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ABSTRACT

Rate-Distortion Regions for Successively Structured

Multiterminal Source Coding Schemes

Hamid Behroozi, PhD.
Concordia University, 2007

Multiterminal source coding refers to separate encoding and joint decoding of mul-
tiple correlated sources. Joint decoding requires all the messages to be decoded simultane-
ously which is exponentially more complex than a sequence of single-message decodings.
Inspired by previous work on successive coding strategy, which is based on successive
decoding structure, we apply the successive Wyner-Ziv coding to different schemes of
multiterminal source coding problem. We address the problem from an information the-
oretic perspective and determine the rate region for three different multiterminal coding
schemes: Gaussian CEO problem, I-helper problem, and 2-terminal source coding prob-
lem. We prove that the optimal sum-rate distortion performance for the CEO problem
is achievable using the successive coding strategy which is essentially a low complexity
approach for obtaining a prescribed distortion. We show that if the sum-rate tends to in-
finity for a finite number of agents (sensors), the optimal rate allocation strategy assigns
equal rates to all agents. The same result is obtained when the number of agents tends
to infinity while the sum-rate is finite. Then, we consider I-helper source coding scheme
where one source provides partial side information to the decoder to help the reconstruc-
tion of the other source. Our results show that the successive coding strategy is an optimal
strategy in this scheme in the sense of achieving the rate-distortion function. For the 2-
terminal source coding problem, we develop connections between source encoding and
data fusion steps and prove that the whole rate-distortion region is achievable using the

successive coding strategy. Comparing the performance of the sequential coding with the
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performance of the successive coding, we show that there is no sum-rate loss when the
side information is not available at the encoder. This result is of special interest in some
applications such as video coding where there are processing and storage constraints at
the encoder. Based on the successive coding strategy, we provide an achievable rate-
distortion region for the m-terminal source coding.

We also considér a distributed network, modeled by CEO problem with Gaussian
multiple access channel (MAC), where L noisy observations of a memoryless Gaussian
source are transmitted through an additive white Gaussian MAC to a decoder. The de-
coder wishes to reconstruct the main source with an average distortion D at the smallest
possible power consumption in the communication link. Our goal is to characterize the
power-distortion region achievable by any coding strategy regardless of delay and com-
plexity. We obtain a necessary condition for achievability of all power-distortion tuples
(P, Py, ..., P, D). Also, analyzing the uncoded transmission scheme provides a suffi-
cient condition for achievability of (P, P, ..., Pr, D). Then, we consider a symmetric
case of the problem where the observations of agents have the same noise level and the
transmitting signals are subject to the same average power constraint. We show that in
this case the necessary and sufficient conditions coincide and give the optimal power-
distortion region. Therefore, in the symmetric case of Gaussian CEO problem uncoded

transmission over a Gaussian MAC performs optimally for any finite number of agents.
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Chapter 1

Introduction

Multiterminal source coding refers to separate encoding and joint decoding of multiple
correlated sources. Joint decoding requires all messages to be decoded simultaneously
which is exponentially more complex than a sequence of single-message decodings. We
consider successive coding as a low complexity coding scheme for multiterminal source
coding. It allows us to analyze the multiterminal schemes with finite number of sources.
In this thesis, we analyze the rate-distortion function of three different multiterminal
schemes: multiterminal noisy (remote) source coding scheme called the CEO problem,
1-helper source coding scheme and 2-terminal source coding problem.

In this chapter, we first give a background on classical source coding. Then different
multiterminal source coding schemes will be described. The organization of the thesis

concludes this chapter.

1.1 Classical Source Coding

Shannon initiated the studies on source coding in his original paper [1]. He stated the
source coding theorem for lossless data compression, which investigates the question of
how short a description is possible if we want perfect reconstruction of a given amount of

information. He also introduced the idea of lossy data compression which considers the



shortest possible description to represent information within some prescribed distortion.
Since the source does not need to be reconstructed perfectly in this case, such a source
coding scheme is called a “lossy” scheme. Shannon investigated lossy data compression,
which is also called source coding with a fidelity criterion, more precisely in [2]. Fidelity
is measured by a fidelity criterion such as average distortion. The objective of this problem
is to determine the minimum description rate required to reconstruct a source with respect
to a target distortion. This is called the rate-distortion function. Since his work, many
research works have been done on the subject of rate-distortion theory for point-to-point
communication systems (e.g., [3, 4, 5, 6]), much of which has been reviewed in the survey
paper of Berger and Gibson [7].

But new issues have been addressed beyond the classical source coding problem.

1.2 Multiterminal Source Coding

1.2.1 Source Coding with Side Information

In the point-to-point communication there is only a single source of information at en-
coder and decoder, i.€., the message at the encoder, and the received signal at the decoder.
If any type of useful information is added to encoder or decoder’s information, it would
be called “side” information [8]. Side information is often available to improve the rate-
distortion performance of the system. One simple example is when an observer records
a signal X to be conveyed to a receiver who has an old version of the signal, Y which
is correlated with X. Wyner and Ziv determine the rate-distortion function of the source
coding with uncoded side information at the decoder [9]. Wyner extends the result for
the Gaussian case with mean squared-error distortion measure [10]. Today, Wyner-Ziv

coding refers to lossy source coding with decoder side information.



1.2.2 Noisy (Remote) Source Coding

Noisy source coding refers to coding of noisy (or imperfect) observations. For instance,
consider a distributed monitoring system or a distributed video sensor network. In such
a system, the encoder may not have direct access to the source of interest. Instead, only
a corrupted or noisy version of the source is available at the encoder. This scheme is
also termed as the remote source coding problem and is studied in [11]. Wolf and Ziv
consider a version of this scheme in which the source is corrupted by an additive noise

[12]. Recent extensions to the non-Gaussian sources appear in [13].

1.2.3 Noisy Source Coding with Side Information

This scheme is the generalization of two previous schemes. The generalized Wyner-
Ziv source coding for noisy encoder observations, which is also called the remote source
coding with side information, is appeared in [14]. This problem is also known as the noisy
Wyner-Ziv coding, i.e., lossy coding of noisy observations with side information available
at the decoder and not at the encoder. Similar rate-distortion analysis is presented in [15],

and recently in [8].

1.2.4 Source Coding for Multiterminal Scenarios

Information sources in many networks such as wireless sensor networks are distributed.
Since the sources are correlated, the correlation should be exploited to avoid redundant
transmission. This requires the theory of distributed coding of correlated sources. In
other words, many wireless networks are working under some power constraints at their
nodes. On the other hand, the bit rate directly impacts transmission power consumption
at a node. Therefore, determining minimum rates at which these correlated, physically
separated, sources can be compressed, given that they are going to be reconstructed at a
Jjoint decoder, is critical. Moreover, in some real situations such as distributed monitoring

system, multiple encoders only have partial access to the sources of interest. In fact,



there are many schemes or scenarios in practice whose rate-distortion regions are not
completely characterized.

In general, Multiterminal Source Coding [16] refers to the compression of multiple
correlated sources that cannot communicate with each other (distributed coding). The
outputs of these sources will be sent to a fusion center (FC) or a Chief Executive (Esti-
mation) Officer (CEO) (e.g. the base station) for joint decoding. In this thesis, we focus
on lossy source coding and investigate the rate-distortion regions of multiterminal source
coding schemes.

Slepian and Wolf establish information-theoretic bounds for distributed lossless
coding [17]. Wyner and Ziv extend the results for lossy source coding with decoder
side information [9]. Over the last 30 years, significant effort has been made on finding a
complete characterization of multiterminal rate-distortion region. But even concrete ex-
amples of the problem are hard to analyze. For instance, the complete characterization of
the rate region for 2-terminal source coding for the Gaussian case has been found recently
[18]. Nevertheless, today multiterminal source coding is still of special interest; not only
because it is an open problem of information theory [19], but also because of its appli-
cation in wireless communication systems. In fact, the increasing attention given to new
applications such as wireless video networks or distributed sensor networks is a reason for
new interests in multiterminal source coding schemes. A wireless sensor network (WSN)
is a particular type of Ad Hoc network where the nodes have severe energy constraints.
It consists of a large number of sensors spread across a geographical area for informa-
tion gathering. Each sensor may have capabilities of wireless communications, signal
processing of its observation or measurement and networking the data, thus, it must be
self-configuring. These networks are widely used in many applications and have great
capabilities for consumer, military, and civic applications. We can consider sensor net-
works that forecast the weather, control the traffic, or provide security in shopping malls
or other places. They also can be deployed rapidly and be used efficiently at the sites

of accidents such as collapse of a building to detect and locate trapped survivors, or to



track natural gas and toxic substances [20]. The benefit of these distributed networks is
their ease of deployment since they do not need any infrastructure which is required in
wireless communications using base stations. Distributed sensor networks are typically
operated under constraints on system resources such as power and bandwidth. Since the
bit rate directly impacts transmission power consumption at a node, an efficient high ratio
compression is the main requirement of distributed wireless sensor networks.

In practice, there are many other problems that are closely related to multiterminal
source coding problem. The biological and machine pattern recognition problem from
life sciences, recently considered by Westover and O’Sullivan [21, 22], is closely related
to multiterminal source coding. Motivated by the problem of communication over relay
networks, Gastpar extends Wyner-Ziv to the case of multiple sources [23]. Another reason
that the multiterminal source coding has captured a lot of attention from the research
community is the duality relationship among many of these problems such as duality
between source coding and information embedding or data hiding, duality between rate-
distortion and channel capacity, etc [24, 25, 26, 27, 28].

Although the theory of multiterminal source coding started more than 30 years ago,
a complete characterization of its rate-distortion region still remains unknown. Even con-
crete examples of this problem are hard to analyze. For instance, the whole rate-distortion
region of the 2-terminal source coding scheme for Gaussian sources with mean-squared
error (MSE) distortion has been recently characterized. We consider successive coding
as a low complexity coding scheme that allows us to analyze the multiterminal schemes

with finite number of sources.

1.3 Successive Coding Strategy

Previous researches on coding of multiterminal schemes are based on joint decoding of all
messages. Joint decoding requires all the messages to be decoded simultaneously which

is exponentially more complex than a sequence of single-message decodings. Inspired by



previous work on successive coding strategy, we apply the successive Wyner-Ziv coding
to the multiterminal source coding schemes.

This is a decentralized strategy because at each stage, only the knowledge sharing
between each encoder and decoder is needed. When an encoder encodes a message, it
considers two things. First, its observations and second, its statistical knowledge about
the messages that the decoder has already received from other nodes in the network. The
latter is known as the “decoder side information” in the sense of Wyner and Ziv [9]. At the
decoder, messages from sources are decoded sequentially in order to increase the fidelity
of estimation at each decoding step.

The successive Wyner-Ziv coding strategy allows us to derive an achievable rate
region for multiterminal schemes. Its successive structuring provides flexibility to deal
with distributed signal processing. From the perspective of robustness, this scheme per-
forms well, i.e., if we timeshare among different successive decoding schemes, no matter
which node fails in the network, the decoder can obtain a nontrivial estimate of the source.
Finally, by applying the successive coding the available practical Wyner-Ziv coding tech-
niques are applicable to more general distributed and multiterminal source coding prob-
lems. We address the problem from an information theoretic perspective and determine
the rate region for three different multiterminal coding schemes: Gaussian CEO problem,
1-helper source coding scheme and 2-terminal source coding problem.

First, we consider multiterminal noisy source coding problem, called the CEO prob-
lem, introduced in [29]. In this problem, the CEO is interested in an underlying source. L
agents (sensors) observe independently noisy versions of the source signal X. Agents
separately communicate information about their observations to the FC through rate-
constrained noiseless channels without collaborating. The FC desires to form an optimal
estimate of X based on information received from the agents. The objective of the CEO
problem is to determine the minimum achievable distortion under a sum-rate constraint.

By sum-rate, we mean the total rate at which the agents may communicate information



about their observations to the FC. The special case of Gaussian source and noise statis-
tics with MSE distortion is called the quadratic Gaussian CEO problem, first introduced
in [30]. For this case, the rate region is known [31, 32, 33, 34]. We apply the successive
coding strategy and show that it is an optimal strategy in the Gaussian CEO problem in
the sense of achieving the sum-rate distortion function of the problem.

Then, we evaluate the performance of the successive coding strategy for the prob-
lem of multiterminal lossy coding of correlated Gaussian sources. We first consider the
I-helper source coding problem where one source provides partial side information to
the decoder to help reconstruction of the other source signal. Our results show that the
successive coding strategy is an optimal strategy in sense of achieving the rate-distortion
function of the I-helper problem. In the 2-terminal source coding scheme, we are in-
terested in reconstructing both sources at the decoder. We prove that successive coding
can achieve the whole rate-region of the problem. Finally, we provide an achievable rate-
distortion region for the m-helper problem in which multiple correlated sources transmit
their information to a FC for further processing. One of these sources is the source of
interest, which is called the primary source, but other sources act as helpers by send-
ing correlated information (which is called side information) to help reproduction of the
primary source signal [35]. We also provide an inner bound for the rate-region of the
m-terminal source coding problem, where all of the m sources are to be reconstructed at
the FC.

In the last part of this research, we consider Gaussian CEO problem with Gaussian
multiple access channel (MAC) where L noisy observations of a memoryless Gaussian
source are transmitted through an additive white Gaussian MAC to a single FC. The en-
coders are distributed and cannot cooperate to exploit their correlation. Each encoder
is subject to a transmission cost constraint. This constraint comes from the restrictions
on the resources such as power and bandwidth that are available at each agent (sensor
node). Since the final goal is to reconstruct the main source to within some prescribed

distortion level at the smallest cost in the communication link, finding a suitable coding



strategy to achieve this goal is critical. Our interest lies in deriving the achievable power-
distortion region, while the fidelity of estimation at the FC is measured by the MSE distor-
tion. We first obtain a necessary condition for achievability of all power-distortion tuples
(Py, Ps, ..., P, D). Our proof is based on using the data processing inequality and ana-
lyzing the remote source coding scenario, where the agents observations are given to one
common encoder. On the other hand, it is shown [36, 37] that for a point-to-point trans-
mission of a single Gaussian source through an additive white Gaussian noise (AWGN)
channel, if the channel bandwidth is equal to the source bandwidth, a simple uncoded
transmission achieves the optimal power-distortion tradeoff. In [38] the Gaussian CEO
problem in a symmetric environment is considered, where the agents observations have
the same noise level and the transmitting terminals are subject to the same average power
constraint. The authors show that as the number of agents tends to infinity, uncoded
transmission achieves the smallest possible distortion. In the recent work of Lapidoth et
al. [39] sending a memoryless Bi-variate Gaussian source over an interfering MAC is
evaluated. They have shown that in the symmetric case, uncoded transmission is optimal
below a threshold signal-to-noise ratio (SNR). Motivated by this result, we analyze the
performance of the uncoded transmission scheme in the Gaussian CEO problem. Analyz-
ing the uncoded transmission scheme provides a sufficient condition for achievability of
(P, P, ..., P, D). We show that, in the symmetric case, these necessary and sufficient
conditions coincide and give the optimal power-distortion tradeoff. This is the same result
as the recent work of Gastpar [40] which is obtained independently. It shows that in the
symmetric case of Gaussian CEO problem uncoded transmission over a Gaussian MAC

performs optimally for any finite number of agents.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2, Background, is devoted to the literature review and background of



source coding, distributed source coding and rate-distortion theory. We focus on Gaussian
rate-distortion and present different multiterminal coding schemes that we are going to
characterize their rate-distortion regions based on successive coding strategy. We also
present a comprehensive background on the concept of successive coding in this chapter.

In Chapter 3, Successively Structured Gaussian CEO Problem, we apply the
successive coding strategy to the Gaussian CEO problem and derive the optimal rate al-
location scheme to achieve the minimum distortion under a sum-rate constraint. One of
the main contributions of this work is to show that the sum-rate distortion function of the
Gaussian CEO problem can be achieved by a sequence of successively structured Wyner-
Ziv codes. Based on these results, we characterize the whole rate region of the Gaussian
CEO problem. We also demonstrate that if the sum-rate, R, grows to infinity with a fi-
nite number of agents or if the number of agents, L, tends to infinity under a sum-rate
constraint, a sequence of successively structured Wyner-Ziv codes with equal commu-
nication rates at agents (R; = Ry =--- = R, = R/L) converges to the rate-distortion
function. Hence, we can simplify rate allocation problem in a general parallel network
with L agents by assigning equal rates to agents, provided that the average rate per agent
is either very large or is very small. The similar result for the large number of agents
is also presented in [8]. In the last part of Chapter 3, a solution for the communication
throughput of a Gaussian relay network is presented.

In Chapter 4, Successively Structured Gaussian Multiterminal Source Coding
Schemes, we evaluate the performance of the successive coding strategy for the multi-
terminal lossy coding of correlated Gaussian sources. We consider the m-helper problem
for the special case of m = 1 where one source provides partial side information to the
decoder to help reconstruction of the other source. Our results show that the succes-
sive coding strategy, which is inherently a low complexity coding scheme of obtaining a
prescribed distortion, is an optimal strategy in the sense of achieving the rate-distortion
function of the I-helper problem. By developing connections between source encoding

and data fusion step, it is shown that the whole rate distortion region for the 2-terminal



source coding problem is achievable using the successive coding strategy. Comparing the
performance of the sequential coding with the performance of the successive coding, we
show that there is no sum-rate loss when the side information is not available at the en-
coder. We provide an achievable rate-distortion region for the m-helper problem and also
derive an inner bound for the rate-region of the m-terminal source coding scheme.

In Chapter 5, Gaussian CEO Problem with Gaussian Multiple Access Channel,
we consider a distributed network, modeled by CEO problem with Gaussian MAC, where
L distributed agents transmit noisy observations of a source through a Gaussian MAC
to a common destination. The goal is to characterize the optimal tradeoff between the
transmission cost, i.e., the power vector P = (P, Py, ..., Pp), and the average estimation
distortion, D. We present necessary and sufficient conditions for achievability of (L +
1)—tuples (Py, Ps, ..., Pr, D). In the symmetric case these conditions agree and provide
the optimal power-distortion tradeoff. We show that in the symmetric case for any finite
L, uncoded transmission performs optimally and achieves the smallest possible distortion.

Chapter 6, Conclusion, summarizes the contributions of this thesis and gives sug-

gestions for future work.

10



Chapter 2

Background

In this chapter we review the rate-distortion theory for lossy source coding. We consider
a general model for multiterminal (distributed) source coding and focus on Wyner-Ziv
coding and its generalized version to noisy encoder observations, called remote source
coding with side information. Then we present three multiterminal schemes that we are
going to obtain their rate-distortion functions based on the successive coding strategy. We
present the literature review for all three schemes and provide the existing rate-distortion
functions. Then, we review the successive coding strategy as an enabling technique that
allows us to analyze the multiterminal coding schemes. A summary of the chapter is

presented at the end.

2.1 Rate-Distortion Theory

Rate-distortion theory was introduced by Claude Shannon in his original work [1]. It
gives the theoretical bounds for how much compression can be achieved using lossy data
compression methods. Results of the rate-distortion theory are obtained without consider-
ation of a specific coding method. It addresses the problem of determining the minimum
amount of information rate R that should be communicated over a channel, so that the

source can be reconstructed at the receiver without exceeding a given distortion D). In the
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rate-distortion theory, the rate is usually understood as the number of bits per source sym-
bol to be transmitted, and the distortion is usually defined as the variance of the difference

between the input and the output signal, i.e., the MSE distortion.

2.1.1 Rate-Distortion Function

Let X be a source that produces a sequence of symbols X" = X;, Xy, ..., X, in an
independent and identically distributed (i.i.d.) fashion according to the distribution p(z)
for z € X. The source encoder represents each n-symbol sequence X" € X" from the
source with an index p(X™") € {1, 2,.., 2”3}. The source decoder represents X" by an
estimate X™ € X", which is also called the reproduced (or reconstructed) sequence. The
source coding scheme is illustrated in Figure 2.1. Since we have a compression, the rate

always holds R < 1.

Source Source AN

X
Encoder R Decoder

Figure 2.1: Source coding scheme.

A distortion measure (or function) is a mapping from pairs of source symbols
and reproduced symbols to the positive real line (the set of non-negative real numbers).
In fact, the single-letter distortion is a measure of the cost of representing the symbol
X by the symbol X. Thus, if X is the source symbol and X is its representation, the
distortion d(X, X ) is a positive real number, i.e., d : X X X — [0, 00). In most cases,
the reproduction alphabet X is the same as the source alphabet X'

The distortion between sequences is defined by the average distortion per source

symbol, ie., d(X", X") = Ly d(X, X,). The fidelity criterion is the total aver-
age distortion which is defined by E [d(X”, X")] - E [5 S d(X;, )?i)] where the
expectation is with respect to the probability distribution on X'.

A (2"R n) rate-distortion code for a source X under distortion measure d is defined

by encoder and decode functions (¢, 7)) such that
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A = LY Ed(X, X))
where X; is the ith component of X" = % (¢ (X™)). A rate-distortion pair (R, D) is
achievable if a sequence of (2"%, n) rate-distortion codes (¢, ¥) exists such that we have
lim, . Ed (X" 9 (¢ (X™)) < D, ie.,lim, ., A < D. The rate-distortion region
R for a source X is the closure of the set of achievable pairs (R, D), where closure of a
set S is the union of S with the set of limit points of S. Now we can define a function to
describe the boundary of the rate-distortion region: The rate-distortion function R(D)
is the infimum of rates R such that the pair (R, D) is in the rate-distortion region R of the

source for a given average distortion D, i.e.,
R(D) = i%f{R :(R,D) e R}. 2.2)

Shannon [1] gives an information-theoretic characterization of the rate-distortion func-
tion:

The information rate-distortion function R\")(D) for a source X under distortion
measure d(X, X) is:

RO(D)y= inf I(X;X), (2.3)
XeMx (D)

where Mx (D) is the closure of the set of all random variables X described by a test
channel p(z | ) such that Ed(X, X) < D. In other words,

RI(D) = inf I(X; X). (2.4)

p(&lz): 3, ; p(2)p(E|2)d(z,2)<D

It is shown that the rate-distortion function of an i.i.d. source X with distribution p(z) and
bounded distortion function d( X, X ) equals the corresponding information rate-distortion
function. In this work, we have considered Gaussian sources with MSE distortion mea-
sure. The rate-distortion function for a Gaussian source N (0, o2) under a MSE distortion

function is:
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llog(i) 0< D < g?

R(D)={ *? b (2.5)
0 D > ¢?

When one moves beyond the classical source coding problem, new issues arise: source

coding with side information, noisy (remote) source coding, Multiterminal (or distributed)

source coding, etc.

2.2 Multiterminal (Distributed) Source Coding

Multiterminal source coding or distributed data compression refers to separate lossy en-
coding and joint decoding of multiple correlated sources. In this more general scenario,
L sources are observed at L separate encoders. The goal it to jointly estimate all ob-
servations, rather than some underlying source. Rate-distortion theory for multiterminal
coding problem was first studied by Wyner and Ziv. The analysis of this scenario, ranging
from one source with coded side information to L sources has been studied during years
[9, 41,42, 43, 31, 34, 32, 33].

Consider a communication system with two correlated sources, X and Y (see Fig-
ure 2.2). Assume that X and Y are not co-located or cannot cooperate to directly exploit
the correlation. Therefore, the sources are encoded independently or are “distributed”.

On the other hand, the receiver can see both encoded sequences and can perform joint

decoding.
X ———| Encoder 1 & 3{\
Joint
/ Decoder /Y\
Y Encoder 2

R,

Figure 2.2: Distributed compression of two correlated sources, X and Y . The decoder
jointly decodes X and Y.
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2.2.1 Lossless Distributed Source Coding

In lossless source coding, we want to represent the information perfectly. Assume that
{(zi,y:)};2, be a sequence of i.id. drawings of a pair of correlated discrete random
variables X and Y. Shannon’s source coding theory states that if we want to encode X
and Y together, a rate given by joint entropy of H(X,Y) is sufficient to have lossless
compression, i.e., after decompression we obtain X =XandY =Y. To reach this
efficient compression rate, we can compress Y into H(Y") bits per sample at the encoder
and transmit it to the decoder. Based on this knowledge (i.e., complete knowledge of Y
available at the encoder and decoder) we can compress X into H(X | Y') bits per sample.
But what should we do if we have a distributed nature like in the sensor network? What
is the best achievable rate if X and Y must be separately encoded?

Slepian and Wolf [17] showed that the joint entropy R = H(X,Y) is still achiev-
able as long as the individual rate for each source is at least its conditional entropy given
the other source. Therefore, based on Slepian-Wolf Coding (SWC), the encoder of X by
just knowing the joint distribution of X and Y can perform as well as the encoder with
complete knowledge of Y. There is no loss of coding efficiency with separate encoding

compared with joint encoding as long as joint decoding is performed.

2.2.2 Lossy Source Coding with Side Information

In the lossy compression, the decoder produces the source estimate to an acceptable av-
erage distortion. Wyner-Ziv coding [9] refers to lossy compression with decoder side
information. The Wyner-Ziv coding scheme is shown in Fig. 2.3. We need to encode X
under the constraint that the average distortion between X and the estimated version X is
less than or equal D, assuming that the side information Y is available at the decoder but
not at the encoder. The important fact about Wyner-Ziv coding is that it usually suffers
rate loss when compared to lossy coding of X when the side information Y is available at

both the encoder and the decoder. One exception is when X and Y are jointly Gaussian
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with MSE distortion measure. There is no rate loss with Wyner-Ziv coding in this case,
which is of special interest in practice such as video sensor networks since many image

and video sources (after mean abstraction) can be modeled as jointly Gaussian [44].

Y
X Lossy Source . Source /)E
Encoder R Decoder

Figure 2.3: Wyner-Ziv coding scheme.

2.2.2.1 Wyner-Ziv coding for Quadratic Gaussian case

Assume X and Y are zero mean and stationary jointly Gaussian memoryless sources and
the distortion metric is MSE, i.e., d(x,Z) = (z—7)?. Let the covariance matrix of X and Y

2
o POXxCOy
X
be A =
2
POXxOy Oy

resent the Wyner-Ziv rate-distortion function by R}, (D) and conditional rate-distortion

with correlation coefficient p such that |p| < 1. If we rep-

function, i.e., rate-distortion function when both encoder and decoder have access to the

side information by Rx|y (D), where, D is the upper limit of average distortion, then

"gﬂ] = Lyggt {————03‘ Sl 2)} 2.6)

* = — —log™"

2

where log* = = max{log, z,0}, p = 22 and 02, = B[(X - E[X | Y])?] = E[X?]-

oxoy
%[[%. So there is no rate loss with Wyner-Ziv coding in this quadratic Gaussian case
[10].

2.2.3 Noisy Source Coding with Side Information

Fig. 2.4 shows the noisy (remote) source coding scheme with decoder side information
which is also called the generalized Wyner-Ziv source coding for noisy encoder observa-

tions [45]. The length-n i.i.d. source vector X is observed via two memoryless channel
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as Y, at the encoder, and as Y at the decoder. Based on its observation, Y. , the encoder
transmits a message m to the decoder over a rate-constrained noiseless channel. The de-
coder produces source estimate X as a function of m and its side information Y . The
goal is to minimize the transmission rate needed to guarantee that the source decoder can
approximate the source to within average distortion D, i.e., E{d(X, X)} < D provided
that side information is available at the decoder. Because of imperfect encoder observa-
tions, X is not uniquely determined from the encoder observation Y .. Thus the problem

is different from Wyner-Ziv source coding.

p(y, [%)

Source X Yd ~
Y. X
— P(Y %) Encoder R ~ Decoder —

Figure 2.4: Wyner-Ziv source coding with noisy encoder observation.

2.2.3.1 Noisy Wyner-Ziv Coding for Quadratic Gaussian case

Assume Y, and Y, are observations of the i.i.d Gaussian source X through AWGN
channels, ie., Y,; = X; + V., and Yy; = X; + Vy; , where V. ; ~ N(0, N,) and V; ~
N(0, N;). We assume that two noises are independent of each other and of the source. It

is shown that [14, 15, 45] the rate-distortion function for this problem is as follows:

1 0§<|Y O§(|Y Y,
R(D)= =1 4 o-d 27
( ) 2 Og l D - 0.2x|Ye Yd ( )

where Uf(lyeyyd <D< me,d. The conditional variance ag(lyd represents the minimum
mean-squared error (MMSE) in X given the decoder observation Y 4, and o§( YeYy is sim-
ilarly defined while both encoder and decoder observations, i.e., Y. and Y, are available
for the estimation of X.

But there are many different scenarios for distributed source coding. In those cases,
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a general expression for the rate-distortion function or rate-region is unknown. We con-
sider successive coding strategy as an enabling technique that allows us to analyze the
multiterminal schemes. Its successive structure is suitable for networks because the na-
ture of data in networks is distributed. Although this simple strategy may have suboptimal
performance in general, we prove that in three multiterminal schemes it is optimal in the
sense of achieving the rate-distortion function.

We consider three extensions of the source coding problem to the distributed setting,
called the CEO problem, I-helper problem and the 2-terminal source coding problem. All
these problems can be considered as examples of the general multiterminal source coding

problem, illustrated in Fig. 2.5.

4 Rl
Source X, » Encoder 1 »
R,
. Source X, » Encoder 2 >
Information <
: . 4
L
L | Source X Encl?der - .
R Joint S0
Encoder L+1 .
r Source Y1 L+1 * Decoder :
: R X"
Partial Source Y, Encoder | __Ls2, L
. < L+2
Side .
Information :
R
L
_ | Source Y, Encoder LLIN
L+m

Figure 2.5: General model for multiterminal source coding problem. Each encoder sepa-
rately encodes its message while the joint decoder, based on all received messages, obtains
estimates of L primary sources, X;, X, ..., X;. Auxiliary sources Y7, Y5, ..., Y,,, which
are also called helpers, provide partial side information to help the decoder to reconstruct
primary sources.

L + m encoders must encode L + m correlated sources separately, each one subject
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to a rate constraint, so that a joint decoder (FC) with access to codes from all encoders
can obtain estimate of L sources, where m other sources play the role of partial side
information to help the decoder to reproduce the transmitted sequence of the main L

sources within the prescribed average distortions.

2.2.4 Extensions of Noisy Wyner-Ziv Source Coding
2.24.1 CEO problem

The CEO problem, which is in fact the multiterminal noisy source coding problem, is an
abstract model for remote monitoring (or sensing) and distributed compression in wireless
networks. In this problem, a chief executive officer (CEO) is interested in an underlying
source. L agents observe independently corrupted versions of the source. Each agent has
a noiseless, rate-constrained channel to the CEO. Without collaborating, the agents must
transmit messages across these channels to the CEO so that the CEO can reconstruct an
estimate of the source to within some degree of fidelity. The scenario of the CEO problem
is shown in Fig. 2.6.

The special case of Gaussian source and noise statistics with MSE distortion is
called the quadratic Gaussian CEO problem and is introduced in [30]. Since each ob-
servation is the source corrupted by an additive white Gaussian noise (AWGN), it is also
called AWGN CEO problem [13]. For this version of the CEO problem the rate-region
is known [31, 32, 33, 34]. The objective of the CEO problem has been to determine the
minimum achievable distortion under a sum-rate constraint. It is shown [34, 32, 33] that

the sum-rate distortion function of the Gaussian CEO problem can be expressed as

M

2
_ M
R(D) = 21og+ { Zx__1 =

- ; (2.8)
2 DHiAilNi ”12;"'21':11\1%_
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Figure 2.6: The CEO model. The target data X is observed by L wireless agents (sensors)
as Y;s. Agents encode and transmit their observations through rate constrained noiseless
channels to a FC. The FC obtains an estimate of the source X within an acceptable degree
of fidelity.

In this work, we prove that the successive coding strategy can achieve this sum-rate dis-

tortion for any finite number of agents and therefore it is optimal.

2.2.4.2 I-helper Source Coding

As a special case, consider the case of 2 correlated sources, where one source (called
auxiliary source) plays the role of partial side information to help the decoder reproduce
the transmitted sequence of the other source (which is called the primary source). For this
problem which is called the /-helper problem the admissible rate-region, i.e., the set of
all transmission rates for which the primary source can be decoded with an arbitrary small
error probability, is determined [46, 47]. The scenario is illustrated in Fig. 2.7. The result
is extended to the many-help-one problem, where there are several auxiliary sources that
act as the side information at the decoder [48, 49]. They consider a special case where the
auxiliary sources are conditionally independent if the primary source is given.

The I-helper problem for the correlated memoryless Gaussian sources and squared

distortion measures is investigated in [42]. Oohama shows that his outer bound for the
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Figure 2.7: 1-helper source coding scheme. Source X, which is called the primary source,
is to be reconstructed at the decoder. Source Y, which is called the auxiliary source or
the helper, provides partial side information to the decoder to help reconstruction of the
primary source.

2-terminal source coding when combined with the inner bound of Berger [16] and Tung

[50] determines the rate-distortion function of the I-helper problem.

Theorem 1 ([42]) The rate-distortion function of the Gaussian 1-helper problem can be
expressed as

1 o’
Ro(Dy) = 5 log™ bio (1—p*+p*2720) 1, 2.9)

where Ry represent the rate of the primary source and R, is the helper’s rate.

Oohama extends his results to more than two sources for a certain class of m + 1
correlated sources, where m source signals are independent noisy versions of the primary
source, i.e., X; = Xo+ N;, i € {1,2,...,m}. In other words, sources X; to X,, are
conditionally independent given the source X [31, 34]. The result is extended to the
case where m + 1 sources satisfy a kind of tree structure on their correlation [S1]. This
condition contains the conditionally independent condition as a special case. In [35],
the general correlation structure for the many-help-one problem, which is also called m-
helper problem, is considered. For this case, the authors of [35] derive a lower bound on
the rate-distortion function. However, in [51] it is claimed that the bounding method of

[35] does not provide a tight result and the problem still remains open.
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Figure 2.8: 2-terminal source coding scheme. X and Y are two correlated sources with
correlation coefficient p. Both sources are to be reconstructed a the decoder.

2.24.3 2-Terminal Source Coding

In this scheme, two correlated sources are separately encoded and sent to a single decoder,
where the decoder reconstruct both sources. The corresponding coding scheme is shown
in Fig. 2.8. Berger and Yeung [41] solve the rate-distortion problem for the situation in
which the reconstruction of X must be perfect, while that of Y is subject to a distortion
criterion. Oohama [42] gives the solution of the Wyner-Ziv problem with coded side
information for the case of two sources. He derives an outer region for the rate-distortion
region of the 2-terminal source coding problem and demonstrates that the inner region
obtained by Berger [16] and Tung [50] is partially tight [42]. Wagner et al. complete the
characterization of the rate region for the 2-terminal source coding problem by showing
that the inner bound of Berger and Tung is also tight in the sum-rate [18].

Based on the results of [42] and [18], the whole rate-distortion region of the 2-

terminal source coding system can be characterized by

R(Do, D1) = R§(Do) N R3(D1) N Roy (Do, Dy), (2.10)

where
Ri(Do) = {(Ro,R): Ro > blogh [ (1= g2+ 2272M)|}, @1
RiD) = {(Ro,Ri): a2 flog" [F (1 + p22770) |}, @12)
Roy(Do, Dy) = {(Rle) : Ry + Ry > 3log* [%ﬂm% (1- 02)] } ,  (2.13)
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In Chapter 3 and Chapter 4, we apply the successive Wyner-Ziv coding strategy to

these multiterminal coding schemes and obtain corresponding rate-distortion functions.

We also characterize the rate-region for those coding schemes.

2.3 Successive Wyner-Ziv Coding

The successive coding approach is well-known in the research community. One of the
first applications of the successive Wyner-Ziv coding is presented in the successive re-
finement scenario. In the successive refinement source coding [52, 53, 54] at first, the
source will be described by a few bits of information. The description of the source can
be improved when more bits of information are available. The scenario is depicted in
Fig. 2.9. A source is successively refinable if encoding in multiple stages incurs no rate
loss as compared with optimal rate-distortion encoding. It is shown that Gaussian sources
with the squared error distortion measure are successively refinable [53]. Steinberg and
Merhav [55] consider the problem of successive refinement in the presence of side infor-
mation. They answer the question whether such a progressive encoding causes rate loss
as compared with a single stage Wyner- Ziv coding. It is shown that the jointly Gaus-
sian sources (with the squared error distortion measure) are successively refinable in the
Wyner-Ziv setting. It is also shown that there is no rate loss when the difference between
the source and the side information is Gaussian and independent of the side information
[56]. The characterization of the rate-distortion region for successive refinability for more
than two-stage systems is presented in [57]. Application of successive coding strategy in
the CEO problem is presented in [45, 58]. In the recent work of [58] encoder ¢ splits R; to
m,; pieces, then it uses Wyner-Ziv codes successively to convey m; pieces to the decoder.
The authors use the idea of source splitting for lossless source coding [59] and its adopted

version for the distributed lossy source coding [60], which is called quantization splitting,
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Figure 2.9: Successive refinement coding.

to show that any rate tuple in the rate region of Gaussian CEO problem can be achieved by
a low complexity successive Wyner-Ziv coding scheme with at most 2L — 1 steps. More
precisely, this scheme requires Zle m; Wyner-Ziv coding steps.

In the successive Wyner-Ziv coding scheme [45], the whole process of quantization,
communication and estimation is designed to make use of the statistical knowledge of en-
coder about decoder’s data as the decoder side information in the Wyner-Ziv sense. This
is a decentralized strategy because at each stage, only the knowledge sharing between
each encoder and decoder is needed. This model couples the application-layer estimation
problem with the physical-layer communication problem [8]. So, when an encoder en-
codes a message, it considers two things. First, its observations and second, its statistical
knowledge about the messages that the decoder has already received from other nodes in
the network. The latter is known as the “decoder side information” in the sense of Wyner
and Ziv [9]. At the decoder, instead of joint one-shot decoding, messages from sources
are decoded sequentially in order to increase the fidelity of estimation at each decoding
step. By accumulating more data at each step, the decoder has a better side information
to use in the next decoding step. Thus, this strategy is also known as the side information
aware coding strategy. It gives a low complexity way to attain the prescribed distortion.
The joint decoding approach requires all messages decoded simultaneously which is ex-
ponentially more complex than a sequence of Wyner-Ziv stages. In fact, joint decoding
is very difficult to implement in practice, because random codes have a decoding com-
plexity of the order of 2*/(Y:W) where n is the block length, Y and W are vectors of

input and output of encoders, respectively [58]. The successive coding structure allows
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us to analyze the finite-L region. Its successive structuring provides flexibility to deal
with distributed signal processing and is suitable for networks because the nature of data
in networks is distributed [8]. From the perspective of robustness, this scheme performs
well [61], i.e., no matter which node fails in the network, the decoder can obtain a non-
trivial estimate of the source. But in the joint decoding of all messages, any corruption in
the transmitted codewords may cause a complete failure in the decoding [58]. Finally, by
applying the successive coding the available practical Wyner-Ziv coding techniques are
applicable to more general distributed and multiterminal source coding problems.

Using this strategy, the CEO problem can be decomposed into a sequence of L
noisy Wyner-Ziv coding schemes [45]. Although, in general, this simple strategy has
suboptimal performances in networks, we evaluate the performance of successive coding
strategy in the CEO problem in Chapter 3 and show that it is an optimal strategy in the
sense of achieving the sum-rate distortion function of the Gaussian CEO problem. In
Chapter 4, it is shown that the successive coding strategy is also optimal in the /-helper
problem and in the 2- terminal source coding problem and can achieve the whole rate

regions.

2.4 Chapter Summary

In this chapter we reviewed the lossy source coding with side information, which is termed
as Wyner-Ziv coding. Then we considered its generalization to noisy observations, which
is called remote source coding with decoder side information. Then we moved beyond the
Wyner-Ziv scheme to multiterminal coding scheme and provided existing rate-distortion
functions for three scenarios in multiterminal source coding, called the CEO problem, -
helper problem and 2-terminal source coding problem. We presented the successive cod-
ing strategy as a low complexity coding technique that allows us to analyze multiterminal
source coding schemes with finite number of sources. By applying the successive coding

strategy, any multiterminal source coding scheme can be decomposed to a sequence of
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successively structured Wyner-Ziv coding schemes. We will show that this low complex-
ity coding scheme can achieve the optimal performance in the three multiterminal coding

schemes presented.
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Chapter 3

Successively Structured Gaussian CEO

Problem

3.1 Introduction

3.1.1 The CEO Problem

Consider the data gathering application in wireless sensor networks (WSNs): a large
number of sensors are deployed in a field to measure a physical phenomenon such as
temperature or pressure. They communicate information about their measurements at a
limited rate to a single fusion center (FC) for further processing. The scenario is de-
picted in Fig. 3.1. The key challenge in such a data gathering application is conserving
energy of distributed wireless sensor nodes and maximizing their lifetime. Since the sen-
sor measurements are correlated, the correlation should be exploited to avoid redundant
transmission. In fact, since the bit-rate directly impacts power consumption at a sensor
node, by eliminating the data redundancy and reducing the communication load we can
manage the energy resources carefully. The behavior of wireless networks such as WSNs
can be modeled by the CEO problem [62, 14, 63, 15, 29, 30, 43, 64, 32, 33]. It is an ab-

stract model for remote monitoring (or sensing) and distributed compression in wireless
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Figure 3.1: Data gathering application in wireless sensor networks. A large number of
sensor nodes are deployed in a field to measure a physical phenomenon and then transmit
their information to a FC. Since the sensors need to operate over a long period of time, a
careful management of the energy resources is the main concern in WSNs.

networks.

In the CEO problem, L agents (sensors) observe independent noisy versions of the
source signal X. Agents communicate information about their observations separately to
the FC at rate {Ri}le without conferring with each other. The FC desires to form an
optimal estimate of X based on information received from the agents. The CEO model
is shown in Fig. 2.6. The objective of the CEO problem is to determine the minimum
achievable distortion under a sum rate constraint [30]. By sum rate, we mean the total
rate at which the agents may communicate information about their observations to the

FC.

3.1.2 Previous Work

The tradeoff between the sum-rate and the distortion is considered for the discrete case
in [29] and for the quadratic Gaussian case in [30] where the problem is considered in
the limit of a large number of high rate agents with the same quality of observations. In
[43] Oohama gives a complete characterization of the sum-rate distortion function for the

Gaussian CEO problem when the number of agents tends to infinity. Oohama presents a
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solution to the AWGN CEO problem with finite number of agents in [31, 34]. Inner and
outer bounds on the rate-distortion region for the general problem have been established
in [65, 32]. A complete characterization of the rate region for the Gaussian CEO problem
is investigated by Prabhakaran et al. [33] where they considered a finite number of agents
with the differing quality of observations. In fact, they showed that the achievable rate
region established by Chen et al. in [32] is indeed the rate-distortion region. A variation
of the Gaussian CEO problem is investigated by Pandya et al. [35], where each agent
observes a Gaussian source of dimension L. They obtain a lower bound for the sum-rate
distortion function of the problem. In general, the vector Gaussian CEO problem which
is a natural generalization of the scalar Gaussian CEO problem is studied in [66] where
inner and outer bounds of the rate distortion region are derived. In [67] Oohama obtains
tighter bounds than those of [66] on the rate region of the vector Gaussian CEO problem.
As other works in this area we can mention [68] and [69].

The coding/decoding strategy of [43, 31, 65, 32, 33, 34] is based on the joint decod-
ing of all messages. As a result, the decoding process cannot begin before all messages
have been received at the joint decoder. Also, in practice, joint decoding of all agent trans-
missions at the FC 1s very difficult to implement because random codes have a decoding
complexity of the order of 2n/(Y1:Y2.:-- ) where n is the code block length. In
other words, joint decoding requires all the messages to be decoded simultaneously which
is exponentially more complex than single-message decoding. Therefore, as a low com-
plexity way, we use the successive Wyner-Ziv coding [9] in the CEO problem and evalu-
ate its rate-distortion performance compared with the rate-distortion function of the CEO
problem. Although in general this simple strategy has a suboptimal performance, we will
show that for the Gaussian CEO problem consisting of L agents, successively structured

Wyner-Ziv codes can achieve the sum-rate distortion function of the problem.
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Figure 3.2: The CEO Model based on the successive Wyner-Ziv coding strategy. Each
encoder transmits the data based on the side information available at the decoder. The
decoder works in a sequential manner to increase the fidelity of estimate at each decoding
step.

3.1.3 Successive Coding for CEO Problem

In the successively structured CEO problem, the CEO problem is decomposed into a
sequence of data fusion encoding and decoding blocks based on the noisy Wyner-Ziv
results [70, 45]. The scenario is shown in Fig. 3.2. Based on this strategy, the distortion
sum-rate tradeoff for the CEO problem consisting of two agents with the same SNR is
obtained in [45] and it is shown that this is the distortion sum-rate function using the
distortion lower bound of Oohama [43]. In this chapter, we consider the CEO problem
consisting of L agents (L > 2) with differing SNRs.

3.1.4 Main Contribution

Our main contribution in this chapter is to show that the sum-rate distortion function of

the Gaussian CEO problem can be achieved by a sequence of successively structured

30



Wyner-Ziv codes. Therefore, the high complexity optimal source code can be decom-
posed into a sequence of low complexity Wyner-Ziv codes. We apply the successive
coding strategy to the Gaussian CEO problem and derive the optimal rate allocation
scheme to achieve the minimum distortion under a sum-rate constraint. Then, we de-
termine the optimal sum-rate distortion tradeoff. Comparing with the result of [33], we
show that our result is the optimum sum-rate distortion function for the Gaussian CEO
problem. We demonstrate that if the number of agents, L, tends to infinity under a sum-
rate constraint or if the sum-rate, R, grows to infinity with a finite number of agents, a
sequence of successively structured Wyner-Ziv codes with identical agent communication
rates (R1 =Ry=---=R; = T%_/ L) converges to the rate-distortion function. Hence, we
can simplify rate allocation problem in a general parallel network with L agents by as-
signing equal rates to agents, provided that the average rate per agent is either very large
or is very small. Finally, based on our results and the results of [8], we present a solution
for deriving the communication throughput of a relay network consisting of L relays.
The rest of this chapter is organized as follows: In Section 3.2, we present the
system model and problem formulation. In Section 3.3, we use the successive coding
strategy and obtain the optimal rate allocation scheme to achieve the minimum distortion
under a sum-rate constraint. The rate region for the CEO problem, some extreme cases in
the CEO problem and the rate loss with respect to the remote source coding are presented
in Section 3.4. The application of our result to the computation of the communication
throughput of the relay networks is presented in Section 3.5. Finally, we conclude the

chapter in Section 3.6 with a summary of our results.

3.2 Problem Formulation

The distributed network model studied in this chapter is shown in Fig. 3.3. In this model,
a firm’s CEO is interested in the data sequence {X (¢)},,. The target data, {X(t)}, ,

cannot be observed directly. The CEO deploys a team of L agents to observe the source
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data sequence. The agents observe independent noisy versions of this sequence, rep-
resented by the set {Y;(¢)},~,, ¢ = 1,..., L. Agents cannot cooperate to exploit their
correlation. They communicate information about their observed data to the FC through
noiseless channels at communication rate R; (¢ = 1, ..., L). This rate constraint comes
from the restrictions on the resources such as bandwidth and power that are available at

agents (for example, available at sensor nodes).

vy
fk 1 [ Encoder 1 Y
o, ncoder R,
Vv,
Y, U,
x D Encoder 2 R, Fusion R
Source Center X
(FC)
Vi,
Y - U
L Encoder L L
R,

Figure 3.3: Gaussian CEO problem (AWGN CEO problem). The target data X is ob-
served by L agents as Y;s. Agents encode and transmit their observations through rate
constrained noiseless channels to a FC. The FC desires to obtain an estimate of the source
X within an acceptable degree of fidelity.

Symbolically, for each observation timet = 1,2, 3, ..., n, ...
Yi(t) = X@t)+Vi(t), i=1,..,L (3.1)

where X (t) ~ N (0,0%) and V;(t) ~ N (0, N;) which is i.i.d. overi and t. Random vari-
ables Y;(t) for (i = 1,..., L) are conditionally independent given the source X (¢). The
common alphabets of random variables X (t) and Y;(¢) fort = 1,2, ... are denoted by X’
and );, respectively. We represent n independent instances of {X (¢)},-, and {Y;(¢)} 2,
by data sequences X™ = {X(1), X(2),..., X(n)} and Y;* = {Y;(1),Y;(2), ..., Yi(n)}, re-

spectively. Agent ¢ encodes its observation data sequence Y;" into a source code sequence
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w; (Y*) separately where the encoder functions are defined as

fori = 1,2,..., L. The coded sequences from L agents are sent to the FC with the rate

constraints

%10g2 ‘Cl| < Ri +9 , 1= 1,2, ,L (33)

where 4 is an arbitrarily small positive number. The task of FC is to reconstruct the
source message to an acceptable degree of fidelity. Since we have considered noise-
less channels between encoders and the decoder, the decoder observes L-tuple ol =
(o1 (Y1), ..., o1 (Y]')), and makes an estimate of the source X™ as X", The decoder
function is given by

Y:C X xCpL— A" (3.4)

Therefore, the reconstructed signal can be represented by X" = ¢ (¢, (YD), ...voL (YF)).
The fidelity measure is the average distortion, defined as A = E [% Son d(X(¢), X (t))]
where d : X% — [0, 00) is the MSE distortion measure, i.e., d(X, X) = (X — X)2. Let
.7-"5") (Ry, ..., Ry) denote all (L + 1)—tuple encoder and decoder functions (1, ..., o1, %)
that satisfy (3.2)-(3.4). The goal is to determine the tradeoff between the total rate of
encoders, ZiL:I R, = R, and the minimum achievable distortion. A sum-rate distor-
tion pair (R, D) is admissible if for any § > 0 and any n > n(6) there exists a pair
(¢*, ) € F” (R, ..., Rp) such that A < D + 6.

To analyze the CEO problem, we apply the successive Wyner Ziv coding strategy.
This strategy is a joint design of source coding, communication and data fusion steps.
When an agent encodes a message, previously decoded messages that are available at the
decoder act as the decoder side information. At the decoder, instead of joint decoding,
messages from agents are decoded sequentially with the objective of increasing the fi-
delity of estimation at each decoding step. Hence, this strategy simplifies the analysis of

the CEO problem by decomposing the CEO problem into L successive Wyner-Ziv coding
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cases [8]. In Section 3.3 we evaluate the sum-rate distortion performance of the succes-
sive coding strategy in the Gaussian CEO problem and prove that this strategy can achieve

the sum-rate distortion function of the CEO problem.

3.3 Optimal Rate Allocation Strategy

Assume that the memoryless Gaussian source X is observed at each agent in independent
AWGN. If we represent the length-n source vector by X and the observation of the i
agent by Y;, then Y; = X + V; where X ~ N (0,0%I) and V; ~ N (0, N;I). Ob-
servations are conditionally independent given the source. The FC produces the source
estimate X to an acceptable degree of fidelity. The measure of the fidelity is the average
distortion criterion, i.e., + E [>_" | d(z;, &;)] where d is the MSE distortion measure. The
distortion-rate performance of the successive coding strategy for the quadratic Gaussian
CEO problem is investigated in [70]. It is shown that the following distortion-rate tradeoff

can be achieved:

D;_1N; D’2—1 —2R; -
;= ¢ 2t =1,..,L 35
Di_1+ N * (Di—l + N; ’ (33)

where Dy = o%, D, is the distortion achieved by the i** decoder and R; is the communi-
cation rate between the i** agent and the FC in terms of bits per observation sample. First
we consider the 2-agent CEO problem and obtain optimal rate allocations that minimize
the final estimation distortion under a sum-rate constraint. Then, in Section 3.3.2, we use
this result as the base case of an induction to obtain the optimal rate allocation strategy in

the L—agent CEO problem.

3.3.1 CEOQO Problem with 2 Agents

Y I Vi
X+ where Vi ~ N (0, NiI) and V4 ~ N (0, NoI).
Y, I V,

Here,
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Theorem 2 The optimal sum-rate distortion tradeoff for the 2-agent Gaussian CEO prob-

lem based on the successive coding strategy can be expressed as

p
1not 4o * '
3 log (m) D < D < min (Du, D22)
—_— 0.4 2
R(D)={ llog* D(a§(+Ni{)—a§N1 Dy < D<ok & Ny <N,
ot
k %log+ D(ag(—f-Ni{)—ag(Nz Dy < D < O'g( & Ng < N1
(3.6)

-1 -1 -1
X 1 1 1 _ (21 1 1 _ (2 1 1
where D = (G + 5 +3) D= (+ — ) andDa = (F+a-%) -
Proof By using (3.5) for i = 1, 2 we obtain
02 0'2 0'2 — 02 _—
0'%( (1+F)§2_2R1) ]_1% (1_|_1_V)§_) +F}j (2 2R2+V)§2 2(R1+R2))

8 Ny (14 % 9% (1 4 Tx9-2R
m\Itm)tm Ut tw

Dy = 3.7)

14 %
It can easily be seen from Equation (3.7) that under a fixed R;, by increasing R,, the
achievable distortion decreases. Also, under a fixed R, the distortion will be reduced
by increasing R;. These results are somehow obvious since we expect to have less dis-
tortion by increasing the rate. We optimize the distortion expression D, over a sum-rate
constraint R to minimize the achievable distortion using the successive coding strategy.
The optimization is over the fraction of the total rate allocated to each agent: R, = AR
and Ry = (1 — \)R, given the total fixed communication rate R + R, = R. Therefore,
considering the rates in form of nats (instead of bits), D, is as follows:

0% (1 + %,%e"?’\ﬁ) 7 (1 + %,31‘) + %,%‘ (6_2(1_’\R) + %e‘ﬁ)

D2= X

; N. o% o% 0% _o\R 3.8)
44 N(14 %) + 5 (1+ FewR)

To obtain the optimum fractional rate (A), we take the derivation of D, with respect to A

and set the result equal to zero,
553 2 = 2 2 — _—
4D, = [T (Mg (14 8))] e [2(%) }

e (s G () () - (" 8] -



This is a quadratic equation with respect to e*E_ The acceptable root of this equation is

as follows:
2\ 2 2 2\ 2 2 2 _
g N: g o N. Ny O o
[ R YE) )
M = — (3.10)
g g
(¥ + fesk + 55)
Therefore, the optimal fractional rate allocation factor can be obtained as
2\ 2 2
o N o
L (2 e ()
Aopt = ﬁln PR , (3.11)
(R + 5+ %)

where v = %)° + (N2 g Ny 0% + %) 2R Since the second derivative of Dy with
7= M MMM TN 2

respect to A is positive, A,y 1s the value of A that gives the minimum of the distortion-
rate tradeoff. We substitute this optimal A, in equation (3.8) to obtain the minimum

achievable distortion,

2 Ny %

OXN <7+N) Ny Nyo%? 0% 0% % o

Dinin = —— INUZ - 2[ 2+—2—X+—XJr—)‘e‘”‘(w—x)].(3.12)
(R RE+F)

N, NN N N N,

9\ 2
y—IX
To simplify the optimal distortion expression, multiply Equation (3.12) by D—L, to

1
02
(-#)

get

Also, from the definition of v , we can substitute the result of equation below in (3.13),
2\ 2 2 2
2 Ox Ny  Noox 0%\ 9%
) = (22X X . 3.14
v (N1> (N1+N1N1+N1>e (3.14)
Therefore, the minimum achievable distortion is as follows:

(1) (#)
Dpin, = = . (3.15)




Since the Ay of (3.11) is not always between 0 and 1, we should obtain the best value for
A to obtain minimum distortion. When the X, is greater than one, we should choose A
to be equal one in (3.8) to obtain the minimum value of D,. This is the same as assigning
the whole rate to the first agent. Also, when A,y is less than zero, we should assign the

whole rate to the second agent, i.e., A = 0. As a result,
_ -2
o2 e’k (%) (7 - ‘—;%) 0< Aot <1
_ -1
Drin=1 0% (14 %) (1+5)  dp>1 (3.16)
o2 ¥ o2\ 71
A (1+ 55 (1+5) A <0
Solving (3.16) in terms of R will result in (3.6). This completes the Proof.

Comparing our results with the sum-rate distortion function of the 2—agent CEO
problem, presented in [65, 32, 33], reveals that the achievable sum-rate distortion tradeoff
in (3.6) is indeed the rate-distortion function of the CEO problem consisting of 2 agents
with different SNRs. In other words, the successive Wyner-Ziv coding is an optimal strat-
egy in the CEO problem in the sense of achieving the sum-rate distortion function. By

doing some manipulations, the optimal rate allocation scheme can be obtained as follows:

Corollary 1 The optimal rate allocation strategy that can achieve the sum-rate distortion

function of the 2-agent Gaussian CEQ problem can be expressed as follows:

(
o F+3- |- (F=— )
RI(D) = %log (X_I\éllzll_f) ? )
2 \DF" D
g * (3.17)
Ry(D) = %log !

\
These are the optimal values of compression rates for the successively structured

CEO problem that minimize the final distortion.

3.3.2 CEO Problem with L Agents (L > 2)

We aim to obtain the optimal rate allocation strategy that can achieve minimum distortion

under a sum-rate constraint in a Gaussian CEO problem consisting of L agents (L > 2).
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=)

To minimize the final distortion D under the sum-rate constraint ZiL:l R, = R, we
introduce the Lagrange multiplier 2 and define
L
J(Rl,Rg,,RL) IDL+M (ZR1> . (318)
i=1
Taking derivative of J with respect to R; and setting the derivative to O leads to
D
oDy _ 0Dy _ 9D _ (3.19)
8R1 6R2 8]:‘::L

If we obtain the derivative of D, with respect to R;, the optimum values of (R, ..., Ry)
which minimize the final distortion achievable Dy, can be obtained by solving (L — 1)
equations of (3.19) and the sum-rate constraint of Zle R; = R. The following lemma

determines the derivative of D}, with respect to Rj.

Lemma 1 The derivative of D,, with respect to Ry, for k < n < L can be expressed as:

e : (3.20)
(Di + Ni+1) 22Rit1

8D, (—2log2) D} 272 0 [ D2 + 2N, D; + N2, 22Res
ORy, Dy_1+ Ni

i=k

where Dy = c%.
Proof See Appendix I at the end of this chapter.

Thus, from (3.19) we have
oDy, oDy,

OR,  ORey:

Substituting (3.20) in (3.21) and doing some manipulations gives the following result.

(3.21)

Corollary 2 The optimal rates in the quadratic Gaussian CEO problem can be found

using the following iterative expression:

1 D?2?Rx (Dy_y + Ny) (Dy, + Niy1) D2+ 2Ny 1Dy,
Ryyq = 5 log, | & — (3.22)
2 DE_IN:?H NI?+1
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Using (3.22) we can obtain the optimum values of R;’s that minimize the final achievable
distortion D, under the constraint that Zle R; = R. Without loss of generality, we
assume that N; < N, < --. < Ny. The values of (Ry, Ry, ..., Rr) are the optimal rates
for agents in the sense of permitting the source decoder to reconstruct X within the fidelity

of Dy, which is the minimum distortion attainable with the successive coding strategy.

Lemma 2 The optimal rate allocation for the quadratic Gaussian CEQ problem based

on the successive coding strategy can be expressed as

1 M S 1
R;j(Dy) = 5 log, ﬁS»J - - , (3.23)
779 (m - b;)
forj=1,2 ..., M where,
o\
DM)=|—=+3 = (3.24)
(Ug‘ i=1 Ni)

is the infinite rate lower bound on the distortion, which can be achieved when all the
agents are given infinite rate. The number of active agents is M where M is the largest

integer value between 1 and L that satisfies the following inequality:

M > 1 L (3.25)
Ny —\D*(M) Dy)’ '
and _
1 &1 1 1
S;i=M|— — ] —J — : .26
f (o& *ZN) (o0~ 2) (20
The average distortion after each step of decoding can be expressed as
M
Dj=—, i=12...,M. 3.27)
S;

Proof The proof is presented in Appendix II at the end of this chapter.

As the final goal for the CEO problem, we are interested in the tradeoff between
the estimation distortion and the sum-rate. The following theorem gives the sum-rate

distortion performance of the successive coding strategy in the CEO problem.
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Theorem 3 The sum-rate distortion tradeoff based on the successive Wyner-Ziv coding

strategy for the quadratic Gaussian CEQ problem consisting of L agents is

M
— 1 o? 1 M
R(D) = = log, { X - ) (3.28)
2 D H =1 Vi D*(M) - D
for D*(M) < D < 0% where M is the number of active agents, which is the largest
integer value between 1 and L such that % > (T?—%I\T) — %)

Proof By considering optimal rate allocation of (3.23), adding R; to Rj; will result in

the sum-rate distortion tradeoff in (3.28).

Comparing the result of Theorem 3 with the results of [32] and [33] reveals that
the achievable sum-rate distortion tradeoff for the Gaussian CEO problem based on the
successive coding strategy is indeed the sum-rate distortion function of this problem.
Therefore, the successive coding strategy achieves the sum-rate distortion function. This
strategy has low complexity for obtaining a prescribed distortion and thus is simple to
implement for wireless networks.

Using (3.23), the difference between the rates of two sequential stages in the suc-

cessive coding strategy can be expressed as

1 Ny 5141814
Ry —R=-1 —_ 3.29
I+1 1= 5108, <N1+1 S? (3.29)
It is easy to show that 0 < —‘—%1—‘3’—1 < 1. Therefore, R, decreases in [. In other words,
y

Sl
each encoder encodes for a decoder with better side information, therefore, can obtain a
better compression rate than its preceding encoders [8].

From Lemma 2, it is clear that the number of active agents depends on the degree
of fidelity (distortion) at which the underlying source can be estimated by the FC. For the
optimal rate allocation, we always give preference to agents with small noise variances.
The agent with the smallest noise variance will receive the full rate allocation, i.e., R; = R

if > <5 <z +a; — n, Ingeneral, R = Ry = ..R; = 0if

.

-1 j .
1 1 -1 1 1 g
S SE< Y T
o% <N, N, 0% N

i - i=1

M.

s

L)
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In fact, if we want to obtain an estimate of the source with an average distortion of
1 L 1 L
(F+ond-#%)

Therefore, the optimal rate allocation based on the successive coding strategy has the be-

1
or better, all of the agents should transmit their observations.

havior of the Generalized Water-filling approach [32]. As an example, the sum-rate distor-
tion function for the case of L = 3 agents is shown in Fig. 3.4. The dotted line shows the
case when all the agents transmit their observations. The solid line demonstrates the case
when the two agents with the higher quality of observations transmit while the dashed line
corresponds to the case when only the agent with the best quality of observation transmits
its observation. Therefore, the number of active agents depends on the desired degree of
fidelity. As the value of acceptable distortion decreases, the number of active agents in-
creases. An interesting result is that even when the SNRs are identical at different agents,

our rate allocation scheme assigns different rates to different agents to minimize the final

distortion under a sum-rate constraint, i.e., if N; = N, = ... = N;, = N, then
L (L (1 1
1 6+ (- %)
R]' = 510g2 7x = X y j = ].,2, ,L .
i+ L 1 L+(j_1) S
;)2: N Dy ;g(— 193 U§<

(3.30)

Therefore, we have the asymmetric rate allocation. In addition, all of the agents have
non-zero rates and none of them will receive the total sum-rate.

To understand how the distortion, D;, changes with j, consider the following state-

ment: The ratio of D, to D;_; can be expressed as:

M_(_l___L)
&:1_ N b*(M) Dm

3.3
Dj—l SJ
Since M is chosen such that NME > (m — 51;) and we assume that N; < Ny, so

D; < Dj_,. Hence, the average distortion decreases after each decoding step. Intuitively,
since the FC obtains higher amount of data after each step, it has better side information to
use in the decoding process. Note that the rate of improvement in the distortion decreases

after each stage of the successive coding. In other words, we can show that

Dj—l Dj
— > > 1. (3.32)
Dj — Djn
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Figure 3.4: Sum-rate distortion function for the 3-node CEO problem. Dotted line: all
the agents transmit their observations. Solid line: two agents with the higher quality of
observations transmit. Dashed line: only the agent with the best quality of observation,
1.e., agent 1 transmits its observation.

3.3.3 A Lower bound on the Minimum Achievable Distortion

In this part, a lower bound on the minimum achievable distortion for the Gaussian CEO
problem with source variance 0% and observation noise variances N; is presented. We

show that the minimum achievable distortion satisfies, D,,;, > D* where

&)

This lower bound can be found when the decoder has direct access to the observations
of the agents. The system model for this idealization is shown in Fig. 3.5. Thus, if
agents are given infinite rate, they can simply forward their observations to the CEO at
full resolution. Then the CEO uses all the observations to make the minimum mean-
square estimation E [X | Y}, Y5, ..., Y] resulting in estimation error Jglel,Yz,...,YL’ which

is equal to D*. If R — oo, then the minimum achievable distortion of the successive
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Figure 3.5: The network model for the ideal case when the decoder has direct access to
the observations of the agents.

coding strategy would be the same as this lower bound.

Now, we want to show that this lower bound can be obtained using Shannon’s
source-channel coding theorem (also known as Shannon’s separation theorem) [71]. The
network of Fig. 3.5 can be considered as the system in which the data of a Gaussian source
is distributed across the multi-antenna channel with one transmit antenna (the source) and
L receive antennas [38]. The system would be an ergodic point-to-point communication
system [38]. Therefore, the Shannon’s separation theorem can be applied.

For this channel, we have
= {x+] (3.34)

which can be shown as the vector equation
Y=S+V. (3.35)

The capacity of this channel can be computed as [5]

1 |K5+KV|>
C = -log, (28T 2VI (3.36)
2 g2< Ky
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where |A| represents the determinant of matrix A, Kg and Ky are the covariance matrices
of random vectors S and V/, respectively. Since K is an L x L matrix with identical entries

0%, and Ky = diag(Ni, N, ..., Np), it can be shown that [32]

|KS + Kvl =

) L 1 L
L+ox [ Do+ | [T (3.37)
i=1

i=1

Thus, the capacity formula can be simplified as

L
1 1
C = log {1 + 0% ?:1 (F)] (3.38)

Also, the rate-distortion function of the Gaussian source with variance ¢% is R(D) =
2 . . .
% log, %. The minimum achievable distortion for the Gaussian source across this multi-

antenna channel can be obtained using separation theorem. We put R < C and get

1
1 L 1\ _ p
D> (F+Xh %) =D

3.3.4 Numerical Results

We assume that the target data is an i.i.d. zero mean Gaussian process with variance
0% = 100. Fig. 3.6 shows the decrease in the mean-squared estimation distortion versus
the total number of agents where agents have equal SNR = %, e, Vi~ Vo, ~ ... ~
Vi ~ N (0, N). The results are plotted for R = 0.25L, 0.5L, L when the noise variance
of the observations is 10. The data points that correspond to each agent’s estimation error
are connected. As the total number of agents increases, the achievable distortion decreases
since the CEO accumulates more data and can obtain a better source estimate. In addition,
increasing the sum-rate results in less estimation distortion. However, the decrease in the
distortion becomes negligible as the number of agents gets large.

In Fig. 3.7, for a network with 8 agents, the minimum achievable distortion as a
function of sum-rate R for different noise levels is illustrated. In each case all agents have

the same observation SNR. For all sum-rates the distortion decreases with decreasing the

44



60 .
: | = = =Sum-rate=L

| | =t Sum-rate=0.5*L

: : : | === Sum-rate=0.25*L
50 L.k :. ................. w ................. :.. -

: o§=1oo
© N=10

Minimum Achievable Distortion, D

5 10 15 20 25
Total Number of Sensors, L

Figure 3.6: CEO estimation performance. Estimation distortion D as a function of total
number of agents.

noise level of observations. The distortion tends to its minimum value, when the sum-
rate passes a threshold. This minimum distortion is the limit of distortion when R tends
to infinity. Therefore, having the sum-rate of 30 for our example will give the same
distortion as the network with infinite rate agents.

Final estimation distortion versus sum-rate for different values of o% is plotted in
Fig. 3.8. The distortion decreases when 0% takes smaller values. We see that the distor-
tions for all cases become the same for large sum-rates. This is because the lower bound
of the minimum distortion is proportional to (;15; + %) _l(see Equation (3.24)). Since for
our example, ;12; K %, the achievable distortion for large value of sum-rate is the same
for different source variances and is equal to ( %)_1 =0.8"1 = 1.25.

In Fig. 3.9, the optimal percentage of total rate assigned to each agent for the
case of L = 4 agents all with the same SNR = 5 is illustrated. These percentages are
approximately 100/ L if the sum-rate is either very large or very small. This is the same

as the results of [8] for the case of two agents. Therefore, in a general wireless network
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Figure 3.7: Estimation distortion versus the sum-rate for different noise levels.
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Figure 3.8: Estimation distortion versus the sum-rate for different source variances.
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Figure 3.9: The percentage of total rate assigned to each agent for the network of L = 4
agents. All agents have the same noise level of 10. The source variance is fixed to 100.

of L agents, if the average rate per agent gets small or if the sum-rate is very large for
a fixed L, the rate-allocation under a sum-rate constraint can be simplified by assigning
equal-rate to agents. We will prove this result in Section 3.4.2.

Fig. 3.10 shows the case of L. = 3 when the noise levels of agents are different.
As R gets large, equal-rate allocation per agent yields the same distortion as the optimal

case.

3.4 Rate Region, Rate Loss and Asymptotic Cases

3.4.1 Achievable Rate Region and Optimal Rate Allocation Region

Let R(D) denote the achievable rate region with respect to distortion D, i.e., the set
of all achievable (L + 1)-tuples (Ry, Ry, ..., Ry, D). Assume 7 = (my,m,...,7z) is a

permutation of the set Z;, = {1,2,..., L}. Using the successive coding strategy, there
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Figure 3.10: Distortion sum-rate tradeoff for the network with L = 3 agents. The noise
levels of agents are different and the variance of the source is 100.

are L! possible orderings for the coding/decoding process in the CEO problem. A given

permutation 7 has the following rate region:

1 D?
Rﬂ'(D): R‘/r 7RT|'2)"')R7TL :R’ITL > _10g =l ’
{( (1) (2) ( )) (L) 2 2 D (DL—-l +N7r(L)) _ DL—]_NW(L)
3.39)
where
D;_1 Ny ( D} | ) 2R
JRPe )RR P 2 N S0 R N 3.40
Dis + Mo T \Dis + Moy i=lenl-1 (349

and Dy = 0%. The lower convex hull of these L! regions specifies the achievable rate
region of the CEO problem, R(D). Any (L + 1)-tuple (R, Ry, ..., Rz, D) in this rate
region is achievable based on the time-sharing among these L! successive coding schemes.

Let R (D) denote the set of all rate vectors (Ry, Rz, ..., Ry) in R(D) that at-
tain the sum-rate distortion function of R(D). This is indeed the optimal rate alloca-
tion region in the achievable rate region R(D). Each successive coding scheme has a
set of optimal compression rates for the agents in the CEO problem in the sense that

they attain the minimum distortion for a given sum-rate R. Since the number of active
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agents depends on the noise variances, each of these L! encoding/decoding schemes has

a different number of active agents, M,. M, is the largest integer value between 1 and

: : My 1 1 * —
L that satisfies the equation e > (D;(M,) D) where DX (M)

-1

(—12— + Zﬂf"l Nl( )) . By assigning zero rate to non-active agents, there are L! set of
Ox = (i

optimal rates (Ry(1), Rr(2), ..., Rx()). The optimal rate allocation region R (D) is the

convex hull of these L! vertices (R,r(l), Ry, .y Ry L)) . The coordinates of these vertices

can be obtained as

=1 My _Sn() 1 -
Rﬂ'(]) - 5 10g2 (N.,r(]) Sw(]il) ( 1 1)) ] - 17 27 vy M7I’

BE) "D (3.41)
Rejy =0 j=M,+1,..,L
where ‘
1 S| 1 1
i) = Mz | = —j == 3.42
S (ai v Nﬂi)) J (D;:<Mﬂ> D) G4

Example: Rate Region of 2-Agent CEO Problem

To apply the successive coding strategy in the 2-agent CEO problem, there are two possi-
ble orderings for the encoding/decoding process: (a) the message from node 1 is designed
to be decoded first, and (b) the message from node 2 is designed to be decoded first.
Ordering (a) minimizes the compression rate R, and ordering (b) minimizes the com-
pression rate ;. The rate-region of the 2-agent CEO problem is shown in Fig. 3.11.
The solid line AB is where the sum-rate is minimized. The region above the dash line is
the achievable rate region where R is minimized (ordering(a)) and the region above the
dash-dot line is the achievable rate region where R; is minimized (ordering (b)). In fact,
the lower convex hull for both rate-regions of ordering (a) and (b) will identify the rate
region. Note that the rate allocations of (3.17) which is the optimal rate allocation under
a sum-rate constraint for ordering (a) corresponds to the point A in Fig. 3.11. Therefore,

the optimal rate allocation scheme that achieve distortion D using minimum sum-rate R
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corresponds to the points on line AB where

4

Rip(D) = %log

) ( jf ( ; (3.43)
() ~(d
Rys(D) = 1] i S
) 28\ T (D)

Allowing time-sharing between ordering (a) and (b) achieves all the intermediate points
of line AB.

o

e am -
-

.

-~
—
. e -

Figure 3.11: The rate-region under a fixed distortion D for the 2-agent CEO problem.
The dash-dot line shows the equation (3.44) where R; is minimized (ordering (b)). The
dash line shows the equation (3.45) where R, is minimized (ordering (a)). Line AB is the

boundary of achievable rate region where the sum-rate R; + R, is minimized (equation
(3.46)).

The whole rate region of the 2-agent CEO problem can be completely characterized

as the lower convex envelope of the following regions:

2

i3 %)™ % g2,
e (1+N2) (1+N22 )

2 ]
i S 9%9-2Ry (L _ 1
(D* D)—i_Nz2 (N D

1

1
Rz 3 log (3.44)
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1 1
Ry > = log* : (3.45)
2\ G- R (- 3)
1 407
Ri+ Ry > = log” ( Uf - 2) : (3.46)
2 DNiN: (5= — 1)

From the perspective of robustness, this scheme performs better than the joint decoding
scheme [61], i.e., no matter which node fails, the CEO can obtain a nontrivial estimate of

the source.

3.4.2 Asymptotic Cases

We consider an equal SNR network, V; = N, = ..., N, = N. Two asymptotic cases are
considered: L — oo and R — oo. The first case is also investigated by Draper [8]. We
show that if the average rate per agent is small or if the sum-rate R is very large for a
fixed L, then the performance of equal rate allocation for the successive coding strategy

converges to the rate-distortion function.

3.4.2.1 Large Number of Agents (Nodes)

For the network with equal SNR nodes, the sum-rate distortion function can be expressed

as

— 1 o% L L
Nt D

Rewriting Equation (3.30) in terms of (3.47), we can show that

(3.48)

As the number of nodes tends to infinity, L — oo, the sum-rate distortion function of

(3.47) can be expressed as
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.= 1 o2 N /1 1
Lh_r)r;o R(D) = 3 log, {%} + 5 (5 - ;g;) (logye) . (3.49)

Thus, using (3.48) we can show that limy_, j4k % = 1. As a result, the optimal rate
allocation for the successive coding strategy allocates an equal rate of % to each agent.
In other words, when the average rate per node approaches zero, the equal rate allocation
scheme for the successive coding strategy does not cause any extra distortion compared

to the optimal rate allocation scheme. The same result is presented in [8] but the approach

is different. Since they did not have the expression for the optimal rates, they showed that

the equal rate allocation of R; = % combining with the iterative expression of D; will

result in the sum-rate of (3.49) as L grows to infinity.

3.4.2.2 Large Sum-Rate

From (3.28), we know that allowing sum-rate to grow to infinity is equivalent to assigning
the final distortion Dy, to the lower bound of (3.24). Therefore, using (3.48), the optimal

rate allocation for the large values of sum-rate can be written as

— 1 .1
R 1 Lo? 1 T TIn
L fox 2 X . .
R; 7 2Log2{1+ N}+2log2{_12_+(j_1)%} (3.50)
Ox

Thus, limg_, . ;4 }—;i- = 1. Hence, as the sum-rate grows to infinity, the optimal rate

allocation for the successive coding allocates an equal rate of % to each agent.

3.4.2.3 Numerical Results

To compare the behavior of equal rate allocation for intermediate number of agents (sen-
sors) and intermediate values of sum-rate, we provide some numerical results for a wire-
less sensor network modeled by the Gaussian CEO problem. The similar plot for interme-
diate number of sensors is presented in [8]. We assume that the target data is an i.i.d. zero
mean Gaussian process with variance 0% = 100. If the distortion achieved by equal-rate

allocation is represented by D,y and the minimum achievable distortion of the optimal
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Figure 3.12: The distortion penalty caused by assigning equal rates to sensors versus total

number of sensors, parametrized by the sum-rate, K. All the sensors have the same noise
variance, N = 20.

rate allocation is termed by D,,;,, the percentage of extra distortion caused by assigning

equal rates to sensors can be calculated as

D eql — Dm'm
D min

The percentage of distortion penalty versus total number of sensors in the network is

Distortion Penalty(%) = x 100. (3.51)

shown in Fig. 3.12. The noise variance is fixed at N = 20. We plot the results for
three different sum-rates, B = 10, 20, and 30. It is observable that this equal-rate alloca-
tion scheme may not cause a large extra distortion compared to the minimum achievable
distortion. The penalty approaches zero as the number of sensors grows to infinity.

We plot the distortion penalty versus the sum-rate, parametrized by the number of
sensors in Fig. 3.13. We see that for all three values of L, the distortion penalty vanishes
as the sum-rate grows to large values.

Hence, the fraction of the total rate allocated to each sensor is approximately 1/ L if
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Figure 3.13: The percentage of excess distortion caused by assigning equal rates to sen-
sors (agents) versus the sum-rate, parametrized by the total number of sensors. All the
sensors have the same noise variance, N = 20.

the sum-rate R is very large for a fixed L or if L is very large for a fixed sum-rate. Thus,
we can simplify the rate allocation problem in a general parallel network with L agents

by assigning equal rates to agents. This scheme may not cause a large extra distortion

compared to the minimum achievable distortion.

3.4.3 Rate Loss in the Gaussian CEO problem

In this part, we investigate the effect of “distributed” source coding compared with the
joint encoding of correlated data sequences. We show that if the agents in the CEO prob-
lem are allowed to collaborate, then we require a lower rate for achieving the same distor-
tion. The latter scheme which is called the full cooperative CEO problem or the remote

source coding problem [3] is shown in Fig. 3.14. The sum-rate distortion function of this

scheme can be obtained as follows:
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Lemma 3 The sum-rate distortion function for the Gaussian remote source coding prob-

lem, depicted in Fig. 3.14, can be expressed as

L 1
1 0'2 (ZiZl F) -1
remote _ - X : 1 L 1 2
Ry (D)-2log2 D(1+ZL L_L) (o§(+2i=1Ni) <D <ok
% i=lN; D

(3.52)

Proof The rate-distortion function for the problem of Fig. 3.14 can be defined as
Ri™ (D) = min )I(YI,YQ,...,YL;U) (3.53)

UeUx (D
where Ux(D) = {U : X - Y, - U; E[d(X,U) < D}. Based on the Wyner-Ziv source
coding for noisy observations [8] we can calculate (3.53) and obtain the following rate-

distortion tradeoff:

1
2 2 (1 L L)
RTXemote(D) — llogz Ox — 0X|Y1,Y2 ..... YL _ llogQ Ox (;g; + Zz:l N;
SR U v B R e
(3.54)

which results in (3.52).
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Comparison of (3.28) with (3.52) shows that there is a rate loss when the agents are not

allowed to collaborate. The rate loss can be expressed as [72]

RY5(D) = R(D) — R¥¢™" (D). (3.55)

By subtracting (3.52) from (3.28), we obtain the rate loss of

1 L 1 1
vos 1 ;2""21':1@_5 1 MM
R§< (D) = 2 log, x Iy w7t 2 log, M L 1
Eess s R (T e
(3.56)

When we have a homogeneous network, i.e., all the agents have the same SNR(= 0% /N),

then all L agents are active and M = L. For this case the rate loss is obtained as

RY*(D) = log, ¢ —F——~ 7. (3.57)
2 ZTNTD
We observe that when the number of agents tends to infinity, the rate loss of the CEO
problem is
N /(1 1
: Loss
ggr;o RY**(D) = 5} (5 - ;;) (log, €) . (3.58)

In fact, in this limit, the remote source coding achieves the standard quadratic Gaussian
rate distortion function, R¥™**(D) = £ log, (%) , while the CEO problem achieves the
sum-rate distortion of (3.49) which incurs a rate loss of (3.58). We also observe that as

the average distortion D decreases the rate loss of the CEO problem increases.

3.5 Application

In this section, we consider the application of our results for computing the communi-
cation rate throughput of relay channels. The relay channel first has been introduced by
Van der Meulen [73]. Capacity of a single-relay channel has been found by Cover and El
Gamal [74].
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We consider the parallel Gaussian K —relay network of Fig. 3.15 that consists of a
single source-destination pair and K relays [45, 75, 76], where the source has the power
P, the K relays observe the source corrupted by AWGN of variance N; and the central
decoder (the FC) receives the messages from the relays through rate-constrained noiseless
channels. We assume that the relays transmit rate-constrained messages to the CEO under
a sum-rate constraint R.

To detect the transmitted message at the decoder, there are two different schemes
[45]: first scheme is to use broadcast codes for communication to the relays. Let Rgc de-
note the maximum reliable sum-rate to the relays. Then, the communication rate through-
put (CRT) of this strategy would be min{Rpc¢, —R}. In the second scheme which is called
“Estimate and Detect” strategy [45], codewords are generated in an i.i.d. Gaussian man-
ner. Then, the relays based on their observations transmit bit streams to the FC. The FC
makes an estimate of the codeword and then detects the message based on its estimate.
Since the output of the decoder X and codeword are jointly typical, standard typicality

decoding will work [8]. If we denote this strategy by EstDet, the CRT of this strategy is

Restper = I(X;Uy,...,Ug) =h(X) = h(X | U,..,.Uk)

P (3.59)
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where Ui, ..., Uk are the auxiliary random variables of the K relays and D is the fi-
nal distortion of (3.28) with ¢% = P. Therefore, for each value of D, we can obtain
Rgope: and R using (3.59) and (3.28), respectively. As a result, CRT of this strat-
egy versus R can be obtained. Note that in the CEO problem, the minimum sum-rate
is the minimum of total information exchanged between encoders and the decoder, i.e.,
R=minI(Y3,...,Yk; Uy, ..., Uk).

To compare the two strategies, we consider the relay network in which the re-
lays have the same noise variances, i.e., N, = Ny = ...,N, = N. Thus, Rpc =
%log [1 + %] Fig. 3.16 shows the CRT of the two strategies versus R. The value of
SNR(: %) is fixed to 40. As the number of relays increases the CRT of EstDet strategy
increases while the CRT of broadcast coding does not change. Also, for large values of
R, the EstDet strategy outperforms broadcast coding since the EstDet can exploit the di-
versity of the relay observations. Our result is an extension of the result of [45], where

the CRT versus the sum-rate for a parallel two-relay network is derived.

3.6 Chapter Summary

We considered a distributed network, modeled by the CEO problem, in which L agents
communicate their observations of the target data sequence to the FC using limited trans-
mission rate. We used the successive Wyner-Ziv coding strategy and obtained the optimal
sum-rate distortion tradeoff and optimal rate allocation scheme for the Gaussian CEO
problem. Our result indicates that the sum-rate distortion function of the CEO problem is
attained using the successive coding strategy which is a less complex way than the joint
decoding method. We demonstrated that if the average rate per agent is small or if the
sum-rate is very large for a fixed L, then the performance of equal rate allocation scheme

for the successive coding strategy converges to the rate-distortion function.
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Figure 3.16: CRT of a Gaussian relay network achieved by two approaches: Broadcast
Coding and Estimate and Detect (EstDet) strategy. SNR is fixed to 40.

Appendix I- Proof of Lemma 1

We use the induction method. As the base case, it can be shown that the result is true for
n = 2 by taking derivative of D,, using Equation (3.5). Now, as the induction hypothesis,
we assume that this result is true for n > 2 and we need to show that it is true for n + 1.

From (3.5) D, can be expressed as:

Dy Ny + D227 2Rns

Dy = 3.60
+1 D+ N (3.60)
For £ < n, D, is a function of Rj. Therefore,
a n 8 n n+1 8 n - n+1
ODpy1 _ (N3 + 2Dn3f2- %) (Be) (Dalays + D32-%0) (3.61)

aRk B (Dn+Nn+1) (l)n'*']\fn—i-l)2

This expression can be simplified as follows:
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8Dn+1 _ g%: (D721 + 2l)njvn—i-l + N3+122Rn+1)

= 3.62
IRy (D, + Nn+1)2 22Rp41 ( )
Substituting (3.20) in (3.62) leads to
ODny1  (—2log2) Di 272" Lo D2 4+ 2N, 1 D; + N2, 228 (3.63)
aRk N Dk-—l + Nk: palry (‘l)z + Ni+l)2 22Ri41 .

for k < n. To complete the proof, we just need to show that the result is also true for

k =n + 1. Since D,, is not a function of R, 1, by using (3.60), we obtain

ODny1  DZ(—2log2) 27 %m0

= 3.64
8&+1 Dn + Nn+1 ( )

This completes the proof.

Appendix II- Proof of Lemma 2

First, we prove that our result holds for R; and D;. We use the induction method. As the
base case, we can show that the result is true for M = 2 by solving equations g—gf = g—gzz
and Zle R; = R where D, can be obtained from (3.5). The proof of this base case
is presented in Section 3.3.1. As the induction hypothesis, we assume that R; is correct
for the case of M agents. Now, if we consider the case of M + 1 agents with optimal

rates of R}, Ry, ..., Ry, 41, the formula of R, is the same as R; where ¢% is replaced

by Dy, (Ny, ..., Npr) are replaced by (Na, N3, ..., Npsy1) and Dy is replaced by Dysy ;.

Therefore,
, 1 M x (Dil + Nig) - B
Ry = -1 3.65
27 5 %% Nz x B1/D; (3.65)
where B; = (D% +yop 7\,1-1 - Dzéﬂ ) Now we use Corollary 2 to obtain rate R; in
2

terms of RIQ, D, and Dy = 0%, i.e.,
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ok (D3 +2N,D; + V3222
1 —

D‘lq (O'g( + Nl) (Dl + Ng)
By substituting D, of (3.5) and R/2 of (3.65) in (3.66) and doing some manipulations we

(3.66)

obtain R as
1 1
- M+1) (& +%) - B
= =1 X 3.67
By =5 logs N: x ByJo% (3.67)
where By = (—2— + ZM+1 1i DM ) This completes the proof for R;. Using (3.5)

and the expression for R;, D; can be obtained as D; = S—l. This result shows that the
expression for D; is correct for the case of j = 1. We need to prove that (3.23) and (3.27)
are valid for all values of § > 1. We consider (D;_1, R;) as F;. We assume that we know
F; and we want to obtain F};,. Using (3.5), the value of D; can be obtained. We need to
obtain R, and D;, from (D;_,, R;, D;). We use Corollary 2 to rewrite R;; in terms

of Rj, Dj and Dj—l

2
M\" _MS; M S\ L M4 2MPNja
(Sj) N;AS; (51 Pt N) ( + NJ“) SIST, 5SS

1
Rj1 = S log,
2 NJ+1—7—

(3.68)
where A = (;12; + M - 51—) Since S; — Sj_1 = & — A, by doing some manip-
ulations we obtain

1 M?+ MN;11S; — MAN;; 1 MS; 4
Ry =<1 It I+ = 5] o 3.69
j+1 9 0g, AS. N]+1 082 AS. N]+1 ( )

Comparing (3.69) with (3.23) we see that our result is correct. Now we obtain D, from

. . . . 1 MS; M
the iterative expression of (3.5). We substitute ;,; = 3 log, ENJLL and D; = 5 =
M . > . . . . ) _ M
STA- T in (3.5) for i = j + 1. After some manipulations we obtain D;,; = S

i+1

This completes the proof.
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Chapter 4

Successively Structured Gaussian

Multiterminal Source Coding Schemes

4.1 Introduction

Multiterminal source coding or distributed data compression refers to separate lossy en-
coding and joint decoding of multiple correlated sources [16]. Consider the following
scenario for the signal detection: a sensor is used to measure a physical phenomenon and
transmit limited rate information to a FC for further processing. Also, suppose another
sensor is able to measure the phenomenon but it is farther from the phenomenon than the
first sensor and hence it is not worth to reproduce its signal at the FC. The scenario is
shown in Fig. 4.1. Since both sensors measure the same phenomenon, their information
is correlated. Therefore, the second sensor can provide partial side information to reduce
the rate required at the first sensor and hence save transmission energy for a given distor-
tion. In fact, the information of the second sensor can be used at the FC to obtain higher
reliability and lower probability of detection error. This motivating application requires

the theory of separate coding of correlated sources.
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Decoder fb—— Y

Event Y

Figure 4.1: I-helper scenario. Two sensors are deployed to measure a physical phe-
nomenon (an event). At the decoder, we are only interested in the signal reconstruction
of the sensor X which is nearer to the event than other sensor, Y.

4.1.1 Previous Work

The rate-distortion theory for the multiterminal source coding problem was first studied
by Wyner and Ziv [9]. They obtained the rate-distortion function of a single source when
the decoder can observe full resolution side information about the source. The impor-
tant fact about the Wyner-Ziv coding is that it usually suffers rate loss compared to the
lossy coding of X when the side information Y is available at both the encoder and the de-
coder. One exception is when X and Y are jointly Gaussian with MSE distortion measure.
There is no rate loss with the Wyner-Ziv coding in this case, which is of special interest
in some applications such as video sensor networks since many image and video sources
(after mean abstraction) can be modeled as jointly Gaussian [44]. This result is the dual of
Costa’s dirty paper theorem for the channel coding with side information at the transmitter
only [77]. In this work, we also focus on the Gaussian case. The generalized Wyner-Ziv
source coding for noisy encoder observations is appeared in [14]. This problem is also
known as the noisy Wyner-Ziv coding, i.e., lossy coding of noisy observations with side
information available at the decoder and not at the encoder. Similar rate-distortion analy-
sis is presented in [15], and recently in [8]. Systematic lossy source/channel coding with
uncoded side information at the decoder is presented in [78]. Berger and Yeung [41] have
solved the rate-distortion problem for two sources when both of them are reconstructed.
They consider the situation in which the reconstruction of X must be perfect, while that

of Y is subject to a distortion criterion. Oohama [42] gives the solution of the Wyner-Ziv
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problem with coded side information for the case of two sources. He derives an outer
region for the rate-distortion region of the 2-terminal source coding problem, depicted in
Fig. 4.2, and demonstrates that the inner region obtained by Berger [16] and Tung [50] is
partially tight [42]. Wagner et al. complete the characterization of the rate region for the
2-terminal source coding problem by showing that the inner bound of Berger and Tung is
also tight in the sum-rate [18]. Oohama extends his results to more than two sources for a
certain class of m + 1 correlated sources, where m source signals are independent noisy
versions of the main source, i.e., X; = Xo+ N;, 7 € {1,2, ..., m}. In other words, sources

X1 to X,, are conditionally independent given the source X, [79].

X" 0, (X))
X ?, R
N— 3"
n (P (Yn) W - (\II()’\VI)——’/\H
Y Y 0, 1 / Y

Figure 4.2: 2-terminal source coding. X and Y are two correlated sources.

Consider the case of two correlated sources, where one source plays the role of
partial side information to help the decoder to reconstruct the transmitted sequence of the
other source within a prescribed average distortion. This problem, which is also called
I-helper problem, for the correlated memoryless Gaussian sources and squared distortion
measures was investigated in [42]. Oohama shows that his outer bound for the 2-terminal
source coding when combined with the inner bound of Berger and Tung determines the
rate-distortion function of the /-helper problem. Oohama extends his results to more than
two sources for a certain class of m + 1 correlated sources, where sources X; to X, are
conditionally independent given the source X [31, 34]. The result is extended to the
case where m + 1 sources satisfy a kind of tree structure on their correlation [51]. This
condition contains the conditionally independent condition of [31, 34] as a special case.
In [35], the general correlation structure for the m-helper problem is considered. For this

case, they derive a lower bound on the rate-distortion function.
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In this work, we consider the successive coding strategy for the /-helper and 2-
terminal source coding problems. The successively structured 2-terminal source coding
problem is similar to the sequential coding of two correlated sources [80], where for
sources X and Y, the encoding of Y depends on X but the encoding of X does not
depend on Y (illustrated in Fig. 4.3).

N
X ~ Encoder 0 Dec0— X
Y ~| Encoder 1 Decl— Y

Figure 4.3: Sequential coding of correlated sources.

4.1.2 Main Contribution

Our main contributions can be summarized as follows: We show that for both the Gaus-
sian /-helper problem and the Gaussian 2-terminal source coding problem, successively
structured Wyner-Ziv codes can achieve the rate-distortion bounds. In fact, by devel-
oping connections between source encoding and data fusion steps, it is shown that the
whole rate-distortion region for the 2-terminal source coding problem is achievable using
the successive coding strategy. Therefore, the high complexity optimal source code can
be decomposed into a sequence of low complexity Wyner-Ziv codes. By comparing the
results of the successive coding strategy for the 2-terminal source coding and the sequen-
tial coding of correlated Gaussian sources, we demonstrate that there is no sum-rate loss
when the output of the first encoder is not available at the second encoder. The result is of
special interest in some applications such as video coding where there are processing and
storage constraints at the encoder. This successive coding approach leads us to derive an
inner bound for the rate region of the m-terminal source coding where all the sources are

reconstructed at the fusion center (FC) with specified distortions.
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The rest of this chapter is organized as follows: In Section 4.2, we present the
system model and problem formulation. In Section 4.3, we use the successive coding
strategy in order to obtain the rate-distortion regions of the I-helper and 2-terminal source
coding schemes. We generalize the achievable rate-distortion region of the successive
coding for the m-terminal problem in Section 4.4. Summary of the chapter is given in

Section 4.5.

4.2 Problem Formulation

Let X and Y be correlated Gaussian random variables such that {(X, Y;)},-, are jointly
stationary Gaussian memoryless sources. For each observation time ¢ = 1,2,3, ..., the
random pair (X,,Y;) takes a value in real space X x ) and has a probability density

function (pdf) px v (z,y) of N ~ (0, A) where the covariance matrix A is given by

2
Ox POXxOy

A= —1l<p<i1 4.1)

b

poxoy 0%

We represent n independent instances of {X,};-, and {Y;},°, by data sequences X" =
{X1, X2, .., Xp}and Y™ = {¥1, Y3, ..., Yy, }, respectively.

The 2-terminal coding system is shown in Fig. 4.2. Correlated sources, X and Y,

are not co-located or cannot cooperate to directly exploit their correlation. Data sequences

X"™ and Y are separately encoded to o (X™) and ¢ (Y™). The encoder functions are

defined by
Yo Xn — Cl = {1,2,...,01},

4.2)
01 Yt — Cy= {1,2, ...,Cg}.
The coded sequences are sent to the FC or the hub node with the rate constraints
1 .
HlogC’iSRi—HS,z:O,l 4.3)

where ¢ is an arbitrary prescribed positive number. The decoder observes (o (X™), 1 (Y")),

decodes all messages, and makes estimates of all sources. The decoder function is given
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by ¥ = (v, 1) where its components are defined by

’L/Jo : CO><Cl—+X",
P 1 CoxCp— Y™

4.4)

Letdy : X2 — [0,00) and d; : Y? — [0, 00) be the squared distortion measures, i.c.,
do(X,X) = (X — X)?and dy(Y,Y) = (Y — ¥)2. For the reconstructed signals X" =
o (o (X™), 1 (Y™)) and Y= (w0 (X™), 1 (Y™)), the average distortions Ag, A4
can be defined by
Ay = E {% PR dl(Xu)?t)] ,
Ay = E [% Z?:l d2(Yt,?t)} :

For given distortion levels Dy and D1, a rate pair (Rp, R;) is admissible if for any 6 > 0

(4.5)

and any n > ng(d) there exists a triple (o, 1, ¥) satisfying (4.2)-(4.4) such that A; <
D; + ¢ for i = 0, 1. The rate-distortion region R(Dy, D;) can be defined as

R(Do, D) = {(RO,Rl) . (Ro, R1) is admz’ssible}. 4.6)

The whole rate-distortion region of the 2-terminal coding scheme is presented in
Chapter 2, (2.11)-(2.14). Our goal is to show that this rate-distortion region can be
achieved using the successive coding strategy. There are two steps to reach this goal:
1) Obtaining two curved parts of the R(Dy, D), i.e., (2.11) and (2.12); 2) Obtaining the

straight-line segment of R(Dy, D), i.e., the sum-rate limit of (2.13).

4.3 2-Terminal Source Coding

4.3.1 1I-helper Source Coding Scheme

The two-curved portions of the rate region for the 2-terminal coding system are in fact the
rate-distortion regions of the /-helper coding schemes, where one source provides partial

side information to the decoder to help reconstruction of the other source signal.
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Assume that distortion level D, is sufficiently large, 1.e., the goal is only to recon-
struct X, and the other source, Y, is used as a helper. In other words, the helper will not be
reconstructed, and it is just used as auxiliary information to reconstruct the main source.
This problem is called the I-helper problem. The associated coding system is depicted
in Fig. 4.4. The rate region does not depend on the distortion level )y, and it can be repre-
sented by Ro(Do), i.e., Ro(Do) = {(RO,Rl) . (Ro, R)) € R(Dy, Dy) for some D, > 0 }
It is clear that Ro(Dy) is an outer region of R(Dg, D).

X" 0,X)

X - (p0 \
v, X"

n @ (Y)
v LY . 120/

Figure 4.4: 1-helper coding scheme.

We determine the rate-distortion performance of the successive coding strategy in
the I-helper problem. By applying the successive coding/decoding strategy in the I-
helper problem, the problem can be decomposed into two successive coding stages. The
scenario is presented in Fig. 4.5. Each source encodes its message while previously
decoded message that is available at the decoder acts as the decoder side information. At
the FC, instead of joint decoding, messages from encoders are decoded sequentially in

order to increase the fidelity of estimation at each decoding step.

Theorem 4 Successively structured Wyner-Ziv codes can achieve the rate-distortion func-

tion of the 1-helper coding scheme:

1 2
Ro(Dy) = 5 log™ {%{6 (1-p*+ p22_2R1)] , 4.7)

In other words, for every Dy > 0, the achievable rate region of the successive coding

strategy for the 1-helper coding scheme can be represented by

Ro(Do) = {(Ro, Ri): Ro > Llog* [}3—’3 (1-p%+ p22—2R1)] } . 4.8)
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Fusion Center

X ?, - Dec 0 -— X
Z, |
. |Dec1] :
Y et wowwelt
Y @, ————==a

Figure 4.5: 1-helper coding system with the successive coding strategy.

Proof Let Z; denote the output signal generated by the helper at the decoder. Then, X

can be encoded at the Wyner-Ziv rate

1 2
Ro(Do) = 5 log (%Z) - 4.9)

The helper forms the MMSE estimate of X from Y, given by
X, = E[X | Y] =pZy. (4.10)
oy

Then, the helper encodes X, at rate R;, thus the quantization error (distortion) can be

expressed as

D, = var(X9)27 % = plol 2™, 4.11)

Finally, Z, can be written as X, + E5, where Ej is the quantization error with variance
D, given above, and Fj is independent of X in the limit of large block length. The result
is that the conditional variance of X given Z, is equal to the estimation MMSE between

X and X, plus the quantization error variance [J;. We have
0%z, = E [|X = Xof*] + Dy = 0% (1 - p%) + 0% p%27% (4.12)

Replacing this into (4.9), we obtain the result of (4.7). This is the achievable rate-
distortion region by the successive coding strategy. Comparing our result with the re-
sults of [42] and [18] in (2.11) shows that by applying the successive coding strategy, the
rate-distortion function for the I-helper coding scheme is achievable. This completes the

proof.
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Remark 1 The Wyner-Ziv result [9] can be considered as the special case for the I-
helper source coding scheme when a high resolution encoding is used to encode the side
information. In other words, by letting R; — oo, the rate-distortion function derived by

Wyner and Ziv can be obtained.

Remark 2 By rewriting equation (4.7) as Dy = 0%272F0 (1 — p? + p?272F1) it can be
seen that each additional bit of the primary source description reduces the average final
distortion by a factor of 4; however, each additional bit of the helper description can
reduce the average distortion by at most a factor of 4. This maximum reduction occurs
when the correlation coefficient is one. Also, under a constant rate of the helper, Dy is a

decreasing function of the correlation coefficient.

Remark 3 We can also obtain the result of Theorem 4 when decoder 1 decodes the as-
sociated source signal Y instead of X. Then, this decoded signal is used as the side
information for decoder 0. This could be shown as follows. The encoder of Y encodes

and transmits its signal with the rate

2 D,

where D, is the average distortion in estimating Y at decoder 1. The encoder of X can

1 2
Ri(D;) = - log (U—Y) , 0<D; < 0')2/ (4.13)

encode the source X by considering its statistical knowledge about the decoder’s data,

ie., Z, =Y, with the Wyner-Ziv rate

2 2 2
1 Tx|v 1 Ix (1 - px?)
Dy) = =1 = -1 .
Ro(Do) 5 0%( Do 508 Dy (4.14)

where Z, =Y = Y+V with V ~ N (0, D102/ (62 — Dy)). In fact, we use an innovation
form [5] to rewrite the relationship between the estimate of the source Y at decoder 1,
ie., Y, and the source Y as ¥ = (Y + V)a where V. ~ N(0, D102/ (62 — D)) and

a = (1 — Dy/o%). This relationship gives us the distortion of F [(Y - ?)2] = D;. The

message Z, can be considered as Y /a =Y + V, i.e., Z, can be considered as the source
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Y in an AWGN, V. Therefore, pyy = p\/a;", — D;/oy. By doing some manipulations,

we will see that the rate-distortion tradeoff of (4.14) will be the same as (4.7).

4.3.1.1 Geometric Sphere-Packing argument

In this subsection, we show how to obtain the rate-distortion function of the I-helper
problem from geometric sphere-packing arguments [26, 25]. These arguments for the
noisy Wyner-Ziv source coding are presented in [8].

At the first step, we obtain the encoding rate of the side information Y. Since our
final goal is to reconstruct X at the decoder, we must consider how much the encoded
message W), once decoded, will help to reconstruct X. It can be shown that the estimat-
ing function at decoder 1 is equal to X = ;zx—fi—‘g(—l;wl, i.e., this function can achieve the
distortion level of Dy,. The decoder 1 only knows the transmitted vector lies in an un-
certainty sphere of radius r,, = \/m which is centered at the source estimate
E [X]. The scenario is depicted in Fig. 4.6. The encoder of the auxiliary source maps Y’

to the label of the quantization region in which it lies. The radius of each spherical quanti-

2
zation region is equal to 7, = 4 [n——2— ( Dx1 — 0%, — €92 }. If no two quantization
q1 T% 0%y XY 22

regions share the same label in each large sphere of radius r,,,, the quantization region in
which Y is located can be determined without error. We determine the minimum number
of quantization spheres required to cover the uncertainty sphere. This number is lower
k(n)(r"’): where k(n) is a coefficient

k(n) (rql )
that is a function of the dimension. Thus, the lower bound on the rate-distortion function

bounded by the ratio of volumes of spheres: M; >

R1(Dx) can be obtained as

1 1 2 te 1 0% — o3
Ry = —log, M, > 5 log o2 Ixt e > 5 log <DX—X2£/_
n _ﬁ_r"x‘gxw (DXI — O'g(ly - 522) X1 — UX|Y

(4.15)

In the next step, based solely on the available side information at the decoder 0, Z,,

the decoder can have a MMSE equal to afq z, = Dy 1. Therefore, the transmitted vector
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Figure 4.6: Sphere-packing argument to determine the rate-distortion function for the
I-helper problem. The source estimate lies within the dotted circle with the radius of
Tu,- The solid small circles with the radius 74, correspond to quantization regions at the
encoder of the auxiliary source.

X falls in an uncertainty sphere of radius 7, = \/ n (afq 2zt 61) = +/n(Dx1 +¢€1)
which is centered at the source estimate F [X | Z,]. This sphere is shown by the dotted
circle in Fig. 4.7. The encoder 0 maps X to the label of the quantization region in which
it lies, where the radius of each quantization sphere equals to 7, = y/n (Dg — €3). Thus,
the minimum number of quantization spheres of radius r, required to cover the larger

sphere of uncertainty is lower bounded by
k(?’b) ( n (DX1 + 61))
k(n) (V/n (Do = 22))

As a result, the lower bound on the rate-distortion function of the /-helper problem can

M >

be derived as

1 1 Dxi+ e 1 Dx,
Ry=—logy M > ~log | ———=] > =1 : 4.16
0= — 108 _20g<D0_€2)>20g(D0) (4.16)

By substituting D x; from (4.15) into (4.16), the same result as (4.7) will be obtained.

To apply the successive coding strategy in the 2-terminal source coding scheme,
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Figure 4.7: Sphere covering argument to determine the rate-distortion function for the
1-helper problem. The source estimate given the side information lies within the dotted
circle. The solid small circles with the radius v/nD, correspond to quantization regions
at the encoder of the primary source.

there are two possible orderings for the coding/decoding process: (a) the message from
source Y is encoded and transmitted first, and (b) the message from source X is en-
coded and transmitted first. Ordering (a) determines the rate-distortion function for the
I-helper problem when Y is the helper and therefore the distortion for reconstructing
X is minimized. Ordering (b) determines the rate-distortion function for the I-helper
problem when X is the helper and therefore the distortion for reconstructing Y is min-
imized. These two rate-distortion functions determine two curved portions of the rate

region R(Dy, D) for 2-terminal source coding problem.

4.3.2 Sum-rate limit for the 2-ferminal rate-region

Now we want to obtain the last part of the R(Dy, D;) which is defined by the boundary

of the sum-rate. Using (4.13) and (4.14), ordering (a) gives the minimum sum-rate of

1 0202 02p2
Ry+ Ry = =1 XY (1 p?) + X2 | 4.17
o+ By =3 log D0D1( p*) + D (4.17)
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By symmetry, ordering (b) gives the minimum sum-rate of

1 o%o? o p?
Ro+ Ry ==lo [ﬂ 1—p? +—Y——]. (4.18)
1=glog |5 (1= +

By allowing time sharing between ordering (a) and (b), the achievable sum-rate can be

expressed as

1 0% 0% 0% p? 1 0% (1 — p?) + Dop? 0% 1°
Ry =log | XX (1-p%) + & = log | =X v
for 2°g[DoD1( )y ) T2 [ =)+ Dt ok

(4.19)
where 0 < « < 1. Since the sum-rate of (4.19) is achievable, it is an upper bound for
the sum-rate part in the rate region of 2-terminal source coding problem. By subtracting
(4.19) from (2.13) and doing some manipulations, we can show that the sum-rate distor-
tion function of the 2-terminal source coding is achievable if

o maz (Do/o%, Dijo}) — 1

_ . 420
P = min (Dofo%, Dyjo2) — 1 (4.20)

In this case, the successive coding strategy degrades to the no-helper problem where only

the source with the minimum average distortion D; (i = 0, 1) should be encoded.

In our analysis, so far, we have assumed that each decoder desires to reconstruct
the corresponding source within the given fidelity, D;. But we can develop connections
between data fusion and source coding with side information. In this scenario, the en-
coder quantizes and encodes the source to a degree of fidelity less than D; to reduce
the transmission rate. But this reduction does not affect the quality of the reconstructed
signals at the FC. In fact, the remaining correlation among the decoded signals enables
the FC to reconstruct the sources into desired degrees of fidelity. By using a linear es-
timator after the source decoder, both source signals can be reproduced at the desired
degrees of fidelity, D;’s. The joint design of the source encoding and the data fusion will
yield substantial performance gain over decoupled designs. Based on this scenario, we
demonstrate that the successive coding strategy can achieve all the rate-distortion tuples

(Ro, R1, Dy, D1) belonging to the inner bound of Berger and Tung [16, 50]. In fact, the
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Figure 4.8: Block diagram of the successive coding strategy in the 2-terminal source
coding problem. The linear estimator fuses both received signals softly to produce the
estimates of both sources.

whole rate-distortion region of the 2-terminal source coding problem can be characterized

by applying the successive coding strategy.

Theorem 5 Successive coding strategy can achieve the sum-rate distortion function of

the 2-terminal source coding scheme.

Proof Our proof is similar to the proof of source-splitting method presented in [81, 82].
Consider the ordering (a) for the 2-terminal source coding, depicted in Fig. 4.8. The
source encoder ¢, quantizes Y™ and then compresses the quantized signal. The output
message W is transmitted at rate R;. At the decoder side, W; is decompressed and it
is used to reconstruct Y™ as Y™. By exploring the remained correlation between Y™ and
X™, the encoder ¢, compresses the quantized version of X™ at rate Ry. Using Y™ as the
side information, the decoder 1)y decodes the received signal to X", Given X™ and 37”,

the linear estimator reproduces X ™ and Y™ using linear combination of the inputs:

)?n = ao?" + BOX'n,

~ ~ ~ (4.21)
Y = oY+ 5 X"

Define the quantization errors as £ = X"—X"and El = Y"—Y™. We first derive

the estimator coefficients. The average quantization distortions Ay, A, can be defined by

Bo= E[A XX~ X0 = B [A 20, B2

N 4.22)
A =F [% Z?:l(yt - Yt)2] =k [% E:;l Elgt} ’
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Due to the orthogonal properties for optimal estimations, applying the projection theorem

results in:

E{(X—)?))?}:o & E{(X—)?)?}zo, )
E{(Y—?)X}zo & E{(Y-?)?}:O. '

As a result, by doing some manipulation, the estimator coefficients that minimize the

average distortions F/ {(X - X )2} and F {(Y - ?)2} can be obtained as

_ poxoy Do _ (”?/+A1)‘7§(_P2”§(”%
Qo = A Bo = Ax (4.24)
_ (0§(+A0)U$’_PQU§(U¥/ ﬂ __ poxoyA ’
a] - A* 1 — A* 3

where A* = (0% + Ao) (6 + Ay) — p*o%0l. Based on the rate-distortion theory and

Wyner-Ziv results, the transmission rates of this scheme can be expressed as
nRy > I(X™ X" — I(X™Y™), (4.25)

nRy > I(Y™Y™). (4.26)

For jointly Gaussian random variables X and Y, I(X;Y) = —1log(1 — p?). We just

need to obtain the correlation coefficients of p ¢, p5¢, and py¢ . We can show
R SR S S roxoy 4.27)
XX g+ Ay TYY o2 4+ A XY (0% + Do) (02 + A1)
Thus, (4.25) and (4.26) can be computed as
1 (6% + Do) (6% + Ay) — p*o%0?
Ry>=lo X Y XY, 4.28
0_2 g( Ao(U%‘f‘A]) ( )

1 2
Ry > > log (%) . (4.29)

The overall average distortion can be expressed as

D; = E{(X-)?)?}:E{(X—aoff—ﬁo)?)?}
= o +ad (0} + A1) + 62 (6% + Do) — 2c0pox 0y — 2600% + 20060pox 0y,
(4.30)
D = E{ } E{(Y—alY—ﬁlX)Q}
)+

= oy + i (0} + A1) + B2 (0% + Do) — 20102 — 2B1pox oy + 2015100 %0y .

(4.31)
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Using (4.24), average distortions (4.30) and (4.31) can be simplified as

(0% (1 = p*) + A1) 0% Ao

Dy = = , 432)
2 (1 _ A2 2
p;=xzp )A+ Bo) oyl (4.33)

We show that one of the corner points on the sum-rate bound of (2.13) is achievable with

the Wyner-Ziv scheme of ordering (a). We prove this result by construction. Let

2Dg0% 0% (1 - p?)

Ag = , 4.34
0 Brmazo%0% (1 — p?) — 2Dyol (4.34)
2D10% 0% (1 — p?)
Ay = . 4.35
! Bimazo%0% (1 — p?) — 2D10% (4.33)
Substituting (4.34) and (4.35) in (4.28) and (4.29) reveals that
ﬁmamog(alz/ (1- ,02)2
Roa = , (4.36)
04 DO (6maa:a%/ (1 - ,02) - 2D1p2)
2 1— 2\ 2D 2
Ryp = Pracy 1 07) — 2Drp” (4.37)

2D; (1 —p?)
Ro4 and R, 4 satisfy the sum-rate distortion function of (2.13). The achievable average
distortions (4.32) and (4.33) can be expressed as D; = Dy and D} = D;. Therefore,
the sum-rate distortion function of (2.13) is achievable. Ordering (b) gives similar results
which can be obtained by interchanging subscripts. Therefore, the optimal rate allocation
scheme that achieve any distortion pair (D, D1) using minimum sum-rate R of (2.13)
corresponds to the points on line AB where

Ron = 110 <U§( + AO) _ Brmaz0% (1 = p*) — 2Dop”

5 (4.38)

Rup = Lo ((ai + 8o) (03 + Ay) - ﬁ%&a@) _ Bruokob (10
18 =570 A (0% + Ay) " D (Bmaroy (1— p%) — 2Dop?)’
4.39)

Allowing time-sharing between ordering (a) and (b) achieves all the intermediate points

of line AB.
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4.3.3 Comparison with Sequential coding of correlated sources

In this part, we make a comparison between the minimum sum-rate of the sequential
coding [80] and the sum-rate of the successive coding strategy for coding of correlated
Gaussian sources. In fact, the scenario of successive coding in the 2-terminal source
coding problem is similar to the scenario of sequential coding of 2 correlated sources. The
sequential coding scheme is illustrated in Fig. 4.3. In this coding system, the encoding
is performed sequentially, i.e., the encoding of Y depends on the source X but not vice
versa. In [80], it is shown that the minimal sum-rate for the sequential coding of correlated
Gaussian sources is given by

1 0202 (1 —p?(1 — Dy/o%))
= Slog | £ o). 4.
Ro+ R, 5 0g< DaD, > (4.40)

Now, consider the ordering (b) of the successive coding strategy. The minimum sum-
rate of the successive coding strategy for this model is given in (4.18). By rewriting
(4.18), we observe that this is the same as the minimum sum-rate of sequential coding
in (4.40). Therefore, there is no sum-rate loss with the successive coding compared with
the sequential coding of correlated Gaussian sources. This means that the availability of
side information at the encoder does not improve the sum-rate distortion function. This
observation is of special interest in some applications. For instance, in most practical
Video Codecs there are storage constraints. In particular, the encoder for encoding a
frame can retain a copy of the previous frame but not earlier frames [80]. This suggests
that we should consider the successive coding as a promising technique to achieve the

minimum sum-rate with no storage constraint at the encoder.

4.4 M-Terminal Source Coding

In the multiterminal source coding, the FC decodes messages of all sources. The multi-
terminal coding system with m terminals is shown in Fig. 4.9.

Data sequences Y;" are separately encoded to ; (¥;*) where the encoder functions

1
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Figure 4.9: Multiterminal source coding scheme. Y;’s fori = 1,...,m are m correlated
sources that are separately encoded. The joint decoder wants to obtain estimates of all the
sources.

are defined by

The coded sequences are sent to the FC with the rate constraints
1 :
—logC, <R +6,t=12,...m (4.42)
n

where J is an arbitrary prescribed positive number. The decoder observes m transmitted
sequences (o1 (Y1), ..., om (Y1), decodes all the messages, and makes estimates of all
the sources. The decoder function is given by ¢ = (¢, ¥s, ..., ¥, ) Where its components
are defined by

Y :Cp xCyXx o X Cpy — VI (4.43)

Let d; : Y? — [0,00) be the squared distortion measures, i.e., d;(Y;, Y) = (Y, - Vi)~
For the reconstructed signals ¥;© = 1; (o, (YT, ..., om (Y;7)), the average distortions
Ay, As, ..., Ay, can be defined by

(4.44)
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Figure 4.10: m-helper source coding scheme.

For given distortion levels (D1, Ds, ..., D,,), an m-tuple set of rates ( Ry, Ra, ..., Ry, is ad-
missible if for any 6 > 0 and any n > no(6) there exists a (m+1)—tuple (¢1, ©2, ..., Pm, V)
satisfying (4.41)-(4.43) such that A; < D, + 4 for ¢ = 1, 2, ..., m. The rate-distortion re-
gion R (D1, Dy, ..., D,;) can be defined as all the m-tuple sets of rates (R;, Ry, ..., Ry)
that are admissible.

Similar to the previous section, we first consider the special case of m-terminal cod-
ing system, where the goal is to estimate one of these sources while other sources provide
partial side information to the decoder to help reconstruction of the primary source. Based
on the result of the following section, we can obtain an inner region for the m-terminal

source coding scheme.

4.4.1 Achievable Rate-Region of a special case: m-helper problem

The m-helper system and the system based on the successive coding strategy are shown
in Figures 4.10 and 4.11, respectively.
By generalizing the results of Section 4.3 and considering the fact that each decoder

decodes its corresponding source, the rates of encoders can be computed as follows:
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Figure 4.11: Successively structured m-helper source coding scheme.

Ry =

1. %%
= —m
5 log o
2
g
1 Ym_1|Zm
2log by
2
Ym—21Zm.Zm—1

1 g
3 log b

2
(o8
1 lo Y11Zm,Zm—1--:22

2 D,

2
110 OX\Zms 12 %2, 21
3 108 Do

(4.45)

where Z; = Y; = Y, + Vi, V; ~ N(0, Di/ o), a; = (1 — D;/o%) and D; (i = 1,...,m) is

the average distortion in estimating source Y; at decoder ¢. To obtain the final achievable

rate-distortion region Ry(Dy), we should obtain the conditional variances in (4.45) in

terms of the source variances and the correlation coefficients between sources.

If X; is a zero mean Gaussian random variable, X; ~ N(0, 0% ), and X;’s are jointly

Gaussian, then the conditional probability density function of f(X,+1 | X1, X2, ..., Xn)

can be obtained as follows:

f(Xn—H | Xl,X2, ...,Xn) =

. (Xn+1—01X1—a2X2—---—aan)2]
bl

ol [ 2P
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where

P = 0%  ixiXs. X0 = Bttt — @1Ripi1 — 2Ropnir — - = @nRopnp
(4.47)
and R;; = F[X;X;] = px,x;0x,0x,. Coefficients a;, as, ..., a, can be computed from

the following equation:

E(Xpt1 —a1Xh —aeXe — - —a, Xp) Xi] =0, (4.48)
fori =1,2,...,n. This equation can be represented as the series of equations as follows:
( arRn +aRor + - +anRny = Rny1

a1 fg + a2R22.+ ot anRpp = Rn'+1,2 (4.49)

| a1Rip+aRopn+ - +anflnn = Rpyin

To solve the system, consider it as the matrix equation of ARxx = Rx,,,x where

A=[g ay ... ap X=X, Xy ... X, ,Rxx=FE[X*X],andRy,  x =
| Ruy11 Rugi12 ... Rnpyin |- Therefore, the coefficient vector of A can be obtained
by

A =Ry, xRk (4.50)

As a result, the conditional variances required in (4.45) can be obtained versus the cor-
relation functions. Since the final goal is to obtain Ry(Dy) in terms of source variances
and correlation coefficients between sources, we just need to derive the relation between
correlation coefficients (pyizj, Pzizj,pxzi) and correlation coefficients pxy, and A

These coefficients can be obtained from the following equations:

— 2 .
pviz; = pviv;\/ oy, — Dj/ov;,

pxz, = pxvir/oy, — Di/ov,, (4.51)

— 2 2
Pz.z; = PYin\/UYi — DiyJoy, — D;/ov,0v;.
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4.4.2 Special Case: 2-helper Source Coding Scheme

From (4.45), we know that

1 o,
Ry(Dp) = 3log (321) ;
Ry(D)) = jlog (GYB—ﬂZ> : (4.52)

o

Ru(D) = log ().

where

052’1|Z2 = 0}2’1 (1 - p%qzz) )
iz = 0% (1—p0)/ (1= p%z,) (4.53)
p% = p-2XZl + P§<Zz + 022122 = 20X 2,PX 2,02, 25

Combining these equations with (4.51) results in

1
Ro(Do) = 2 log

ok (1-p})
, 4.54
Dy (]‘ - pQlez)] ( )

where p? and pQZ1 2z, interms of correlation coefficients among X, Y7 and Y; are as follows:

P2 = Pxv, T Py, + Py, — 20XV, PXYaPViYa
+ (2oxvipxvapviva = Pxvi — Phavs) X (1= Py, + 03, 27202) 2720
+ (2oxviPxv2PM1Ys — Py, — Pay,) 27272
+  (Aly, — 20xvipxvapvivs) X (1= phiy, + phy,272F2) 27212 2Re
(4.55)
and
B = B (L= 27) x (12 (1 s+ 2 0)). 659

Therefore, (4.54) defines an achievable rate-distortion region for the 2-helper problem

based on the successive coding strategy.

Remark 4 If R, — oo and Ry, — oo, i.e., full resolution side information, the rate-

distortion tradeoff for the 2-helper coding scheme, (4.54), can be simplified to
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R D 1 1 O-g( (1 - pg{yl - pg{Yg - p%ﬁYz + 2pXY1pXY2pY1Y2)
o(Do) = 5 log Do (1 B
0 ( - leyz)

, 4.57
5 (4.57)
which is equal to the conditional rate-distortion function, Rx|y, v, when both encoder

and decoder have access to Y; and Y,. Therefore, there is no rate loss with the succes-
sive coding when compared to lossy coding of X with the side information (Y, and Y3)

available at both the encoder and the decoder.

Example 1 Consider the 2-helper problem with R; = 0. Since the rate of the encoder 2
is zero, there is no help from Y5. Therefore, we expect to obtain the rate-distortion for the

1-helper problem. By substituting R, = 0 in (4.54), we obtain

1 o2 _
Ro(Dy) = 5 log F’Z (1 - Py, + A5 272 |, (4.58)

which is the rate-distortion function of the /-helper source coding scheme.

4.4.3 An Inner Region for m-Terminal Coding Scheme

Assume II; = (w1, T2, ..., Tim) is @ permutation of the set Z,,, = {1,2,...,m}. Using
the successive coding strategy, there are m/! possible orderings for the coding/decoding
process in the m-terminal source coding scheme. For a given permutation II, the following

rate region is achievable:

R (Pnay, Duey, -+ Digmy) = Riymy (Premy) N R (D), Drgay. -+ Drxgmy)
(4.59)

where

02 . 1Yy
Ris) (Dngy) = {(Rnuan(z),---,Rn(m)) : Rug) > 3logy { R Z“(”” ,

D)
(4.60)
RH (DH(1)7 DH(2)7 . DH(m)) = {(RH(I)a RH(2)7 ey Rn(m)) . ;
m | 0%/ S NZTr s qyeeees z (4 1)
S Rng) > §log, | — ko nm} } ’
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and Zn(;) = Yng) + Vi), Vag) ~ N(0, Dng)/ang)s ong) = (1 — Dngp/ Uﬁnm)- The

inner region for the rate region of the multiterminal source coding can be represented as

Rin (D1, Doy o D) = {{ 0 Ry ) (Drtgm) } 0 Romin (D, D, D)},
(4.62)

where

Romin (D1, D3, ..., D) = min Rug, (D), Dity(2)s -+ Drygmy ) - (4.63)

1<i<m

Ri1,(m) (Disy(my) 1 in fact the rate-distortion tradeoff of the (m—1)-helper coding scheme

for the ith ordering of coding/decoding (out of m! possible orderings).

4.5 Chapter Summary

In this chapter, we have determined the rate-distortion function of the I-helper problem
based on the successive coding strategy. Compared with the sequential coding for the
Gaussian correlated sources, there is no loss of sum-rate for the successive coding where
the side information is not available at the encoder. We have demonstrated that the whole
rate distortion region for the 2-terminal source coding problem is achievable using the
successive coding strategy. Finally, we derived an achievable rate-distortion region for the
m-helper problem and also provided an inner bound for the rate region of the m-terminal

source coding scheme based on the successive coding strategy.
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Chapter 5

Gaussian CEO Problem with Gaussian

Multiple Access Channel

5.1 Introduction

We consider a distributed network, modeled by Gaussian CEO problem [29], [30], [43],
where L noisy observations of a memoryless Gaussian source are transmitted through an
additive white Gaussian multiple access channel (MAC) to a single fusion center. The
encoders are distributed and cannot cooperate to exploit their correlation. Each encoder
is subject to a transmission cost constraint. This constraint comes from the restrictions on
the resources such as bandwidth and power that are available at each agent. The scenario is
illustrated in Fig. 5.1 (See Section 5.3 for details). The FC wishes to reconstruct the main
source with an average distortion D at the smallest cost in the communication link. The
goal in this problem, which is also called multiterminal source-channel communication
problem [83] is to characterize all cost-distortion pairs achievable by any coding strategy
in an information-theoretic sense regardless of delay and complexity. Our interest lies
in determining the power-distortion region, while the fidelity of estimation at the FC is
measured by the MSE distortion.

For the considered Gaussian network, the optimal power-distortion tradeoff and its
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corresponding optimal coding strategy still remain unknown. However, it is well known
[36], [37] that for a point-to-point transmission of a single Gaussian source through an
AWGN channel, a simple uncoded transmission is optimal if the source bandwidth is
equal to the channel bandwidth. In the recent work of Lapidoth et al. [39], the authors
consider sending a memoryless Bi-variate Gaussian source over an interfering MAC. They
have shown that in the symmetric case, where the source components are of the same vari-
ance and the transmitted signals are subject to the same average power constraint, uncoded
transmission is optimal below a threshold SNR. In [38] Gastpar and Vetterli consider the
Gaussian sensor network modeled by the CEO problem in a symmetric environment,
where the sensors observations have the same noise level and the transmitting terminals
are subject to the same average power constraint. They show that as the number of sensors
tends to infinity, uncoded transmission achieves the smallest possible distortion. Their
proof is based on analyzing the idealized system in which the sensors are ideally linked
to the destination. They show that as the number of sensors L. — o0, the distortion of the
uncoded transmission and the distortion of the idealized system coincide. However, two
things remain unknown: (i) What is the optimal power-distortion tradeoff in a Gaussian
CEO problem with a finite number of agents? (ii) Does the uncoded transmission perform
optimally, in the sense of achieving the optimal power-distortion tradeoff, in a Gaussian
CEO problem with finite L?

Our main contribution in this chapter is to obtain a necessary condition for achiev-
ability of all transmission cost-distortion tuples (Py, P, ..., Py, D). Our proof is based on
analyzing the remote source coding scenario, where the agents observations are given to
one common encoder, and using the data processing inequality. Analyzing the uncoded
transmission scheme in considered Gaussian network provides a sufficient condition for
achievability of (Py, P, ..., P, D). We show that, in the symmetric case, these necessary
and sufficient conditions coincide and give the optimal power-distortion tradeoff. Our
analysis also shows that in the symmetric case of Gaussian CEO problem with a Gaussian

MAC, uncoded transmission performs optimally for any finite number of agents.
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The remainder of this chapter is organized as follows. In Section 5.2, we present
the system model and problem formulation. Section 5.3 provides necessary and sufficient
conditions for the achievability of power-distortion tuples ( Py, P, ..., Py, D). The optimal
power-distortion tradeoff for the symmetric case is also presented. Section 5.4 concludes

the chapter.

Vi v

Y U
b 1 Z
v, v
X D ncoaer w /X\

Decoder

Source

v v
L U

Y
B fomeort]

Figure 5.1: Gaussian CEO problem with a Gaussian multiple access channel (MAC). Z
represents the additive white Gaussian noise (AWGN) of the channel.

5.2 Problem Formulation

The distributed network studied in this chapter is modeled by a Gaussian CEO problem
[29, 30] with Gaussian MAC, which is shown in Fig. 5.1. In this model [30], for each

observationtime t = 1,2, 3, ...
Yit)=X@)+Vit)  i=1,..,L (5.1)

where X (t) ~ N (0,0%) and Vi(t) ~ N (0, V;) which is i.i.d. over ¢ and ¢t. Random
variables Y;(t) for (¢ = 1,..., L) are conditionally independent given the source X (t).
We represent n independent instances of {X (¢)},2, and {Y;(¢)},2, by data sequences
X" = {X(1),X(2),...,X(n)} and Y* = {¥;(1),Y:(2),...,Yi(n)}, respectively. The

correlated sources cannot cooperate to directly exploit their correlation. Data sequences
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Y™ are separately encoded to ¢; (Y;*) = U* where the encoder functions are defined as
i VP — M, (5.2)

fori = 1,2,..,L and C™ = {1,2,..., c™

} denotes the codebook of agent i. The
agents communicate the coded sequences to the FC through an additive white Gaussian

MAC. The transmitted sequences U* are average-power limited to P, i.e.,
1< 0 .
SY EUOF] S PAS =121 (5.3)
t=1

where ¢ is an arbitrary prescribed positive number. In other words, the coding function
be chosen to ensure that lim,_co = > | E [lUi(t)|2] < P,. The time-t output of the
Gaussian MAC is given by

W(t) =Y Us(t)+ Z(t), (5.4)

j=1

where the terms {Z(t)};-, are i.i.d. zero-mean variance-o0% Gaussian random variables
that are independent of the source sequence. Based on the channel output W", the FC
makes an estimate of the main source X" as X". It produces the source estimate X" to
an acceptable degree of fidelity D. The measure of the fidelity is the average distortion
criterion, ie., A = I E [Z?zl d(X(j),)?(j))] where d(X (), X (j)) is the MSE distor-
tion measure. The reconstructed signal can be described by X" = ¢ (W™), where the

decoder function is described by
YW — AT, (5.5)

and W is the common alphabet of the random variables W (¢t) fort = 1,2, - --.

Let P = (P, Py, ..., Py) and F{™ (Py, Py, ..., Pp) denote all (L + 1)—tuple en-
coder and decoder functions (1, ..., ¢, %) that satisfy (5.2)-(5.5). For a particular coding
scheme (i1, ..., v, V), the performance is determined by the required cost vector P and
the incurred distortion D. For any target distortion D > 0, the power-distortion region is

defined in [83], [38] as
P(D) = {(P],PQ, .y PL) | (P, D) is admissible} )
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A power-distortion pair (P, D) is admissible if for any 6 > 0 and any n > no(d) there
exists an (L+1)—tuple set (¢, ..., L, ¥) € .7-'(5") (P, Py, ..., Pp)suchthat A < D+4. In
other words, (P, D) is admissible if there is a coding scheme that can achieve a distortion

close to D while satisfying the transmission cost constraints.

5.3 Power-Distortion Tradeoff

We present necessary and sufficient conditions for achievability of (P, Ps, ..., Pr, D).

5.3.1 Necessary Condition

Theorem 6 A necessary condition for the achievability of (Py, P, ..., P, D) is that

1 P
RY¥™(D) < =log, (1 + —2) , (5.6)
2 oy
where Lo
1 2 i=1 N,
R¥™(D) = = log, EKZE it Dy <D <o% (5.7)
2 D #5=-5%
0
L -1
. 1 1
D; = (—2- +> ~> , (5.8)
9% o
and
P.P;
P= P, + 202 J . (5.9
> ZZ AT )

Proof This necessary condition follows from two different concepts: data processing in-
equality and the remote source coding. Consider a block of n source symbols X" and
the corresponding observations of the L agents ¥" = {Y;*}_ . If we denote the channel
inputs produced by an arbitrary code by U" = {Ui"}izl, the corresponding block of the
channel output can be represented by W™. By using the data processing inequality, the

mutual information between the observation vector and the vector of the source estimate,
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Iy X ™), can be upper bounded by the mutual information between transmitted wave-
forms and received waveform, (U}, UZ, ..., Up; W™) = I(U™; W™). This latter is upper

bounded by the capacity of an additive white Gaussian noise channel with the power con-

straint 7 | P, 4 20% 31 Zfﬂ i \/( oy )’?2 ) This can be shown as follows:
’ Ox TN J\Ox TH;
i wry) = LhWn) - Lh(Wr | U
@ Ly~ 1pzm | UM (5.10)

—_
N

O Lpmwn) - 1p(z)
where (a) follows from the equation W" = Zle U + Z™ and from the definition of
conditional entropy, and (b) follows from the fact that U*’s are independent of Z". To

calculate Zh(W™) in (5.10) we need to obtain

Var (W(k)) = Var (Uy(k) + -+ + U (k) + Z(k)) =

{Zalk+2z Z Py, ;0\ @ ”c(f]k-l—d%}(é)

i=1 j=2,j#i
(StcenS S payiiet)
i=1 j=2,j#1

where U; (k) is the k-th component of U = ¢; (Y;*) and 07, = Var (U;(k)) = E [|U; (k)]
Inequality of (c) follows from the fact that the maximum correlation coefficient between
any two finite-variance functions of two jointly Gaussian random variables is equal to the
correlation coefficient between original random variables. More precisely, if Corr(X,Y)
is the classical (Pearson) correlation between X and Y, the maximum correlation coeffi-

cient is defined in [84] as

psup(X,Y) = sup{Corr (o1 (X),p2(Y)):
0< Elpy (X)* < oo, (5.12)
0< Elp(Y)|* <00}
It is shown that [85] for a bivariate Gaussian vector (X,Y), psyp(X,Y) = [Corr(X,Y)|.

It completes the justification of (¢). From (5.1), we have Pryy, = %

V(0% +N:) (e%+N;)
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Substituting this correlation coefficient in (5.11) and using the power constraints of (5.3)
for the transmitted coded sequences U’s, and also using the Cauchy-Schwarz inequality

[86] we will obtain

1 n
— E Var (W(k
n

k=1

PP, )
5.13
Zp+zaxzz Eamare e RT (5.13)

1=1 j=2,j#i

Since i.i.d. random variables with normal distribution maximize the differential entropy
subject to sum of the variances [5], we obtain 2h(W™) < 1log {2me (P + 0%) } where
(?5 + a%) is the right hand side of (5.13). Thus, (5.10) can be simplified as

1 1 P
Z WM < = — .
nI(U",W ) < 21og2 (1+ U%) (5.14)

Therefore, using the data processing inequality, =J(¥™; Xn) < 3 log, (1 + ;F;Z—) On
the other hand, a lower bound on I(Y7,...,Y7; X) can be obtained by considering the
remote source coding problem introduced in [3], where the agents in the CEO problem
are allowed to collaborate, i.e., the L-tuple Y = (Y7, ..., Y}) is observed by one common
encoder. The scenario is also presented in Chapter 2 and Chapter 3 and it is illustrated
in Fig. 3.14. The rate-distortion function for the remote source coding problem of Fig.
3.14 is obtained in Chapter 3 which is expressed in (5.7). Now we put this lower bound
of I(¥™; X™) less than or equal to the upper bound of (5.14) (which is the capacity of the
AWGN channel with the power constraint of (5.13)),

RY¥™(D) < lI(Y";)?'") < ZIUS W < %logz (1 + ;) (5.15)
n

z
Thus, the necessary condition in (5.6) will be obtained. This completes the proof.
By substituting (3.52) in (5.6) for the symmetric case, the following result will be

obtained:
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Corollary 3 In the symmetric case of Gaussian CEO problem where Ny = Ny = - -+ =
Ny =Nand P, = P, = --- = Py, = P, the necessary condition for the achievability of
(P, D)) can be expressed as

0% (c% +N)+ NLP
0% (0% + N)+ LP (Lo +N)

D, > 0% (5.16)

5.3.2 Sufficient Condition

Based on analyzing the uncoded transmission in the CEO problem, we present a sufficient
condition for achievability of (P, P, ..., P, D). In this approach which is also called
“analog forwarding” [83] or “amplify-and-forward” [87] approach, each agent transmits

the scaled version of its observation, scaled to its power constraint, i.e.,

P
Ui(t) = aYi(t i = : .
(t) = 04Yi(t) where « TN, (5.17)
According to Fig. 5.2, the received signal at the FC is
w(t) = Yiny Uilt) + Z(2)
- (5.18)

= Y/ 2w X0 + Vi) + Z(0).

(o4

al
vy
AN N Y,
AL/
o
v, :
YL Y
X [ L/
Source
: o,
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Figure 5.2: Uncoded transmission in a Gaussian CEO problem with Gaussian MAC.



Since the encoding is memoryless, the optimum estimator is the MMSE estimator
of X(t) from the received signals {W(¢) : 1 <t < oco}) [38], which can be obtained
by X(t) = E[X(t) | W(t)]. The average cost of MMSE estimator, which is the MSE

distortion D,,, satisfies

2 L -1
1 PN,
- — + . 5'19
% (Z aX+N> (;U§(+Ni aZ) (>-19)

The power-distortion region achieved by the uncoded transmission approach can be con-

sidered as an inner region for the whole power-distortion region. Therefore, we will have

the following sufficient condition for the achievability of (P, P, ..., Pr,, D):

Theorem 7 For the (L + 1)-tuple (Py, P, ..., Pp,, D) to be achievable it suffices that the

following condition holds:

L 2, -1
1 1 P; BN; 2
. —_— : 5.20
D_a§+<; U§(+Ni> (;a§+Ni+Uz> (5.20)
In the symmetric case, the sufficient condition can be represented by
1 1 L*P LPN -
< 2 . 5.21
D_a§(+<a§(+N> <a§(+N+UZ> (>:21)

Comparing the result of Corollary 3 and Equation (5.21) reveals that the necessary con-
dition and the sufficient condition agree in the symmetric case. Hence, we derive the
“optimum performance theoretically attainable” (OPTA) [3], for the symmetric Gaussian
CEO problem with additive white Gaussian MAC. This is the same result as the recent

work of [40] which is obtained independently.

Corollary 4 For the symmetric Gaussian CEO problem with additive white Gaussian
MAC,
(i) The optimal distortion-power tradeoff can be represented by

0% (6% + N)+ NLP
02 (0% +N)+ LP(Lc¥ + N)

D=d% (5.22)
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(ii) Uncoded transmission achieves the optimal distortion-power tradeoff in (5.22)
and in fact is the optimal transmission strategy for symmetric Gaussian CEQ problem

with Gaussian MAC.

Remark 5 (Quasi-Static Flat Rayleigh Fading Channel) The same analysis can be
done for transmission of a Gaussian source over a quasi-static (slow varying) flat Rayleigh
fading channel. We expect that, when the amplitudes of fading coefficients are the same,

uncoded transmission performs optimally and can achieve the smallest possible distortion.

Remark 6 (Communication between the agents) In general, we expect that the com-
munication between agents enhance the performance. However, in [38], based on an-
alyzing the idealized system, it is shown that as the number of agents grows to infinity,
communication among agents does not improve the performance of symmetric CEO prob-
lem. Our analysis shows that the same result holds for any finite number of agents in the
symmetric case. More specifically, in the derivation of the necessary condition in (5.6)
we assume that the noisy observations of the source X are given to one common encoder.
It means that the necessary condition in (5.6) is obtained based on full cooperation among
agents. Since (5.6) is the optimal power-distortion tradeoff in the symmetric case of Gaus-
sian CEO problem, hence, there is no penalty for the fact that the agents are distributed
in the symmetric CEO problem. In other words, we do not get a better performance if we

allow communication between the agents.

5.4 Chapter Summary

It is well known that for a point-to-point transmission of a Gaussian source across an
AWGN channel, the uncoded transmission achieves the optimal power-distortion tradeoff.

Also, it is shown by Gastpar and Vetterli that for the considered Gaussian CEO problem
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under Gaussian multiple access, as the number of agents grows to infinity, the uncoded
transmission achieves the smallest possible distortion. However, it was unknown what the
optimal power-distortion tradeoff is in a Gaussian CEO problem with a finite number of
agents and whether the uncoded transmission achieves the optimal power-distortion trade-
off. In this chapter, first we provided necessary and sufficient conditions for achievability
of (L + 1)—tuples (P, Py, ..., Py, D). Then we obtained the optimal power-distortion
tradeoff for the symmetric case and proved that for any finite number of agents, uncoded

transmission performs optimally and achieves the smallest possible distortion.
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Chapter 6

Conclusion

In multi-user information theory, multiterminal source coding is of special interest. It con-
siders separate coding of multiple correlated sources that are not allowed to collaborate
to exploit their correlation and reduce transmission rate (and save transmission power).

Although the theory of multiterminal or distributed source coding started more than
30 years ago, finding a complete characterization for its rate-distortion region still remains
open. It is one of the long-standing open problems in information theory and even con-
crete examples of this problem are hard to analyze. For instance, the whole rate-distortion
region of the 2-terminal source coding scheme for Gaussian sources with MSE distortion
is characterized in 2005.

Previous works on coding of multiterminal schemes are based on joint decoding
of all messages. It requires that all messages be decoded simultaneously which is ex-
ponentially more complex than a sequence of single-message decodings. Inspired by
previous work on successive coding strategy, we consider successive Wyner-Ziv coding
as an enabling technique with low complexity that allows us to analyze the multitermi-
nal coding schemes with finite number of sources. We focus on Gaussian sources and
determine the rate-region for three different multiterminal coding schemes based on the
successive coding strategy: CEO problem (multiterminal remote source coding scheme),

1-helper coding scheme (a special case of many-help-one problem with one helper), and
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2-terminal source coding scheme.

First, we apply the successive coding strategy to the Gaussian CEO problem and
derive the optimal rate allocation scheme to achieve the minimum distortion under a sum-
rate constraint. We prove that the sum-rate distortion function of the Gaussian CEO prob-
lem can be achieved by a sequence of successively structured Wyner-Ziv codes. There-
fore, the high complexity optimal source code can be decomposed into a sequence of low
complexity Wyner-Ziv codes. We show that if the sum-rate tends to infinity for a finite
number of agents, the optimal rate allocation strategy assigns equal rates to all sensors.
The same result is obtained when the number of agents tends to infinity while the sum-rate
is finite.

Then, we consider I-helper coding scheme where one source (auxiliary source
which is also called the helper) provides partial side information to the decoder to help the
reconstruction of the other source (primary source). Our results show that the successive
coding strategy is an optimal strategy in this problem in the sense of achieving the rate-
distortion function. For the 2-terminal source coding scheme, we develop connections
between source encoding and data fusion steps and prove that the whole rate-distortion
region is achievable using the successive coding strategy. Comparing the performance of
the sequential coding with the performance of the successive coding, we show that there
is no sum-rate loss when the side information is not available at the encoder. This result
is of special interest in some applications such as video coding where there are process-
ing and storage constraints at the encoder. Based on the successive coding strategy, we
provide an achievable rate-distortion region for the m-terminal source coding scheme.

We also consider transmission of noisy versions of a Gaussian source through a
Gaussian multiple access channel to a single FC. It can be modeled as the Gaussian CEO
problem with the Gaussian MAC. The decoder wishes to reconstruct the main source
with an average distortion D) at the smallest possible power consumption in the com-

munication link. Our goal is to characterize the power-distortion region achievable by
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any coding strategy regardless of delay and complexity. We obtain a necessary con-
dition for achievability of all power-distortion tuples (Py, Py, ..., P, D). Also, analyz-
ing the uncoded transmission scheme provides a sufficient condition for achievability of
(Py, P, ..., Pp, D). Then, we consider a symmetric case of the problem where the ob-
servations of agents have the same noise level and the transmitting signals are subject to
the same average power constraint. We show that in this case the necessary and suffi-
cient conditions coincide and give the optimal power-distortion region. Therefore, in the
symmetric case of Gaussian CEO problem with additive white Gaussian MAC uncoded
transmission performs optimally for any finite number of agents. This is the same result

as the recent work of Gastpar [40] which is obtained independently.

6.1 Suggestions of future research

In this work we considered 2-terminal source coding where the encoders are not allowed
to cooperate before transmission to the joint decoder. One can consider 2-terminal source
coding scheme with partially cooperating encoders, where the encoders are connected
by communication links with finite capacities. Hence, before encoding and transmitting
their data to the decoder, they exchange information to increase the reliability of their
information. Since the successive coding allows determining the achievable region for
multiterminal schemes, by applying the successive coding strategy, an achievable rate-
distortion tradeoff of the cooperative 2-terminal source coding scheme can be obtained.
Then one can verify that if this achievable tradeoff is the rate-distortion function of the
scheme. As a special case, consider cooperative I-helper problem, where only one link
from the primary source to the auxiliary source is added to the /-helper scheme introduced
before. Analyzing this scheme is useful for some practical applications such as relay
networks.

In this thesis we also obtained an achievable rate region for 2-helper and in general
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m-helper problem based on successive coding strategy. One can verify whether the suc-
cessive coding is optimal in those coding schemes. We expect that in the Gaussian / MSE
case, successive coding can achieve the optimal performance in multiterminal source cod-
ing schemes.

If one node drops out of a wireless network, due to hardware failure or any other
reason, a joint decoder may not be able to decode and nothing can be recovered. By using
timesharing of successive coding schemes in a multiterminal scenario, we may obtain a
nontrivial estimate of the source. However, depending on the order of decodings at the
FC, some schemes will perform better than others. An analysis of a 4-node Gaussian
CEO problem is presented in [61], where a tradeoff between robustness and efficiency for
different successive schemes is provided by studying the combinatorial properties of the
associated directed graphs. General analysis of this tradeoff for the Gaussian CEO prob-
lem with L agents and for m-ferminal source coding scheme is an open area of research.

To code or not to code? This has been an essential question which has not been
answered for many multiterminal schemes. Based on analyzing the remote source coding
scheme for the CEO problem and using data processing inequality, we proved that the
uncoded transmission is optimal in the symmetric Gaussian CEO problem. One can use
similar approach for multiterminal coding schemes such as asymmetric 2-terminal coding
scheme, asymmetric CEO problem, or m-terminal coding scheme (m > 2) and try to
answer following questions for each scheme:

1. Does uncoded transmission perform optimally?

2. What is the optimal power-distortion region for the scheme?

3. What kind of coding strategy can achieve the optimal power-distortion tradeoff

of the scheme?
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