. In the case where S < S., EPWP one should always take ug = Auy,.

4.5.2 Estimation of the Initial Pore-Pressure Distribution for Group Piles
Case: A 9-pile group, with pile d = 0.4 m (radius ro= 0.2m) and pile space S = (3~10)d is
shown in Fig. 4-16.

The result according to formula (4-22) and R = 4d (= 81;), shown in Fig. 4-17, indicate
that there seems to be little influence from pile spacing on the distribution of excess pore
water pressure (EPWP). Comparatively, the result obtained according to the equivalent-
pile method is close to the result of formula (4-22) when S/d = 3. The equivalent-pile

method does not consider the influence of pile space on the distribution of EPWP.

The result according to the formula (4-23) and @ = 30 is shown in Fig. 4-18.

The result according to the formula (4-2) and R,/ro= 8 is shown in Fig. 4-19

O O O
SIN N s X
/ HJ /
0 D O

Fig. 4-16 Position of the piles in the group
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Fig. 4-17 Distribution of EPWP corresponding to different pile spacing,

from equation (4-22)
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Fig. 4-18 Distribution of EPWP corresponding to different pile
spacing, from equation (4-23)
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Fig. 4-19 Distribution of EPWP corresponding to different pile
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Fig. 4-20 Excess pore pressure caused by group piles

(Tang 1990)

From Fig. 4-18&19, it is possible to simplify the distribution of EPWP into a linear

variation with horizontal distance x. Also, the measured data from Tang (1990) prove

this, as seen in Fig. 4-20.
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4.6 Discussion

The pore pressure generated during single pile driving is not only due to cavity expansion
but also partly due to an increase in mean total stress caused by skin friction along the
pile and the point load Py, at the pile tip. The effect on the pore pressure caused by

residual forces is small and can be neglected.

An approximate analysis of strength-stress relationship and field measured data shows
that the excess pore pressure generated by pile driving increases almost linearly with

depth.

Hydraulic fractures in soil during pile driving make the excess pore pressure fall to a
stable level in the order of the effective overburden pressure ¢’,. This becomes a factor

that is considered in the calculation of excess pore pressure on the inside of a pile group.

According to case calculation and some field data, the distribution of EPWP due to pile

group with horizontal distance can be simplified into a linear variation.
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CHAPTER 5

ANALYSIS OF PORE-WATER PRESSURE DISSIPATION

5.1 General

In this chapter solutions are developed for the dissipation and consolidation of excess
pore water pressure (EPWP). This is based on the assumption that the effect of the piles
on water permeating is ignored. First, analytical solutions for uniform soils are
considered. These solutions apply in cases for plane strain problems, axi-symmetrical
strain problems, rectangular area problems (only with water permeating horizontally),
and 3-D dissipation problems. For layered soil, the use of the Finite Layer Method on
Biot’s Consolidation Theory don’t give a stable results, and it has been found that the
model easily caused data to diverge and that it could not converge to a stable value in a
given time-increment. Instead, a study was conducted to find the numerical inversion of

Laplace-Fourier integral transforms and an arithmetic method.

5.2 Analytical Solution of Pore-Pressure Dissipation in Uniform Soil

There are various problems, such as plane strain problems, axi-symmetrical strain
problems, rectangular area problems (only water permeating horizontally), and 3-D

dissipation problems, that any solution must address.

5.2.1 Plane Problem of Horizontal Dissipation
For plane-strain problems, the p.w.p dissipation or consolidation of a soil can be
expressed mathematically (ignoring the effect of the piles):
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ou _C 0u

o "ox?
Uy 0= [x‘ <b)
u(x,0) = y(x)=1u, 1_:3 (<<
0 (|x| >1)

The form of y(x) is shown in Fig. 5-1.

Fig. 5-1 u(x,0) form

There are two boundary conditions at x| = R:
a) Impermeable boundary condition:

ow/ox | 0= 0, dwox | - =0
b) Permeable boundary condition:

30/3X|x=0=0,u ||x[=R:0

(5-1)

(5-1a)

(5-1b)

(5-1¢)

Where b is the contribution distance of the initial maximum p.w.p uy, / is the range

distance of the initial p.w.p contribution u = 0, R is the effective distance of finite p.w.p

u[t=oc.

The solution of the above plane problem for impermeable boundary condition Eq. (5-1b)

(Appendix B-1) is:
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I+b - 2 R nnb nnl nTX n’n?
) =ug——+ cos —cos— {cos| — (exp| — C t
u(x,t) =ug o 2 ( R )C S( R ] P( Y }

2R m(mm)? 1-b R
(5-2)
WhenR =1, a, = 2u02 l (cos n7h —cosnﬂj
(nm)=1-b !
n27t2

0 -Cy, t
u(x,t) = g %(l + ?) +ugy Z 2 (cos n7b - cosnﬂ) co{ylﬂ)e 2

noin 7 (1 -b)

(5-2a)
Whenb =1, an=£u—9sin@
nw R
2,2
(x,t)=u 1[1+b)+u iZuo sinnﬂb co nﬂx)e—Ch 12 t (5-2b)
u(x,t)y=ug—| 1+— : -
20 1) % R !

Noticing that u(x,t) — uo% when t—oc, it is known that the permeable boundary

condition at x = R, does not agree with the actual situation of geotechnical engineering.

Therefore, only the permeable boundary condition in the horizontal direction was used.

The solution to the above plane problem for permeable boundary conditions Eq. (5-1c)

(Appendix B-2) is

o n 2_2
u(x,t)=uy Y. c, cos(%;—:)—m] : cxp(— C, %lelLt] (5-3)

n=0

2 R (% +n)mh (% +n)nl
Wh B n= — 5_3
ere c O 1=b (cos = cos == (5-3a)
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2uy Gin (% + n)7h

Ifl1=b, -
(%+n)ﬂ' R
© I+ n)mh I+ m)ymx 1V 4 n)2 72
u(x,t) =u 1 2 Sin (/2 ) Cos (/2 ) Exp| - Cy, Sé—)———t
n=1(/2+”)” R R2

(5-3b)
Casel: /R = 0.5, b/R = 0.2, x = 0, the consolidation degree U = (up-u)/uy from (5-3) is

shown on Fig. 5-2, Fig. 5-3.

Consolidation Degree
T(=Ch*/RA2)

0.001 0.01 0.1 1 10
0.00 - ‘

0.20 4o L B

\v\

040 f—— |

o \
0.60 -

0.80 1- — N
1.00 Y .

Fig. 5-2 Consolidation degree U —Time factor T Curve by Eq. (5-3) When x=0

Consolidation Degree (/R=.5, b/R=.2) T=0.0001

o 0.001
- \\ — 0.005
AR N e o i 0.01
\\\ —%— 0.02
= N —e— 0.04
N R +—  0.06
—= 010
S N e 0,18
________ e —e— 02
S | - 0.3
. —a— 04
. ; O A —>— 06
0.0 : ?» . S — S| — - W 1.0
0 0.2 04 0.6 0.8 1 #ee 2.0

Fig 5-3 Consolidation-degree distribution under Time-factors (Case 1)
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Case2: /R = 1.0, b/R = 0.2, x = 0. The consolidation degree U = (up-u)/uy, u from Eq. (5-

3), is shown on Fig. 5-4

Consolidation Degree (I/R=1, b/R=.2)

—e— T=0.0001
—%—  0.001
—a— 0005
i 0.01
—%— 002
5 —— 0.04
e 0.06
— 0.10
S 0.15
—o— 02
o 03
—— 04
—— 086

¥ 1.0

Fig. 5-4 Consolidation-degree distributions under different Time-factors
at initial pore pressure (Case2)

5.2.2 Axi-symmetrical (Circle Area) Problem of Horizontal Dissipation
For axisymmetrical strain problem, p.w.p dissipation or consolidation of soil can be

expressed mathematically:

ou 0’u 10u
Aty o e 5-4
ot h(arz rﬁrJ (5-4)
Uugp (0_<_}"Sb)
12 -2
u(x,0) = o(r) = quy b=r=l) (5-4a)
12 -p?
0 (I<r<R)
Ouldr|,-o=0,ul,-r=0 (5-4b)
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2 2

In (5-4a), the use of ug———— 5 7 (b<r< 1), shown in Fig. 5-5(a), to replace u 5 4
12 -p?

18

made to simplify the solution.

Another initial pore pressure distribution form, shown in Fig. 5-5(b), is mathematically

depicted by the following expression

Ug O<r=<b)
Ln(%) ,
u(r,0) = o(r) = qu, —77) b=sr<i) (5-42°)
Ln\7,
0 (Isr<R)
u
A u
4
Uy u
0
r ,
L, E I
0 b 1 R o b I R
a) u(r,0) Form 1 b) u(r,0) Form 2

Fig. 5-5 u(r,0) Form

The solution of the above axisymmetrical problem for the first initial pore pressure

distribution equation (5-4a) or Fig. 5-5a (Appendix B- 3) is given as following,

arrr, G n v, b)j ol
u(r,t)= uo};; (b)) O(R )exp( C, Ez—t} (5-5)
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Where a,, is the m-th value of infinitely many positive zeros solutions, X = tiy, m =1,2,..., of
equation Jy (x)=0; Jo, J1 and J, respectively are 0, 1 and 2 order Bessel functions of the

first kind. J, can be expressed in terms of Jy and J;:

2J;(x)

X

Jo(x) =

—Jo(x)

The solution of the axisymmetrical problem for the second initial pore pressure

distribution form Eq. (5-4a’) or Fig. 5-5b (Appendix B- 3) is presented,

Y A EIACT) (@ ) Lz

Time factor, T

1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03
0.0 @
0.1 0NN i BE
0.2 {— WA RN
= 0.3 i
; 0. A-HH :
g \EJ\ \
g 0.4 “ERL —
o ! : ! !
5§05 i —-‘r—ﬁtﬂ:i - T
© —e— Rr/br=20, Ir/Rr=1, by this thesis \ (i
Bo6y 0 T AN e
° —m— Rr/br=16, I/Rr=1, by this thesis
€ 0.7 -
S —a— R/r0=20,vs=0.5, by Tang(1990)
0.8 - 3
--g- Rro=20,v5=0.3, by Tang(1990)
0.9 7 o Riro=16,s=0.5, by Tang(1990) - l
10 i [ I L TIIIL | L T ITTT MW—T~T“‘ .. l

Fig. 5-6 Comparison between theResults of Equation (5-6) of Present Work
and Tang (1990)’s Solution
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Fig. 5-6 makes a comparison of the solution obtained from Equation (5-6) with that of
Tang (1990). When ® = R/rp = 20 and soil Poisson’s ratio v = 0.5, the curve from this
thesis’ equation (5-6) is based on Terzaghi—Rendulic’s theory which is almost completely
coincident to the curve produced by Tang (1990)’s formula Eq. (2-50) which is based on
Biot’s consolidation theory. This shows that Terzaghi—Rendulic’s consolidation theory is

a special case of Biot’s consolidation theory when the soil’s Poisson ratio vs = 0.5. This

fact has been well known (Sills, 1975).

Case3: The initial pore pressure distribution form according to Eq. (5-4a) or Fig. 5-5(a),
with /R = 0.5, b/R = 0.2, r = 0, the consolidation degree U = (up-u)/uy from Eq. (5-5) is

shown on Fig. 5-7 and Fig. 5-8, in which T=C,¢/R” .

- U-T Curves(Circle,/b=2.5, R/b=5)
0.0001 0.001 0.01 0.1 1 10
0.0 ' Tr—
—— x/Rx=0
-a— 0.1
02 ¢~ —— 0.2
g 04 —x— 0.4
3 —eo— 0.5
Al *— | i —— .6
5 0.6
—— 0.7
0.8 } ......... P 0_8
\ —— 0.9
i {
10 T y««ﬂ"f—/_w v : -~ 3 * t ;‘lf N ».,14_>-, -

Fig. 5-7 Pore pressure dissipation with time factor
under the first initial pore pressure distribution form
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U-x/Rx Curves(Circle,/b=2.5, R/lb=5)

0.4 0.6 0.8 1 —e— T=0.0001
x/IR —w— T=0.001
—a— T=0.005
i 120,01
—x— T=0.02
—e— T=0.04
—t— T=0.06
——T=01
s T=0 15
—o— T=0.2
—0— T=0.3
—n— 1=0.4
—— T=0.6
— e T=1.0
. | =2.0

. T=4.,0
e T4 0

U(1-uo/ut

Fig. 5-8 Pore pressure contribution with time factor
under the first initial pore pressure distribution form

Cased4: The initial pore pressure distribution form in this case is according to equation (5-
4a’) or Fig. 5-5(b). I/R=0.5, b/R=0.2, r=0, the consolidation degree U=(up-u)/uy from

Equation (5-6) is shown on Fig. 5-9 and Fig. 5-10

From Cases 3 and 4, we know that the effect of initial pore pressure distribution

on after pore pressure distribution with an increase in time is not great.

135



U-T Curves(Circle,/b=2.5, Rb=5) -
00001 0001  0.01 0.1 1 10
0.0 » l T —o— xRx=0
W ~a— 0.1
— 02 & 0.2
N
= 04 —>— 04
=] —— 0.5
0.6 - —— 6
—— 0.7
0.8 ——— 0.8
—o— 0.9
10 1

Fig. 5-9 Pore pressure-time curves at a place x/Ry
under the second initial pore pressure distribution form

" U-x/Rx Curves (Circle/b=2.5, RIb=5)

| —e—T=0.0001 |

0.4 06 0.8 1
xlﬁ —&— T=0.001
|

—a— T=0.005
e 10,011
—%— T=0.02
—e— T=0.04
i ~—+— T=0.06
——T=0.1
R = 0 I [
—0— T=0.2
—0— T=0.3
—ty— 1=0.4
—¢— T=0.6
—x%— T=1.0
e TZ2,0
- T=4.0
o T=4 Q)

1877
/

Fig. 5-10 Pore pressure contribution variation with time factor
under the second initial pore pressure distribution form
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5.2.3 Rectangle Area Problem of Horizontal Dissipation

For rectangular area, the p.w.p dissipation or consolidation of soil can be expressed

mathematically by:
2 2
M_c,| o0 (5-7)
ot B

u(x7Ya0) = UOWZ(X,Y),

in which,
1 (4 ] <b,, ) <b,)
)
- ; (4 :b, <x<1,,|)| <b, +1(x-b,) -
ey =1 ) | , (n=7—=)  (Ta)
2 (4 :b, Sy<l [4<b +-(y=b,) x " Px
l,=b, n
0 (44:1, <x<R,1,<y<R))
Ouldx | c=0=0,ul g =0 (5-Tb)
ouloy|,-0=0,ul,-p,=0 (5-7¢)
The form of function y»(x,y) is shown in Fig. 5-11.
y
3
Ry 1 _______________ :
v
L !
A; )
b, !
A Ay '
X
O bx lx Rx

Fig. 5-11 Rectangular Area of Initial Pore Pressure Contribution
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The solution to the above problem (the effect of the piles being ignored (Appendix B- 4)

is given by following

0 W 1 1
u(x,y,0) =ug ., D CpyCos g+ myms Cos (3 +mmy -exp| — L, Sny (5-8)
m=1n=1 Rx Ry Rf
2
2 2( R
Where, on = (V0 + +{V+ (/) 5-9
ere ! (A m) (A n) R, (5-9)
B ) Sin(B, +B,)=Sin(L, +L,) Sin(B, —B,)~Sin(L, ~ L)
" m)(Y D, +D, D,-D,
(When Dy # Dy) (5-10)
Sin(L,+L )—Sin(B,+B
e = 2 | cos(B, ~B,)- in(Ly, + L,) - Sin(B,, + B,)
21 +m)(Jy+m)n D, +D,
(When Dy = D,) (5-11)
or
= 4 SinB_ - SinB (when 1,=b, & 1,=b,) (5-12)
T Yrmy) (Y emym R
and
V. +myr 1+ I +m)r I+
sz____(é m) by; By=—————(é n)ﬂby; L= —————(/2 m) Le; Ly=—-———(4 n)ﬂly;
R, R, R, R,
(V) +m)x (Jy+mm
DX=LX~BX=-/lR——(1x—bx); Dy=Ly—By=—/2E——(ly—by);
X y

In Equations (5-1) to (5-8), setting t= time length from the date of pile driving to the
computation date, we can determine the p.w.p that was caused by pile driving and what

remains.
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CaseS: Rectangular area problem of p.w.p horizontal dissipation, by/bx = 10 (close to
strip shape), Ix/bx = 2.5, Rx/bx = 5, n = 1.0, (bx/Rx = 0.2, Ix/Rx = 0.5, by/Ry = 0.7143,
ly/Ry = 0.8214, Rx/Ry = 0.3571). The calculated U-T curves and U-x/Rx curves are

shown in Fig. 5-12 and Fig. 5-13 (consolidation degree U=(uo-u,)/up).

0.0001 0.001 0.01 0.1 1 10T
0.0 ‘ ' | —e—xR=0.
i 0.1
0.2 7 —s— 0.2
04 ' st 0.3
5 . —%— 04
—e— 05
0.6 — 0.6
— 0.7
0.8 |- 08
|—o— 09
1.0 S
Fig. 5-12 Pore pressure-time curves at a place x/Ry and y=0
for rectangular distribution area of initial pore pressure
0 02 04 06 08 1 " —e—T-00001 |
0.0 , XIRX | _g 7-0001
) B 1 - T=0.005
] D | ez T=0.04
0.2 - — SR\ —— 1 —*—T=002
L \\ “ —@—T=004
F\‘\-\\ | et T=0.06
0.4 N | T { e T=0.1
> [ | | =108
0.6 T . - L —0—T=02
; ) ‘ ——T=03
"\7 j —A—T=04
0.8 F-—— —1% \, A\ -, i —¢—T=06
M i e T=10
% - — y | e T220
1.0 ¢ . b e W S ; %3 i T=40 J

Fig. 5-13 Pore pressure contribution with time factor
for rectangular distribution area of initial pore pressure
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Case6: Square area problem of p.w.p horizontal dissipation, by/bx = 1.0, Ix/bx = 2.5,

Rx/bx = 5,1 = 1.0, (bx/Rx = 0.2, Ix/Rx = 0.5, by/Ry = 0.7143, ly/Ry = 0.8214, Rx/Ry =

0.3571). The calculated U-T curves and U-x/Rx curves are shown in Figs. 5-14 and 5-15

0.0001  0.001 0.01 0.1 1 10
N ———— : ‘ T
\\“\N \ —o—x/Rx=0
0.1 \ Square area:| | — 0.1
02 _ \ bylbx=1, | |
\ Ix/bx=2.5, 02
03 \ Rx/bx=5
o — \ ............... 0.3
0.4 3
- N \ —— 0.4
0.5 —t )\-\,‘ \
% k —— 0.5
0.6 {— — — 8
&”"\Q —— 08
0.7 S,
O — 07
0.8 | - RN -

09 b | /./. /Zr\:.}* e 0.8
. »——”'/‘ / A//k/ o P —— 0.9
1.0 ey M ,,,,,,, ]
Fig. 5-14 Pore pressure-time curves at a place x/Ry and y=0

x/Rx
0 0.2 0.4 0.6 0.8 T
0.0 e ~ [ —e—T=0.0001
0.1 \\ \ Square area:| | %~ 0001
. \{\\ by/bx=1 —h— 0.005
0.2 AR :

\\ 7 Ix/bx=2.5, o 0.01

0.3 N -,AL,,M.,.,LRxbe=5 —x— 002

\ T —— 0.04

——  0.06

—— 010

e 015

—— 0.2
-o0— 03 |
—— 0.4 }

—3— 0.6

. 1.0

Y e 20

Fig. 5-15 Pore pressure contribution with time factor
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5.2.4 Problem of Pore-Pressure 3-D Dissipation

(a) Rectangular Area Problem of 3-D Dissipation

One can consider the effect of vertical dissipation by simply modifying the previous

rectangular area problem; p.w.p dissipation can be expressed by the following

mathematical form:

2 2 2
*_c, 6‘2‘+612‘ +cva’2‘ (5-13)
Ot ox° Oy Oz
u(x,y,z,O) = \P3(X,Y:Z) = uo(Z)'Wz(X,y)
11 (4 :]4<b.}<b,)
—X
lx—-b (4 .'bXSxSlx,yisby +1(x—
:uo(Z)< lx_ X
r ¥ (4 :b,<y<l ,Mbe+l(y—
l,~b, oY n
0 (A44:1,<x<R.I,<y<R,)

bx) l "b
(n=7—>), (5-132)
by) X x

ug(z) form is shown in Fig. 5-16 or the following expression

Uom

Ugp  Uob

v

Uo,
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Upo +E-(%E—QO—Z (OSZSbZ)
ue(z) =4y, - ”—‘}b—%(z b)) (b,<z<l,) (5-13b)
0 (,<z<R,)
ouldx) o =0,u| =g =0 (5-13¢)
ouloy|,—0=0,ul,-p,=0 (5-13d)

There are two boundary conditions on z=R,:
1) Permeable boundary, u | ~=0,u |Z=Rz =0 (5-13¢)

2) Impermeable boundary, u l ~=0=0, Ou/oz | ~r:=0 (5-139)

The solution to the above problem for permeable boundaries Eq. (5-13¢) (Appendix B-

S5)is:

w o 1 |
u(x,y,z,0)= . 2.3 d,uCos %! -;m)nx -Cos ! ;n)ny Sin—kRE -exp(— s,%mknzt) (5-14)

m=0n=0k=1 X y z

Wheres —C[(/+m)2 (/+an VR (5-14a)

y
dmnk = dk'cmn (5- 1 4b)

Cmn 1S determined by using Equations (5-10), (5-11) or (5-12);

dk: _2'_ uoo_uomcosk’nlz +u0,—-u00 Z Sin kb TC+UO1 uOm 22| sin kTCb _ Sin kT[l
o R, b k"R L-b, k"R R,

(5-14c)
Usually, for permeable condition, 1,= R, since,
de=2| gy — g, Coshr +| “0L =400 Yor “tom | Ry g, kb (5-14d)
kr b, l,—-b, Jkn R,
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When b,=1,= R;, and ugy = ugp = Uom,

dx=£u00(l — Coskn) k=1,2,3,..)
km
4
=—1, (K=1, 3,5, ...)(5-14¢)
Kn

Substituting equations (5-14a) ~ (5-14c) into (5-14), we get

w2 = S DS dndyCos{py)- Coslgyy)Sinkez) Exp-(Ca(o2 + a) + C )]

m=0n=0k=1

-3 i{i d,Sirl2)Exph- cvh,%t)}dm,,cmx>-cO«q,,y)-Ex L C,(p2 +a2)]

m=0n=0k=1
={Z dSinlh 2)Exph- cvh;?t)}{z S dyCos{ ) Coslg, ) Expl-Ci (23 +q,%)t]}
k=1 m=0n=0
(5-15)
It can be deduced from this analysis that the Carrillo’s expression of 3-D consolidation

degree (Carrillo, 1942)

Uy, 2,0) _u(z0) 1y (53,0)
u(x,y,2,0)  u,(z,0) u,(x,,0)

(5-16)

or (1-U)=(1-U,)-(1-Uyy) (5-17)
can be exact only when the initial condition u(x,y,z,0) is expressed by y,(z)-y2(X,y).
In the case where b, = 1,= R,, and vy = ugp = uom, Setting R, = 2H and using Equation (3-

6):

M_—de&n(hkz) Exp( Ch"t)
u,(2,0)  wuyy iz

= ——Szn(——z) Exp| -C,——-t (5-18)
k= 123:5 Kn p( " 4H? J
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The above form is exactly the same as the well-known Terzaghi solution for one-

direction consolidation theory.

Similarly, the solution to the above problem for impermeable boundaries Eq. (5.13f)

(Appendix B-5) is given by the following triple Fourier cosine-sine series,

W W W 1 1 1 k
u(x,y,2,)= ». > ¥ d,,Cos (o +mymx -Cos U+ mmy Sin (p+kme ~exp(— s,";mknzt)
m=0n=0k=1 Rx Ry Rz
(5-19)
v+ b+ V+k
where, s,z,mk = Ch{(/2 2m)2 + (/2 2n)2J+ C, (/2 5 )2 (5-19a)
R R R
X y z
dmnkzdk'cmn (5- 1 9b)
Cmn 18 determined by using Equations (5-10), (5-11) or (512);
] - 1+ k)b
dk = i Ugo — uOmCos (A * k)nlz + o1 ~ 00 Rz Sin (A Al ) 27
kr R, b, (yz +k)m R,
_ 1 1
+ X0l — Yom R, Sin (o + k)mb, - Sin o+ kyml, (5-19¢)
lz_bz (%+k)1t R, z
Usually, for permeable conditions, 1,= R,, since,
_ 4+ kb
dk= “g— Uoo + Yol — %o Rz Sin (/2 al ) Al
km b, (% +k)n R,
_ 1
4 Hor ~Yom R, Sin ()} + k)b, _ (_I)k—l (5-19d)
I,-b, (K+k)m R,
And when b,=1,= R,, and ugy = g, = Uom,
2
k=1,2,3,...) (5-19e)

di= — 5
G
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In this case,

4@ _ 1 Sy Sin(hz)- Expl- i)
u (z,0) wugy s

. 2 2
S S B ), 36 0N BVCH L (5-20)
S+ 2k 2R, 4H
Setting K = 1+2k, R,= H,
w@)_ § 4 g kel o K (5:21)
,(2,0) 4135 Kn  2H 7 a?

Also, the above form is exactly the same as the well-known Terzaghi solution for one-
direction consolidation theory. Terzaghi’s solution is just a special example of this

solution by equations (5-14) or (5-19).

Case7: rectangular area problem of p.w.p 3-D dissipation, by/by= 1.0, 1,/by = 2.5, R,/by=
5,m = 1.0, (bJ/Rx= 0.2, Iy/Rx=.5, by/Ry= 0.2, I;/R, = 0.5, Ry/Ry = 1); b,/by =2, R/, =1,
Cy/Cy = 5, Uoo/Ugp = 0.6, Uom/ue, = 0.4. The dissipation degree of pore pressure U = 1.-
u(x,y,z;t)/ugp. For permeable boundary (u lz=0 =0, ulFRZ = (), the calculated U-T-z/Rz

curves are shown in Fig. 5-17.

Case 8: The same situation as for case 7 but for impermeable boundary (u|z=0 = (,

ouloz I ~r: = 0), the calculated U-T-z/Rz curves are shown in Fig 5-18.
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Fig. 5-17 Pore pressure contribution with time factor
for p.w.p 3-D dissipation and permeating bottom boundary
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Fig. 5-18 Pore pressure contribution with time factor
for p.w.p 3-D dissipation and impermeating bottom boundary
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(b) Other cases of 3-D Dissipation

It was previously proven that Carrillo’s expression (Carrillo, 1942) of 3-D consolidation

degree, Eq. (5-16) or (5-17), is exact only when initial condition u(x,y,z,0) can be

expressed by y(z)-y2(x,y). Therefore, we also can get similar expressions:

u(r,z,t) — uz(Z7t) . ur(r3t) (5_22)
u(r,z,0) u(z,0) u (r,0)

or 1-U)=(1-Uy)-(1-Up) (5-23)

which will be exact when initial condition u(r,z,0) can be expressed by y(r)-w2(z).

For strip area problems of dissipation,

—=C,—+C,— (5-24)
(574

U(X,Z,O)= WI(X)'WZ(Z);
1 (0<]x|<b)
yi(x)= f,;[’f (<<, (5-13b)
0 (x27)
u00+@éb;”ﬁ0—z (0<z<b,)
v2(2)= u(2)={ 4, - -“OIL_%M(Z ~b,) (b,<z<Il)
0 c (I, £z<R,)

The horizontal boundary conditions: du/ox | —0=01u |FRX =0
There are two types of bottom boundary conditions on Z=R,:
1) Permeable boundary, U | z=0=0,u | 7=z =0

2) Impérmeable boundary, u l z=0=0, Ou/0z | 72r=0
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The solution for the bottom permeable boundary conditions is

u(x,z,t)= {i dkSin(hkz)Exp(— th,ft)}{ icm Cos(p,, x)-Exp\— Chp,it)} (5-25)

k=1 m=0
where hy =nk/R,; Pm=m1(m-0.5)/Ry ;
dy is determined by (5-14c);

Cr 1 same with formula (5-3), that is

P S [COS (%J“m)“b_COSMJ (5-26)
(Y +m)y*n* 1-b R R

c

The solution for the bottom impermeable boundary conditions is same as Equations (5-

25) and (5-26), but A;=n(k-0.5)/R,, d; is determined by Equation (5-19c);

For circular area problem of dissipation,

ou %u 1 6u o%u

Z=C| =+ 2+, 5-27
ot h[arz rarj Y 672 (5-27)
u(r,0)= yi(r,z) = ug(z)-yar) , (5-27a)

in which, uy(z) is the as same as in equation (5-13b),

1 (0<r<b)
22
wat) = 5—2—;7 (b<r<i) (5-27b)
0 (I<r<R)
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or the second kind of contribution:

1 ") 0O<r<b)
)} LalY 97k’
Ya(r)= _Ln(%,) b=sr<i (5-27b’)
0 (I=<r<R)

The horizontal boundary conditions and the bottom boundary conditions are the as same

as those conditions for strip area problem of dissipation.

Thus, the solution for the bottom permeable boundary conditions and initial pore-

pressure contribution (5-27b) is

) ® 2
u(r,z,1)= {Z d Sirkhy 2)Expl— th,ft)}{ S endo (“—m r) -Exp{— c, “—]2"- t)} (5-28)

k=1 m=0 R
Where

_4Pncrn-52,Cp )
on (1 =67)J7 (o)

(5-29)

m

hy and d, are determined by the bottom boundary conditions on Z =R,

For the bottom permeable boundary conditions, 4, = nk/R, , and d is determined
by (5-14¢).
For the bottom impermeable boundary conditions, A; =n(k-0.5)/R, , and di 1s

determined by (5-19¢);
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The solution for the bottom permeable boundary conditions and initial pore-pressure
contribution (5-27b’) is of the same form as formula (5-28), except for ¢, which is
different:

2 Cpn-snc]
R ACB 2 A

(5-30)

5.3 Modeling of Pore-Pressure Dissipation in Layered Soils
5.3.1 Principal Equations

¢ The rectangular area problem of p.w.p 3-D dissipation for layered soils
For layered soils, the rectangular area problem of p.w.p dissipation can be also expressed

by the same form as same as Section 5.2.4:

o*u  0u o’u  ou
Cul CE 4+ 5% 40, 22 - 531
hk(axz asz "o o =D

u(xay,Z,O) = \PS(Xa}’,Z) = uO(Z)'WZ(X,Y)

1 (4:4<b,pi<b)
llx—; (4 :b, <x <L Y <b, +1(x-b)) -
=uoZp<y ;")) 1 (n="—2%), (5313
y (4 :b, <y<l <b+=—(y-b)  x70r
l,=b, n
0 (44:1, <x<R,[,<y<R))
u00+ﬂ>-b-bl”°—0z (0<Z<b,)
uy(Z) = u()l_u(}b :ZOm (z-b,) (szZSlz) (5-31b)
o (,<Z<R)
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s R
Lo ‘
3 H..
O Env yn: Chna Cvm Khn, Kvn hn
Rz \ 4 H,.

Permeating or Impermeating bottom

Fig. 5-19 Layered Soil and Permeability Condition

The horizontal boundary conditions:
Ouldx | mo=0,u | =pe =0 (5-31c)

ouldy | o= 0,1 g, =0 (5-31d)

k

i=1 1

Where, z is the local coordinate and Z is the global coordinate, Z = Hy+z, Hy = Z

Their relationships are shown in Fig. 5-19.

There are two boundary conditions on Z=R;:

1) Permeable boundary, u | 7=0=0,u | 72=r, =0 (5-31¢)
or
2) Impermeable boundary, | 7=0=0, Ou/0z l 7zr:=0 (5-319)
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Because of the non-uniformity of soil, the problem can not be solved in similar means as
in the above sections 5.2.1 to 5.2.4. However, in this case the finite Fourier series

transform U () and Laplace transform [ () have to be used in order to solve it.

w0 oo

Set F(Psdmz)= | [ [F(xy,2.0)c08(p,x)cos(g,y)e " dxdydi= O(F)  (5-32)
x=0 y=01=0
F( Psly>Z5t) = c] O] F(x,y,z,t)cos(p,x)cos(q,y)dxdy= 0 (F) (5-32a)
x=0y=0
F(x,y,2z;5) = ?F (x,y,z,0)e”dt =1 (F) (5-32b)
0
Thus: F(x,yzt)=0F)=0"[0(F)=0"[0"(F )] (5-33)
Flx,p,z,0) = zim”:ioiof TPt 735)- Costpp)-Coslg)*ds (5-33a)

That is, F=F=0 FH=01[0E)]or O F)=01[0 )], O is finite Fourier series
transform, 01 () is the Laplace transform; O () is the finite Fourier Laplace transform.
Now, Equation (5-31) can be transformed by means of Eq. (5-32), e.g., using Equations

(5-32a) and (5-32b), one gets

= si(p,q,z;s) —it(p,q,2;0) (5-34)

o
2+ q?)i 0"u(p,q,s;2
~Culp”+q )u(p,q,Z;s)+Cvk___(p_§1_)

(5-34)

t=0

bl ~
or Cvkgl;—[chk(p2+q2)+s]-u=—u|

It is already known that p = p,, = (1/2+m)n/Rx, q=q,,=(l/2+n)7t/Ry (m=0,1,2,...; n=0,1,2,

...),and |t=0 =uo(z)-cmn , in Which, ¢,,, 1s given by Equations (5-10), (5-11) or (5-12).

2 2
C’Z - Chk(p +q )+S (5_35)
Cvk

Set
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Thus, Equation (5-34) becomes the subsidiary equation

825 2 c
——Cu =-u|  =-uy(z) 22 (5-36)
a2 ‘z_o 0 Cy
Setting u(z) = %“—0—@—)2 +uo(0) =irz+up(0) (5-36a)

The solution of the above equation (5.36) is the subsidiary form
#(z)=(z)= Ae¥ + Be F + Cz+ D (5-37)

Substituting equation (5-37) into (5-36), one gets

~62Cz -2 = [0 5 4 gy 0) [ (5-37a)
k Cvk
Thus, c = “oU) ~1(0) S D = up(0) (5-37b)
hk C.: Cvk Q Cvk

Substituting C and D into equation (5-37), one obtains

(2) = i(z) = A% + Be™ +{Tug ) = g (0)] + o 0)) Z'g (5-38)
k

vk

By the permeating law, unit permeability is defined as:

Ou

Qz) =K, —

Transforming the above by means of the finite Fourier-Laplace transform J( ), we have

0=k, % (5-39)
0z

Substituting equation (5-38) into (5-39), one gets:

uO(hk)"uO(O) Con
P E*Cy

0(z) = K ,6Ae¥ —K . CBe ™ + K, (5-40)
From equations (5-38) and (5-40), the following is obtained
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0(0) = A+ B +ug(0) 2

. vk 5-41
00) _ ,_ g %) =1o(0) Cmn G40
Kul Chy  CPCy
Then,
1. . 00 ]
A==|4(0 -
2| u(0)+=—— K, -(1- Chk)C c, uy(0) Chk C 0( k)

up( k) (5-42)

. 0(0)
B=—|a(0)- =2
u(0) K¢ -1+ hk)CC uy(0) + Qhk .

Substituting A and B into equations (5-38), we have

sh(&2)

. . sh(Cz) _
=ch 0
1(z) = ch(Gz)u(0) + 7K

ch,

h | 1-ch
Oz2) = sh(c;z)c;Kvkum)+ch(@z)Q(0>+[“ (gz) h(@)]‘f—;’gjﬂuomﬁ[ ghfz)}gfvg:"u ()

0(0) + { ch(Cz) +1- —} uy(hy)

S sh(@z)}
£’C, “o h, Ch, |CPC,

vk

(5-43)
and setz = Ay
sh(Ch) _ sh(Ch)

{ﬁ(hk)}{ ch(Chy) slé(]ghk):l{u(O)} Chy ~ch(Gho) : Chy Con {uo(O)}
A - vk _ _
QUL | ek ysh(@he)  hiChy) | CKvk[w——c"(i'Z;) ‘—sh(Chk)j CK ) cg’,ff”") & Co Lotk

(5-44)

Because {ﬁk (hk)}z {ak+l(0)

0.~ 1O (O)} o0 o, () =t (0, e
{ul} {ﬁl(o)} {122}:{122(0)}2{121(}‘1)}
) 0,(0) 0, 0, )]
{ék} {”k(o)} {ﬁk 1(hk)} {ffnn}:{ffn(hn)} and
Or O] | Or-1(M) Ons1 O, (h,))~
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uOIZMOI(O), u02=u02(0)=u01(hl),“"

uokzuok(0)=”ok_1(h")’ o U, =t ()

sh{(Chy)
[4], :{ ch(Chy) K, } (5-45a)
EK i sh(Ehy)  ch(Chy)
Sh(chk) = Ch(chk) 1- Sh(chk)
2], = 2 iiléh )-1 1 g;zk(z;h ) (5-456)
cc, oamst) 2 2T mG)
k ‘:Kvk( Che Sh(Chk)J CK e T,
Hence, Equation (5-44) becomes a recursive equation
ﬁk+l ﬁk
AL V] R e | (5-46)
[l gL 1{0}

One obtains:

PR e e e
=[al,[4],- 1{ } +laL 2], { 0:n1}+[B] {uonﬂ}

SEIZNSPRy R ANE [AlkH[B]k{u“Ok}

0+

Up,
+.--+[A]n[B]l1—1{ L?(;In }+[B] {uonu}

2 L) {Z° } Ll ALy (4l [B]Z{Zo }

0, 03

+--+[4][4], - [A]k+l[B]k{ Ok }+ -+ A]"[B] {5"“}+[B],,{LZ)O" }

0k+ On
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(5-47)

k<n

s R Y Y U (o I R O

k+1<n

sl bl | T ol

Thus equation (5-46) is changed into (5-48)

)i
Qn+1 Ql 9o

where

[r]= E” ?2} (5-49a)
21 22

u n-1 Uu n-1 U
Hz YAl % =3 (rkalsl) %% (5-49)

o) k=1 Uprl k=1 Uy,
According to following four cases of the boundary condition, one gets #; and Ql , Or
u,, and Qn 41 by means of equation (5-48), then can determine any u; and Qk by the

recursive equation (5-46):

Case A: top plan is permeable but bottom is impermeable, #;=0. and Q,, +1=0.

By equation (5-48), {u"“} = [F“ r”H 0 }J, {u"}
0 Iy In)l@) 4

Hence, QAI =— q%zz ; Qn a1l Q] +u, (5-50a)

Case B: top plan and bottom are permeable, #,=0 and #,,,,=0.

By equation (5-48), { AO } = [I‘“ F‘ZH 0 }Jr{uo}
Opnr) Im T ]G 40
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Hnee,  O=="of 5 OumTnQi+d, (5500

Case C: top plan is impermeable but bottom is permeable, Ql =0 and #,,,,=0.

By equation (5-48), { AO } = [F“ r”Hul} + {lf"}
Onnt) [T ToJ10) 140
Hence, u=- u/l“l ; O =Tt +4, (5-50c)

Case D: top plan and bottom are impermeating, Ql =0 and Qn +1=0.

By equation (5-48), {u"“} = [F“ Nz H“l} + {uo}
0 I T jlo 9

Hence, 0 =- q% ; U, =I'nuy+q, (5-50d)
21

From equations (5-35) to (5-50), it is impossible to solve analytical expressions of

complex value £ because according to (5-35),

2 2
C=C(m,n,k,j)=,/Ch"(p’"gq")+sf (5-51)
vk

Where s; is a complex variable in the inverse Laplace transform, s; = g-icc ~ a+ic
Therefore, the only possible method to solve the problem is with the numerical inverse

Laplace transform, &, , (/)= 0 ' [4,,, (s)], that is,
p mnk mnk

+ico A

a—ioo umn(pmsqnazk;s)etsds (5'52)

— 1
umn(pmaqnazk;t) :_271_; f

Then a solution for u(t) can be obtained from the finite Fourier series transform inversion,

wlx =0 " (i, (.9, Zit)], that is,

u(5,3,Z0)= 2, D Hun(Ds s Zi3 1) Cos(pyyx)- Cos(q,,y) (5-53)

m=0n=0
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5.3.2 Method of Numerical Laplace Transform Inversion

In equation (5-52), s = a + iw, thus we have
o ; .

() =— i(a +io)e™do 5.54

(=5 [ , ) (5-54)

Where, a >0 is arbitrary, but it must be chosen so that it is greater than the real parts of all
the singularities of # (s). That is, there are no singularities of # (s) to the right of the
origin. Moreover, the value of a must be selected such that the restrictions on the function
u(p.q ;) < Me ™ are satisfied. Therefore, if a value for a is chosen that is too small, a
may not be more than the real parts of all the poles of #(s), thus # (p,q;f) may not
converge to the correct value. If an unsuitable value of a is chosen, it may lead to
u (p,q;t) = Me™ , and thus numerical errors are introduced and divergence of the value

may appear (Davies, 2002).

The upper frequency limit, ®f, must be specified. Experience (Davies & Martin, 2002)

has shown that higher values of o correspond to more accurate results, but at the expense

of longer computation time.

There are over 100 algorithms available for the numerical inversion of Laplace
transforms. Some important comparative studies of methods have been published. In
addition to these comparative studies, an enormous number of engineering application

papers have been written and each investigation has the merits of a particular procedure.
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Davies (2002) gave a good review of most of the algorithms. The algorithms that have
passed the test of time fall into four categories according to the basic approach of the

following method:

i) Fourier series expansion

Over the years, there have been about 40 algorithms developed that are based on the
Fourier series method and that involve approximating the inversion integral with an
infinite Fourier series. Of notable interest is that developed by Sakurai (2004); this is an
effective method for handling transforms of functions with discontinuities. However, in
the application of consolidation problems and pore-water pressure dissipation, this
method is generally inaccurate when ¢ is not great enough, or when the amount of time

is too large, and usually results in large errors.

ii) Laguerre function expansion

This is the second most popular approach to numerical inversion and it is based on the
Laguerre function expansion of f{r). Since 1950, about 15 algorithms have been
developed based on Laguerre’s approach. Abate et al (1996) surveyed and discussed
those algorithms. Weideman (1999) developed an important contribution to the Laguerre

method.

iii) Combination of Gaver function
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Numerical Laplace transform inversions based on the sequence of functionals developed
by Gaver (1966) are seen as a very good approach by Abate & Valko6 (2004) because the
method uses an acceleration scheme. Some nonlinear sequence transformations are
applied to Gaver functionals, for example, the Gaver-Stehfest method utilizing Salzer
summation to accelerate convergence, Wynn’s rho algorithm, Levin’s u-transformation,
Lubkin’s iterated w-transformation and Brezinski’s theta algorithm. The setting
s=k-log(2)/t makes the method ineffective when #=0 or ¢ is very small or near 0 for the

analysis of consolidation problems.

iv) Deforming the Bromwich Contour.
One of the best approaches to computing the inverse is to deform the standard contour in

the Bromwich inversion integral
a(t):—L [, d(s)e”ds (5-55)
2mi B

In (5-55) the contour B is a vertical line defined by s=a+iw , where -c<w<wx. The
convergence of integral (5-55) would be greatly improved if s could take on values with a
large, negative, real component. Thus, we can deform the contour into any open path that

wraps around the negative real axis provided no singularity of u,,, (s) is crossed in the

mnk
deformation of B. Therefore, by Cauchy’s theorem the deformed contour is valid. The
brilliant contribution due to Talbot (1979) is the carefully chosen path of the form

5(0) = ab(cot + i), -n<0<+m (5-56)
Replacing contour B in Equation (5-55) with (5-56) and noticing that s(0) is even to 0,

one finds:
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i) :% E Re[ﬁ(s(e))e’s(e) (1+ io(e))]de (5-57)

in which, c(0)= 6+(6cotf-1)cotd (5-57°)
Approximating the value of the integral in Equation (5-57) using the trapezoidal rule with

step size /M, and O, =kn/M:

_ all.ya M3 5O (1 4+
70, M) =1l + TRAOIK 0O s-59)

k=1
Based on numerical experiments the following is selected:
a = 2M/A51); M= My+ 1.6t (5-59)

and the relative error estimate is:

!f(t) }gY’M)I ~1070-6M (5-60)

The above Talbot algorithm was then used to compute (5-52) by replacing ¢ with

C ) ) e
T = t—’;_ , where C; is the standard value of the horizontal consolidation factors of
X

layered soils Ts=tC—’§ sy. Thus, one should set s:skc—’;, as this is the key to being

X X

successful in applying the Talbot algorithm to consolidation problems.

5.3.3 Cases analysis

Case 9: rectangular area problem of p.w.p with 3-D dissipation in uniform soils, b,/b, =
1.0, Lu/by = 2.5, Ry/by = 5,1 = 1.0, (by/Ry = 0.2, 1/R, = 0.5, by/R, = 0.2, I/R, = 0.5, R,/R, =
1.); b/by=2, R/1,= 1, CW/C,= 4, Ky = 4K,, K,=1 0x10™*m/day, uoo/ues=0.5, Uom/Ug=1.0.

Find a solution for the dissipation degree of pore pressure U = u(x,y,z;t)/ugp.
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Fig. 5-20 Pore pressure contribution with time factor for p.w.p 3-D dissipation
in layered soil and impermeable bottom boundary

Let the number of layers Ne = 10, hy= 1.0m (k=1,2,...,5).

For impermeable boundary (u | ~0 =0, Ou/oz |Z=Rz = (), the calculated U-T curves and U-

z/Rz curves are shown in Figs. 5-20 and5-21.

For permeable boundary (u | =0 = 0,u | e = 0), the calculated U-T curves and U-x/Rx

curves are shown in Figs. 5-22 and 5-23. The results are reasonable.
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Fig. 5-21 Pore pressure dissipation degree with time factor for p.w.p 3-D
dissipation in layered soil and impermeable bottom boundary
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Fig. 5-22 Pore pressure contribution with time factor for p.w.p 3-D
dissipation in layered soil and permeable bottom boundary
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Fig. 5-23 Pore pressure dissipation with time factor for p.w.p 3-D dissipation in
layered soil with permeable top and bottom boundary
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Case 10: rectangular area problem of p.w.p 3-D dissipation in uniform soils, by/bx =

I/by = 2.5, Ry/by = 5,1 = 1.0, (by/Ry = 0.2, 1,/R, = 0.5, by/Ry= 0.2, 1/R, = 0.5, R,/R, =

b./by =2, Ro/1,= 1, U/t = 0.5, Uom/tigp = 1.0.
In the range of A at Z = 0~5: Cpa/Cya = 4, Kpa = 4K, 4; Kya = 1.0x10™*m/day;
In the range of B at Z = 5~10: Cp/C,z= 4, Kip = 4Kp; Chn/Cha = 4, Kunp/Kna = 2;

Find a solution for the dissipation degree of pore pressure U = u(x,y,z;t)/ugp.

Let the number of layers Ne= 10; hy= 1.0m (x=1,2,...,5).

1.0,

b,

For impermeating boundary (u | =0 = 0, ouloz | =p, = 0), the calculated U-T-z/R; curves

are shown in Fig. 5-24.

For permeating boundary (u Iz=0 =0, uIFRZ = (), the calculated U-T-Z/R, curves are

shown in Fig. 5-25. The results are also ideal.
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Fig. 5-24 Pore pressure contribution with time factor for p.w.p 3-D dissipation

in layered soil and impermeable bottom boundary
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Fig. 5-25 Pore pressure dissipation degree with time factor for p.w.p 3-D
dissipation in layered soil and impermeable bottom boundary
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5.4 Pore-Pressure Dissipation Caused by Load Variation

The previous sections discussed the cases of pore-pressure dissipation under constant
loads.
This section will now study pore-pressure dissipation under load variation, whose

mathematical form is the following,

’u O’u ’u ou
Cl—+—I|+C, —=—+ LV, 2ot
hk(axz asz L IPY P S(x,y,258)

If pore pressure alteration from load variation is linearly related to time t, then
S xyz; )= g(x.y.z)t
£0x.y,2)= 1y (2) Wa(%,y)

Where y(x,y) is the as the same as that of equation (5.2-13)

Uy —Ung

u00+—b———z (OSZSb)

1,(2) = uo,,,—f‘-;b—:;‘ﬂ(z—bz) (b, <z<l)
o (L<Z<R)

Because (1-U) = (1-Ug,)-(1-Uoyy), this study only seeks to find the resolution of ug,(z;t),

which is equal to getting the whole resolution.
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5.5 Discussions
Impermeable boundary condition at x = Ry does not agree with the actual situation of
geotechnical engineering when time is nearing the end of consolidation. Therefore,

permeable boundary condition in the horizontal direction is used.

The effect of initial pore pressure distribution on the consolidation degree is not great as
time increases. In other words, although initial pore pressure distributions may be greatly
different, the difference will become smaller and smaller as time increases, up to the
point where it may totally disappear. However, in order to reach the same consolidation

degree for different initial distributions of pore pressure different time factors are needed.

It is already known that Carrillo’s expression for 3-D consolidation degree (Carrillo,
1942), (1-U)=(1-Uy,)-(1-Uyy), is approximate. However, now it is proved that Carrillo’s

expression is exact only when the initial condition u(x,y,z,0) can be expressed by

V1(2) yaAX,y).

When using the numerical method of Laplace transform inversion (5.3-24), numerical
errors may be introduced and the divergence of the value may appear. Hence, it is
necessary to choose carefully the calculation parameters and many trials to escape from

the divergence of value.
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CHAPTER 6

EFFECT OF PORE PRESSURE DISSIPATION
ON STRESS AND UBCP IN THE INTERACTION

6.1 General

To analyze the effect of pore pressure dissipation and soil consolidation on the interaction
of piles-soil-raft, related calculation series or analysis methods should first be found out,
such as those described in Section 3.2. In this chapter, change of effective stress and

ultimate bearing capacity of pile (UBCP) in the interaction are investigated and analyzed.

6.2 Change of Effective Stress Due to EPWP Dissipation and Loads

According to Terzaghi’s effective stress theory, the initial excess pore water pressure
(EPWP) 1in soil generated during pile driving and at the time of construction of the
foundation and the structure will cause change of effective stresses in soil. The initial
contribution of EPWP caused by a single pile can be estimated theoretically using
Equations (2-38) to (2-50) or from measured data in the field. The contribution of EPWP
in soil at the end of pile group driving may be obtained by the addition of EPWP caused
by multiple piles. The maximum EPWP causes cracking of the soil as per Koo’y + Ace <
0 or ¢’y + Acy < 0, which is defined by equation (4-21). Based on the above, the
contribution estimate of p.w.p in soil that remains until the beginning of the construction
of the cap and the upper-structure is done according to the EPWP dissipation theory
discussed in Chapter 5. Generally, construction stops for more than 28 days after pile

driving is finished. Setting t = time length from the date of pile driving to the calculation
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date, one can determine the EPWP that was caused by driving the pile, that which

remains and the corresponding effective stress change.

When the pile top is loaded, the stresses in the soil will change correspondingly. This
problem generated interested as early as 1960. Many researchers, such as Geddes (1966
and 1969), Mattes & Poulos (1969), Mattes (1969), as well as Butterfield & Bannerjee
(1970), studied the problem and obtained many results of stresses change in soil. Slightly
afterward D’ Appolonia & Lambe (1970) analyzed the problem of loading a rigid pile in
elastic medium with FLM and concluded that after a pile is loaded, the vertical and radial
stresses in the soil surrounding the pile-soil surface have very small increases. In this
study it was thought that the soil in the pile’s periphery is borne by pure shear stress.
Later on, Esrig et al (1977) and Kirby et al (1977) also proposed a similar view with

respect to critical-state soil mechanics.

An analysis of the above yields the conclusion that after a pile is loaded axially, the soil
around the pile is borne by pure shear stress under constant volume; therefore the change

of EPWP in the soil caused by the load on the pile top can be neglected.

From the theory of critical void ratio of soil at ultimate strength state, shear stress caused
by piles’ loads do not generate additional EPWP within the soil nor does it generate
additional pile lateral pressure. This is because changes of the void ratio, the EPWP of
soil and the lateral pressure of a pile have all been completed during pile driving. Some

data measured in the field (Tang 1990) confirmed this, as shown in Figs. 6-1 and 6-2.
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Fig. 6-2 Axial Loading Influence to Lateral Pressure at Pile

(From Tang 1990)
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In these figures, the pile length is 13.7m and the measured point at depth 12.4m is close
to the base of the pile. This shows that the load at the pile base also does not generate
additional EPWP in the soil nor does it generate additional pile lateral pressure.

So we only need to consider additional p.w.p caused by pressure of the bottom of cap.

Auy = B(Ac, +aAT,,) (6-1)

in which a, B are Henkel pore pressure parameters (Henkel 1960), f=1 for complete
saturated soil, a= 0.707(3A-1), A is Skempton pore pressure parameter; Aoy, A7, are
octahedral body normal and shear stresses, Aoy, = (Ack +Acy +Ac,)/3 = (Ac; +Acy +AG,)

/3, At = V{ (AG) - A2y +(Ao; - Acs)*+HAGs - Ac1)*}/3.

According to Figs. 6-1 and 6-2 and the assumption of the critical-void-ratio state of soil,
o should be taken as zero. Hence, the initial additional pore pressure from pressure of the
bottom of cap is:

Aug(t)j=o = Aoy = (Acx+Ac,+Ac,)/3
and the additional effective lateral pressure of the pile, Acy’, generated by the pressure of
the bottom of the cap can be determined (setting Ac,=Acy),

Aoy’ =0 =A0x-Aug(t)i=o = (Acx-AG,)/3 <~ 0 (6-2)

Equation (6-2) shows that at the beginning of the moment of loading (t = 0), the pressure

at the raft’s bottom and the effective lateral pressure of the pile is smaller than or close to
zero and will increase with the dissipation of the EPWP. That is, the raft’s increasing
action on the UBC of a pile due to the increment of the effective lateral pressure of pile
does not work at the beginning of the moment of loading on the raft. For a step-loading

situation, the raft’s increasing action goes into effect only after completing some degree
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of consolidation under the former step loads.

6.3 Changing Process of Pile Bearing Capacity in the Interaction

The following analyzes present the process of sharing loads of piles and rafts, soil
stresses, p.w.p and deformations from the beginning of construction to a long time after

the end of construction.

This analysis can provide some results for the increasing process of the piles' ultimate
bearing capacity,

AP(f) =PpAcy/cy +ZpAtdt) -Az (6-3)
in which, p is the perimeter of the pile section, Aty is the increment of shear strength of

the soil around pile and oy, is the initial vertical effective stress of soil at the pile tip.

Considering that the failure plane between pile and soil is actually located on the soil
crust on the outside of the pile, shown in Fig. 6-3, the perimeter of pile section, p, should
be calculated according to the section of soil crust outside of the pile,

p = 21(ro+d)=n(d+28) (for circle pile)

or p = 4(b+29) (for square pile)

Where, 0 is the thickness of the soil crust
Tang (1990) adopted a suggestion from Gu Beizhen (1964),

o= 0.24£ (6-4)
e
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Fig. 6-3 Soil Remoulded and Soil Crust

But the value of 8 given by (6-4) is usually overestimated as some references (such as the
Manual of Pile Foundation Engineering, China Architecture and Building Press, 1995) shows

that & = 3~20mm. Here taking =20mm is recommended.

For stress states of the normally-consolidated soil around pile, according to Wroth et al

(1979), one can use equation (4-16), e.g.,

At(f) = Sing

 1+(24, ~1Sing’ Aay' (1) (6-5)

and according to Randolph & Wroth (1981), or Tang (1990),

Sing'Cos¢'

Atdt) =
0 1+ Sin’g'

Ao, (1) (6-6)

The above equation (6-6) can be derived according to Mohr-Coulomb’s criterion and the

stress circle analysis shown in Fig. 6-4
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The difference between Equations (6-5) and (6-6) is not large when A¢= 1.0, as shown in
Fig. 6-5. From this figure, it is seen that At = Aogj-tang will overestimate the frictional
stress of a pile shaft. Actually, the soil around the pile is at unload-reload state of normal
stress (as shown in Fig.6-6) because of pore pressure dissipation. Thus, when using
equation Aty =Aoj-tang, one should take ¢ =@, (internal frictional angle at unload-reload
state of normal stress). At ¢’=30, taking @, = 0.62¢’ and in the range ¢’=15~35°, taking

@ =~ 0.35¢°+9(°) is acceptable, as shown in Fig.6-5.

G,
e T o
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G /"/I/ : T \\
_,z" A
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() %’ ¢’ A f/ {/' \s AN \\
Pl C r Y
\! ~ //’ f I \\ i & A
Seil ™~ celgy | LP g { v
element Gy \ N 4 {
- .
C e
- G~ T, -
Tes & ~ g
. Ay ad
Ty \"\\ g
Go (M)

(a) Loaded pile and soil element; (b) Stresses before loading;
(c) Stresses after loading; (d) Failure at pile-soil interface

Fig 6-4 Mode of Failure at Pile-Soil Interface
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Fig. 6-6 Internal Frictional Angle in the Unload-Reload State of Normal Stress
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Variations of the normal stress on the pile shaft, Ao,’, should not simply be equal to the

change of pore pressure Au, because horizontal shrinking displacement of soil is

occurring around the piles with EPWP dissipation.

For the case of a single pile, a relationship between Ag,,” and Au can be derived from

basic physical-mechanical equations. Assuming an axial-symmetrical plane-strain

problem for a single pile (set ;" =A0j’), one obtains:

Equilibrium equation Tr v 1 (O'r -0, )+ du_ 0
dr r dr
. . du u
Geometrical equation g, =—", g=-—"L
dr ¥

Physical equation

5 = El-p) [“ #ygej

T2t 1=

Combining equations (6-7), (6-8) and (6-9) yields:

O-;:Au_.___l_;:__.&
l+pur

0':9=Au £ +—E 2
l-p l+pur

and

ur=I°—[£u ! J‘pudp}

D

2

" op

(6-7)

(6-8)

(6-9)

(6-10)

(6-11)
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EQ - )

i< the soil’
—————(1_2”)(“”), M is the soil’s

in which u, is the radial deformation at a time ¢, D=

Poisson ratio, estimated by u = K¢/(1+ Kp), u is the excess pore pressure at time ¢, as
discussed in chapter 5.

Au=u;-u, where u/( = up) and u are the excess pore pressures at time =0 and = t.

p = 1/19, where r and ry are respectively the radial coordinate value and the pile radius.
From the first term of equation (6-10), setting

Ao,'=0o,' =Au——§—y—'=Au - Ao
1+ur

Ao; is the lateral stress change caused by a soil’s volumetric shrinkage due to a pore

pressure change.

Ay = E u_ E 7 [E_ui_.ljpudpJ
P

_1+y r 1+,u;”5

_1-2pu ui__l_
Cl-p 2 pszudp) {vet:uzu

r=r0}

1-ul\2 p?
S A v (6-12)
2(1-p) o 2(0-p) TR
Substituting Equation (6-12) into the first term of (6-10) gives:
Ao,'=0,'=Au — Aoy ~ Au — 1-2u Au
20— )
1
= Au=yAu (6-12a)
2(0-p)
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1

6-12b
2(1-p) ( )

In which A~

Typically, Poisson’s ratio for soft clay is p = 0.42 and p=0.33 for sand. Hence,

% ~0.86 ~0.9, or Ao,'=0,'~ 0.9Au (for clay)
In the case of a single pile problem (shown in Table 6-1, from Tang 1990), comparing
equation (6-12) with the exact solution given by Tang (1990), one finds that equation (6-
12) is not accurate enough for axial-symmetrical plane-strain problems of a single pile

and that is also quite conservative.

Table 6-1 Theoretical solution of Aoy’ ~Au relationship
(r = 1.4ry, from Tang 1990)

t

days after driving | Au(KPa) | Acy'(Kpa) Acy'/Au
15.9 14.2 0.8931

14 27.9 247 0.8853
112.7 97.7 0.8669

254 23.1 0.9094

137 61.2 57.1 0.9330
159.4 141.7 0.8890

27.0 24.7 0.9148

297 72.0 67.0 0.9306
161.0 143.3 0.8901

27.0 24.7 0.9148

409 76.5 711 0.9294
161.0 143.3 0.8901
Sum 10.8464

Average 0.9039

According to Tang’s derivation (1990),

© _ 2
ur — 2’,‘Ouim Bln E)_ _Z 5 Cl2) Jl(/lxp] . a)p eXp _ 3(1 lu)(ﬁ'x_) T
DLn(w) |4 \p) SGA2JHA) ' 0 ) 4004 l+u \o

(6-13)

179



08 71

06 +
T=50
"
0.4 1
|
s T=10
02 1
T=1
0 T ; T 1
0 4 8 12 16 20

Fig. 6-7 ur~p curves

The £ u ~p curves given in Fig. 6-7 show that E_, | ~0.25 at p=1~1.5, 0 = 0.3,
Ui Uty M
T > 10. Thus,
A= —E Prlia = 1 Etlyy ity o 025 Uy (6-14)

l+pu r l+pu u,r, r I+u p
When p = 0.3, p = 1.4, AGijmax = 0.137u; = 0.14Aulmax. Then, x = 1-0.14 = 0.86 is also
proven to be acceptable.
For the case when t—oc, Au = u; (= up), Tang (1990) derived the following:

U,

Ao,)'=0,'= ! (Axial-symmetrical problem)
2(1-p)
v _1ta ‘ :
o, = U, (Spherical-symmetrical problem)
30-p)

The above equation’s first term also proves that taking y=

is acceptable for 2-D

axial-symmetrical problem.

For a general situation, one assumes x = y2~Y3,
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A= (in 2-D situation)

2(1-p)

+4u . . .

3= (in 3-D situation).

3(1—- )

Thus, taking
5+2u
= Yav= (2tx3)/2 = ——— 6-15

X = Xav=(X21Y3) 120- 2) (6-15)

This considered as a reasonable choice, as shown in Fig. 6-8. %3 and y,, can roughly be

used for 3-D situation.

1

0.9 L/V |

0.8 +——— [ /4?/

x 0.7 - =
0.6 ‘//ﬁ”) 2
. b ‘/',««

a’
0.5 T——/f—~-~~— e o pe e Xav
0.4V T Tm
020 025 030 035 040 045 0.50

Vs

Fig. 6-8 x2(), x3(1), (1) Function

Substituting equations (6-5) and (6-12) into (6-3), one obtains

Sing'Cos¢'

AP,(t) = Py Acy(t)/ oy +
(f) = Py Aoy, +p) | 1+ Sin'p

xAu(t)Az (6-16)
When ¢’ is constant with depth z, or for ¢’= g;' (¢p’average in range of pile length)

AP(f) = PyAcu()/oy+ prx, > Au(t)Az (6-17)
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_Sing'Cosg'

Where 6-18
2" sintgy (6-18)
Setting the consolidation degree of soil U
z=l[
[ Butt)-az S Au(t)- Az
U(t)=27; - z Az (6-19)
j u,-dz “o
z=0
Thus, > Mu-Az=U()) u,- Az,
AP(f) = Py-Acv/os + pxa,U(6)Y u Az (6-20)

Noticing that Py/o, = A (A} is the section area of pile base) and Aoy, = Aul,-,

AP(t) = A Boo(®) + pra, U0 uhz (6-21)

and AP; = AP (D= = Ap-tion + PRI, D UgAZ (6-22)

Now determining U(t):

U(t): z - — z=02=1 — ‘;441:14!
Uy -dz Uy - dz 0
z=0 z=0
z=l
[ u()-dz
—1- 20 CY (6-23)
I U, -dz Ao
z=0

Where u(t) is defined in chapter 5.
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From Fig. 5-16 [uy(z) form], one gets
=/

Auw= | thy-dz =(uoo+uo)b/ 2+ (uor+uo)(l-b)2  (when 2L, xsb, ysb)  (6-24)
=0

=(ugo+up)b,/2 (when I=b,, x<b,, y<b,) (6-24a)

According to equation (5-15)

z=]

= I u(x,y,z;t)-dz
z=0

k=1 m=0 n=0

- j} {i d,Sir(hz) Exp( Cht )}{iidmcm(pmx).cm(qn V) Exp-C,(p2 + qf)t]} "

z

) i . Z]ISin(th) dz- Ex —thit)}{zz d,,Cos(p,x)- Cos\g,y) Expl~C, (P}, + 4; )t]}

=l . m=0 n=0

{
={ ) Zk [1 - Cos{,1)|Expl- C 21 )}{ >3d, Cos(p,x)- Cosla,») Ex —Ch(p3,+q§)t]}

k=1 k m=0 n=0

={i % [1 - Costh I Expl— C 12t )} U730 (6-25)
U

k=1 0

(1+2k)7

Where h = ke

Z

for a permeable bottom boundary or for an impermeable

bottom boundary.

dy is shown in equations (5-14c to €) and (5-19c to €)

When ! =R,

du=1 3 2R gl cpi)h M2 (6-25a)
K=13,;- Kr

Uy
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Similarly, for circular area problems of foundations, according to Eq. (5-28),

={i St 1 - Cos{m ) |Expl-C 12t )} ur) (6-26)
or when/=R
_ 2dR, o\ (D) ]
Ay {Klzg Iy - Cpt )} " (6-262)

2
In which, u(r;t) = {Zc J ( ) p[ C %"t]}; Cm 1s shown in Eq.(5-29).

m=0

Substituting equations (6-24) and (6-25) or (6-26) into Eq. (6-23), we have

= _ﬂz_ R dk A\ ulxyst) )
U@ = 1 i {Au 3 21— Coslh)Expl-c p )} - (6-27)

0 0 k=1 hk 0

Set U,= 1——1—53 ﬁ[l-Cos(hkz)]Exp(— i) (6-28a)
A,,o k=1 hk
Uy, = 1= 2250 (6-28b)
U,
Thus,
U(t) = 1- (1= Up)-(1-Uy) (6-29)

or for circular area problems,
Ui = 1- (1- Uy)-(1-U,) (6-29a)
When ! = R,, ugy, = uom, and the bottom at the pile base is permeable, one can prove that

U, is exactly the solution of Terzaghi’s 1-D consolidation theory, e.g.,

< 8 Kr
U1- Exg1-C 6-30
HZNS K'n x’{ (2}1) } (6-30)

in which H = R,/2 for a permeable bottom or H = R, for an impermeable bottom.
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For the general situation, one can use a combination of pore-pressure contribution areas

in order to estimate the 1-D vertical consolidation degree U, as per Fig. 6-9,

Uon
0
-(2)
1
b,
3
4 3
Uom +4)
1,
R, 1+
',
Fig. 6-9 Unit Combinations of 1-D Vertical Consolidation Degree U,
U= Ane _ Ay = A ¥ Ay + A
AuO 14740
U AR -UD AP U AR U AP
AuO
_y0.An o Al go Ad | e A (6-31)

A 4 4, 4,
in which U, is represents the three cases depicted in Fig. 6-10. U, and U,* belong to
case (a) (U,* ) and U,”® and U, belong to case (b) (U,” ). Case ¢ (U,?) can be
obtained from
U9=202-U,® (6-32)
The value of U,? is given in Fig. 6-11(al)~Fig. 6-11(b7); U,y or U, in Equation (6-27) is

given in Fig. 6-12(1a)~ Fig. 6-13(g).
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After determining the increasing process of ultimate bearing capacity of piles, the
decreasing process of the pressure at the bottom of the cap may be correspondingly be

obtained,
AQr= Q - npAP (6-33)
and the changing process of soil, piles and raft deformations may be also obtained,
AS = S(t) = Z[Au(z,t) -Az/E] (6-34)

which will later be described in detail in Chapter 7.

Permeable surface boundary

t
Uon Uon ugr=0
[ ] e B e L LR S R LT e
Lpt-mmmbd e e
Uom=Uob Wom=0 Uom
(a) (b) (c)
Ry rrrrrrrr 7777777777777 777777777
' Impermeable bottom boundary

Fig. 6-10 Three typical cases of U,"
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Fig. 6-11(a3) Vertical Unit Consolidation Degree U,"” (Case a: ugm=ttqn; b,/R,=0.2)
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Fig. 6-11(a4) Vertical Unit Consolidation Degree U, (Case a: uo,=ty; b,/R,=0.3)
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U-T (bz/Rz=0.4)
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Fig. 6-11(a5) Vertical Unit Consolidation Degree U,? (Case a: uon=tigy; b/R,;=0.4)
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Fig. 6-11(a6) Vertical Unit Consolidation Degree U,? (Case a: uon=ugp; b/R,=0.5)
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U-T (bz/Rz=0.6~0.9)
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Fig. 6-11(a7) Vertical Unit Consolidation Degree U, (Case a: ugn=ug; b,/R,=0.6~0.9)
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Uz-T (bz/Rz=0)
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Fig. 6-11(b1) Vertical Unit Consolidation Degree U,"” (Case b: 14;=0; b,/R,=0.0)
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Fig. 6-11(b2) Vertical Unit Consolidation Degree U, (Case b: u4,;=0; b,/R,=0.1)
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U-T (bz/Rz=0.2)
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Fig. 6-11(b3) Vertical Unit Consolidation Degree U,” (Case b: u,=0; b,/R,=0.2)
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Fig. 6-11(b4) Vertical Unit Consolidation Degree U,"” (Case b: 14;=0; b,/R,=0.3)
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U-T (bz/Rz=0.4)
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Fig. 6-11(b5) Vertical Unit Consolidation Degree U,” (Case b: ugn=0; b,/R,=0.4)
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Fig. 6-11(b6) Vertical Unit Consolidation Degree U, (Case b: u,=0; b,/R,=0.5)
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U-T (bz/Rz=0.6~0.9)
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Fig. 6-11(b7) Vertical Unit Consolidation Degree U,” (Case b: #,=0; b,/R,=0.6~0.9)
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Uxy

Uxy-T Curves (by/bx=1;Ixbx=1,2)
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Fig.6-12(1a) Horizontal Consolidation Degree U, (Case: by/b,=1, Ix/bx=1,2)

Uxy

Uxy-T Curves (by/bx=1; Ix/bx=3~5)
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Fig. 6-12(1b) Horizontal Consolidation Degree U, (Case: by/by=1, ,/b,=3~5)
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Uxy-T Curves(by/bx=2,Ixbx=1,2)
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Fig. 6-12(2a) Horizontal Consolidation Degree U, (Case: by/b=2, 1/b,=1,2)
Uxy-T Curves(by/bx=2,Ixbx=3~5)
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Fig. 6-12(2b) Horizontal Consolidation Degree U, (Case: : by/b,=2, 1,/b,=3~5)

196



Uxy(=1-ut/u0)

Uxy-T Curves(by/bx=3,Ixbx=1)
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Fig. 6-12(3a) Horizontal Consolidation Degree U, (Case: by/b=3, 1,/b,=1,2)
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Uxy-T Curves(by/bx=3,xbx=3~5)
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Fig. 6-12(3b) Horizontal Consolidation Degree U,, (Case: by/b=3, 1,/b,=3~5)
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Uxy-T Curves (by/bx=4, Ixbx=1,2)
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Fig. 6-12(4a) Horizontal Consolidation Degree U,, (Case: by/b=4, 1,/b,=1~2)

Uxy-T Curves (by/bx=4, Ixbx=3~5)
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Fig. 6-12(4b) Horizontal Consolidation Degree U, (Case: by/b,=4, L,/b=3~5)
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Uxy

Uxy-T Curves (by/bx=6, Ixbx=1,2)
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Uxy-T Curves (by/bx=6, ix¥bx=3~5)
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Fig. 6-12(5b) Horizontal Consolidation Degree U,, (Case: by/b,=6, 1,/b,=3~5)

199




Uxy-T Curves (by/bx=10, Ixbx=1,2)
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Fig. 6-12(6a) Horizontal Consolidation Degree U, (Case: by/b=10, 1,/b,=1,2)

Uxy-T Curves (by/bx=10, Ixbx=1,2)
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Fig. 6-12(6b) Horizontal Consolidation Degree U, (Case: by/b,=10, 1,/b=3~5)
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Ur-T Curves (Ir/br=1,2)
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Ur-T Curves (I/b=100,500)
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Fig.6-13(g )Radial Consolidation Degree U, (Case: 1/b,~100, 500)

From Figs. 6-13(1) ~ Fig. 6-13(7), one finds that almost all of curves at the same 1/b

value are parallel to each other when I/b = 6.

Setting C30_70,
70
Cs0.90= AU | — U70 _U3o — U 70 U30
ALog(T) IU=30 Log(T3,) — Log(Ty,) Log( Cils ) _ Log( Cits )
R? R?
Up-Us,  _ AU 635)

- Log(t.,,)— Log(t,,) - ALog(t)

One obtains the C3.70[AU/A(logT)] ~ I/b relationship from Fig. 6-14.
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Fig. 6-14 Curves of AU/A(logT) - I/b Relationship

6.4 Discussions
Shear stress caused by a piles’ load does not generate additional EPWP in soil nor any
additional lateral pressure of pile, because the changes of pore ratio, the EPWP of soil

and the lateral pressure of the pile have all been completed during pile driving.

A raft’s increasing action on the UBC of a pile due to an increment of the effective lateral
pressure of pile does not work at the beginning of moment loading on a raft. For a step-
loading situation, the raft’s increasing action goes into effect only after completing some

degree of consolidation under former step loads.

The variations of the normal stress on a pile’s shaft Aoy’ is not simply equal to the
change of pore pressure Au because of the horizontal shrinking displacement of soil
around piles with EPWP dissipation. The relationship between Aoj,’ and Au is determined

approximately by equation (6-15).
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A combination of pore-pressure contribution areas in the general situation can be used to
estimate the 1-D vertical consolidation degree U, as per equation (6-31,31) and according

to Figs. 6-9 and 6-10.

The increasing process of piles' ultimate bearing capacity is estimated and described by

Equation (6-21), which is simple and practical.
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CHAPTER 7

SETTLEMENT DURING THE INTERACTION

7.1 General

The settlements in the pile-soil-raft interaction involve consolidation settlements, that are
caused by the dissipation of EPWP from pile driving and from the pressure of the raft
bottom, and the immediate settlements caused by raft pressure and by pile load. One of
these settlement components is the consolidation settlement caused by the dissipation of
EPWP from raft pressure, which interferes in the consolidation degree of raft pressure,
the enhancement of the friction strength of the pile shaft and the bearing capacity of the
pile base, due to the increase of effective normal stress caused by the load applied on the

soil under the cap and around piles.

7.2 Changing Process of Settlements in the Interaction

Soil settlements can be divided into immediate settlements S4 and consolidation
settlements S, caused by the dissipation of EPWP

S = Sg+S. (7-1)
Thus, settlement at a time t can be expressed by

S¢= Sq+Sc(t) (7-2)

in (7-1) and (7-2), Su(t) = consolidation settlement at some time, S = S¢i(c).
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(a) Immediate Settlement

Soil immediate settlement can be estimated by means of an equation for evaluating the
average settlement of flexible foundation on saturated clay soils with Poisson’s ratio p =
0.5 under the raft-bottom pressure on the soil, in which the undrained deformation
modulus Eg, is used. Taking a symbol for the settlement of the raft-bottom pressure, S,
because shear stress caused by a pile’s load does not generate additional EPWP in the soil
and the load of a pile’s base is a small proportion of the total load, the settlement caused
by loads applied on piles tends to stabilize generally only after several hours or 1-2 days.
Thus, the settlement caused by a pile’s load also can be treated as immediate settlement.
Another symbol is used for the settlement from load of piles, S,

Sa= Sdr+0crp 'Sdp (7-3)

(b) Consolidation Settlement

The settlement caused by a pile’s load is treated as immediate settlement. Therefore, the
consolidation settlements considered in the piles-soil-raft interaction are two fold: one is
the settlement caused by remnant EPWP of driving, Scp; the other is the settlement caused
by the pressure acting on the soil under the raft bottom, S;. Thus,

Sc= SertSep (7-4)

Moreover, one should notice that the settlement from remnant EPWP, S, can be
estimated by using swell index C;, or unload-reload elastic modulus E,; and the
settlement from raft-bottom pressure, S, can be calculated by using compression index
C., or Eg, the deformation modulus of additional loads that is greater than a soil’s in-situ

effective overburden stress Gy’. According to Das (1999), the ratio of Cy/C, is of about
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1/25 to 1/3; the typical range of Cy/C; is of about 1/10 to 1/5. Thus, one can assume that

the ratio of E/ Eq is also about 5 to 10.

Substituting (7-3) and (7-4) into (7-1),
S= Sdr+ Otrp 'Sdp+ Scr+ Scp

= (Sdr+scr) + (arp 'Sdp+ Scp)

= St S (7-5)
Where Si:= Sart+ Ser, (7-6)
Sip= O “Sap* Sep (7-7)

(c) Settlement at a Given Time
Similar to Equation (7-4), the consolidation settlement at some time can be expressed as
Sel(t) = Ser(t) + Sep(t)
= SerUci(t) +ScpUcp(t) (7-8)
where S¢(t) and U(t) are the consolidated settlement and the consolidation degree at a
given time respectively, due to the dissipation of EPWP from the pressure at the bottom
of the raft, and Scp(t) and Ucy(t) are respectively the consolidation settlement and the
consolidation degree at a given time due to pile driving.
Thus, total settlement at some time S, obtained from equations (7-2, 7-3 and 7-7) is
St=Sa+Sci(t) = Sartatrp -Sapt ScrUcr(t) +ScpUcp(t)
= [Sar + ScrUer(t)] +[0trp -Sap +ScpUcp(t)]
= St +Sppt (1) (7-9)
in which Sit(t) = Sar+ScrUci(t), (7-10)
209



Sept(D)=0tep *SaptScpUcp(t) (7-11)

7.3 Simplified Methods of Analysis of Settlement at a Given Time

The methods to calculate settlement presented in Chapters 2 and 3 do not interfere with
soil consolidation. Although Randolph’s method (1994) is a very convenient approximate
equation for the stiffness of a piled raft system and the load-sharing between the piles and
the raft, the method is reasonable only for the elastic state of a pile-soil system but not for
the plastic state. Here the development of approximate re-setup equations for the stiffness
of a piled raft system considering soil consolidation and pile-soil nonlinear deformation is
needed.

According to Randolph and Clancy (1993), under incremental loads of pile group and raft

AQp and AQ;, the settlement increment of pile group and raft AW, and AW, are:

AW, =40, +57. 50,
o X (7-12)
AW, =52 AQ, + —A
r er QP K Qr

¥

Where K, is the stiffness of the pile group, K, is the elastic stiffness of the pile group, as
determined by (2-4), K, is the stiffness of the raft, as determined by (2-3), and o, and o,

are the interaction factors. From the reciprocal theorem, the terms on the trailing diagonal

of the flexibility matrix must be equal, so that the interaction factors are related by

a, = r (7-13a)

oyp can be determined by equation (2-5) for a single pile or about 0.8 times the group

size’s increases.

210



K, and K, are related by

K, =K ,:f(Q,) (7-13b)

For example, the following load-deformation curves of pile group can be assumed:

W= 2 5 (7-14)
er(l - R, —éfu-]
. v
K, =er{1 - —Qj’:RfJ (7-15)
or
K,. ©,%0,)
. K"e(l_'Qfo:QQin]z ©.<0,<0,)

Where Qp, is the ultimate load of the pile group, Qpu = 0.9n,P,; Q. is the linear-elastic

limit load of the pile group, Qpe~ (0.0~0.5) Quu and Ry is the failure ratio of the pile group

and it should be taken as R¢~ 0.6-1.0

Assuming that the average settlements of the piles and the raft are identical in a piled raft,

equations (7-11) and (7-12) allow for the calculation of the overall performance of the

foundation. The overall stiffness, K, and the proportion of load carried by the raft are

given by
K K K K
—F+ - 2a, I+ -2a, —F
AQ K, K, K, K,
oK =2 K, = 2K, (7-17)
AW 7 K, L, K , K K
p _arp r l—am‘ r P
KP er er er
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L PR Wi S0 PV
Q s Kps Kr Kr v er s
Q2 _ks - K = 2K, (7-17)
w Bpe K, 1—o? & ps

Kps pre 'pre er

and
pe _arp Kr l_a,p_fe_
AQr P —

K K
[l_a Jk l-a _ P
K G ¢
s - b (7-187)

+ K K K
2, +Q K +[—£"——2a ]K —‘”—+(1—2a —ﬁJ
pe K 74 r K ’PK

9,

pu

where, K s =K pe-[l - R f) (when Q,<Qpu).

When Qp= Qpy, K, =0, according to Equation (7-17), 2—% =K, =K.

A difficulty encountered in the application of equations (7-17°) and (7-18’) is that when
Qp = Qpu, Kps is not easily determined as it is controlled by the development of
deformation W. However, Q-W curves can easily be calculated using incremental

methods and equations (7-17) and (7-18).

Setting Q; = Qi1 + 40 and Q,; ~Qi(I-17s,i1), one obtains K, = Kp[_Qsz_i—_‘), thus

calculating 77y ; , Kpri and W= Wi +4Q- K,,; allows one to reach the data for W-Q curves,

as well as 77,-Q curves.
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Fig.7-1 presents the results based on Equation (7-16) where Qpe = 500 kN, Qpu = 1440
kN, Kpe = 26.74 MN/m and R¢= 0.65, in which the Q-W curve is almost identical to that

of Fig. 3-9(1) from the non-linear FLM method presented in Chapter 4.
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o RN Dbt ~o0 SR
|
- 1
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Fig. 7-1 Q-W Curve Based on Equation (7-6)

Fig.7-2 is the result based on Equation (7-17) where Qp. = 500 kN, Q= 1440 kN, K. =
26.74 MN/m, K, = 8.32MN/m and R¢= 0.65, in which the Q-W curve is almost identical
to that of Fig. 3-10(1) from the non-linear FLM method analysis of a single pile under a

raft presented in Chapter 4.
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Fig. 7-2 Q-W Curve Based on Eq. (7-7)
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7.4 Discussion on interaction factor o,

In the case of Case 2 presented in Chapter 4, K, ® 30MN/m when Q, < Q. but according
to equation (7-7), inversely calculating o, obtains o, = 0.49 < 0.5, greatly different with
oyp = 0.7211 from Equation (2-5). This may be due to two causes: the selection of the rp,’
value or formula (2-5) for a situation of the pile to raft unit that is located in the pile,
which is should not be used in this situation.

Taking the r,,” value according to the elastic theoretical study of the performance of piles

from Randolph (1977) and the suggestion from Randolph & Wroth (1978),
={0.25+&[2.5p(1-05)-0.25] } 1. However, soil is not completely elastic and cannot bear
tensile stress, partly like the Winkler model, so an analysis based on the elastic solution
overestimates the pile-soil interaction and its effect range r,. The measured r,, value is far
smaller than the elastic theoretical result. According to the field observed value from
Cooke et al (1980), r, » 12d, whereas API (American Petroleum Industry) recommends a
value of ry, = 8d. Shi’s pile test (1983) shows that r,, » 6d. Shen (2000) proposed r, =

_In@ /1)
9

0.5p(1-vg)! . From 1 ~ 12d = 24ry, € = In(1n/10) = 3.178, o= 1 =0.5638.

_In(r, /7,)

Formula (2-5), oy = Sp/Sp = | , simply represents the ratio of

settlement at r = 1. to that at r = ry. The correct expression for o, should be the ratio of

the average settlement of area r <1, to the settlement at r = ry. Thus, o, = S3,/So,

r.T v
So=-2-* ln(i} (7-19)

ry

S, = 21 ; [=rm "o Ln(rﬂ)Zﬂrdr=——————2 ! 5 ol [=rm Ln(r”i)dr2
z(r' —rg)*n G r ' -ry) G +=n r
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/175 | N A Y /4 | D SR | (7-20)
G \n) " \n)jG-r) 2

From equation (7-21) and rm, = 241, o, = 0.4926, which is near the 0.4927 value,
the value inversely calculated from the case of Case 3 in Chapter 3. In the case,

interaction factor just is not modified by the means of equation (3-2).
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Fig. 7-3 Consolidation Degree of Settlement below the Corner of a Rectangular
Area of Uniform Pressure of a Raft (from Gibson & Mc¢ Namee 1957)
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7.5 Consolidation and Time Factors in the Simplified Methods
The settlement caused by the pressure of a raft is divided into two parts: immediate

settlement and consolidation settlement. Thus,

1 U0
K, K

cr

1
z (7-22)

in which K is the soil stiffness of immediate deformation, calculated according to
1s=0.5, K4 =~ 1.3467E,,B for a square raft, K., is the soil stiffness of consolidation
deformation, U, is the consolidation degree of settlement under the corner of a

rectangular area of uniform pressure of a raft, shown in Fig. 7-3, which is the solution

proposed by Gibson & Mc Namee (1957).

In the figure,
T is the time factor, T = Cy3 t/L%,

2kG(l-p) _ kE(—p)  _k(l+e)
7,0=21)  y,(A+m(A-24) 7,4

C,3 1s the consolidation coefficient, Cy3=

b

E, G, u are the deformation modulus, the shear modulus, and Poisson's ratio of
soilrespectively;

k, a, e are respectively permeability coefficient, 1-D compressibility coefficient, and void
ratio of soil,

and v, is the unit weight of water.

For a square or circular raft on homogenous soil,

Kar ~ 1.35EB/os , or Kar~ 5.5G,Bla, (7-23)
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K, = 1.01Eg B/[ou(1-s)] (7-24)
in which, Eg, is undrained elastic (immediate) deformation modulus; Eg. is drained
deformation modulus; the value of o is for various length-to-width ratios (L/B), and can

be obtained from the page 241~243 of Das (1999), 0,=0.88 for circular and square raft.

Thus, Se(t) = Sar+SerUcr() (7-10)
= SarH(Sm-Sa)Uar(t) (7-25)

Sar= Qr/ Kar (7-25a)

Ser= Qi1 Ki-1/ Kar)=Qi/Ker (7-25b)

Se=Q/ K, (7-25¢)

Sip=Qy/ Ky (7-25d)

Theoretically, Si/S¢r = Ka/Ki=2(1-p) = 1.34~1.0 for p = 0.33~0.5.

Equation (7-25) can be also be used in the incremental method for non-linear curves.

The settlement caused by the dissipation of remnant EPWP of driving can be estimated

by the following formula
Sept(t) = Sep-Uep(t) (7-26)
S¢p 1s caused only by the dissipation of remnant EPWP and by no other surface load. In

the center area of the cap, soil settlement can be considered as 1-D consolidation,

: - (1 1-24) u,
Sep= fzomvuodz = f—o(_ig_)_(;,)—m-g—_ dz (7-27a)

ur

217



For homogenous soil,

_ I+ p)(-2p) [ s = m A, =402

*" 0wk, T om0

In the edge or corner area of cap, soil deformation should be 3-D, so

{=0

y4

Sepm EO [Ao"Z —/J(Az'x +Ao’, )]

Ao, = 0 during t=0~xc, Auf; = « = 0, AG’ =AC,~Au=Ac,—~(Aut|=x—Att|=0)=t09=u;. And Ac’y =~

)= (6+)(1-24)

Yavidi, from Fig. 7.4-6, [Ac’, —(AC s +AG’y) 1=« = ui(1-21Xav u,
6(1-p)
Then, So [ EXU=20), (7-27b)
= 6(1-u)E,
For homogenous soil,
ox 6+)(A-24) udz = (6+ )1 -2p) A= MpAu (7-28b)
6(1— p)E, =0 6(1- 1)E,

Where, my, = 6+ ) ~24)
6(1- p)E,,

For soils having p = 0.33~0.42, S, = (0.54~0.30)A4,0/E.ur.

For stepping load situations, one can use the approximate method to estimate settlement

caused by raft-bottom pressure, as shown in Fig. 7-4
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Qm

N

Qs

t t2 t3... tm t

Fig. 7-4 Step Load-Time Relationship
Sir1 & Sar1 + ASerUcAA1/2);
Si2® Sir1 +AS4r2 + ASer1[Ua(At1/2+Aty)- Ug(At1/2)] +AScrnUc(Aty/2)
= Sar2 + AScriUc{At1/2+Aty) +AS U (Aty/2);

Sirs ~ Sars + ASerUet(At1/2+Aty+Ats) +ASeroUer(Aty/2+Ats) +ASersUcr(At3/2);

& At k At,
Srrt(tk) = Srrk ~ Sdrk+ Z AS criU o —L 4+ z At | +AS k- er 7 (kS m)
i=1

) j=i+l
= Sdrk+ Scrt(tk) . (7'29)

k-1
in which, S,.(t) = ZASC”_U”( Azt_f + Zi:m Atj) + ASC,,(UC{ Aztk ) , and Sz= Igrk .
P dr

1 1 1 1
ASr= ——— 1A r; Scr: T r;
ek [Kr Ker Qk * [Kr Kdr)Qk

1 i - At k At
Scrt(tk): [—E- - FJI:Z AQriUcr(—zl— + Zj=i+] Atj) + AQrkUcr(—'_zL):I

ro. dr i=1
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= ScrkU crl(tk) (7'30)

Where
k-1
Uit = —QI—[Z AQ,,.UC,(%’L' s At,.j + AQ,kUC,(éz’—"]] (ksm) (7-31)
rk L i=1
Thus,
Srrt(tk) = Srrk ~ Sdrk + ScrkU crl(tk) (7-32)
After ty (k>m),

Sm(tk) = Srrk ~ Sdrm + Z AScriUcr (-425— + Zi=i+l Atj) (k>m)
i=1

= Sarm + SerkUert () (7-33)
Uori(t) = i%Q—U(%t— + Z’;,-H At j.) (k>m) (7-34)
=0,
If ti>>ty,
Splt) = Sk Sarm + ., U(% +t, - t,,,)) (k>m) (7-35)

In the process of piles-soil-raft interaction, when the total load Q is stable, the raft’s
sharing load Q; may decrease with an increase of the piles’ sharing load, that is, AQu+j <
0 (=12,..) as shown in Fig. 7-5. In the special situation where AQ; < 0, when t < tp,

equations (7-30) and (7-31) is still right and when tx > t,,, the calculation formula should

be modified as follows:
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Qm

(tm+h> Qmen)

Qs

Y

th ta ts... tm- .- tnth. -

Fig. 7-5 Step Load-Time Relationship with Case of AQ+<0

If Qumen 2 Q1 (that is, AQum> . AQ, ., )

crl(tm+h) —_Q__{ZAQ” cr(Ati/z'*' szAt ] mZJrh A rt cr[ —Azi—*- iAth}

rk | i=1 J=i+l i=m+1

(7-36)
If Q.2 S Qumen < Ot (thatis, DT7AQ, ) < AQui< Y1 AQ, ., ),
m+h
Ueri(tmsn) =—— ZAQ,,UC, Atj2+ Y At
Qrk i=] Jj=i+l
m+h
+ (Qr,m+h _Qr m- Z)Ucr m = + ZAt
At m+h-1
+ (Qr,m—l - Qr m+h)Ucr én = + ’2”+h + ZAt (7'37)
J=m
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From equation (7-37), it is possible that U, /(tnm) > 1.0, where U, (tnm) 1s taken to be

1.0 when U,,/(tm+n) is used to estimate the cap’s increasing action on the UBC of piles.

For the case of Qumi.; < Qm+n < Qrmt, ONE can use a similar principle to the above in

order to estimate the consolidation degree Ucy (tmen).

7.6 Effect of Raft’s Interaction on UBC of Piles
According to equations (7-31) and (7-34), the Ucy(t), consolidation degree at a given time
from the raft-bottom pressure increases linearly with time, which may cause the UBC of

a pile to increase. The UBC increment of pile from raft-bottom pressure, APy(t) is
AP, (t) = Ay Acu(t) + pD AT, (1)- Az

The above equation is the same as (6-3) except that the mode of failure at pile-soil
interface before the load action of raft on soil (and after pile driving) is different than that
following the load action of the raft, where 6,” may be larger than oy’ in Fig. 6-4(d). If
o, < on, Atft) = o, (t) g or if equation (6-6) is derived from Fig. 6-4(d), then &,
>aoy’, Atdt)=cy’(t) 7ge. This is not a good model. The suggestion from the assumption of
the 1-D consolidation for piles near the center of the raft was adopted.

At(t) = on’ (1) 18 ~0, (1)Ko 180"~ ()(1-Sin@’) 1g®’ (7-38)

Thus,

AP,(t) = Ay-Acw(t) + p ) Ac, (DK tgp Az (7-39)

For uniform soils,
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AP, (t)= Ap-Acy(f) + pK 120" Y Ac', Az (7-40)
Noting that

Y Ao’ Az= Uy(t) Y Ao,

o Az=Ue(t) Y Au|_ Az = Unpt)duor  (7-41)

Hence,

AP, ()= Ap-Ac(1) + pKotg@ ' Upty) Auor (7-42)

and, Auor =2Au|t=0Az ~ ZAO'Z

oAz =p L Holoy-Hiloany]  (7-43)

AcH(t)= A" D)1= pd (7-44)
where, I = 41, where I, is the influence factor of vertical stress below the corner of a
rectangular area which can be obtained from pages 223~225 of Das (1999), I,y and
L2y are the average stress influence factors below the corners of a uniformly loaded

rectangular area with limits of depth z =0 to z = H; and z = 0 to z = H, respectively, as

proposed by Griffiths (1984) and that can be determined from page 231 of Das (1999).

7.7 Discussions

In this Chapter, the method analyzing non-linear settlement of a raft considering the pile-
soil-raft interaction, consolidation and time factors was set up. Randolph and Clancy’s
(1993) method for the elastic response under a load on the system of pile-soil-raft
interaction is generalized by the incremental method for the nonlinear response of the
interaction. Meanwhile the method to estimate the UBC increment of pile from raft-

bottom pressure, AP,(t), is derived out.
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CHAPTER 8

CASE ANALYSES AND COMPARISON

8.1 General

This chapter presents two case analyses. One is to estimate the increment of the UBC of a
single pile due to the dissipation of EPWP from pile driving, which uses the method
discussed in Chapter 6. Another is to analyze the whole process change of the load shares
of piles and raft and the settlement in the pile-soil-raft interaction from the end of pile
group driving to a long time after the end of the superstructure’s construction, which uses
the method discussed in Chapter 6 and 7. These cases are according to practical situations
in civil or building engineering. From analysis and calculation of these cases, some

important general conclusions are obtained.

8.2 Case 1: Analysis of UBC Change of a Single Pile

The case data is that of Tang (1990); a test pile b x b x L = 0.5 x 0.5 x 24.5 m’, pile
weight 125 kN. The test field is in the Zhang Hua-bing area of Shanghai, China. The soil
layers’ field data for pile load tests is shown in Table 8-1. The pile load tests were carried
out 14, 137, 297, and 409 days after driving. The test results of the ultimate bearing

capacity of pile (UBCP) are shown in Table 8-2 and Fig. 8-1.

The maximum EPWP is estimated according to Lo & Stermac’s (1965) Equation (2.5-1),

shown in Table 8-3 and Fig. 8-2
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Table 8-1 Geotechnical Data of Pile Load Test Field

effective Cone
unit water void | consolidation | friction panetration
soil soil type thickness | weigth | content | plasticity | ratio coefficient angle resistance
Layer (m) [ YKNmM | w(%) e Ci{cm?/s) 9 (°) p«(MPa)
1 Mucky foam 7 18 40-49 Low 1.15 6.75x10° 30 04~1.0
2 Clay 10 17.2 42-55 | Higher | 1.38 1.32x10° 26 0.4~.08
3 Loam 14 (7.5) 18 35-40 | Lower 1.12 12.45x102 32 0.6~1.0
Average in depth 24.5m 17.7 1.23 5.5x107 29

Value in brackets { ) is the thickness occupied by pile;

Table 8-2 Result of Pile Load Test

Poisson ratio 1i=0.30~0.42, average p=.38

t /days after driving

0

14

137

297

409

2000

P,/KN

(300)

1400

1760

1860

1930

2110

Value in brackets ( ) is estimated by the formula for penetration resistance during driving

Pt /KN

Table 8-3 Maximum EPWP

z(m) o’ o(kPa) Uin(kPa)
0 0 0
3.50 28.0 27.0
12.00 92.0 90.0
20.75 158.0 161.0
24.50 188.0 230.0
2500
2000 B — -
,‘//.‘/MW
1500 j{/ 1 _ _
1000 e
r —e—Pt-t Curve at PG=300KN !
500 ‘ ’ —a8— Pt-t Curve at PO=1100KN ‘[
4 o |
o | | |
0 100 200 300 400

t /day

Fig. 8-1 Measured P;-t Curves

500
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200 - /
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150 - SO — ] /

100 T
/

) // -
0

0 5 10 Z(m) 15 20 25

u(kPa)

Fig. 8-2 Estimated Maximum EPWP

250
J ‘I> Put
00— L
j o
| A
| \ H | »1 .
: i | L
1500 1 2]
Z I ] Pwo
é L U ,-f——J;';i ol Lol Lo r el v ) ./ Py =initial UBCP at theoretical P,(t)
& T o ——Seriest ] ) curves, e.g. Py(0).
1000 gt T , i " Py=initial UBCP caused by soil
\/)/‘ L -4~ Series? thixotropic residual strength.
50 - T | ! —s-Seiies3 U1l Pui —> The va!ue of (Pyo- Py) is caused by soil
’/3 ‘ i . ] thixotropy
[t
Ll LA .
0 : T *
01 1 10 100 1000 t

tiday

Fig. 8-3(a) Py-log(t ) . )
' (a) Puc-log(t) curves Fig. 8-3(b) Relationship of P,y and P,;

The initial UBCP, P,;, was set at 300 kN in Table 8-2, which is actually an estimated
value of dynamic penetration resistance (due to thixotropic residual strength) during pile
driving, and is not P,, a static UBCP at the exact time that driving ends on Py curve. The

value of (Pyo- Py) is caused by soil thixotropy, shown in Fig. 8-3(b).

From Fig. 8-1, P,¢ can be 300~1100 kN. Converting Fig. 8-1 into Fig. 8-3(a), one finds
that Py-log(t) curve at P,y = 300~630 kN when t = 0.1day = 2.4Ar is not reasonable

theoretically, as it is does not agree with the initial tendency of the consolidation curve.
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Hence, only P,y = 630~1100 kN is possible. But the Pi-lot(t) curve at P,y = 300~630 kN
may appear in the practice of engineering, due to the soil thixotropy and the cohesion’s
(c) recovery with time, not being caused by the consolidation of EPWP. Assume that the
soil cohesion ¢ has recovered in 2.4hr ~1day. The real theoretical meaning of P,y is the
initial UBCP when soil cohesion ¢ has recovered from soil thixotropy in a condition

where EPWP is constant or the consolidation degree remains zero.

On the other hand, one can choose a different P,y (initial ultimate bearing capacity of
pile) consolidation degree curve U(t), as shown in Fig. 8-4. According to the relation of
equation (6-35), U(t) curves should be parallel to U(T) curves. Fig.6-14 shows curves of
AU/A(logT) - I/b relationship. From Fig. 8-4, AU/A(logT) ~ 0.2 when Py = 300 kN, the
corresponding situation is /,/b,=300, shown in Fig. 8-5. Usually I/b < R/b < R/ry = 30~60
according to Fig. 2-7 (from Poulos & Davis, 1980). Thus, the situation where Py = 300

kN and the corresponding /b = 300 is not reasonable.

Comparatively, AU/A(logT) =~ 0.36 at Py = 1100 kN in Fig. 8-4, the corresponding

situation of /b = 21 in Fig. 8-5, is possible.

1 10 100 1000 10000
0
} | ( | 1
0.1 A I
I i | H
02 4—— r—!*ﬂ” b : ] Ze— Pu0=300KN [T
03 L | " ; g PUO=1100KN | | | |
Vot i T
5 P ]
204 | |
& r 1 f
=0.5 !
g H
z 0.6 4-r—ioe- T’ ~ - o |
= ! 3
0.7 L g
! I - R
0.8 e . )
E ~ N
09 RN f L B AT S
A I bl
MR LTy L

Fig. 8-4 Effect of Choosing P,, on Measured U(t) Curves
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Equivalent radius of pile v, = \[Ib = \/IO.S =0.282m
7T 7

Thickness of soil crust 6 =20mm
Failure plane radius ry=r,+06=028+0.02=030m
Radius of maximum EPWP b, = 2r. = 0.60m
Radius of zero EPWP [, =21b,=12.6'm
Radius of permeable boundary R, =, =12.6m (0=R,/r=45, €30~60)
Depth of vertical permeable boundary R, =/,=30m (assumed)
By (6-22), the increment of UBC, AP, is:
AP =APl= =APp+APcs= Apuop +PZGZ¢Z%AZ

Now, 4,=0.25m?, ugp = 230 kPa, p =4 x b =2 m, Y5 = Yav = 0.7742, 3, = 0.3433, A,y =
Y uAz = 188 x 24.5/2 = 2303 kPa-m. Hence, APy, = 57.5KN, AP, = 12242 kN; AP, =

APli= o« = AP+ AP = 1282 kN. Let Pyo= 1000 kN

The calculation of U(¢) and P,(t) is shown in Table 8-4. A comparison of the measured

and calculated values is shown in Fig. 8-5.

The above results give the following conclusions.

(1) The effect of vertical consolidation can be ignored under conditions where the
consolidation coefficient C,< C,/4 and the horizontal radius of zero EPWP [,< /2.

(2) The result obtained by considering the real meaning of P,, presented in this thesis is

better than that proposed by Tang (1990).
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Table 8-4 Calculation and Comparison of UBCP

Rr= 12.5 Rz= 30
Ch= 0.0543 Cv= 0.0136
t 0 14 137 297 409 2000
Pt(KN) (the measured) (300) 1400 1760 1860 1930 2110
T, 0.0019 0.01858 0.04029 0.05548 0.2713
U, (,/b,=20) 0.31 0.64 0.77 0.83 0.995
T, 0.00021 0.00206 0.00448 0.00616 0.0301
U, 0.03 0.12 0.17 0.21 0.44
U, 0.001 0.015 0.05 0.08 0.275
U,=2U,;-U,;3 0.059 0.225 0.29 0.34 0.605
U=1-(1-U)(1-U) 0.35071 0.721 0.8367 0.8878 0.998
Ac’y(1) 71 147 177 190 230
APy, =Ap-AC’y(2) 17.75 36.75 44.25 475 57.5
AP, =P..-U, 369.12 758.85 880.63 934.41 1050
P,=P+ APyt AP, 1000 1386.9 1795.6 1924.9 1981.9 2108
The calculated by Tang(1990) 300 1300.7 1936 2038 2073 2139
2500 2500 e ; l ‘ ;
I
I — - M—— i
2000 ///"/;:;'::T:—.'rr:".‘:”_‘.i’ T T 2000 {-—— Ti%f :‘ ‘
s S(C i
Z 1500 7 S S L1710 J U S B o A ,i JUU SN S N N O
X Z ---o--- The Measured z o] j e
& 1000 1 § " ri o -~ The measured ‘
iy CalCUIAted by T ) S——— 4 P LE
this thesis . Calculated by ‘
500 +— calculated by this thesis |
Tang(1990) 500 T r o Calculated by } b
0 i L Tengaeso) |1
0 100 200 300 400 500 0 - T TTITL
t lday 1 100 10000

(a) Pyt Curves
Fig. 8-5 Comparison of the Measured and the Calculated UBCP

(b) P-log(t) Curves

t /day
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8.3 Case 2: Change of Load Share and Settlement of a Raft with 9-Pile

This is a low raft (i.e. the bottom of the raft comes into contact with the soil) with 9 piles.
The raft is the as same as that in Case 5 of Chapter 3. The piles and soil conditions are the
same as those of Tests 7 and 8, i.e., raft B x B = 7.6 m x 7.6 m, reinforced concrete pile,
L xbxb=20m x 0.4 m x 0.4 m, its elastic modulus E, = 22 GPa, pile spacing s = 2.4
m, s/d = 2.4/0.4514 ~ 5.32. The depth of the burden foundation bottom D¢= 1m and the
depth of the underground water level dy,= 1.0m

Soil conditions:

The soil at depth 0.0 ~ 21.0 m is a soft silt clay: unit weight y = 18 kN/m?>, E;= 10 MPa,
Poisson ratio p = 0.4, G,; = 3.57MPa; soil shear strength tr= 40 kPa, (estimated when
driving has ended after 28 days); coefficient of consolidation in the vertical direction C, =
3.0x10” m%/day; horizontal coefficient of consolidation Cy ~ 2C, = 6.0x10 m*/day, soil
effective internal frictional angle ¢’ = 28°.

The soil at depth 21.0 ~ 50.0 m is a better quality silt sand (permeable soil), E;=20 MPa,
Poisson ratio p = 0.4, Gy, = 7.14MPa; pile base ultimate bear capacity oye= 1000 kPa, the
linear-elastic critical pile-base stress Gpe = 450 kPa.

The total ultimate bearing capacity of a pile Py = 1440 kN (estimated when driving has
ended for 28 days).

The modeling relationship between the shaft shear stress and plastic displacement is adopted

from the model of Yang & Zai (1994).
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Construction procedure: at t; = 45 days after driving, the construction of foundation and

superstructure takes 200 days.

8.3.1Checking Safety without Considering the Effect of EPWP

When one does not consider the effect of EPWP, one can solve the problem and get that

at total load Q = 20 MN, settlement S = 0.1 m = 10cm, the load shared by raft Q; =

8.5MN, n; = Qs/Q = 42.5%,; the load shared by nine piles Qp = 11.5 MN, the average top
force of a single pile FO =11.5/9=1.28 MN = 1278 kN ~ 0.9P = 1296 kN.

Considering a certain degree of consolidation during the 200-day time length of
construction, an estimate can be made for U,,(t,) = 0.3 that assumes the following soil
strength parameters: total stress cohesion ¢ = 40 kPa; total stress internal frictional angle
¢ = tan [U(tn)tan’] = arctan (0.3xtan28°) = 9.06°, conservatively taking ¢=7°.

Using Vesic’s (1973) ultimate bearing capacity formula, bearing capacity factors N, =
7.16, Ng= 1.72, N;= 0.71; shape factors Fo; = 1.26, Fgs = 1.12, F;;= 0.6; depth factors Fq
= 1.053, Fga = 1.025, F;q = 1.0; rigidity index I, > critical rigidity index Iy, then
compressibility factors F. = Fy. = Fr. = 1.0; Hence, the soil ultimate bearing capacity q, =

CNFoFeiFop + 1uDNFoFpiFye + % pBNFFyaF,e = 380.0 + 355 + 13.0 = 428 kPa. The

increment factor of soil bearing capacity 1, = 1+Aqu/qQu = 1+117/428 = 1.27.

Thus, the total ultimate load Qui=NquA + Ng&pnP, = 1.27 X 428 x 7.6°+1.0 X 0.94 x 9 x
1440 = 31396 + 12182 = 43578 kN = 43.58 MN. The total safety factor F= Q,;/Q = 2.18.
Surficially, the total safety factor is adequate but not great enough. Indeed, a pile’s UBC

P, will greatly increase with the dissipation of EPWP during the intermission time 28
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days after the end of driving, before construction and during the 200 days construction
period. This F, is temporary at the moment when both the total load and the raft load
reach their respective maximum values, afterward, the total load will be constant but the
raft’s load will fall to a lower value. The long-term total safety factor should be great

enough.
8.3.2Checking Total Safety Factor Increasing With Consolidation

Considering the effect of EPWP, the following new results are obtained:

a) Calculation of Parameters:

Equivalent radius of pile r,= \/Ib = \/I 0.4=0.2257m, d=2r~0.45m
/1 /1

Equivalent diameter of group piles D, = ‘/ inpA p = \/ 4 x9x0.4* =1.3541m
7 V4

Fig. 8-6 Schematic Diagram of Piles and Raft
Half breadth of maximum EPWP b, = S+06g (Shown in Fig. 8-6)

Set 813: T]d
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According to (6.2-3),

up= fu”‘ {nLn(a)ro) - jZLn(V,-)} = % [9Ln(w %) - ’Z:: Ln(r, )] <Autp,

no

~f) =9Ln(3 @)~ Lno — Ln{(9+n*)[9+ (6 + 1)’ 9+ (12+7)’]}
— 0.5 Ln{(81+n*)[81+(6+7)*[81+(12+7)*]}=0

When o = 25,11 =1.762, fin) = 8.8x10° ~ 0

Thus, Sp=md=1.762 * 0.45=0.793 = 0.8 m

According to (6.2-2), similarly,

ug= Au_R? L=Au (0.5a-d)* L.<.Au,,,
m 2 m rZ

i=1 7 i=1 7

2 2 2
2 + 2+ 2
9+n° 9+(6+7) 9+(12+n)

) = (o.5a)2[

* 81i772 +81+(;+77)2 * 81+(1;_+77)2)=1
When a =4, 1 =1.3614, f{n) = 0.99964 = 1
Thus, n=1.3614~1.762; taking n = 1.56
Take 6g= 0.7 m
Hence, by ="by=(S/d+n)d = (6+1.56)d =7.56 x 0.45=3.4m
The radius of zero EPWP, according to experimental results (Tang 1990),
M5, =15L=1.5%x20m=30m (o = ,/b,=30/3.4 = 8.82)
or 2)],=4B2)=2x81=162m
3) 1, =12D.=12x 1.354=16.25m

From the above (1)~(3), taking /, = 17 m (o = ,/b,= 17/3.4 = 5) is better.
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Radius of permeable boundary

Ry =1.=1Tm (by/R«=3.4/17 = 0.2, Uy(T) curve in Fig. (7.4-10-1b)

Depth of vertical permeable boundary
R,=1=10m (permeable bottom boundary)

Contribution of initial EPWP: Au,,(2)=06"(z)=ydw+7y (D-d,)+y’z =18+8z (Kpa)

b) Increment of UBCP (ultimate bearing capacity of pile)

by (7.4-15a),

AP.=APleowe =APey+APes= Aption + X, X, D oz

Now, A = 0.16m>, ugy=18+8x20=178 kPa, p =4xb =1.6m, 1o = xav=1—-25€2i) = 0.8056,
—H
Sing'Cos ¢’
o= =0.3659, A= Y u,Az = (18+160) x 20/2 = 1780 kPa-m.
1+ Sin“g'

Hence, AP, = 28.5 kN, AP = 839.5 kN, AP, = AP|- = 28.5+839.5 = 868 kN.
Because, Pu=1440=P y|=28day= Puo+APl=28day

APli-zsaay = 122.8 kN (determined by Table7.4-5)

Py =Py —AP|; = 2840y = 1440-122.8 = 1317.2 kN

Calculation of U(¢) and P.«(t) is shown in Table 3-5.

Considering a raft’s effect on the UBC of piles according to Eqs (7-40) and (7-41):
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Because of the permeable bottom boundary, Acw(f) = Acy, = Ip, = 1Q0,/4 = 0.064Q,/A,

regardless of whether this is for a center pile, edge piles or corner piles, because of Saint

Venant’s principle in elastic mechanics .

Selecting H;=0, H,=20. Griffith’s influence factor, Lyuz) = 4 x 0.09 = 0.36 for a center

pile, L) = 2 x (0.114+0.055) = 0.33 for edge piles, Lyuz = 0.13 + 2 x 0.06 + 0.035 =

0.285 for corner pile; average Iz = (0.36 + 4 x 0.33 + 4 x 0.285)/9 = 0.313

O Auor= 0.313Hy-p, = 6.26p,= 6.260,/4;

pKotgg' ~p(1 —szn(p g 9'=1.6x(1-sin28°)tan28°=0.4513m

AP, (t) = Ap-Ac(t) + pKo1g 9 U,(t) A,0/~0.16%0.0640Q,/4+0.4513%6.26U,,(f) Q/A
=[0.0102+2.825U,(1)] O,/A

The consolidation coefficient in 3-D is taken as C,3=(2Cp+C,)/3=5x 1072 mz/day

The raft’s effect on the UBC of piles and a comparison among values calculated

according to different considerations is shown in Table 8-5 and Fig. 8-7.

¢) Total Safety Factor Increasing With Consolidation

Taking into account the dissipation of EPWP from driving and from raft-bottom pressure,
at the moment t,, when total load reaches its maximum and remains stable and the raft’s
bearing load reaches its summit, Qu = NQA + MgEnP, = 1.27x428x7.6> +1.0x
0.90x9% 1883 = 31306 + 15252 = 46648 kN, Total Safety Factor F,= Qu/Q = 2.33.

At the final stage, taking ¢ = 10 kPa, ¢ = 28°; N. = 25.80, Ny = 14.72, N, = 16.72; Fs =
1.57, Fgs = 1.53, Fis = 0.6; Feq = 1.053, Fgq = 1.039, Fiy = 1.0; q, = 1152.7 kPa; without

considering the raft’s increasing effect, Qui = NiquA + MNP, = 1.1x1152.7x7.6% +
235



1.0x0.90x9%x2163.5 = 73238 + 17524 = 90762 kN, F;= Qu/Q = 4.54.
Considering a raft’s increasing effect, Qu = M:quA + Mg&pnPy = 73238 + 1.0%0.90x9

x2250.4 = 73238 + 18228 = 91466 kN, F;= Qu/Q = 4.57.
A comparison of the results from different analysis methods with or without EPWP effect

due to driving and to raft-bottom pressure is shown Table 8-8.
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8.3.3 Estimation of Settlement

Computation of k;. Method 1, by Randolph & Wroth (1978):

4n +pztamyli .
Ky = B, _ (-p)é ¢ u .= 13.33+556.69—~/& 1)
W, oL 4n tahg I 7T0 1400256450
TA(-p)E Wl

in which the meanings of the above are the same as in equation (3.1-8): 1 /1, = 20/0.2257
=88.6, 1 =1p/1,=1, & = G/Gp= 0.5, p = Go/G1 = 1, A = E/Gy = 22GPa/3.6 MPa =6111,
£ = In (tw/1o) = In{ (0.25+E[2.5p(1-05)-0.25] ) 1 /1o} = In(0.875 1 /1,) = In(77.525) = 4.97,
pul = ( /ro)\/(Z/CK) = 0.4641. Hence, ko1 = 115.18G 1, = 93.6MN/m. This is an under-

estimate of ke; but taking £ = In (r,y/1,) = In(40) = 3.69, ke; = 150.62G; 1,= 122.4 MN/m.

Method 2, by Poulos & Davis (1980),

k= Lo = Ed _ Ed (8-2)
VVmp I IORKRHRbRV

According to pages 87~89 of Poulos & Davis (1980), for //d = 20/0.45 = 44, 1, = 0.046,
Rk = 1.0, Ry = 0.85, Ry, = 0.97, R, = 0.96 when Poisson’s ratio p = 0.40. Hence, k¢ =

27.4650 Eid = 124.0MN/m.

Hence, k.;=123MN/m.

Computation of K.:
Method 1, according to (2-4),
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er ] kel-nl'e (2'4)
Where e = 0.55x1.1x0.83x1.05%0.97 = 0.5114 from page 192 of Fleming et al (1992).

Hence, Kpe ~ 123 x9' 071 = 360MN/m.

Method 2, using conception of settlement ratio,

Kpe ~ ke1 /Ry (8-3)
Where R = Ry&nEpyv. According to pages 118~125 of Poulos & Davis (1980), Ry = 3.6,
£p=0.92, £,=0.95, £,=1.025 when Poisson’s ratio p=0.40, R;=3.26. Hence, K, = ke /R

=123x9/3.26=340MN/m

Method 3, using conception of pile-pile interaction factor, shown in Table 8-6.

Table 8-6 Factor of pile-pile interaction

r 0 S SV2 28 SV5 S22
r/d 0 6.0 8.485 12.0 13.416 16.968
o 1.0 0.244 0.191 0.139 0.122 0.086

Notice P;=P3=P;=Py, P,=P4=P¢=Ps, we have

S,=5 w40 ()2 440 (sVD)E
kl k] kl
—a,(5)2 J2 S sVa 4
S, —app(S)k—+[1+2app(S )+app(2S)]—k—+ [, (S)+a,( 3)]k— (8-4)
1 1 1

S, =, (52 )% +2a, () + app(sﬁ)]% +[1+2a,,(25)+ app(szﬁ)]g
1 1 1

Set C=k;Ss=k;S,=k;S:=k;S, (76-4) become
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C =1.000P, + 0.976P, +0.764P,
C=0.244P, +1.5218P, +0.732P, (8-5)
C=0.191P, +0.732P, +1.364P,

Solving (8-5) obtains, P1=0.4944C, P,=0.3791C, Ps=0.2523C
Q=4P+4P,+Ps
=3.7461C
=3.7461 k;S (8-6)

Hence, K;e=Q/5=3.7461k,;=460.8 MN/m

Method 4, the results from FLM (§; values are corrected by modified factor) in Test 9,

Chapter 4, Kpe= Q/S ~ 417MN/m.

Discussion: The values of K, from equations (2-4) and (8-3) are based on solutions of
complete elastic theory and they are not corrected by modification factors. The values of
K, from Methods 3 and 4 are corrected by the modification factors, and so may agree
more with the actual situation.

For a comparison of the simplified and numerical methods, we take Kye = 360MN/m.

Computation of K;:
According to  (2-3) (from Poulos & Davis 1974),
K= 2.25G;B/(1-v;) = 108.44 MN/m, K, ~ l.OlESB/(l-vSZ) = 97.4 MN/m

Take K,=100MN/m

Computation of K,,:
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According to Equation (2-5) (from Randoph & Clancy, 1993), an equivalent interactive
factor value can be taken

_Ln(r,/n)

oy~ 1 =0.5161, 0.3483 or 0.1972 (when £ = 4.97, 3.69 or 2.996)

Hence, in the elastic state

K= Kpe= Kps = 360MN/m, K,,/K, = 360/100 = 3.6

K K
1+-2-2a, —2 3.85 385
K, K, 143.6-2xa
K, = 2K = % %100 =| 4.04 | x100 =| 404 |MN/m
-2 K e tmay 36 4.25 425
er er
KS
1-a, 2 13.87% (£ =4.97)
0 "K,, -«
ne=—2r = 2 = ? =117.05% (£ =3.69)
0,+0, K K.\ 36+1-2xaq,
é Py 1—2a,p—K—"i P 119.44% (< =3.00)
r pe

From FLM result (Modified elastic theory method), Fig. 3-12(3), n=17.23%,
approximates the value when £=3.69. Hence, take o,;=0.3438.

In non-linear state, set Qp,=0.9nP,=11.66MN.

Load-Settlement Curve without Consolidation Factor
Similar to the method of Fig.7-2, setting 40 = 0.5 MN, Q; = Qi.; + AQ, Opi ~ OlI-1st i-1),
Kyi = K [(0 +0Q.,)/2] G=123,.; thus calculating 7 ; , Ky and W; = Wi +AQ- Ky

reaching the data of Q-W curves in Fig. 8-8, in which consolidation and time factors are
not considered. The Q-W curve from Equation (7-7) in Fig. 8-8 is very close to that

obtained from the numerical result in Fig. 3-12(1).
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Fig. 8-8 Q-W Curves from Simplified and Numerical Methods

Settlement-Time Curve with Consolidation Factor

Setting soil drained formation modulus Eq=E~=10MPa, the shear modulus Gs=

E_ _ 3.57 MPa. Thus, soil undrained formation modulus Eq,=3G=10.71MPa.

21+ p,)

On the other hand, according to empirical formulae, Eq,=(250~500)c,=(250~500)x40=

10~20 MPa. Thus, taking Es,= 15 MPa is more reasonable.

The soil unload-reload deformation modulus is taken as E,,=2.5E;.=25 MPa. Hence,
Kar= 1.35EqB/a, =174.9 MN/m; Kpe=360 MN/m;

K~ 1.01EsB/[0x(1-ps2)]=91.4 MN/m; Kea=1/(1/Ke-1/K4)=191.5 MN/m

e A+ )1 -24)
" (-pE,

Near the center, S¢p= my Ay =0.47x1780/25000=0.0335 m (=3.35 cm);

=0.47/E,,

Near an edge or a corner, myp, = (6646” )(1)—E2,u ) = 0.36/Eyr, Scp = mypAy = 0.0257 m =
—HL,
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2.57 em.

The average Sc, = (2.57+2x3.35)/3 = 3.09cm.

According to (7-15a~c), (7-16), one can estimate Sar, Sdp, Scr, and Scp(t), shown in Table
8-7. The final total settlement-time curves are estimated according to equations (7-
18~20), shown in Fig. 8-9. A comparison of different settlement-time curves with or

without raft’s increasing effect on UBC of pile is shown in Fig. 8-10.
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8.3.4 Analysis Method Comparison

Table 8-8 presents a comparison of the results from different analysis methods with or
without EPWP effects due to driving and to raft-bottom pressure. From the comparison, it
is known that the total stress analysis method without EPWP effect is a conservative and
safe method, one need not fear for the settlement problem from EPWP effect due to
driving and to raft-bottom pressure, so long as the in-design pressure of the raft bottom is
controlled under enough safety factor, e.g. F; >2 in the case of the maximum load of the
superstructure, because an increase of the piles’ UBC from EPWT dissipation and soil
consolidation will greatly decrease the raft-bottom’s pressure and consequently reduce
the settlement.

The analysis methods with the EPWP effect due to driving and to raft-bottom pressure
give us a more detailed and accurate way to estimate shared loads, settlement and safety

factor, or stability degree, of the pile-soil-raft interaction during construction and at the

final stage.
Table 8-8 Comparison of Analysis Methods
Analysis Methods State at Peak Load State at the final
(t=ty) (t=cc)

(A) Total stress analysis
without EPWP effect

P,a=1.440MN; Q,s=11.5MN;
Qa=8.5MN; n;,=42.5%;
Fia=2.12; Sa(tm)=10.0cm

No time factor in analysis, so
P,4=1.440MN; Q,a=11.5MN;
Qa=8.5MN;  1;4=42.5%;
But, Fi4=4.27; SA(c)=10.0cm;

(B) with EPWP effect but
without raft effect

P.5=1.810MN; Q,5=14.66 MN,
Q:=5.330MN; N=26.7%;
Fe=230;  Sg(tm)=7.03cm

P,5=2.163MN; Q,5=17.524MN;
Qu=2.476 MN; =124 %;
Fg=4.54, Sp(<)=9.97cm

(C) with EPWP effect and
raft effect on piles

P,c=1.883 MN; QpC=15.25MN;
Q,c=4.748 MN; n,c=23.7%;
Fe=2.33 ; Sc(tm)=6.66cm

P,=2.225MN,; Qpc=18.02 MN;
Q«c=1.98 MN; M:c=9.9%;
Fie=4.57 ; Sc(c)=9.37cm

Comparison of the results

Q8/Q:4=0.627; Qyc/Q4=0.559;
Fw/Fia=1.085; Fc/F;a=1.099;
Sp/Sa=0.703;  S¢/S,=0.666.

P.5/Pua=1.502; P /P r=1.545;
Qyp/Qs4=0.291; Qyc/Q;4=0.233;
FtB/FtA=1-063; Ftc/FtAzl.070;
SB/SA=0997, SC/SA=0937

P,=Average UBCP; Q,=Load born by all piles; Q=Load borm by raft; n=Q¢(Q+Qy); Fi=total safty factor;
S=Settlement; Subcripts A, B and C are respectively reponsed to Analysis Methods (A), (B) and (C).
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8.4 Discussions

From the above analysis and case calculations, some interesting conclusions are obtained:

1)

2)

3)

4

5)

Theoretical studies and field measured data both point out that after a pile is loaded
axially, the soil around the pile is borne by pure shear stress under constant volume;
therefore the change of EPWP in the soil around the pile shaft caused by the load on
the pile top can be neglected in calculations of UBCP variation with time.

The method to calculate the UBCP’s change with time based on Equation (6-21) is
practical and convenient. By the means of this method, one can estimate the change
of the UBCP with the time factor and the soil consolidation not only for a single pile
but also for piles in groups.

The value of the dynamic penetration resistance during pile driving is not the initial
UBCP, when soil cohesion ¢ has recovered in the condition in which EPWP is
constant or the consolidation degree remains zero. Hence, the value cannot be used in
calculations of the UBCP’s change with time.

The simplified and convenient method to calculate non-linear load-settlement curves
based on equations (7-7) and (7-8), established in this thesis, reaches desirable results
when compared to that of numerical analysis. In this method, the interactive factor of
pile to raft, oy, is reset, and the method can estimate whole load-settlement curves of
pile-soil-raft nonlinear interactions and the variations of load sharing proportions.
Because the effective additional vertical stress from change in the EPWP that remains
during pile driving is unload-reload stress, the settlement from consolidation of the

EPWP can be estimated by using the swell index Cs, or the unload-reload elastic
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6)

7

modulus E,; and so long as the settlement proportion in the total settlement is not
large.

When total load Q reaches its maximum, e.g., usually end of superstructure
construction and end of all other loads, the load shared by raft Q, reaches up to a
maximum (point t—>ty, = 345 days in Fig. 8-7). Afterward, Q, will decrease because
the load shared by piles Q, increases with the dissipation of EPWP and the
consolidation of soil. One also can see that before the time (t<stp), settlement
velocity reaches a maximum; while after time (t>ty,), the settlement velocity tends to
get smaller and smaller, down to zero, and the settlement of the point is of about 0.8
times that of the total settlement. Therefore, loads and settlement of the point are
selected as design check points.

In case 2 with linear loading with time, when t,=t,=345 days for Scp(t), t;=tm= 300

days for S «(t), the consolidation degree from the pressure of raft bottom according to

1 At <o _ :
(7-33,34), Ucﬂ(t)=§—ZASC,,.U”(-2— + Zj:MAt j) ~U,(t,/2)= 0.3, which may cause

o i=l
the UBC of pile to increase. It is noticed that the consolidation from the pressure of
raft bottom always delay the shear stress action on the pile shaft. Hence, the
increasing effect of a cap on the UBC of a pile may not be as great as that of the
situation where the pressure on the raft bottom develops in the meantime with shear

stress action on the pile shaft, which is similar to the results from Katzenbach (1998).
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 General

The nonlinear interaction of piles in pile-soil-cap was analysed during the pore water

pressure dissipation. Accordingly, the bearing capacity and the settiement of the system

were evaluated. Due to the immaturity of FEM in modeling volumetric locking problem

and further due to the complexity of the interactions among these elements, this research

work was divided into a series of steps including:

1y

2)

3)

4)

5)

6)

The development of Hybrid method, combining FLM with GSDT analyzes
behaviours of pile-soil-cap nonlinear interaction without pore pressure factor;
Estimating the initial distribution of the excess pore water pressure after
driving the pile group;

The development of analytical solutions to predict the pore pressure dissipation
during the consolidation process;

Evaluation of the changing process of the ultimate bearing capacity of the pile
group as a result of the system interaction;

The development of a simplified method to predict settlements and load ratios
of the pile, soil and cap system as time dependants;

Cases analyses where several important conclusions for pile-soil-cap

interaction can be drawn.
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9.2 Summary and Conclusions

Based on the results of the present investigation, the following findings and conclusions

can be drawn:

1)

2)

3)

4)

The interactive effects on pile groups and piled-raft are meaningful only if the applied

loads on the piles are near the ultimate bearing load.

Although the mechanism of the non-linear interaction of piles-soil-cap-raft (or box) is
very complex, a relatively simplified and practical analysis method of the interaction
has been developed and presented in this thesis. The method does not involve only
the physical and the mechanical properties of the material making the system but also
the on-going processes of the pore water pressure dissipation, soil consolidation, and

deformations of soil and piles.

The FLM method was established on the basis of Fourier series to calculate the
interaction between the raft and soil. However, in case of a longer range (Lg), the
settlement coefficients in FLM analysis was fluctuating along the considered
distance. To avoid such fluctuation, an appropriate maximum number of the finite
Fourier series (Nr) was selected. Nevertheless, by increasing Nr values calculation
volume will increase. Accordingly, a trial and error procedure was adopted to

determine the appropriate Lg and the corresponding Nr.

The results of analysis using FLM-GSDT hybrid method showed that the ratio of
pile-base load over pile-head load vary according to load location and level on the

raft, even during the elastic phase. Hence taking the ratio as a constant as stated in the
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5)

6)

7

literature is not reasonable. However, when the applied load on piles is near to the

plastic or ultimate state, these ratios tend to stabilized.

The raft-decreasing-effect factor of a pile (§;) was formularized in equations (3-21)
and (3-22), and (3-23) for uniform soil. This provides better treatment as compared to
the recommended value (0.9) by Zai (1992) and Burland (1995). In fact, equation (3-
23) states that &; is a function of the ratio of cap width over pile length (B/L), which

provides a simple and convenient control of using bearing capacity of piles.

The results of the present numerical model of a single pile showed that the pore
pressure generated during driving is not only due to cavity expansion but also due to
an increase in the mean total stress caused by the skin friction along the pile and the
point load at the pile’s tip (Chapter 4). The effect on the pore pressure caused by

residual forces is quite small and can be neglected.

The analysis of strength-stress relationships and field measurements showed that the
excess pore pressure generated during pile driving increases almost linearly with
depth. Fractures in soil and water during pile driving make the excess pore pressure
fall into a stable level, in the order of the effective overburden pressure ¢’,. This

becomes a major factor in predicting the excess pore pressure in the vicinity of a pile

group.

Based on case calculation and field data, the variation of EPWP in a pile group with

the horizontal distance is found to be linear.
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8) Analytical solutions of pore pressure dissipation and consolidation were derived.
These solutions are applicable for homogeneous soils under plane-strain, axi-

symmetrical and three dimensional loading conditions.

9) It was proved that the well-known Carrillo’s expression for 3-D consolidation degree,
(1-U)=(1-U,)-(1-Uy,), is accurate when the initial condition u(x,y,z,0) can be

expressed by the form of y(z)-ya(x,y).

10) The value of the initial pore-pressure has little or no effect on the distribution of the
pore water pressure after driving and with time. In fact, the PWP distributions were
found to be small and become even smaller with time up to the point where these
differences will disappear. Therefore, rough estimation of initial pore-pressure

distribution may not produce large error on calculation of pore-pressure dissipation.

11) The effect of vertical consolidation can be neglected for cases where the ratio of the
vertical consolidation coefficient over horizontal consolidation coefficient, C,/Cy, is
smaller than 0.25 and the ratio of vertical dissipation distance over horizontal

dissipation distance, /,/I;, is larger than 2.

12) When using the numerical inversion of Laplace transform to solve the case of pore-

pressure dissipation in layered soil, errors were introduced and divergences in the
obtained values were appeared. Accordingly, it was necessary to carefully choose the

calculation parameters and the number of trials to avoid such divergence of values.
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13) The present analytical models and field measurements indicated that shortly after a
pile is axially loaded, the soil around the pile will act in pure shear stress under
constant volume; therefore the change of EPWP in the soil around the pile shaft, due

to pile loading, can be neglected in the calculation of UBCP with time.

14) The variation of the normal stress on a pile’s shaft Ag;’ is not simply equal to the
change of pore pressure Au, due to mainly the horizontal displacement, which takes
place as a results of the shrinkage of soil around piles during EPWP dissipation. The

relationship between Aoy’ and Au was given by Equation (6-15).

15) A design theory is presented to evaluate the UBCP of a pile-soil-raft system during
the consolidation process (Eq. 6-21). The proposed theory is practical and convenient
to use. Furthermore, design charts are presented to provide the consolidation degree

for soil in a given pile arrangement in a group (Figs. 6-9 and 6-10).

16) The deduced value of the dynamic penetration resistance during pile driving should
not be taken as the initial UBCP, in cases of soil cohesion ¢ has recovered, EPWP is
constant or the consolidation degree remains zero. Hence, these values should not be

used in the calculation of UBCP with time.

17) A simplified and convenient interaction analysis method to estimate the load-
settlement curves of pile-soil-raft nonlinear interactions and the variations of load
sharing proportions is established. The theory developed was validated by the results

obtained by sophisticated numerical models and can be used to evaluate the
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interactions of pile-soil-raft system. In the proposed method, the interactive factor of

pile to raft, o, was presented by Equation (7-21).

18) The change process of effective vertical stresses due to EPWP generation during piles
drives and dissipation after the driving is an unload-reload cycling. Hence, the
settlement produced as a result of the consolidation can be estimated by using the
swelling index Cs, or the unload-reload elastic modulus E,,. The settlement proportion

in total settlement of the interaction was not found to be large.

19) For a step-loading situation, the raft’s increasing action on the UBC of piles, due to
an increment of the effective lateral pressure of the piles, goes into effect only after
the completion of the consolidation under the previous step loads, but does not work

at the beginning moment of loading, because the consolidation need a time.

20) Total load shared by the raft, Qs reaches a maximum value at the end of the
construction. Afterward, Q, decreases due to the load shared by piles, Q,, increasing
during the dissipation of EPWP and the consolidation of soil. Furthermore, it can be
noted that at the end of construction, settlement velocity reaches a maximum; then
tend to become smaller and smaller, until it reach a zero value. Case analyses show
that the settlement at the time is main part (approximate 0.7 time) of the total
settlement. Therefore, the loads and settlement of the time should be seen as critical

key checking point of design.

21) The total safety factor of piles-soil systems is given by Eq. (2-11), in which the raft-

decreasing-effect factor of the pile &, can be estimated using Eqgs. (3-21) and (3-22),
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or (3-23). After selecting the total safety factor, the ratio of soil bearing capacity is
determined using Eq. (2-11), and the number of piles (n,) is then determined by Eq.
(2-13). This design will allow the pile load to reach a state close to the ultimate
bearing load, P,, which should be added by the part increased due to consolidation
according to Eq. (6-21), when the load shared by the raft, Q,, also reaches its

maximum.

22) The settlement due to the EPWP produced during piles driving is relatively small,
because the part of settlement can be seen as due to unload-reload stress. The
settlement due to the pressure of raft bottom is dominant. Therefore, besides
controlling the total factor of safety, designer should also control the total settlements
smaller than the allowed settlement. The settlement-load relationship for pile-soil—

raft system is nonlinear and can be depicted from by Egs. (7-7) and (7-8).

23) Under sufficient total safety factor, the settlements due to in-design pressures of a
raft’s bottom in the interactive foundation is deferent from that in un-piled
foundation. Because after the superstructure’s maximum load, an increase of piles’
UBC due to EPWT dissipation and soil consolidation will greatly decrease the raft-

bottom’s pressure and accordingly greatly reduce the final settlement.

9.3 Recommendation for Future Research
In order to enhance the knowledge of foundation of the pile-soil-raft system and
understanding further the interaction concepts and in order to encourage their

applications in practice, future research should be directed toward the following:
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Conduct field tests in order to further examine the theoretical models developed in the
present investigation, as well as conclusions drawn from theoretical or numerical
analysis given in the literature.

Develop theoretical models or empirical formulas to determine relationships between
EPWP contribution to the UBC for piles during and after driving.

Investigate the effect of the parameters affecting the UBC and the settlement of piled
foundations when superstructure loads reach their maximum.

Examine the performance of interactive piled foundations at resisting lateral forces
and overturning moments due to wind or earthquakes.

Develop construction techniques to clarify the present research results of interactive

piled foundation in order to economize on the construction costs.
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Appendix A

Formulae of Gedds (1961) Stresses Solution

Due to Vertical Subsurface Loading

Additional Stress coefficients Due to Vertical Subsurface Loading (From Geddes, 1961)
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\L
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Fig. A-1 Loading conditions
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F B’
+om (7 -2u)n* — 6m? +}33(5 +2)m*(m/ n)*) N 6m{n*(n” — mz);SZ(m +1)°m/ n?]
12m®/n’ +0°(n* -m®) | (A+m=1)(B+m+1) )
ot 2(2 ,u)loge( F+m) ) } (AI-9)

Iz-t

+6m

L.

1 [(1—2;1) +(7~2,u)——12m+l2(1—,u)(m+1)m2/n2 +12m1—(l—,u)(m/n)2
ar(l-p)| A B F

(m—=1° +mn*  (m+1)°[3+2(5+2u)m* /n*1+ m[(21 — 4p)n* - 2m*]
- 3 + 3

A B
o (5+2uym*(m/ n)* +2(5 - p)n* N 6m{n’(m> —n*)=2(m+1)°’m/n’]
F3 BS

6m[n*(m* —n*)-2m°/n’ A+m-1

_ Smin FS) ] +(1—2,U)108e(———‘—j

+[(1—2u)2—6]Iogg(§%nﬂ)+z(l—u)(l—zu)( BT;:I— FTm) } (AL-10)

_ 1 [(1—2;1)+(1—2,u)[(3—4,u)+6(m+1)m2/n2]+6(2m—1)
4r(1— u) A B
N 6m[(1 —2,u;§m/n)2 -2] (-2 2m+1)°(1 —rgz/nz) +2mn*)

To-
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N 2m+1)’A-6m*/n*)+2m(3n* —m®) N 200 -2)m(m* +2n* —m" /| n*)—6m(n® —m"* | n*)

B F
+
A+m—1 2 B+m+1
+(1-2p)1 — [ +[0-2p)" -6]1 e
(1-2u) oge( o ) [(1-2m) ]oge( Fam )
m-—1 m
20— w)(1-2 - Al-11

- a) #)(B+m+l F+m)] ( )
and,

__n 2Q2- @)+ (A=2p)(m—-Dm/n* _6(m/n)* +(m—1)3m/n2—n2
41— p) A F A
22— @) +[(1-2)—6(m/n)*1(m + m/n’ _6(m2/n2 —Dm(m+1)’/n* +2m*n’

B B’

GB-4u+12m* In*Ym+1’m/n* +4m* (5 - p)—n’ , (m?/n* =)m* /n* +2n°

- B’ —om F?
2, .2 4, 4 _
o (A=-2)ym"/In +;gn /n" +2(5—p) (AL-12)
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APPENDIX B

Derivation of Solutions of Pore Pressure Dissipation
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Appendix B-1
The solution of equations (5.2-1) and (5.2-1a,b)

ou 0u

Z-Cc =

ot " ox?

u, (0<x<b)
u(x,0) = y(x)=1{u, ;l% (b<x<) (5.2-1a)
0 (x21)
B8u/0x | xeo = 0, BU/OX | xer = 0 (5.2-1b)
Set u(x,t) = X(x)T(t) (B-1)

(5.2-1)

By substituting this into the (5.2-1), gives XT°=C,X”’T with T’=dT/dt and X”= d*X/dx% To

separate the variables, we divide by Cy-X-T, obtaining
" X'

L B-2
c,T X (B-2)

The left side depends only on t and the right side only on x, so that both side must be equal to

a constant k. But we may show that for £ > 0 the only solution is infinite when t—oc ;{for k=0

the only solution is not zero when t—oc or u = 0 from X’(R)=0. Hence we left with the

possibility of choosing k negative, k = -p*. Thus,

C],:T ) ))(( 4 B3
This yields immediately tow ordinary linear differential equations, namely
T’ + C, p’T=0 (B-4)
And X" +p’Xx=0 (B-5)

The general solution of (B-5) is
X (x) = A cospx +B sinpx
X’(x) = -A sinpx +Bp cospx
From this and (5.2-1b) we have
X’(0) = Bp=0
and X' (R)=-Ap sinpR=10

we must take A # 0 since otherwise X = 0. Hence sinpR = 0, thus

PR =nx, so that p =p,= nw/R n=1,2,3...)
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Setting A=1, we obtain the following solutions of (B-5) satisfying (5.2-1b):
X, = cos (nx/R)

The general solution of (B-4) corresronding eigenvalues A,’= Cpp,” is

T,= exp(— Chpzt)

2.2
_ exp[— C, "Rf t} (=1,2,3,...)

Thus, solution of (5.2-1)satisfying satisfying (5.2-1b) are u, = X, T, , written out

n

nmx n’n?
u (x,t)=a, cos| — lexp| —C, ——t n=1,23,...
n( ) n ( R ) p( h R2 ) ( )

To obtain a solution also satisfying the initial condition (5.2-1a), we consider a series of the

these eigenfunction corresponding to the eigenvalues p,= nw/R and A,=./C, p, ,

) © 2.2
u(x,t) = Zun (x,0) = Zan cos(@) exp(— C, P—ﬂTt] (B-6)
n=1 n=1 R R
From this and (5.2-1a) we have
u(x,0)= z a, cos(%) =y(x) (B1-7)
n=1

Hence for (B-6) to satisfy (4-1°), the a,’s must be the coefficients of the Fourier cosine series,

1 1 1 ¢ u, 1
{ao—Efw(x)dx-;fuodx+E[l_b(l~x)dx+EJ«de

b1 x| T
=Uy—+Uuy——— Uy

R "RI-bl,., °RU-b)2|

I 1 (*-b%) b+l  I+b

Uy —+Uy—— U, =1u, —U,

R "R °R(I-b) 2 R 2R

l+b

TR
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2uy . nmb 2uy | ( nzl nwb\ 2uy x . nﬂ:xll
=" sin in— —si - sin
nmw R nml-b R nmr l-b R Ix:b
2 1 .
ug JZsm nﬂxdx

2uy . nab 2ugy 1 ( nal . nﬂbj 2uy 1
= + sin — —sin -
nrw R nmlil-b R

(lsin & —bsinnﬂb)
R nrw |-
2up 1 R x|
nw l-bnx Ri._p
2
2 R [COSEEIZ_COSEEJ (B1-8)
(nm)“ 1-b R R
Thus,

(B1-9)

I ( nnb )
.= 5 cos —COSHT
(nm) 1-b l

Tn*rt(-b)

)127[2
1(. b 2 n7b nm) "
u(x,t)= uo—z— 1+7 +uoz cos —COSKT |CO e

l -
(B1-9%)
when b=l, a, =2u_0 b
nmw R
c w22
< 2uy . nab nme) ~ch Tt
u(x,t)=ug=| 1+— |+up Z—sm— cosf — |e (B1-97)
ooy T R
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Appendix B-2 the solution of equations (5.2-1) and (5.2-1a,c)
Ou o’u

o =Craz (5.2-1)
U, (0<x<b)
u(x,0) = W(x)=1{u, }:—Z (b<x<l) (5.2-1a)
0 (x=1)
Ow/ox | x0=0,u] . r =0 (5.2-1¢)
Set u(x,t) = X(x)T(t) (B2-1)

By substituting this into the (5.2-1), gives XT’=CX”’T with T’=dT/dt and X”= d*X/dt*. To
separate the variables, we divide by Ch-X-T, obtaining
T X"
cC,T X

(B2-2)

The left side depends only on t and the right side only on x, so that both side must be equal to
a constant k. But we may show that for k£ > 0 the only solution is infinite when t—oc ; for k=0
the only solution is not zero when t—o or u = 0. Hence we left with the possibility of

choosing k negative, k = -p*. Thus,

This yields immediately tow ordinary linear differential equations, namely
T° + C, p°T=0 (B2-4)
And X" +p’X=0 (B2-5)

The general solution of (B-5) is
X (x) = A cospx +B sinpx

From this and (4-1") we have

X’(0) = Bp =0
and X(R)=AcospR=0
we must take A = 0 since otherwise X = 0. Hence cospR = 0, thus
+
PR = (1/2+n)7, so that p =pn=g2—R~n)—ﬂ (n=1,23...)

Setting A=1, we obtain the following solutions of (B-5) satisfying (4-1""):
X, = cos [(% + n)%}
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The general solution of (B-4) corresronding eigenvalues A,’= Cpp,” is
T,= exp(-Cy, pa?)
”2
= exp[— C,(% +n) Ft} (0=12,3,...)
Thus, solution of (4-1) satisfying (4-1°’) are u, = X,, T,, , written out
To obtain a solution also satisfying the initial condition (4-1"), we consider a series of the

these eigenfunction corresponding to the eigenvalues p,= {/ 2; nz and A=,/C, D, ,

© @ 2
ux)=Yu,(xn=>a, cos[(% + n)%] exp[—— C, (% +n) %t} (B2-6)
n=1 n=1
From this and (4-1") we have

= p(x) (B2-7)

u(x,0) = Za cos /+R)

Hence for (B-6) to satisfy (4-1°), the a,’s must be the coefficients of the Fourier cosine series,
2
a == f w(x) cos{(l /24 n) —@}dx
_fuocos(/ern)m _Iu (/+n)7cx ﬁ)dx
/- b
1 (/2+n)nx| Ll 1 G+mym|

" (%_+n)7r R ’x=o I-b(Y%+n)x R

- 2uq I lxd (sin ———(% * n)7zx)
I-b(%+n)m R

_ 2wy (hrmad 2wy (Sin(%+n)7rl_sin(%+n)ﬂb)
(+mm R (%+mx l-b R R

2u, (/+n)nx| 2u, 1£Sin(%+n)ﬂxdx
(/z+n)7rlb R | T mri=b R

x=b

x=b

_ g Qatmmb o 2u l(sin(%+n)7rl_sin(%+n)7rb)
s+ R (B+m)w I1-b R
_ 2u, 1 (lsin(%+n)ﬂl_bsin(%+n)7[b)
(h+mml-b R R
x=l
w1 R (Btmm
B+nml-b(%+mrx R

x=b
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= 0 f:;zﬂ 77 fb (cos % +Rn)7rb —Cos Garmzd ;n)”l) (B2-8)
2
Thus,
(y+mmb (y2+n)7rl) ((%+n)7cx)
u(x,t)= ”OZ(A+ it I b( P 0s P cos R
2,2
exp[ (/2 +1;12) z )
(B2-9)
If 1=b 2w, Vgt
’ (Y + mro R
2 Gprnm [+ (Y +n)?n?
u(x,t) = uoz(/+n)ﬂ R ( ] xp[ 22 LLs
(B2-9")
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Appendix B-3 the solution of equations (5-4) and (5-4a), (5-4b)

ou 0%u 1 6u

—=C,| —+—— 5-4

ot h(@rz +r6r) (-4)
u, 0O<r<d)

12 —r?

u(x,0)= o(r) = Ju, EY] b=r<h (5-4a)
0 (I<r<R)

oulor| =0 =0,ul -z =0 (5-4b)

or uldr | =0 = 0, Buldr | ,—p =0 (5-4b°)

Set u(x,t) = OI)T() (B3-1)

By substituting this into the Eq. (5-4), gives ®T’=C(®*’+®’T/r) with T’=dT/dt and ®”=
d’®/dr’. To separate the variables, we divide by Cp-X-T, obtaining
"  ®"+d/r

C,T ()]

(B3-2)

The left side depends only on t and the right side only on r, so that both sides must be equal to
a constant k. But we may show that for £ > 0 the only solution is infinite when t—oc ; for k=0
the only solution is not zero when t—o or u = 0 from ®’(R)=0. Hence we left with the

possibility of choosing & negative, k = -p2. Thus,

CY;TJD J:D(D/rakz (B3-3)
This yields immediately two ordinary linear differential equations, namely

T’ + C, K¥T=0 (B3-4)
And O +D/r+ KD =0 (B3-5)

The general solutions of Eq. (B3-5) are the Bessel functions Jy(kr) and Y(kr) of the first and
second kind (See sec.4.5, 4.6 of Advanced Engineering Mathematics, Erwin Kreyszig,1999).
Now Yy(kr) becomes infinite at r=0, so that we cannot use it because u must always remain
finite. This leaves us with

D(r)=Jo(kr) (B3-6)
On the boundary r=R, By Eq.(5-4b) we get @(R)= Jy(kR)=0, we can satisfy this condition
because Jy(kR) has infinitely many positive zeroes, kR=a,, ay, 03, ....... with numerical values

01=2.40483, 0,=5.52008, 0;=8.65373, a4=11.79153, a5=14.93092, 0s=18.07106, a;=21.21164,
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05=24.35247, 0o=27.49348, 010=30.63461, 0,;;=33.7758, 0.,1,=36.9171, 0,3=40.0584,
a14=43.1998, 015=46.3412, «,6=49.4826, ......
kR=0,, thus k=k,= a,/R, m=1,2,3,....... (B3-7)

Hence, the functions
B Jillenr) =J0(%mr) m=1,23,.......(B3-8)

are solutions of Eq.(B3-5) that vanish at r=R.
For @(r) in Eq.(B3-8), a corresponding general solution of Eq.(B3-4) with A = Cpk? = Cpkyy”
= Ch(0m/R)*is

2

To= eXP(— G, %’Z— } m=1,23,....... (B3-9)

Thus,
94 a2
U(1,t) = by @m(7) Tin(£) = b Jo( 7"' r) exp(— C, }% t)
0 a az
u(r, ) =meJ°[—mr)eXP -G, 5t (B3-10)
m=1 R R

Setting t=0,

= a
u(r,0)=> b, J,| —=r|=w(r
(,0) Z O[R ] (r)
2 a
by=——— | ro(r)J.| =2r dr (For the 1* kind boundary condition
T [ rot) ( Rr}i ( ry )
=——2—— fu rJ (ﬁ"—r)dr+[u —12——_ﬁVJ ﬁr)dr+r0dr
R J )| " LR P-p* T\ R
=1 22u° —IirJl(ﬁ r)
RJ(a) |, R

_b —
R ¢IP-7 a,
+-&: I———-—lz _b2 d_rJl(?rﬂ}
Qu 1 o, 1 a, Y= ,
it b ]

r=0

2u, 1 o o 2 R , a
=0 by (eb)-ba bl 2 2| L
Rff(am)am{ (ol-aalepebei, @ Z(Rrj
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4u 1 a, a,
2J2(°a Yo [12.12(?1)—%2(—]3—1))} (B3-11)

2J,(x)

where, J,(x) = —Jo(x)

By substituting by, into the (B3-10), gives

t 1205 1) - bZJ(Rb)]( ) a2
u(r,t)= Z 2 (b)) A Rr ex Ctht (B3-12)

271(@m) 2J1(@m)

Whenl=R, Jy(a,)= ~Jolay,) =

m Ay

When1=b, b,n:—-z—zli"—-l’—Jl(ﬁ'ib]
A Ji (@) R R

u(r,t)= z ;u(o )R l(ﬂb}]o(%rjex;{—q%t) (B3-12°)

sk sk okoke ok sk ok sk sk sk sk skoske skoske ksl sk ok skl ks skeoskeoskosk sk ke skoskosk sk ks skeokskok ok %
On the boundary =R, By Eq.(5-4b’), we get @(r) |,=R = - krJy(kr) |,=R = kRJ1(kR)=0, we can
satisfy this condition because J(kR) has infinitely many positive zeroes, kR=;, B, B3, --.....
with numerical values By=0, p;=3.8317, B,=7.0156, B3=10.1735, PB4=13.3237, Bs=16.4706,
Be=19.6159, B;=22.7601, Bs=25.9037, $4=29.0468, B;;=32.1897, B11=35.3323, B,=38.4748,
B13=41.6171, B14=44.7593, B15=47.9015, B16=51.0455, ......

kR=PB,, thus k=k ;= B/R, (m=1,2,3,.......) (B2-13)

Hence, the functions

ﬂm

Dn(r)=Jokmr) = Jo(—=r) (@=1,23,....... ) B2-14)

are solutions of Eq. (B3-2) that vanish at r=R.
For @y(r) in Eq. (B3-8), a corresponding general solution of Eq.(B3-4) with A = Cpk” = Cpkp’
= Ch(Bw/R)* is

2
To= exp(— C), g%t} (m=1,2,3,.......) (B3-15)
R

Thus,
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2
Un(1,t) = by @m(7) Ti(?) = b Jo —'B}"i r) exp| — Cy, —'Bﬂt]

R2
Q0 ﬂ ﬂ2
u(r,fy=Y, bmJO(—mr)exp ~Cp =5t (B3-16)
m=1 R R
Setting t=0,
_3 Bm .
u(r,0)= Z b,Jo| —r |=o(r)
m=1 R
= —2—22——- Krw(r)] 0 (éﬂ r)dr (For the 2™ kind boundary condition)
R*J5(Bm) R
=— 4;“’ 5 ! : [12.12(/3—'"1) - szz(ﬂ—’"bH (B3-17)
Pt (Bm) 1~ b R R
Where, J,(x) = 2J,(x) -J,(%).
X

By substituting by, into the (B3-16), gives

w 4| 1275(Pm 1)~ 527, (P ) 2
O[ LR ]JO(’BIZ’ rjexp{—C P J (B3-18)

u(r,t) = —t
mz=1 ﬂm(lz—b )E (B) "R
WhenR=1, Jy(B,)=22Bm)_; 8 y_ (8.
When1=b, b - %o b l(ﬁmbj

BB R LR

S 2 0 m m rfx
u(r,f) = Zﬂ wa)R l(é—ijo(%r)exp{—Ch%t) (B3-18")
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Appendix B- 4 the solution of equations (5-7) and (5-7a,b)

2 2
W_c,| O (5.2-7)
Ug (Al lei < bx,|y| < by)
I, —x l,_b
uOIX_b (AzszSxSlx,|y|Sby+ly_by (x-b,)
uxy.0=xxy) =y ' _yx lx bx (5.2-7)
uoly (4 :b, <y<I ,]x|£bx+lx bx(y—by)
y vy y="y
| 0 (Ag Iy <x<R.,l,<y<R))
oulox) o=0,ul =0 (52-7) g
A
ouldylymo=0,ul,p=0  (5.2-77) R, Lo i
I,-b E
where, n=2—2 :
x bx E
1, :
Solution: As E
Set by f
uExy.) = XE) YO T (B4-1) . A :
By substituting this into the (4-7), gives ] E
XYT'=Cy(X”YT+XY”T) with T’=dT/dt, : >
X”=d*X/dx* and Y”=d*Y/dy*. To separate the 0O by Iy R,
variables, we divide by Ch-X-Y T, obtaining Fig.4-3 rectangle area of initial pore pressure
e X"y contribution
— = +— (B4-2)
CT X Y

The left side of the above depends only on time t and the right side only on x and y, so that

both side must be equal to a constant k. But we may show that for k>0 the only solution is

infinite when t—oc; for k=0 the only solution is not zero when t—oc. Hence we left with the

possibility of choosing k negative, let k= - h%. Thus,

XYy (B4-3)
Gr X Y
This yields immediately tow ordinary linear differential equations, namely
T°+Cph®T=0 (B4-5)
And XY 2 (B4-6)
X Y

298



The left side of the (B4-6) depends only on x and the right side only on y, so that both side
must be equal to a constant k’. But we may show similarly that only for k’<0 the solution will
be reasonable. Thus, we left with the possibility of choosing k* negative, let k* = - p>. Hence,

X’ Y"

- =——7—h2=-p2 (B4-7)
(B4-7) also yields immediately tow ordinary linear differential equations, that is
X”+p*X=0 (B4-8)
And Y’ +q’Y =0 (B4-9)
Where g° = h? — p%, that is,
W =p’+q’ (B4-10)

The general solution of (B4-8) is
X(x) = A-Cospx + B-Sinpx
From this and (4-1”) we have
X’(0)=Bp=0, ..B=0
And X(Ry)= A-Cos(pRyx) =0
We must take A # 0 since otherwise X = 0. Hence cos(pRy) = 0, thus

pRX = (1/2+m)7'[,

so that P = pm = (otm)m/Ry (m=0,1,2,3,...)
Setting A=1, we obtain the following solutions of (B4-8) satistying (4-7”):

X = Cos[(Ya+m)nx/Ry] (B4-11)
Similarly, we obtain the solutions of (B4-9) satisfying (4-77):

q=qm = (2 n)n/Ry (n=0,1,2,3,...)

Y, = Cos[(V2tn)ny/R,] (B4-12)

By (B4-11) and (B4-12), to obtain the general solution of (B4-5) corresronding to the
eigenvalues Amn> = Chhy 2 = Ch(pm2 + qnz), A = Chphpp» 18

Tm,n = EXp[-Ch(pm2+Qn2)t ]

=Exp[—L(%+m)2+(y2+n)2[R%y)2}T2%t} (B4-13)
Set Hn = (% +m)2 +(% + n)z(%yf

Tmn = EXP[-tmn T°Crt/R” ] (n=0,1,2,3,...,n=0,1,2,3,...)
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(B4-137)
Thus, a solution of (4-7) satisfying (4-7°’) are u, = X,,Y,T,, , written out
V. + mymc V+n C
U n (X, ¥,8) = ¢}y, Cos S/Z——)— Cos M Exp —,um,,ﬂz =k
’ R, R, R2
X
(m=0,1,2,3,...,n=0,1,2,3,...) (B4-14)
To obtain a solution also satisfying the initial condition (4-7’), we consider a double series of

the these eigenfunctions corresponding to the eigenvalues pm= (1/2+m)w/R, , quv= (1/2+n) wR,
and Av=~Cphpp»

U, y,0= 2 Dty n(%,,8)

m=1n=1
X 1+ m)mx V+n
= ZcmnCO (A ) . (A 7y exp[— /,lmnﬂ'z —g—t)
m=1n=1 x y x
(B4-15)
From this and (B4-7’), we have
0 X 1+ mymx V+n
u(x,3,00= Y. " epnCos g+ m) -Cos %R e = x(x,y)
m=1n=1 X y

Hence for (B4-15) to satisfy (4-7°), the cyn’s must be the coefficients of the double Fourier

cosine series,

Ry % 1+ mymx 1 +n
Cmn™= R I j x(x, y)-CosS—/A—R——)——-Cos(—/LR—)iy-dxdy
Ry Y x=0y=0 x y

1
” / +m)7zx Cos (A + n)ﬂydxd
R R R

Y4 y

_ 1 1
H Ly =X Cos (A tmm -Cos (/—Z;Ededy

b, R, ,

1
'”l 4 - by (/ ;:1)7“ -Co. sg%’iﬂy—dxdy + ;IUdedy
4
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=R4“Ig I (B4-16)

TV 4 4y 4

in which,

b, b
”= '[Cos—-————(%2 -;m)nx dx- T.Cos————d(%;n)ﬂy fy
4 0 x

0 Yy
1 x=bx 1 y:by
R, o (Brmm] R, . (H+mml
= Sin 2 ) Sin R
(+myz B A P
1 1
_ R.R, Sin ( A + m)7b,, < Sin ( A +m)nb,, (B4-17)

(Y +m)( Yy +myr? Ry R,

- o i [

[,-b
l,-b, (x=bx) Cos M dy}dx

Ay x=b, Ly = by Ry R,
y %
x I ! y=by +=— " (x=by)
l. — + m)x R +n Iy =by
.[ x "% Cos Gyt m) 177 Y Sin (a+mny dx
cop, x b R, (Y +m LS

[
R x - V. + max V. +m)r l,-b
= 7 | s x-Cos% M Sin o+ b, +2 y(x—bx)]dx
(Y +nm)m v=b, I, —b, R, R, -
1

According to CosB-SinA = 4[Sin(A+B) + Sin(A-B)],

1 - 1
I- %{Sm{% i {by W Zy (x—b, )] L armn x}

Ry lx_ X Rx

+Sin—(%+n)ﬂ (by + iy —I;y (x—bx))—w_le}

R, R,

X X

-

Vgin (%+n)7z[by_ly ~b, be+((%+n)7r I, ~b, +(%+m)7r}x

R, I, -b, R, I.-b, R,

o B

N | -

"
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b
Y p.

+ Sin

(%+n)7z' b _ly -
R, I, —by

y

I

(%+n)7z ly

R, I,

(% +m)z .
Rx

=%[Sin(a + px) + Sin(a + 705)]

where,

~
o

/4 l,—b
o= M(by— Y ybe
R, I, —b,
. (Vy+mr 1, -b, +(%+m)7r
Ry lx—'bx Rx
(+mrl,=b, (M +mx
y= _
Ry lx—bx Rx

If y # 0, Substitute / into ” , we get

A4,

!

_ &
Jz-[ _(%+n)7rx

x=b,
2(Y%+mm
1 1
lx —bx B
1R
2 (%+n)ﬂ'

=bx

—X

1
2(

Ry _ lx
%"“n)” Le=by P

/4

{l Cos(a + fb,) + 1 Cos(a +yby)
B Y

_by
_bx
y

J' Ly —x -l[Sin(a + fx) + Sin(a + yx) Jdx
I —b, 2

li—l- Cos(a + fx)+ —::Cos(a + }/x)}

4 {—I—Cos(a+ﬂbx)+—l—Cos(a+7bx)
B y

— Sin(a + fx) + % Sin(a + x)

(B4-19)

(B4-20)

(B4-21)

lX

x=b,

[_l_ Cos(a + fx) + 1 Cos(a + }/x)}dx
B y

:lx*lx
x=b,
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ey [EIE [Sin(ar + Bl) = Sin(er + by )]+ yiz [Sin(a + ) - Sin(a + ;/lx)]}}

(B4-21")

y l - Ry lx—bx R

X

=(%+n)ﬂb +(%+m)7rbx

= By + By;
R, Y ) y
@t b (/+n)7r(by_ly bJ (Y+mrly—b, (Y+mm b
Ry I, —b, Ry l.-b, R,
! +n)t 1 + T
=(/2 » by_(é ") by =By - By;
Ry Rx

Ry lx - bx Rx

a+ﬂlx=(%+n)ﬂ(by_ly—— bj+[(/+n)7rl by+(%+m)7,}x

+ Ly
Ry y . x
ht 1y - s l,~b, (Y+
a+71x=(_/2_l)£ by——y———bx . (Vo +mym y_(A m)7z "
Ry b =bx Ry Ii-b; Ry
(Y+mx  (Y+m)m .
N y "~ X5
Ry g Rx *
(B4-22)
That is,
(Y +myw (Y + )z
Iys Ly ¥
R, Ry
(J5+mz (Y, +m7
X bx ; By M
R, Ry
(Y, +m)x
Dx B Lx /2 ( x bx) ’

303



Dy=Ly-B, ( y y)
y
(B4-23)
b
Then, oa=Dy| ¥ by
I,~b, l,—b,
D, +D, _D,-D,
lx _bx ’ ! lx_bx ’
(B4-24)

Substitute the above into (B4-21°), thus

Cos(B, +B,) Cos(B, —B,)
_” - (x x z + >
2(/+n)7r D, +D, D, -D,

Ay

’ {Sin(Ly +L,)-Sin(By +B,) Sin(L, +Ly)-Sin(B, + Bx)jl
Ty T Uy

+
(Dy +Dx)2 (Dy ‘Dx)z
1 ReR, {D [Cos(By +By)  Cos(B, —Bx)}
2(%+mx%+n)7r2 Dy"'Dx Dy_Dx
D Sin(Ly, + Ly)—Sin(B), + By) . Sin(Ly, — Ly)— Sin(By, — By)
X
(Dy"’Dx)2 (Dy_Dx)2
(B4-25)

Similarly,

Cos(B, +B,) Cos(B, —Bx)}

e el L e

_Dy[Sin(Ly +L;)-Sin(B, +By,) Sin(L, - L)~ Sin(B, —Bx)ﬂ

(Dy +Dx)2 ) (Dy“Dx)2
(B4-26)
Then, Eq.(B4-25) + Eq.(B4-26),
RR, Cos(B,, + By) ~ Cos(B,, — By,)
I 0 - (o o e o G
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—(Dy +D

Sin(Ly +L,)~Sin(B, +B,) Sin(Ly~Ly)=Sin(B, —Bx)}

2 (D, +D, P "B =Dy) (D, -D,f

{Cos(By +By)—Cos(B,, — By)

_1 RR
2 (% +mx% +n)ﬂ2

Sin(Ly + L)~ Sin(B, +B,) _ Sin(L, ~ L)~ Sin(B, - B)
\D, +D,) D, - D)
R.R
-1 > _{ 2. 5inB, -SinB,

Sin(L, + Ly)—Sin(B, +By)  Sin(Ly, - L)~ Sin(B,, - By)
— + £
(Dy+Dx) Dy"Dx)

(B4-27)

e I 1]

Ry 4 Ay A3

2uq SinB, +B,)-SiKL, +L,) SinB,-B,)—SiL, —Lx)}
—(}é+mX}é+n)712 (Dy +Dx)r (Dy _Dx)

(B4-28)
Some special cases:
1) Ifl=by and l,=b,, then [f= [[=0; thus,
A, Ay
4u0 . .
Sme -SinB,, (B4-29)
( L+ my(Y,+ m)r?

2) Ify=0,thatis, D, =Dy, a=By- B, =L,-L,; thus, from Eq.(B4-21),

—[Szn(a + fx) + Sina dx

x

[Rver {
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x=l,

R, Sina 1oV L-x ]
2(%+n)ﬂ' [ -‘bx(lxx 2* )x:bx Iy —byx ECOS(a+ﬂX)x=b
- ljj' I --I—Cos(a+ﬂx)dx
x=b Ix=bx B
x=l,
" ome n) { (I ~by)Sina + %COS(GK + fby) - E%sz;jsm(a + ) _
R, { (I, —b,)Sin(B, — B )+__lx_—bx_Cos(B +B,)
2(/+n) . > 7 Dy +D, S
0. Sm(L + L) - Sin(B,, + By)
(Dy+Dx)
R.R, 1 D
{ D, Sin(B, - B )+—’—x—_COS(By+Bx)
2(/+m)(/+n)7f Dy+Dx
Sin(Ly, + Ly ) - Sin(B,, + By)
Dx (D, +Dy)?
(B4-30)

Similarly,

If =

5 2) +’")(/ +nr”
Sin(Ly, +Ly) - Sin(B), + By)
(D, +Dy)?

{1 Sm(B - B )+__l)l__COS(B +B )
y x Py Dy, + Dy Y

y

(B4-31)
Then, Eq.(B4-25) +Eq.(B4-26),

[ Jf = ks

b Warmeme’

{I(D D,)Sin(B, - B+ 2 Cos(, + B,)
- — in -B.)+ os +Ox
5 (Px =Dy y D, +D, g

Sin(Ly, + L) - Sin(By, + By.)
(Dy+Dx)

—(D+y
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RyR Sin(L, +L.)-Sin(B, + B
= Xy 5 COS(By+Bx)— ( y x) ( y x)
2(%+m)(%+n)ﬂ Dy, + D,

(B4-32)

o [ I+ 1T -

TV A4 A4 4

2140
2(% + m)(% + m)7t2

Sin(L, +L,.)—Sin(B, + B
|:2SianSinBy+Cos(By+Bx)_ (Ly +Ly)-Sin(B, x)}

Dy +D,

2u0
= Cos(B, — B,)—
2(%+m)(%+m)ﬂ2|: os(By )

Sin(Ly, + Ly) - Sin(By, + By)
D), +Dy

(B4-33)
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Appendix B-5: the solution of equation (5.2-13)

2 2 2
W, |08 O o O (5.2-13)
ot x? 9?2 oz?

u(x,y,z,0)=\|13(x,y,z)= = U()(Z)'W2(X,y)

uy(z) (4, :|x| <b.,|¥|<by)

uy(z) llx _bx (4, :b, stlx,y|sby +n(x->,)

_ -b
] hh (n=2—=2), (5133

y

ly_y 1 [ -

uy(2) (A :b, < y<I,,|x|<b, +—(y-b,) x5x
[, —-b
y ooy n

| 0 (gl <x<R,,l, <y<R))
u00+“°bb““°°z (0<z<b,)

ue(z) = 1) _u_(}b_-__%@ﬂ(z_bz) (b,<z<l,) (5.2-13b)

o (,<z<R,)

in which, b, can be the length of pile.
Oulx | o =0,u ] epe =0 (5.2-13c)
ouldy | =0 =0, ul =gy =0 (5.2-13d)

There are two boundary conditions on z=R,:

1) Permeating boundary, u | ~0=0,u | =r:=0 (5.2-13¢)
2) Impermeating boundary, u |Z=0 =, ou/oz |Z=Rz =0 (5.2-13%)
Solution:
Set

u(x,y,z,t) = X(x) Y(y)Z(z) ‘T(t) (B5-1)

By substituting this into the (5.2-13), gives XYZT =Cy(X"YZT+XY ’ZT)+C,XYZ”T with
T’=dT/dt, X7=d’X/dx%, Y”=d’Y/dy* and Z”= d’Z/dz’. To separate the variables, we divide by
X-Y-Z‘T, obtaining

I =C,,(X +£J+C‘,Z— (B5-2)
C,T X Y Z

308



The left side of the above depends only on time t and the right side only on x, y and z, so that
both side must be equal to a constant k. But we may show that for k>0 the only solution is
infinite when t—oc; for k=0 the only solution is not zero when t—oc. Hence we left with the

possibility of choosing k negative, let k= - s%. Thus,

l:c,,(X +X—)+Cv——=-sz (B5-3)
T X Y VA
This yields immediately tow ordinary linear differential equations, namely
T°+s*T=0 (B5-4)
And ch(X FRda -C, 2 (B5-5)
X Y Z

Similarly, the left side of the Eq.(B5-5) depends only on X,y and the right side only on z, so
that both side must be equal to a constant k’. But we may show similarly that only for k’<0 the

solution will be reasonable. Thus, we left with the possibility of choosing k’ negative, let k’ =

- g2. Hence,
X" Y VAR P
C)l &= +=|=-C, 2 -5*=- B5-6
h( X Y ) v 7 S g ( )
This also yields tow ordinary linear differential equations, namely
" 22
LN B el (B5-7)
Z C,
X" Y 2
h( =y ) g (B5-8)
From Eq.(B5-7) g=g’+ C, n? (B5-9)
Z7+h?Z=0 (B5-10)
" ” 2
And from Eq.(B5-8) - =-1 _& (BS-11)
X Y C
Like the case of Appendix I-4, from Eq.(B5-11)
” ” 2
XY s _ (B5-12)
X Y G

Eq.(B5-12) also yields immediately tow ordinary linear differential equations, that is

And

X" +p’X=0
Y +¢*Y =0

(B5-13)
(B5-14)
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Where q° = g%/Cp, — p°, that s,

g’ = Co(p” +q°) (B5-15)
By Eq.(B5-9) s2= Cy(p? + O+ Cyh? (B5-16)
From Appendix B-4, the solution of Eq.(B5-13) satisfying Eq.(5.2-13¢) is
P = Pm = (2tm)n/Ry (m=0,1,2,3,...) (B5-17)
Xm = Cos[(Yatm)nx/Ry] (B5-18)
And the the solution of (B5-14) satisfying (5.2-13d) is
q=qn = (2tn)n/R, (n=0,1,2,3,...) (B5-19)
Y, = Cos[(“2+n)ny/R,] (B5-20)

For Eq.(B5-10), according to condition of permeating boundary (5.2-13e),

h=hy =kn/R; (k=0,1,2,3,...) (B5-19)

Zx = Sin(knz/R,] (B5-20)
According to condition of impermeating boundary (5.2-13f),

h=h, = (%+k)n/R, (k=0,1,2,3,...) (B5-19)

Zi = Sin[(%+K)nz/R,] (B5-20)

By (B5-4) and (B5-16), to obtain the general solution of (B5-4) corresronding to the
eigenvalues sy’ = Cyhi> + Ch(Pm” + qo°) is

Trnk = EXp[-Smuk’t ]

=Exp[ ((/2+m)2 (/+n)2(/) +Efk2(RAZ) ] 22’1 t} (B5-21)

X

(m=0,1,2,3,...,n=0,1,2.3,..., k=1,2,3,...,)

Sk ={%+m)2+(%+n)2[%yj +—Vk (R/ ) j 2 Ch
{c{(% ;ﬁm)z + (% ;;")2} C, %}nz (B5-21%)

Thus, a solution of (B5-6) satisfying boundary condition (5.2-13¢,d) and (5.2-13¢€) are uyx =
XYy Zy Topmie , Written out
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(%+m)7tx] [(/+ nyny
R

- }Szn R Exp( 5 )
(m=0,1,2,3,...,n=0,1,2,3,..., k=1,23,...) (B5-22)
Smak” = Cyhi’ + Co-(Pm” + G’)

And, a solution of (B5-6) satisfying (5.2-13¢,d) and (5.2-13f) are

Up 1 (X, 1,2,8) = dmnkCOS( (/ Rm)nx] os[ (% ;n)nyJSin (% ;k)nz Exp(” 52 t)

mnk
y

ulﬂ,n,k (x7 y,Z,t) = dmnkCOS(
_V

X 4

(m=0,1,2,3,...,1=0,1,2,3,.... k=1,2,3,...) (B5-22°)

To obtain a solution also satisfying the initial condition (5.2-13a) and (5.2-13b), we consider a
triple series of the these eigenfunctions corresponding to the eigenvalues py = (V2rm)n/Ry, g
= (Y2+tn)n/Ry, and hy = (Y2+k)n/R,,

® o0

2D U (%, 352,8)

0k=1

u(x,y,z,t)= i
m=0n
) dmnkCOS[% ;m)nx) [(/ ;")ny ] > 2 popl- 52 1)

mnk
n=0k=1 y

(B5-23)
From this and (5.2-13a) and (5.2-13b), we have

W 0 o0 1
u(x,y,z,())— Z ZZ nkco{(é';m)m) .{(/2; )Tty] _R___W3(x,y,z)

m=0n X y

Hence, for (B5-22) to satisfy (5.2-13a,b), the dpn’s value must the coeffients of the triple

Fourier cosine series,

RXRJ’RZ z=0x=0y=0 x ¥y

R, R R
B }?— J uO(Z)'SmkI:ZdZ =] f Wz(x,y)Co{(%+m)m]Co{(% ; n)frdexdy

R, R, R
Aoy = 8 j I fwﬂx,y,z)Cos(%%ﬂj ( /‘1: )RYJ 2 dxdydz

Z z=0 z RXR}’ x=0y=0 Rx Y
R,
=— Iuo(z) Smﬁrz— dz- Smn
Rz z=0 z Uy
=didmn (B5-24)

where,
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c

=", (B5-25)
Uy
cmn S values are determined by (B4-28), or (B4-29), or A4-33).
RZ
dk=—%— j uO(z)-Sink—EZ~ dz
RZ z=0 RZ

b, _ 1, _ R,
R, z=0 b, R, z=b, l,~b, R, z=l,
z=b; b, _
- i{ % (”oo + o — Yoo z]CosE + R I 201 ZM00 g fnz dz
R, { kn b, R, |, #n,, b .
z=l, 1, _
. (uOI — 2" Yom (;_p, )}C’os iz _k& | o1 = Yom o K2 4,
kn l,-b, R, o=b, km 2=b, l,-b, R,
2 knb, R, u kn \Zzbz
=—{u00 - uOICOS Z4_Z 0/ ~ oo Sin 2
kn R, kn b, R, |_,
z=l,
+ugCos b, Ug,Cos il _ Re oy ~thom g, kz)
R, R, kn I, -b, R, |Z_bz

= i ugy + Ry ug —ugo Sin b, —ug,,Cos el _ R uor —tom, Sin kb, _ Sin fetl
km kn b R R kn I, -b, R R

z Z z z z
(B5-26)
when 1,=b,(up=uom),
2 R, ug —u kmb kmb
d= 2 4 Bz Mo " %0 g Z oy Cos o2z B5-26°
K Im{uoo n b, n R Uy LO R, ( )

usually, for permeating condition, 1,=R,, since,

di= -k‘% {uoo ~ g, Coskm + %[“01 — Y00 , Yol T Yom )Sin k;bz } (B5-26”)

bz lz - bz z

when b,=1,=R(uo=tonm),

dkzé— (uOO —uOICOSkn) (B5-26’”)
And when b,=1,=R, and ugg=upi=0om
df%uoo(l—Coskn) k=12.3,...)
=2 o (K=1,3,5,...) (B5-27)
Kr

By (B5-23,24,25,26,0r,27)
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o0 o0 o©

1
u(x,y,z,t)= Z Zz dmnkcos((é _;m)nx] [(A ;n)ny] R, ExP( imk )

m=0n=0k=1 X y

S i Cos(p,x)- Cos(a,y)- Sinlhz) Exp|- (C (02 +42)+ C 12}
0k=1

{Z dkSin(hkz)Exp(— th,ft)}dmnCos(pmx)- Cos(qny)- Exp[— C, (pfn + q,zl )t]

M8

>

m=0n

u Ms

p
{i;dkSm(hkz)Exp( C hkt)}{ i idmnCos(pmx) Cos(g,y)- Exp[— Cy(p2 + qﬁ)t]}

m=0n=0
(B5-28)

From this, we prove that Carrillo’s expression of 3-D consolidation degree (Carrillo, 1942)
u(x,y,z,t) - qu(Z’t) . quy(x’y:t)

u(x’ s Z’O) Uy, (270) quy (x,y,O)
or (1-U)=(1-Uq,)-(1-Upxy) (B5-29%)

(B5-29)

can be exact only when initial condition u(x,y,z,0) can be expressed by y(z)((2(x,y).

In the case when b,=1,=R; and ugp=up=upn, set R,=2H and using (B5-27)

uy,(z,t) 1 & ) 2
—22 L =—  d,Sin\h z)- Exp\— C h;t
up,(2,0) u00k2=1 kSinllz) ( ‘ )

o 4 Kn K*n?
= —Sin| — z |Exp| - C, ——-t B5-30
P> ’(ZHZ) p( Y an? j (85-30)
The above form is exactly as same as well-known Terzaghi’s solution of one-directional

consolidation theory.

Similarly, for (B5-22°) to satisfy (5.2-13a), the d,mi’s value must the confidents of the triple

Fourier cosine series,

u(x, y,2,0)= i i i dmnkcos( 5% —;m)nx) ( . ;n)nyj in 5! -I}-ek)nz Exp(— simkt)

m=0n=0k=0 X y z
(B5-31)

in which,

S = [Ch[%;;”y U +2")2 J +C, ———(%;2" i }:2 (B5-31°)
X 4

Y
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R, Ry
Ak = J j j y3(x, Y, z)Co:[ % ;m)m]Co{ 5 ;n)ny}Sin 5% ;f)m dxdydz

RXR}’RZ z=0x=0y=0 X y

X

k k

z=0 XY x=0y=0

2 &
=— | up(2)-Sin
Rz z:J-.O

=di (B5-32)

(_%Jr_k)_nzdz.fﬂt_
R, Uy

1
dk _ 2 g + RZ Uy —Ugo Sin (/ + k)TCb uOmCos (A + k)T[lz
(o +k)m (B+km b, R, TR
R, 1wy —up, ( a2 +Rk)7tbz g, Uat b, J}

_(%+k)7t lz—bz R

z v4

(B5-33)
when 1,=b,(uo=uom),

b, V. +k)yrnb
k= ———2—— Upo + Rz Yor ~ %00 Sin (/ * k)n uOlCOS S—é-{-—')_n—z (B5'33,)
(% +k)n (% +kn b, R, R,
usually, for permeating condition, 1,=R;, since,
_ I b
dy=—2 Lo+ —Re Mo~ g, Up OO,
(Y + k) (Y+k)n b, R,
(B5-337)
R uy—vom| (5 + kb, (-1
(% +kn I,-b, R,
When bzzlzsz(uOlzuOm)’
2 Uy — U K+1 95
= ugy + —2—2 (-1 B5-33
: (%+k)n{ 00 (y2+k)n( ) ( )
And when b,=1,=R, and ugo=up=pm
Crkym
4
-4 k=0,1,2,3,...,
1+ 2k 0 ( )
~ 4 o (K=1,3,5,...) (B5-34)
Kn

In this case,
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e8]
up,(z,1) _ 1 > dy Sin(hyz)- Exp(— C it )
up,(2,0) gy o

=32 Sin[(% + ) zJ : Exp(— ¢, arh t)

(4 +k)m R, R}

® 2_2
:Z 4 Sin (1+2k)1tz Exp _Cv(1+2k31£ ;

k=t (14 2k)m 2R, 4R

Set K=1+2k, Rz=H,
uy,(z,t) <« 4 Kn K*n?
—E2s= N —Sin| —z |Exp| - C, ——-t (B5-35)
uy,(z,0) i3sKn \2H 4H
Also, the above form is exactly as same as Terzaghi’s solution of One-Dimensional

consolidation theory. And Terzaghi’s solution just is a special example of the solution (B5-26)

or (B5-33).
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APPENDIX C

Computer Program Code
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Appendix C-1: Fortran 90 Code of FLM +GSDT Program

P HHHHHH A TR
# #
# PROGRAM FIMGSDT #
# #
#
#

RONGCHANG YANG

CONCORDIA UNIVERSITY #
# CIVIL ENGINEERING DEPARTMENT #
# 2005 #
HHEHE AR

PROGRAME ANALYSING Pile-Soil-Raft Non-linear Interaction:
RAFT is rigid; PILES are Elastic;

Relations between Pile and Soil are Non-linear, and Established

by General Shear-Displacement Mathod;

Relation between Soil and Soil is Elastic, and edstablished

by Finite Layer Method

$DEBUG

$LARGE: MD,W, WP

DIMENSION A(291),DA(61),B(0:60,20),F(2646),MD(209,209),MF(20),
CE(20),EN(20),EE2(20),EM 1(20), EM2(20),EG2(20), MW(2646),
CC(2646),XY1(2646,6),
X(81),Y(81),LQA(81),LQB(81),LP(81),LX(81),LCO(10), W(212,212),
C(212),CX(209),BE(209),BE1(209),P(209),FG(209),K0(20),KOP(10),
KT(20),RP(20),RT(20),KP(11,4),PX(11,4),LCP(10),Ixp(20),Z(11),
LS(20,11),PE(20,11),FTE(20,11),PZ(20,11),FTZ(20,11),FZ(20,11),
FE(20,11),alfa(20),EP(20),AP(20),WP(128,128), MPR(10),sz(20,11)
INTEGER P1,P10,FHS,SYS,MSYB(4),MSYP(4)

INTEGER*2 R,R1,P2,DAMW MD,MF

REAL L,LQA,LQB,LOADMXMY,LP KT, KP,LOADI
EQUIVALENCE (W(1,1),XY1(1,1))

COMMON /COM1/A,DA/COM2/B/COM4/W/COMS5/C/COMP/LCO,KOP/CEPM/CE EP,AP
JCONTR/P1,NP1 IP,JIPL,MP,FHS MTT,LT1,LPT1/ABP/LQA,LQB,LP,KO
/COEN/EN,EE2 EM1,EM2 EG2/COXYZ/X,Y,Z
/COFC/F,CC/COMD/MW MF MD/COP/WP/SYS/MSYB,MSYP

/CFLM/L,NE,NR1,NR,INF

CALL WR1

OPEN(5, FILE=INAO.DAT")

READ(5,*) LNE,NRI,NR,INF,P1 NB

READ(5,*) (CE(I),EN(I),EE2(1),EM 1(I),EM2(I),EG2(I),I=1,NE)
READ(S,*) (X(D),Y(D),LQA(T),LQB(I),LP(1),LX(I),I=1,P1)
READ(5,¥) LT (LCO(I),I=1,LT)

READ(5,*) LOAD, XX, YY MX MY

READ(5,*) NP,AMAX,IJ

READ(S,*) IP,IPL,1.S3,mpt,FHS,SYS

READ(5,*) (MSYB(I),I=1,4),(MSYP(I),I=1,4)
READ(5,%¥)F0,F01,F02

IF(IP.EQ.0) GO TO 37

READ(5,¥) (KO(I),I=1,IP)

READ(5,*) NPR,(MPR(I),I=1,NPR)

READ(S,*)MP

IF(MP.LE.1)THEN

READ(5,*)EEP

IF(MP.EQ.0) GOTO 17

oloNoNoRoNoRoRoNoNoloNoNoNo e RO X!

01NN AW

* %k K W

317



15

16

17

21

23
20

25

30

36

35
37

DO 15 I=1,IP

EP(I)=EEP

ELSE
READ(,*)(RP(D),I=1,MP),(MF(I),I=1,IP)
DO 16 I=1,IP

EP()=RP(MF(I))

ENDIF

IF(LS3.LE.0) GOTO 37
READ(S,¥)MNL,DF,((PX(L,J),J=1,L.S3),
(KP(1,J),J=1,L83),I=1,IPL+1)

DO 20 I=1,IPL+1
PX(I,LS3+1)=PX(1,LS3)
KP(1,1)=1.E+20

IF(MNL.EQ.3.0R. LEQ.IPL+1) GOTO 20
IF(MNL.EQ.2) THEN
IF(I.LEQ.1)THEN

CH=5*CE(1)

ELSE IF(I.LT.IPL) THEN
CH=.5*(CE(I-1*CE(l))

ELSE

CH=.5*CE(IPL-1)+CE(IPL)

ENDIF

DO 21 J=1,LS3+1
PZ(1,J)=CH*PX(L,J)
PE(1,))=CH*KP(LJ)

GOTO 20

ENDIF

DO 23 J=1,1L.83+1
PX(LI)=5*PX(I,H)*CE()
KP(1,))=.5*KP(I,J)*CE(l)

continue

IF(MNL.EQ.3) GOTO 37

DO 30 J=1,LS3+1
PZ(IPL+1,5)=PX(IPL+1,])
PE(IPL+1,))=KP(IPL+1,J)
IF(MNL.EQ.2) GOTO 30
PZ(1,0)=PX(1,])

PE(1,7)=KP(1,)

DO 25 I=2,IPL-1
PZ(1,1)=PX(I-1,)+PX(L])
PE(L))=KP(I-1,))+KP(LJ)
PZ(IPL,))=PX(IPL-1,))+2*PX(IPL,])
PE(IPL,J)=KP(IPL-1,1)+2*KP(IPL.J)
CONTINUE

DO 35 I=1,IP1+1

DO 35 J=1,L.S3+1

PX(1,0)=PZ(1,))

KP(,))=PE(,J)
IF(KP(1,j).LT..1E-20) KP(Lj)=.1E-20
CONTINUE

LPT=0

DO 40 I=1,IP

K=KO()

Ap(i)=lp(k)**2

DO40J=1,LT

IF(K.EQ.LCO(J)) THEN
LPT=LPT+1

LXP(D)=LPT
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40

50
60

801
802
803
804
805

3+ 3%

10

11

73

LCP(LPT)=I

KOP(LPT)=K

ENDIF

CONTINUE

Z(1)=0.

IF(IP.LE.0) GOTO 60

DO 50 I=1,IPL
Z(I+1)=Z(I)+CE(I)
LTT=LT+LPT*(IPL+1)
NP1=P1+IP*(IPL+1)
IF(NE.GT.20) WRITE(*,801)
IF(P1.GT.81) WRITE(*,802)

IF(LTT.GT.20) WRITE(*,803)

IF(IP.GT.20) WRITE(*,304)

IF(LTT*NP1.GT.2646) WRITE(*,805)
FORMAT(10X,** ERROR 1 :NE.GT.20 **)
FORMAT(10X,** ERROR 2 :P1.GT.64 **)
FORMAT(10X,'** ERROR 3 : LTT.GT.60 **')
FORMAT(10X,** ERROR 4 :IP.GT.20 **)
FORMAT(10X,** WARNING 5 : NM.GT.2646 **)

CLOSE(5)
OPEN(11,FILE=FYO.DAT')

WRITE(11,1) L,NE,NR1,NR,INF,P1,IP,NP1,NB

FORMAT(/30X,CONTROL PARAMATER',/4X,'L',8X,NE',7X,'NR1",6X,'NR,
7X,INF',6X,'P1',7X,TP',6X,NP1',7X,NB',/1X,F5.2,819)
WRITE(11,2)(CE(T),EN(I),EE2(I),EM1(I),EM2(I),EG2(1),]=1,NE)
FORMAT(/25X, MATERIAL IN EVERY LATRY"/7X,'CE",1 1X,EN',

10X,'EE2",10X,'EM1',10X, EM2',10X,'EG2",/(1X,F8.2,5F13.2))
WRITE(11,3) (1,X(I),Y(I),LQA(I),LQB(I),LP(I),LX(I),I=1,P1)

FORMAT(/29X,'CALCULATRE POINT',/10X,POINT X-COOD Y-COOD
LP TYPE/(5X,I8,5F10.2,16))

LQA LQB

WRITE(11,4) (LLCO(I),I=1,LT)
FORMAT(/15X, THE TYPE OF RAFT ELEMENT SHAPE/

15X, NO.' 2X,'”THE CORD OF POINT"/(15X,12,8X,14))

WRITE(11,5) NP,AMAX,IJ

FORMAT(15X,/CONTROL OF PRINTING =13

/15X, MAXIUM LOAD ='E10.4

/15X, FLEXIBLE MATRIX IN DISK( 0/NO,1/YES) =',12)

WRITE(11,6) IP,IPL,LS3

FORMAT(/10X, TOTAL NUMBER OF PILE :IP*IPL="13,'*' 13, ,LS3=',

13)
IF(IP.EQ.0) GO TO 73
WRITE(11,7)

FORMAT(15X,'THE NODE OF PILE: KO, LXP ")
WRITE(11,8) (KO(®I),LXP(),I=1,IP)

FORMAT(31X,215)

WRITE(11,9) (LCP(]),]I=1,LPT)

FORMAT(15X, THE TYPE OF PILE: LCP(31X,514))

Pile is compressible,’,

IF(MP.GT.0) WRITE(11,*)’

'modus of pile is ',(Ep(i),I=1,IP)

IF(LS3.EQ.0) GOTO 73
WRITE(11,10)

WRITE(11,11) (§,Z(0),(PX(3,)),KP(J,1),1=1,3),J=1,IPL+1)
FORMAT(15X,PARAMEER OF PILE/3X,NO: Z

' KPI PX2  KP2
FORMAT(2X,13,7E10.4)
LTI=LT

PX3

KP3 )

PX1,
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77

13

12

LPT1=LPT

MTT=LTT

if(FHS.eq.0) then

LTI=0

MTT=MTT-LT

NP1=NP1-P1

P1=0

DO 77K=1,4

MSYB(XK)=0

WRITE(*,13)

WRITE(11,13)

FORMATY(/20X,'The foundation is high raft'//)
endif

WRITE(*,12)MTT,NP1
WRITE(11,12)MTT,NP1
FORMAT(10X,'LTT=\13," NP1=',16/)

C  IHHHBEHHHH AR

800

599

595

188
187

NBI1=NP1

IF(1J.EQ.0) GOTO 800

IF(IJ.EQ.3) THEN

IF(SYS.GT.0) NP1=MSYB(3)+MSYP(3)*(IPL+1)
GOTO 799

ENDIF

OPEN(6,FILE="\FLM\MD.DAT")

READ(6,*) NN,((MD(1,J),I=1,NP1),J=1,NP1)
CLOSE(6)

IF(1.EQ.2) GOTO 699

CALL MDD(IJ,NN)
IF(IJ.EQ.1) GOTO 599
IF(NN.GT.2646) GOTO 2001
CALL FLM(NN,MPT)
IF(IJ.NE.1) GOTO 595
OPEN(6,FILE=\FLM\FO.DAT')
READ(6,*) (F(I),l=1,NN)
CLOSE(6)

IF(ABS(FO-1)+ABS(F01-1)+ABS(F02-1).LT.0.001) GOTO 695
DO 187 M=1,MTT

IF(M.LE.LT1) FM0=F01

IF(M.GT.LT1) FMO=F02
IF(ABS(FM0-1).LT.0.0001) GOTO 187

DO 188 K=MF(M)+1,MF(M+1)

DST=XY1(K,3)

DZ=ABS(XY 1(K,4)-XY 1(K.,5))

IF(DST.LT.0.01) THEN
IF(DZ.LT.0.01.AND.ABS(F0-1).GT.0.001) THEN
F(K)=FO*F(K)

ELSE

F(K)=F(K)*FM0**(-DZ/SQRT(XY 1(K,6)))
ENDIF

ELSE
F(K)=F(K)*FMO**(-DST/SQRT(XY 1(K,6)))
ENDIF

CONTINUE

CONTINUE

OPEN(6,FILE=\FLM\F1.DAT’)
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699

695

180

320

600

799

WRITE(6,600) (F(I),]=1,NN)
CLOSE(6)

IF(IJ.NE.2) GOTO 695
READ(22,*) (F(I),]=1,NN)

IF(SYS.GT.0) NP1=MSYB(3)+MSYP(3)*(IPL+1)
DO 180 I=1,NP1+3

DO 180 J=1,NP1+3

W(I,D)=0.

IF(SYS.LE.O) THEN

DO 320 I=1,NP1

W(I,D=F(MD(L]))

DO 320 J=I+1,NP]

W)= 5%FMD(J))+F(MD(.D)))
W(,D=W(J)

CONTINUE

ELSE

CALL SYSW

ENDIF

OPEN(6,FILE=\FLM\OUT1.DAT")
WRITE(6,600) ((W(LK),I=1,NP1+1),K=1,NP1+1)
CLOSE(6)

FORMAT(2X,5E15.8)

P10=P1

IPO=IP

IF(SYS.GT.0) THEN

P1=MSYB(3)

IP=MSYP(3)

ENDIF

IF(I).NE.3) GO TO 795
OPEN(7,FILE=\FLM\OUT1.DAT')
READ(7,*¥) ((W(LJ),]=1,NP1+1),J=1 NP1+1)
CLOSE(7)

C  HHHHHEHRHHHA S

795

350

360

370

377
369

368

380

IF(MP.GT.0.AND.IP.GT.0) CALL STIFP
DO 350 I=1,NP1

CX(1)=0.

BE1(1)=0.

DO 360 I=1,IP

RP(I)=0.

RT(1)=0.

DO 370 I=1,IP

DO 370 J=1,IPL+1

LS(L))=1

LOADI1=0.

SETTLE=O.

NF=0

MQ=0

write(*,369)

format(10X,*****  MATIVT is running *¥****")
CALL MATIVT(NP!)

WRITE(*,368)

FORMAT(10X,'$$$$$ MATIVT run finished $$$$$"
DO 380 I=1,NP1

P()=1.

FG(I)=0.
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DO 391 I=1,NP1
DO 390 J=1,NP1

390  FG(I)=FGA)+W(L,J)*P(J)
IF(ILLE.P1.AND.FG(I).LT.0) FG(I)=-0.1E-06

391 CONTINUE
WRITE(11,301) (FG(I),I=1,P1)

301 FORMAT(/20X,'A FORCE OF THE UNITE SETTLEMENT" /(2X,7E10.4))
WRITE(11,3011) (FG(I),I=P1+1,NP1)

3011 FORMAT(/(2X,6E12.4))
DO 400 I=1,1IP

400 KT(I)=FG(KO(I))
NLOAD=0
OPEN(15 FILE=\DAG\GRAM.DAG")
OPEN(20,FILE=\DAG\S-Q.DAG")
IF(FHS.GT.0) THEN
OPEN(21,FILE="\DAG\Qs%-Q.DAG")
OPEN(22 FILE=\DAG\Qs-Q.DAG")
OPEN(23,FILE=\DAG\Qp-Q.DAG")
ENDIF
IF(IP.LE.0) GOTO 404
OPEN(24,FILE=\DAG\P1-Q.DAG")
OPEN(25,FILE="\DAG\Afa-Q.DAG")
OPEN(26,FILE="DAG\P1-S.DAG")

C OPEN(27 FILE='\DAG\P3-S.DAG")
OPEN(28 FILE=\DAG\Pp-Q.DAG")
OPEN(29,FILE="DAG\Sp-Pp.DAG")
OPEN(30,FILE=\DAG\Sp-S.DAG")
open(40,file="DAG\F-S.DAG")
open(41,file="\DAG\Pz-Po.DAG")

404 WRITE(20,401)

IF(FHS.GT.0) WRITE(22,401)
IF(FHS.GT.0) WRITE(23,401)
IF(IP.LE.0) GOTO 2000
WRITE(24,401)
WRITE(25,401)
WRITE(26,401)

C WRITE(27,401)
WRITE(28,401)
WRITE(29,401)
WRITE(30,401)
write(40,*) ipl
write(41,%) ipl+1

401 FORMAT(3X,'0.,5X,'0."

2000 LZ=0
OPEN(7 FILE=\FLM\OUT1.DAT)
READ(7,*) (W(1,J),J=1,NP1+1),I=1,NP1+1)

CLOSE(7)
MQ-0
DO 409 I=1,P1
IF(FG(I).GT.0) GOTO 409
MQ=MQ+1
W(LD=5.*W(L])
409  CONTINUE
IF(IP.EQ.0) GO TO 575
C WRITE(11,522)
IF(LS3.EQ.0.0R.NLOAD.EQ.0) GOTO 575
WRITE(11,525)((L,J,LS(1,J),4.*LP(KO(D))*PX(J,LS(LJ)),
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*

522
525

666

410

412

575

KP(J,LS(L])),J=1,IPL+1),I=1,IP)

FORMAT(/ISX,'*********************************************')

FORMAT(/1X,2(PNODNOLS PX KP,6X),
/2(12,14,14,F10.4,f10.4,6X))
IF(LS3.EQ.0) GOTO 575
MWWwW=0
WRITE(*,666)
FORMAT(1X,'00000000000000000000000000"
DO 410 I=P1+1,NP1
I=MOD(I-P1-1,IP)+1
JJ=1+(1-P1-1)/TP
LSS=LS(IL3J)
IF(LSS.LE.1) GOTO 410
Dr=FTZ(11,J1)/( 4 *LP(KO(ID))*PX(JJ,LSS-1) )
IF(LSS.GE.LS3+1)THEN
W(LD=.1E21
ELSE
IF(JJ.LT.IPL+1) THEN
IF(MNL.EQ.3) Dr=1.
IF(MNL.EQ.1)Dr=.5*LP(KO(ID))*
(FTZILID/LP(KO(I1))/4.-PX(JJ,LSS-1))/PX(JJ,LSS-1)
IF(MNL.EQ.0.OR.MNL.EQ.2)THEN
Dr=LOG( FTZ(ILII)/(4. *LP(KO(I))*PX(JJ,L.§S-1)) )/6.2831853
ENDIF
ELSE
Dr=LP(KO(ID))**2
ENDIF
WA, D=W(I,D+D1/KP(JI,LSS)
ENDIF
IF(W(LI).GE..1E20) THEN
W(LI)=.1E20
MWW=MWW+1
ENDIF
CONTINUE
WRITE(*,666)
goto 575
IFIMWW.EQ.NP1) THEN
DO 412 K=1,NP1
C(K)=0.
BE(K)=BE(K)*4.
SE=SE*4.
C(NP1+1)=C(NP1+1)*4.
C(NP1+2)=C(NP1+2)*4.
C(NP1+3)=C(NP1+3)*4.
GOTO 1500
ENDIF

OPEN(8,FILE="\FLM\OUT2.DAT")
WRITE(8,600) (W(I,K),K=1,NP1+1),I=1, NP1-+1)
CLOSE(8)

WRITE(*,461)

FORMAT( ¥****% MATIVT is running secondly **¥*¥**7)
CALL MATIVT(NP1)

WRITE(*,462)

FORMAT(  ###### MATIVT second run finished ###HH##)
OPEN(9,FILE='OUT3.DAT")

WRITE(9,600) (W(L,K),K=1,NP1+3),I=1,NP1+3)
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o000

420

431

430

440

CLOSE(9)
OPEN(8,FILE='OUT2.DAT')

READ(8,*) ((W(LK),K=1,NP1+3),]=1 NP1+3)

CLOSE(8)
IF(MP.GT.0) THEN

DO 420 I=1,IP*(IPL+1)
I=P1+]

DO 420 J=1,IP*(IPL+1)
JI=P1+J
W(LIN=W(ILI+WP(,J)
CONTINUE

ENDIF

DO 430 J=1,NP1
IF(J.LE.P1)THEN

1=J

ELSE

JXP=MOD(J-P1-1,IP)+1
JZ=(J-P1-1)/IP+1
JO=P10+(JZ-1)*IP0+JXP
JI=KO(JXP)

ENDIF

XXM=X(J7)

YYM=Y(J)

MMG-=1

IF(SYS.GT.0) THEN
IF(JJ.LE.MSYB(1)) THEN
ELSE IF(JJ.LEMSYB(2) )THEN
MMG=2

IF(J.LE.P1) KK=JJ+MSYB(4)-MSYB(1)

IF(J.GT.P1) KK=KO(JXP+MSYP(4)-MSYP(1))

XXM=XXM+X(KK)
YYM=YYM+Y(KK)

ELSE

MMG=4

MMK=MSYB(3)-MSYB(2)
IF(J.GT.P1) MMK=MSYP(3)-MSYP(2)
DO 431 K=13

IF(J.LE.P1) KK=JJ+MMK*K
IF(J.GT.P1) KK=KO(JXP+MMK *K)
XXM=XXM+X(KK)
YYM=YYM+Y(KK)

ENDIF

ENDIF

W(NP1+1,))=MMG

W(,NP1+1)=-1

W(NP1+2,J)=XXM
W(I,NP1+2)=-X(JJ)
if(FHS.EQ.0.AND.IP.EQ.1) GOTO 430
WINP1+3,1)=YYM
W(,NP1+3)=-Y(J])

CONTINUE

DO 440 I=1,NP1+3

C(H)=0

C(NP1+1)=LOAD
C(NP1+2)=MX+LOAD*XX
IF(FHS.EQ.0.AND.IP.EQ.1)THEN
NP3=NP1+2

ELSE
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453

454

460
470

472

474

1500

450

480

490

C(NP1+3)=-MY+LOAD*YY
NP3=NP1+3

ENDIF
WRITE(*,453)NLOAD

FORMAT(  ***** SINPD(No:]2,") is running

CALL SLNPD(D,NP3)
WRITE(*,454)

FORMAT(  ##### SLNPD run finished ###HH#")

OPEN(8,FILE=\FLM\OUT2.DAT)
READ(8,*) (W(LK),K=1,NP1+1),]=1,NP1+1)
CLOSE(8)

SE=0.

DO 470 I=1,NP1

BE(I)=0.

DO 460 J=1,NP1

BE(D)=BE(I)+ W(LJ)*C(J)
CONTINUE

CONTINUE
IF(FHS.EQ.0.AND.IP.GT.0)THEN
DO 472 I=1,IP

SE=SE+BE(P1+1)

SE=SE/IP

ELSE

DO 474 1=1,P1

SE=SE+BE(I)

SE=SE/P1

ENDIF

IF(MWW.LT.NP1) LOAD1=LOAD1+LOAD

NF=NF+1

DO 450 I=1,NP1
CXD)=CX(1)+C(T)

DO 480 I=1,NP1
BE1(I)=BE(I)+BE(I)
SETTLE=SETTLE+SE

FORCE=0.

DO 490 I=1,NP1

MQ=1

IF(SYS.LE.0) GOTO 490
IF(L.LE.MSYB(1)) THEN

ELSE IF(LLEMSYB(2)) THEN
MQ=2

ELSE IF(ILE.MSYB(3)) THEN
MQ=4

ELSE

IF(IP.GT.0)THEN
[I=-MOD(I-MSYB(3)-1,MSYP(3))+1
IF(ILLE.MSYP(1))THEN

MQ=1

ELSE IF(IL.LE.MSYP(2)) THEN
MQ=2

ELSE

MQ=4

ENDIF

ENDIF

ENDIF
FORCE=FORCE+MQ*CX(I)

DLOAD=ABS(LOAD1-FORCE)
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500

512

511

510

oNoNoNe!

IF(DLOAD.GT.0.01) FORCE=FORCE+DLOAD*.5

DO 500 I=P1+1,NP1

II=MOD(I-P1-1,IP)+1

JI=1+(1-P1-1)/IP

IF(FHS.EQ.1) RT(I)=CX(KO(II))

SZ(ILIJ)=BE1(I)

FTZ(I1J1)=CX(1)

IF(MWW.EQ.NP1) GOTO 2500

QP=0.

DO 520 I=1,IP

MPP=1

IF(SYS.GT.0) THEN

IF(LLE.MSYP(1)) THEN

ELSE IF(ILLE.MSYP(2))THEN

MPP=2

ELSE

MPP=4

ENDIF

ENDIF

BP=LP(KO(I))

UP=4.*BP

AAP=BP*BP

FTE(I,1)=FTZ(1,1)+FTZ(1,2)*CE(1)/(CE(1)+CE(2))

FE(I,1)=FTE(,1)/CE(1)/UP

FZ(I,1)=2.*FTZ(1,1)/CE(1)/UP

FZ(1,2)=FTZ(1,2)*2./(CE(1}+CE(2))/UP

FTE(1,2)=FTZ(1,2)*CE(2)/(CE(2)+CE(1))
+FTZ(1,3)*CE(2)/(CE(2)+CE(3))

FE(I,2)=FTE(I,2)/CE(2)/UP

FTE(LIPL+1)=FTZ(LIPL+1)

FTE(LIPL)=FTZ(LIPL)*CE(IPL)/(CE(IPL)+.5*CE(IPL-1))

FTE(LIPL-1)=FTZ(L,JPL)* 5*CE(IPL-1)/(CE(IPL)+.5*CE(IPL-1))

+FTZ(LIPL-1)*CE(IPL-1)/(CE(IPL-1)}+CE(IPL-2))

PE(LIPL+1)=FTZ(LIPL+1)

FE(LIPL+1)=FTZ(LIPL+1)/AAP

PE(L,IPL)=PE(LIPL+1)+FTE(I,IPL)

FE(L,IPL)=FTE(LIPL)/CE(IPL)/UP

PZ(LIPL+1)=FTZ(LIPL+1)

FZ(LIPL+1)=FTZ(LIPL+1)/AAP

PZ(LIPL)=PZ(L,IPL+1)+FTZ(LIPL)

FZ(I,IPL)=FTZ(LIPL)/(.5*CE(IPL-1)+CE(IPL))/UP

DO 510 J=IPL,1,-1

IF(J.EQ.IPL-1) GOTO 512

IF(J.GT.IPL-1.0R.J.LE.2) GOTO 511

FTE(LJ)=FTZ(LJ)*CEQ)/(CE(J-1)+CE())
+FTZ(1,J+1)*CE(J)/(CE(+1)+CE()))

FE(1J)=FTE(LJ)/CE(J)/UP

FZ(L))=FTZ(1J)*2./(CE(J-1)+CE(J))/UP

PZ(1,1)=PZ(1J+1)+FTZ(LJ)

PE(LJ)=PE(LJ+1)+FTE(L))

CONTINUE

PZ(1,2)=PZ(1,3)+FTZ(1,2)

PE(1,2)=PE(1,3)+FTE(L2)

PZ(1,1)=PZ(1,2)+FTE(L1)

PE(I,1)=PE(I,2)+FTE(L1)

IF(ABS(PZ(I,1)-PE(1,1)).GE. .01)
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520

700

530

540

2500

601

602

6021

603

604

6041

605
606

007

677
1111

476

WRITE(*,700) L,PZ(1,1),PE(L1)
RP(1)=PZ(L,1)
ALFA(D=PZ(LIPL+1)/PZ(L,1)
QP=QP+MPP*RP(I)

CONTINUE

QS=FORCE-QP

FORMAT(10X, *****++* ERROR 8 *****+%/(]0X,
=13, PZ1=E12.6 PEI=E12.6))
IF(LS3.EQ.0) GOTO 540

DO 530 I=1,IP

DO 530 J=1,IPL+1

LSS=LS(L,J)

FPU=4.*LP(KO(I))

IF(J.EQ.IPL+1) FPU=ap(i)
FPU=FPU*PX(J,LSS)
IF(FTZ(1J).GE.FPU*DF)THEN
LS(LJ)=LSS+1
IF(LS(LJ).GT.LS3+1) LS(LJ)=LS3+1
LZ=LZ+1

ENDIF

CONTINUE

IF(NF.EQ.NP) NF=0
IF(NF.EQ.0) GO TO 2500
IF(LZ.EQ.0) GO TO 3000
NLOAD=NLOAD+1
WRITE(11,601) LOAD1,XX,YY,MX,MY,FORCE
FORMAT(/15X, LOAD="E9.3,2X,’XX="E8.2,2X,'YY="E8.2
/15X, MX="E8.2,4X,'MY=",E8.2,2X, FORCE=",E9.3)

WRITE(11,602) (CX(I)(LQA(I)*LQB(D)-LP(I)*LP(I)),I=1,P1)
FORMAT(/20X, THE DISTRIBUTION OF RAFT LOAD",/(2X,7E10.4))
WRITE(11,6021) (CX(I),]=P1+1,NP1)

FORMAT(20X,' THE RESULT OF PILES LOAD'/(2X,6E12.4))
WRITE(11,603) (C(I),]=NP1+1,NP1+3)
FORMAT(/15X,'W0="E12.4, @x="E12.4, @y="E12.4)
WRITE(11,604) (BEI(I),I=1,P1)

FORMAT(/20X, THE RESULT OF RAFT DISPLACEMENT"/(2X,7E10.4))
WRITE(11,6041) (BEI(I),]=P1+1,NP1)

FORMAT(/20X, THE RESULT OF PILES DISPLACEMENT",/(2X,6E12.4))
IF(IP.EQ.0) GO TO 476

WRITE(11,605)

WRITE(11,606) (KO(I),RT(D/(LQA(KO())*LQB(KO(I))-LP(KO(I))**2)
RP(I),]=1, MPR(NPR))

FORMAT(/15X,NO.,2X,'A FORCE OF SOIL',2X,'A FORCE OF PILE')
FORMAT(15X,12,4X,E10.4,7X,E10.4)

DO 1111 I=1, MPR(NPR)

WRITE(11,607)(LJ,PZ(1,3),FTZ(LJ),FZ(LJ),
PE(LJ),FTE(LJ),FE(LJ),J=1,IPL+1)

FORMAT(1X,’PNO DNO Pz Fz fz Pe',

' Fe  fe/(1X,213,1X,E10.4 ,1X,E10.4,1X,E10.4,
1X,E10.4,1X,E10.4 ,1X,E10.4))

WRITE(11,677) ALFA())
FORMAT(25X,'ALFA="F8.4)

CONTINUE

IF(FHS.EQ.1) QF=QS/((ABS(X(P1)-X(1))+(LQA(P1)+LQA(1))/2.)

*(ABS(Y(P1)-Y(1))+(LQB(P1)+LQB(1))/2.))
BF=QS/LOAD1*100
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WRITE(11,608) LOAD1,QS,QP,BF,QF
608 FORMAT(/25X,'Q="F12.2,(T),
#  /15X'Qs="F8.2(T),2X,, Pp="F8.2(T),
# o /15XQs/Q="F6.2,%'4X,, qf= F8.2 ' (T/M**2))
WRITE(11,609)

609 FORMAT(/]ZX,'**************************************************')
WRITE(20,402) FORCE,SETTLE
IF(FHS.GT.0) THEN
WRITE(21,402) FORCE,QS
WRITE(22,402) FORCE,BF
WRITE(23,402) FORCE,QP
ENDIF
IF(IP.LE.0) GOTO 3000
WRITE(24,402) FORCE,PZ(MPR(1),1)

WRITE(25,402) FORCE,ALFA(MPR(1))
WRITE(26,402) SETTLE,PZ(MPR(1),1)

C WRITE(27,402) SETTLE,PZ(MPR(2),1)
WRITE(28,402) FORCE,PZ(MPR(1),IPL+1)
WRITE(29,402) PZ(MPR(1),IPL+1),SZ(MPR(1),IPL+1-FHS)
WRITE((30,402) SETTLE,SZ(MPR(1),IPL+1-FHS)

402 FORMAT(1X,2E14.6)
write(40,714) nload
write(41,714) nload

write(40,712) (SZ(MPR(1),J),FZ(MPR(1),J),J=1,IPL)
write(41,712) (pz(mpr(1),1),pz(mpr(1),j)j=1,ipl+1)
IF(NLOAD.EQ.1) THEN

WRITE(15,711) MPR(NPR),IPL+1,BP,Z(IPL+1)
WRITE(15,712) Z(1),(Z(D)+.5*CE(1),I=1,IPL-1),Z(IPL+1)
WRITE(15,712) (Z(1),1=1,IPL+1)

WRITE(15,712) (Z(1),]=1,JPL+1)

WRITE(15,712) (Z{D)+.5*CE(I),I=1,IPL),Z(IPL+1)
ENDIF

WRITE(15,714) NLOAD

DO 555 I=1,MPR(NPR)

WRITE(15,712) (PZ(1,3),fz(ij),PE(,J),Fe(L]),J=1,IPL+1)

c WRITE(15,712) (£2(i,j),J=1,IPL+1)
c WRITE(15,712) (PE(L]),J=1,IPL+1)
c WRITE(15,712) (FE(LJ),J=1,IPL+1)

555  CONTINUE
711  FORMAT(1X,214,2E10.4)
712 FORMAT(1X,6E13.6)
714  FORMAT(1X,14)
716  FORMAT(4X,'0)
3000 IF(LOAD1.GE.AMAX.or.nload.ge.25.0R. MWW.EQ.NP1) GO TO 2001
IF(LZ.NE.0) GO TO 2000
IF(LZ.EQ.0) GO TO 1500
2001  WRITE(15,716)
WRITE(20,403)
IF(FHS.GT.0) THEN
WRITE(21,403)
WRITE(22,403)
WRITE(23,403)
ENDIF
IF(IP.LE.0) GOTO 7777
WRITE(24,403)
WRITE(25,403)
WRITE(26,403)
C WRITE(27,403)
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WRITE(28,403)
WRITE(29,403)
WRITE(30,403)
write(40,716)
write(41,716)
403  FORMAT(4X,-.100000E+20, -.100000E+20"
CLOSE(11)
CLOSE(15)
7777 STOP
END

C  HIHHHHHHH R
SUBROUTINE WR1
WRITE(*,717)
717 FORMAT(/ 18X, #HHHHHHHEHIHEHHHEHIHHHHBHEHIHEH )
18X, # #./
18X, # PROGRAM FLMGSDT #,/
18X, # e #,/
18X, # RONGCHANG YANG #
18X, # CONCORDIA UNIVERSITY #,/
18X, # CIVIL ENGINEERING DEPARTMENT #'/
18X, # 2005 #./
18X, # #./
18X, HHHHHHHHHHIHHHEHHHHHE R /]
12X, 'PROGRAME ANALYSING Pile-Soil-Raft Non-linear Interaction:’
J12x,; RAFT isrigid; PILES are Elastic;',/12x,
'Relations between Pile and Soil are Non-linear, and Established'
/12x,'by General Shear-Displacement Mathod;',/12x,
'Relation between Soil and Soil is Elastic, and edstablished',
/12x,'by Finite Layer Method")
RETURN
END

¥R K K K R K K K K N ¥ K X *

CHUBHHH
$DEBUG
$SLARGE:MD,W
SUBROUTINE MDD(IJ,NN)
DIMENSION XY 1(2646,6)
INTEGER*2 MD,MW,MF
INTEGER P1,FHS
C REAL DIST,RA,DSA
COMMON /COM4/W(212,212)/CONTR/P1,NP1,IP,JIPL.MP FHS, MTT,LT1,LPT1
COMMON /ABP/LQA(81),LQB(81),LP(81),KO(20)/COMP/LCO(10),KOP(10)
* /CEPM/CE(20),EP(20),AP(20)
¥ JCOXYZ/X(81),Y(81),Z(11)/COFC/F(2646),CC(2646)
COMMON /COMD/MW(2646),MF(20),MD(209,209)
EQUIVALENCE (W(1,1),XY1(1,1))

800  MN=0
MK=0
MF(1)=0
DO 90 M=1MTT
CALL UZ(M,ML,MZ,ARM,LT1,LPT1,2)
ZI=Z(MZ)
IF(M.LE.LT1)THEN
XA=LQA(MI)
XB=LQB(MI)

329



75
88

89

776

80

90

132

887

127

*
*

ABM=XA/XB
ENDIF

RA-SQRT(ARM)

DO 80 I=1,NP1

CALL DJZ(LILIZ ARE,P1,IP,1)

X1=ABS(X(II)-X(MI))

Y1=ABS(Y(I)-Y(MI))

DIST=SQRT(X1**2+Y1%%2)

DSA=DIST/RA

Z3=Z(1Z)

IF(MN.LT.NB) GOTO 88

DO 75 K=1,MN

IF( ABS(XY1(K,3)-DIST).LE.0.001 .AND.

(ABS(XY 1(K,4)-ZI)+ABS(XY1(K,5)-ZJ).LE.0.001 .OR.

ABS(XY 1(K,4)-ZT)+ABS(XY1(K,5)-ZI).LE.0.001) YTHEN

IF(DIST/RA.GT.1.5.0R.ZV/RA.GT.1.5.0R.ZI/RA.GT.1.5 .OR.
(Z1.GT.0.001.AND.ZJ.GT.0.001) YTHEN
GOTO 80
ELSE IF(ABS(XY1(K,6)-ARM).LE.0.001)THEN
IF(X1+Y1.LE.0.001) GOTO 80
IF(ABM.GE.0.75.AND.ABM.LE.1.33)THEN
IF(ABS(XY1(K,1)-X1).LE.0.001 .OR.
ABS(XY1(K,1)-Y1).LE.0.001) GOTO 80
ELSE
IF(XA.EQ.F(K) .AND.ABS(XY1(K,1)-X1).LE.0.001) GOTO 80
IF(XA.EQ.CC(K).AND.ABS(XY1(K,2)-X1).LE.0.001) GOTO 80
ENDIF
ENDIF
ENDIF
CONTINUE
MN=MN+1
XY1(MN,1)=X1
XY1(MN,2)=Y]1
XY1(MN,3)=DIST
XY1(MN,4)=Z1
XY1(MN,5)=ZJ
XY 1(MN,6)=ARM
F(MN)=XA
CC(MN)=XB
MW(MN)=1Z
FORMATGX,MI I MN X1 Yl DIST ZI,
' Z}  ARE'(2X,213,15,6E10.4))
FORMAT(15X, MN="16,T="16 MK="16)
WRITE(*,776) MN,LMK
CONTINUE
IF(M-LT1.GE.1) WRITE(*,89) M-LT1,,MN,(XY 1(MN,K),K=1,6)
MF(M+1)=MN
CONTINUE
NN=MN
WRITE(*,132) (LMF(I),]=1, MTT+1)
FORMAT(15X,'M", 15X, MF(M)"/(12X,14,12X,16))
WRITE(*,887) NN
FORMAT(15X,NN="13)
IF(1).EQ.1) GOTO 599

WRITE(*,127) (LMW(I),]=1,NN)
FORMAT(15X,NI=I13,!, MW(NI)="14)
DO 160 I=1,NP1
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CALL UJZ(LILIZ, ARELPL,IP,1)
ZS1=Z(1Z)
IF(LLE.P1) THEN
XA=LQA(II)
XB-LQB(II)
ABM=XA/XB
ENDIF
SA=SQRT(AREI)
DO 150 J=1,NP1
CALL JZ(J,)3,JZ,AREJ,P1,IP,1)
MD(J,1)=0
X1=ABS(X(ID)-X(JT))
Y1=ABS(Y(D-Y(JT))
AS=SQRT(X1**2+Y1**2)
DSA=AS/SA
ZSJ=Z(JZ)
DO 140 K=1,NN
IF(ABS(AS-XY1(K,3)).LE.0.001 .AND.
* (ABS(ZSI-XY1(K,4))+ABS(ZSJ-XY 1(K,5)).LE. 0.001 .OR.
* ABS(ZSI-XY1(K,5))+ABS(ZSI-XY1(K,4)).LE. 0.001) )THEN
IF(DSA.GT.1.5 .OR. ZSI/SA.GT.1.5 .OR. ZSJ/SA.GT.1.5 .OR.
* (ZSLGT.0.001 .AND. ZSJ.GT.0.001)) THEN
C MD(L,J)=K
MD(J,1)=K
C WRITE(*,153)LJ,K
153  FORMAT(11X,T=\14,", J='I4,, MD="16,"%* Case 1 *¥')
GO TO 150
ELSE IF(ABS(XY 1(K,6)-AREI).LE.0.001) THEN
IF(DIST.LE.0.001)THEN
MD(, 1=K
C WRITE(*,154)L,J,K
154  FORMAT(11X,T='J4,", I="14,", MD="]6,"¥* Case 2 **")
GOTO 150
ENDIF
IF(ABM.GE.0.75.AND.ABM.LE.1.33) THEN
IF(ABS(X1-XY 1(K,1)).LE.0.001.OR.ABS(Y1-XY1(K,1)).LE.0.001)THEN
MD(J,1)=K
C MD(LJ)=K
C WRITE(*,155)L1,K
155  FORMAT(11X,1="14,, J='I4,", MD="16,"** Case 2 **')
GO TO 150
ENDIF
ELSE
IF(XA.EQ.F(K).AND.ABS(X1-XY 1(K,1)).LE.0.001)THEN
MD(J,1)=K
C MD(1,J)=K
C WRITE(*,156)L1,K
156  FORMAT(11X,1=14,", J="I4,", MD="16,"** Case 3 **")
GO TO 150
ENDIF
IF(XA.EQ.CC(K).AND.ABS(X1-XY1(K,2)).LE.0.001) THEN
MD(J,1)=K
C MD(LJ)=K
C WRITE(*,157)L,J,K
157  FORMAT(11X,1='J4,", J="I4,, MD="16,"** Case 4 **")
GOTO 150
ENDIF
ENDIF
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140

151

150
160

oNoNoNoNo RO RO RO RO N HORO RO RO RO Res

170
805
810
811

599

ENDIF

ENDIF

CONTINUE

IF (MD(J,1).EQ.0) THEN
WRITE(*,151)L,J,MD(1,1),ZS1,ZSJ,AREJ
FORMAT(2X,1=' 14, J=' 14 MD="]15 " Z1=' F8.4 ZJ="

* F8.4,,AREJ="F10.6)

PAUSE'MD=0'

ENDIF

CONTINUE

CONTINUE

DO 170 I=1,NP1

DO 170 J=1,NP1
IF(MD(J,1).EQ.0) THEN

DO 171 M=I MTT

K=LCO(M)

IF(LEQ.K .OR. JJEQK)THEN
WRITE(* *)1="1,",J="J

STOP' ERROR IN MD(1,J)=0'
ENDIF

CONTINUE

LT1=LTI1+LTI

IF(LLE.P1) THEN
LCO(LT1)=J

MTT=MTT+1

ELSE

[I=MOD(-P1-1,IP)+1
LPTI=LPT1+1
LCO(LT1)=KO(II)
LXP(II)=LPT1

LCP(LPT1)=II
KOP(LPT1)=KO(II)
MTT=LTI+LPT1*(IPL+1)
ENDIF

WRITE(*,810) MTT,LLT1,LPTL,LJ
IF(MMT.GT.60) WRITE(*,803)
IF(MTT*P1.GT.2646) WRITE(*,805)
PAUSE' MD=0'

GO TO 800

END IF

CONTINUE

FORMAT(10X,** ERROR 5 : NM.GT.2646 **')

FORMAT(10X,' MTT =13, CORD OF ADD PIONT =13,
* /10X, LT1="13,, LPT1="13,/20X,1="13,".J="13)

WRITE(*,811) NN
FORMAT(15X,’NN="17)

RETURN
END

CHIHEHIHHHHHHEHH R

SUBROUTINE IJZ(LILIZ, ARE,N,IP,IT)
DIMENSION A(81),B(81),BP(81),K0(20),LCO(10),KOP(10)

COMMON /ABP/A,B,BP,KO/COMP/LCO,KOP
/CONTR/N1,NP1,NIP,IPL,MP,MFH,MTT,LT1,LTPI

IF(LLE.N) THEN

11=1

IF(IT.EQ.2) II=LCO(II)
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17-1
ARE=A(IT)*B(11)-BP(1)*BP(II)
ELSE

II=MOD(I-N-1,IP)+1
1Z=1+(I-N-1)/IP

IF(IT.EQ.1) II=KO(I)
IF(IT.EQ.2) II=KOP(II)
ARE=BP(I)*BP(II)

ENDIF

RETURN

END

CHAR BRI
$LARGE:MD,W

210

190

200

SUBROUTINE FLM(NN,MPT)

REAL L,LP(81),LQA(81),LQB(81)

REAL B1,B2,CBM,CBN,SBM,SBN,BP

INTEGER*2 MD(209,209), MW(2646),MF(20),DA(0:61),R R1,P2

DIMENSION S(21),D1(20),D2(20),D3(20),D4(20),D5(20),D6(20),
W(212,212),XY1(2646,6),A(291).KO(20)

EQUIVALENCE (W(1,1),XY1(1,1))

COMMON /COEN/EN(20),EE2(20),EM1(20),EM2(20), EG2(20)/COM4/W

* /CEPM/CE(20),EP(20),AP(20) /COFC/F(2646),CC(2646)

* /CONTR/KP1,NP1IP,IPL,MP,MFH,MTT,LT1,LPT1/COMP/LCO(10),KOP(10)

* /COMD/MW ,MFMD/ABP/L.QA,LQB,LP, KO

*

/COM1/A,DA/COM2/B(60,20)/CFLM/L,NE,NR1,NR,INF
DO 210 I=1,NE

FK=EE2(1)/(1.0+EM 1(I))/(1.0-EM1(1)-2.0¥EN(I)*EM2()*EM2(1))
D1(I)=FK*EN(1)*(1.0-EN(I)*EM2(I)*EM2(I))
D2(I)=FK*EN(I)*(EM 1(I)+ EN(I)*EM2(I)*EM2(I))
D3(1)=FK*EN(I)*EM2(1)*(1.0+EM1(I))
D4(I)=FK*(1.0-EMI(I)*EM1(I))
D5(I)=EN(D)*EE2(1)/(1.0+EM1(I))/2.0
D6(1)=EG2(I)

DO 190 I=1,NN

F(1)=0.

P2-21

DA(0)=0

DA(1)=1

DA(2)=3

DAQ3)=6

DO 200 I=2,NE

DA(3*1)=15%1-9

DA(3*1-1)=DA(3*1)-6

DA(3*1-2)=DA(3*])-11

DO 444 MR=NR1,NR

R1=2*MR-1

DO 333 R=1,R1

IF(R.LE.MR) THEN

IF(INF.EQ.1) THEN

M=2*R

N=2*MR

ELSE

M=2*R-1

N=2*MR-1

ENDIF

ELSE

IF(INF.EQ.1) THEN
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92

220

230

240

M=2*MR
N=2#[R-MR)

ELSE

M=2*MR-1

N=2*(R-MR)-1

ENDIF

ENDIF

WRITE(*,92) mr,r1,r, M,N
FORMAT(2X,MR="13,, R1="I3,, R="13,, ** M,N:214)
FM=FLOAT(M)*3.1415926/L
FN=FLOAT(N)*3.1415926/L
K1=15*NE-9

DO 220 K=1,K1

A(K)=0.

K1=3*NE

DO 230 M=1X1

DO 230 K=1 MTT

B(M,K)=0.

DO 240 K=1,NN
C1=COS(FM*(XY1(K,1)*+L/2.))
C2=COS(FN*(XY1(K,2)+L/2.))
SI=SIN(FM*(XY1(K,1)+L/2.))
S2=SIN(FN*(XY1(K,2)+L/2.))
IF(INF.EQ.1) THEN
CC(K)=C1*C2

ELSE

CC(K)=S1*S2

ENDIF
CONTINUE

DO 280 I=1,NE
S(1)=CE(I)*(D1(I)*FM*FM/3 +D5(I)*FN*FN/3 +D6(I)/CE(1)/CE(1))
S(10)=S(1)

S(8)=CE(I)*(D2(I)+D5(1)) *FM*FN/6.

S(11)=S(8)

S(2)=S(8)*2.

S(14)=S(2)
S(3)=CE(D*(D5(I)*FM*FM/3.+D1(I)*FN*FN/3.+D6(T)/CE(I)/CE(I))
S(15)=S(3)

S(4)=(-D3(I)+D6(1)*FM/2.

S(19)=-S(4)

S(5)=S(4)*FN/FM

S(20)=-S(5)

S(6)=CE(I)*(D6(1)*(FM*FM+FN*FN)/3 +D4(I)/CE(1)/CE(1))
S(21)=S(6)
S(7)=CE(I)*(D1(I)*FM*FM/6.+D5(I)*FN*FN/6.-D6(I)/CE(1)/CE(I))
S(9)=-(D3(I)+D6(D))*FM/2.

S(16)=-S(9)

S(12)=CE(I)*(D5(I)*FM*FM/6.+D1(I) *FN*FN/6.-D6(I)/CE(1)/CE(I))
S(13)=S(9)*FN/FM

S(17)=-S(13)
S(18)=CE(I)*(D6(I)*(FM*FM+FN*FN)/6.-D4(I)/CE(I)/CE(I))
IF(INF.GT.1) THEN

S(4)=-S(4)

S(5)=-S(5)

S(9)=-S(9)

S(13)=-5(13)

S(16)=-S(16)
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S(17)=-S(17)
S(19)=-5(19)
5(20)=-S(20)
ENDIF
IF(.LEQ.1) THEN
DO 250 K=1,P2
250 AK)=S(K)
ELSE
I=DA(3*1-2)
AID=S(1)+AdD)
A(I+4)=S(2)+A(1I+4)
A(I+5)=S(3)+A(I+5)
DO 260 K=1,3
260 A(DAG*)-3+K)=S(3+K)+A(DA(3*1)-3+K)
IF(INE.NE) THEN
DO 270 K=7,P2
270 ADAGB*D)+K-6)=S(K)
ENDIF
ENDIF
280 CONTINUE
DO 290 M=1,MTT
IF(M.LE.LT1) THEN
MJ=1
IF(KP1.EQ.0) GOTO 290
IF(INF.EQ.1) B(3,M)=16.*COS(FM*L/2.)*COS(FN*L/2.)
* ¥(SIN(FM*LQA(LCO(M))/2.)*SIN(FN*LQB(LCO(M))/2.)
* SIN(FM*LP(LCO(M))/2.)*SIN(FN*LP(LCO(M))/2.))/L/L/FM/FN
* (LQA(LCOM)*LQB(LCOM))-LP(LCO(M))*LP(LCO(M)))
IF(INF.EQ.2) B(3,M)=16.*SIN(FM*L/2.)*SIN(FN*L/2.)
* ¥(SIN(FM*LQA(LCO(M))/2.)*SIN(FN*LQB(LCO(M))/2.)
* _SIN(FM*LP(LCO(M))/2.)*SIN(FN*LP(LCO(M))/2.))/L/L/FM/FN
* (LQA(LCOM))*LQB(LCOM))-LP(LCO(M)Y*LP(LCO(M)))
ELSE
MI=MOD(M-LT1-1,LPT1)+]
MJ=1+(M-LT1-1y/LPT1
MI=KOP(MI)
BP=LP(MI)
C WRITE(*,286)M ,MJ,INF,FM,FN,L
286 FORMAT(3X,'M="13,' MJ="13,  INF="12, , FM="E10.3," FN=',
* E10.3,,L='.E10.4)
CLM=COS(FM*L/2.)
CLN=COS(FN*L/2.)
SLM=SIN(FM*L/2.)
SLN=SIN(FN*L/2.)
if(mj.eq.ipl+1) goto 281
IF(MPT.GT.0) GOTO 282
281 IF(INF.EQ.1) B(3*MJ,M)=4. *CLM*CLN/L/L
IF(INF.EQ.2) B(3*MJ,M)=4 *SLM*SLN/L/L
GOTO 290
282 CBM=COS(FM*BP/2.)
CBN=COS(FN*BP/2.)
SBM=SIN(FM*BP/2.)
SBN=SIN(FN*BP/2.)
IF(INF.EQ.1) THEN
B1=16.*CLM*CLN*SBM*SBN/L/L/FM/FN/BP/BP
B2=4 *CLM*CLN*(SBM*CBN/FM+SBN*CBM/FN)/L/L/BP
ELSE
B1=16.*SLM*SLN*SBM*SBN/L/L/FM/FN/BP/BP
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284

285

287

886
290

292

294

300

333

444

310

665

600

B2=4.*SLM*SLN*(SBM*CBN/FM+SBN*CBM/FN)/L/L/BP
ENDIF

GOTO (284,285,287),MPT

B(3*MJ,M)=B1

GOTO 290

B(3*MI,M)=B2

GOTO 290

B(3*MIJ,M)=.5*(B1+B2)

ENDIF

WRITE(*,886)M,MJ,B(3*MI,M)
FORMAT(4X,M='14,, MJ="14,, B="E10.4)
CONTINUE

N3=NE*3

WRITE(*,292)

FORMAT(4X,' ** SLDLT is runing **)
CALL SLDLT(N3,1,MTT)

WRITE(*,294)

FORMAT(4X,'$$$$$$ SLDLT run finished $$$$$$")
DO 300 M=1,MTT

DO 300 I=MF(M)+1,MF(M+1)
F(I)=F(I)+BG*MW(I),M)*CC(I)

CONTINUE
CONTINUE

DO 310 K=1,MN

IF(F(K).LT.0.) F(K)=0
OPEN(6,FILE=\FLM\MD.DAT")
WRITE(6,665) NN,(MD(LJ),I=1,NP1),=1,NP1)
FORMAT(3X,15,/(2014))
CLOSE(6)
OPEN(6,FILE=\FLM\FO.DAT")
WRITE(6,600) (F(I),I=1,NN)
FORMAT(2X,5E15.8)
CLOSE(6)

END

C  HHHHH R

c
c
cl0
c

SUBROUTINE SLDLT(N,KS,L)
DIMENSION A(291),B(60,20),DA(0:61)
INTEGER*2 DA

COMMON /COM1/A,DA/COM2/B
DA(0)=0

DO 10I=1N

II=N-I+1

DA(II+1)=DA(II)

DA(1)=0

IF(KS.EQ.0) GO TO 50
DO 40 I=1,N
NI=I-DA(I)+DA(I-1)+1
IK=DA(I)-1
NI=I-DA(I+1)+DA(I)+1
IK=DA(I+1)-I

DO 30 J=NII
U=J-1+DA(T)
NJ=J-DA(J)+DA(-1)+1
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20

30
40

50

60

70

80
90

100

C

IF(NL.LE.NJ) THEN
JI=NJ

ELSE

JI=NI

ENDIF

JK=DA()-J

J1=7-1
FORMAT(2X,'000000000000000000000000000000")
DO 20 K=J1,71
Y=A(IK+K)

IF(1.EQ.J) THEN
Z=A(K+K)/A(DA(K))
A(K+K)=Z

ELSE

Z=A(JK+K)

ENDIF

A)=AQID)-Y*Z
WRITE(*,1)
CONTINUE
WRITE(*,1)
CONTINUE
CONTINUE
WRITE(%,1)

DO 100 M=1,L

DO 60 I=1,N
NI=I-DA(D)+DA(I-1)+1
IK=DA(I)-1

11=1-1

DO 60 K=NL]1
B(I,M)=B(I,M)-A(IK+K)*B(K,M)
DO 70 I=1,N
B(I,M)=B(L,M)/A(DA(I))
DO 90 II=1,N

[=N+I-11
NI=I-DA(I)+DA(I-1)+1
IK=DA()-1

11=1-1

DO 80 K=NL]I1
B(K,M)=B(K,M)-A(IK+K)*B(I,M)
CONTINUE
CONTINUE

DO 200 I=1,N

c200 DA(D)=DA(I+1)

RETURN
END

CHEHHHHHHEHHAEHHEHEHH R
$LARGE:MD,W

*
*
*

SUBROUTINE SYSW
INTEGER*2 MD,MW ,MF

COMMON /COMA4/W(212,212)/SYS/MSYB(4),MSYP(4)

JCOMD/MW(2646),MF(20),MD(209,209)

JABP/QA(81),QB(81),BP(81),KO(20)/COFC/F(2646),CC(2646)

/CONTR/KP1,NP1,IP,IPL MP. MFHMTT,LT1,LPT1

DO 100 I=1,NP1
IF(LLE.MSYB(3)) THEN
10=I
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334

335

330
100

ELSE
K=I-MSYB(3)-1
IXP=MOD(K,MSYP(3))+1
1Z=K/MSYP(3)+1
10=KP1-+(IZ-1)*IP+IXP
ENDIF
DO 330 J=1,NP1
W(LJ)=.5*(F(MD(I0,7))+-F(MD(J,10)))
IF(J.LE.MSYB(1)) THEN
ELSE IF(J.LE.MSYB(2)) THEN
J2=MSYB(4)-MSYB(1)+]
W(LI)=W(LI)+.5*FMD(I0,32))+F(MD(J2,10)))
ELSE IF(J.LE.MSYB(3)) THEN
DO 334 K=13
12=I+K*(MSYB(3)-MSYB(2))
W({ID=W(I)+.5*FMD(0,J2))+F(MD(J2,10)))
ELSE
IF(IP.GT.0) THEN
K=J-MSYB(3)-1
JXP=MOD(K,MSYP(3))+1
JZ=K/MSYP(3)+1
JXB=KO(JXP)
JO=KP1+(JZ-1)*IP+JXP
W(LJ)=.5*( F(MD(10,J0))}+F(MD(J0,10)) )
IF(JXP.LE.MSYP(1)) THEN
ELSE IF(JXP.LE.MSYP(2).OR.JXB.LE.MSYB(2)) THEN
J12=J0+MSYP(4)-MSYP(1)
W(LI)=W(,J)+.5*(F(MD(I0,J2))+F(MD(32,10)))
ELSE
DO 335K=1,3
12=J0+K*(MSYP(3)-MSYP(2))
W(LI)=W(LJ)+.5*(F(MD(10,J2))+F(MD(J2,10)))
ENDIF
ENDIF
ENDIF
CONTINUE
CONTINUE
RETURN
END

CHEHHHHHHHHH B
$LARGE: A

107
108

109

110

111

112

SUBROUTINE MATIVT(N)
DIMENSION A(212,212)
INTEGER*2 INDEX(212)
COMMON /COMA4/A
DO 107 I=1,N
INDEX(I)=0
AMAX=-1.
DO 111 I=I,N
IF (INDEX(I)) 111, 109, 111
TEMP=ABS(A(L))
IF (TEMP-AMAX) 111, 111, 110
ICOL~I
AMAX=TEMP

CONTINUE
IF (AMAX) 117, 120, 112
INDEX(ICOL)=1
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113

114

115

116

117
118

120

121
122

C

PIVOT=A(ICOL,ICOL)
A(ICOL,ICOL)=1.0

if (PIVOT.LE.E-20) PIVOT=E-20
PIVOT=1.0/PIVOT

DO 113 J=1I,N
A(ICOL,J)=A(ICOL.J)*PIVOT
DO 116 I=1,N

IF (IICOL) 114, 116, 114
TEMP=A(LICOL)
A(LICOL)=0.

DO 115 I=I,N
A(LY)=A(,7)-A(ICOL,J)*TEMP
CONTINUE

GOTO 108

WRITE(*,118)

FORMAT(/(20X,"THE INVERSE MATRIX has alread set up')/)
GOTO 122

WRITE(*,121)

FORMAT(' ZERO PIVOT,The inverse matrix didnot set up')

RETURN
END

kkkokkokokokdkokkkokkkokkokkokkkokkkk

$LARGE: WP

SUBROUTINE STIFP
DIMENSION G1(20),G2(20),WP(128,128)

COMMON/ABP/BQA(81),BQB(81),BP(81),KO(20),

* /CEPM/CE(20),EP(20),AP(20)/COP/WP

* JCONTR/NEL,NPLIP,IPL MPMFHMTT,LT1,LPT1

5

10

20

30

40

DO 100 JPD=1,IPL-MFH
IFJPD.EQ.1)THEN
IF(MFH.EQ.0)THEN
DO 5 I=1,IP
GI(D)=0.
G2(1)=.5*CE(1)/(EP(1)*AP(1))
ELSE
DO 10 I=1,IP
G1(I)=CE(1)/(EP(1)*AP(1))
G2(I)=.5*CE(2)*G 1(I)/CE(1)
ENDIF
ELSEIF(JPD.LT.IPL-MFH)THEN
DO 20 I=1,IP
G1(D=G2(I)
G2(I)=CE(JPD+MHS)*G2(I)/CE(JPD-1+MHS)
ELSE
DO 30 I=1,IP
G1(D)=G2(I)
G2(I)=CE(IPL)*G2(I)*2./CE(IPL-1)
ENDIF
DO 90 I=1,IP
[I=(JPD-1)*IP+]
WP(ILI=WP(ILI)+.5*G1(I)
DO 40 J=JPD-+1,IPL+1-MFH
1I=(J-1)*IP+1
WP(ILI))=WP(ILIN+G1()
DO 80 J=JPD+1,IPL+1-MFH
I=(J-1)*IP+1
JJ=(JPD-1)*IP+1
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50
80
90
100

WP(ILIN)=WP(ILII)+.5*(G1(1)+G2(I)
DO 50 K=JPD+1,IPL+1-MFH
JK=(K-1)*IP+1
WP(ILIK)=WP(ILIK)+G 1 (1)+G2(})
CONTINUE

CONTINUE

CONTINUE

RETURN

END

C  BHHBHHHARHH
$LARGE

o B |

10
100
101

200

C250
300

SUBROUTINE SLNPD(D,N)
DIMENSION A(212,212),B(212)
COMMON /COM4/A/COMS5/B
NI=N-1

DO 100 K=1,N1

K1=K+1

C=A(K.K)
IF(ABS(C)-0.000001) 1,1,3
DO 7 =KIN
IF(ABS(A(J,K))-0.000001) 7,75
DO 6 L=K,N

C=A(K,L)

AKL=AQ,L)

A(J,L)=C

C=B(K)

B(K)=B())

B(J)=C

C=A(K,K)

GOTO3

CONTINUE

WRITE(*,2) K
FORMAT(*** SINGULARITY IN ROW']I5)
D=0.

GO TO 300

A(K.,K)=.000001

C=AK.K)

DO 4 I=KIN

AK D=AK,J)/C
B(K)=B(K)/C

DO 10 1I=K1,N

C=A(LK)

DO 9 J=KI,N
AQLT=A(LY)-C*A(K,J)
B(I)=B(I)-C*B(K)
CONTINUE
B(N)=B(N)/A(N,N)

DO 200 L=1,N1

K=N-L

K1=K+1

DO 200 J=K1,N
B(K)=B(K)-A(K,J)*B(J)

D=1

DO 250 I=1,N

D=D*A(L])

RETURN

END
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Appendix C-2: Visual Basic Code of EPWP due to Pile Driving
(For Microsoft Excell)

'Program for Evaluation of Mindlin Stress

Option Explicit ' All variables must be declared

' Definition of the global constants
Public Const Pi = 3.14159265359
' Variables

Public r As Double

Public z As Double

Public p As Double

Public D As Double 'D=L

Public m As Double ' m=z/L.

Public n As Double 'n=r/L

Public mu As Double 'Possion Ratio u of soil
Public A As Double 'sqrt[n+(m-1)"]
Public B As Double 'sqrt{n™+(m+1)"]
Public F As Double 'sqrt[n+m"}
Public Cmu As Double 'Cmu=8pi(1-mu)
Public Zul As Double 'zul=2(2-mu)
Public Zu2 As Double 'Zmu2=2(1-2mu)
Public Zu5 As Double

Public Zu34 As Double

Public A2 As Double 'A"2

Public B2 As Double 'B"2

Public F2 As Double 'F~2

Public A3 As Double ‘A™3

Public B3 As Double 'BA3

Public F3 As Double 'F™3

Public A5 As Double 'A"S

Public BS As Double 'B"S

Public F5 As Double 'F/5

Public B7 As Double 'B”S

Public F7 As Double 'F7

Public m_n As Double 'm/n

Public m_n2 As Double '(m/n)"2
Public n2_m2 As Double 'n"2-m"2
Public m2 As Double 'm”2

Public m3 As Double 'm”"3

Public mn2 As Double 'm*n”2

Public n2 As Double 'n"2

Public mné As Double '6mn2(n2 m?2)
Public m_1 As Double 'm-1

Public m1 As Double 'm+1

Public m1_2 As Double 'm1°2

Public m1_3 As Double 'm1"3

Public m1_4 As Double 'm1°4

Public cu0 As Double
Public Dcu As Double
Public cu As Double
Public fu0 As Double
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Public ful As Double
Public qu As Double
Public r0 As Double
Public L As Double

Public E As Double 'undrained modlus
Public u2 As Double 'excess pore pressure

Public C As Double 'C=2pi*r0
Public Ap As Double 'Ap=pi*r0")

Public i As Integer
Public j As Integer

Public Pu As Double
Public Pt As Double
Public Pb As Double
Public Stz As Double
Public Str As Double
Public Sto As Double
Public Stt As Double
Public SS As Double
Public TT As Double
Public Re As Double
Public Rp As Double
Public Rp3 As Double
Public af As Double

Public C1 As Double
Public C2 As Double

Public C3 As Double

Public C4 As Double

Public C5 As Double

Public C6 As Double

Public C7 As Double

Public C8 As Double

Public C9 As Double

' defining the initial values
Sub Define()

N1=50# * Cells(4, 1).Value
cu0 = Cells(N1 + 2, 3).Value
Dcu = Cells(N1 + 3, 3).Value
10 = Cells(N1 + 2, 5).Value
mu = Cells(N1 + 2, 7).Value
fu0 = Cells(N1 + 3, 5).Value
ful = Cells(Nl + 3, 7).Value
qu = Cells(N1 + 3, 9).Value
E = Cells(NI + 2, 11).Value
af = Cells(N1 + 3, 11).Value

C=2#*Pi*10
Ap=Pi*10* 10

Cmu = 8# * Pi * (1# - mu)
Zul =2# * (2# - mu)

Zn2 = 2# * (1# - 2# * mu)
Zus = 2# * (5# + 2# * mu)
Zu34 =3# * (3# - 4# * mm)

End Sub
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Function Iz t( ) As Double

'Define ' Initialisation

mn6 = 6# * mn2 * n2_m2

Cl=-Zul/A

Cl=(Zul *(4#*m+ 1#)-Zu2 *m n2 *ml)/B
C3=(Zu2*m n2-4*Zul)*m/F

C4=(mn2+m 1"3)/A3

C5=@#*m3+ (4 *mu- 15#) * mn2 - (Zu5 *m n2 - 1#) *ml *m!l 2)/B3
C6=((12# + Zu2) * mn2 - 6# * m3 + ZuS *m _n2 * m3)/F3
C7=(mn6+ 12#*m n2 *ml *ml 4)/B5

C8=-(12#*m n2 *m3 *m "2 + mn6) / F5

CO=-Zul *Log(A+m-1#H)*B+m+ 1#)/(F+m) " 2)

Iz t=2#*(C1+C2+C3+C4+C5+C6+C7+C8+C9)/Cmu
End Function

9o ok ok ok sk o ok ok ok ok ok ok Sk ok sk sk sk sk ok ok ok sk skook ok sk sk sk ok sk sk skoko sk ok ok sk ke sk okl skokok ok sk ok ok sk sk skokokokok
Function Ir_t() As Double

"Define ' Initialisation

mné = 6# * mn2 * n2_m2

C9=12#* (1# - mu) *m n2

Cl=05*Zu2/A

C2=0#-2#*mu-12#*m+C9 *ml)/B
C3=(12#-C9*m/F

C4=-(mn2 +(m-1#)"~3)/A3

C5=3#*ml 3-2#*m3+ (21# - 4# ¥ mu) * mn2
C5=(C5+Zu5*m n2*ml 3)/B3

C6=-(Zu5 *m_n2 * m3 + 4# * (5# - mu) * mn2) / F3

C7=(mn6 - 12# *m_n2 *ml *ml 4)/BS5
C8=-(mn6-12*m n2 *m3 *m * m)/F5

C9=0.5*Zu2 * Log((A + m - 1#) / (F + m))

CO=CO+ ((0.5* Zu2) "2 - 6#) * Log((B+ m+ 1#) / (F + m))
CO=CoO+(I#-mu)*Zu2 *(m-1)/B+m+1)-m/(F+m))
Ir t=2#*(C1+C2+C3+C4+C5+C6+C7+C8+C9)/Cmu
End Function

93k ok ok ok ok ok ok ok ok sk ok ok ook ok ok ok skok ok sk sk ok ok sk ok sk okok sk skek skokok skeok sk ok skokeskokok ok kokskokesk sk kok sk ok okok
Function Io_t( ) As Double

'Define ' Initialisation

C9=m_n2 *ml

Cl=0.5*Zu2/ A 'Zu34=3(3-4mu)

C2=-(Zu2 *(Zu34 /6# + 3#* C9)+ 12# *m - 6#) / B
C3=m*B#*Zu2 *m n2+ 12#)/F

C4=-7Zu2 *(2# * mn2 + (1# - m_n2) *ml 3)/B3
CS=2#*(3#*mn2 -m3 + (1#-3#*m n2) *ml 3)/B3
C6=m*(Zu2 *(m2 +2# *n2 - m2 * m _n2)- 6# * (n2 - m2 *m_n2))/F3
C7=0.5*Zu2 * Log((A +m_1)/(F +m))

C8 =(Zu2 * Zu2 / 4# - 6#) * Log((B + m1) / (F + m))
CO=-(1#-mu)*Zu2 *(m 1/ (B+ml)-m/(F+m)

To t=2#*(C1+C2+C3+C4+C5+C6+C7+C8+C9)/Cmu

End Function
ok ok ook ko ok ok ok kb sk ko ko kb ok ok ok ook sk kR ko kR ok ko ok kK

Function It _t( ) As Double
'Define ' Initialisation
C9=05*%Zu2 *m/n2
C8=06#*m n2 *m/n2'6m3/nd

Cl=(Zul +C9*m 1)/A-C8*m/F
C2 =-(Zul + (C9 - C8) * m1)/ B
C3=(m*m 1°3/n2-n2)/A3
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C9=m*ml 3/n2 "(m/n2)(ml"3)
C8=C9*m n2 '(m3/nd)(ml”3)

C4=-(Zu34/3#* (C9+m2) + 17# *m2 - n2 + 12# * C8) / B3
CS5=m2*(Zu2 *m n2+4#* (5#-mu)+ 12 *m n2 *m n2)/F3
Co=(6#*Co9*ml 2*(m n2-1#)+ 12# *m2 *n2)/B5
C7T=-6#*m2*(m2 *m n2 * (m_n2 - 1#)+ 12# *n2) /F5

It t=2#*n*(C1+C2+C3+C4+C5+C6+C7)/Cmu

End Function

¥k s ok sk ok sk ok ok ok o ok ok ok sk sk skook sk sk sk skok sk sk skokoskok sk sk skokok skokoskok sk sk ook sk skokok skekokokoskoskok sk kok kok
Function Iz u( ) As Double

'Define ' Initialisation

Cl=-Zul/A

C2=(Zul+Zu2*m n*mt/n)/B

C3=-Zu2*m n2/F

C4=n2/A3

C5=4#*m2 * (1# - (1# + mu) * m_n2)/F3

C6=(4#* (1# +mu) *m *ml_3/n2 - (4# * m2 + n2))/ B3
C7=-6#*m n2 ¥ (n2+m2)*n2 m2/FS
C8=6#*m* (mn2 -ml *ml_4/n2)/B5

Iz u=(C1+C2+C3+C4+C5+C6+C7+C8)/Cmu

End Function

tok ok dokosk ok skok ok okskok ok kokskokskokok kokokok ok ok Rk skokokokokkok sk kokok ok kkok ok ok kok kok ok

Function Ir_u() As Double
'Define ' Initialisation
CO=12#*(1#-mu) *m n
C8=2#*(1#+2#*mu)*m n

Cl=05*Zu2/A

C2=0G#+Zul-C9*ml/n)/B

C3=-2#*Zul -C9*m n)/F-n2/A3
C4=(C7+C8*m n*m2)/F3

C5=~«(C7-02+C8 *ml 3/n)/B3
C6=6#*m2* (n2-m2 *m n2)/F5
C7=6#*m* (ml 4 *ml/n2-mn2)/B5
C8=2#*(1#-mu) * Zu2 * (1#/(F+ m) - 1#/ (B + ml))
Iru=(Cl1+C2+C3+C4+C5+C6+ C7+C8)/Cmu
End Function

¥k 3k ok sk ok ok ok ok ok sk ok sk sk ok sk sk sk ok ok sk ok ok ok sk ook skoskok sk skokokok kok ok sk ok skekokockosk ok skekokokok skokok sk kokoskokok
Function Io_u( ) As Double

'Define ' Initialisation

CO=6#*(1#-2#*mu) *m n
C8=2#*(1#+2#*mu) *m_n
CT=2#*m*m-4# *mu * n2

Cl=05%Zu2/A

C2=(6#-7Zu2 *Zu34/6#+C9*ml/n)/B

C3=(Zu2 *Zu2/2#-C9*m n-6#)/F
C4=(C7+C8*ml 3/n)/B3

C5=-(C7+C8*m2 *m n)/F3

C6=-2#*(1 -mu) *Zu2 * (1#/(F + m) - 1#/ (B + ml))
Iou=(Cl1+C2+C3+C4+C5+C6)/Cmu

End Function

ks ok ok Rk ok Rk ok ok kR ok ok Rk ok kR ok kR sk ok kR Rk Rk K
Function It_u( ) As Double

'Define ' Initialisation

CO=(12#-4#*mu) *m
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C8=m 1/n

C7=05%Zu2/n

C6=6#*m n2

Cl=C7*C8/A

C2=m 1 *C8 *C8/A3

C3=(C7-C6/n)*ml/n/B

C4=(C9+ml 3 *(1#+ 12#*m n2)/n2)/B3

C5=-(C6 *ml *ml 4/n2+ 6# * mn2)/BS
C6=(C6-Zu2)*m n/n/F

C7=(-C9-m3 * (2# + 12# *m_n2)/n2)/F3

C8=06#* (mn2+m3 *m n2 ¥m n2)/F5

It u=n*(C1+C2+C3+C4+C5+C6+C7+C8)/Cmu
End Function

ok oK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk sk skok skokoskok ko ok sk ko skok ko sk sk ko sk skok kb kok ok sk osk sk kkok
Function Iz_p( ) As Double

'Define ' Initialisation

Co9=05*Zu2*m 1

Cl1=-C9/A3

C2=C9/B3

C3=-3#*m 1"3/AS5

C4=-ml *(Zu34 *m *ml - 3# * (54 *m - 1#)) / B5
C5=-30#*m *ml 3/B7

Iz p=(C1+C2+C3+C4+C5)/Cmu

End Function

¥k e sk sk ok ok sk ok sk ok ok ok sk sk sk sk sk o ok sk ok ok sk ok ok sk ok sk ok sk skeok ok skokook sk skosk s sk skok skokok sk ok oskosk ok skokokckok ok
Function Ir_p() As Double

'Define ' Initialisation

Cl=05*%Zu2*m 1/A3

C2=-05*Zu2*(m+ 7#)/ B3
C3=2#*(1#-mu)*Zu2/B/ (B +ml)
C4=-3#*n2*m 1/A5

CS=((3# * Zu2 * ml - 6#) * ml - Zu34 *n2 *m_1)/B5
C6 =-30# *mn2 * ml / B7

Ir p=(C1+C2+C3+C4+C5+C6)/Cmu

End Function

Pk ok okokokok ok kR okokokokokokok ok kokok ok ok kolok bk kokokokok ok ok okk sk ok ok okokok kekek sk kok kokok ok ok
Function Io_p() As Double

'Define ' Initialisation

C9=05*Zu2*(m- 1#)

C1=C9/A3

C2 = (Zu34 *ml / 6#-3) * Zu2 / B3

C3=-2#*(1#-mu) * Zu2/B/ (B +ml)

C4 = (3# * Zu2 * ml - 6#) *ml /B5

TIo p=(C1+C2+C3+C4)/Cmu

End Function

ek gk ok ok ok kR ok Rk Rk Rk Rk KRR Rk Rk R R R R Rk Rk Rk kK
Function It_p( ) As Double

'Define ' Initialisation

C9=0.5*Zu2
Cl=-C9/A3
C2=C9/B3

C3=-3#%(m- 1#) 72/ AS
C4=-(Zu34 *m*ml - 3# * (3# * m - 1#)) / BS
C5=-30# *m *ml_2/B7

It p=n*(Cl+C2+C3+C4+C5)/Cmu

End Function
3ok 3k ok ok ok ok ok okokokokokokok kb skok ok sk skok skokok ok ok kkok ok sk skok sk ok sk sk kkokokok ok ok

Function up(r, z, L) As Double
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p=Sqr(r*r+(z-L)*(z-L))
cu=cul+Dcu*z
Re=10#* 10
Rp = Sqr(E / 3#)
Rp3=(E/3H " (1#/3#)
If (r <= Rp) Then
Cl1=2#*Log(Rp/ 1)+ 0.817 * af
Else
C1=0817*af*(Rp/r)"2
End If
If (p <= Rp3) Then
C2=4#*Log(Rp3 /p) + 0.94 * af
Else
C2=094*af*(Rp3/p)"3
End If
C3=4#* Log(Rp3/p)+0.94 * af
If (L <=z - Re) Then
up=0
Elself (L < z) Then
up=-C3*(z-L)/(L-Re)
'If (up < C1) Then up = C1
Elself (L >= z) Then
up=Cl
End If
up=up ¥ cu
End Function

ok okokok skok sk ok skok skokokokokok skok ok ko kokokok okoskdokokokskekokokokok ko sk kokolok ok kokokokok kb ok

Function Sz(i, j) As Double
Define ' Initialisation
r=Cells(N1 + 2, 9).Value

D = Cells(N1 + j + 6, 2).Value
z = Cells(Nl1 + 5, i + 2).Value

n=r/D
m=z/D
ml=m+ 1#

m 1=m- 1#
m2=m*m
n2=n*n
A2=m 1"2+n2
B2=ml"*2+n2
F2=m2 +n2

A = Sqr(A2)

B = Sqr(B2)

F = Sqr(F2)
A3=A*A2
B3=B *B2
F3=F*F2
AS=A2* A3
B5=B2 *B3
F5=F2*F3
B7=B2 *B5
mn=m/n
mnp2=mn¥*mn
mn2 =m * n2

n2 m2=n2-m2
m3 =m * m2

ml 2=ml * ml '(m+1)"2

346



m}l 3=ml *ml 2'(m+1)"3

ml 4=ml 2 *ml 2'(m+1)"4

'Sz=-1000 * Iz () ‘normal

'Sz=-1000 * 1z u() ‘'normal

'Sz=-1000 * Iz p() 'normal

'Sz=-1000 * Ir_t() mormal

'Sz=-1000 *Ir u() ‘normal

'Sz=-1000 *Ir p() ‘'normal

'Sz=-1000 *Io_t() 'mormal

'Sz=-1000 *Io w() mormal

'Sz=-1000 *Io p() 'mormal

'Sz=-1000 *It t) 'normal

'Sz=-1000 * It w() 'mormal

'Sz=-1000 * It p() 'mormal
Pu=C*fu0/D Pu=C*fu0*D/D"2
Pt=C*ful/2
Pb=(3.67+3.3333*D)/D/D

Stz=-(Pu*Iz u)+Pt*1z t() + Pb * 1z p()
Str=-(Pu*Ir u()+Pt*Ir t()+Pb*Ir p())
Sto=-(Pu*Io u)+Pt*Io t()+Pb*Io p()
Stt=-(Pu*It u() +Pt*It t() +Pb * It p())
SS = (Stz + Str+ Sto) / 3

TT =(Stz-Str) * 2+ (Str - Sto) *2 + (Sto - Stz) "2+ 4 * Stt ~ 2
TT =Sqr(TT)/ 1.414

u2 =up(r, z, D)
Sz=S8S8
'Sz=S8S +u2
End Function

Appendix C-3: Visual Basic Code of EPWP Dissipation Uxyz
(For Microsoft Excell)

'Program for Evaluation of EPWP Dissipation
Option Explicit ' All variables must be declared
' Definition of the global constants

Public Const Pi = 3.14159265359

' Variables

Public N1 As Integer "!

Public i As Integer

Public j As Integer

Public m As Integer '

Public n As Integer '

Public k As Integer

Public kk As Integer

Public by _bx As Double '
Public Ix_bx As Double '
Public Rx_bx As Double '
Public Eta As Double’
Public bz_bx As Double '
Public y by As Double '
Public 1z_bz As Double
Public Rz 1z As Double
Public Ch_Cv As Double
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Public u0_ul As Double
Public um_ul As Double
Public ub_ul As Double

]

Public x_bx As Double '

Public bx_Rx As Double
Public Ix Rx As Double

Public by Ry As Double
Public ly_bx As Double '
Public ly Ry As Double

Public Rx_Ry As Double
Public Rx_Rz As Double

Public bz Rz As Double '’
Public 1z Rz As Double '1z/Rz
Public Bx As Double '

Public By As Double '

Public Lx As Double’

Public Ly As Double '

Public Dx As Double '

Public Dy As Double '

Public x Rx As Double'
Public y Ry As Double '
Public z Rz As Double '

Public T As Double '
Public q As Double '
Public gz As Double '

Public pm As Double’
Public gqn As Double '
Public hk As Double '

Public Mumn As Double '
Public Cmn As Double '
Public Muk As Double '
Public dk As Double '
Public Rx_Rk2 As Double '
Public Rx Rk As Double'
Public Ck_Ch As Double '
Public Tfact As Double’

Public C1 As Double

Public C2 As Double

Public C3 As Double

Public C4 As Double
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' defining the initial values

Sub Define( )

NI1=40 * Cells(3, 1).Value

q=0.5* Cells(Nl + 5, 1).Value

qz= 0.5 * Cells(N1 + 6, 1).Value

by_bx = Cells(N1 + 2, 3).Value 'values from the cells
Ix_bx = Cells(NI + 3, 3).Value

Rx_bx = Cells(N1 + 4, 3).Value

348



Eta = Cells(Nl1 + 2, 5).Value
bz _bx = Cells(N1 + 3, 5).Value
y_by = Cells(N1 + 4, 5).Value

1z bz = Cells(N1 + 2, 7).Value
Rz 1z = Cells(Nl + 3, 7).Value
Ch_Cv = Cells(N1 + 4, 7).Value

u0_ul= Cells(N1 + 2, 9).Value

um_ul = Cells(N1 + 3, 9).Value
ub ul=um ul

x_Rx = Cells(Nl + 7, 9).Value

bx Rx=1#/Rx bx

Ix Rx=bx Rx *Ix bx

by Ry= 1#/(1#+ ((Eta- 1#) * Ix_bx - Eta+ Rx_bx) /by bx)
Iy bx =by bx + Eta * (Ix_bx - 1#)

ly Ry=1#/(1#+ (Rx bx -1x _bx)/ly bx)

Rx Ry=by Ry * Rx bx /by bx
y Ry=y by *by Ry

lz Rz=1#/Rz Iz

bz Rz=1#/(lz bz * Rz 1z)

Rx Rz=bz Rz *Rx_bx/bz bx

Rx Rk2=1#+Rx Ry *Rx Ry+ Rx Rz*Rx Rz

Rx_Rk = Sqr(Rx_Rk2)

Ck Ch=(1#+Rx Ry *Rx Ry+Rx Rz*Rx Rz/Ch Cv)/Rx Rk2
Tfact=Ck Ch * Rx Rk2

End Sub
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Function u0(z_Rz) As Double

'Private z As Double

If (z Rz <= bz _Rz) Then

ub=u0 ul+(1-u0 ul)*z Rz/bz Rz'z Rz

Elself (z Rz <=1z Rz) Then

u0=1-(1-um ul) ¥(z Rz-bz Rz)/(1z Rz-bz Rz)

Else

u0=0

End If

End Function
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Function Umn(m, n) As Double

"Define ' Initialisation

gn="Pi* (q+n)

By=qn * by Ry

Ly=qn*ly Ry

Dy=Ly- By

Mumn = (pm * pm + qn * gn * Rx_Ry * Rx_Ry) "/ Tfact

If (Dx <> Dy) Then

Cmn = (Sin(By + Bx) - Sin(Ly + Lx)) / (Dx + Dy)

Cmn = Cmn - (Sin(By - Bx) - Sin(Ly - Lx)) / (Dy - Dx)
Cmn=2#*Cmn/pm/qn

Elself (Dx <> 0) Then

Cmn = Cos(By - Bx) - (Sin(Ly + Lx) - Sin(By + Bx)) / (Dx + Dy)
Cmn =2#* Cmn/pm/ gn

349



Elself (Dx =0 & Dy = 0) Then
Cmn = 4# * Sin(Bx) * Sin(By) / pm / qn
End If

Umn = Cmn * Cos(pm * x_Rx) * Cos{(qn * y Ry) * Exp(-Mumn * T)

End Function
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Function Uk(k) As Double

hk = Pi * (qz + k)

Muk = (hk * hk * Rx Rz * Rx Rz/Ch Cv) " Tfact

If Iz bz <> 1) Then

dk=u0 ul-um ul * Cos(hk * 1z Rz) + (1# - u0_ul) / hk / bz_Rz * Sin(hk * bz_Rz)
dk=dk + (1# -um ul)/hk/ (Iz Rz - bz Rz) * (Sin(hk * bz Rz) - Sin(hk * 1z Rz))
dk = 2# * dk/ hk

Else

dk =u0 _ul- Cos(hk * 1z Rz) + (1#-u0 _ul)/ hk/bz_Rz * Sin(hk * bz_Rz)
End If

Uk = dk * Sin(hk * z Rz) * Exp(-Muk * T)

End Function
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Function U(j, j) As Double

Define ' Initialisation

T = Cells(N1+j + 7, 2).Value

z Rz=Cells(Nl + 6, i+ 2).Value

Cl=0

Form=0To 50

pm=Pi*(q+ m)

Bx =pm * bx_Rx

Lx=pm*Ix Rx

Dx=1Lx-Bx

Forn=0To 50

C1=C1+ Umn(m, n)

Next

Next

C2=0

kk=1

If (qz>0.01) Thenkk =0

Fork=kk To 50

C2=C2+Uk(k)

Next k

U=1#-Cl1 *C2 'u0(z Rz)

End Function
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Appendix C-4: Visual Basic Code of EPWP Dissipation Ur
(For Microsoft Excell)

For the 1* form of u(r,0):

'Program for Evaluation of EPWP Dissipation Ur for 1st form
Option Explicit ' All variables must be declared

' Definition of the global constants

Public Const Pi = 3.14159265359

' Variables

Public i As Integer
Public j As Integer
Public m As Integer '
Public n As Integer '
Public K As Integer '
Public km As Integer’
Public kn As Integer '
Public kh As Integer'

Public by bx As Double '
Public Ix_bx As Double '
Public Rx_bx As Double '
Public Eta As Double '
Public bz_bx As Double '

Public ly_bx As Double '

Public x_bx As Double '
Public y_by As Double '
Public bx Rx As Double
Public Ix_Rx As Double
Public by_Ry As Double
Public ly Ry As Double
Public Rx Ry As Double

Public bz Rz As Double '
Public 1z_Rz As Double '
Public Bx As Double '
Public By As Double '
Public Lx As Double '
Public Ly As Double '
Public Dx As Double '
Public Dy As Double '

Public x_Rx As Double '
Public y_ Ry As Double'
Public T As Double'
Public q As Double '
Public qy As Double '

Public u0_ul As Double '
Public um_ul As Double'

Public pm As Double '
Public gn As Double '
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Public hk As Double '

Public Mumn As Double '
Public Cmn As Double’

Public C1 As Double
Public C2 As Double
Public C3 As Double
Public C4 As Double
Public C5 As Double
Public A As Double
Public A2 As Double
Public B As Double
Public C As Double
Public D As Double
Public E As Double
Public af As Double
Public afim As Double

' defining the initial values

Sub Define()

N1 =40 * Cells(43, 1).Value
q=0.5* Cells(N1 + 4, 1).Value
qy = 0.5 * Cells(N1 + 5, 1).Value
by_bx = Cells(NI + 2, 3).Value 'values from the cells
Ix_bx = Cells(NI + 3, 3).Value
Rx_bx = Cells(NI + 4, 3).Value
Eta = Cells(Nl + 2, 5).Value

bz _bx = Cells(Nl + 3, 5).Value
y_by = Cells(N1 + 4, 5).Value
'x_bx = Cells(Nl + 3, 9).Value

bx Rx = 1#/Rx_bx

Ix Rx=bx Rx * Ix_bx

by Ry=1#/(1# + ((Eta - 1#) * Ix_bx - Eta+ Rx_bx) /by bx)
ly bx =by bx + Eta * (Ix_bx - 1#)

Iy Ry=1#/(1#+ (Rx bx - Ix bx)/ly bx)

Rx_Ry=by Ry * Rx_bx /by bx
y_Ry=y by*by Ry

km=1

If (@>0.01) Thenkm =0

kn=1

If (qy>0.01) Thenkn=0

End Sub

kol kR ok kol ok Rk kR Rk Rk ok Rk ok Rk Rk KRk Rk Rk
Function Afo(K, j) As Double

A=05*Pi*(K-05+2#%*))

A2=16*A*A

B=4#*K*K

C=T#*B-31#

D=83#*B * B -982# * B + 3779#

E=6949# *B " 3 - 153855# * B * B + 1585743# * B - 6277237
Afo=1+C/3/A2+D/5/A2/A2+E/105/ A2/ A2/ A2
Afo=A-(B-1#)/8/A * Afo

End Function

Function Afol(K, j) As Double
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Define
Afol =Pi*(K/2#+3#/4#+j-1)

End Function
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Function JO(K, af) As Double
'Define ' Initialisation
C3=0.5*af

C5=1

If (af < 30#) Then

If (K > 0) Then

Forj=1ToK

C5=C5*C3/j

Next

End If

C4=0C5

Fori=1To 50
C5=-C5*C3*C3/i/(K+1)
C4=C4+C5

Next

J0=C4

Else

JO=Sqr(2#/Pi/ af) * Cos(af -K *Pi/2-Pi/ 4)
End If

End Function

Function Je2(af) As Double

If (af = 0) Then

Je2=0

Else

Je2 =2 * JO(1, af) / af - JO(0, af)
End If

End Function
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Function Umn() As Double
'Define ' Initialisation

qn = JO(1, afm)

Bx = afm * bx_Rx

Lx=afm *Ix Rx
Dx=Lx *Lx - Bx * Bx

Mumn = afm * afm

If (Abs(Dx) >= 0.0001) Then
Cmn =Ix Rx *Ix Rx * Je2(Lx) - bx_Rx * bx_Rx * Je2(Bx)
Cmn=4#*Cmn/Dx/qn/qn

Else
Cmn = 2# * Bx * JO(1, Bx) /Mumn / qn/ qn
End If

Umn = Cmn * JO(0, afm * x_Rx) * Exp(-Mumn * T)

End Function

ok ok sk ok ok ok ok 3k sk ko sk ok ok ok ok okok ok ok ok sk sk ok okok ok skeoskok skokokoskokok ko skeok ok kokok skokokek ok sk sk sk skokekokokok
Function U(4, j) As Double

Define ' Initialisation

T = Cells(N1 +j + 7, 2).Value

x_Rx = Cells(N1 + 6, 1 + 2).Value

Cl=0#

Form=1To 32

If (m <= 16) Then
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afm = Cells(m + 5, 15).Value

Else

afm = Afol(0, m) ‘Cells(m + 5, 23).Value
End If

C1=Cl+Umn()

Next

U=1#-Cl
End Function

For the 2 form of u(r,0)

2 3 ok sk ok ok ok okok skok sk ok kb kok skokok ok ok skokokokok kol kb ok skokok ook ok sok ok sk kb skokokkok ok sk k ok

"Program for Evaluation of EPWP Dissipation for u(r,0)Form 2
Option Explicit ' All variables must be declared

' Definition of the global constants

Public Const Pi = 3.14159265359

' Variables

Public i As Integer
Public j As Integer
Public m As Integer’
Public n As Integer '
Public K As Integer '
Public km As Integer '
Public kn As Integer '
Public kh As Integer '

Public by bx As Double'
Public Ix_bx As Double '
Public Rx_bx As Double '
Public Eta As Double '
Public bz_bx As Double '

Public ly_bx As Double’

Public x_bx As Double '
Public y by As Double'
Public bx_Rx As Double
Public Ix_Rx As Double
Public by Ry As Double
Public ly Ry As Double
Public Rx_ Ry As Double

Public bz_Rz As Double’
Public 1z Rz As Double '
Public Bx As Double '
Public By As Double '
Public Lx As Double '
Public Ly As Double '
Public Dx As Double '
Public Dy As Double '

Public x Rx As Double '

Public y Ry As Double '
Public T As Double'
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Public q As Double '
Public qy As Double '

Public u0_ul As Double '
Public um_ul As Double'

Public pm As Double '
Public gn As Double '
Public hk As Double '

Public Mumn As Double '
Public Cmn As Double '

Public C1 As Double
Public C2 As Double
Public C3 As Double
Public C4 As Double
Public C5 As Double
Public A As Double
Public A2 As Double
Public B As Double
Public C As Double
Public D As Double
Public E As Double
Public af As Double
Public afim As Double

' defining the initial values

Sub Define()

NI =40 * Celis(43, 1).Value

q= 0.5 * Cells(N1 + 4, 1).Value
qy = 0.5 * Cells(N1 + 5, 1).Value
by bx = Cells(N1 + 2, 3).Value "values from the cells
Ix_bx = Cells(N1+ 3, 3).Value
Rx_bx = Cells(Nl + 4, 3).Value
Eta = Cells(N1 + 2, 5).Value
bz_bx = Cells(N1 + 3, 5).Value
y_by = Cells(N1 + 4, 5).Value
'x_bx = Cells(N1 + 3, 9).Value

bx Rx=1#/Rx bx

Ix Rx=bx Rx *1Ix bx

by Ry= 1#/(1#+ ((Eta- 1#) * Ix_bx - Eta+ Rx_bx) /by bx)
ly bx =by bx + Eta * (Ix_bx - 1#)

ly Ry=1#/(1#+ (Rx bx - Ix bx)/ly bx)

Rx Ry=by Ry * Rx_bx /by bx
y Ry=y by*by Ry

km=1

If (@ > 0.01) Then km =0

kn=1

If (qy>0.01) Thenkn=0

End Sub
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Function Afo(K, j) As Double

A=05*Pi*(K-05+2#%*j)

A2=16*A*A
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B=4#*K *K

C=T#*B-31#

D=83#*B*B-982#*B + 3779

E=6949# *B "3 - 153855# * B * B + 1585743# * B - 6277237
Afo=1+C/3/A2+D/5/A2/A2+E/105/A2/A2/A2
Afo=A-(B-1#)/8/A* Afo

End Function

Function Afol(K, j) As Double

Define

Afol =Pi*(K/2#+3#/4#+j- 1)

End Function
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Function JO(K, af) As Double
'Define ' Initialisation
C3=0.5*%af

C5=1

If (af < 30#) Then

If (K > 0) Then

Forj=1ToK
C5=C5*C3/j

Next

End If

C4=C5

Fori=1To 50
C5=-C5*C3*C3/1/(K+1i)
C4=C4+C5

Next

JO=C4

Else

JO =Sqr(2#/Pi/ af) * Cos(af -K *Pi/ 2 -Pi/ 4)
End If

End Function

Function Je2(af) As Double

If (af = 0) Then

Je2=0

Else

Je2 =2 * JO(1, af) / af - JO(0, af)
End If

End Function
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Function Umn( ) As Double

'Define ' Initialisation for (5-4a)

gn = JO(1, afm)

Bx = afm * bx_Rx

Lx =afm * Ix Rx

Dx=1Lx *ILx -Bx * Bx

Mumn = afm * afm

If (Abs(Dx) >= 0.0001) Then

Cmn =Ix Rx *Ix Rx * Je2(Lx) - bx Rx * bx Rx * Je2(Bx)
Cmn=4#*Cmn/Dx/qn/qgn

Else
Cmn = 2# * Bx * JO(1, Bx) / Mumn/ qn/ qn
End If

Umn = Cmn * JO(0, afm * x_Rx) * Exp(-Mumn * T)
End Function
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Function U(, j) As Double
Define ' Initialisation

T = Cells(N1+j + 7, 2).Value
x_Rx = Cells(N1 + 6, i + 2).Value

Cl=0#
Form=1To32
If (m <= 16) Then

afm = Cells(m + 5, 15).Value

Else

afm = Afol(0, m) 'Cells(m + 5, 23).Value

End If
Cl1=C1+Umn()
Next

U=1#-Cl

End Function

Appendix C-5: Visual Basic Code of EPWP Consolidation Uz
(For Microsoft Excell)

"Program for Evaluation of Mindlin Stress
Option Explicit ' All variables must be declared
' Definition of the global constants

Public Const Pi = 3.14159265359

' Variables

Public NI As Integer !
Public i As Integer
Public j As Integer
Public m As Integer '
Public n As Integer '
Public k As Integer
Public kk As Integer

Public by bx As Double'
Public Ix_bx As Double '
Public Rx_bx As Double '
Public Eta As Double '
Public bz_bx As Double '
Public y by As Double'
Public 1z_bz As Double
Public Rz_1z As Double
Public Ch_Cv As Double
Public u0_ul As Double
Public um_ul As Double
Public ub_ul As Double

Public x_bx As Double '

Public bx Rx As Double
Public Ix Rx As Double
Public by Ry As Double
Public Iy bx As Double '
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Public Iy Ry As Double
Public Rx Ry As Double
Public Rx Rz As Double

Public bz Rz As Double '
Public 1z_Rz As Double "1z/Rz
Public Bx As Double '

Public By As Double '

Public Lx As Double’

Public Ly As Double '

Public Dx As Double '

Public Dy As Double '

Public x_Rx As Double '
Public y Ry As Double'
Public z Rz As Double '

Public T As Double'
Public gz As Double '
Public q As Double'

Public pm As Double '
Public gn As Double '
Public hk As Double '

Public Mumn As Double '
Public Cmn As Double’
Public Muk As Double '
Public dk As Double’
Public Rx Rk2 As Double '
Public Rx_Rk As Double '
Public Ck Ch As Double'
Public Tfact As Double '

Public C1 As Double

Public C2 As Double

Public C3 As Double

Public C4 As Double
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' defining the initial values

Sub Define()

NI=40 * Cells(3, 1).Value

q=0.5 * Cells(N1 + 5, 1).Value

gz = 0.5 * Cells(N1 + 6, 1).Value

by_bx = Cells(N1 + 2, 3).Value 'values from the cells
Ix_bx = Cells(NI + 3, 3).Value

Rx bx = Cells(N1 + 4, 3).Value

Eta = Cells(Nl + 2, 5).Value
bz _bx = Cells(N1 + 3, 5).Value
y_by = Cells(N1+ 4, 5).Value

"Iz_bz = Cells(N1 + 2, 7).Value
1z Rz = Cells(N1+ 3, 7).Value 'Rz Iz
Ch_Cv = Cells(Nl + 4, 7).Value

u0_ul = Cells(Nl + 2, 9).Value
um_ul = Cells(N1 + 3, 9).Value
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ub ul=1"'um ul
x_Rx = Celis(N1 + 7, 9).Value

bx_Rx = 1#/Rx_bx

Ix Rx=bx Rx *Ix bx

by Ry=1#/(1#+ ((Eta - 1#) * Ix_bx - Eta+ Rx_bx) /by bx)
ly bx =by_bx + Eta * (Ix bx - 1#)

ly Ry=1#/(1#+ Rx _bx-1x bx)/ly bx)

Rx Ry=1#
y_Ry=y by *by Ry

'z Rz=1#/Rz Iz
bz Rz=1#/(lz bz * Rz 1z)
Rx Rz=bz Rz * Rx bx/bz bx

Rx_Rk2 = 1#+ Rx_Ry *Rx_Ry+Rx Rz * Rx_Rz

Rx Rk = Sqr(Rx_Rk2)

Ck Ch=(1#+Rx Ry *Rx Ry+Rx Rz *Rx Rz/Ch Cv)/Rx Rk2
Tfact = Ck_Ch * Rx_Rk2

End Sub
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Function Umn(m, ) As Double

Define ' Initialisation

qn=Pi*(q+n)

By=qn *by Ry

Ly=qn*ly Ry

Dy=Ly-By

Mumn = (pm * pm + qn * qn * Rx_Ry * Rx_Ry) / T-fact

If (Dx <> Dy) Then

Cmn = (Sin(By + Bx) - Sin(Ly + Lx)) / (Dx + Dy)

Cmn = Cmn - (Sin(By - Bx) - Sin(Ly - Lx)) / (Dy - Dx)
Cmn=2#* Cmn/pm/qn

Elself (Dx <> 0) Then

Cmn = Cos(By - Bx) - (Sin(Ly + Lx) - Sin(By + Bx)) / (Dx + Dy)
Cmn = 2# * Cmn/pm/ qn

Elself (Dx =0 & Dy = 0) Then

Cmn = 4# * Sin(Bx) * Sin(By) / pm / qn

End If

Umn = Cmn * Cos(pm * x_Rx) * Cos(qn * y_Ry) * Exp(-Mumn * T)

End Function
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Function Uk(k) As Double

hk =Pi * (qz + k)

"Muk = (hk * hk * Rx Rz * Rx_Rz/Ch_Cv) "/ Tfact

Muk = hk * hk '"* Rx Rz * Rx Rz/Ch Cv

If 1z Rz <>bz_Rz) Then

dk = Cos(hk * bz Rz) - um ul * Cos(hk * Iz Rz) '+ (1# - u0 _ul)/hk/bz Rz * Sin(hk * bz Rz)
dk=dk- (1#-um ul)/hk/(l1z Rz - bz Rz) * (Sin(hk * bz Rz) - Sin(hk * 1z Rz))

dk = 2# * dk / hk

Else

dk =u0 ul-Cos(hk * 1z Rz) + (1# - u0_ul)/ hk/ bz Rz * Sin(hk * bz Rz)

dk =2# * dk/ hk

End If

359



dk = dk / hk "*Rz

'Uk = dk * Sin(hk * z Rz) * Exp(-Muk * T)

Uk = dk * (1# - Cos(hk * Iz_Rz)) * Exp(-Muk * T)
End Function

Function Uz(i, j) As Double

Define ' Initialisation

T = Cells(N1+j + 7, 2).Value

bz Rz = Cells(Nl + 6, i + 2).Value
'C1=(u0_ult+1)*bz Rz/2+(um_ult+1)*(1z Rz-bz Rz)/2
Cl = (um ul+ 1#) * (1z Rz-bz Rz)/2#

C2=0

kk=1

If (qz> 0.01) Thenkk =0

For k =kk To 50

C2 = C2 + Uk(k)

Next k

Uz=1#-C2/C1

End Function

ok kokokkokkokok sk okkokkok kR kok kokok kok kkokkokkkokk ok k ok ok ok kok sk ok kokkok ok kok Sk ok

Function U(, j) As Double
Define ' Initialisation

T = Cells(N1 +j + 7, 2).Value

z Rz=Cells(Nl + 6, i + 2).Value

Cl=90

Form=0To 50
pm=Pi * (q+ m)

Bx = pm * bx_Rx
Lx=pm *Ix_Rx
Dx=Lx-Bx
Forn=0To 50
C1=C1+ Umn(m, n)
Next

Next

C2=0

kk=1

If (qz > 0.01) Then kk =0
Fork =kk To 50

C2 = C2 + Uk(k)
Nextk

U=1#-Cl1*C2 '0(z Rz)
End Function
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Appendix C-6: MATLAB Code of Inversion of Laplace Transform

function mainGWR ()

3GWR Inverse Laplace transfer

global Tau

T=10; a=0.25; Nsum=16;%aT=5~10 gave good results for Nsum=50~5000
N=Nsum; N1=N-1; Nt=N; $L=50; Nsum/L=100

Time=zeros (N, 1); ft=zeros(N,1l);

ftexact=zeros (N, 1l); Dlt Ft=zeros(N,1);

dt=T/Nt; T=2*T; Ot=2.*pi/T;
Time=[0:dt:dt*N1]"';
for kt=1:N1

ti=Time (kt+1);

ft(kt+1)=GWR(ti,4);

ftexact (kt+1)=Ftfunct (ti);

if ftexact (kt+l)==

Dlt Ft(kt+1l)=ft (kt+l)-ftexact (kt+1);
else
Dlt Ft(kt+l)=(ft(kt+l)-ftexact (kt+l))/ftexact (kt+l);

end
end
%s l=a+i*[0:0t:0t* (Nsum-1)]"';
$fs=Fsfunct(s 1);
$ft=fft (fs,N)/N;
sft=Fourier (-1, fs);
$ft=real (ft)-real (Fsfunct(a))/2.;
$ft=2.*ft.*exp(a*Time) /T;
$ftexact=Ftfunct (Time} ;
3D1t Ft=ft-ftexact;

fopen ('LpiGWR out.txt’','w');
Mat=[Time, ft, ftexact,Dlt Ft]
csvwrite ('LpiGWR out.txt',Mat);
fclose('all');

function G=GWR (t,MO0)

global Tau

M=MO+round (l16*t/10); M=M-mod (M, 2) ;
fk=zeros(l,2*M+4); GO=fk;Gm=fk;Gp=fk;G02=G0;
if(t==0),t=.01;end

Tau=log(2)/t; Prec=21*M/10; broken=0;

GO (1l:2*M)=Fkfunct 1(M);
G02(1:2*M)=Fkfunct 2 (M);
SMat=[GO',G02"']
Gm(1:M+1)=0.;

best=G0 (M-1) ;

for k=0:M-2
for n=M-2-k:-1:0

nl=n+2;
expr=G0 (nl+1)-GO0(nl);
if (expr== | isnan(expr))

broken=1; break
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end
expr=Gm(nl+1)+ (k+1) /expr;
Gp (nl)=expr;
if (mod(k,2)==0)
if (n==M-2-k),best=expr;end
end
end
if broken==1, break; end
for n=0:M-k
nl=n+1;
m(nl)=G0(nl);G0(nl)=Gp(nl);
end
%best
end

& e ——

function b=binomial (n, k)
b=factorial (n)/factorial (k) /factorial (n-k);
function d=Fkfunct 1 (M)
global Tau
d=zeros (1, 2*M); fk=zeros(l,2*M);G0=fk;
for k=1:2*(M+2)
fk(k)=Fsfunct (k*Tau) ;
end
M1=M;
for n=1:M
sf=0.;si=-1;
for k=0:n
si=-si;
sf=sf+si*binomial (n, k) *fk (n+k) ;
end
GO (n)=Tau*n*binomial (n, k) *sf; $GO=fk (t)
if (abs(GO(n))<l.e-6), GO (n)=0; end
if isnan(GO(n))

Ml=n-1;
GO(n)=0.;
break

end
end
d=G0 (1:2*M);

function d=Fkfunct 2 (M)
global Tau
d=zeros(1l,2*M); fk=zeros(1l,2*M+2);G0=fk;
for n=1:2*M
fk(n)=Fsfunct (n*Tau);
GO (n)=n*Tau*fk(n);
end
M1=M;
for k=1:2*M
for n=k:2*M
Gk(n)=(1+n/k)*G0 (n)-n/k*G0(n+1) ;
end
for n=k:2*M
GO (n) =Gk (n) ;
end
GO (k)=Gk (k) ;
if (abs (GO (k))<1l.e-6), GO(k)=0; end
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end
d=G0 (1:2*M) ;

function F=FLT (t,M0)
M=MO+round{(1.6*t); M1=M-1;

1f(t>0)
r=2.*M/(5.*t);
$r=0.5;
else
t=1.e-9; r=2.%e-3;
end

F=Fsfunct (r) *exp(r*t)/2.; dc=pi/M;

for cta=dc:dc:dc*M1
s=r*cta* (cot (cta)+i);
sgma=cta+ (cta*cot {(cta)-1.) *cot(cta);
Cl=Fsfunct(s); C2=exp(t*s);
Fss=Fsfunct (s)*exp(t*s)*(l.+i*sgma};
¢sf=(1l.+i*sgma) *Fss;
F=F+real (Fss);

end

F=F*r/M;

if(abs(F)<1.e-10), F=0.; end

function Fs=Fsfunct(s)
[nsi,nsjl=size(s)Fs=zeros(nsi,nsj);f=Fs:

Q

°

Fs=exp(-1l./s)./s./sqrt(s); $FO07
$Fs=exp(-2.*sqrt(s)); $F04
$Fs=1./(sqrt(s)+sqgrt(s+l.)); $F03
$f=(s.*s+1); Fs=s./(f.*f); F——m——— Ftl
$f=exp(-10.*s); Fs=f./s; = — - Ft2
$Fs=2./(s.*(1.0+exp(-2.0*s))); G Ft3

function Ft=Ftfunct (t)
[nti,ntjl=size(t); Ft=zeros(nti,ntj);
if(t<l.e-4), t=1l.e-4;end;

Ft=sin(2.*sqrt(t))/sqrt(pi); $F07
gFt=exp(-1./t)./t./sqrt(pi*t); $F04
&Ft=.5*(1l.~exp(-t))./t./sqrt(pi*t) $F03
gFL=0.5*t.*sin(t) Fm—————- Ftl

$Ft=Ufunct (t-8) ; G—————- Ft2
&f=zeros(nti,ntj); g=-ones(nti,nti): F———— Ft3

$for k=0:2000, g=-1*g; f=f+g.*Ufunct(t-2*k); end
$EL=2*f;

function y=Ufunct (x)
[nxi,nxj]=size(x); y=zeros(nxi,nxj);
for ki=l:nxi

for kj=1:nxj

if(x(ki, kj)<0), y(ki,kj)=0; end
if{x(ki,kj)==0), y(ki,kj)=0.5; end
if(x(ki,kj)>0), y(ki,kj)=1.; end

end
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function g=Fourier (Kz,Y)
N=size(Y,1);
Xci=zeros(N,1l)+i*zeros(N,1); g=Xci;
Xc=zeros (N, 1l); Xs=zeros(N,1);

if(Kz==1), Y=Y/N; end
N2=N/2, N1=N-1; J=0;
for k=0:N1-1
if k<J
=Y (k+1) ;Y (k+1)=Y(J+1);Y(J+1)=
end
Kn=N2;
while (J>=Kn)
J=J-Kn; Kn=Kn/2;
end
J=J+Kn;
end
Xc=real (Y); Xs=imag(Y):

Dm=log2 (N); M=Dm;
PI=4.0*atan(1.0); NN=1;
for L=1:M
K=NN; NN=NN*2; Cc=1.;
S0=sin(D); CO=double(1l.
for 3j=0:K-1
for ii=jj+1:NN:N

S=0.; D=PI/K;
)

I1=1i+K;

Tc=Xc (I1l)*C+Xs(Il)*

Ts—Xs( )*C Xc(Il)*
1)=Xc(1i1)-Tc; Xs(Il)=Xs(ii)-Ts;
i)

( =Xc (i i)+Tc; Xs(ii)=Xs(ii)+Ts;
end
CO=D0*C+C0; C=C+CO0;
S0=D0*S+50; S=S+S50;
end
end
Xci=Xc+i*Xs;
if Kz==-
for K=2:N2+1
B=Xci (K); Xci(K)=Xci(N-K+2); Xci (N-K+2)=B;
end
end
g=Xci;

s(D); DO=-double(2.)*C0O;
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