Peer-to-peer Network Based on the Knddel Graph

Junlei He

A thesis
in
The Department
of

Computer Science

Presented in partial Fulfilment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

April 2007

© Junlei He

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28951-8
Our file Notre référence
ISBN: 978-0-494-28951-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Peer-to-peer network based on the Knodel graph

Junlei He

Knodel graphs W,, of even order n and degree d, 1<d<|log,n|, was

introduced by W. Knodel for broadcasting and gossiping information in interconnected

networks. It has been proved that the diameter of the Knodel graphs W, , is [%1

In recent years, peer-to-peer (P2P) computing has attracted a lot of attention from
the researchers and application developers. With the development of mobile networks,
mobile peer-to-peer (MP2P) computing may become a potential “killer application” of
the mobile carriers.

In this thesis, we present a P2P network structure based on the Knddel graphs.
The routing algorithm takes advantage of the routing heuristics in the Knodel graphs and
reduces the routing length of P2P network by half, compared with the currently studied
P2P network structures (CHORD and CAN). Given that most mobile devices have
limited computing resources, another advantage of the proposed P2P network structure is
that it can be flexibly configured to adapt to different MP2P application scenarios, taking
into the fact that most mobile devices have limited computing resources. With this model,
each mobile node maintains a fixed-size routing table regardless of the size of the whole
network, while the tradeoff on routing hops is still acceptable in many MP2P
applications.

Some practical heuristics for real mobile network are also proposed in this thesis.

iii

Acknowledgements

I truly appreciate the help of my supervisor, Dr. Hovhannes A. Harutyunyan,
one who has guided me along since the very beginning. His charisma has inspired me

throughout the course of my learning, and will continue to do so.

v

Contents

I INErOAUCTION...c..iiiiiiiiiiiiiieciict ettt ssaeconesae s 1
1.1 Background and Definition of Peer-to-Peer Computing..........cc.ccceveveenveeneceneene 1
1.2 Peer-to-peer Applications and Limitation on Mobile Environment..................... 3

1.2.1 Content SRAriNgcooiiiiiiiiiitecc ettt s 3
1.2.2 Other Resource Sharingccoccooviiiiiiiiieiiiieiienieeenee e ssiresreeserassveeenneeas 3
1.2.3 Instant MESSAZINGccoviimiiriieiieenie ettt e s e st sseesnee e 4
1.2.4 Distributed COMPULINE.......ccovviirieriiieienieritesirieseeneieseesseeseeeieeeeeeaseaesneens 4
1.2.5 Group Collaborationcccooiiriiiiiiiiiniiecieeere ettt ae e ens 5
1.3 Research Concerns about P2P and MP2P Computingccccceevienieeviverencnnnen. 5
1.3.1 P2P Network ArChiteCtUIEceevieiiiieiieieesieie et e 6
1.3.2 Querying and routing Strategycccevveevervevrireeereieeeceeereereereereereeteeresseeneens 7
1.3.3 NetWork Mapping........ocoovoiiioiiieeeeeeee et 8
1.3.4 Finding S00d PEETS....cueiiiiriiiiirccieieeie ettt 10
1.3.5 Business model, Privacy, Security, Trust and Incentives...............ccocn..... 10
1.4 The New P2P Network ArchiteCture.........ccoevvvviierereiineieeeieneieeeiresneessne e 11
1.5 Thesis OUHNEccocoiriiiiiiiieritccee et ettt ettt e eas 11

2 Related WOTK ..cooiiiiiiiicci ettt 12
2.1 GONULEILA .t 12
2.2 CHORD ..ottt sttt sttt et st e e b e b e neenee 14

2.2.1 Routing in CHORD.........ccooiiiiiiiiieieetenett ettt 14
2.2.2 Maintaining CHORD Networkccccooveviininiiniiiniiiineeceeeeee 15
N B O N\ PO ORI 17

2.3. 1 Routing in CAN ..ot 17

2.3.2 Peer JOIMING...coiiiiiiiiiiiieeerie ettt et 18
2.3.3 Peer Departure, Recovery and Maintenance..........c.occovviviviiviiieninecnnnecinne, 19

2.4 Others: Freenet, GRAPES........cccooiiiii 19

3 The New P2P Infrastructure and Related Protocolc..cccovviiniiniininniininnine. 21
3.1 The P2P Architecture Based on the Knddel Graph...........ccccoccoenninnininnn. 22
3.1.1 Basic Routing in Knddel Graph.......ccccoceviiiiniciiniiniinicniicinccne 23
3.1.2 P2P Algorithms based on the Knddel Graph.........cocovvvniviiininininninnin 32
3.1.3 Efficiency Analysis of the P2P Algorithms on Knédel Graph 40
3.14 Improvements in Mobile Network.........c.cocccevniiiiiiiiiiininiinn 42

4 Simulation RESUILScccooviiiiii e 44
4.1 Routing in the Knodel graph.........cccoceoiiiiiniie e 44
4.1.1 Routing in a full Knoddel graphccccoovviiiiiiiinniniiiiecincceiies 44
4.1.2 Routing in a partial Knodel graph..........c..cccocooiiiini 46

4.2 Simulation of the P2P Network.........ccoooiiiiiiiiiiiiicrceceecs 47

5 Conclusions and Future Workccoccoiiiiiiiiiiiicecee e 49
BibliOZIaphy ..c..eeooeiie e e e e ras e 51

vi

List of Figures

Figure 1 — Mapping P2P and the Internet (Solid lines stand for underlying TCP/IP

network links, dotted lines stand for P2P network links.)ccoocoiiiiiieiiiiii, 8
Figure 2 - Knddel graph of dimension 3 and order 12...........cccccooiiiniiniiiniiiiiiieeens 22
Figure 3 - Partial Knddel Graph W, of 3 Dimensions, k=2........cc.cccoooninniinnniinninins 24
Figure 4 — The 2-leveled MP2P Structurecccoocoiieiiiiieiiineeiee e 42

Vil

List of Tables

Table 4.1 Routing length in the Knodel graph........c.cccooviriiiiiiiiees 45
Table 4.2 Routing length in the Knédel graph — another order of reduction.................... 45
Table 4.3 Routing length in the partial Knodel graphc.oooiii 47
Table 4.4 Routing Length in the MP2P Networkccoooiiiiiiiiiine 48
Table 4.5 Size of Routing Table in the MP2P Networkc.ccoevieiiiiniiiniiiiicniiinene 48

viii

1 Introduction

1.1 Background and Definition of Peer-to-Peer Computing

Popularized by Napster ([1]) and Gnutella ([2]) file sharing solutions, peer-to-peer
(P2P) computing has attracted much attention of the researchers and developers. The
initial purpose of these P2P systems was to share huge volumes of data. With the
improvement of network bandwidth and processing abilities of most nodes, some P2P
applications aimed sharing resources other than the contents of each node in the network,
such as hardware resource (CPU cycles, storage space, etc). Collaborative computing and
communication are also treated as P2P application in some scope (e.g.: instant
messaging).

In fact, P2P applications are not a new idea. Although consumer applications for
P2P are relatively recent, the concept of P2P is as old as the Internet itself. The P2P
nature of the early Internet was best exemplified by the Usenet network. Created in 1979,
Usenet is a network of computers (accessed via the Internet), each of which hosts the
entire contents of the network. Messages are propagated between the peer computers;
users connecting to any single Usenet server have access to all the messages posted on
each individual server. While the users' connection to the Usenet server is of the

traditional client/server model, the relationship between servers is definitely P2P.

Until now, there is not a widely accepted definition of peer-to-peer computing. In
general, the notion of P2P means that the processing is spread over a large number of
“agents” (servents, in Gnutella) with minimal central control. Different from the
traditional client/server model (which still dominates in network), in a P2P system,
usually but not necessarily, peers function as both client and server and have equivalent
responsibilities in the network.

Comparing with the widely accepted client/server computing model, P2P systems
have some advantages such as:

e May take advantage of many unused resources in the internet;

¢ Avoid the computing ability and bandwidth bottleneck of a central server;
e Improve the system robustness;

¢ Increase privacy;

e Result in more flexible and adaptable networks, etc.

On the other hand, P2P systems also have some drawbacks:

e There is no guarantee that the required content/resources will always be available;

e Itis hard to enforce content ownership in P2P network;

e The efficiency of P2P systems is a problem, including bandwidth usage and
routing strategies;

e P2P systems may be more vulnerable to viruses and attacks, etc.

P2P applications also have some other potential influence on Internet. Current
technologists and users tend to forget that the Internet is meant to facilitate something
more like a conversation and less like a television network. P2P redresses some of this

imbalance between user and provider and makes use of more participants than spectators.

With the popularity of the wireless communication network, such as WLAN and
3G networks, some mobile peer-to-peer (MP2P) applications are becoming the so-called
killer applications. After the mobile IP (RFC3344, [32]) is practically in use, the mobile
node may keep the same IP address when it moves around different networks. This
makes it possible for the mobile nodes to participate in the P2P applications without
modifying the existing P2P protocols. Some researchers have already done experiments
to prove that, by treating the mobile nodes as ordinary network nodes, P2P file sharing
(eDonkey [35], in the experiments) could be mapped onto the GPRS and UMTS

networks ([33], [34]). We will discuss the issues brought by the mobility in later sections.

1.2 Peer-to-peer Applications and Limitation on Mobile Environment

In this section we categorize P2P applications and provide examples for each

category.

1.2.1 Content Sharing

Content sharing is still the dominant application in P2P network. After Napster
and Gnutella, many other P2P content sharing systems were introduced to Internet users,
such as Freenet ([3]), KaZaA ([4]), BitTorrent, etc. Each of the systems has its own
characteristics, some of them focused on locating content, while others dedicated to

improving content spreading efficiency.

1.2.2 Other Resource Sharing

Besides data contents, other computing resources can also be shared in a P2P

manner. Proposed by Microsoft and Starbucks, SFLLAN (an experimental wireless

community network in the San Francisco Bay Area, [6]) is an example of using P2P as a
shared resource provider. The basic idea behind SFLAN is that, as the use of broadband
connections grows, people will create LANs in their houses using small, inexpensive
hubs into which they can plug their computers. They will also be able to plug in a tiny
radio beacon (a WAP) so that anyone within range can piggyback on his/her broadband
Internet connection. Eventually, this creates a citywide equivalent of a multimegabit-per-

second LAN for the benefit of all at a very small cost of each user.

1.2.3 Instant Messaging

Instant messaging (IM) systems have been around for many years. The IM
systems, such as ICQ, AOL, Yahoo Messenger and MSN Messenger, are very popular
today. Jabber ([5]) is believed to be the next generation of IM platform, which is unique

in that it is also a platform for building other kinds of applications.

1.2.4 Distributed Computing

The “Search for Extraterrestrial Intelligence at Home” (SETI@home, [8]) project
is an example of distributed computing. It makes use of idle computers in the Internet to
analyze the data collected continuously from large radio telescopes at Arecibo and other
places in the world. The SETI@home server breaks down the whole task into small work
units and sends them to computers all over the world. When the computer finishes one
job, it sends the result back and gets the next work unit. Climate prediction is another

distributed computing application that attracts a lot of attention.

1.2.5 Group Collaboration

Groove ([7]) is a platform that software developers can use to build a cooperative
collaboration environment. The team members install Groove on PCs and create a
“virtual space”. In this virtual space, one member can interact with other members to
collaborate on projects in real time as if they were both in the same room.

Some other applications are also of P2P style, which share similar system
architectures with some of the systems mentioned above. For example, some online
games are similar to IM systems, and some enterprise distributed storing systems are
similar to content sharing systems.

Most of these applications may also run in a mobile environment. Some of them
may even become the new attraction for the mobile network operators. For example, the
mobile online gaming is definitely more attractive to the players than that running on

stationary desktops.

1.3 Research Concerns about P2P and MP2P Computing

The research on P2P systems may involve many aspects, including network
architecture, querying, routing, caching strategies, mapping with the underlying physical
network, business model, privacy and security, etc. As a new technology, many of these
topics deserve a lot of research.

Compared with the traditional network, the mobile network system has many

limitations including, but not limited to:

e The connection status is unreliable.
e The bandwidth of the mobile network is lower and more expensive.
e The mobile devices usually have limited computing capability.
e Energy efficiency is a critical issue for these devices.
These limitations bring more issues for the mobile peer-to-peer (MP2P)

computing. The following sections describe the studies in more details.

1.3.1 P2P Network Architecture

A P2P network can be modeled as a graph G = (V, E), where V is the set of
vertices (or peers) and E is the set of edges (or communication links between peers). Two
peers u€V and ve V are adjacent if there is an edge e€ E, such that e=(u, v). We also
say peers u and v are neighbours of each other. The degree of a peer is the number of
neighbours of this peer. The degree of a graph G is the maximum degree among all peers
in this graph. A stands for the degree of a graph. A path p in a graph G = (V, E) is a
sequence of peers of the form p=v;, v,, ..., v, (n>1), in which each peer v; is adjacent to
the next node v;,;. Obviously, the path p is also a sequence of edges. The length of a path
is the number of edges in the path. The length of the shortest path between two peers is
the distance between them. The diameter of a graph is the maximum of the distances
between all pairs of peers in the graph. A graph G = (V, E) is said to be connected if there
is a path between any two peers on G.

In P2P networks, large diameter means that querying and responding messages
have to travel long distances (hops) and might be forwarded to more irrelevant peers.
This causes low efficiency in both response time and bandwidth usage. In addition, high
degree means that each peer has to deal with a large routing table, and when peers join or

6

leave the network, more peers have to be notified. Thus high degree leads to high
maintenance overhead and bad scalability. Different from interconnection networks in
parallel computers, peers' random joining and leaving the network make it difficult to
adopt the architectures (such as hypercube, DeBruijn graph, etc. [9]) widely used in
interconnection networks.

Early P2P networks, such as Gnutella, are formed arbitrarily. A new peer
randomly chooses some peers in the network and connects to them. When a peer leaves
the network, its neighbours just simply drop the links to it. This strategy makes the
maintenance of the network simple; however, it also leads to large diameter of the
network and high degree for those popular peers, which implies bad scalability. Some
newly developed P2P network models are trying to address this problem by arranging the
network peers in certain organized way to reduce the diameter and degree of the whole
network. CHORD ([10]) and CAN ([11]) are two such P2P models. In CHORD, with high
probability, the diameter and degree of the network are both of O(logN) (N is the total

1 d) and an individual

number of peers). In CAN, the average routing path length is (d/4)(n
peer maintains 2d neighbours (CAN partitions a d dimensional space into n equal zones).
More details of these two P2P models will be introduced in chapter 2.

In this thesis, we propose a new MP2P network architecture in which the number

of degree is configurable between a constant number and logN according to different

application scenarios.

1.3.2 Querying and routing strategy

The main purpose of a P2P network is to locate and retrieve certain resources.

The search result is usually evaluated by the costs and the quality of the results. Costs

include bandwidth usage and processing cost of involved peers. Some P2P systems, such
as Gnutella, use a simple flooding strategy to broadcast the originator's querying
requirement, and limit the hops each message will travel in the network by using a
parameter called Time-To-Live (TTL). However, this strategy does not guarantee that the
desired content will be retrieved, even if it does exist in the network. Also, this strategy
needs too much bandwidth of the network. Researchers are developing some other
strategies to accomplish the P2P querying, such as iterative deepening, directed BFS,
local indices, hints, etc ([12], [13]).

Besides the exact matching query, range query is also studied by researchers

([15], [16)).

1.3.3 Network mapping

Most P2P networks are application-level systems on top of the Internet. Each link
in P2P network may span several physical hops of TCP/IP link. Figurel illustrates how

the mismatching influences the performance of P2P networks.

Figure 1 — Mapping P2P and the Internet (Solid lines stand for underlying TCP/IP network links,
dotted lines stand for P2P network links.)

In the perfect mapping P2P network (Figure 1.a), when peer A broadcasts a
message to all the other 5 peers, the message travels the physical link D-E only once. In
the inefficient P2P network (Figure 1.b), the same operation will cause the message to
travel across link D-E 6 times. This example shows that the mismatch between P2P
overlay network topology and the Internet infrastructure has critical performance
implication. In the MP2P environment, this is a serious problem if the D-E link is a low
bandwidth or expensive link (e.g.: wireless interface).

Reconfiguring P2P network to map the underlying TCP/IP network perfectly is
quite difficult or even impossible. However, some change to the P2P protocol may help
to improve the mismatching problem, thus achieve better efficiency and scalability ([17]).

With mobile IP, there may be additional network mapping issues. According to
the mobile IP protocol, when a mobile node sends a packet to a corresponding node (CN)
in the Internet, it has two options: one is to send the packet directly to the CN using its
care-of-address (CoA), another is to send the packet back to its home agent (HA) and the
HA sends the packet to the CN using its home address. In the first option, the HA
intercepts the packets from the CN, and then forwards the packets to the mobile node in a
tunnel. The path of the incoming and outgoing traffic forms a triangle. Usually this option
is more efficient regarding the outgoing traffic. However, the CN must be aware that the
CoA belongs to the specific node which is participating in a P2P session. Furthermore,
the CoA is subject to change when the mobile node moves to another network. The
second option avoids the CoA recognition problem, but the transmission efficiency is

affected if we do not carefully consider the network mapping strategy.

1.3.4 Finding good peers

Although peers have equivalent responsibility in a P2P network, differences do
exist from peer to peer. Some peers may have wider bandwidth and/or better processing
ability, while some other peers may have more resources to share. Finding a good peer to
connect to, or selecting a peer that has the required resource (there may be more than one
peer having the resource), can definitely improve the performance of the P2P system. By
adding some information into the message pack, peers can figure out where the “good”
peers are located ([18], [19]).

In a hybrid MP2P network which contains both mobile nodes and stationary
nodes, the stationary ones are more likely to have wider bandwidth and their status is
more stable. To make the system more robust, it is preferred to select these stationary

nodes to form the backbone (or say, core) of the network.

1.3.5 Business model, Privacy, Security, Trust and Incentives

One major problem with P2P computing is how to protect the authority of
information owner. On the other hand, when authority is not a problem (such as in Instant
Messaging), how to make money from the platform is a big concern. Researchers have
proposed approaches so that the authors can get profit according to how many times their
music has been downloaded. Other discussions include pushing advertisements to

specific people who may be interested, and even online gambling, etc ([20], [21]).

10

1.4 The New P2P Network Architecture

In this thesis, we propose a new P2P network architecture and related algorithms.
The architecture is based on the Knédel graph ([26]). When using the partial Knodel
graph, the constant degree implies that each peer is connected to a fixed number of other
peers, thus when peers join or leave the network, the processing overhead is constant and
will not increase when the size of the network increases. This feature is especially good
for many mobile devices that have limited computing resources. While configured with

degree of logN, the diameter of the network is approximately half of that in CHORD.

1.5 Thesis outline

The remaining of this thesis is structured as follows:

Chapter 2 introduces the existing work done on P2P network architecture. We
mainly explain the two most cited models: CHORD and CAN.

In Chapter 3, we propose a new P2P network architecture based on Knodel graph.
We present the routing and maintaining algorithms for the new architecture. The last
section of this chapter introduces some practical proposals for P2P computing in the real
mobile network with mobile IP.

Simulation results are introduced in Chapter 4. The results are also compared with
that of CHORD and CAN.

Chapter 5 concludes the thesis and lists the future work.

11

2 Related Work

In this chapter, we first introduce the Gnutella network, which is the basis for many
current P2P researches. After that, we will introduce two new representative P2P network
models: CHORD and CAN. Several other P2P network models (Freenet and GRAPES)

will be introduced in the last section of this chapter.

2.1 Gnutella

Different from Napster ([1]), which is considered to be the first large scale P2P
network, Gnutella ([2]) is totally decentralized - it does not need any central directory.
Content sharing P2P networks tend not to use a centralized directory since Napster met
lawsuit trouble. The distinction of Gnutella protocol is its decentralized model, although
Gnutella supports traditional client/centralized server search paradigm. In Gnutella, each
peer acts as both a server and a client, and is called a servent.

Gnutella defines a set of descriptors used for communicating data between servents
and a set of rules governing the inter-servent exchange of descriptors. The defined
descriptors include:

e Ping — Used to actively discover hosts on the network. A servent receiving a Ping
descriptor is expected to respond with one or more Pong descriptors.
e Pong — The response to a Ping. It includes the address of a connected Gnutella servent

and information of the amount of data it is making available to the network.

12

Query — The primary mechanism for searching the distributed network. A servent
receiving a Query descriptor will respond with a QueryHit if a match is found in its
local data set.

QueryHit — The response to a Query. This descriptor provides the recipient with
enough information to acquire the data matching the corresponding Query.

Push — A mechanism that allows a firewalled servent to contribute the data files to the
network.

A Gnutella servent connects itself to the network by establishing a connection with

another servent currently on the network. Once the address of another servent on the

network is obtained, a TCP connection to the servent is created. The Gnutella connection

is created after a series of string exchanges.

A well-behaved Gnutella servent will route protocol descriptors according to the

following rules:

Pong descriptors may only be sent along the same path that carried the incoming Ping
descriptor;

QueryHit descriptors may only be sent along the same path that carried the incoming
Query descriptor;

Push descriptors may only be sent along the same path that carried the incoming
QueryHit descriptor;

A servent will forward incoming Ping and Query descriptors to all of its directly

connected servents, except the one that delivered the incoming Ping or Query. This is

the M2 Model of Messy broadcasting ([22]);

13

e A servent will decrease a descriptor header’s TTL field, and increase its Hops field,
before it forwards the descriptor to any directly connected servent;

e If a servent receives a descriptor with the same Payload Descriptor and Descriptor ID
as the one received before, it should attempt to avoid forwarding the descriptor to any
connected servent.

Once a servent receives a QueryHit descriptor, it may initiate the direct download
of one of the files described by the descriptor’s Result Set. Files are downloaded out of
Gnutella network, i.e., the file is not transferred along the QueryHit descriptor’s route. A
direct connection between the source and target servent is established in order to perform

the data transfer. The file download protocol is HTTP.

2.2 CHORD

Gnutella is a nondeterministic P2P network, i.e., it does not guarantee that a search
will retrieve a successful result even if the desired content does exist in the network.
CHORD ([10]) and CAN([11], introduced in next section) solved this problem by
maintaining a hashed content directory and defining certain network architecture and
related routing strategies. In this section, we briefly introduce how CHORD works. CAN

will be introduced in the next section,

2.2.1 Routing in CHORD

The CHORD protocol specified how to find the locations of keys, how peers join
and leave the system, and how to recover from the failure of existing peers. CHORD
predefines a large number of virtual nodes for the whole system (the number should be

large enough to make the possibility that two real peers have to share a virtual node very

14

low), and assigns each virtual node an identifier. The virtual node space is arranged into a
circle. Each real peer in the network is in charge of a section on the circle (or some
continuous virtual nodes on the circle). The position of each peer is determined by
hashing its IP address using consistent hashing ([24]). The locations of the contents are
hashed to keys and are maintained by the virtual nodes. When searching for certain
content, the client use the hashing function to calculate which virtual peer should be
maintaining the location information of the desired content, and then forward a querying
message to the real peer that is in charge of that specific virtual node.

Suppose the CHORD system is using m number of bits in the key/peer identifiers.
Each peer, n, maintains a routing table (or finger table) with at most m entries. The i
entry in the table at node n contains the identity of the first node, s, that succeeds n by at
least 2°/ on the identifier circle, i.e., s=successor(n+2""), where 1<i < m (all arithmetic
is modulo 2™). A routing table entry includes both the CHORD identifier and the IP
address (and port number) of the relevant peer. It is easy to see that the first finger of n is
its immediate successor on the circle.

When a peer n does not know the successor of key k, n searches its routing table for
the node j whose ID most immediately precedes k, and forwards the querying message to
J. By repeating this process, n learns about peers with IDs closer and closer to k. and

finally the querying message will reach peer k.

2.2.2 Maintaining CHORD Network

Peer Joining
A new peer n learns the identity of an existing CHORD peer n” by some external

mechanism. Peer n initializes its state and adds itself to the network as follows.

15

Initializing the routing table and predecessor. According to the IP address of n, n’
may know the final position of n. By finding successor for each entry, n's routing
table can be initialized. Some practical optimization may reduce the time to fill the
routing table to O(log N), where N is the total number of peers in the network.
Updating the routing table of existing peers. The new peer, n, will become the i
finger of peer p if and only if: (1) p precedes n by at least 2/, and (2) the i" finger of
node p succeeds n. When n joins, each peer of the situation above must update its
own routing table respectively. The number of such peers is O(log N) with high
probability (the phrase “with high probability” is based on the standard hardness
assumptions to decrypt SHA-1 algorithm, see [10] for more detail). Finding and
updating these peers takes O(log2 N) time, and some sophisticated scheme can reduce
this time to O(log N).

Transferring keys. The last step is to move the keys that should now be maintained by
n. The relevant keys were stored in the predecessor of n. Thus n only needs to contact

one peer to transfer the keys.

Peer Leaving and Failure

When a peer leaves the CHORD network as scheduled, basically it performs the

reversed steps as those for joining, except the step of initializing the local routing table.

However, if a peer fails, there will be some more work to do to recover the system.

The key step in failure recovery is maintaining correct successor pointers. Thus

beside the routing table, each CHORD peer maintains a list of successors of its r nearest

successors on the CHORD circle. If node »n notices that its successor has failed, it

16

replaces it with the first live entry in its successor list. After some time, a certain
stabilizing algorithm defined in CHORD will correct routing table entries and successor-
list entries pointing to the failed peer.

Study ([10]) shows that if the length of the successor list, 7, is of O(log N), and
every peer fails with probability 1/2, then with high probability, the closest living
successor to the query key will be returned, and the expected time to find it in the failed
network is of O(log N).

According to our observation, some key and/or data replication should be done to

improve querying quality when peers fail.

2.3 CAN

The Content Allocatable Network (CAN) treats the peer space as a virtual d-
dimensional Cartesian coordinate space on a d-torus. Key K is deterministically mapped
onto a point P in the coordinate space using a uniform hash function. The corresponding
(key, value) pair is then stored at the peer that owns the zone within which the point P is
located. To retrieve an entry corresponding to key K, any peer can apply the same
deterministic hash function to map K onto point P and then retrieve the corresponding
value from the point P. If the point P is not owned by the requesting peer or its immediate
neighbours, the request must be routed through the CAN infrastructure until it reaches the

peer in whose zone P belongs to.

2.3.1 Routing in CAN

Simply to say, routing in CAN works by following the straight line path through

the Cartesian space from the source to destination coordinates. A CAN peer maintains a

17

coordinate zone of each of its immediate neighbours in the coordinate space. In a d-
dimensional coordinate space, two peers are neighbours if their coordinates span overlap

along d-1 dimensions and abut along one dimension.

For a d-dimensional space partitioned into N equal zones, the average routing path
length is (d/4)(N"?) hops and individual peer maintains 2d neighbours. When d=logN, the
average routing length is of O(logN). However, the value of d must be determined before
constructing the network, and will not change when the size of the whole network ()

changes.

2.3.2 Peer Joining
A new peer joins the CAN by the following steps.

1. Find a peer already in the CAN (Bootstrap). The CAN protocol does not
specify what kind of bootstrapping mechanism should be employed. Any

method may be used to acquire the IP address of an existing peer in the CAN.

2. Using CAN routing mechanisms, find a peer whose zone will be split. The
bootstrap peer supplies the IP addresses of several randomly chosen peers
currently in the system. The new peer randomly chooses a point P in the space
and sends a JOIN request destined for point P. This message is sent into the

CAN via any existing CAN peer.

3. Notify the neighbours of the split zone, update their routing table. The new
peer learns the IP addresses of its coordinate neighbour set from the previous
occupant. The neighbours of the previous occupant, and the occupant itself,

update their routing table accordingly. The number of peers involved in the

18

splitting depends only on the dimensionality of the coordinate space and is
independent of the total number of peers in the system. This means that the
splitting time is almost constant. After the zone is splitted, the previous

occupant transfers part of the (key, value) pairs to the new peer.

2.3.3 Peer Departure, Recovery and Maintenance

Scheduled peer departure can be easily handled, the departing peer transfers the
(key, value) pairs to the peer that will take charge of its zone, and notifies its neighbours
so that they can update their routing table.

CAN employs an “immediate takeover algorithm” to ensure one of the failed
peer's neighbours takes over the zone. In this case the (key, value) pairs held by the failed
peer are lost until the state is refreshed by the holders of the data. To prevent stale entries
as well as to refresh lost entries, peers that insert (key, value) pairs into the CAN

periodically check and refresh these entries (if needed).

2.4 Others: Freenet, GRAPES...

Similar to Gnutella, Freenet ([3]) uses a fully distributed model but also
introduces some innovations (anonymity, caching, etc). It employs depth-first-search
(DFS) with depth limit D (Gnutella’s search strategy is breadth-first-search). Another
difference between Freenet and Gnutella is that, in Freenet, the requested object is
returned backwards along the request path, and each peer in the path caches the response
object in order to satisfy future requests more quickly. This also provides some degree of

anonymity for the source of the requested object. On the other hand, this mechanism will

19

need more bandwidth and storage space, and more delay will occur when retrieving the

requested object in some cases.

Provided that the central server has enough bandwidth and processing ability, a
centralized directory is obviously more efficient than a decentralized one. However, some
non-technical facts may prevent the centralized directory from being employed in an
application system, such as financial problems, legal problems, etc. Therefore, some
researchers have proposed with the idea of maintaining a content directory that is
between centralized and fully decentralized to address certain requirements. GRAPES
([25]) 1s such an experimental system. It has a two-layer hierarchical structure. The peers
are organized into many sub-networks; each sub-network elects a super node to form the
super-network. The super-nodes maintain the content directory of the whole system.
Compared with the systems with plain structure (such as CHORD and CAN), GRAPES
may halve the querying time, at the cost of increased overhead to maintain the 2-layer
structure. The cost may be compensated somehow by clustering the nearby peers

together.

20

3 The New P2P Infrastructure and Related Protocol

The main task for a P2P network is to locate certain resources in the network and
then retrieve data from the corresponding node or send information to it. In many cases,
the second part can be accomplished directly within the underlying TCP/IP or some other
network infrastructure, as long as the IP address of destination node is found with the P2P
protocol. However, in some content sharing P2P networks, certain hot content might be
cached in many intermediate nodes to speed up the downloading. Many researchers
developed several methods for the caching scheme. In our research, we concentrate on
the first part, i.e., modeling the P2P network and defining related querying and routing
algorithms.

Without the presence of a centralized server node, maintaining the distributed
resource directory and locating the desired resource differ a lot from that in a client/server
system. In P2P network, every node acts equally, or almost equally, as both client and
server. And the nodes may join or leave the network randomly at any time, while the
performance of the network is not affected significantly. On the contrary, the server of a
client/server system should never be out of service otherwise the whole network is

stalled.

21

3.1 The P2P Architecture Based on the Knodel Graph

Knodel graphs ([26]) have many good properties in terms of network
broadcasting and gossiping ([27]). It was first proposed by W. Knodel in 1975 as a

gossiping structure ([26]), and was formally defined in [28] as follows.

Definition 1 [28] (Knodel graph)

The Knodel graph on n > 2 vertices (n even) and of maximum degree d, 1 <d < l_log2 nJ
is denoted by W, . The vertices of W, are the pairs (i,j) withi=0,1 and 0< j S-’%—l,
and the set of edges:

E= {((O,i),(l, j=i+2" -lmodg—,O <i,j< %—1, 0<r<d —1} 2.1)

ForO<k <d -1, an edge of W,, that connects a vertex (0, j) to the vertex (1,
j+2%1 mod n/2) is said to be in dimension k. It is obvious to see that the Knodel graph
contains a Hamiltonian cycle which is formed by alternating edges in dimension 0 and 1.

Figure 2 shows the Knodel graph W; .

0,0 O @2 O3 (©4 (©5)

L
\ N 1N 3y 7 |3 /’
A} A} FE ¥4 T L. s
\ RN kY /\\ 4 %
RN Y 1y i i
sy N A N A T A dimension O
q v A\ 25
\ \ 7|\ ’
Ny 2 AN 2 4Ny
ALz AL/ \‘ ’ [di ion 1
[N OO
AN A A 1 1mension
RS Y AR RN BV R
’ 17 /s LN
[,4 .,\‘/A\ T4 \ Y u\ 1y
3 IO Y i [1 : :
D I A I Y I N N O N dimension 2
2y} 2 N7 3 O AT
/3 ’ ~n i \ N
’ ’ VAR \ \
¢ & & o o ®

(Lo (LD (1,2 (L3 A4 (@S5

Figure 2 - Knddel graph of dimension 3 and order 12

22

Study ([23]) shows that in many cases, such as W,_, and W_ ..., Knddel graphs

are minimum broadcast graphs and minimum gossip graphs.

There are other definitions of Knodel graph, such as l-layer representation,
definition of Knodel graph as Cayley graphs, etc. [27] and [29] have more details about
these definitions.

Comparing Knédel graph W, with the underlying infrastructure of CHORD of

the same order 2, we can see that they share the same degree d and their diameters are of

the same order - [_%-I and d respectively ([30]). We can see that Knodel graph W, , has

.2*
smaller diameter compared to the underlying graph in CHORD. Next we will introduce
several routing algorithms of the Knddel graph: a simple routing, a routing algorithm for
the partial Knddel graph with limited dimensions, and the heuristics for the routing in a

full Knodel graphW, ..

3.1.1 Basic Routing in Knodel Graph

Simple Routing

As mentioned before, edges of dimension 0 and 1 form one Hamiltonian cycle of
the Knddel graph. Thus the simplest routing is just to travel along the Hamiltonian cycle,
or, in other words, use edge of dimension O and 1 alternatively, to reach the destination
from the source.

In this case, the longest route has length N-1 and is not efficient. However, this
algorithm is very simple, and it may be used in the last phases in the routing algorithms

described below (explained in the following section).

23

Routing in the Partial Kniddel Graph

A full Knodel graph W, ,is of degree d, i.e., each node is linked to d edges

(dimension 0 to dimension d-1). We define a partial Knddel graph with degree less than
d. It will have dimension 0, dimension 1, and some dimensions between 2 and d-1.

To illustrate the routing mechanism, we first consider a partial Knodel graph with
3 dimensions, dimension 0, dimension 1 and dimension k. The edges of dimension & (1 <
k < d-1) are the chords inside the Hamiltonian cycle formed by dimension 0 and 1.

To simplify our discussion, we re-number the nodes in W 10 S follows:

2.2)

(0,i) = 2i
1, 7) = (2j —1)mod2*

After the re-numbering, the Knodel graph described above for d=4 can be drawn as in

figure 3.
15 '0\. 1
..... \ P 2
\n_ 7
14/". ¢ ..
S~ /’ \
g S] o
L ~-a 1N Dimension 0
13 Lo T 3
N /’I, \\ l’
*/ 'l 7
i \\ ! ,'\\ ; 4 . .
2@ \ P - Dimension 1
N N
\ R
\ I \

1
) ~ - Il \\ e 5
11 ,7.~~~L\‘~~-</'
. N7 T T Dimension k

Figure 3 - Partial Knédel Graph W4,16 of 3 Dimensions, k=2

24

From figure 3 we can observe that:

Vertices of layer O (originally numbered as (0, j)) become even numbered
vertices, and vertices of layer 1 (originally numbered as (1, j)) become odd
numbered vertices. All the numbers are located continuously on the cycle.
Each chord inside the cycle is an edge of dimension 2, and it spans 5 edges on
the cycle. Simple calculations show that the number of edges the chord spans
is not related to the total number of vertices in the graph, it is only related to
which dimension we are choosing.

The k-th dimension (2 < k < d-1) actually spans ((2'-3) mod 2¢) edges on the
circle. If we say that dimensions 2 to d-2 hop forward certain steps along the

circle, dimension d-1 will actually hops 3 steps backward.

This observation leads to the following routing mechanism, which has a

predictable routing length { (I <£+2), where N is the total number of vertices in the

graph (N = 2%. Since Knodel graphs are vertex-symmetric, without loss of generality, we

consider the routing problem starting from vertex 0. We divide the cycle into left half and

right half by the axis consisted of vertex 0 and vertex 2! (vertex 8, in figure 3), and then

use the following routing steps:

Determine which half the destination vertex is located in.
If the destination is located in the right half, use edges of dimension 2 and

dimension 1 alternatively. Every two hops may forward 6 edges alone the
cycle closer to the destination. If the destination is located in the left half, use

edges of dimension 0 and dimension 2 instead.

25

e When approaching close to destination, use edges of dimension O and 1

respectively to reach the destination along the circle.

When N is large, this routing length (of O(N)) is not good enough and may lead to
scalability problem. Besides edges of dimension 0 and 1, which are necessary to form the
Hamiltonian cycle, we may consider to use edges of higher dimension for the 3rd degree.
It is easy to see that edges of higher dimension span more distance along the Hamiltonian
cycle, thus it is faster to get near the destination by using these edges. However, it may
take more steps to reach the destination in the last phase (traveling along the Hamiltonian
cycle). To minimize the number of hops D without increasing the degree of the graph, the
following calculation reveals the best dimension that should be used as the 3rd degree.

Suppose we are using the x-th dimension as the 3rd degree. The 3rd degree edges

will span (2*'-3) mod 2¢ along the Hamiltonian cycle (2<x<d-2). We have:

2d—l 2x+1 _ 2
D<2* + 2.3
2x+l _ 2 2 ()

The 2" phase takes (2*'-2)/2 steps. This is because, if the remaining distance to
the destination is larger than (2*'-2)/2, we may use the 3™ degree edge once more and
then go back along the cycle.

Since we are considering very large number of vertices (N=2%), to simplify the

calculation, we rewrite the equation above as follows:

d _Ad-x d-x d-x
p<ZE *2 o el i1
2x+ _ 2 2x+ _ 2
To minimize the right side expression from (3.4), we take,
=941 (2.5)

26

thus;

d+l

D<L2? (2.6)
So, when the 3™ dimension of the partial Knsdel graph is (d-1)/2, the maximum number
of hops in our routing algorithm is of O(W).

Now we consider the partial Knodel graph of higher degree. Suppose we use i
degrees at each vertex (1 <i < d-3) with dimension 0 and 1. We denote the i dimensions
to be used as xj, x2, ... , X 2 <x;<x3< ... <x; <d-2). Using edges of dimension 0 (or
dimension 1, in the first step) and x;, in every 2 hops, we can move closer to the
destination by 2%) edges along the Hamiltonian cycle. Thus the routing strategy in
this graph is intuitive:

e Determine in which half the destination node is located.

e Determine the distance between the destination and current position along the

cycle.

e Use the edges of the appropriate dimension and dimension O or 1 to approach

the destination.

e Use dimension 0 and 1 alternatively to reach the destination along the

Hamiltonian cycle.

With this routing strategy, the maximum number of hops is:

D <29 425N g QN Ly)® Q.7
To minimize the right side of (3.7)D, we should have:
d-1-x,=x —x_ =+=x (2.8)

Therefore,

27

x =(d =1/ +1)

x, = 2(d -1)/(i +1) 29)

x, =i(d-DI3i+1)
and,
D<(@i+1)*29™M@0 — i1+ YN /2 (2.10)
That is, when x;, x5, ..., x; distribute evenly between 1 and d-1, the maximum

number of hops of this routing strategy is minimized, which is of O((i +1) * i“‘\lfﬁ) .

Routing in the Full Knodel Graph

The routing algorithm described above for the partial Knodel graph also applies to

a full Knodel graph W, . - In the full Knddel graph with this strategy, we only utilize the

dimensions 0 to d-2. The number of hops will be of O(log N * N}l/"gN) = O(logN).

Although the shortest path problem is still an open problem for the Knodel
graphs, some heuristics do exist, especially for Wd‘zd . First, we briefly introduce the
heuristics, and then we use one of them to implement the routing algorithm in the P2P
network based on the Knodel graphs.

With the alternative definition of Knodel graph W, . illustrated in formula 3.2,
each node of the graph is labelled by a d-bit integer, and there exists an edge between
node x (xis even) and node x+2%"'-3 (mod N), foreach 0 <k <d-1.

Again, because Knodel graphs are vertex-symmetric, without loss of generality,

we consider the routing starting from node 0. If there is a path between node 0 and node x

using f edges of dimensions: 7y, #, ..., #, it means that:

28

f
x=Y (-1 (2"" =3)(modn) (2.11)

Since the Knddel graph is bipartite ([27]), fis even for even x. Therefore x can be

represented as:

x=i (2" -2%) (2.12)

=1
where d >i, > j, >i,> j, >--->i_ > j >0. We can see that each (2" —2”) pair in
equation 3.12 actually represents a run of 1’s in the binary representation of x. For
example, when d=10, x=414, we have:

x=414=(0110011110), = 2*"' -2+ (2*' -2"") (2.13)

Equation 3.13 actually gives a path from node 0 to node 414: dimension 8§,
dimension 6, dimension 4, and dimension 0 (node 0 — node 509 — node 384 — node 413 —
node 414). The length of this path is 4.

Another property of the Knodel graph is that we can permute the dimensions in
the path without affecting the routing length while the path will still lead to the same
destination node. For example, if we re-write equation 3.13 as:

x=414=(0110011110), = 2*" -2+ (2*' -2y (2.19)

The path consisting of edges of dimension 4, dimension 6, dimension 8, and
dimension O is equivalent to the one above (node 0 — node 29 — node 928 — node 413 —
node 414). The length of this path is still 4. It means that there exist several different
routes of the same length between the same pair of nodes. This property makes the
network based on the Knddel graph more robust compared with the CHORD network,

where the number of the paths is always 1 according to the protocol.

29

Using the routing algorithm in CHORD, the routing length between the same two
nodes is 6 (node 0 — node 256 — node 384 — node 400 — node 408 — node 412 — node
414).

It turns out that the binary representation of even number x describes a path
between node 0 and node x. Even in the worst case, the length will be d, which is of

O(log N) in the worst case. With the reduction rules introduced in [30], this length may
be reduced down to %1

In order to introduce the reduction rules, let’s first make some definitions.

Recall the equation (3.12), x = z (2" =27, let

Pam
I={i,iy, 50} I ={J1sJor s dn}

e Reduction rule R1

if a#be I suchthat a—1,b+1€ J exist, then
do

I=1u{a-1}—{a,b}
J=Ju{}-{a-1b+1}

done

e Reduction rule R2

if a,b,c € I are pair-wise not equal such that
a-1,b-1,c+2e€J,a-1#¥c+2#b-1existand c+1g I UJ, then
do

I=1u{a-1,b—-1}—{a,b,c}
J=JuUlc,c+l}-{a-1,b-1,c+2}

done

30

e Reduction rule R3

if a,b,c € I are pair-wise not equal such that
a+l,b+1l,c-2eJ,a+1#c—-2#b+1 existand c—1¢ I J,then
do

I=1u{c-1,c-2}—{a,b,c}
J=JuU{a,b}—{a+1,b+1,c-2}

done

e Reduction rule R4

if djael,d#a,a—-1€ J,then
do

I=1u{a-1}—-{a,d}
J=J-{a-1}

done

The correctness of the rules follows from the equivalences:
R1: 2% +2°0 =297 -0 = et _pb

R2: 2% +2° +2¢ -2 2071 %2 = et 4 o7t e)¢
R3: 29 +20 +2¢ -2 bl _pe2 et 4 o2 _pa b
R4: 29 +2 -2 (mod2¢) =27

We can also have some more complicated rules, such as R5:

2!1 + 2b + 2(.‘ + 2e _ 2a—1 _2b—1 _25—1 _2e+3 — 2(1—1 + 2b—1 +2€—1 _2e+2 _2e+1 _2e

or R6:

24 4 2b +2¢ 4 0¢ _2a+1 __2b+l _ 2(,'+1 _2e—3 — 2e—1 + 2e—2 + 2e—3 —D4 _2b —9¢

31

and so on. Practice shows that when the degree of the selected Knodel graph is 32 or less,
the number of hops reduced by the complicated rules is limited. Considering the fact that
these rules need much more computing time, we will apply only the 4 rules R1-R4 listed
above in our application.

Fertin et al ([30]) proved that by processing the representation in formula 3.12

with the rules R1, R2, R3 and R4 until none of them applies any more, we will have:

(2.15)

#(Iu])s[djLz—‘

When x is odd, according to the 3 least significant bits of x, by re-writing the

representation of x in the following format:

x=i (2" =29y +2° =3,(se {1,2,3}) (2.16)

=1
(3.15) still holds (more details in [30]).

Practically, analysing all the different cases of reducing #(I ' J) to the upper
bound stated in formula 3.15 turns out to be too complicated and requires too much
computing in the real P2P network. Our experiment shows that, by properly selecting the
order to apply the 4 rules in a simple way, we can reduce the path length to d/3 in average

and 2d/3 in maximum (see Chapter 4).

3.1.2 P2P Algorithms based on the Kniédel Graph

As already discussed, the fundamental problem of a peer-to-peer system is to
efficiently locate the peer that stores a desired data item. With the basic routing strategy,
now we can describe our peer-to-peer protocol based on the partial Knddel graph, which

addresses the content locating problem.

32

Basic design

CHORD designed some good algorithms and protocols to maintain the P2P
network. Our P2P architecture has similarities with CHORD in some aspects. In terms of
the following items, we will follow or reuse some algorithms from CHORD with slight
modification:

1. We associate each data item with a key, and hash the keys to each node of the
Knodel graph. The keys might be the names of the files to be shared in the
system, or might be the keywords of the shared content, depending on
different applications. The peer holding a key stores the address of the peer
that owns the content associating with the key.

2. Considering all the nodes of the Knodel graph as a space, the entire space is
dynamically partitioned among all the peers in the system, and each peer is
actually in charge of an arc of the Hamiltonian cycle of the Knodel graph.

3. Each peer maintains a routing table which contains d items (or less, if using
the partial Knodel graph). Different from CHORD, here the routing table is
constructed according to edges in the Knodel graph.

4. When searching for certain content, first find the node holding the key, and
then find the peer in charge of the node, forward the querying message to the
peer, and retrieve the address of the peer which owns the content.

Here we use the numbering strategy described by formula (3.2) for the Knodel

graph. This means that the number space of the graph contains integers in the range of [0,

d
2)forWdyz,, .

33

The main differences between the MP2P infrastructures based on the Knodel

graph and that of CHORD are:

1. The routing strategies are different. The average path length in our P2P
network is approximately half of that in CHORD.

2. The Knodel graphs are bi-directional (CHORD is not), i.e., if node a has an
entry in its routing table connecting to node b with an edge of dimension &%,
then node b also has an entry in its routing table connecting to node a with the
same dimension k. This makes some algorithms much simpler. For example,
when a peer leaves the network, it may inform the peers with connection to it,
so that those peers do not need the stabilization to correct their routing table.

3. There exist several different paths for each routing. This makes the MP2P

network based on the Knodel graph more robust than CHORD.

In the following discussion, we consider the MP2P infrastructure based on the

full Knodel graph Wd‘z,, if not specified otherwise. For the infrastructures based on the

partial Knodel graph, they share mostly the same properties and algorithms. The only
difference is that with the partial Knodel graph, each peer maintains fewer links to other
peers, and the algorithms will use only these links to do routing and maintaining. The
value of d is configurable depending on the application. It should make 24 large enough

to avoid frequent duplicated hashing values. In the simulation that will be introduced in

chapter 4, we choose d = 31.

34

Routing

Each peer maintains a routing table of size d. In real applications, the contents of
the routing table may be the IP addresses or URLs of the other peers. In our simulation,
we use pointers pointing to other peer objects. For the peer with the even key value k, the
i-th (1 < i < d) item in the routing table points to the peer with key value k’, where
k"> (k+2' —3)modn, and there does not exist another peer p with key value k” where
k+2' -3<k”"<k’.

Besides the routing table, each peer also keeps the information of its nearest
predecessor (if peer p is peer g’s successor, then g is p’s predecessor). The successor’s
information is not needed explicitly because it will show up in the second row of the
routing table. With the routing tables on the peers, we derived the routing algorithm for
the P2P network from the routing algorithm in the partial Knédel graph introduced in

3.1.1. The algorithm is presented below:

1: peer::findKey (key)

2: {

3: if current peer is in charge of key)

4: return this;

5: peerl = closest successor to key in routing table;
6: if{ peerl = peer)

7: peerl = predecessor;

8: return peerl.findKey(key);

9 /

35

In the algorithm, line 6 and 7 are needed because it is possible that there is (are)
peer(s) located before the current peer but after the destination key.

Practically, considering the procedure of recovering and maintenance in case of
peer failing, line 5 can be rewritten as:

5: peerl = closest available successor to key in routing table;

Furthermore, considering the possibility that the predecessor may fail, line 7
should be modified as:

Ta: peerl = predecessor;

7b: peerl = the furthest peer available in routing table

Here the distance between two peers is the distance on the Hamiltonian cycle. A
simple method to test the availability of a peer in the TCP/IP (mobile IP may be
involved) network is to send the ICMP echo request packet to the peer (or use the “ping”
command, if available on the device).

Based on the observation that the edges of the same dimension point to the
different direction on an even numbered node and an odd numbered node, in our
simulation, we also test the case that each peer holds two sets of routing table, one for
even node 2n, and another for odd node 2n+1. The simulation results show that this
change makes the performance more consistent. To avoid using larger sized routing table,
we can always put the peers on the even numbered nodes. This setting is totally optional.

Applications may choose this configuration according to the computing ability of the

peers.

36

Construction

The basic steps of peer joining of our P2P network are similar to those of

CHORD:

1.

Initializing the new peer’s routing table and predecessor;

2. Updating the routing table of existing peers;

3. Transferring keys to the new peer from its successor.

However, because of the different routing mechanism, details of step 1 and 2 are

different from those in CHORD. The first thing the bootstrapping peer needs to do is to

check if it has to update its own routing table. This can be done by scanning each

dimension in the routing table to see if any of them should be replaced by the new peer.

The remaining of step 1 is as follows:

1:

2:

8:

9:

peer::initializeRoutingTable(newPeer)

{

}

update this->routingTable;

for each item of newPeer’s routing table

do
suc = findKey(newPeer->key + offset of the item);
set the item of newPeer’s routing table as suc;

done

The “offset of the item” in the above algorithm is related to the dimension of the

link in the Knodel graph. For link of dimension k, the offset is (2¢1-3) mod 2¢. The

updating of the predecessor and the routing tables of existing peers rely on the thread that

37

every peer runs periodically to verify the correctness of its routing table. This thread also

helps to fix the routing table in case of peer failure. The algorithm of the thread is shown

below:
1: peer::verifyRoutingTable()
2: {
3: //check predecessor
4: ifl predecessor has failed) {
5: predecessor = null;
6: /
T /fvalidate routing table
8: from the highest to the lowest dimension in the routing table {
9: routing table item = findKey(key+offset);
10: }
11: //notify successor
12: successor.notify(this);
10: /

1: peer::notify(peerl)

2: {

3: //peerl may be the new predecessor

4: ifl predecessor == null || predecessor.key < peerl.key) {
5: predecessor = peerl;

6: }

7 /

38

Peer departure, recovery and maintenance

Basically when a peer departs or fails, the algorithm of verifying routing table and
predecessor introduced above may fix the routing tables of the affected peers. If the
configuration setting makes each peer to hold 2 sets of routing table (for node 2n and
2n+1), peers that plan to leave may also notify the nodes in its routing table. In this way
the affected peers may fix their routing table faster without waiting for the timeout of the

fixing thread. Below is the leaving notification algorithm for this case:

I: peer::leavingNotification()

2: {

3: transfer keys to predecessor

4: notify predecessor to update its successor

5: from each node in the routing table {

6: send predecessor and successor info to the node
7. }

8 /

Another algorithm we propose for the MP2P network is that, each peer with
content to share periodically runs the thread to check if the peer that should be holding
the key of its contents is actually holding it. If not, it will send the notice to the later peer
to add the content to its list. This helps in case of unexpected peer failure. Below is the

algorithm:

39

1: peer::checkContents(keyOfContent)

2: {

3: peerl = findKey(keyOfContent);

4: if peerl does not have the content in its list {

5: peerl->addContent(keyOfContent, this);
6 /

)

3.1.3 Efficiency Analysis of the P2P Algorithms on Kniédel Graph

Number of peers need to be contacted during querying

The routing length in the Knodel graph W, is of O(logh), while in the partial

Knddel graph, it is of O(X/N) (where i is the degree of the graph, N is the total number
of nodes). In the P2P architecture based on the Knddel graph (or partial Knodel graph),
the routing length depends on the hashing algorithm we employ to distribute the peers on
the node space. When the hashing algorithm distributes the peers evenly on the node
space, with high probability, the proposition that the routing length is of O(logN) for the

full Knodel graph and O(i“‘\y—ﬁ) for the partial Knodel graph still holds (here N is the total

number of peers that have joined the MP2P network). There are simulation results in

Chapter 4 that verify this statement.

40

Number of keys each peer maintains

The number of keys each peer maintains relies on the hashing algorithm. It has
nothing to do with the routing. Therefore, the MP2P network based on the Knodel graph
has the same property as that of CHORD from this point of view. According to [10], in

the network with N peers and K keys, each peer maintains at most (1+ £)K/N keys.

Size of routing table

For the full Knodel graph W

e the size of the routing table is d. For the partial
Knodel graph, the size is i (where i is the degree of the graph). In practice, some
dimensions will be pointing to the same peer. For example, in our simulation, where
d =31 and the number of peers is between 1000-10000, dimensions 1-18 usually
pointing to the same peer (which is the successor). By slightly changing the data structure

of the routing table (using the range of the dimensions instead the exact dimension), we

can reduce the size of the routing table by at least half.

Query failure

Unfortunately routing failure still happens in some special cases. For example,
peer p’s predecessor is pl, and pl holds the key k; if pl fails, before the owner of the
content with key & find out that p1 failed and notifies p to add key £ to its list, querying of

key & will fail. By running the thread peer::checkContents, this failure may be solved by

retrying the query after a configurable period.

41

3.1.4 Improvements in Mobile Network

Considering the unstable nature of the mobile peers, a mobile device does not
necessarily join the MP2P structure directly. Instead, it may link to the network via a peer
which is more stable in the MP2P architecture. This makes the whole network a 2-leveled
structure: the Knodel graph (or partial Knddel graph) on the top and some other
underneath nodes linking to the peers on the top level. Figure 4 shows an example of this

structure.

Figure 4 — The 2-leveled MP2P Structure

This structure is somehow similar to that of the Grapes introduced in [25]. The
difference is that Grapes is based on CAN ([11]). Basically, in the 2-leveled structure, the
routing length is about half of that in the flat structure.

The idea of putting peers in 2 different levels seems to be against the concept of
“each peer is equally responsible in the P2P network” (comparing with the client/server
structure). However, differences do exist between peers. Some peers have better
computing ability, some others have wider bandwidth. A powerful peer may usually

become the proxy or router of several other peers. In mobile communication, there exist

42

many forms of this kind of small community. It could be a wireless LAN on a vehicle, a
Bluetooth PICO, and it also could be several devices without any direct relationship but
just locating nearby. In a WAN project, several mobile devices, such as PDAs, laptops
and tablets, connect to the public network through a mobile router which supports the
mobile IP. If we form the network with the 2-leveled structure, the performance and
stability will be greatly improved compared with the flat structure. The mobile routers in
the network may act as the leaders of each LAN behind it, and may cache certain

contents thus save quite a lot of traffic.

43

4 Simulation Results

There are two parts of our simulation. Section 4.1 shows the results of algorithms
used to reduce path length in the Knddel graph, and section 4.2 shows the simulation

results of the MP2P network performance.

The simulation results are compared with that of CHORD and CAN.

4.1 Routing in the Knodel graph

4.1.1 Routing in a full Knédel graph

Our experiment was done in the Knddel graph W, ...

We implemented the
reduction rule R1-R6 introduced in 3.1.1. We randomly selected 4 groups of destination
nodes, with 1000 nodes in each group, and calculated the average path length from node
0 to these nodes, both before the reduction and after the reduction. The purpose of
dividing the testing nodes into four groups is to verify if the performance of the algorithm
is consistent. The statistic values of how each rule reduced the length are also counted
and displayed in the table.

The following table shows the results of our first experiment, where we simply

applied the rules with order R4-R2-R3-R1 to all the destination nodes.

44

Table 4.1 Routing length in the Knidel graph

Group 1 Group 2 Group 3 Group 4
Average routing 'length before 15.5 15.4 15.5 15.5
reduction
Average routmg length after 115 113 115 115
reduction
Maximum routlng length before 2 24 % 24
reduction
Maximum routmg length after 18 16 18 18
reduction
Total hops eliminated by rule R1 303 832 366 487
Total hops eliminated by rule R2 299 795 415 509
Total hops eliminated by rule R3 282 796 404 503
Total hops eliminated by rule R4 308 819 373 488

Table 4.2 shows the result after changing the order of the rules to R1-R2-R3-R4.

Table 4.2 Routing length in the Knddel graph — another order of reduction

Group 1 Group 2 Group 3 Group 4
Average routing 'length before 15.5 15.4 15.5 15.5
reduction
Average routing length after 115 113 115 115
reduction
Maximum routmg length before 24 24 26 24
reduction
Maximum routing length after 18 16 18 18
reduction
Total hops eliminated by rule R1 1828 1809 1802 1789
Total hops eliminated by rule R2 126 121 100 117
Total hops eliminated by rule R3 49 58 73 62
Total hops eliminated by rule R4 0 0 0 0

45

We can see from the table above that the average and maximum routing length
keeps almost the same value. The difference is the number of hops eliminated by each
reduction rule.

These two tables show that, for the Knddel graph W simply applying the

207
reduction rules in the same order may reduce the average routing length by 1/3 (d/2
before reduction, d/3 after reduction), and the maximum routing length is about 2d/3.

By implementing the algorithm in a much more complicated way, i.e., carefully
choosing the order of the rules for different nodes, we may approach the theoretical upper

bound for the maximum routing length, |'(d +2)/ 2‘| .

In the base network of CHORD of the same size, the degree of the graph is 31, the

average and maximum routing lengths in our case are 15.5 and 31 respectively.

4.1.2 Routing in a partial Knédel graph

The following table shows the results of routing length in the partial Knddel
graphs of degree 10, 15 and 20. The routing algorithm is shown in (3.1.1). The selected
destination nodes in this experiment are the same as those in 4.1.1.

Table 4.3 shows that, with 1-3 less degree than the CHORD graph, the average

routing length is the same as or very close to that in CHORD.

46

Table 4.3 Routing length in the partial Knoédel graph

Group 1 Group 2 Group 3 Group 4
Average routing length when 44 44 44 43
degree=10
Maximum routing length when 74 70 73 72
degree=10
Average routing length when 253 25 4 253 252
degree=15
Maximum routing length when 41 41 40 38
degree=15
Average routing length when 218 216 21.8 21.6
degree=20
Maximum routing length when 35 33 36 35
degree=20
Average routing length when 18.5 18.6 18.5 184
degree=25
Maximum routing length when 30 30 28 31
degree=25
Average routing length when 16.8 16.7 16.9 16.8
degree=28
Maximum routing length when 27 26 27 26
degree=28
Average routing length when 16.2 16.3 16.3 16.2
degree=29
Maximum routing length when 75 25 27 25
degree=29
Average routing length when 157 15.7 15.9 15.7
degree=30
Maximum routing length when 25 25 26 24
degree=30

4.2 Simulation of the P2P Network

We concentrated on the routing algorithm of the P2P network based on the

Knodel graph. Again, the base graph is W

dzd ’

where d = 31. When doing the routing

experiment, there are approximately 4096 peers in the network. In the CHORD network

47

of the same size, the average routing length in theory is 6. In practice, it is around 7-8

because of the random distribution of the peers on the space. In CAN, if the number of

space dimension is 15, the average routing length is 6.5 in theory.

In our experiment, we randomly chose some keys, and calculated the average

routing length for all the peers to query the key. The following table shows the results of

part of the data and the total average.

Table 4.4 Routing Length in the MP2P Network

Key Average Routing Length Max Routing Length
0x00002al1 5.53 10
0x1234ac50 5.13 10
0x023583ab 5.65 10
0x0004ab22 4.78 8
0x000001ef 5.53 10
0x2311efaa 5.33 10
0x521d34e2 4.49 8
0x62aa56al 5.76 10
0x722aa687 4.12 8
0x32cab6e8 4.72 10

Total Average 5.10 9

Table 4.5 below shows the size of the routing table of the peers. In the CHORD

network, the average size of the routing table is 31. In CAN, the average size of routing

table is 30 when the number of space dimension is 15.

Table 4.5 Size of Routing Table in the MP2P Network

Average size

Maximum size

Minimum size

14.3

18

11

48

5 Conclusions and Future Work

The (full) Knodel graphs are well known to have good communication properties.
In this thesis, we proposed a new P2P topology based the Knddel graphs, and we
implemented the routing algorithm in the Knddel graph and partial Knodel graph. The
simulation results show that, without significantly increasing the computing complexity
or computing time, the average routing length of the P2P network based on the Knddel
graph is approximately 2/3 of that in CHORD (the same ratio for the maximum routing
length). In the mobile networks, this may save a lot of air traffic which is expensive.
Shorter routing length also means that the network is more robust, because a peer
contacts fewer peers when querying for certain contents. In case of the node failure, the
recovering process will affect fewer peers.

From the binary representation, the routing path of length less or equal to d (or,

logN) can be easily found for Knodel graph W, . By implementing the reduction rules,
this maximum length can be reduced to [(d +2)/2].

The routing length in the partial Knodel graph is of O(i““\‘/ﬁ), where i is the
degree of every node. So, our P2P network can have some applications, especially in the
mobile environment where the computing resources are limited on some mobile devices.

The shortest path problem of the Knodel graph is still an open problem. The
reduction rules introduced in (3.1.1) only set an upper bound of the maximum length. The
method of finding the shortest path between any two general nodes in the graph remains

to be a challenging question.

49

Future work may also involve implementing the reduction rules to the MP2P
network based on the Knddel graph, so that the routing length can be reduced further.

As mentioned above, the robustness of the MP2P network based on the Knodel
graph is improved comparing with that of CHORD. However, a malicious or buggy peer

in the network could still cause misshape of the whole network.

50

Bibliography

[1] Napster website, 15 October 2005 <http://www.napster.com>

2] Gnutella website, 15 October 2005 <http://www.gnutella.com>

3] Freenet website, The Freenet Protocol, 10 November 2005

<http://www .freenetproject.ore>

(4] KaZaA website, 10 November 2005 <http://www.kazaa.com>

[5] Jabber website, 18 November 2005 <hitp://www.jabber.com>

[6] SFLan website, 18 March 2007 <http://www.archive.org/web/sflan.php>

[7] Groove website, 18 November 2005 <http://www.eroove.net>

[8] SETI@Home website, 20 November 2005 <http://setiathome.ssl.berkeley.edu>

[9] T. Leighton. Introcution to Parallel Algorithms and Architectures: Array-Trees-
Hypercubes, Morgan-Kaufmann Publishers, San Mateo, California, 1992.

[10] [IL.Stoica, R.Morris, D.Karger, F.Kaashoek, H.Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications, Proc. ACM SIGCOMM
2001, San Diego, CA, Aug. 2001. pp.149-160

[11] S.Ratnasamy, P.Francis, M.Handley, R.Karp, S.Shenker. A Scalable Content-
Addressable Network, Proc. ACM SIGCOMM 2001, San Diego, CA, Aug. 2001.
pp-161-172.

[12] B. Yang and H. Garcia-Molina, Improving Search in Peer-to-Peer Networks,
Proceedings of the 22nd International Conference on Distributed Computing

Systems (ICDCS'02). 2002. pp.5-14.

51

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

H.Johansen and D.Johansen, Improving Object Search Using Hints, Gossip, and
Supernodes, 21st IEEE Symposium on Reliable Distributed Systems (SRDS'02),
Oct.13-16, 2002, Osaka University, Suita, Japan. pp.336-340.

K.Aberer, M.Punceva, M.Hauswirth and R.Schmidt, Improving Data Access in
P2P Systems, IEEE Internet Computing, Jan.2002. pp.58-67.

A.Andrzejak and Z.Xu, Scalable, Efficient Range Queries for Grid Information
Services, 2nd IEEE International Conference on Peer-to-Peer Computing, Sep.5-
7, 2002, Linkdping, Sweden. pp.33-40.

A Kothari, D.Agrawal, A.Gupta and S.Suri, Range Addressable Network: A P2P
Cache Architecture for Data Ranges, Proceedings of the 3rd International
Conference on Peer-to-Peer Computing (P2P'03). 2003. pp.14-22.

M.Ripeanu and ILFoster, Mapping the Gnutella Network, IEEE Internet
Computing, Jan.2002, pp.50-57.

M.K.Ramanathan, V.Kalogeraki and J.Pruyne, Finding Good Peers in Peer-to-
Peer Networks, Proceedings of the International Parallel and Distributed
Symposium, IPDPS'02. 2002. pp.24-31.

L.Zou, E'W.Zegura and M.H.Ammar, The Effect of Peer Selection and Buffering
Strategies on the Performance of Peer-to-Peer File Sharing Systems, Proceedings
of the 10th IEEE Int'l Symp. on Modeling, Analysis and Simulation of Computer

and Telecommunications Systems, MASCOTS'02. 2002. pp.63-70.

B.Leuf, Peer to Peer: Collaboration and Sharing over the Internet, Addison-

Wesley Person Education, June 2002.

52

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

R.Grimm and J.Niitzel, Peer-to-Peer Music-Sharing with Profit but Without Copy
Protection, Proceedings of the Second International Conference on WEB
Delivering of Music (WEDELMUSIC'02). 2002. pp.17-22

H.A Harutyunyan and A.L.Liestman. Messy Broadcasting, Parallel Processing
letters, vol. 8, no. 2, 1998, p149-159.

H.A Harutyunyan, Multiple message broadcasting in modified Knodel graph, 7th
International Colloquium on Structural Information and Communication
Complexity (SIROCCO 2000), Proc. in Informatics, Carleton Scientific, 2000.
D.Karger, E.Lehman, F.Leighton, M.Levine, D.Lewin and R.Panigrahy,
Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the World Wide Web, Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, El Paso, TX, May 1997, pp.654-663.
K.Shin, S.Lee, G.Lim, H.Yoon and J.S.Ma, Grapes: Topology-based Hierarchical
Virtual Network for Peer-to-peer Lookup Services, Proceedings of the
International Conference on Parallel Workshops, 2002 (ICPPW'02). pp.159-164.
W. Knédel. New gossips and telephones. Discrete Mathematics, 13, 1975. pp.95
G.Fertin and A.Raspaud, A Survey on Knédel Graphs, Discrete Applied
Mathematics, Vol 137, Issue 2 (Mar. 2004). pp.173-195.

P. Fraigniaud and J.G. Peters, Minimum linear gossip graphs and maximum linear
(A,k)-gossip graphs. Networks, Volume 38, Number 3, October 2001. pp.150-
162.

C.D.Morosan, New Communication Properties of Knodel Graphs, Master Thesis,

Concordia University, 2004.

53

[30]

[31]

[32]

[33]

[34]

[35]

[36]

G. Fertin, A. Raspaud, O. Sykora, H. Schroder, and 1. Vrto, Diameter of Knodel
Graph, 26th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG2000), Vol 1928 of Lecture Notes in Computer Science, Springer-
Verlag, 2000. pp.149-160.

J.-C. Bermond, H.A. Harutyunyan, A.L. Liestman, and S. Perennes. A note on the
dimensionality of modified Knodel graphs. IJFCS: International Journal of
Foundations of Computer Science, 8§(2):109-116, 1997.

C. Perkins, IP Mobility Support for IPv4, 23 March 2006

<http://www.ietf.org/rfc/ric3344 . txtnumber=3344>

T.Hossfeld, K.Tutschku, F.U.Andersen, Mapping of file-sharing onto mobile
environments: feasibility and performance of eDonkey with GPRS, Wireless
Communications and Networking Conference, 2005 IEEE Volume 4, 13-17
March 2005, pp.2453 — 2458.

T.Hossfeld, K.Tutschku, F.U.Andersen, Mapping of file-sharing onto mobile
environments: enhancement by UMTS, PerCom 2005 Workshops. Third IEEE
International Conference on Pervasive Computing and Communications
Workshops, 2005. pp.43-49.

eDonkey website, 12 October 2005 <http://www.edonkey.com> (the site is not

available as of 10 April 2007)
H.Harutyunyan, J.He A New Peer-to-peer Network. PerCom 2007 Workshops.
Fifth IEEE International Conference on Pervasive Computing and

Communications Workshops, 2007. pp.120-125.

54

