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Abstract

Incremental Dimensionality Reduction: Algorithms and Applications

Osama Abdel-Mannan

One key challenge in data mining and manifold learning applications is the ability to manip-
ulate datasets and to extract useful information. This triggered the need for dimensionality
reduction techniques to help visualize and analyze the data without excess computation
time. Several methods have been proposed in recent years that are based on the batch
mode, meaning that all the data points need to be present during the run of the algorithm.
Thus, any newly arriving point has to be added to the dataset and the algorithm has to be
rerun on the entire set to produce the output. This limitation gave rise to the incremental
form of some existing algorithms enabling them to adapt to newly added points without loss
of computational time.

Motivated by this incremental extension of the algorithms, this thesis addresses the lim-
itations of some dimensionality reduction techniques and proposes incremental solutions.
The core idea behind our proposed techniques is to enable these methods to adapt to the
stream of data being added while preserving the significant characteristics of the low di-
mensional representation of the dataset. Our experimental results demonstrate an improved

performance of the proposed approaches in comparison with existing algorithms.
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I
CHAPTER 1

Introduction

The demand for data collection has been greatly increasing with the development of new
technologies. Almost every new experiment or application requires the availability of consid-
erable amount of data for the purpose of testing and analysis. With this acquisition of huge
amounts of data, the need arises for controlling this data and extracting the necessary infor-
mation from it. Depending on the type of data, various techniques of data analysis are used
to extract useful information and facilitate conclusions. Usually, the data acquired from
different real-world applications have high dimensionality. The study of high-dimensional
manifolds [1], [2] is of great significance in many engineering applications, including data
mining [3], data visualization, and pattern recognition [4]. Hence, the understanding of the
behavior of these manifolds, and the algorithms proposed for manifold learning, is very im-
portant. Therefore, this requires selectivity when it comes to analyzing and using the data
for a certain experiment. Being selective means to choose the significant characteristics of

the dataset in order to analyze it in a simple way. One way is to reduce the dimension of



Chapter 1. Introduction

high-dimensional data in order to better visualize and analyze its behavior with little loss
of information. Here comes the role of dimensionality reduction techniques. Dimensional-
ity reduction is an important preprocessing step before classifying multidimensional data.
Dimensionality reduction is primarily used to transform a high-dimensional dataset into a
low-dimensional space while preserving the significant characteristics of the data structure.
This helps in discovering the structure and behavior of the manifold in a lower and hence a

simpler dimension for the purpose of learning, analyzing, and experimenting.

Over the years, many methods of dimensionality reduction have been proposed. These
include Principal Component Analysis (PCA) [5], [6], Kernel PCA [7], [8], Isometric Map-
ping (Isomap) [9], Local Linear Embedding (LLE) [10], Hessian Local Linear Embedding
(HLLE) [11], Local Tangent Space Alignment (LTSA) [13], and Laplacian Eigenmap [14].
However many of these algorithms operate in a batch mode, meaning that all data points
need to be available during training. When data points arrive sequentially, these methods
are computationally demanding and time consuming and need to repeatedly run algorithm

whenever new data points are obtained.

In this chapter, we briefly review some dimensionality reduction algorithm, introduce
their limitations, and propose incremental versions in order to adapt to newly added points.

Motivated by the incremental version of the Local Linear Embedding (LLE) algorithm [15],



1.1 Background

we propose an incremental version of Hessian LLE (HLLE) and Local Tangent Space Align-
ment (LT'SA). The core idea behind the proposed technique is to enable these algorithms to
adapt to newly added points as they arrive in order to better visualize the evolution of the

dataset.

A major part of this thesis is devoted to implementing the incremental version of these
algorithms and illustrate the results obtained. The proposed algorithms to some extent
preserve the characteristics of the lower dimension representation after the addition of the

incremented data points.

1.1 Background

This thesis addresses the application of dimensionality reduction techniques on high-dimensional

datasets. The following background material is presented to provide context for this work.

1.1.1 Data Mining

Storing, modelling, and understanding data is a common concern for many research areas.
There has been a considerable growth in acquiring data from different areas and for different
objectives. With that, there has been an increased interest in utilizing data and extracting

valuable information from them. The area related to such tasks is called data mining. The
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main idea behind data mining is to extract analytical information from large databases.
Data mining can be seen as an intersection of disciplines such as machine learning, statistics,
pattern recognition, and other areas. It helps focus on the most important information. The
tools used in data mining are useful in determining the trends and behaviors of datasets,
allowing for future decisions and further analysis. Generally, data mining is used to analyze

data from different perspectives and summarize it into useful information [3].

Datasets usually represent measurements taken from a certain process or environment.
A major problem in mining scientific datasets is that the data is often high-dimensional,
meaning there are a large number of features representing the object. As the number of
dimensions increases the computational time for pattern recognition algorithms can become
excessive. To address the problem of high dimensionality, a common approach is to identify
the most important features associated with every object so that further processing can be

simplified without compromising the quality of the final results.

1.1.2 Principal Component Analysis (PCA)

Principal component analysis is an explanatory technique that helps in learning about
datasets. The objective of principal component analysis is to reduce the dimensionality

of the dataset while retaining, as much as possible, the variation in the dataset [5], [6].
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Principal components are linear transformations of the original set of variables, and are un-

correlated and ordered so that the first few components carry most of the variations in the

original dataset. The first principal component has the geometric interpretation that it is a

new coordinate axis that maximizes the variation of the projections of the data points on

the new coordinate axis. Figure 1.1 shows a scatter plot of data points having an elliptical

shape. Note that, if the data points are projected onto the first principal component, most of

the variation of the 2-D data points would be captured in one dimension. The first principal

component e; is the direction of the greatest variation among the entire dataset.
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Figure 1.1: Illustration of PCA.

The goal of the dimension reduction can be explanation, visualization or further pro-

cessing, like feature extraction. The principal component analysis finds basis vectors for a
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subspace which maximize the variance retained in the projected data.
Given a dataset D = {X;:i=1,..., N} of p-dimensional vectors, the principal Compo-

nent Analysis (PCA) is a linear projection technique

Y;l = Q(X'L _X)7

where Y] is a g-dimensional projected data vector (usually ¢ << p), X; is the original date
vector, X is its sample mean, and @ is a N x ¢ matrix that contains the PCA projection
vectors.

The g-projection vectors that maximize the variance of Y;, i.e., the principal axes, are
given by the eigenvectors of the sample covariance matrix. These eigenvectors correspond
to the ¢ largest nonzero eigenvalues.

The steps that constitute the PCA algorithm are summarized as follows:

e Compute sample mean X = (1/N) N X;

e Compute sample covariance S = (1/N) Zﬁ—.l(Xi - X)(X;, - X)T

e Compute the eigenvalues \; and eigenvectors e;, that is, Se; = \;e;. The first

eigenvector of a covariance matrix defines a variable with the most variation in
the dataset. The eigenvectors are the principal components, and the eigenvalues
measure the importance of the principal components. The eigenvalues are usually
arranged in a nonincreasing order, i.e. A; > ... 2 Ay. The eigenvalues tell us
about the amount of variation in data, and variance in a particular direction.

e Project onto g principal components: Y; = Eg"(Xi — X), where Q = E, =

6
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(e1,...,eq) is an N x ¢ matrix of the retained ¢ principal components that carry
most of the variance. In other words, the first principal component accounts for
as much of the variability in the data as possible, and each succeeding component
accounts for as much of the remaining variability as possible. After calculating
the eigenvectors, we sort them by their corresponding eigenvalues and then we
pick the g vectors with the largest eigenvalues.

PCA also gives uncorrelated projected distributions. Besides retaining the maximum
amount of variance in the projected data, PCA also has the following property: the projected
data Y; is decorrelated, i.e. the covariance matrix E(Y;Y;T) is a diagonal matrix. The variance
in each principal direction can also be normalized, by using Q@ = A~/2ET instead of Q = ET,
where A is a diagonal matrix with the eigenvalues of sample covariance matrix. In this case,
the covariance matrix of {Y;: 4 =1,..., N} is equal to the identity matrix.

Moreover, PCA minimizes the least square reconstruction error. If the projected vectors

Y; are projected back into the original space using

where M = QT(QQT)"!, then the reconstruction error, ||(X; — X) — X;||, is minimized.
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Figure 1.2: PCA implemented on swissroll dataset. (a) 3D swissroll dataset, (b) The 2D
representation result of PCA applied on the swissroll dataset.
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Dimensionality reduction with PCA

The question comes when choosing a value for q. The proportion of variance retained by
mapping down to ¢ dimensions can be found as the normalized sum of the ¢ largest eigen-

values
q
Ai

i=1

x 100%.
f=1 Ai

T =

In many applications, ¢ is chosen such that 95% > r > 90% variance is retained. The
remaining variance is assumed to be due to noise.

The number of principal components ¢, ¢ < p, can be determined using the scree graph
which is the plot of the k-th eigenvalue versus the component number k, or retain ¢ com-
ponents that account for (e.g. 65 — 90%) of variation. The lower dimensional vector X;
captures the most important features of the original data X;. Figure 1.2 shows a swissroll
dataset reduced from 3-dimension to 2-dimension using PCA.

When applied directly to image data, PCA projection vectors are global in the image
domain. This fact has been exploited in many applications. For example, in face recognition,
the first eigenvector (“eigenface”) corresponds to the basic face shape all humans share, and

further eigenvectors correspond to variations between individual faces (hair, glasses etc.)

1.1.3 Isometric Mapping (Isomap)

Isomap [9] is a dimensionality reduction technique that uses geodesic distances [20] instead
of Euclidean distances. Geodesic distances represent the shortest paths along the curved

9
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surface of the manifold, as in Figure 1.3. Isomap uses Multidimensional Scaling (MDS)
techniques in its implementation [3], [16]. Unlike linear techniques, Isomap can discover the

nonlinear degrees of freedom that underlie complex natural observations [17], [9].

Figure 1.3: Finding Geodesic distances used by Isomap [20]

The Isomap algorithm can be summarized as follows:

e The points that are neighbors on the manifold are determined based on the
distances between pairs of points in the input space.

e The geodesic distances between all pairs of points on the manifold are estimated
by computing their shortest path distances [20].

e MDS is applied to matrix of graph distances [18] , constructing an embedding of

10
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_15 ) 1 2 . )
-60 ~40 -20 0 20 40

(b)

Figure 1.4: Isomap implemented on swissroll dataset. (a) 3D swissroll dataset, (b) The 2D
representation result of Isomap applied on the swissroll dataset.

11
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the data in a low-dimensional Euclidean space that best preserves the manifold’s
estimated intrinsic geometry. Figure 1.4 shows a swissroll dataset reduced from

3-dimension to 2-dimension using Isomap.

1.1.4 Local Linear Embedding (LLE)

LLE [10] is a dimensionality reduction technique that computes low-dimensional, neighbor-
hood preserving embedding of high-dimensional datasets. LLE succeeds in identifying the
underlying structure of the manifold. Unlike Isomap, LLE eliminates the need to estimate

pairwise distances between widely separated data points.
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Figure 1.5: LLE steps [10]

12
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Figure 1.6: LLE implemented on swissroll dataset. (a) 3D swissroll dataset, (b) The 2D
representation result of LLE applied on the swissroll dataset.
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The local geometry of the data points, X = {z1, s, ..., %}, can be characterized by linear
coefficients that reconstruct each data point from its neighbors. The k-nearest neighbors per
data point are identified, as measured by Euclidean distance. From these distances between
points, a weights matrix ,W = {W,;,}, is formed that best reconstructs each data point z;
from its neighbors. The reconstruction weights, W;;, reflect intrinsic geometric properties of
the data that are not affected by transformations such as translation, rotation, and scaling.
Thus, the same weights that reconstruct a data point in the higher dimension should also
reconstruct its embedded coordinates in the lower dimension. Finally, from these weights,
the high-dimensional points are mapped into low-dimensional vectors. Each of the vectors
Y = {v1,¥2,--.,¥:} that are best reconstructed by the weights W;; are computed. Figure 1.5
shows the steps involed in the LLE algorithm, and Figure 1.6 shows LLE applied on the

swissroll dataset.

1.1.5 Hessian Local Linear Embedding (HLLE)

HLLE [11] derives from a context of local isometry in which the manifold (viewed as a
manifold in Euclidean space R™) is locally isometric to an open, connected subset © of
Euclidean space R?, where d < n. The theoretical framework revolves around a quadratic
form H(f) = [,; |Hs(m)|%dm defined on function f : M —— R. Here H; denotes the
Hessian of f, and H(f) averages the Frobenius norm [12] of the Hessian over M. To define

the Hessian, orthogonal coordinates on the tangent planes of M are used.

14
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If M is locally isometric to an open, connected subset of R%, then H(f) has a (d + 1)-
dimensional null space consisting of the constant functions and a d-dimensional space of
functions spanned by the original isometric coordinates. Hence, the isometric coordinates
can be recovered up to a linear isometry. HLLE can be viewed as a modification of Locally
Linear Embedding (LLE).

For a data input m; of N points in R™ producing output data points w; of N points in
R4, the HLLE algorithm is summarized as follows:

e The k-nearest neighbors of the data points are identified

e Singular decomposition of the manifold is performed to obtain the tangent coor-

dinates, producing matrices U, D, and V.
e The Hessian estimator H® matrix is developed.

e A quadratic form is developed by building a symmetric matrix

= X S

where H! is a i(—%il—l X k matrix associated with estimating the Hessian over
neighborhood N;. The entries in the Hessian matrix correspond to rows r, and
the specific points in the neighborhood correspond to columns <.

e An approximate null space is found by performing eigenanalysis of H and iden-
tifying the (d + 1)-dimensional subspace corresponding to the (d + 1)-smallest
eigenvalues.

e The basis for the null space is found. The given basis has basis vectors w!, ..., w?,
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1.1 Background
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Figure 1.7: HLLE implemented on swissroll dataset. (a) 3D swissroll dataset, (b) The 2D
representation result of HLLE applied on the swissroll dataset.
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1.1 Background

which are the embedding coordinates.

Figure 1.7 shows HLLE applied on the swissrole dataset.

1.1.6 Local Tangent Space Alignment (LTSA)

LTSA [13] constructs a principal manifold [13] that goes through the middle of the data
points and finds the global coordinate system that characterizes the set of data points in
a low-dimensional space. A tangent line space is used to construct this global coordinate
system for the manifold. Figure 1.8 shows LTSA applied on the swissrole dataset.

The algorithm is presented as follows:

e The k-nearest neighbors of z; are calculated, where z;, ¢ = 1,..., N, is a set of
N points of m-dimension.

e The d largest unit eigenvectors (g1,...,94) are computed and then set G; =
le/Vk,q1,...,494), where e is a k-dimensional column of all ones.

e The alignment matrix B is constructed by locally summing B(I;, I;) «— B([;, I;)+
I-GGT

e The global coordinates are aligned by computing the d + 1 smallest eigenvectors
of B and the eigenvector matrix [us, ..., u441] is picked up corresponding to the
21d to (d + 1)* smallest eigenvalues. Set I' = [uy,...,ugs1]7, where T is the

output containing the embedded lower dimensional data points.
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Figure 1.8: LTSA implemented on swissroll dataset. (a) 3D swissroll dataset, (b) The 2D
representation result of LTSA applied on the swissroll dataset.
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1.2 Contributions

1.2 Contributions

The contributions of this thesis are as follows:

@ Incremental Hessian Locally Linear Embedding: We introduced an incremental form
of HLLE which enables the algorithm to adjust to new arriving points while preserving
the significant characteristics of the dataset. The proposed method follows a similar

pattern of the incremental LLE and its generalizations [23].

@ Incremental Local Tangent Space Alignment: An incremental form of LTSA is pro-
posed which allows for newly added points to be adapted while keeping the charac-
teristics of the lower dimensional representation intact. The proposed method follows
a similar pattern of the incremental LLE and the above proposed incremental HLLE

and their generalizations [24].

@ Incremental Kernel PCA Application: We applied the IKPCA algorithm on the
spectra dataset and studied its behavior. It showed that the algorithm succeeds in
trying to keep the accumulation ration within the set threshold and maintain that

value.
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1.3 Thesis overview

1.3 Thesis overview

The rest of the thesis is organized as follows:

0 In Chapter 2, we describe the basic concepts of the LLE and the HLLE algorithms.
We also introduce our proposed method of incremental HLLE and explain the pro-
cedures applied. We then demonstrate, through experimental results, the improved
performance of our proposed technique in comparison with the incremental LLE, and

we provide a concise interpretation of our results with conclusions [23].

O In Chapter 3, we present the LTSA algorithm and introduce our proposed method
of incremental LTSA. Illustrating experimental results show the effectiveness of the

proposed compared to the previous methods [24].

O In Chapter 4, Kernel PCA algorithm is described along with the Incremental KPCA
algorithm. Then we explain the significance of the Spectra dataset and demonstrate,
through experimental results, the performance of the IKPCA algorithm when applied

to the spectra dataset. We also provide a concise interpretation of the results.

O In the Conclusions Chapter, we summarize the contributions of this thesis, and we
propose several future research directions that are directly or indirectly related to the

work performed in this thesis.
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ICHAPTER 2

Incremental Hessian Locally Linear

Embedding

In this chapter, we present an incremental version of Hessian Locally Linear Embedding
(HLLE) on the basis of incremental Locally Linear Embedding (LLE) generalizations [15],
[21], [22]. The main idea behind our algorithm is to produce a lower dimension representation
of a high-dimensional manifold such that the significant characteristics of the dataset are
preserved while adapting to newly added points arriving to the dataset. The experimental
results verify how the new projection of points, along with the additional points, produce a

good fit to the original manifold [23].

22



2.1 Introduction

2.1 Introduction

The need to analyze large amounts of multidimensional data is simplified through the concept
of dimensionality reduction. Discovering the compact representations of high-dimensional
data is vital in areas related to data analysis and visualization. Therefore, several methods
were devised to reduce the dimension of multidimensional data and thus make it simpler
to analyze and study. LLE [10], {26] and HLLE [11] are examples of such methods that
compute low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs.
They are two nearest-neighbor techniques that optimally reduce the high dimensionality by
reconstructing data points from a weighted combination of neighbors. This is achieved by
finding the lowest eigenvalues and their corresponding eigenvectors during the computation
of the lower dimension projections.

However, these algorithms are constructed for datasets in batch mode and do not ac-
commodate newly added points. In other words, if a new data point arrives, the algorithm
has to be run entirely again to include the newly added point in the computations, which is
not very practical for datasets which are very large in size. To circumvent this problem, an
incremental LLE algorithm was recently proposed in [15].

Motivated by the incremental form of LLE, in which a new generalization was adapted and
compared to two previously proposed generalizations [21], [22], we propose an incremental
form of HLLE similar to the incremental LLE implementation. The core idea behind our

proposed algorithm is it to allow for incremental update of the algorithm to adapt to newly
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2.2 Problem Formulation

introduced data points.

The rest of this chapter is organized as follows. In the next section, we recall the basic
concepts of the LLE algorithm. In Section 2.3, we describe the HLLE algorithm as well as
introduce our proposed method of incremental HLLE and explain the procedures applied. In
Section 2.4, we demonstrate, through experimental results, the much improved performance
of our proposed technique in comparison with the incremental LLE, and we provide a concise

interpretation of our results. Finally, some conclusions are included in Section 2.5.

2.2 Problem Formulation

2.2.1 LLE Algorithm

A dimensionality reduction algorithm takes a D-dimensional input dataset X = 1, zs,..., 2y,
of N points z; € RP. The algorithm then produces N corresponding d-dimensional vectors

y; constructing matrix Y = y1,42,...,yn, ¥ € R? . The LLE algorithm runs to reconstruct

each data point as a linear combination of its neighbors using two parameters: k, which is

the number of nearest neighbors, and d, which is the number of dimensions into which the

data is embedded.

The LLE algorithm consists of three main steps [10]:

e Step 1: The neighborhood of X is found by finding the k-nearest neighbors of
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2.3 Proposed Method

k

each point z; producing z!, 22 % using Euclidean distances.
1

R R

LT
e Step 2: The weight matrix W = w;;, which reconstructs each point z; from its

k-nearest neighbors is computed by minimizing the following function:

N k
eW) = llai — Y wia; | (1)
=1 j=1
k
subject to two constraints: wy; = 0, if zi; ¢ {z},2%,...,zF}, and Z'LU»U =1
=1

e Step 3: The embedded vector Y is reconstructed from X by minimizing:

N k
5(Y) =D llyi — Y wigsll® (2)
i=1 j=1
N N
under the constraints: % Z yiy;p = I (normalized unit covariance), and Z Y =
i=1 i=1
0 (translation-invariant embedding). Obtaining a low-dimensional embedding

with these constraints corresponds to computing the d+1 eigenvectors associated

with the d+1 smallest eigenvalues of a sparse, symmetric cost matrix M:
M=(I-WT(I-W) (3)

2.3 Proposed Method

A variant method to the above explained LLE algorithm is the HLLE algorithm [11]. HLLE
needs to solve N separate eigenproblems of k& X k size, as well as a single N x N sparse
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2.3 Proposed Method

eigenproblem. In fact, the methods used in HLLE bear considerable similarity to the pre-
viously proposed LLE. Both algorithms are able to handle large N problems, since smaller
neighborhoods are being considered in the primary computations. The process in HLLE is
however somewhat different in requiring estimates of second derivatives.

The HLLE algorithm consists of the following steps.

e Step 1: The k-nearest neighbors of each data point are found using Euclidean
distances. A matrix M* is formed for each neighborhood N°.

e Step 2: Tangent coordinates are obtained by performing a singular value de-
composition of the matrix M* containing the distances between the neighboring
points.

e Step 3: A Hessian estimator is developed in quadratic form built by:

ZZ (H'HL) (4)

where H' is a ﬂ%ﬂl x k matrix associated with estimating the Hessian over
neighborhood N;. The entries in the Hessian matrix correspond to rows r, and
the specific points in the neighborhood correspond to columns 3.

e Step 4: Eigenanalysis of the Hessian matrix is performed, and the eigenvectors
corresponding to the smallest eigenvalues (discarding the vector whose values
are zero) are computed producing matrix V. Matrix R is defined as R = VV7T.

Thus, embedding coordinates are obtained from the matrix W = VT R™1/2,
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2.3 Proposed Method

Similar to the Incremental LLE described in [15], the method employed to implement
incremental HLLE makes use of two possible linear generalizations [21], [22], as well as
the generalization proposed by the incremental LLE method [15]. These are applied to
form a relation between the high and low-dimensional points that belong to a manifold
neighborhood. Let X and Y be the matrices containing the high-dimensional input and the
low-dimensional output, respectively, w;; be the linear weights that reconstruct each point
z;, where 71 € X, i = 1,2,..., N, from its k-nearest neighbors and M be the cost matrix
produced using eigenavalue computations, the two generalizations and the incremental form
of HLLE are described as follows.

Linear generalization I: The first generalization exploits a transformation matrix
derived from the neighborhood of the data points and then applied to find the new projection.
Let X¥+1 and YV*! be the matrices containing the k nearest neighbors of zy; and yy41
respectively. Thus, the equality assumption YV*! = ZX~+1 is approximate, where Z is an
unknown transformation matrix of size d x D. Consequently, the projection of the newly

added point can be found by multiplying the obtained transformation:

YN+1 = ZTN+1 (5)

Linear generalization II: In the second generalization, the newly projected point can
be found by first finding the k¥ nearest neighbors of zx4; and the linear weights wy; that

reconstruct zy,; from its neighbors using Equation 1 with the constraints mentioned. Then
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2.3 Proposed Method

the new yy41 is found by:

N
YN+1 = Z WN+1Yj (6)

j=1
Incremental HLLE: When a new data point is added to the manifold, the aim is to
accommodate this new point and accordingly produce the linear weights matrix and compute
the cost matrix M,,,, in the same manner as if it would be computed if HLLE was run on

the whole dataset, including the new point. This can be achieved by the following steps.

e Step 1. The new neighborhood of the new dataset is found, i.e. the k nearest
neighbors to the newly added point, as well as the neighborhood of other data
points which have, at this time, developed a new neighborhood as a result of the
point addition.

e Step 2. With the new neighborhood obtained, the modified neighborhoods result
in new distances between points. A new weight matrix is computed only for those
points whose distances have been changed, by solving Equation (1). The weights
in this new weight matrix are used to update the old weight matrix for those
changed points.

e Step 3. The updated weight matrix is then used to calculate the new cost matrix

M ey, which will have a size of (N + 1) x (N +1).
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2.4 Experimental Results

This section presents simulation results where the incremental LLE, generalization I, gen-
eralization II, and the proposed incremental HLLE algorithms are applied to three types of
datasets: the swissroll dataset, the wine dataset [27], and some 3D models. The procedures
applied in incremental LLE were implemented to form a basis of reference and comparison

to our proposed incremental HLLE algorithm.

2.4.1 Swissroll dataset

The swissroll dataset consists of 1,400 points and is 3-dimensional. The dataset is depicted

in Figure 2.1.

Figure 2.1: Swissroll 3D dataset
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2.4 Experimental Results

First, regular LLE and HLLE, with k=15, are applied to the manifold projecting the
dataset into a two-dimensional space. Five additional points are introduced to the dataset
and the linear generalizations along with incremental LLE and incremental HLLE are then

applied to the manifold.
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Figure 2.2: 2D representation of swissroll dataset using regular LLE

The results shown in Figure 2.3 through Figure 2.5 illustrate the projection of the 3-D
manifold into 2-D using generalization I, generalization II, and incremental LLE. The circles
in the figures represent the additional points that were incremented using the algorithm.
These results show a slightly different outcome from what was produced in the original
incremental LLE implementation in [15]. This is due to the eigenproblem that should be
solved by minimizing the following function to obtain the new coordinates of the projected

points:
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However, despite the differences, the outcome still serves the purpose of projecting the
high-dimensional dataset into a lower dimension while adapting to the newly added points.

Following the same concepts, the proposed algorithm is performed on the swissroll dataset.
Five points are also added to the 1,400 original points and generalization I, generalization
II, and incremental HLLE are applied to the dataset. The results in Figure 2.7 through
Figure 2.9 show the projection using the linear generalizations and incremental HLLE with
the five points added to the 3-D manifold producing a 2-D output.

Figure 2.7 through Figure 2.9 show that incremental HLLE preserves the projection

dispersion of the lower dimension representation of the manifold, keeping the distribution of
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Figure 2.5: Incremental LLE

points intact, while accommodating the newly added points in it. The circles in the figures

represent the additional points that were incremented using the algorithm.
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2.4.2 Wine dataset

In another experiment, we tested our proposed algorithm on the wine dataset [27]. The wine
dataset contains the results of a chemical analysis of three types of wine grown in a specific
area. The data is represented in the 178 samples, with the results of 13 chemical analyses
recorded for each sample, i.e. having a dimensionality of 13.

In this experiment, regular HLLE (k=15) is applied on the first 118 points. The remaining

60 points are incremented in 15 iterations, four points at a time.
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Figure 2.10: HLLE procrustes measure for wine dataset

Procrustes measure [25] is used to study the behavior of the algorithms as the number
of data points increases. The Procrustes measure determines how a linear transformation
of the points in the lower dimension projection conforms to the high-dimensional data. The
lower the value the better these two representations conform. Figure 2.10 shows the result
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of the iterations performed with incremental HLLE. From the plot in Figure 2.10, it can be
seen that incremental HLLE maintains a lower value of the Procrustes measure compared
to the other generalizations, which demonstrates the conformity of the low-dimensional data

representation to the high-dimensional one.

2.4.3 3D datasets

Finally, the proposed algorithm was applied on some 3D models with different number of
points. In all the following experiments, k is set to 8, and the dimension was reduced from
3-dimension to 2-dimension. Five points were incremented to the dataset and are represented

by the circles in the figures.

Figure 2.11: 3D model of a Torus
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Figure 2.20: Incremental HLLE applied on the double torus 3D model

Figure 2.21: 3D model of a Heart

41



2.4 Experimental Results

0.06
0.04r #
. g
+
Fri s ST IRCAAERARE
R B R
S T Y #
b b o+ + Ay
.02kttt + s o+t
I T 0 TR A S
¥
et s b+ L
3 +*
0 P A
.
¥
T P
P SR

-0.02} Mres o s
T

+*_":++++*#

it 4
-0.041 Mpp + P
Wi+ P4
R i g
~0.06 ! . ! L !
-0.06 -0.04 ~-0.02 0 0.02 0.04 0.06

Figure 2.22: Regular HLLE applied on the heart 3D model
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Figure 2.24: HLLE generalization II applied on the heart 3D model
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Figure 2.25: Incremental HLLE applied on the heart 3D model
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Figure 2.35: Incremental HLLE applied on the cube 3D model
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2.5 Conclusion

In this chapter, we proposed an incremental form of HLLE which enables the algorithm to
adjust to new arriving points while preserving the significant characteristics of the dataset.
The proposed method follows a similar pattern of the incremental LLE and its generaliza-

tions.
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CHAPTER 3

Incremental Local Tangent Space

Alignment

In this chapter we introduce another incremental dimensionality reduction implementation
applied on the Local Tangent Space Alignment Algorithm (LTSA) [13] following the concepts
implemented in Chapter 2. This incremental algorithm constructs low-dimensional represen-
tation from sample data points in high-dimensional spaces, while preserving the important

features of the dataset and also adapt to newly added points [24].

3.1 Introduction

As mentioned in the previous chapter, LLE and HLLE produce a low-dimensional repre-
sentation from a high-dimensional dataset. They, however, tend to fail to detect nonlinear

structures in the data points. LTSA succeeds in constructing a nonlinear low-dimensional
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3.1 Introduction

representation from high-dimensional data points. LTSA is an unsupervised method for
nonlinear dimension reduction which represents the local geometry of the manifold using
tangent spaces aligned to give the internal global coordinates of the data points with respect
to the underlying manifold by means of a partial eigen-decomposition of the neighborhood
connection matrix.

However, similar to the previous algorithms LLE and HLLE, the LTSA algorithm is
unsuitable for sequentially added data. In other words, when a new point is added, the
algorithm needs to be rerun entirely with the original data augmented by the new samples.
Therefore, we implemented an incremental form of LTSA to avoid such a limitation. This
incremental algorithm enables the newly added points to be added as they arrive and produce
the lower dimensional representation as if the algorithm is run on the whole dataset.

This chapter is organized as follows. In Section 3.2 we introduce the basic concept of the
LTSA algorithm. Then in Section 3.3, we introduce our proposed method of incremental
LTSA and explain the procedures applied. In Section 3.4, we provide some experimental
results and illustrate the performance of our proposed technique in comparison with the

incremental LLE and incremental HLLE. Finally, we conclude in Section 3.5.
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3.2 Problem Formulation

3.2.1 Local Tangent Space Alignment Algorithm (LTSA)

The LTSA algorithm takes an m-dimensional input dataset X = {x1,22,...,ZN}, of N
points &; € R™. The algorithm then produces N corresponding d-dimensional vectors,
T;, where d < m, constructing matrix I' = {71,Ts,...,Tn}, T: € R? for the manifold
constructed from k local nearest neighbors.

The LTSA algorithm consists of four main steps [13]:

e Step 1: Find the k nearest neighbors «;; of x; for j =1,...,k and set
X11= {:cij,...,a:ik}. (1)

e Step 2: Extract local information by computing the d largest unit eigenvectors
g1,...,9q of the correlation matrix

(X; — @:eT)T(X; — Z;eT) and set
G = {6/\/E)gla"'7gd}7 (2)

where &; = % > ; Tijs € is a k-dimensional column of all ones.

e Step 3: Construct the alignment matrix B, by locally summing the following
with initial B = 0:
B(I,,IZ)G—B(Il,ll)‘i-f—GszT,(’L:].,,N), (3)
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where I; represents the set of indices for the k nearest neighbors of x;. I is an

N x N identity matrix.

e Step 4: Align global coordinates by computing the d 4 1 smallest eigenvectors
of B, pick the eigenvector matrix [ug,...,uqs1] and set the global coordinates

I = [ug,...,uqs1]T corresponding to the 2°¢ to (d + 1)t smallest eigenvalues.

3.3 Proposed Method

Similar to the incremental LLE [15] and incremental HLLE [23], the method employed to
implement incremental LTSA makes use of two possible linear generalizations [22], [27], as
well as the generalization proposed in incremental LLE and HLLE methods. These were
applied to form a relation between the high and low-dimensional points that belong to a

manifold neighborhood.

Let X and I" be the matrices containing the high-dimensional input and the low-dimensional
output, respectively, and let B = {B;;} be the alignment matrix elements reconstructed for
each point neighborhood of k-nearest neighbors. The two generalizations and the incremen-
tal form of LTSA are described as follows.

Linear Generalization I: The first generalization exploits a transformation matrix de-
rived from the neighborhood of the data points and then applied to find the new projection.
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3.3 Proposed Method

Let XV*1 and I'*! be the matrices containing the k nearest neighbors of 1 and Ty
respectively. Thus, the equality assumption I'V+! = ZXN*! is approximate, where Z is an
unknown transformation matrix of size d x m. Consequently, the projection of the newly

added point can be found by multiplying the obtained transformation:

TN+1 = ZTN+1 (4)

Linear Generalization II: In the second generalization, the newly projected point can be
found by first finding the £ nearest neighbors of .1 and computing the alignment matrix

B using Equation 3. Then the new 7y, is found by:

N
TN+ = Z Bny;T; (5)
j=1

Incremental LTSA: When a new data point is added to the manifold, the aim is to
accommodate this new point and accordingly produce the alignment matrix and align the
global coordinates in the same manner as if it would be computed if LTSA is run on the
whole dataset, including the new point. This can be achieved by the following steps:

Step 1. The new neighborhood of the new dataset is found. The other data points of the
dataset have, at this time, developed a new neighborhood as a result of the point addition.
S0, the k nearest neighbors to those points as well as to the newly added point is found. .
Step 2. With the new neighborhood obtained, the modified neighborhoods result in new
distances between points. A new alignment matrix is computed only for those points whose
distances have been changed, by solving Equat.ion 3. The results from this new alignment

o4



3.4 Experimental Results

matrix are used to update the old alignment matrix for those changed points.
Step 3. The updated alignment matrix is then used to align the global coordinates and

produce the new low-dimensional points.

3.4 Experimental Results

This section presents experimental results in which the proposed incremental LTSA algo-
rithm, along with generalization I and generalization II, are applied on different datasets.
The datasets used in this experiment are the same that were used for the previously proposed

algorithm, which are the swissroll, the wine dataset [27], and some 3D models.

3.4.1 Swissroll dataset

The same swissroll dataset used in Chapter 2 experiment is used here. It consists of 1,400
points and has a dimensionality of three. Regular LTSA, with k£ = 15, is first applied to the
manifold projecting the dataset into a two-dimensional space, then five additional points are
added to the dataset to apply the linear generalizations along with incremental LTSA.

The results in Figure 3.1 through Figure 3.3 show the projection using the linear general-
izations and incremental LTSA with the five points added to the 3-D manifold producing a
2-D output. The figures show that incremental LTSA preserves the projection dispersion of

the lower dimension representation of the manifold while accommodating the newly added
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3.4 Experimental Results

points in it. The circles in the figures represent the additional points that were incremented

using the algorithm.

L L L 1 L L L y
-0.04 -0.03 ~0.02 -0.01 0 0.0t 0.02 0.03 0.04 0.06 0.06

Figure 3.2: LTSA Generalization II applied on swissroll dataset
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Figure 3.3: Incremental LTSA applied on swissroll dataset

It is worth noting that the time required to run the incremental LTSA is shorter than
the time required to run incremental LLE and incremental HLLE. Also, the distribution of

points in the low-dimensional space is affected by the number of k-nearest neighbors selected.

3.4.2 Wine dataset

Similarly, we tested our proposed algorithm on the wine dataset [27]. This dataset contains
178 data points and has a dimensionality of 13. In this experiment, regular LTSA (k = 15)
is applied on the first 118 points. The remaining 60 points are incremented in 15 iterations,
four points at a time. Procrustes measure is also used to study the behavior of the algorithms
as the number of data points increases.
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Figure 3.4: LTSA procrustes measure for wine dataset

The procrustes measure determines how a linear transformation of the points in the lower
dimension projection conforms to the high-dimensional data. The lower the value the better
these two representations conform. Figure 3.4 shows the result of the iterations performed
with incremental LTSA. It is evident from the plot in Figure 3.4 that incremental LTSA
maintains a lower value of the procrustes measure compared to the other generalizations,
which demonstrates the conformity of the low-dimensional data representation to the high-

dimensional one.

3.4.3 3D datasets

Similarly, we applied the algorithm on the same 3D models used in Chapter 2, with k set to

8 and the dimension was reduced from 3-dimension to 2-dimension.
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Figure 3.5: 3D model of a Torus
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Figure 3.6: Regular LTSA applied on the torus 3D model
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Figure 3.10: 3D model of a Double Torus
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Figure 3.12: LTSA generalization I applied on the double torus 3D model

62



3.4 Experimental Results

015
N +
1 ¥
+ + +4 - 4+
0 . + .
A 4 N
- A * * + 3 *
N + B -
* * » . LI
005 P
+ *
4 v »*
LA
v
i
3 P . PR
o*’
R
+ + + Y +
» +
-005|- A
+
B N IS ta
. + + N
. N +
- w AN ++
+ + A
Bl N o + +
* 4 *
r . + B
+
+
0151
0.2 1 1 L 1 H 1 }
~02 =015 =01 -0.05 ] 005 01 015

Figure 3.13: LTSA generalization II applied on the double torus 3D model

015
.
+
¥ + + ¥ v
- +t N &
o1 I L0
+ L3
N EREN
+ ' + +
* +
+ ’ +
0o} A S ‘
+ &
A +
f . o
.
P
ok .
+ + + "
o
“
e o,
& . v, '
005+ M
. . "
] . . "
+ 4
o
+ + ¥ * *
-1 PN +
o s EE
+ + b
+
-015F
" L L L ) | 1 )
&) -015 01 -005 [) 005 ot 015

Figure 3.14: Incremental LTSA applied on the double torus 3D model

63



3.4 Experimental Results

Figure 3.15:
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Figure 3.25: 3D model of a Cube
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Figure 3.26: Regular LTSA applied on the cube 3D model
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Figure 3.29: Incremental LTSA applied on the cube 3D model

3.5 Conclusion

LTSA belongs to a class of dimension reduction techniques. However, the inability of LTSA
algorithm to adapt to newly added points has lead to our proposed incremental algorithm.
This proposed method enables the algorithm to adjust to new arriving points while preserving
the significant characteristics of the dataset. The proposed method follows a similar pattern

of the incremental LLE and incremental HLLE and their generalizations.
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lCHAPTER 4

Application of Incremental Kernel

PCA on Spectroscopy datasets

We present an experimental application using the Incremental Kernel Principal Component
Analysis (IKPCA) algorithm [7], [8]. The IKPCA is applied on the spectra dataset. Spectra
dataset is acquired from reflectance spectroscopy in which light is studied as a function
of wavelength, providing useful information of materials and their elements. The IKPCA
algorithm constructs a nonlinear high-dimensional feature space incrementally. The aim of
this experimentation is to show how the IKPCA algorithm performs when applied on the

spectra dataset.
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4.1 Introduction

The study of datasets obtained from real-world applications is becoming of great interest
in recent years, and with the increasing amount of information being acquired the size of
these datasets is becoming considerably huge. Therefore, discovering the structure of these
datasets and being able to analyze and use them in experimentation is of great significance in
many engineering applications, including data visualization and pattern recognition. Having
such datasets with large number of points, brings up the need for techniques that are able
to handle these datasets in an effective and less time consuming manner.

Recently, Kernel Principal Component Analysis (KPCA) [7], [8] has been studied follow-
ing the PCA technique. KPCA gives a set of nonlinear axes in the input space, thus allowing
it to represent complex data distributions with a small number of axes. One drawback, how-
ever, is that KPCA can be applied in batch mode, i.e. it is not suitable for streaming
data added sequentially, as is the case in real situations where input data are dynamically
changed. Therefore, an incremental form of the algorithm was proposed to overcome this
problem. This incremental Kernel PCA (IKPCA) algorithm extends from the Incremental
PCA algorithm (IPCA) [28]. In the IKPCA algorithm, a set of linearly independent data is
kept in memory in order to update the feature space. Since the number of independent data
is determined for given training samples and eigen-axes are represented by a linear combina-
tion of these independent data, the algorithm is able to maintain a significant feature space

efficiently. With this, an incremental form for the eigen-axes can be carried out and the new
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eigen-axis is augmented according to an accumulation ratio that has to be within a certain
threshold. Motivated by the incremental form of KPCA, we have conducted an experiment
in which the IKPCA algorithm was applied to the spectra dataset.

This chapter is organized as follows. In the next section, we explain the Kernel PCA
algorithm and the Incremental KPCA algorithm and the steps involved in the algorithm. In
Section 4.3, we explain the significance of the Spectra dataset. In Section 4.4, we demon-
strate, through experimental results, the performance of the IKPCA algorithm when applied
to the spectra dataset, and provide a concise interpretation of the results. Finally, we con-

clude in Section 4.5.

4.2 Problem Formulation

4.2.1 Kernel PCA

The Kernel PCA algorithm produces a set of eigen-axes in a high-dimensional feature space.
In this feature space, an n-dimensional input z is mapped onto an I-dimensional vector ¢(z)
where ¢(-) is the function that maps an input space into the [-dimensional feature space.

The algorithm involves the following steps [28]:

e Step 1: To obtain the eigenvectors in the feature space, the following covariance
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needs to be defined:

N
Q=3 D6 = Ypla®) — o) (1)

where N is the number of input samples and ¢ = & SN oz,

This calculation is practically difficult to carry out because the dimension of a
feature space is generally very high. Hence, it is avoided by using the so-called
kernel trick [29)].

Assume that a set of m linearly independent samples {¢(z1),...,¢(zm)} span
the space where N training samples {¢(z()), ..., ¢(x™))} are distributed, where

m< N,

e Step 2: After that, the kernel matrix H;; is computed:

k(z1,21) ... k(z1,z5)

H;; = : : (2)

k(zi,21) ... k(zi, ;)

where k(-) is a kernel function. Using Equations 1 and 2, the following kernel
eigenvalue problem can be derived:
1

NL‘IH}Cm(IN — 1) Hy (LY (LT ) = M(LT o) (3)
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where LTq; is the ith eigenvector spanning the feature space and ); is the cor-
responding eigenvalue. Here L is obtained by the Cholesky factorization for

Hppm(i.e. Hypp = LLT).

e Step 3: The number d of eigenspace components is determined based on the

following accumulation ration:

d .
Ad) = %”2 ; (4)

for which d is chosen such that A.(d) is larger than a threshold value 6.

4.2.2 Incremental Kernel PCA (IKPCA)

In conventional Incremental PCA (IPCA) there are two operations involved: the augmenta-
tion of an eigen-axis and the rotation of the eigen-axis. On the other hand, in KPCA, the
feature space degenerates into a lower dimensional space whose dimensions correspond to
the number of linearly independent mapped input samples. Therefore the IKPCA algorithm
must include three operations: a check on linear independence of the new sample to the
samples given, an augmentation of eigen-axis, and a rotation of the eigen-axis.

The steps are as follows [28]:

e Step 1: A set of linearly independent samples {¢(x1),...,¢(zn)} are obtained
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from N initial training samples. Then the kernel matrix in Equation 2 is cal-
culated and the kernel eigenvalue problem in Equation 3 is solved to get o; and

which are used to calculate the accumulation ratio A.(d).
e Step 2: A new sample is set to z, and N «— N + 1.

e Step 3: The kernel matrix H' is calculated as follows:

k(ml,x)

H - | (5)
k(Zm, )

k(z,z1) ... k(z,zm) k(z,2)

which includes H,,,, as well as the kernel functions of z.

e Step 4: The accumulation ratio A’(d) is calculated based on Equation 4 and

the following updates:




4.3 Application to Spectroscopy

where 8 = (Hpm) ' Kn(z) and K, (z) = [k(z1,2), . . ., k(Tm, z)]¥, and the mean
vector ¢ can be calculated by:

¢ = Vet Kn(s)) (8)

e Step 5: If A/(d) < 0, the following eigenvalue problem is solved with d « d+ 1:

A 0 T T
(—]\—[-%)—5 (N +1) M L B Y (9)
00 fgt

where R is a rotation matrix, A’ is the diagonal matrix of [ eigenvalues, g =
[ah <o )ad}(KM(x) - a)’ and f = aT(Km(x) - a)
On the other hand, if A’(d) > 8, solve Equation 9 with f = 0. In both cases, the

rotation matrix R and A’ are obtained.

4.3 Application to Spectroscopy

4.3.1 Spectra Dataset

Spectra are information collected as a result of Reflectance spectroscopy, which is the study

of light as a function of wavelength emitted, reflected, or scattered from different materials,
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such as solid, liquid, or gas. The functions, i.e. spectra, provide useful information about
the composition of a material, and are a powerful tool for identifying different elements in
the material by way of examining the spectrum of the radiation of the material [30].

The process for acquiring and analyzing the spectra involves a source of light, an element
to separate light into its component wavelengths, and a detector to sense the presence of light
after wavelength separation. This method is helpful in applications concerning mineralogy,
especially when other methods are more time consuming.

Figure 4.1, shows a spectra image (which will be used later in the experimentation of the
IKPCA algorithm). These spectra were collected from the U.S. Geological Survey (USGS)

Digital Spectral Library [31].

Spectrum reflectance
@
S

[N
8

250

50 100 150 200 250 300 350 400 450 500
Spectrum index (500 spectra)

Figure 4.1: Spectra image

The image in Figure 4.1 show an image of spectrum data. In Figures 4.2 to 4.5, samples
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from this image spectra are shown for different spectrum values. Each spectrum is a plot of

reflectance versus wavelength.

0.7

300

Figure 4.2: Wavelength sample from Spectra image (spectrum 50)

Reflectance
[=]
2

] 50 100 150 200 250 300
Wavelength

Figure 4.3: Wavelength sample from Spectra image (spectrum 85)
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0.7

Figure 4.4: Wavelength sample from Spectra image (spectrum 225)

300

Figure 4.5: Wavelength sample from Spectra image (spectrum 500)
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4.4 Experimental Results

This section presents experimental results in which the IKPCA algorithm is applied to the
spectra dataset. The spectra dataset contains 500 points of 256 dimensions. The algorithm
was run on the first 350 points and the remaining points were added incrementally. The
threshold value 8 was set to 0.7 for which the accumulation ratio A.(d) must be higher. The
results of the accumulation ratio was as follows:

08

0.7+

06

Threshold
(=]
&n

T

o
S
T

03r

02t

0.1 L ) )
0 50 100 150
Accumulation Ratio

Figure 4.6: IKPCA application on Spectra dataset

The result presented in Figure 4.6 shows that the accumulation ratio starts with a low
value at the beginning of the algorithm run. However, as the algorithm progresses, and
more points are added to the dataset, the accumulation ratio is increasing gradually untill
it reaches the threshold value set. At that point, the accumulation ratio is seen to be steady
and the values are around that of the set threshold. This result shows that the accumulation
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ratio runs in accordance with the algorithm to maintain the threshold value desired.

4.5 Conclusion

Discovering the structural behavior of a high-dimensional dataset is very helpful in dataset
learning and analysis. An example of such datasets is the spectra dataset which is acquired
by the study of light reflection and its wavelength components from different materials. This
spectra dataset is useful in numerous applications including mineralogy. Hence, techniques
to study such datasets is vital in engineering applications. KPCA is of those techniques that
deal with large datasets for the purpose of analysis. However, KPCA has the limitations of
not adapting to newly added points to the dataset and hence there is a need to rerun the
algorithm for the entire set. Therefore, the IKPCA algorithm was proposed to overcome
that drawback. In this chapter, we applied the IKPCA algorithm on the spectra dataset and
studied its behavior. It has been shown that the algorithm succeeds in trying to keep the

accumulation ration within the set threshold and maintain that value.
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ICHAPTER 5)

Conclusions and Future Work

In this thesis, we presented algorithms for dimensionality reduction of multidimensional
datasets. We showed the use of these algorithms through experimentation with 3D datasets
and datasets of much higher dimension. We have demonstrated the effectiveness of the
proposed methods in comparison with other methods and verified their efficiency through
experimental application.

In the next Section, the contributions made in each of the previous chapters and the
concluding results drawn from the associated research work are presented. Suggestions for

future research directions related to this thesis are provided in Section 5.2.
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5.1 Contributions of the thesis

5.1.1 Incremental Hessian Locally Linear Embedding

We introduced an incremental form of HLLE which enables the algorithm to adjust to new
arriving points while preserving the significant characteristics of the dataset. The proposed

method follows a similar pattern of the incremental LLE and its generalizations.

5.1.2 Incremental Local Tangent Space Alignment

We proposed an incremental form of LTSA which enables the algorithm to adjust to new
arriving points while preserving the significant characteristics of the dataset. The proposed
method follows a similar pattern of the incremental LLE and incremental HLLE and their

generalizations.

5.1.3 Incremental Kernel PCA Application

We applied the IKPCA algorithm on the spectra dataset and studied its behavior. We showed
that the algorithm succeeds in keeping the accumulation ration within the set threshold and

maintain that value.

For future work, we plan to experiment with a variety of datasets and different techniques

and extensions of the above three algorithms.
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5.2 Future research directions

Several interesting research directions motivated by this thesis are discussed next. In addition
to extending the functionality of certain dimensionality reduction techniques, we intend to

research on other methods as well as attempt the following projects in the near future:

5.2.1 Incremental Kernel LLE

Following the concepts implemented in Incremental Kernel PCA, we have been working on
implementing similar update methods to apply on the Kernel LLE algorithm.
Kernel LLE looks for an embedding that preserves the local geometry in the neighborhood
of each data point. In the Kernel LLE algorithm, similar to regular LLE, the weight matrix
W = {W,;} is calculated which reconstructs each point from its nearest neighbors. This
weight matrix will be used to find the kernel matrix, which will then be used to perform the
incremental KPCA steps mentioned above.
The steps of calculating the kernel matrix using LLE is as follows:
e The sparse matrix of local predictive weights W;; is constructed, such that
>_; Wi; = 1and W;; = 0if z; is not the k-nearest neighbor of z; and > (Wijzi—
7;)? is minimized.

o The LLE matrix M = (I — W)T(I — W) is constructed.

e Then the kernel matrix K = A\ — M is constructed, where A4, is the maxi-
mum eigenvalue of M.
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e Finally, K = HK H which is the kernel matrix of the centered mapped data is
constructed, where, H = I — J/n in which I is an identity matrix and J is a

matrix of all ones.

This K is the equivalent of H,,,, in the KPCA implementation. This matrix will be used
to perform the steps mentioned in Incremental KPCA in order to obtain the accumulation

ratio, the rotation matrix R and A’.

5.2.2 Incremental Nonnegative Matrix Factorization (NMF)

NMF can be applied to the statistical analysis of multidimensional data [33]. Given a set
of n-dimensional data vectors, the vectors are placed in the columns of matrix V' of size
n X m, where m is the number of samples in the dataset. This matrix is then approximately
factorized into matrices W and H of size n X r and r X m respectively. Usually r is chosen
to be smaller than n or m, so that W and H are smaller than the original matrix V. This

results in a compressed version of the original data matrix giving:
Vr~WH

Similarly, Singular Value Decomposition (SVD) takes a matrix of data M of size n x m

and produces

M =USV"
where the columns of U (size n x r) are the left singular vectors, V7 (size r x m) has rows
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that are the right singular vectors, and S (size r x 1) has a diagonal of singular values.
An incremental form of SVD has been proposed by Brand in [32]. We have been work-
ing on finding a relation between NMF and SVD such that the incremental SVD can be

subsequently applied to the NFM algorithm to enable it to adapt to newly added points.
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