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ABSTRACT

Frobenius Fields of Elliptic Curves
Geeta Johal

Let E be an elliptic curve without complex multiplication defined over Q. Let
Q(v/=D) be a fixed imaginary field where D > 0 is a nonsquare integer. Let
¢p denote the Frobenius endomorphism of £ at p. The Frobenius field of ¢, is
denoted by Q(mp). In this thesis, we find upper bounds for the number of primes
p whose Frobenius fields Q(r,) equal a fixed imaginary quadratic field Q(v/=D).

In The Square Sieve and the Lang-Trotter Conjecture, A. Cojocaru, E. Fouvry
and M. Murty found upper bounds for this problem by applying the Chebotarev
Density Theorem on the torsion fields Q(E[m]) associated with E. Based on
Serre’s theorem, those fields have Galois groups GLy(Z/mZ).

In this thesis, we improve their result by considering smaller extensions Fg[m| C
Q(E[m]) over Q with Galois groups PGLy(Z/mZ) and by applying an explicit
version of the Chebotarev Density Theorem to those fields. More precisely, we
show that the bound obtained by A. Cojocaru, E. Fouvry and M. Murty un-
der the Generalized Riemann Hypothesis, can be improved from O(z'7/18 log z) to
O(z'3/'*log z). Under the additional condition of Artin’s Holomorphy Conjecture,

the bound obtained by A. Cojocaru, E. Fouvry and M. Murty can be improved

from O(z'3/*logz) to O(z"/®log x).
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Chapter 1

Introduction

Let E be an elliptic curve over Z, i.e the set of solutions to an equation of the
form 3?2 = 23 + az? + bx + ¢ where a,b,¢ € Z and the discriminant of F, Ag is

not equal to zero. For each prime
pt(—4aPc+ a®b® + 18abc — 4b® — 27¢),

we say that p has good reduction and F reduces to an elliptic curve £ over F,
where

y2 =23 +ax?+br+¢C
for@=a modp, b=0> mod p and € = ¢ mod p where G, b, are the classes of

a,b, ¢ mod p respectively. The Frobenius map

¢P : (xay) = (xp,yp)
is an endomorphism of F and satisfies the polynomial
2

' —apT+p
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where a, = #FE(F,) — p — 1 is an integer and where #E(F,) is to be defined in
section 2.8. By Hasse’s inequality, we know that |a,| < 2,/p which implies that the
characteristic polynomial has two distinct roots which are complex conjugates. We
denote them as m, and 7,. Adjoining any of these roots to Q, we get a quadratic
imaginary field extension of Q which we denote by Q(7,). This is referred to as
the Frobenius field at p. We consider the following question: If we fix F over
Q and fix K a quadratic imaginary field, how many primes p of good reduction
yield a Frobenius field which is equal to the field K? For D a positive square free

integer let
Pe(Q(V=D),z) = #{p < 7 : p has good reduction and Q(r,) = Q(+v/—D)}.

Conjecture 1.0.1 (Lang-Trotter (1976)) Let E be a non-CM elliptic curve
defined over Q. Let K be a fixed imaginary quadratic field. Then there exists a
positive constant Cg g such that, as * — oo,

£1/2

P ~
(K, 1) CE,Klogx

where Cg i depends on the elliptic curve E and the field K.

We consider in this thesis, the problem of finding upper bounds for Pg(Q(v—D), z)
thus, giving partial evidence towards the Lang-Trotter conjecture. Our technique

is based on a paper by [CoFoMu] where the authors obtain the following result:



Theorem 1.0.2 ([CoFoMu], Theorem 1.2) Let E be a non-CM elliptic curve
defined over Q with conductor N. Let Q(v/—D) be a fixed imaginary quadratic

field. Let x > 3 be a positive real number.

(a) If we assume GRH for the Dedekind zeta functions of the division fields of
E, then

Pe(Q(v—=D),z) <y ' logz

(b) If we assume GRH and Artin’s Holomorphy Conjecture (denoted AHC) for
the L-functions of the irreducible characters of the Galois groups of the di-

vision fields of E then

Pe(Q(V=D),z) <y z*¥*logz

the symbol <y means that the implicit constant depends on N.

The proof for this theorem in [CoFoMul] relies on the study of the torsion fields
Q(E[m)) associated with E (see section 2.5 for the definition of these fields). By

a theorem of Serre,

Gal(Q(E[m])/Q) =~ GLy(Z/mZ)

for almost all integers m. The authors of [CoFoMu] obtain their theorem by
applying an explicit version of the Chebotarev Density Theorem to the above

mentioned fields. We get an improvement of their result by considering smaller



extensions over Q with Galois groups PG Ly(Z/mZ), and applying the Chebotarev

Density Theorem to those extensions. More precisely, we obtain the following

Theorem 1.0.3 Let E be a non-CM elliptic curve defined over Q with conductor
N. Let Q(v/—D) be a fized imaginary quadratic field. Let x > 3 be a positive real

number.

(a) If we assume GRH for the Dedekind zeta functions of the division fields of
E, then

Pg(Q(V=D),z) <y z¥Mlogx

(b) If we assume GRH and Artin’s Holomorphy Conjecture (denoted AHC) for
the L-functions of the irreducible characters of the Galois groups of the di-

vision fields of E then

Pp(Q(V—-D),z) <y " log

This theéis is divided into four chapters. Following the introduction, Chapter 2
serves as an introduction to elliptic curves and provides the theoretiéal background
needed for the results that we intend to prove.

Chapter 3, discusses the essential tools needed to prove the main theorem such
as the CheBotarev density theorem, properties of the matrix group PG Ly(Z/pZ)

and the Square Sieve. In Chapter 4, we prove our main result.



Chapter 2

Elliptic Curves

2.1 Affine Weierstrass form

An elliptic curve E is the union of the set of affine points (x,y) with coordinates
in some field K over which the elliptic curve is defined and a point at infinity.
The point af infinity however, has coordinates in the projective plane. This will
be further discussed in section 2.3. We introduce the three types of equations of
FE that occur in the affine plane. The generalized Weierstrass equation has the

following form:

E 1?4+ a1zy + asy = 2° + aox® + a4z + ag



where ay, as, az, a4, a5, ag are coefficients in some field K. Let

by = af + 4as

by = 2a4+ ara3
_ 2
b3 = Qs + 40,6
b . 2 4 2 2
4 = ajag + 4as06 — 010304 + Q203 — .

The discriminant of E, denoted Ap, is defined as
Ap = —biby — 8b3 — 27b% + 9b1bybs.

We consider only nonsingular curves, i.e curves when Ag # 0. This means that
every point on the elliptic curve has a tangent line. If the characteristic of K # 2

we can simplify the above equation by completing the square as follows:

ar  as\?2 a? a2
(y+%+?3> :x3+<a2+zl>x2+a4z+(z3+a6>.

The equation can be simplified to
E:yi=1+ar* +bz+c

where

— g+ a1x + as
n=y ) 5
and the a, b, ¢ correspond to the coefficients in the above equation. This equation

1s referred to as the Weierstrass form. If F is in this form then

Ap = —4a®c + a®b? + 18abc — 4b® — 272



If the characteristic of K # 2,3 we can get rid of the 22 term by replacing = by

T=12 — a/3 this yields an equation of the form:

v = (x—g)3+a(x—g)2+b(:c—g)+c
1 = 173 173 173
2 _ 3. _a_2+b 5+ 2a3 ab+c
o= 3 SR CTAE

which can be simplified to

E:yl=123+ A1, + B

where A, B correspond to the coefficients of the powers of z; given above. This
equation is referred to as the Weierstrass normal form. If E has the Weierstrass
normal form, then

Ap = —16(4A% 4 27B?).

If the coefficients of ' are elements of K, then we say that E is defined over

K. In this thesis, we work exclusively with the Weierstrass form.
2.2 Projective Plane
The projective plane is defined over a field K as

P? = {(z,9,2) : 2,9, 2 € K not all zero}/ ~ .

This is the equivalence class of triples (,y, z) with z,y, 2 € K which we will de-
note as [z,y, z]. Two triples (21, y1, 21) and (x3, Yo, 22) are in the same equivalence

7



class if there exists a nonzero element A € K such that

(T1,91, 21) = (Am2, Ay2, A22).

If z# 0, then [z,y, 2] = [z/2,y/2,1]. If z =0, then dividing by 2 gives us co for
the z and y coordinates. Therefore, [z, y, 0] are called points at infinity. There is

a map from the two-dimensional affine plane
A’ = {(z,y) € K*}

to the projective plane
A? — P2
(x7 y) — [1'7 y? 1]'

P? is the union of the points in A? and the points at infinity. The set of all points
at infinity form the line at infinity which we denote by Z = 0. Algebraic curves

in A% are of the form
f(z,y) = Z a;;z'y’ = 0.
In the projective plane we use homogeneous polynomials

F(X,Y,Z) =) a;X'yIz

where d =degree(f(z,y)) to define curves in P2. We can convert a curve in A? to

a curve in P? by making the substitution = X/Z and y = Y/Z into f(x,y) = 0.



To obtain the original curve in A? we can just substitute Z = 1 into F(X,Y, Z)

this gives f(z,y). In other words,
F(X,Y,1) = f(z,y).

We have that

F(OX,\Y,\Z) = NF(X,Y, Z)

therefore, the set of solutions to the homogeneous polynomial in P? is well defined.
2.3 Projective Weierstrass Equation

As mentioned in section 2.1, an elliptic curve consists of an affine part and a point

at infinity. We are given the following equation:
E:y=1*+ar’+bzr+c

where E is defined over some field K. To work in the projective plane, we must
first make this equation homogeneous by using the substitution z = X/Z and

y=Y/Z. This yields
Y?Z = X?+aX*Z +bX 2% + cZ°.

We want to find the intersection of this equation with the line at infinity Z = 0.
Substituting Z = 0 into the equation we get X® = 0. There is a triple root at

X = 0. The corresponding projective plane coordinates are [0,Y, 0] where Y can

9



have any value. However, in P? this is the same as [0, 1,0] this is our point at
infinity. It is the only point at infinity which satisfies £. We denote this point as
0.

In order to see that O is non-singular, we write the Weierstrass equation in

homogeneous form:
F(X,Y,2)=Y?Z - X®—aX?Z —bXZ*> - cZ®=0.

Using the coordinates of O ([0,1,0] in the projective plane P?), we can evaluate

the derivative of O at these coordinates.

oF

8_X[0’ 1,0 = (=3X%-2aXZ—-b2%)[0,1,0]=0
oF
OF

570100 = (Y?—aX? - 2bXZ — 3cZ%)[0,1,0) =1 #0

At least one partial derivative of O is nonzero, therefore O is a non-singular point

of E. The tangent line at O is given by

8F> (8F) (8F>
— X+ Y-+ {5 Z=0
<6X P=[0,1,0] Y P=[0,1,0] 0z P=[0,1,0]

which simplifies to

Z=0.
Therefore, the tangent line at the point of infinity O is just the line at infinity
Z = 0 which meets E with multiplicity 3 at O.

10



2.4 Group Law

Let E be defined over Q. If two rational points P and @ are on E, then we can
find a third rational point by the following method: first we draw a line through
the two ratiénal points P and (). Both P and () are rational so we get a rational
line which meets the elliptic curve at one more point. We denote this new point
as Px Q. By solving the system of equations, we see that the point of intersection
P % Q) must also be rational. If we start with only one rational point P then we
can get ano;cher rational point by taking the tangent line at P. The tangent line
meets the elliptic curve ' twice at P. We denote the other point of intersection
as Px P.

If we look at all of the rational points on F, we can make this set into a
group by defining an identity element and addition as follows: first we take O
as our identity element. We count it as a rational point that cannot be seen.
We treat the remainder of the points which satisfy E as points in A2, A vertical
line intersecting E will intersect E at two points in A% and the point O. To add
two points P, @ we draw the line through P and @ and find the third point of
intersection P x (). We draw the line through O and P * () which is just a vertical
line through P % ) and take the third point of intersection of the line with F as
the point P+ Q. To find the negative of a point P we draw the line joining P and

O and take the third intersection of the line with F as —P. If F' is in Weierstrass

11



form

E:y=a+az’+bz+c
then E is symmetric about the x-axis so P + @ is just P x @ reflected about
the x-axis. In Weierstrass form — P is just P reflected about the x-axis. This is
obvious from the fact that both (x,y) and (z, —y) satisfy the above equation if
one does.

If E is the generalized Weierstrass equation
E:y? 4+ ayzy + agy = 2° + axx® + asx + ag,
then
—P = (z,—a1x — az — y).

This follows from the fact that if we have a quadratic polynomial the sum of the
two roots must equal to the negative coefficient of the linear term. In this case,

we know that one of the roots is y. The sum of both roots is
—1 T — ag

so we get
-0 —azg — Y
as the other root. Therefore, if P is a point (z,y) and we want to find the point
which intersects the vertical line through P and O we get
—P = (z,—a1x — ag — y).

12



For O the point at infinity, if we take the tangent line at O this gives us the line
at infinity. The third point of intersection is O because the line at infinity meets

E at O with multiplicity 3. Also, we have —0 = 0. This above construction

makes E(Q) into an additive abelian group.

Proposition 2.4.1 ([Si2], Chapter 3, Proposition 2.2) The addition law has

the following properties:

1. If a line L intersects E at (not necessarily distinct) points P,Q, R then

(P+Q)+R=0
2. P+0=P VPeFE
3. P+Q=Q+P VPQ€cE
4. let P € E then there is a point —P so that P— P = 0
5 (P+Q)+R=P+(Q+R)
6. BE(K)={(z,y) € K}y* =23 +az? +bx+c}U 0. E(K) is a subgroup of E.

We do not state the proof for the above proposition here. It can be found in [Si2]

p.55.

Remark 2.4.2 Part 1 says that if P,Q, R lie on the same line then their sum as

we define it, is equal to the point at infinity O. Part 6 refers to the points in K

13



which satisfy E. Given the way that addition is defined it is easy to see that the

law 1s commutative.
2.5 Torsion Points

Let K be a field and let K be the algebraic closure of K.

Definition 2.5.1 A point P on E has finite order if mP = O for some positive

integer m. P is said to be a torsion point if it satisfies the above property.

The set of all torsion points with order dividing m is a subgroup of E(K).
If P and @ have order dividing m then by taking the least common multiple of
the orders of P and @, we can see that their sum and difference also have order

dividing m.

Definition 2.5.2 Let E be an elliptic curve defined over a field K and m a pos-

itive integer. The m-torsion subgroup of F is denoted as
E[m)(K) ={P € E(K) | mP = 0}.

The torsion subgroup of E denoted as FEi,, is the set of points of finite order

where

o0

Eiors = U E[m] (F)

m=1

So Eyors(K) will denote points of finite order in E(K).

14



For notational convenience, if F is defined over a field K, then E[m| will mean

E[m)(K).

Proposition 2.5.3 ([Si1], Chapter 6, Section 2) If the characteristic of a field
K denoted as char(K) is coprime to some positive integer m i.e (m, char(K)) =1,
then as an abstract group, E[m] = Z/mZ @ Z/mZ that is, E[m] is the direct sum

of two cyclic groups of order m.

The above proposition implies that there are m? m-torsion points and that
the abelian group E[m] can be generated by two points P; and P, which are a
basis of E[m|. This means that every element of E[m] can be written as a linear

combination of these two points i.e
a1 Py + ay P

where a1, as € Z/mZ. These torsion points can be used to generate field extensions

of Q.

Proposition 2.5.4 ([Sil], Chapter 6, Section 2) Let E be an elliptic curve

with coefficients in Q, and let K be a Galois extension of Q.
1. E(K) is a subgroup of E(C).

2. For P € FE(K) and 0 € Gal(K/Q), define o(P) by

_ [ (o(z),0(y)) ¥ P=(z,y)
(’(P)“{O Yroo

15



Then o(P) € E(K).

3. For all P € E(K) and all 0,7 € Gal(K/Q),
(07)(P) = a(r(P)).

Further, the identity element acts trivially e(P) = P.

4. For all P,Q € E(K) and all 0 € Gal(K/Q),
| d(P+ Q) =0(P)+0(Q) and o(—P) = —a(P).

Hence, o(nP) = no(P) for all integers n.

5. If P € E(K) has order n and if 0 € Gal(K/Q), then o(P) also has order n.

Proof: 1. If Py and P, are in E(K), their z and y coordinates are in K, now using
the formulas for the addition law P, & P; also have coordinates in K. Therefore,
E(K) is closed under addition and subtraction, so it is a subgroup of F(C).
2. Let P = (z,y) € E(K). To show that o(P) is a point of F(K) we use the fact
that 0 : K — K is a homomorphism which fixes Q. Therefore,
PcEK) = y*—2*—ar’*~bz—c=0
o(P) = o —2*~ar®~bzx—c)=0

= 0(y)?* - o(e)’ - o(a)o(z)* — o(b)o(z) — o(c) = 0

= o(y)? —o(x)® —ao(x)’ —bo(z) —c=0

= (o(2),0(y)) € E(K)

16



3. If P = (z,y) then
or(P) = (o7(z),07(y))
= (a(r(2)),0(1(¥)))
= o(7(z),7(y))
= o(7(P))
4. This follows from the fact that the addition law is given by rational functions

with coefficients in Q.

5. If P € E(K) has order n. Then using 4, we get
no(P) = o(nP)=0(0) =0

so o(P) has order dividing n. To see that the order is n, we suppose that mo(P) =

1

O. However, from 4 this implies that o(mP) = O. We take the inverse =" of ¢

on both sides to get
0=0"Y0) =" o(mP)) = mP
since P has order n this implies that m > n. Therefore, ¢(P) has order n. O

Proposition 2.5.5 ([Sil], Chapter 6, Section 2)
Let E be an elliptic curve given by Weierstrass equation
E:y=24a+bz+c

with rational coefficients a, b, c € Q.

17



(a) Let P = (z1,y1) € C be a point of order m. Then x; and y; are

algebraic over Q.

(b) Let
{((L’l, yl)’ vy (l'mz—l: ymz—l)}

be the set of points on F of order dividing m. Then

Q(E[m]) - Q(xb Yy Tm2-1, ymz—l)
is a finite Galois extension of Q.

Proof: (a) Let K = Q(E[m]). One can show that every field homomorphism
0 : K — Cis determined by specifying some permutation of the points F, ..., P,.
This means that there are only finitely many such homomorphisms. If some x; or
y; were not algebraic over QQ, then the field K would have infinite degree over Q,
so there would be infinitely many distinct homomorphisms K — C. Therefore,
all of the z;’s and y;’s must be algebraic over Q.

(b) Let 0 : K — C be a field homomorphism. In order to prove that K is Galois
over Q, we must show that (K) = K. The map is determined by where it sends

the z;’s and the y;’s. Each point P is in F[m] and from the proposition we proved,
0 =0(0)=o(mP)=mo(P),

so o(P) is also in E[m]. This means that o(P) is one of the P;’s with ¢ = j being
allowed. Therefore, the £ and y coordinates of o(F;) are already in K. In other

18



words, o(z;),0(y;) € K. This is true for each 1 < i < m, and so d(K) C K,

which completes the proof that K is a Galois extension of Q. O

2.6 (alois Representations

As proved in proposition 2.5.4 (5), every element o of Gal(Q(E[m])/Q) sends
E[m] to itself. It is an isomorphism because each o € Gal(Q(E[m])/Q) has an
inverse element 0! which maps the image (P) in E[m] back to the original point

P in E[m)|. In other words,

o:Em| — E[m]

P — o(P)
is an element of the group of automorphisms of E[m] denoted as Aut(E[m|). If
we fix a basis { P, P2} for E[m], then any P € E[m] writes as
P=a P+ a P
where a1, ay € Z/mZ. We can rewrite o(P) as
o(P) = ayo(Py) + ago(Ps).

Any isomorphism ¢ from E[m] to itself is determined by the values given to the
basis elements P; and P,. We can write o(P;) and o(FPz) as linear combinations
of P, and P, with coefficients in Z/mZ. If we write

o(P) = a, P+ 7P
o(P) = Bo PL + 0,

19



where s, 85,7, 0s are uniquely determined by o, then we can write

(c(P),0(P)) = (P, Py) ( za gz )

g

the matrix belongs to the set of 2 X 2 matrices with coeflicients in Z/mZ with
determinant € (Z/mZ)* (GLy(Z/mZ) matrices). In Aut(E[m]), o has an in-
verse therefore the matrix must also be invertible this is why the determinant is

invertible. We have the following map:

pm o Gal(Q(E[mM])/Q) — GL2(Z/mZ)
& B
7" < Yo 0o )
Pm is a homomorphism which associates each element o of Gal(Q(E[m])/Q) to
an isomorphism from F[m] to itself to a matrix in GLy(Z/mZ). This map is a

one-to-one homomorphism although it is not necessarily onto. However, Serre

provides a theorem which describes conditions under which this map is onto.

Theorem 2.6.1 (Serre’s Theorem, [Sil], Chapter 6, Section 3) Let E be an
elliptic curve given by a Weierstrass equation with rational coefficients. Assume
E does not have complex multiplication. There is an integer A > 1, depending
on the curve E, so that if m is any integer relatively prime to A, then the Galois
representation

pm . Gal(Q(E[m])/Q) — GLy(Z/mZ)

is an tsomorphism.
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2.7 Galois Representations for PGLy(Z/mZ)

Let F and A be as in Theorem 2.6.1. For our purpose, we want to consider a
subfield of Q(E[m]). Let m be an integer such that (m,A) = 1. By Serre’s
Theorem, Gal(Q(E[m])/Q) is isomorphic to GLy(Z/mZ). The set of 2 x 2 scalar

matrices in GLy(Z/mZ)

( ’ 2) r € (2/mz)"

form a subgroup of GLy(Z/mZ) denoted as H. This is a normal subgroup of
GLy(Z/mZ). Let

Fg[m) = Q(E[m])"
be the field corresponding to H under the Galois correspondence, i.e Fg[m] is
the fixed field of H. Suppose (m, A) = 1. Then, using Theorem 2.6.1 and the

Fundamentél Theorem of Galois Theory, Fg[m]/Q is a Galois extension with

Galois group
Gal(Fp[m]/Q) ~ GLy(Z/mZ)/H = PGLy(Z/MZ).

This is an essential tool to prove our main theorem and for future reference, we

restate it as:

Theorem 2.7.1 Let E be a (non-CM) elliptic curve given by a Weierstrass equa-
tion with rational coefficients. Let A be the constant in Theorem 2.6.1. For any
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m where (m, A) = 1 the Galois representation
Pm . Gal( Fe[m]/Q) — PGLy(Z/mZ)
s an isomorphism.

2.8 Elliptic Curves over Finite Fields

Let p be an odd prime number. Consider the elliptic curve y? = 23 + az? + bz + ¢

where a,b, c € F, and let A denote the discriminant of E so p{ Ag. Then

E(F,) = {(z,y) | z,y € Fy, f(z,y) = 0}.

This group is finite given that there are only a finite number of possibilities for x
and y.

In order to estimate the size of E(F,) we can use the Legendre symbol for

a € Z.
1 if ais a square in F,
a e )
(—) = ¢ —1 if ais not a square in F,
p 0 ifa=0inTF,

Theorem 2.8.1 ([Wa], Chapter 4, Section 3) Let E be an elliptic curve

y? = 23 + az? + bz + ¢ over F,. Then

#EF,) =p+1+ )

z€F,

<x3+ax2+bx+c>
p

Proof: For 2+ az? +br+c # 0, if % + az? + bz + ¢ is a square in F, then y has
two corresponding solutions so there are two points. If 3 + az? + bz + ¢ is not a
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square then there will be no solutions. For z® + az? + bz + ¢ = 0 there will be one

solution. We must also add the point at infinity. This gives

4E(F,) Z <1+ (x3+aﬂc2+bx+0))+1.

z€lF, p

If we take the sum of 1 over all of the z € F, then we get:

Zl+z<m3+a:v2+bx+c)+l

z€F, z€F, p

2 +ax?+br+ec
= p+1+Z( )

z€l, p

#E(TFy)

The p results from the fact that there are p possible values for z. O

Remark 2.8.2 We want to estimate the error term which is

Z <x3+ax2+bx+c)
- i

z€F,

If f(x) = 23+az®+bzr+c has distinct roots then the tendency for f(x) to be squares
or nonsquares is roughly equal. The following theorem by Hasse-Weil provides a

bound for this error term.

Theorem 2.8.3 (Hasse-Weil Theorem, [Sil], Chapter 4, Section 1) Let F
be an elliptic curve defined over the finite field Fy, then the number of points on E

with coordinates in Fp is p+ 1+ ¢ where the error term € satisfies |e| < 2,/p.

Remark 2.8.4 This means that the number of points in E(Fp) lies in the follow-

ing interval:
—2yPp+p+1<#EF,) <2¢/p+p+1
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2.9 Conductor of an Elliptic Curve

Let E be an elliptic curve defined over (). We can multiply the equation of F
by the common denominator of its coefficients to obtain an elliptic curve defined
over Z and reduce this curve mod p. Let E denote the reduction of £ modulo p.

The following definitions can be found in [Si2].

Definition 2.9.1 We classify F according to the properties of . There are three

posstbilities for the reduction of E modulo p:
(a) E has good reduction over Q if E is nonsingular.

(b) E has multiplicative reduction over Q if E has a node. A node is a singular

point with two distinct tangent directions.

(c) E has additive reduction over Q if E has a cusp. A cusp is a singular point

with one tangent direction.

In the cases of (b) and (c), F is said to have bad reduction at p. This occurs when

P|AE-

Definition 2.9.2 The conductor N of an elliptic curve E is defined as

N = H pe(P)

plAEg
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where for p # 2,3:

e(p) = 1 if E has multiplicative reduction at p
PI=1 2 if E has additive reduction at p

If p = 2,3, we refer the reader to [Si2] p.361 and for the definition of e(p). In

any case, e(p) < 6.
2.10 The Endomorphism Ring

Let K denote the algebraic closure of a field K. Given E an elliptic curve defined
over K, the ‘endomorphism ring of F is an important invariant of F' and is denoted
by Endz(E). It is the set of algebraic maps ® which are group homomorphisms
from F to itself, i.e

®:F — E.

For any field L containing K, we denote by Endy(FE) the set of endomorphisms
defined over L. We let End(F) denote Endy(FE).

For every integer m in Z, the multiplication map [m| is € End(E). If E is
defined over K, then the multiplication-by-m map is also defined over K. It is
defined as

mP=P+...+P

where the summation is of m P’s. For m < 0, [m]P = [—-m](—P) where the

summation is of |m| (—P)’s and [0] maps to the point at infinity ([0]P = O). If
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m # 0 then the map is non-zero and Z C End(FE). The kernel of this map is
E[m], the set of m-torsion points on F.
In the case where the characteristic of K = 0, the theorem below describes

what the endomorphism ring of E will look like.

Theorem 2.10.1 ([Si2], Chapter 6, Theorem 6.1) If E is defined over a field
K, of characteristic 0, then the endomorphism ring of E is isomorphic to Z

(End(E) ~ Z) or it is an order in a quadratic imaginary field.

In the latter case, we say that E has complex multiplication (CM). For a proof of

the theorem, see [Si2]| p.165.

Remark 2.10.2 If F is a curve with complex multiplication (CM), then for
primes of ordinary reduction for E, i.e the primes for which a, # 0 where a, =

#E(F,) — p—1 the following holds:
Q(m,) = End(E) ®z Q.

This is why our main theorem holds only in the case of elliptic curves without
complex multiplication. For non-CM curves, as the prime p varies, we expect to

get infinitely many distinct fields Q(mp).

We now look at the case where E is defined over IF,. We define the Frobenius
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map

¢p: E — EP

(z,9) = (29

As F is defined over F,, E? = E and therefore, ¢, € End(F).

Proposition 2.10.3 ([Wa], Chapter 3, Proposition 4.7) Let E be defined over

Fyp. Then
#Ker(qﬁp —1) = #E(F,) = deg(¢p — 1)

where the degree of the endomorphism is the degree of the associated function field

(see [Wa] p.46 for a precise definition).

Recall that if ¢ is an endomorphism of F, then we obtain a 2 X 2 matrix with

entries in Z/mZ which describe the action of ¢ on a basis { Py, P,} of E[m].

Proposition 2.10.4 ([Wa], Chapter 3, Proposition 3.15) Let ¢ be an endo-
morphism of an elliptic curve E defined over a field K. Let m be a positive inte-
ger not divisible by the characteristic of K. Then det ((¢)nm) = deg(yp) mod m.

Where (¢)n, denotes the 2 x 2 matriz which describes the action of ¢ on E[m].

Let p { m. We now look at the action of ¢, denoted as (¢p)m, on E[m](F,),
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the set of m-torsion points of E over the algebraic closure of Fp. As (p,m) = 1,
Aut(E[m))(F,) ~ GLy(Z/mZ).

If we fix a basis for the m-torsion points, ¢, € Aut(E[m]) can be seen as a 2 X 2

matrix in GLy(Z/mZ).

Theorem 2.10.5 ([Wa], Chapter 4, Theorem 4.10) Let P, and P, denote a
fized basis for E[m] and letp t m. Let (¢p)n, denote the 2x2 matriz in GLy(Z/mZ)

which corresponds to the action of ¢, on the basis elements P, and P,. Then

tr(dp)m = ap modm

det (¢p)m, = p modm
where a, =p+ 1 — #E(Fp).

Proof: Let m > 1 where (m,p) = 1. Then ¢, induces a matrix (¢p)m that

describes the action ¢, on E[m]|. Let

@m={2 1)
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Using proposition 2.10.3 and proposition 2.10.4 we have

#Ker(p, — 1) = deg(¢, — 1)

1l

det ((¢p)m —I) mod m

a—1 b
det( c d—l) mod m

ad—d—a+1—bc modm

It

(ad —bc) —(a+d)+1 mod m
by proposition 2.10.4, ad — bc = det (¢p)m = deg(¢,) = p mod m and
ap=p+1—#E(F,) =p+1—deg(dp—1).
By proposition 2.10.3,
ap =p+1—#Ker(¢, — 1)
which implies
#Ker(pp—1)=p+1—-ay,=p+1—-(a+d) modm
thus a, = (a +d) mod m = tr((¢p)m). O

Theorem 2.10.6 ([Wa], Chapter 4, Theorem 4.10) Let E be defined overF,
and let ¢, denote the Frobenius endomorphism of E. Then ¢, satisfies the poly-
nomial in End(E)

2 —ax+p=0

where a, = p+ 1 — #E(Fy).
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Proof: If ¢z27 — ap®p + p is not the 0 endomorphism then its kernel is finite. Using
theorem 2.10.5, we know that for (p, m) = 1, the trace and determinant of (@p)m
is a, and p. By the Cayley-Hamilton theorem, this implies that (¢,)2, — ap(¢p)m +
pl =0 ( mod m). Here, I denotes the 2 x 2 identity matrix. The characteristic

2

polynomial of (¢,)n, is therefore, ©* — a,z + p. Since there are infinitely many

choices for m, the kernel of qbf, — ap¢p + p is infinite and so the endomorphism is

equal to 0. O
Corollary 2.10.7 The Frobenius field Q(m,) is a quadratic imaginary field.

Proof: Now according to the (Hasse-Weil) theorem we know that

~2/p < #E(F,) —p—1<2/p
or equivalently,
—2p<ay <2p
For 2% — a,z + p this implies that the discriminant \/512,_——.4_;5 < 0. The two roots
of the characteristic equation, are therefore, complex conjugates m,,7,. The field

extension Q(7,) of Q that we get by adjoining one of these roots is a quadratic

imaginary field. O

Theorem 2.10.8 If E is an elliptic curve defined over F,, then End(FE) is either

an order in a quadratic imaginary field or an order in a quaternion algebra.

For proof, see [Si2] p.137.
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Chapter 3

Preliminaries for Main Proof

3.1 The Chebotarev Density Theorem

The Chebotarev Density Theorem is an important tool for proving our results.
However, before stating the theorem, we recall certain facts about Galois exten-
sions. In What follows, L/K is a finite number field extension, Ok is the ring of
algebraic integers in K, Oy, is the ring of algebraic integers in L, p is a prime ideal
in K and @, ..., @, are the prime ideals in L which lie above p. In other words,

these prime ideals occur in the factorization of p Oy, in Oy,

Definition 3.1.1 Let L/K be a field extension not necessarily Galois. Let p be a

prime in K. Then,
pOL = Q™ ... Q%

is the unique factorization of p in terms of primes in L. The e; are referred to as

the ramification indices. If any of the e; > 2 we say that p ramifies in L.

31



Theorem 3.1.2 ([Ma], p.70) Let L/K be a Galois extension and let p be a
prime of Og. Let @,..., Q, be the primes of L lying over p. Then Gal(L/K)
acts transitively on this set of primes. That is, for any 1 < 1,5 < r, there ezists

o € Gal(L/K) such that o(Q;) = Q;.

Frobenius conjectured that there is an association between an element of the
Galois group Gal(L/K) and each unramified prime p in Og. This association
can be made using the Frobenius substitution at p. Chebotarev proved the the-
orem which would relate the density of unramified primes to the density of their
corresponding elements in the Galois group. Before describing the Frobenius sub-

stitution at ‘p, we need the following definitions.

Definition 3.1.3 Let Q) be a prime ideal in L. The decomposition group Dg is

the subgroup of Gal(L/K) consisting of the o € Gal(L/K) such that 0(Q) = Q.

Definition 3.1.4 The inertia group Ig is the subgroup of Gal(L/K) consisting
of the 0 € Gal(L/K) such that o(x) =z mod Q for all x € Or. We have that

I, < Dq.

The following map is surjective see [Ma] p.99.

O Ok
:Dg — | —=/—
v:Da Ga(@ p)

o — (z mod @+ o(z) mod Q)
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The kernel of this map consists of all of the elements of Dy which map to the

O Ok
Gal | —=/—= ).
'“‘(Q p)

The kernel is clearly just the inertia group Ig. Therefore, we have a short exact

identity automorphism in

sequence

Or, OK)
1-Ip—>Dg— Gal{ —=/— ) -1
e e (Q p

where the map from Ig to Dg is injective because all the elements in /g are in

D¢ and the map v is surjective. So we have that,

Both O/ Q and O /p are finite fields of characteristic p where p is a prime number
in Z. Their Galois group is cyclic and generated by the Frobenius automorphism
mp of Ok /p. Where

Ty : @ v g OK/P,

In other words,

0]} OK>
Gal| —=/— ) =< m, > .
a(Q P P

Let o¢ be the element of Dg which maps to the generator m, of the Galois group.
This element is called the Frobenius element at @ and it is only defined modulo

I,
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When p is unramified, we have that /g = 1 where 1 is the identity automor-
phism and o(@Q) is well defined. See [Ma] p.100.
For p unramified, the Artin symbol at p denoted as o, is the conjugacy class

of all of the Frobenius elements of primes lying above p. Or equivalently,

Theorem 3.1.5 (Chebotarev Density Theorem (CDT)) Let K C L be Ga-

lois, and let C C G = Gal(L/K) be a conjugacy class. Then
Oe(L/K) = {p: p a prime of K,p unramified in L,0, € C}
has density #C/#G.

For our purpose, we will be working with field extensions of Q so the primes of
concern to us are precisely the prime numbers p in Og = Z. Let L/Q be a finite
Galois extension with group G. Let ny, = [L : Q] and dj, denote the discriminant.

For each conjugacy class C' of G we define
He(z, L/Q) := #{p < z: p unramified in L/Q, ¢, € C}

The Chebotarev Density Theorem asserts that as * — oo,

Mo (z, L/Q) ~ ﬁgu(x)

where

Todt x
5 logt logzx

Li(z) =
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as T — 00.

J. Lagarias and A.Odlyzko (1976) were the first to derive explicit error terms
for this theorem. Two versions the CDT were proved one was unconditional and
the other relied on the assumption of the Generalized Riemann Hypothesis. Each
result expressed the error term as a function of z,#C, #G,nr = [L : Q] and dy.
See [LaOd]. The error terms were further refined by J.-P. Serre and improved by
K. Murty, R. Murty and N. Saradha. We list the two main theorems we will use
in the proof of our main results. The first theorem is a refinement due to Serre of

the version given in [LaOd].

Theorem 3.1.6 ([Se], p.133) Assuming GRH for the Dedekind zeta function of

L, we have that, for all x > 3,

Oe(z, L/Q) = i—gLix +0 ((#C)xm (% + logx))

The implied O-constant is absolute.

We use the same notation introduced in [CoFoMu] and let P(L/Q) denote the

set of rational primes p which ramify in L/Q and define the product,

M(L/Q) = #G) [ »

PEP(L/Q)
Theorem 3.1.7 ([MuMuSa], p.253-281) Assuming GRH and AHC for the Artin

L-functions attached to the irreducible characters of G, we have that, for all z > 3,

Io(x, L/Q) = -ﬁ%m + O((#C) Y22 2 log(M(L/Q)x))
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This theorem is due to K. Murty, R. Murty and N. Saradha (see [MuMuSa)).
3.2 Properties of the Torsion Fields Q(E[m])/Q

Theorem 3.2.1 Let Q(E[m]) be the Galois extension of Q. Then the following

hold:

1. The ramified primes of Q(E[m])/Q are the divisors of mN or mAg. Where

N is the conductor of E and Ag is the discriminant of E.

2. Let n,, and d,, denote the degree and discriminant of the finite Galois ex-
tension Q(E[m])/Q. We have the following bounds:

log |dp|

m

< logmN

and

log(M(Q(E[m])/Q)z) < logmN.

Proof: For the proof of part 1 of the theorem see [Si2] p.179. The bounds obtained
in part 2 can be found in [CoFoMu]. The calculations for these bounds are based
on a lemma proved by Serre in [Se|] p.130. We will make use of these results in

the proof of the main theorem.

Theorem 3.2.2 Let E be an elliptic curve over Q, and m an integer. Let p be a

prime not dividing mAg. Then, the Galois representation

pm s Gal(Q(E[m])/Q) — GL2(Z/mZ)
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sends the Artin symbol o, to a conjugacy class of matrices such that

tr(pm(0p)) = a, mod m

det(pm(op)) =p mod m
where a, = p+ 1 — #E(F,).

Proof: This follows from the definition of the Artin symbol and from Theorem

2.10.,5. O

3.3 Matrices in PGLy(Z/pZ)

Definition 3.3.1 For any commutative ring R, the general linear group denoted
as GLy(R) 1is the set of invertible 2 X 2 matrices with coefficients in R. In other

words,

GLy(R) = {(Z Z) |a,b,c,d€Randad—bc€R*}

Definition 3.3.2 The projective linear group, PG Ls(R) is defined as the quotient
GLy(R)/R* where R* = {( g 2 > |re R*}

Let p be an odd prime. The matrices in PGLy(Z/pZ) are the equivalence
classes of invertible 2 x 2 matrices A, B with entries in Z/pZ where A ~ B if A is
a nonzero scalar multiple of B mod p. Let us denote the classes of PGLy(Z/pZ)

as



If @ = 0 then b # 0 and we can choose the matrix with b = 1 as the representative
matrix of each class. If a is any nonzero scalar mod p then we can choose the
matrix with a = 1 because the matrices in each class are equivalent if they can be
obtained from one another by multiplication by a nonzero scalar. Each equivalence

class in PGL4(Z/pZ) has a representative of the form:

2 a)] (e 0]

Furthermore, none of these representatives are equivalent.

Lemma 3.3.3 #PGLy(Z/pZ) =p(p—1)+p*(p—1)=p*—p

Proof: We want to determine the number of representatives with ¢ = 0 in
PGLy(Z/pZ). This matrix is in PGLy(Z/pZ) if its determinant —c # 0. There
are p — 1 possibilities for ¢ and p possibilities for d. In total there are p(p — 1)
classes of this type in PGLy(Z/pZ).

To determine the number of matrices of the form a = 1 in PGLy(Z/pZ) we
count the values of b, ¢, d for which the determinant d—bc # 0. There are p X p ways
of choosing b and ¢. When choosing d we have to make sure that the determinant
is not zero. Therefore, there are only p — 1 ways of choosing d for each choice of

b and c. In total there are p?(p — 1) classes of this type. So

#PGLy(Z/pZ) =p(p—1)+p*(p—1)=p° —p. O
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Lemma 3.3.4 #PGLy(Z/pgZ) = (p* — p)(¢® - q)
Proof: Since
PGLy(Z/pqZ) ~ PGLy(Z/pZ) x PGLy(Z/qZ)
follows from the Chinese Remainder theorem, using lemma 3.3.3 we get
4PGLy(Z/pgl) = #PGLy(Z/pT) x #PCLy(Z/qZ)
= (-pd-9. O
We remark ’that the determinant and trace are not well defined in PGL4(Z/pZ): if

we multiply a given matrix A by a scalar k then tr(kA) = ktr(A) and determinant

det (kA) = k? det (A).

Lemma 3.3.5 The Legendre symbol,

<4det(A)p— tr2(A))

is well defined for classes A in PGLy(Z/pZ)

Proof: Let A ~ B in PGLy(Z/pZ), then B = kA for some k € (Z/pZ)*. Using

the Legendfe symbol we get:

<4det(B)p— tr2(B))

Adet(kA) — tr2(kA)>

4k%det(A) — k*tr?(A) )

(=
(

_ ( )(4det ) — tr? (A))
(

4det(A) — tr2(A)>




note since k # 0, k? is a square mod p so the Legendre symbol (%) is equal to

1. Therefore, it is well defined. O

Lemma 3.3.6

sdet(9) = w9’ _ | _
p

Proof: We want to calculate the number of matrices g in PGLy(Z/pZ) which

7 {g € PGLy(Z/pZ)

have

4det(g) — tr(g)2 —0
’ .

We break this into two cases:

1. Suppose a = 0. We want to count the representatives

(2 0)] e (555) -0

This occurs when —4c = d?. If we vary ¢, —4c goes through all of the values
1,...,p — 1 (because ¢ # 0). Half of these ((p — 1)/2 values) are squares.
For each of these squares d has two possible values. In total there are (p—1)

matrices with this property.

2. Suppose that a # 0. We want to count the representatives

(28] o (tzb0zt2) g

This occurs when —4bc = (1 — d)?.
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(a) If b = 0: ¢ has p possible values, d has 1 value and so there are p

matrices.

(b) If c=0andb # 0: d has 1 value and b has (p — 1) values so there are

(p — 1) matrices.

(¢c) f b # 0 and ¢ # 0: then b has p — 1 values. If we fix b then as ¢
varies, —4bc will go through all of the values 1,...,p — 1 half of which
ére squares so there are (p — 1)/2 choices for ¢. Each square yields
two values of d. There are 2(p — 1)((p —1)/2) = (p — 1)2 possibilities.
However, we must avoid the case when the determinant is zero i.e
d = be. This occurs when —4d = (1 — d)? or d = —1. For every fixed
c- # 0, we can find a b which gives d = —1. There are p — 1 matrices of

this type.

Therefore,

i {g € PGLy(Z/pZ)

(4det (g)p— tr(g)2) _ 0} = (p-1)+p+(p-1)

+-17-(p-1)

Lemma 3.3.7

# {g € PGLy(Z/pZ) ) 5

(_4det (9) — tr(g)Q) _ 1} _-p +0(p?)
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Lemma 3.3.8

7 {g € PGLy(Z/pZ) s 2

(—4det (9) - tr(9)2> _ ,1} - ¥’ —p) + 0(p?)

Proof: To calculate the number of matrices in PGL2(Z/pZ) whose Legendre
symbol is 1 or —1, the proof is identical in both cases. For p an odd prime, every
reduced modulo p system has (p — 1)/2 squares and (p — 1)/2 nonsquares modulo
p (see [Ap] p.179). We provide the calculations for the case where the Legendre
symbol is 1. The proof for when the Legendre symbol is —1 is the séme. We begin

by analyzing the two general cases:

1. Suppose a = 0. We want to calculate the number of representatives

(2 0)] e (555)

this occurs when —4c — d? is a square mod p (=1 when —dc — d? is a
nonsquare mod p). If we fix d and vary ¢, at most there will be (p — 1)/2
squarés (nonsquares) for —4c — d?. For each fixed value of d, there can be at
most (p—1)/2 solutions for ¢ which yield a square for the Valﬁe of —4c—d2.
In total there are p(p — 1)/2 possibilities. However, we must discount the
possibilities where ¢ = 0 otherwise the determinant will be zero. This occurs
when ;—4(0) —d? = —d? is a square (nonsquare). There can be at most (p—1)

values of d will yield a square (nonsquare) so we get p(p — 1)/2 + O(p).
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2. Suppose that a # 0. We want to count the number of representatives

(2 0] (1ot

this occurs when —(d — 1) —4bc is a square mod p (~1 when —(d—1)? —4bc

is a nonsquare mod p). If we fix d and b and vary c, there are at most
(p — 1)/2 squares for every value of d and b so ¢ can have at most (p—1)/2
solutions which yield a square for the value of —(d — 1) — 4bc. In total,
there p?(p — 1)/2 such matrices. However, we must avoid the case when
d = bc i.e when the determinant is zero. This occurs when —(d + 1)? is a
square (nonsquare). There are at most (p — 1) values of d which satisfy this
condition. Now for every fixed value of ¢, we can find a b which gives us

bc = d. In total there are p?(p — 1)/2+ O(p?) possibilities. We have an error

term of p? matrices.

Therefore, -

<_4det (9) — tr(g)z) _ 1} _ pe=b) O(p)
p

+p2 (p - 1) + O(p2)

# {9 € PGLy(Z/pZ)

- &2, op. o
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3.4 The Square Sieve

The Square Sieve will play an important part in our proof of the main theorem.

We state it here without providing the proof. The proof can be found in [CoFoMul].

Theorem 3.4.1 (The Square Sieve) Let A be a finite set of not necessarily

distinct, nonzero integers, and let P be a set of (distinct) odd primes. Set

S(A) = #{u € A| p is a square}

Then
2
#A
sl S (E S g s| 5
A ,uGA leP peA leP
(pl)# (p.D)#1

where (E) denotes the Jacobi symbol , (u,l) denotes the greatest common divisor

of p and l, and max denotes the mazimum element of the above set of numbers.
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Chapter 4

Proof of Main Theorem

4.1 Overview of Main Theorem

Fix E an elliptic curve over Q, and let K = Q(v/—D) be a fixed quadratic

imaginary extension where D > 0 is a fixed square free integer. Let
Pg(Q(W=D),z) = #{p < z| pt Ap,Q(m,) = Q(V—-D)}.

We prove in this chapter the main theorem.
Theorem 1.0.3 Let E be a non-CM elliptic curve defined over Q with conductor
N. Let Q(+/—D) be a fizred imaginary quadratic field. Let x > 3 be a positive real

number.

(a) if we assume GRH for the Dedekind zeta functions of the division fields of
E, then

Pe(Q(v—=D),z) <y ¥/ logx

(b) if we assume GRH and Artin’s Holomorphy Conjecture (denoted AHC) for
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the L-functions of the irreducible characters of the Galois groups of the di-

vision fields of E then

Pe(Q(vV-D),z) <y z"8logz

Throughout the proof, p, q,! will denote odd rational primes, x and z will denote
positive real numbers. Given an elliptic curve E defined over QQ and of discriminant
Apg, the prime p we use will not divide Ag. For |f(z)| = Mg(z) we write f(z) <
g(z) or f(z) = O(g(z)) to indicate that the constant M is absolute. We also use

the notaton < which implies that f(z) < ¢g(z) < f(x).
4.2 Proof of Theorem 1.0.3 part (a)

Proof: To prove part (a) of the theorem, we use same procedure and notation
introduced in [CoFoMu|. The first half of the calculations can be found in [Co-
FoMu]. However, for completeness we include them here. We want to find an up-
per bound for the number of primes p < z, p{ Ag, for which Q(r,) = Q(v-D),

this occurs when the discriminant of z? — a,z + p is negative. Which implies

/a2 — 4p = v/—Dm or equivalently,

4dp — aﬁ = Dm?
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for some nonzero integer m. Multiplying both sides of the equation by D we get
that

D(4p — af,) = D*m?.
To use the Square Sieve, we start by defining A and P as follows:
A= {Dip-a)|p<a)

P:= {qaprime |z < g < 2z}

where

z = z(z) > aN(loglog N)/?

is a positive real number depending on z to be chosen later, a denotes a positive

absolute constant also to be specified later. For a nonzero integer u let
v, () := #{l € P such that [|u}.

We are finding an upper bound for the number of squares in the set A. From

the equation for the Square Sieve and the inequality v,(u) < log u, we obtain

S(A) = #{p € A| pis asquare} < 2(7é£+max

#P l,lc;éeqP e
1 1 )
+0 <#P;10gu+ (#Py ;(logu) )
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Using the fact that #4 <« @, #P = 1-5‘;—;, we obtain the following:

#—115 > logpu < 10% (Z log (D (4p — af)))

ueA p<z

1
< 8% (H(:c) log D + Z log 4p>

z
p<z
log 2 (:clogD +:z) ‘
z log

The Prime Number Theorem provides us with the approximation

xr
Y o1=T(z) ~ ogs"

p<z

Z(log pn? < Z(log D)? + 2(log D) Z log (4p — a,?)

neA p<z p<z

+ Z(log(4p —a,?))?

p<z

1 log 2)* ( z(log D)?
—(—#——P?‘L;(logpf < ( 22) ( (logx) +zlog D+ zlogzx
e

Substituting these results into the equation for S(A) we get,

S(4) < x Z(%) +

ma
’ zlogx = lqeP
I#q |n€A

zlogz zlogz zlogz

log D
zlogzx 08X+

z(log 2)? ,  z(logz)? z(log z)(log 2)?
—_ D ———logD ‘
+ 2?logx (log D)” + 22 log D + 22

To find an upper bound for S(A) we need to find an upper bound for

7’
max |3 (_>
l!
quf nea la
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The essential difference in our calculations with those found in [CoFoMu] oc-
curs here. To get an improvement of [CoFoMu|, we now use the representation
Pm of Theorem 2.7.1. Since we are dealing with matrices in PGLy(Z/1qZ), we
cannot count matrices according to the values of their traces and determinants
as done in [CoFoMu] because both the trace and determinant are no longer in-
variant in PG Ly(Z/lgZ): two matrices which are in the same conjugacy class in
PGLy(Z/19Z) can have different traces and determinants. We use the Legendre

symbol

(4det(A)l— t12(A) )
q

which is well defined for A € PGLy(Z/1qZ) to separate the primes into four specific
sums $i, Sy, $3, 84 and then use the CDT to compute the number of unramified
primes whose Artin symbol at p belongs to one of the four corresponding classes
C1(lg), C2(lg), C5(lq), Cy(lq) of Gal(Fg[lq]/Q). Let I,q € P where [ # ¢ be fixed.

We rewrite the sum as

3 (ﬁ) S (D(‘*pl—;“f)) +O(log N)

HEA lq p<z
pilgN
4dp — a,? 4dp — a,’?
_ (l2> 3 ( Pty ) ( P—a >+O(logN)
q <z q
pllgN

D
= (E) (81 + S2 + 83 + 84) + O(logN)
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where s1,89,83,54 are defined to be:

- a, 4p — a,
s= > (I (ED- v
p<z,pflgN p<z,pilgN

2
(41’_;%_) (4”_“2) 1 (4"_7%)=(3!;;:?1)=1

RS CONCOR

R Gl S R

p<z,pligN p<z,pllgN

(=) (5 (=)
A q q

= #{psxmme

p<z,pllgN
2 2
(22) = (252 )=

= —# {péx,p’(qu‘

s = 3

2pSw,p’rqu ) szz,p’rqu )
(‘lp_fa)=_1,(4p_;ae)=1 (@_jﬂe)z_l,(%_;a.v_):l

g2 _ 2
= —#{pseption|(T7E) = (TF) <1}

Note that we do not define the sums for which one of the Legendre symbols is
equal to zero. This is because the sum for which this occurs will be equal to zero.

Hence, our calculations will not be affected by them.
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Using Theorem 3.2.1(1), the rational primes in Fg[lq]/Q which do not ramify
are precisely those primes p such that (p,lgN) = 1. Using the properties for the
Artin symbbl at p stated in Theorem 3.2.2 for m = lg, s; can be rewritten in

terms of p; and p, as the number of primes p < z, p { {gN where

(4 det (pi(0p)) — (tr(Pz(Up)))2) _ (4det (pg(op)) — (tr(Pq(Up)))2> _1
l q |

Then s can be evaluated by applying the CDT to the Galois extension Fg[lg]/Q.
For m = lq where (A, lq) = 1, we can use Theorem 2.7.1 and the Chinese Remain-

der Theorem to get
Gal(Fgllq]/Q) ~ PGLy(Z/IqZ) ~ PGLy(Z/IZ) x PGLy(Z/qZ).

Let
Ci(lg) < Gal(Fg(lq]/Q).

For notational convenience, let P, = PGLy(Z/IZ) x PGLy(Z/qZ).

<4detgl—(tr9)2> _ (4det9; <“f9)2> - 1}.

si=#{p<z,ptigN | plq(ap) C Ci(lg)}-

Crllg) = {g e P,

Then

Using the explicit CDT, Theorem 3.1.6 and the bound in Theorem 3.2.1(2) for

the parameter

log |dlq |
Nyg
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5 = #C1(lg)

= EPGLy /i) T O((#C1(Iq))=? log (IgNz)).

Lemma 4.2.1 #C;(lq) = (I3 = 1)(¢® — q)/4 + O(13¢% + I*¢%)

Proof: Using the results found in section 3.3, we can substitute the values found
in lemma 3.3.4 and lemma 3.3.7 for the number of matrices whose Legendre symbol

is 1. Using the fact that
PGLy(Z/IqZ) ~ PGLy(Z/IZ) x PGL3(Z/qZ),
we can calculate #Ci(lg).

#Ci(lg) = (®-0/2+00%) (¢ - 9)/2+ O(¢?))
= (P -D(-q)/a+ 0P -1)/2

+O(P)(¢® — q)/4+ O(*)O(¢?)

I

(B =1)(¢®—q)/a+ 0P +1%¢%) O

Using lemma 4.2.1 we have

-0 - q)/4+00¢ + 1% .. 33,1
8 = Liz + O(l°¢°z2 log (lgNzx
B-D(-q ,. ( Bg® + ¢ ) : 331
= Liz + O | —————— | Lix + O(l°¢°z2 log (lgNz
AE (¢~ q) B-D@— 9 ( & (laNa))
Liz l3q2 + 12q3 . 3 3 1

= Lz ((% + 1)) Liz + O(*¢*z? log (IgN'z)).

4 l
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To evaluate sq, s3, 54, we proceed in a similar manner as for s;. Let

Ca(lg) = {g € P,

(4 det(g) (tr<g>>2> _ (4 det (g) - (tr<g>>2) _ _1} |

By Theorem 2.7.1, we can restate sy as
sa=#{p<z,ptigN | ﬁlq(%) C Cy(lg)}-

Using Theorem 3.1.6 and Theorem 3.2.1(2) for sy

. #Cs(lq)
- #PGLy(Z/1q7)

Liz + O((#C»(lq))z? log (lgN)).

S2
Lemma 4.2.2 #Cy(lq) = (I3 - 1)(¢® — q)/4 + O(13¢® + 1*¢%)

Proof: Using lemma 3.3.4 and lemma 3.3.8, we can calculate the number of

matrices whose Legendre symbol is —1. This gives

#Ca(lg) = ((P=1/2+0(")((@* - 9)/2+ O(¢*))
= (® =D - q)/4+ 0T - 1)/2
+0(*)(¢* - 9)/2 + O(1*)O(d)

= @-D(@-q/4+00¢ +1%). O

We can calculate s9 using lemma 4.2.2

3 3 3,2 2,3 1
s = U l)(q(zs 3)1/;‘(; (_)(;)q ) Ly + 0@t 1og (1aN2)

- L_i”i +0 ((% + %)) Liz + O(*¢®x# log (IgNz)).
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Let

Cs(lg) = {g € P,

We rewrite s3 as

s3=—#{p<x,ptigh | ﬁlq("p) C Cs(lg)}-

To obtain s3 we use Theorem 3.1.6 and Theorem 3.2.1(2)

#Cs(lq)

 #PGLy(Z/lqZ) Liz + O((#C5(lq))x* log (IgNx)).

S3 =
Lemma 4.2.3 #C3(lq) = (I3 = 1)(¢® — q)/4 + O(13¢® + I’¢3)

Proof: Using lemma 3.3.4, lemma 3.3.7 and lemma 3.3.8, we have that the number

of matrices satisfying the above conditions is

- #Cs5(lg) = ((B-0/24+0@)(¢* - 9)/2+ O(¢%))
= (B-D(@-9/4+ 0B -1)/2
+0(1)(¢* - q)/2 + O(F)O(¢?)

= @B-1(’-9/4+0B¢+12¢). O

Using lemma 4.2.3 we have

__ #Cs(lg)
#PGLy(Z]l4Z)
_ PN -a/A+O0CC+ ) 50880k 1o (laN e
- T =4 Liz + O(FP¢°z? log (IgNz))

_ _..Ii;_x +0 ((1 + %)) Liz + O(3¢*z? log (lgNz)).
q

s Liz + O((#Cs(lg))z? log (IlgNx))
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Let

C4(l(]) = {g € qu

(4detg ; (trg)2> _ 1 (4detg;(trg)2) _ 1}'

We rewrite s, as

84 = —#{P < ’C,p{qu | plq(o'p) - C4(l(])}

To calculate s4 we use Theorem 3.1.6 and Theorem 3.2.1(2):

_ #Cu(lg)
#PGLy(Z/lq7)

84 = Liz + O((#Cy(lg))z? log (IgN'z)).

Lemma 4.2.4 #Cy(lq) = (I3 - 1)(¢® — q)/4 + O(13¢® + 12¢3)

Proof: Using lemma 3.3.4, lemma 3.3.7 and lemma 3.3.8, we have that the number

of matrices satisfying the above conditions is

#Cu(lg) = (B -0/2+0@)(¢* —q)/2+ O(*))
= -0 -a/4+ 0P -1)/2
+0()(¢* - 9)/2+ O(1*)O(¢)

= (-0 -9)/4+0@¢ +1P¢%). ©

Using lemma 4.2.4 we have

3 _ 3 _ 3,2 1 12,3 .
S4g = _(l LU (13 E)l/f(;; (_)(;)q hali' )Liz + O(l3q3x5 log (IgNz))

_¥ +0 (G + %)) Liz + O(I¢*z? log (IgN'z)).

I
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Now going back to the original equation, we get

: D
5 <l£> _ (r) (s1+ 52+ 53+ 54) + O(log N)
neA q 9
DN/t . 1 . 1. 1.
= (EI-> (ZLzaz + ZLM - Zsz - ZLm)
+0 ((% + %) Lia:) + O(1%¢*z7 log (IgNx))
+ O(log N)

=0 (G + %) Lim) +O(’¢’z? log (IgNw)).

Since

the result can be written in terms of z and x. As mentioned earlier, z is a positive
real number which depends on z. The primes [, g we are considering are bounded
in the interval

z<l,qg <2z

So we have

1
— <
2z —

o~ =
ISE

Q| =

Therefore, their sum is also bounded.

<-4+

IS
o~ | =
[SE N ]

I~

In order to express the term log (IlgNz) in terms of only z and z, we have

log z < log q,1ogl < log2z
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and
log (IgNz) = log (lq) + log (Nz).
Using the fact that
loglq = logl + log q,

we find the required bound
2log 2z < log! + log ¢ = log (Iq) < 2log2log 2

Substituting these bounds gives the following:

>(5)] < =)

HEA
1.1 : 3 3,3
= 0 p +7 Liz } + O(F°¢°z? log (lgNx))

<

max
l,geP
l#q

oz + 2822 log (zNx)

We substitute everything back into the equation for S(A).

1 |
S(4) < To82 ° + B2 log (2Nz) + zlogz log T082
zlogx zlogx zlogzx
z(log 2)? ,  z(log z)? z(log z)(log 2)?
TNOBZ) (15g PY2 4 T2
-+ Tlog s (log D)* + 2 og D+ o

The z is a function of z and we want to find the value of z which will yield the

best approximation. This occurs when

[=2]
N

Il

R
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Solving the equation, we choose the following value of z

1
zZ = x4,

Since Pgp(Q(v—D),z) = 0 for square-free D > 4z, which allows us to assume

log D <« log . Plugging into the initial equation we get

log p& log z & log p&
S(A) « T8TH | oTighlog (zTNT) + 22T 1og gy 4 TOBTN
zidlogr <zidilogr ziilogx Tid
1 1 1
z(log x11)? z(log x1)? z(log z)(log 211)?
(2g )(1ogx)2+ ( g2 ) log & + (log )(2g )
zidlogz Tia Y
13
< zi+ rn +x%log(:c%N)+xﬁlogx+w%%logx
logx
+ 21 (log z)® + x4 (log )3 + 214 (log z)3
18
<L zulogz.

This gives Pg(Q(v—D),z) < S(A) <y z'*logz, which completes part (a) of

the theorem. O

4.3 Proof of Theorem 1.0.3 part (b)

Proof: If we assume GRH and AHC and use the results found in the proof of

the first part of the theorem we can improve the error term for s, so, 3,54 by

using the CDT with explicit error term, Theorem 3.1.7 and Theorem 3.2.1(2).
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We obtain -

S2

S4 =

T #PGLy(Z/iqZ)

~ T HPGL,(Z)lqZ)

#9150 4 O((#C1 (1)) 22 1og (M(L/Q)c))
(B =0/24+0))((¢ - q9)/2+ O(¢%))
-0 =9

Lr o (G i ;)) Liz + 0(t3 g3z} log (1))

Liz + O((3¢®)? %% log (IlgNz))

#p§22<(§/)zqz) Liz + O((#Ca(lg))*='* log (M(L/Q)x))
(B =1/2+00))((¢ - 9)/2+ O(¢?)
(B -0 -q)

%ﬁc_ 10 ((% + %)) Liz + O(I3¢3z3 log (IgNz))

Liz + O((B¢®)2 27 log (IgNz))

#Csle) .o O((#Cs(1g))*2*? log (M(L/Q)x))

(B -0/2+00%))(¢* - 9)/2+ O(¢*))

= - ) Liz + O((P¢®)2z7 log (IgN z))

@ —-0(¢*—q)
—% +0 ((% + %)) Liz + O(l%q%x% log (lgN<z))

_ #Cu(lq)
#PGLo(Z/1qZ)
(B -0/2+00*))(¢* —9)/2+ O(¢*))

Liz + O((#Cy(1g))?x"? log (M(L/Q)x))

= - Liz + O((I3¢®) 227 log (IgN z))

(B-0(¢*~-q)

.‘% + 0 ((% + %)) Lixz + O(l%q%m% log (IgNz)).
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From part (.a), we know that

% (@) = (@) erarussromen

D 1. . 1. . 1. 1.
1 1 . 3 3 1
Lo ((E N 7) sz) + Ot g4t log (IgNz))

+ O(log N)
1

= 0 ((5 + %) Lix) +O(l¢3 27 log (IgNx)).

Rewriting everything in terms of z and z,

> (%)

HeA

- 0 (G + %) Liw) + O(i3¢3 2% log (IgNz))

< + 233 log (zN<z).

zlogzx

Plugging this into the equation for S(A), we get

zlogz T xlogz

1
+ 2872 log (zNz) + T08% log D +

S(A
(4) zlogx zlogx zlogx
1 2 1 2 1 1 2
r(og2f | 1o, 2og | allogz)(og)?
22logx Yz 22

We want to find the value of z which will yield the best approximation. This

occurs when

w
[
18
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Therefore, solving the equation, we choose the following value of z

As in part (a), Pg(Q(v/—D),z) = 0 for square-free D > 4z which allows us to
assume log D < logz. This gives

1 1
S(4) < zlog s

log z3 log 7
n - i +x%x%log(x§Nx)+xlogxs loga:+x ogixs
zslogz xslogz xs logx xs
z(log z3)? z(log z3)? z(log z)(log x5 )2
N (2g )(logzc)2+ ( BTE) gy 4 Fllog2)(log )
zs logx xs zs
L
<L 8+
ogzr

+ g8 log(:c%N) +z¥ logx+x§ log

+ 28 (log z)® + 78 (log 2)3 + z* (log z)°
7
< zdlogz.

This gives Pp(Q(v/—D),z) < S(A) «n x"/%logz, which completes part (b) of
the theorem. O
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