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Abstract

Automatic Verification of Behavioral Specifications in Software Intensive

Systems

Andrei Soeanu Caval

Modern systems tend to exhibit an ever increasing complexity especially due to their software
design components and programmable aspects which are nowadays ubiquitous. Consequently, in
order to assure reliable and dependable systems, sustained efforts are required in the process of
system verification and validation. However, conventional verification and validation techniques
that are primarily based on testing and simulation, while being helpful and useful, may lack in
many cases the desired level of rigor and completeness and are generally costly, laborious and
time consuming. In contrast, using verification techniques that are based on formal foundations,
such as model-checking and program analysis in a complementary manner to the traditional veri-
fication techniques can provide an increased level of reliability and dependability. In this context,
applying such techniques for verifying the correctness and validity of the engineered systems early
in the design phase can greatly improve the quality and performance of the design. Moreover,
using such a verification methodology can alleviate the high cost of maintaining the systems later
in their development phases. Presently, modern system design can benefit from a wide range of de-
velopment paradigms including those that are using techniques traditionally employed in software
engineering such as the object oriented design paradigm. In order to standardize the process of sys-
tem design and development, several modeling languages emerged in order to provide the means
for capturing and modeling various system specifications and requirements. The Unified Model-
ing Language (UML) 2.0 and more recently the Systems Modeling Languages (SysML) represent
the most prominent standardized modeling languages for software and systems engineering. In
this setting, the research initiative that this work addresses, is introducing a unified paradigm for
the verification and validation of software intensive systems engineering design models by using
formal verification techniques that can be applied in order to assess different behavioral diagrams
belonging to the aforementioned modeling languages.
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Chapter 1

Foreword and Motivations

Factual evidence shows that the modern scientific process proved itself to be very useful in solving
a very wide range of problems in various domains. However, though the quality of life seems to be
constantly improving as a result of the scientific progress, one cannot fail to notice upon thorough
examination that modern society is still in its early stages of understanding the human quest for
scientific research. More precisely, we can readily notice that nowadays, while physical comfort
is ubiquitous in many parts of the word, the minds of the people living their lives surrounded by
technological innovations are under an ever increasing stress and pressure mainly generated by
the same factors that contribute to or represent the byproduct of technological progress. In other
words, the process of research and investigation has in general little concern about the internal
mind environment associated with each individual that is interacting with various technologies.

In this setting, it becomes apparent that modern technological development necessitates a shift
of focus towards those technical and engineering solutions that have the ability to enhance both the

external and the internal environments of the individuals using them. Specifically, there is a clear



benefit in adopting more exhaustive design and development paradigms that have the potential to
minimize and even eliminate the variance between the design intent and the actual design qual-
ity and performance, a problem that nowadays is encountered at different degrees in most of the
engineering disciplines and especially in the engineering of software intensive systems.

We can readily see that in the context of maximizing the immediate economical gains that are
associated with modern product development, many aspects such as ergonomics, different environ-
mental concerns, thorough verification and validation or computational efficiency are frequently
ignored, especially in those areas where the effects are not immediately apparent as is the case in
software (e.g. operating systems, web browsers, office suites) or software intensive systems (e.g.
computer and mobile networking, portable/wearable electronics and pervasive computing).

However, while we can notice an increased awareness about ergonomics and various environ-
mental issues, the same can not be said about the necessity for thorough verification and validation
of modern software and software intensive systems. Nowadays, this is usually done by means
of simulation, which is very rarely thorough. Moreover, it is quite obvious that modern society
is increasingly dependant on technologies based on software intensive systems that are presently
accompanied by an ever increasing difficulty of assuring appropriate bug-free design models.

Thus, we make the case that an appropriate science for conscience philosophical setting should
be present to some extent in any research and development initiative. Furthermore, it is not so
difficult to acknowledge in this setting that the most precious resource that the human society is
benefiting from is not represented by a physical material datum but is rather represented by the

human resources themselves. As such, we argue that the more technology dependant the human



society becomes, a very important concern is to assure robust, bug free and high quality software
and system design. Consequently, this can significantly contribute to the quality of the minds of
the individuals using modern technologies and thus to the quality of the human society as a whole.

To that effect, the present research initiative that this work is concerned with, aims to introduce
and explain a unified, automated and cost effective methodology for verification and validation of
software intensive system design models. The emphasis will be on the assessment of behavioral
design diagrams by means of model checking and program analysis as well as performance ap-
praisal. Furthermore, this research represents a part of a larger project concerning the verification
and validation of system engineering design models where it contributed to the module dedicated
to the automated assessment of UML and SysML behavioral diagrams against specially devised in-
tuitive macro-based specifications that can be systematically expanded to corresponding temporal
logic properties. More precisely, the present research is concerned with the automated géneration
of the model-checker transition system and input code compilation along with the corresponding
temporal logic properties to be verified. Moreover, it is addressing the performance assessment of

SysML activity diagrams annotated with time constraints and probability artifacts.



Chapter 2

Introduction and Background

Nowadays, various forms of programming and computation are becoming ubiquitous in our im-
mediate urban surroundings often times embedded in sensors, traffic and other driving related as-
sistance, public advertisement, hotspots, smart elevators and many other micro-controller or CPU
based systems. Moreover, wearable electronics like mobile phones, PDAs and the like are more
popular than ever. In this context, we can notice that in modern engineering fields and especially
in those related to software intensive systems, the solution space available to the designers and
engineers is significantly enlarged due to the presence of the programmable aspect.

In this context, mere intuition and ingeniosity, though still playing a significant part, can hardly
assure strong, flaw free and cohesive designs, especially after reaching an elevated level of com-
plexity. Moreover, the programmable aspect allows for a broader specialization range of a given
design and is usually inviting many engineers to benefit from design reuse. Hence, various as-

pects such as understandability, extensibility and modularity are becoming increasingly important



aspects of modern system design along with general requirements like cost and performance. Con-
sequently, there is a clear trend toward the systematization and standardization of system design
engineering practices and methodologies.

Systems engineering is defined by INCOSE [17] as an interdisciplinary approach that enables
the realization of successful systems. Its application consists in the use of the “systems** approach
in order to design complex systems such as Systems on-top-of Systems (SoS). Thus, systems engi-
neers can use various approaches when specifying and designing their systems engineering models,
including Model Driven Architecture Development [47] and Object Oriented (OQ) techniques. In

this context, UML [61] and SysML [28] emerged as the most prominent modeling languages.

2.1 The Unified Modeling Language

Modeling languages for software and systems engineering emerged in response to the continuous
advancements in the field in order to allow for an abstract, high level description of a design and the
components thereof. Thus it gives the designers the ability to successfully cope with an increased
complexity.

Several object-oriented modeling languages were developed in the software engineering com-
munity in the early 1990s. However, as it is usually the case, these early initiatives were hardly sat-
isfactory for the community, which needed a unified solution. Many modeling languages have been
defined by different organizations, targeting domains such as SDL for telecommunications [48],
SysML for hardware [50], and UML for software systems [40].

The envisioned objective of using modeling langnages is to thoroughly and unambiguously



specify, visualize as well as to document system design models. Furthermore, unified modeling
languages such as UML can be used as a basis for common communication channels that can help
professionals to exchange their design models clearly and effectively. Another benefit consists in
the potential to bridge different understanding or intuition gaps that generally exist in enlarged
design teams. The impact can be more significant especially when used as a “de facto” standard
for software intensive systems engineering.

Grady Booch of Rational Software Corporation [10} was one of the pioneers that in late 1994,
contributed to one of the most expressive and rich modeling language, namely UML. In June
1996, UML 0.9 was released and the standard has progressed since then through several versions,
culminating with a major revision of the standard, namely the newly adopted UML 2.0. Figure 2.1

depicts the diagram taxonomy of the UML 2.0 modeling language.

Structure

Package

Béhavior

] State ' ‘ Activity ]

Figure 2.1; UML 2.0 Diagram Taxonomy



2.2 Design Perspectives

When modeling a system using languages like UML, the design can in general be viewed from
two main perspectives, namely the structural description and the exhibited behavior. The former
can be captured in a visual, diagrammatic notation by specifying the distinctive attributes of the
system and its components along with their relation with respect to each other. The latter can be
encoded by appropriate diagrams that can capture the dynamics of various state parameters in the
system or its components as well as different internal or external interactions of the system. Both
perspectives have an accompanying complexity degree that can be the subject of different processes
of analysis and assessment. Moreover, structural analysis can be used in order to evaluate numerous
quality attributes and may be used as a feedback in many tuning and optimization mechanisms. In
contrast, the behavioral analysis is in general much more demanding and involves more rigor and
preciseness. Furthermore, it is a known fact that a relatively short encoding of a behavioral model
may have a very complex associated dynamic as it is the case with some forms of automata (e.g.
cellular automata).

The programmable aspect of a system can be divided into configuration related programming
(customization) and execution related programming. The latter is in general the one responsible
for a highly dynamical system behavior. Thus, we may argue that the focus of various assessment
procedures should be on the execution aspect of a design as it is in general more difficult to evaluate

the behavioral aspects of a system than its architectural ones.



2.3 Verification and Validation

Verification can be understood as the process of evaluating a system in order to determine if the
outcome of a given development phase is compliant to the initial conditions that were considered
in the beginning of that phase [31]. The basic principle is related to the question of whether “we
are building the product right” or not. In contrast, validation is concerned with the evaluation of a
product or system in order to determine if it satisfies its specified requirements [31]. In this case,
the emphasis is on the question of whether “we are building the right product” or not.

The V&V phase is nowadays a major bottleneck in the development life cycle of any complex
software or systems engineering product and it was determined that it can represent from about a
half and up to more than three quarters of the total design effort [32]. Moreover, many engineering
solutions and especially those related to safety-critical areas, require a strong level of confidence
with respect to their reliability, security, and performance. Thus, a challenging issue consists in
assuring that both their performance and requirements are satisfied.

Presently, due to the increased complexity and intricacy inherent in software intensive systems
design, traditional V&V methods involving testing and simulation are no longer the most adequate
and have become increasingly time consuming and less useful. In contrast, formal automatic
verification techniques like model checking can be used complementary to simulation in order to

provide a strong degree of confidence in the quality and robustness of modern system design.



2.4 Objectives

The main objective of this thesis consists in proposing a unified methodology targeting the V&V
process of software and systems engineering design models described in UML or SysML focusing

on the assessment of the behavioral diagrams. Specifically, the target objectives are as follows:

e Investigate the state of the art approaches in the area of V&YV in software and systems engi-

neering.

o Elaborate a dedicated approach for the verification and validation of UML and SysML be-
havioral diagrams, namely state machine and activity diagrams by integrating the following

two techniques in a synergetic manner:

— Automatic formal verification,
— Program analysis.
e Devise a methodology for assessing performance characteristics of systems engineering de-

sign models expressed as SysML activity diagrams annotated with timing and probability

artifacts by using a probabilistic model checking technique.

e Prototype the approach into a framework for V&V of software and systems engineering

design models.

¢ Conduct case studies in order to demonstrate the effectiveness and the viability of the ap-

proach.



2.5 Structure of the Thesis

The remainder of the thesis is organized as follows:

o Chapter 3 presents an outline of the existing verification methodologies in the field of soft-
ware and systems engineering design. It starts with a verification primer followed by present-
ing an overview of various techniques including simulation, reference model equivalence,

model checking and theorem proving.

e Chapter 4 provides a review of some relevant research initiatives in the field of verification

and validation of software and systems engineering design models.

e Chapter 5 begins by introducing the appropriate techniques for the proposed approach.
Thereafter, it presents the verification and validation framework embodying the proposed

methodology.

e Chapter 6 presents the artifacts and specification of the targeted behavioral diagrams, namely

the state machine diagram and the activity diagram.

e Chapter 7 introduces a unified semantic model that is appropriate for capturing behavioral
models such as the state machine and the activity diagram and describes the procedure in-
volved in applying the model checking technique. Furthermore, it discusses model property
specification in the context of the CTL temporal logic. Subsequently it explains the use of

program analysis techniques in order to tackle the state explosion problem that is character-

istic to the model checking procedure.

10



e Chapter 8 describes the methodology involved in verifying the state machine diagram. It
provides case study while demonstrating the benefit of using the synergy emerging from

using program analysis techniques in the process of verification by means of model checking.

e Chapter 9 presents the methodology involved in verifying the activity diagram and provides

as well a relevant case study.

o Chapter 10 describes the SysML activity diagram annotated with probability artifacts and
extended with time constraints. Subsequently, it presents a transformation procedure to dis-
crete time Markov chains that can be analyzed by a probabilistic model checker. Thereafter
it discusses a performance evaluation case study of a SysML activity diagram design model

capturing a functional aspect of a digital photo camera device.

e Chapter 11 presents the summarizing conclusions of the thesis.

11



Chapter 3

Methodologies for Design Verification

There is a continuous growth in the market for sophisticated systems encompassing complex soft-
ware and electronics. These products are underpinned by the significant advances in software
engineering, integrated circuit design and manufacturing technology. Design automation software
has been an important enabling technology that helped designers to achieve rapid advances by
automating much of the design process, bringing greater efficiency and productivity to system de-
sign. In this context, the process of design and development requires a sound and cost-effective
verification and validation (V&V) phase. Generally, verification aims at assuring that we design

the right system whereas validation asks whether we design the system the right way.

3.1 Verification Primer

Verification is typically performed after each step of the design process in order to ensure that

each particular step has been performed correctly. Physical system design verification is done in

12



order to ensure that the design meets the manufacturing rules and it can be automated in most of
the cases. However, verification of the other design steps requires further automation to keep the
design development cycles under control.

Verification of the behavioral and logic design steps is currently relying heavily on the use of
simulation tools, that are used to predict the functional response of the design or its components to
specified inputs. The input values are typically specified manually by the designer or by the veri-
fication engineer and provided as input to the logic simulator together with the design description.
The simulator’s output, which is a prediction of the response of the system or component to the
applied inputs, is then compared to the expected response in order to verify that the responses are
consistent,

Design verification is performed after every step of the design process. The design process typ-
ically begins with an architectural design phase accompanied by a behavioral design specification
using various modeling tools. Behavioral simulation tools can also be used during the behavioral
design step. Currently, the design validation step is heavily based on simulation of user generated
tests. However, formal verification is emerging as a way of supplementing simulation based design
verification that currently spans a wide spectrum of techniques including brute-force, manual or

random test generation [6].

3.2 Simulation Based Verification and Validation

Simulation is to a large extent the workhorse of today’s design verification and validation method-

ologies. However, despite the increases in simulation speed and computer performance, simulation

13



is hardly able to keep up with the rapidly increasing complexity of system design in the last decade.
For example, a large server ranch was used in order to simulate thousands of tests corresponding to
a figure of 2 billion instruction cycles required to verify the 64 bit Sun UltraSparc™ processor [45].
Moreover, the future prospects of simulation are not very encouraging as the number of simulation
cycles required in the verification process is growing at an alarming rate, (e.g., from hundreds of
million less than a decade ago to hundreds of billion for modern CPU based systems).

An additional issue with simulation based methodologies is that they require the time con-
suming step of creating the test inputs. The most commonly used test generation method relies
primarily on the manual generation of test vectors. However, the complexity and laborious nature

of manual test generation makes it highly impractical as the design size increases.

3.2.1 Random Test Generation

The huge search spaces associated with large designs have led to the adoption of random test
generation. This approach has the typical undesired side effect of generating a very large number of
inefficient test vectors and so results in very long simulation time even when directed or constraint
driven random test generation techniques are used. For example, many months of simulation using
large “computer farms” consisting of hundreds of workstations are typically required to validate
today’s microprocessor designs.

Pure random test generation has severe limitations. Despite the large number of patterns gen-
erated, the effectiveness in detecting design flaws is rather limited as typically a large percentage

of the tests are not useful, especially in the absence of appropriate constrains that may even lead to

14



invalid test vectors. To address the problems associated with pure random test generation, weight-
ing or biasing is generally used to attempt to constrain the test generator to interesting areas of the
design space with the intention of attempting to cover the “corner cases”. The problem with this
technique is that the design verification engineer may not always know or be able to determine the

direction in which to guide the test generator.

3.2.2 Monitoring Internal Nodes

Because of the very low ratio of system ports to internal nodes and interfaces, the ability to observe
the internal system logic is typically very low and it can usually be increased by using monitors and
assertions. Monitors inspect and log the state of internal nodes or interface signals, while assertions
are “self-checking” monitors that assert the truth of certain properties and trigger warning or error
messages if these properties are violated. The use of monitors and assertions can help in boosting
the coverage achieved when generating tests. However, the construction of assertion checkers
and monitors is still generally done manually and is labor intensive. The emergence of libraries

containing application specific assertion monitors is providing some hope to alleviate this problem.

3.3 Reference Model Equivalence

A widely used formal verification technique is reference model equivalence checking, which al-
lows two behavioral models to be compared. In general, one of the two is taken as the reference

model and represents the so called “golden model”. Model equivalence checking can work well

15



and is often used in the design process in order to verify the results of employing various de-
sign techniques and/or applying different optimization and tuning procedures. Model equivalence
checking verifies that the behavior of two models is the same; it does not actually verify that the
design is bug-free. In addition, when a variance is encountered, the error diagnosis capability of
the model equivalence checking tools is in most of the cases rather limited and so it is difficult to

determine the exact cause of the difference.

3.4 Model Checking

Model checking is an automated and thorough verification technique that can be used to check that
the properties specified for a given design or its components are satisfied for all legal design inputs.
Temporal logics allow the users to express the properties of the system over various trajectories
(state paths). Model checking is primarily useful in verifying the control parts of a system, which
represent the critical area of concern in most of the cases. It is in general impractical for thorough
data flow analysis, since it suffers from the well known state explosion problem. In the worst
case scenario, the state space of the design that must be explored can grow exponentially with
the number of state variables. Model checking can also be performed on the components of a
design but it requires in this case the specification of precise interfaces for those components so
that only legal inputs are considered. However, a potential issue in this case consists in the fact
that in practice, the interface specifications of the design component modules are subject to change

during the design process.

Furthermore, in the absence of automated tools that can be used in order to easily specify the

16



design properties, the model checking technique is heavily dependent on experienced users that
are able to properly encode the properties of the design or its components into temporal logic for-
mulas. Thus, the need to rely on experienced design engineers with strong background in temporal
logics has restricted the adoption of this technology. An additional issue consists in the limited
ability to find a well suited metric that can be used to evaluate the design property coverage and
thus, it is relatively difficult to determine if all design properties have been specified and verified.
Notwithstanding, this issue may be circumvented by preforming appropriate requirements analysis
especially in the cases where it is possible to express the requirements in clear manner by using

specific diagrams belonging to modelling languages like UML or SysML.

3.5 Theorem Proving

Theorem proving involves verifying the truth of mathematical theorems that are postulated or in-
ferred about the design, using a formal specification language [55]. The procedure followed when
proving such theorems usually involves two main components, namely a proof checker and an in-
ference engine. However, while the former can be completely automated in most of the cases, the
latter may require occasional human guidance thus impeding the automation of the whole process.
Moreover, there may be rare cases where due to the formalism involved (e.g. hidden circular
references leading to a logical paradox), a given theorem conjecture cannot be either proven or
disproven (refuted). The aforementioned issues represent some of the main reasons why presently,

this technique is not widely adopted for performing verification and validation in system design.
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Chapter 4

V&YV in Software and Systems Engineering

In the following sections of this chapter, we present the most relevant research endeavors with
respect to the verification and validation of software and systems engineering design models. The
state of the art in this respect includes a significant number of initiatives that target the verification
of various design models. However, for the present research material, we have focused on a number
of work proposals that are concerned with the verification of UML or SysML behavioral diagrams

like Activity and State machine.

4.1 Verification and Validation of UML State Machines

Several initiatives explored the V&V of the UML state machine diagram also known as state
chart. The adopted approaches can be classified with respect to the model checker used. Some
researchers have chosen SPIN [30] while others preferred SMV [36]. Latella et al. [41] as well

as Mikk et al. [46] proposed a translation of a subset of UML state-charts to SPIN/PROMELA
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using an operational semantics described in [42]. The translation procedure has two main steps.
First, the state-chart is used to construct an equivalent Extended Hierarchical Automaton (EHA).
Then, the generated EHA is modeled in PROMELA and subjected to model checking. Von der
Beeck introduces in [60] a semantics for a subset of UML state machines based on the previously
mentioned work of Latella et. al. The semantics for history states is defined in this work but
neither join and fork transitions nor guards are considered. Moreover, the semantics focuses on
communication and control while the employed transition priority scheme is different from the
UML scheme. Moreover, the configuration is encoded directly at the syntactic level whereas the
behavioral semantics is described by structural operational semantics rules. In [39], the author
proposed a term rewriting based semantic model where the active states are encoded as terms but
without a clear separation between the syntax and semantics. Also, the transitions are expressed
as conditional rewriting rules requiring knowledge of the syntax of rewrite rules and terms. The
approach is presented using the SMV model checker language. Furthermore, the work considers
only simple state machines with no pseudostates. The semantic model employs a global step but
the semantics of the interlevel transitions is not UML compliant.

A few approaches have been advanced for the assessment of the UML 2.0 state machine di-
agram. An attempt to define a structured operational semantics for UML 2.0 state machine is
presented by Fecher et al. in [23] in terms of sets and relations. The work deals with major issues
in UML 2.0 features including shallow and deep history, join, and fork pseudostates together with
entry/exit actions. Howeyver, junction and choice pseudostates, completion event/transition, and

communicating state machines are not considered. In a similar manner, Zhan et al. [62] present a
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formalization based on the general purpose Z language. The semantic model is used to transform
the state machine diagram into a so called Flattened REgular Expression (FREE) state model. The
latter can be used in order to identify inconsistencies and incompleteness issues and also in the
process of automatic test generation. The suggested approach is taking into account well-formed
state machine diagrams covering simple and composite states, concurrent and non-concurrent sub-
states, simple and compound transitions as well as solving transition firing priority. Nevertheless,
pseudostates such as fork/join and history are not considered. The work of Damm et. al. [18]
proposes a semantics for UML state machines, which departs in some respects from the informally
defined UML 2.0 semantics. Thus, the run-to-completion step is defined by choosing one enabled
transition and not of a set of transitions. Moreover, the semantics is defined on flat state machines.
However, a translation from hierarchical to flat state machines is given at the expense of state

explosion in the flattened state machine.

4.2 Verification and Validation of UML Activity Diagrams

Activity diagrams are very useful in order to capture business processes modeling and workflows.
They are also suitable for specifying system behavior. Several approaches have been proposed
for the V&YV of activity diagrams. These approaches can be classified with respect to the derived
semantic model. Some researchers such as Van der Aalst [58] and Ellis et al. [20] found that Petri
nets are suitable for representing activity diagrams. Thus, activity diagrams capturing workflow

systems can be described using interval timed colored Petri nets {34], which are ordinary Petri

nets [52] extended with colored tokens required to model data and timing intervals for transitions.
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Borger et al. {11] provide Abstract State Machine (ASM) semantics for activity diagrams. Eshuis
et al. [22] use a mapping of activity diagrams to equivalent activity hypergraphs by flattening the
structure of the former. Then, the activity hypergraph of a given diagram is mapped to a Clocked
Labeled Kripke Structure (CLKS), which is an extension of Kripke systems with real variables.

More recent initiatives are addressing the formalization of UML 2.0 activity diagram. This
category includes the work of Vitolins et al. {59}, where a more formalized definition of UML
2.0 activity diagram semantics is introduced. This work is considering a subset of activity dia-
gram, suitable for business process modeling. The semantics is based on the original token flow
methodology, but using a more constructive approach that employs the concept of activity diagram
virtual machine that can be constructed from any given activity diagram. In the context of V&YV,
the authors consider the defined virtual machine as a basis for UML activity diagram simulation
engines.

In [13], Canevet et al. propose the analysis of UML 2.0 activity diagrams in the context of soft-
ware performance analysis using the Performance Evaluation Process Algebra (PEPA) net models.
The authors are detailing the mapping from UML activity diagrams to their corresponding PEPA
net models. In order to apply performance analysis, these models are used to generate the corre-
sponding continuous-time Markov chain (CTMC) model wherein an exponential delay is associ-

ated with each corresponding activity node.

21



4.3 Structural Design Assessment

Even though the present material is mainly focusing on the verification and validation of the be-
havioral modeling of the system design, we briefly mention some of the initiatives that address
the assessment of structural design descriptions such as the UML Class and Package diagrams.
In [26], the authors illustrate the use of several object oriented metrics to assess the complexity of
class diagrams at the initial phases of the development life cycle. Also, Tugwell et al. [57] outline
the importance of metrics in systems engineering especially related to complexity measurement.
The BorCon 2004 proceedings [27], held under Borlands umbrella, address topics like validation
by applying audits and metrics to UML models. Audits refer to conformance to standards while
metrics are viewed as numerical measurements that allow the analysis of a model with respect to

an already established scale that denotes a good design.

4.4 UML Verification Frameworks

In [44], Lilius et al. present the vVUML tool that they developed the for automatic verification
of UML state-chart diagrams. The intended use of vUML is to verify concurrent and distributed
design models that contain active objects but it can also be used to verify sequential designs since it
supports synchronous communication. The SPIN model checker is used to perform the verification
while the state chart diagrams are modelled using PROMELA (the input language of SPIN). When
an unsatisfied property is detected the tool can create a UML sequence diagram that shows the

scenario that reproduces the error in the model.
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The framework proposed by Guerra et al. [29] for the verification of UML models is building
meta-models for UML diagrams and then translates them into a formalism that allows to verify
their properties. The translation (denotational semantics) is described along with the operational

semantics of the formalism by means of graph grammars.
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Chapter 5

Automatic Verification Approach

Systems modeling languages such as UML 2.0 and SysML are used to compile the requirements
in order to create executable specifications. These specifications model the system at a high-level
of abstraction, thus helping in the verification of the correctness of a system. Moreover, specific

diagrams are used to capture important system aspects such as:

e Requirements, which are a description of what a system should do. They are captured by
using requirement diagrams in SysML or using sequence diagrams and use case diagrams in

UML 2.0.

¢ Concurrency, which is an aspect that identifies how activities, events, and processes are
composed (sequence, branching, alternative, parallel composition, etc.). It could be specified

using sequence or activity diagrams.

¢ Structure, which is shown in class and composite structure diagrams. The class diagram

shows the relationships between different classes of the system. The composite structure
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diagram shows the internal structure of the building blocks of the system and how these

blocks are interfacing to other components of the system.

o Interface, which identifies the shared boundaries of the different components of the system
whereby the information is passed. This aspect is shown using class diagrams in UML 2.0

and SysML, composite structure diagrams in UML 2.0, and assembly diagrams in SysML.

¢ Control, which determines the order in which actions, states, events, and/or processes are
arranged. It is captured using state machine, activity, and sequence diagrams in UML 2.0

and SysML.

5.1 Verification Techniques for Object Oriented Design

Object oriented design is characterized by its corresponding structural and behavioral perspec-
tives. Thus, when analyzing a given design, both perspectives have to be assessed with appropriate
techniques. Moreover, object oriented design models exhibit specific features such as modular-
ity, hierarchical structure, inheritance, encapsulation, etc. These features are reflected in various
related attributes such as complexity, understandability, reusability, maintainability, and others.
Consequently, based on the evaluation of the aforementioned attributes, one can determine the
quality of an object oriented system design. In this setting, empirical methodologies, such as those
involving software metrics, can help assess the quality of the structural architecture of the design.

Conversely, complementary automatic verification techniques based of formal methods such as

model checking, can achieve a thorough behavioral assessment of the model (or the components
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thereof) against a set of specified properties that capture the system’s intended behavior. However,
such exhaustive techniques are generally accompanied by corresponding scalability shortcomings
(e.g., state explosion). In this context, techniques like program analysis, mainly data and control
flow analysis have the potential to address, among other things, some of the scalability issues, thus

allowing for an increased efficiency of the model checking procedure.

5.1.1 Software Engineering Techniques

A set of fifteen metrics from the software engineering field [1,4,43] can be used in order to assess
quality attributes of various structural models. We found in the literature some support about the
use of metrics in systems engineering. For instance, Tugwell et al. [57] outline the importance
of metrics in systems engineering especially related to complexity measurement. In this context,
a potential synergy can be achieved by applying the metric concept to behavioral specifications.
Accordingly, in addition to applying metrics on the structural diagrams such as class diagram, they
can also be applied on the semantic model that is derived from different behavioral diagrams. For
example, cyclomatic complexity and length of critical path can be applied on the semantic model.

Thus, the quality assessment of a design can combine both the static and dynamic perspectives.

5.1.2 Formal Verification Techniques

Formal verification techniques, such as model checking, establish a solid confidence for a reliable

V&V. Moreover, model checking can be fully automated for design verification. In fact, it has been

successfully used in the verification of real applications including digital circuits, communication
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protocols, and digital controllers. It yields results much more quickly than theorem proving [37].
In order to use it, first we have to map the design to a formal model that is accepted by the model
checking tool (semantic model, which is usually a kind of a transition system). Second, we have
to express the properties that the design must satisfy in temporal logic formulas (derived from the
specifications). Then, by providing these two ingredients to the model checker, the latter exhaus-
tively explores the state space of the transition system during the verification stage and checks
automatically if the specifications are satisfied. One of the benefits of many model checking tools

(e.g. NuSMYV, which we use) is that, if a specification is violated, a counterexample is produced.

5.1.3 Program Analysis Techniques

Program analysis techniques [49] are used to analyze software systems with the intent to collect or
infer specific information about them in order to evaluate and verify system properties such as data
dependencies, control dependencies, invariants, anomalous behaviors, reliability, and compliance
to certain specifications. The information is useful for various software engineering activities such
as testing, fault localization, and program understanding. There are two approaches in program
analysis techniques that are static and dynamic analysis. Static analysis is performed before pro-
gram execution while dynamic analysis focuses on a specific execution. The first is mainly used to
determine the static aspects of a program and it can be used to check whether the implementation
complies with the static aspects of the specification. The second is less reliable but can achieve

greater precision by showing the presence of errors by dynamically verifying the behavior of a
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program on a finite set of possible executions selected from a possibly infinite domain. Static pro-
gram analysis techniques can also be used in order to slice (decompose) a program or a transition

system into independent parts that can be then analyzed separately.

5.2 Verification and Validation Framework

Our verification framework is harmoniously and synergically combining software engineering
techniques (metrics), automatic verification (model checking) and program analysis (static analy-
sis) in order to perform V&V of systems engineering design models. Figure 5.1 outlines the
synoptic overview of the V&V process. In what follows, we provide a more detailed description of
our V&YV approach and framework and show how the aforementioned techniques are not simply

used together, but rather synergically combined.
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Figure 5.1: Synoptic Overview of the V&V Process

Model checking is a model-based verification technique that can be fully automated. It was
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used for the verification of real applications, in both software and hardware fields. Examples of
model checkers are SPIN [30], SMV [36], and NuSMV [15]. We selected the latter, a modi-
fied version of the SMV, since it supports fairness constrains along with branching-time logic for
property specification, namely the Computation Tree Logic (CTL). Due to its interesting expres-
siveness, this temporal logic can capture many useful properties (e.g., deadlock, reachability, state
sequencing etc.). Thus, in order to check whether the dynamic aspect of a model satisfies the
specified properties, we have to extract the semantic model from the behavioral diagram that we
wish to verify (e.g. state machine or activity). In practice, due to its typical scalability issues,
model checking is generally limited to the verification of small and medium-sized complexity de-
sign models. Nonetheless, a number efforts are addressing the scalability issues in various ways,
such as on-the-fly model checking [51], symbolic model checking [35}, and distributed on-the-fly
symbolic model checking [7]. In contrast to these techniques, our research makes use of model
slicing based on flow analysis (data and control) as a complementary technique. The objective is to
narrow the scope of the model checking on the part of the model that exhibits the dynamic subject
of checking. Thus, we use static program analysis techniques in order to leverage the effective-
ness of the model checking procedure by decomposing the transition system that is supplied to the
model checker into independent parts that can be analyzed separately, thereby reducing the state
space that has to be explored in the verification process.

Moreover, our V&V framework requires an underlying modeling tool wherefrom various mod-
els can be fetched and assessed. The current version of our framework is composed of three core

components, as shown in Figure 5.2.
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Figure 5.2: Architecture of the Framework.

The metric computation component is used for applying metric algorithms. We make use
of an interface that accesses the object repository of the modeling tool and retrieves the needed
information about the diagram to be assessed. According to the type of diagram, we can use a
class of metrics for structural diagrams and another one for behavioral ones. In the literature,
many metrics were developed to measure the quality of software systems, especially for structural
diagrams namely class and package. We advocate the use of such metrics for the verification and
validation of systems engineering design models.

The semantic compilation component is responsible for deriving the semantic model of a spe-
cific diagram. After converting a diagram into its corresponding semantic model, we can automat-
ically specify CTL properties for deadlock and reachability. Manual specification of properties is
also possible by using intuitive macros that can be automatically expanded to corresponding CTL
properties. This allows the designers to easily express properties without being required to know
formal logics or temporal formulas. Thus, the semantic compilation component is generating the
semantic model along with the properties to be verified and encoding this information into the

model checker input language. At this stage, the synergy is achieved by applying static analysis
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(control and data flow) on the semantic model, before performing the model checking procedure.
The assessment results component is devoted to the presentation of interpreted results. When
a property fails, the trace provided by the model-checker is analyzed and the relevant information

is provided as feedback to the designer.
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Chapter 6

UML Models for System Behavior

The UML modeling language is intended to have a rich expressive power in order to model com-
plete systems across a broad spectrum of application domains. In many cases, such models require
more than modeling software and computation as is the case with many designs of real-time and
embedded software systems where it may be necessary to model the behavior of diverse real-world
physical entities such as a hardware devices or human users. However, the physical components
of a system tend in general to be highly heterogenous and much more complex than most math-
ematical formalisms can capture. Moreover, it is often the case that for a given entity, different
viewpoints or perspectives related to different sets of concerns may be required in the process of
modeling and design (e.g., dissimilar sets of concerns are considered in modeling the performance
of the system when compared to modeling the same system from the view-point of human-machine
interaction).

This may be one of the reasons behind the informal semantics of UML, as one of its primary

objectives is to unify a set of broadly applicable modeling mechanisms in a common conceptual
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framework, a task which any specific concrete mathematical formalism would likely restrict. That
is, the commonality of UML is what underpins to use the same tools, techniques, knowledge,
and experience in various domains and situations. Notwithstanding, the community is generally
acknowledging that there is a compelling need for the formalization of many of the UML fea-
tures [56]. In the context of modeling system behavior using UML, diagrams like state machine
and activity are typically used in order to capture and specify the behavior of the system or its
components. With respect to the features of the two diagrams, there are some similarities such
as concurrent execution and synchronization, as well as important differences especially from the
perspective of structure and hierarchy. Moreover, one can notice that while both of them have a
pretty rich syntax and expressive power, in practice, the state machine diagram is especially useful
when modeling reactive systems whereas the activity diagram is often used to describe workflow
systems.

In general, a state machine description can be broadly conceived as the dynamical abstraction
of a component instance in terms of its state attributes along with the evolution thereof in response
to various stimuli. Conversely, the activity diagram purpose can be understood in providing the
abstraction of a compound operation that usually involves many components that may interact in a
complex but precise way.

In the next two sections, we will detail the features of each of the two aforementioned diagrams

along with some appropriate comments regarding their specific usage and expressiveness.
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6.1 UML State Machine Diagram

The primary motivation underlying the development of hierarchical state machines in general and
their UML formalism in particular was the necessity to overcome the limitations of the conven-
tional state machines in describing large and complex system behavior.

The UML state machines are hierarchical in nature while supporting orthogonal regions, (i.e.,
concurrency) and can be used to express the behavior of a system or its components in a visual, in-
tuitive and compact manner. The state machine is evolving in response to set of possible incoming
events (dispatched one at a time from an event queue) that can trigger the state machine transitions,
which in turn, are in general associated with a series of actions (corresponding to the elements of

the state machine) that are executed.
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Figure 6.1: State Machine Hierarchical Clustering

Some key features of UML state-machines include the ability to cluster states into composite
(OR) super-states and refine abstract states into sub-sates thus providing the hierarchical structure.
Moreover, concurrency can be described by orthogonal (AND) composite concurrent states that

contain two or more concurrently active regions, each of which is a further clustering of states as

depicted in Figure 6.1. Hence, when a system is in an AND state, then each of its regions will
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contain at least one active state. Furthermore, as there can be more than one state active at a time,
the state machine dynamic is configuration based rather than state based. A configuration denotes
a set of active states and represents a stable point in the state machine dynamics while proceeding

from one step to the next.

6.1.1 State Machine Diagram Elements

State machines are basically a structured aggregation of states, transitions and a number of other
pseudo state components. We can see the building blocks of a state machine in Figure 6.2. The
states are either simple or composite (clustering a number of substates). Moreover, the states are
nested in a containment hierarchy such that the states contained inside a region of a composite state

are denoted as the substates of the composite state.
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Figure 6.2: State Machine Components

Regions

A region is a placeholder in a composite state and contains the substates of that composite state.

Moreover, every composite state may contain one or more regions and in such case, the different
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regions of a composite state are separated by a dashed line. Each region of a composite state is
said to be orthogonal to each other region of that composite state. Hence, concurrency is present

whenever a composite state is containing more than one region.

States

Each state has a unique name or label and it may represent the source or target for a transition.
States may also have entry, exit and do associated actions. Final states may only be a target of
transitions and have no substates or associated actions and denote that the parent region is to be
completed.

Simple or basic states represent the leaves of the state hierarchy tree and as such, they do not
contain substates or regions. Conversely, the composite states are represented by all the other
non-leaf nodes and as such, they have at least one region containing substates.

Moreover, whenever a composite state is active, all of its regions have exactly one nested
substate which is also active. A single region composite state is called a non-orthogonal composite
state or sequential (OR) state whereas a multi-region composite state is called an orthogonal (AND)

composite state.

Pseudo States

The UML state machine formalism draws a distinction between states and pseudo states in that
the latter ones are not included in configurations and their main function serves to model various
forms of compound transitions. Moreover, pseudo states have no names or associated actions and

are used as an abstraction for various types of intermediary vertices that are used to link different
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states in the state machine tree hierarchy.

The following itemized list presents the different type of pseudo states:

e initial: It is used to indicate the default state of a region by way of only one outgoing
transition to the target state. Moreover, at most one initial vertex can be present in each
region of a composite state. The graphical representation of an ¢nitial pseudo state is a

small black disk.

e fork: It signifies that the incoming transition originates from a single state while having
multiple outgoing transitions that occur concurrently, requiring the targets to be located in
concurrent regions. Graphically, a thick black bar is used to represent the fork pseudo state
while the incoming transition and the outgoing transitions are touching the opposite sides of

the thick black bar.

e join: It combines two or more transitions emanating form multiple states located in con-
current regions, into a compound synchronized transition with a single target state. The
graphical representation of join pseudo state is likewise a thick black bar, such that the in-
coming transitions and the outgoing transition are touching the opposite sides of the thick

black bar.

e shallowHistory: It is used to represent the most recently active substate enclosed in the re-
gion of a composite state and corresponds to the state configuration that was active when the
composite state was exited the last time. A single transition is allowed to indicate the default

shallow history state for the case where the composite state has never been visited before.
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The capital letter H enclosed in a circle is used to graphically represent the shallow History

pseudo state.

o deepHistory: Its use is an extension of shallow History in that it is used represent the most
recently active configuration enclosed in the region of a composite state and consequently
it descends recursively into the most recently active substate until it reaches a basic active
state. The graphical representation is similar with an additional “*” sign concatenated with

the capital letter H.

6.1.2 Transitions

Transition are relating pairs of states and are used to indicate that a dynamic element (e.g. an
object) is changing state in response to a trigger (event) provided that some specified condition
(guard) is satisfied.

The guard is evaluated after the event is dispatched, but before the corresponding transition is
fired. If the guard is evaluated to ¢rue, the transition is enabled; otherwise, it is disabled. Each
transition allows for an optional action (e.g., issuing a new event) to be specified and if so, it is
understood as the effect of the transition.

Transitions from composite states are called high-level or group transitions. When triggered,
the state machine is also exiting all the substates of that composite state. Furthermore, a compound
transition is an acyclic chain of transitions linked by various pseudo states and represents a path

from a set (possibly a singleton) of source states to a set (possibly a singleton) of destination states.

When the source and the destination sets are both singleton, the transition is said to be basic or
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simple. Moreover, whenever the intersection of the source states belonging to two or more enabled
transitions is not empty, the transitions are said to be in conflict. In this case, it is possible that
one has higher priority than the other. Thus, in the case of simple transitions, the UML standard
assigns higher priority to the transition having the most deeply nested source state.

The UML 2.0 specification is also indicating a number of transition constrains:

e The set of source states of a transition involving a join pseudo state is a set of at least two

orthogonal states.

¢ A join vertex must have at least two incoming transitions and exactly one outgoing transition.

e All transitions incoming a join vertex must originate in different regions of an orthogonal

state.

e A join segment must not have guards or triggers. The transitions entering a join vertex cannot

have guards or triggers.

o A fork vertex must have at least two outgoing transitions and exactly one incoming transition.

¢ All target states of a fork vertex must belong to different regions of an orthogonal state.

¢ Transitions from fork pseudo-states may not target pseudo-states

¢ Transitions outgoing pseudo-states may not have a trigger.

e Initial and history transitions are restricted to point only to their default target state.

¢ Transitions from one region to another in the same immediate enclosing composite state are

not allowed and require that the two regions must be part of two different composite states.
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6.1.3 State Configurations

In the UML state machine, due to the containment hierarchy and concurrency, more than one state
can be active at a time. If a simple substate of a composite state is active, then its parent and all
the composite states that transitively contain the simple state are also active. Furthermore, some of
the composite states in the hierarchy may be orthogonal (AND) and hence potentially concurrently
active. Thus, the currently active states of the state machine are actually represented by a sub-
tree of the state machine hierarchy tree. Consequently, the states contained in such a sub-tree are

denoting a configuration of the state machine.

6.1.4 Run-to-Completion Step

The execution semantics of the UML state machine is described in the specification as a sequence
of run-to-completion steps. Each step represents a move from an active configuration to another
active configuration in response to the dispatched events, which are stored in an event pool. The
UML 2.0 specification is silent about the kind of order imposed on the event pool, leaving it at
the discretion of the modeler. However, the events are required to be dispatched and processed
one at a time. Consequently, the run-to-completion means that an event can be popped from the
event pool and dispatched only if the processing of the previously selected event finished. Thus,
the processing of a single event in a run-to-completion step is achieved by firing the maximal
set of enabled and non-conflicting transitions of the state machine. This results in a consistent
change in the set of states that are currently active along with the execution of the corresponding

actions if any, and assures that before and after each run-to-completion step the state machine is
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in a stable active configuration. Furthermore, multiple transitions can be fired provided that they
reside in mutually orthogonal regions while the order of firing can be arbitrary. In the case that an
event is not triggering any transitions in a particular configuration (there is an empty set of enabled
transitions), this amounts to an immediate completion of the run-to-completion step but with no

configuration change. In this case the state machine is said to stutter and the event is discarded.

6.2 UML Activity Diagram

Activity diagrams are generally used in order to depict the flow of a given process by emphasizing
the input/output dependencies, sequencing and other conditions (e.g. synchronizations) that are
required for coordinating the process behavior.

Moreover, UML activity diagrams [53] can capture the behavior of a process or system using
a control flow and data flow model that can be typically applied in a wide variety of domains such
as computational, business and other workflow related systems in general.

UML activity diagrams are used to depict the sequencing of activities in a system from the
start point to the termination point. Furthermore, an activity diagram may encompass various
processing paths consisting in decision points and concurrent processing while the behavior of the
system or component is focusing on activities or action states. Activity diagrams include several

elements that show the behavior of a system using control flow modeling.
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6.2.1 Activity Actions

Activity actions are used in order to specify the fine-grained behavior, similar to the kind of behav-
ior corresponding to the executable instructions in ordinary programming languages. In essence,
an action can be understood as the value transforming of a set of inputs into a set of outputs. Fur-
thermore, for a given action, the inputs are specified by the set of incoming edges whereas the
outputs are defined by the set of outgoing edges. However, when using elementary action nodes,
only one incoming and one outgoing edge are likely to be specified.

The run-time effect of a given action can be described in terms of the difference in the state
of the system from the pre-condition of the action to its post-condition. Thus, the pre-condition
holds at the moment immediately before the action is executed whereas the post-condition holds
at the instant just after the execution of the action completes. In this context, an important feature
of the UML specification is that it makes no restrictions on the duration of the actions. Therefore,
depending on the needs and constrains of the designer, both instantaneous (i.e. zero-time) semantic

models as well as models allowing finite execution time can be employed.

6.2.2 Activity Flows

It is usually necessary to combine a number of transforming actions in order to get an overall
desired effect. This is accomplished by using activity flows, which are used in order to combine
actions that perform primitive (basic) state transformation. Thus, the activity flows represent the
means of combining actions and their effects to produce complex transformations and serve to

specify the conditions and execution order of the combined actions.
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The UML standard supports both control and data (object) flows. In the present material we
will concentrate on the control flow, as it represents one of our main targets of the verification
and validation efforts of the present research. Control flows are the most conventional and natural
way of combining actions. Accordingly, a control flow edge between two actions is understood as
starting the execution of the action at the target end of the control flow edge immediately after the
executing action at the source of the control flow edge has completed its execution.

In most of the cases, the processes described using activity diagrams require the alteration of the
execution flow in various ways, requiring for example conditional branches, loops, etc. In order
to support the aforementioned constructs, a number of special control nodes are used including
standard control constructs such as fork and join that are used in a similar manner to those used in
the state machine diagrams. Likewise, the control flow can be adjusted by specifying guards (in
essence, side effect free boolean predicates) that label the flows, which are used for conditional

transfer of control.

6.2.3 Activity Building Blocks

An activity diagram might contain object nodes for capturing corresponding object flows'. How-
ever, as the control flow aspect represents the point of interest in the behavioral assessment, we
discuss in the following paragraphs the corresponding subset of control flow artifacts.

The building blocks of the activity diagram consists of the control flow elements depicted in

Data (object) flows connect actions in a different manner than control flows and are used to connect input and
output pins on actions while allowing certain actions to be started before finishing the activity wherefrom the dataflow
control stems. Consequently, dataflow dependencies tend to be highly fine-grained when compared to the control flow,
as the actions might have multiple inputs and outputs connected in sensitive and intricate ways.
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Figure 6.3: Activity Control Flow Artifacts

Figure 6.3:

e Initial, which indicates the beginning (e.g. initial entry point) of the activity diagram.

o Final node, which terminates the execution in the whole activity diagram.

¢ Flow Final, it stops the execution of actions in the specified flow only.

e Action node, which represents a processing node. Actions can be executed sequential or con-
currently (as a result of forking). Furthermore, an action represents an elementary execution

step that cannot be decomposed into smaller actions.

o Fork, it is used for concurrent processing in parallel execution paths.

e Join, it is used to synchronize different concurrent execution paths into one execution path.

e Transition, it is used to transfer the control flow in the diagram from an activity node to

another. If specified, a guard can be used to control the firing of the transition.
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e Branch, it is used to select between different execution flows in the diagram by choosing a

specific execution path depending on the truth value of a guard.

e Merge, it is used to merge several alternative paths into a common activity flow.

An aggregation of actions nodes represents an executable block. An executable block is usually
conceived as a structured activity node, which corresponds in a general sense to the concept of
a block in some structured programming languages. Thus, a structured activity node generally
contains several activity nodes and edges allowing for recursive structure definition. Therefore it

is possible to construct arbitrarily complex activity node hierarchies.

6.2.4 Activity Diagram Execution

The execution semantics of the UML activity diagram is similar to Petri net token flow. In this
respect, according to the specification, each activity action is started as soon it receives a control-
flow token. Once an action is completed, subsequent actions receive a control flow token and are
triggered immediately while the tokens are consumed by the activity node receiving the control
flow.

There are several basic control-flow patterns defining elementary aspects of process control as

depicted in Figure 6.4.

e Sequencing, it denotes the ability to execute a series of activities in sequence;

o Parallel split (fork connector), it denotes the ability to split a single thread of control into

multiple threads of control which execute in parallel;
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¢ Synchronization (join connector), it denotes the convergence of multiple parallel

subprocesses/activities into a single thread of control thus synchronizing multiple threads;

e Exclusive choice (branch connector), it denotes the ability to choose one of several branches

at a decision point in a workflow process;

e Multiple choice, it denotes the ability to split a thread of control into several parallel threads

on a selective basis;

e Simple Merge (merge connector), it denotes a point in the workflow process where two or

more alternative branches come together without synchronization;

e Multiple merge (merge connector), it denotes the convergence of two or more distinct branches
in an unsynchronized manner. If more than one branch is active, the activity following the
merge is started for every activation of every incoming branch.
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Chapter 7

Verification and Validation of UML

Behavioral Diagrams

It is generally accepted that any system that exhibits a dynamics of some kind can be abstracted to
one that evolves within a discrete state space. Such a system is able to evolve through its state space
assuming different configurations where a configuration is understood as the set of states wherein
the system abides at any particular moment. Hence, all the possible configurations summed up
by the dynamics of the system and the transition thereof can be coalesced into a configuration
transition system (CTS). The basic idea was explored in the work of Eshuis et al. [21} in the context
of verifying UML 1.x activity diagrams. However, the CTS concept has a more general nature and
can be conveniently adapted for a broad range of behavioral diagrams, including state machine and
activity. In essence the CTS is basically a form of automaton and it is characterized by a set of

configurations that include a (usually singleton) set of initial configurations and a transition relation

47



that encodes the dynamic evolution of the CTS from one configuration to another. Moreover,
depending on the required level of abstraction, the CTS configuration structure may include more
or less of the dynamic elements of the behavioral diagram. Thus, it is exhibiting an abstraction
scalability trait that allows for efficient dynamic analysis by adjusting the scope to the desired

parameters of interest.

7.1 Configuration Transition System

Given an instance of a behavioral diagram, we can find the corresponding CTS provided that
the elements of the diagram are understood and there exist (and is defined) a step relation that
enables one to systematically compute the next configuration(s) of the diagram from any given
configuration. When the variables of interest, within the dynamic domain of a behavioral diagram,
can be abstracted to boolean state variables, each of the enclosed configurations within the CTS
can be represented by the set of states that are active! simultaneously. Furthermore, the transition
relation of the CTS links configuration pairs by a label comprising all those variable values (e.g.,
events, guards) that are required to trigger the change from the current configuration to the next
one. Also, a requirement needed in order to achieve tractability, is that the configuration space
must be bounded. That is, we have to assume a finite countable limit for every variable within the

dynamic domain of the diagram. Hereafter, we further detail the CTS concept.

Definition 1. (Dynamic domain) The set of heterogenous attributes that characterize the evo-

lution of a behavioral diagram D represents the dynamic domain of that diagram, denoted with D.

Though usually a ¢true boolean value denotes the active status of a state, the false boolean value might similarly
be used, as long as the convention is used consistently.
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A configuration can be understood as a particular snapshot in the evolution of a set of dynamic

elements of a system at a particular point in time and from a particular view.

Definition 2. (Configuration) For an established variable ordering, a configuration c is a par-
ticular binding of a set of values to the set of variables in the dynamic domain D of a behavioral

diagram.

Given a diagram D and its corresponding dynamic domain Dj, if for every attribute a; ,, €
D, we can find a corresponding positive integer ¢, ,, so that for each projection of the dynamic
domain m,, (D), k € 1..n, we have maz|m,, (Da)| < 2%, then a configuration ¢ belonging to the
CTS of D needs at most [ = ) _ i, bits, while the number of possible CTS configurations is at most
2!, Notwithstanding, the actual number of configurations is usually much smaller and is restricted
to the number of configurations reachable from the initial set of configurations. Moreover, the state

attributes are in most of the cases confined to boolean values.

Definition 3. (Configuration Transition System) A CTS is a tuple (C,A,—), where C is a set
of configurations taken from the same view, A is a set of labels, and — C C x A x C'is a ternary
relation, called a transition relation. If ¢;, c; € C' and [ € A, the common representation of the

.o . . l
transition relation is: C1 — Cq.

Since the dynamics for a particular diagram is captured by the corresponding CTS, it is then
considered as the underlying semantic model. Consequently, the CTS can be used to systematically
generate the model checker input.

Moreover, the CTS structure can also provide useful feedback to the designer. Thus, after
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the generation of the CTS, it can be graphically visualized using a suitable graph editor such
as daVinci [12]. The latter can be used in order to provide an overall visual appraisal of the
diagram complexity with respect to the number of nodes and edges. It can also be used as a quick
feedback when applying corrective measures giving some insights about the resulting increasing

or decreasing of the diagram’s behavioral complexity.

7.2 Model Checking of Configuration Transition Systems

The following paragraphs detail the back-end processing required for the model checking proce-
dure of the CTS model. The chosen model checker is NuSMV [15], an improved version of the
original SMV [36]. The way to encode a transition system in the NuSMV input language basically
involves a grouping in at least three main syntactic declarative divisions? as follows. First we need
a syntactic block wherein the state variables are defined along with their type and range. Secondly,
we have to specify an initialization block, wherein the state variables are given their corresponding
initial values or a range of possible initial values. Third, we have to describe the dynamics of the
transition system in a so called next clause block, wherein the logic governing the evolution of
the state variables is specified. Based on this, the state variables can be updated in every next step
based on logical valuation done at the current step.

The CTS can be used to systematically and automatically generate its corresponding encoding

into the model checker input language by constructing the three declarative divisions mentioned

21f appropriate, one might use various other convenient constructs while encoding a transition system in NuSMV
as well as various levels of hierarchy where a main module is referring several other sub-modules due to the modular
aspect that some particular transition systems might exhibit. However, this has no semantic impact with respect to the
considered declarative divisions.
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above. As presented in the foregoing section, the CTS dynamics is given in the form of pairwise
configuration transition relations. Hence, any given CTS transition links a source configuration
to a destination configuration. Consequently, it is conceivable that we might have the possibility
to encode each configuration as a distinct entity in the NuSMV model. However, one can note
that in a given CTS, the number of configurations may be significantly higher than the number
of states that are members of different configurations. Also, the properties to be verified ought
to be expressed on states and not on configurations. It follows that in order to encode the CTS
representation into the model checker language in a compact and meaningful way, we need to use
as dynamic entities, the configuration states rather than the configurations themselves. This will
be reflected accordingly in all three declarative blocks.

Thus, after the establishment of the dynamic entities to be defined, one can proceed with the
compilation of the three code blocks. The first one consists of enumerating the labels that are
associated with each dynamic entity along with its type and range. The second one is compiled
by using the initial configuration of the CTS in order to specify the initial values. The third one
is more laborious in nature and consists in analyzing the CTS transitions in order to determine its
state based evolution from its configuration based one.

More precisely, for every state s in any given destination configuration that is part of one or
more transition relations of the CTS, we need to specify those conditions that are required for the
activation of s, for each destination configuration while specifying that in the absence of such con-
ditions, s would be deactivated. The aforementioned activation conditions can be expressed for

every destination configuration as boolean predicates in the form of conjunctions over the active
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status belonging to each state in the corresponding source configuration along with the test term
for the transition trigger if it is the case. However, in the more general case where the source
configuration elements might contain both multiple value and boolean state variables, the activa-
tion condition predicates would also include value test terms for the corresponding multivalued
variables. Consequently, for each state® variable in the configurations of the CTS model, we have
to specify what we would henceforth denote as transition candidates. Specifically, a candidate
for each state s, represents the disjunctive combination over the activation conditions of all the
destination configurations that have s as a member.

In mathematical terms, under the convention that the ¢{rue boolean value represents for each

state its active status and given the structures:

e S, the set of all states in the CTS configurations;

C, the set of all configurations in the CTS;

A, the set of all trigger event labels in the CTS;

o — C(src:C xIbl:A x dst:C),the transition relation;

e € A, trigger event label.

we can determine the following:
Vit €— .c = mgst(t). Ac = \(Tsre(t) A e = mw(t))
Vse SVee {C|3t €— s € C =maa(t)}. A, =V Ac

where:

3In the presented context, a state should be understood as any boolean or multivalued variable that is part of one or
more CTS configurations.
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o A is the set of CTS configuration activation conditions;

e A, is the activation condition set of the states in the CTS configurations.

Given that A, contains the transition candidates for each state, we can use it in order to compile
in the next clause block the corresponding evolution logic for each state in the CTS configurations.
Thus, the dynamics of the CTS is encoded at state level by specifying that each state is activated at
the next step whenever the transition candidate for a state is satisfied (true) in the current step and

conversely deactivated if not.

7.3 Property Specification using CTL

The verification process by means of model checking requires the precise specification of proper-
ties in order to unfold the potential benefits of this technique. The NuSMV model checker uses the
CTL (Computational Tree Logic) [19] temporal logic for this purpose. This logic has interesting
features and great expressivity. It can be used to express general safety and liveness as well as more
advanced properties like conditional reachability, deadlock freedom, sequencing, precedence, etc.

In the following paragraphs we briefly introduce the CTL logic and its operators. CTL is used
to reason about computation trees that are unfolded from state transition graphs. CTL properties
refer to the computation tree derived from the transition graph. The paths of a computation tree
represent all possible computations of its corresponding model. Moreover, CTL is classified as a
branching-time logic due to the fact that it has operators that describe properties on the branching

structure of the computation tree.
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CTL properties are built using atomic propositions, propositional logic boolean connectives
and temporal operators. The atomic propositions correspond to the variables in the model while
each temporal operator consists of two components: a path quantifier and an adjacent temporal
modality. The temporal operators are interpreted in the context of an implicit current state. Since
in general it is possible to have many execution paths starting at the current state, the path quantifier
indicates whether the modality defines a property that should hold for all the possible paths (uni-
versal path quantifier A) or only on some of them (existential path quantifier E). Table 7.1 presents

the syntax of CTL formulas while Table 7.2 explains the underlaying meaning of the temporal

modalities.
¢ = P (Atomic propositions)
| 9| dNnd|oVEip— ¢ (Boolean Connectives)
| AG ¢ |EG o | AF ¢ | EF ¢ (Temporal Operators)
| AX¢|EXop|A[o U] | E[¢ U] (Temporal Operators)

Table 7.1: CTL Syntax

Gp | Globally, p is satisfied for the entire subsequent path

Fp | Future (Eventually), p is satisfied somewhere on the subsequent path
Xp | neXt, pis satisfied at the next state
p Uq | Until, p has to hold until the point that g holds and q must eventually hold

Table 7.2: CTL Modalities

7.4 Program Analysis of Configuration Transition Systems

In the following, we discuss the use of program analysis techniques (data and control flow), on
our semantic model, namely the Configuration Transition System. This techniques can potentially

improve the effectiveness of the model checking procedure by narrowing the scope of the verifi-

cation to what we might call semantic projections of the transition system. Our goal is to identify
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and extract those parts of the CTS that exhibit properties that can be used in order to simplify the
transition system that is supplied to the model checker. The aspects that we are interested in are the
data and control flow. The former is applied by basically searching for the presence of invariants
(e.g. specific variable values or relations) whereas the latter can be used in order to detect control
flow dependencies among various parts of the transition system. Consequently, the CTS may be
sliced into smaller independent subgraphs that can be individually subjected to the model checking
procedure.

Though it might be possible to specify some properties that could span across more than one

subgraph of the original CTS, the slicing can be safely done under the following conditions:

1. The properties to be verified fall into liveness or safety category;

2. No property specification should involve sequences or execution traces that require the pres-

ence of the initial state more than once.

It must be noted that the second constraint does not represent a major hindrance for the verifi-
cation potential. In this respect, the presence of invariants is assuring that revisiting the initial state
or entering it for the first time is equivalent with respect to the dynamics of the transition system.

It must be mentioned however that even though some of the configuration subgraphs derived
might be rather simple, it is nevertheless required for the model checking procedure that one spec-
ifies all the elements of the original model for each transition system that is fed to the model
checker. This must be done in order to preserve the original elements of the transition system
while assuring that the underlying dynamics is captured by the particular configuration subgraph
in question. Moreover, due to the fact that the dynamics may be severely restricted in some cases,
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one has to take this fact into account when interpreting the model checking results. Thus, even
though it might be the case that a liveness property fails for a transition system corresponding to
a particular subgraph, the property should not be declared as failed for the original model as long
as there is at least one subgraph whose transition system satisfies the property in question. Con-
versely, whenever a safety property fails for a particular subgraph, then it is declared as failed for
the original model as well. Notwithstanding, this task can be automated and virtually transparent
to the front-end of the verification framework.

In order to illustrate more effectively how data and control flow analysis can be applied on the
CTS, we will provide an edifying example in chapter 8 that follows hereafter, where we detail the
verification and validation procedure of the State machine diagram and show the application of

program analysis techniques in section 8.2.
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Chapter 8

Verification and Validation of UML State

Machine Diagram

In this chapter, we describe the verification and validation procedure of the State machine diagram
by means of model checking. A state machine is a specification that thoroughly describes all the
possible behaviors of some dynamic model. The diagram representation contains hierarchically
organized states that are related with transitions labeled with events and guards.

The state machine evolves in response to events that trigger the corresponding transitions pro-
vided that the source state is active, the transition has the highest priority, and the guard on the
transition is true. If transitions have conflict, priorities are assigned to decide which transition will
fire. Higher priority is assigned to those transitions whose source states are the deeper nested in

the containment hierarchy.
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8.1 Derivation of the State Machine Diagram Semantic Model

The hierarchical structure of the state machine diagram can be represented as a tree, where the
root is the top state, the basic states are the leaves and all the other nodes are composite states.
The tree structure can be used to identify the Least Common Ancestor (LCA) of a source and
a target state of a transition. This is useful in identifying the states that will be deactivated and
those who will be activated after firing a transition. An appropriate labeling (encoding) of the
states is required in order to capture the hierarchical containment relation among them. That is, we
have ”is ancestor of’!”is descendant of” relations within the set of states. Moreover, each state
down the hierarchy is labeled in the same manner as the table of contents of a book (e.g. 1., 1.1.,
1.2, 1.2.1., ...). The labeling procedure consists in assigning Dewey positions and is presented
in Algorithm 1, where the operator 4. denotes string concatenation (with implicit operand type
conversion). To that effect, the labeling is done by executing Algorithm 1 on top state with label
”1.” thus recursively labeling all states. The information encoded in the label of each state can be
used to evaluate the relation among the states: For any two states s and z of a state machine where
s; and z; represent their respective labeles, (s “is ancestor of” z) holds if s; is a proper prefix of z;
(e.g. sy ="1.1.",2 ="1.1.2."). Conversely, (s "is descendant of” z) holds if z; is a proper prefix
of s;. The state labeling is used in order to find the LCA state of any pair of states under the top
state! by identifying the common prefix. The later represents the label of the LCA state and can be
more formally expressed in the following way:

For any pair of states (s, z), s, # ”1.” # z;, 3!p # € such that Ip is the greatest (longest) proper

IThe LCA of any two states is the closest state in the containment hierarchy that is an ancestor of both of them.
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prefix of both s; and 2;. Consequently, 3licaState =LCA(s, 2) such that lcaState, = [p. While
for any pair of states under the top, there is an unique LCA, it is also possible to have states that

do not share ”is ancestor of’!”is descendant of” relations (e.g. s; = "1.1.1."7, zy = "1.2.1.”).

Algorithm 1 Hierarchical State Labeling
label State(State s, Label 1)

s — 1
for all substate & in s do

labelState(k,l +. indexof(k) +.".);
end for

A configuration is the set of states of the state machine where the true value is bound to active
states and the false value to inactive ones. To avoid redundancy, for every configuration we only
need to specify the states that are active. However, to support a mechanism whereby all the con-
figurations of a state machine can be generated, we keep in each configuration two additional lists,
one containing the value of all the guards for that particular configuration and the other containing
a so called join pattern list for that configuration. The join pattern list terminology is borrowed
from [24] and it is used to record various synchronization points that may be reached in the evolu-
tion of the state machine from one configuration to another.

In the following, we explain the procedure used for the generation of the CTS, presented by
Algorithm 2. The CTS is obtained by a breadth-first search iterative procedure. The main idea
consists in exploring for each iteration all the new configurations reachable from the current con-
figuration, identified as CurrentConf. Moreover, three main lists are maintained. One denoted by
FoundConfList, is recording the so far identified and explored configurations. The second one is

holding the newly found but unexplored configurations and is denoted by CTSConfList. Finally,
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the third list is used to record the identified transitions from one configuration to another and is de-
noted by CTSTransList. Additionally, we have a container list, CTScontainer that holds all the state
and guard elements of the state machine along with an initially empty join pattern list placeholder.

The iterative procedure starts with CTSConfList containing only the initial configuration of the
state machine, denoted by initialConf. In each iteration, a configuration is popped from CTSCon-
fList and represents the value of CurrentConf for the current iteration. From CurrentConf, the
three subsumed lists (crtStateList, crtGList and crtJoinPatList) are extracted. In order to be able
to properly evaluate the value of the guards before firing the transitions, the crtGList is inspected
to check if it contains an unspecified (“any”) guard value. If so, then two new configurations are
added to CTSConfList wherein the unspecified guard value is assigned the true and false value re-
spectively and the next iteration immediately starts. Otherwise, if FoundConfList does not contain
CurrentConf then the latter is added to FoundConfList.

Based on a list of possible incoming events referred to EventList, we pick each element one by
one and dispatch it, each time restoring the state machine to the current configuration by setting the
latter to the CTScontainer. The dispatching operation is a generic procedure that is responsible with
the event processing and it is using the state containment hierarchy labeling in order to properly
move the state machine from the current configuration to the next. Thus, the corresponding enabled
transitions that are labeled with the dispatched event are triggered respecting their priorities and if a
previously unidentified configuration is discovered, it is added to CTSConfList. Whenever the next
found configuration is different from the current one, a new transition between CurrentConf and

the next found configuration is formed and added to CTSTransList if not present. After adding all
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Algorithm 2 Generation of the State Machine CTS

FoundConfList = {)
CTSConfList = { initialConf }
CTSTransList =
CTScontainer = { DiagramStateList,guardValueList, 0}
while CTSConfList ¢s not empty do
CurrentConf = pop(CTSConfList)
crtStateList = get(CurrentConf,0)
crtGList = get(CurrentConf, 1)
crtJoinPatList = get(CurrentConf,2)
if crtGList containsValue “any” then
splitindex = getPosition(crtGList, “any”)
crtGList[splitIndex] = true
CTSConfList = CTSConfList U { crtStateList, crtGList, crtJoinPatList }
crtGList[splitIndex] = false
CTSConfList = CTSConfList U { crtStateList, crtGList, crtJoinPatList }
continue
end if
if FoundConfList not contains CurrentConf then
FoundConfList = FoundConfList U CurrentConf
end if
for each event e in EventList do
setConf(CTScontainer, CurrentConf)
dispatch(CTScontainer, €)
nextConf = getConf(CTScontainer)
if nextConf not equals CurrentConf then
CTSConfList = CTSConfList U nextConf
crtTrans = {CurrentConf, e, nextConf}
if CTSTransList not contains crtTrans then
CTSTransList = CTSTransList U {crtTrans}
end if
end if
end for
end while
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the new possible successor (next) configurations of the current configuration to the CTSConfList,
the next iteration starts. The procedure stops when no elements can be found in CTSConfList. Thus,

by applying the foregoing algorithm, we obtain the CTS corresponding to a given state machine.

8.2 Case Study

In the following, we present a case study related to a UML 2.0-based design describing an Auto-
mated Teller Machine (ATM). We perform V&YV of the design with respect to predefined properties
and requirements. We present hereafter the behavioral view of the design captured by a state ma-
chine diagram.

The ATM interacts with a potential customer (user) via a specific interface and communicates
with the bank over an appropriate communication link. A user that requests a service from the
ATM has to insert an ATM card and enter a personal identification number (PIN). Both pieces
of information need to be sent to the bank for validation. If the credentials of the customer are
not valid, the card will be ejected. Otherwise, the customer will be able to perform one or more
transactions (e.g. cash advance or bill payment). The card will be retained in the machine during
the customer interaction until the customer wishes no further service. Figure 8.1 shows the UML
2.0 state machine diagram of the Automated Teller Machine (ATM) system. The model is based on
a hypothetical behavior and is meant only as an example. It is a syntactically-enriched extension of
a similar example that was presented in one of our publications [4]. We intendedly modeled some
flaws in the design to outline the success of our approach in discovering problems in the behavioral

model. The diagram has several states that are going to be presented in accordance to the diagram
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containment hierarchy. The top container state ATM encloses four substates:

IDLE, VERIFY,

EJECT and OPERATION, The IDLE state, wherein the system waits for a potential ATM user,

is the default initial substate of the top state. The VERIFY state represents the verification of

the card validness and authorization. The EJECT state depicts the phase of termination of the user

transaction. The COPERATION state is a composite state that includes the states that capture several

functions related to banking operations. These are the SELACCOUNT, PAYMENT and TRANSAC.
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Figure 8.1: ATM State Machine Diagram Example
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The SELACCOUNT state is where an account, belonging to the proprietor of the card, has to be
selected. When the state SELACCOUNT is active, and the user selects an account, the next transi-
tion is enabled and the state PAYMENT is entered. The PAYMENT state has two substates for cash
advancing and bill payment respectively. It represents a two-item menu, controlled by the event
next. Finally, the TRANSAC state captures the transaction phase and includes three substates for
checking the balance (CHKBAL), modifying the amount if necessary (MODIFY) and debiting the
account (DEBIT) respectively. Each one of the states PAYMENT and TRANSAC contains a shallow
history pseudostate. If a transition targeting a shallow history pseudostate is fired, the activated
state is the most recent active substate in the composite state containing the history connector.

When applying formal analysis to assess the presented state machine diagram, the steps are as
follows. We first convert the diagram to its corresponding semantic model (CTS), as depicted in
Figure 8.2. Each element is represented by a set (possibly singleton) of states and variable values
of the state machine diagram. Thereafter, we automatically specify deadlock and reachability
properties for every state. Furthermore, we also provide user defined specification in both macro
and CTL notation.

After finishing the model checking procedure, the results that have been obtained pinpointed
some interesting problems in the ATM state machine design.

The model checker determined that the OPERATION state exhibits deadlock, meaning that
once entered, it is never left. This was found to be caused by the fact that in UML state machine
diagrams, the transitions that have the same trigger are given higher priority when the source state

is deeper in the containment hierarchy. Moreover, the transitions that have no event are fired as
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soon as the state machine reaches a stable configuration that is containing the corresponding source
state. This is precisely the case with the transition from SELACCOUNT to PAYMENT. Thus, there
is no configuration that allows the operation state to be exited. This can also be seen by looking at
the corresponding configuration system where we can notice that once a configuration that contains

the operation state is reached, there is no transition to a configuration that does not contain it.
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Figure 8.2: CTS of the ATM State Machine Example

In addition to the automatically generated properties, we present some relevant user-defined
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properties described in both macro and CTL notations.

The first one asserts that it is always the case that if VERIFY state is reached then from that

point, OPERATION state should be reachable:
ALWAYS VERIFY — MAYREACH OPERATION
CTL: AG( (VERIFY — (E{! (IDLE) UOPERATION})))

The next property asserts that it is always the case that after reaching state OPERATION it
should be inevitable to reach state EJECT at a later point:
ALWAYS OPERATION — INEVIT EJECT
CTL: AG ( (OPERATION — (A[! (IDLE) UEJECT])))

The last one states that CHKBAL must precede state DEBIT:
CHKBAL PRECEDE DEBIT
CTL: (!'E[! (CHKBAL) UDEBIT])))

The first manually input specification turned out to be satisfied when running the model checker.
However, the last two properties failed. The first failed property was not unexpected as, from the
automatic specifications, we noticed that state operation is never left once entered (it exhibits
deadlock) and does not have state e ject as a substate.

The failure of the last property was accompanied by a trace provided by the model checker,
depicted by Table 8.3. Though the model checker can provide a counterexample for any of the

failed properties, we present this last one as it captures a critical unintended behavior.
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IDLE [IcardOKk, pinOk];
VERIFY,CHKCARD,VER!FCARD,CHKPIN,VERIFPIN [cardOk,pinOk};
VERIFY,CHKCARD,CARDVALID,CHKPIN,VERIFPIN [cardOk,pinOK];
VERIFY,CHKCARD,CARDVALID,CHKPIN,PINVALID [cardOk,pinOk];
OPERATION,SELACCOUNT [cardOk,pinOK];
OPERATION,PAYMENT,CASHADYV [cardOk,pinOk];
OPERATION,TRANSAC,DEBIT [cardOk,pinOk].

Table 8.3: State Machine Counter-Example

The foregoing counterexample is represented by a series of configurations (semicolon sepa-
rated). Moreover, whenever two or more states are present in a given configuration, a comma is
separating them in the notation. Additionally, we have for each configuration the variable values
enclosed in square brackets.

The failure in this case is due to the presence of a transition from state PAYMENT to the shallow
history connector of the state TRANSAC. This allows for the immediate activation of the state
DEBIT when reentering the TRANSAC state by its history connector.

The counterexample can help the designer to infer the necessary changes that will fix the identi-
fied problems. The first modification consists in adding a trigger such as select to the transition
from the state SELACCOUNT to the state PAYMENT. This will fix the deadlock problem and the
second user-defined property. The second modification corrects the problem related to the last
unsatisfied specification. It consists in removing the history connector of the state TRANSAC and
changing the incoming transition from this target directly to the state TRANSAC. After re-executing
the V&V process for the fixed diagram, all the specifications, both automatic and user-defined

properties were satisfied.
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8.3 Program Analysis Example of the State Machine Diagram

We will use the configuration transition system of the state machine case study presented in Section
8.2. For the corresponding CTS, presented in Figure 8.2, in every configuration there are various
values for the variables cardOk and pinOk. Whenever we have an exclamation mark preceding a

variable in a particular configuration, the meaning is that the variable is false in that configuration.

IDLE VERIFY
VERIFCARD
CHKPIN
VERIFY VERIFPIN
CHKCARD CHKCARD \U}pirSk,cardOk]/ CHKCARD
VERIFCARD CARDVALID VERIFCARD
CHKPIN CHKPIN pinChkDone CHKPIN
VERIFPIN VERIFPIN VERIFY VERIFPIN
inOk leardOK pin CHKCARD i !
CARDVALID
CHKPIN

PININVALID

(c)

Figure 8.3: Data Flow Sub-Graphs

There are several subgraphs where some invariants hold. Figure 8.3 presents these subgraphs,
each having invariants that can be abstracted. In Figure 8.3.a, we have a subgraph where the invari-
ant ! cardOk can be noticed. Similarly, Figure 8.3.b, shows another subgraph where the invariant
!'pinOk holds. In the subgraph shown by Figure 8.3.c, we have both ! cardOk and !pinOk
invariants. Additionally, Figure 8.4 depicts a subgraph that is independent from the control flow
perspective. To that effect, once the control is transferred to this subgraph, it is never transferred

outside of it.
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Figure 8.4: Control Flow Subgraph

The subgraphs identified in the foregoing paragraph represent the basis that enable us to slice
(decompose) the initial model into several independent parts that can be analyzed separately. Ob-
viously, the subgraphs have reduced complexity when compared to the original model. Accord-
ingly, for each of them, the corresponding transition system that is going to be subjected to model
checking requires fewer resources in terms of memory space and computation time. In order to
emphasize the benefits of the slicing procedure, we subsequently give some statistics.

Since the model checker uses binary decision diagrams (BDDs) in order to store the generated
state space of the model in a highly compact manner, this represents an eloquent comparison
parameter. Thus, while for the initial CTS graph, the model checker allocated between 70 to 80
thousand BDD nodes (depending on the variable ordering), for the sliced subgraphs the allocated

BDD nodes were significantly reduced as follows. For the graphs in Figure 8.3.a and 8.3.c the

69



number of BDD nodes was around 4 thousand. Furthermore, the graph in Figure 8.3.b required
around 8 thousand BDD nodes whereas the graph in Figure 8.4 required from about 28 to 33

thousand nodes.
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Chapter 9

Verification and Validation of UML Activity

Diagram

The UML activity diagram is basically inheriting the structured development concept of flowchart,
essentially being the object-oriented equivalent thereof. As such, it can be used for business process
modeling, for modeling various usage scenarios, or for capturing the detailed logic of a complex
operation. It must be noted that the activity and state machine diagrams are related to some extent.
However, while a state machine diagram is focusing on the state of a given object as it is undergoing
a process (or on a particular process that captures the object state), an activity diagram is focusing
on the flow of activities that are involved in a particular process or operation that may involve
one or more interacting objects. Specifically, the activity diagram shows the nature of the relations
established among the activities involved in carrying out a process or operation, typically including

relations such as sequencing, conditional dependancy, synchronization, etc.
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9.1 Derivation of the Activity Diagram Semantic Model

The semantic model derivation for the activity diagram inherits an idea that stems from the work
of Eshuis et al. [21] and consists in encoding the activity diagram dynamics by generating its
reachable configurations. In this respect, it resembles the approach presented in the state machine
related sections where the same basic idea was employed.

Thus, in a similar manner to that presented in the case of the state machine, the activity diagram
is converted to its corresponding CTS. Accordingly, each configuration is represented by the set
of states of the activity diagram that are active concurrently (the true value is bound to its active
states). Likewise, in order to generate all the reachable configurations of the activity diagram,
we keep in each configuration the two additional lists, one corresponding to the value of all the
guards for that configuration and respectively the second containing the join pattern list for that
configuration. The latter is required due to the fact that the activity diagram allows for forking and
joining activity flows. Thus, as in the case of the state machine, the join pattern list is used in order
to record various synchronization points that may be reached while generating the configurations
of the activity diagram.

Consequently, the procedure used for the CTS generation in the case of the activity diagram
is just a variation of the state machine CTS generation algorithm presented in Section 8.1. The
main difference consists in the fact that instead of generating the CTS configurations by using
a list of possible incoming events, we track each activity flow associated with each concurrent

activity state that is member of every new identified configuration. The procedure is presented by

Algorithm 3 where the modification consists in picking each state in crtStateList and computing
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all the possible next configurations that are reachable by any control transfer to a successor state in

the same activity flow.

9.2 Activity Diagram Case Study

The selected case study for the activity diagram is aiming at presenting a compound usage scenario
for the UML 2.0-based ATM design, whose state machine diagram was presented in Section 8.2.
The usage scenario is likewise hypothetical and reflects a typical cash withdrawal operation that
a potential customer (user) may perform. In the following paragraphs, we detail the intended
operation captured by the activity diagram along with some relevant properties. Figure 9.1 shows
the UML 2.0 activity diagram of the ATM cash withdrawal operation.

The operation begins with the Insert Card activity. Thereafter, the Read Card and
Enter Pin activities are forked. The activity flow starting with Read Card continues with the
Authorize Card activity while the one starting with Enter Pin continues with Authorize
Pin.

Both Authorize Card and Authorize Pin activities are followed by corresponding
test branching points. In the case where both the user card and PIN number check out, the two ac-
tivity flows are joined together and the Initiate transaction activity is begun, followed in
order by the Select amount and Check Balance activities. The latter is followed by a test
branching point that if satisfied, forks two new activity flows. The first one begins with the Debit
account activity and continues with the Record Transaction activity. The second one

forks anew to Dispense Cash and Print Receipt activities. The three activity flows that
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Algorithm 3 Generation of the Activity CTS (reusing part of Algorithm 2)

FoundConfList = {}
CTSConfList = { initialConf }
CTSTransList = ()
CTScontainer = {DiagramStateList,guard ValueList,0 }
while CTSConfList is not empty do
CurrentConf = pop(CTSConfList)
crtStateList = get(CurrentConf,0)
crtGList = get(CurrentConf,1)
crtJoinPatList = get(CurrentConf,2)
if crtGList containsV alue “any” then
splitIndex = getPosition(crtGList, “any”)
crtGList{splitindex] = true
CTSConfList = CTSConfList U { crtStateList, crtGList, crtJoinPatList }
crtGList[splitIndex] = false
CTSConfList = CTSConfList U { crtStateList, crtGList, crtJoinPatList }
continue
end if
if FoundConfList not contains CurrentConf then
FoundConfList = FoundConfList U CurrentConf
end if
for each state s in crtStateList do
setConf(CTScontainer, CurrentConf)
execute(s)
nextConf = getConf(CTScontainer)
if nextConf not equals CurrentConf then
CTSConfList = CTSConfList U nextConf
crtTrans = {CurrentConf, nextConf}
if CTSTransList not contains crtTrans then
CTSTransList = CTSTransList U {crtTrans}
end if
end if
end for
end while

74



Authorize else
card
cardOk

else

Y

Enter pin ) >

Select Initiate "\
amount transaction /

] o/ Check
balance

Record Debit
transaction account
| Dispense
cash
4 ]
& ( &g
receipt

Authorize
pin

€

else

Figure 9.1: ATM Activity Diagram Example
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are executing at this point are cross synchronizing as follows. The Record Transaction and
Dispense Cash activities are joined in a single activity flow that begins executing the Pick
Cash activity. This activity flow is then joined with the remaining one that was executing the
Print Receipt activity. The control is then transferred in order to the Show Balance and
Eject Card activities, the latter finishing the whole operation.

For the cases where the authorization test branching points are not satisfied, the control flow
is transferred to the Eject Card activity whenever the card or the PIN number do not check
out while in the case of the balance test branching point, the control is transferred to the Show
Balance.

In order to outline the benefit of the model checking procedure, the presented case study intend-
edly contains a number of issues that are going to be identified during the verification procedure.
Furthermore, in order to subject the activity diagram to the model checker, the following steps are
required. First, the diagram is converted to its corresponding CTS depicted in Figure 9.2, which
represents its semantic model wherein each element is represented by a set (possibly singleton) of
activity nodes.

Second, we automatically specify deadlock and reachability properties for every activity node.
Third, user defined specifications, intended to capture the desired behavior, are presented in both
macro and CTL notation:

Property number one asserts that executing the InsertCard activity implies that it is in-
evitable to reach at a later point the EjectCard activity.

Insert Card — INEVIT Eject_Card
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CTL: Insert_Card — A[! (end) UEject_Card]

Property number two asserts that it is always the case that executing the InsertCard activity
implies that AuthCard activity precedes the E jectCard activity.
ALWAYS Insert.Card — Auth.Card PRECEDE Eject.Card
CTL: AG((Insert_Card — (!E[! (Auth_Card) UEject_Card])))

Property number three asserts that it is always the case that executing the Init_Transac
activity implies that PickCash activity may be reachable at a later point.
AILWAYS Init_Transac — MAYREACH Pick.Cash
CTL: AG((Init_Transac — (E[! (end) UPick.Cash])))

The fourth property asserts that DebitAccount should precede DispenseCash.
Debit_Account PRECEDE Dispense_Cash
CTL: (!E[! (Debit_Account) UDispense_Cash])))

Property number five asserts that the E jectCard activity should never be followed by other
activity.
NEVER (Eject_Card & POSSIB !end)
CTL: 'EF (Eject_Card & EX !end)

After running the model checker, the results that have been obtained indicate that no unreach-
able or deadlock states were detected while for the manual specifications, properties with the num-
bers one and three were satisfied. However, the properties with numbers two and four and five

failed.
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The failure of the properties with the numbers two and four was accompanied by couterexam-

ples provided by the model checker and presented in Table 9.4 and respectively Table 9.5.

Insert_Card;
Enter_Pin,Read_Card;
Authorize_Card,Enter_Pin;
Eject_Card,Enter_Pin;

Table 9.4: Activity Diagram Counter-Example for Property Number Two

Insert_Card;

Enter_Pin,Read_Card;
Authorize_Pin,Read_Card;
Authorize_Card,Authorize_Pin;

Authorize_Pin;

Init_Transac;

Sel_Amount;

Check_Bal;
Debit_Account,Dispense_Cash,Print_Receipt;
Debit_Account,Print_Receipt;

Table 9.5: Activity Diagram Counter-example for Property Number Four

Property number five failed since there are reachable configurations that contain the E ject _Card
activity together with another activity such as Read_Card.

The cash withdrawal operation requires a number of changes in order to have all of the specified
properties pass. Figure 9.3 presents the corrected version of the activity diagram.

In order to fix the identified problems, several corrections were performed. Thus, the au-
thorization test branching points are cascaded in sequence rather than concurrently after join-
ing the activity flows forked for reading the card and entering the PIN. Moreover, the activities
Dispense_Cash and Record_Transaction are swapped in order to enforce the sequencing

of the former after the Debit_Account activity.
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Chapter 10

Performance Analysis of Time Constrained

SysML Activity Diagrams

Many modern systems are now being developed by aggregating other subsystems and components
that may have different expected though not exactly determined characteristics and features. As
such, this kind of systems may exhibit features such concurrency and probabilistic behavior.

In order to address the need for an appropriate standardized modeling language that can support
the Model Driven Architecture (MDA) [47] approach for the design and development of modern
systems engineering products, OMG officially released the System Modeling Language (SysML)
specification [25]. SysML is based on UML 2.0 but it is extending and adapting it to fit specific
systems engineering modeling requirements.

Among SysML diagrams, activity diagram [8] represents a highly interesting one due to its

suitability for functional flow modeling and similarity to the Extended Functional Flow Block
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Diagrams (EFFBDs) [9] commonly used by systems engineers. The SysML specification has
redefined and widely extended activity diagrams using the profiling mechanism of UML. The

main extensions concern the support of continuous and probabilistic systems modeling.

10.1 Time Annotated SysML Activity Diagrams

Activity modeling is used for coordinating behaviors in the system being modeled. Particularly,
these behaviors may require time duration to execute and terminate. Thus, we need to specify such
constraints in order to be able to verify time-related properties for quantitative analysis.

The features related to probabilistic systems modeling are mainly used on the edges outgoing
form decision nodes where probabilities can be assigned on the transitions emanating from the
same decision node according to a specified distribution. Accordingly, the assigned values ought
to sum up to unity as illustrated in Figure 10.4.

Since the execution time of a behavior may depend on different parameters such as resource
availability and rates of incoming dataflows, this may lead to a variable termination time of a be-
havior. Consequently, if an action may terminate within a bounded time interval, then a probability
distribution for terminating the action can be established with respect to the corresponding execu-
tion time interval. Consequently, we propose the use of an appropriate time annotation showing
the execution duration of the actions in the activity diagram.

Thus, we denote by TimeExzp C N the set of value specifications of time, where each value

is expressed as a multiple of unit time and NN is the set of natural numbers. The time reference is

maintained by a global clock C against which all the time values are evaluated. A clock valuation
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ChargeFlash / [4,5]

Figure 10.4: Probability and Execution Duration Annotation

v assigns to a clock a value in the domain of TimeExp.

For an action node, the activation time represents the duration of time wherein it is active.
When an activity diagram starts, C is reset to zero value. Since we consider that a transition taken
on an activity edge is timeless, time annotations are specified only for action nodes in the form of a
time interval I = [q, b}, where a, b € TimeExp are evaluated relatively to the start of the activation
time of the corresponding action. Time value a represents the earliest time for the execution com-
pletion and b is the latest. For instance, as depicted in Figure 10.4, action ChargeFlash terminates
within 4 to 5 units of time. However, some actions may need a fixed time value to complete execu-
tion, i.e. @ = b and in that case, only a single time value may be shown. Also, the time annotation

can be omitted if the activation time of an action is negligible compared to other actions.

10.2 Modeling Time Constrained Activity Diagrams

We introduced in Chapter 7 the concept of Configuration Transition System (CTS) that can be

used in order to model the dynamics of various behavioral diagrams. In essence the CTS is a
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form of automaton characterized by a set of configurations that include a (usually singleton) set
of initial configurations and a transition relation that encodes the dynamic evolution of the CTS
from one configuration to another. However, the CTS model assumes a background computation
of some sort, that is responsible for the change in the set of dynamic parameters, a computation
which is abstracted to a possible transition from a configuration to another. While this abstraction
can be suitable in many cases, it might need more refinement in the cases where features such as
the duration of the computation and/or the likelihood of a decision must be taken into account in
relation to dynamic elements of the model. Thus, it becomes apparent that an enriched model is
required in order to capture the aforementioned features. Since the most important elements of
interest in the dynamics corresponding to various behavioral diagrams are usually represented by
state variables or action blocks, we will consider these artifacts as dynamic elements.

When modelling a system with a network of automata, communication can be used in order
to achieve synchronization. Also, time quantization techniques can be used in order to capture
the dynamics of the communicating automata into a compact computable model suitable for auto-
matic verification purposes. Thus, the approach consists in mapping the SysML activity diagram
into a corresponding aggregation of Discrete Time Markov Chain (DTMC) modules representing
a discrete-time transition system with discrete probability distributions. Then, the resulting model
is encoded into the input language of the Probabilistic Symbolic Model Checker (PRISM)! [38]

which can be used for performance analysis of the model? as illustrated in Figure 10.5.

'PRISM is probabilistic model checker developed at the University of Birmingham.
2The actual values for the probability of a given behavior occurrence can be determined by PRISM.
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Figure 10.5: Proposed Approach for Assesing SysML Activity Diagrams

Moreover, since counterexamples are presently not provided by PRISM, we use the state space
that it computes in order to construct the reachability graph that can be used to graphically explore
the behavior of the model.

PRISM is based on reactive modules [5], where each module represents a system component.
It targets the assessment of probabilistic systems such as various communication protocols, secu-
rity related systems, etc. The modules describing the system are composed in parallel and contain
variables as well as commands labeled with actions for synchronization between modules, hidden
actions, guards and probabilities. As the objective is to capture the dynamics of time annotated ac-
tivity diagram into a compact computable model, we selected DTMC as its interpreted semantics
since it is suitable to model the coordination of the behavior, action execution duration, synchro-
nizations as well as probabilistic path selection. Moreover, it represents a discrete-time transition
system with discrete probability distributions that can efficiently capture the intended behavior of

the activity diagram. Furthermore, it is lightweight compared to the other probabilistic models
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supported by PRISM?. For convenience, we henceforth assume an equal probability for action ter-
mination anytime within the annotated time interval. However, this has no restrictive impact with
respect to our approach. The tradeoff involved in selecting a discrete time model consists in either
having a more fine grained representation at the expense of higher costs in terms of verification
feasibility or a less fine grained one that can in turn significantly boost the verification performance
thus allowing for more elaborated models to be verified.

A concise definition of the DTMC model [54] is as follows:

Definition 4. A discrete-time Markov chain (DTMC) is a tuple D = (5, S, P) where § is a finite
set of states, 3 € S is the initial state, and P : S x S — [0,1] is a transition probability matrix,
such that: s P(s,s’) = 1 forall s € S where P(s, s') is the probability of making a transition

from a state s to a state s’

For the specification of quantitative analysis properties, PRISM incorporates two property spec-
ification languages: Probabilistic Computation Tree Logic (PCTL) used for DTMC and MDP and
Continuous Stochastic Logic (CSL) used for CTMC. PCTL [14] is an extension of CTL [16]

mainly with probability operator and according to [14] its syntax is as follows:

¢ = true|a|ﬁ¢|¢/\¢|7’w[¢]

Y o= U G| G US| X

where a is an atomic proposition, t € N, p € [0,1] C R,andx € { >, >, <, < }. PCTL formulas

are of two types, state (¢) and path (¢). The former is evaluated over a state and the latter over a

3Relating to the other probabilistic models supported by PRISM, CTMC can be viewed as DTMC with an infini-
tesimally small time step whereas MDP is extending DTMC with non-determinism [38].

86



path. For example, a state s of the DTMC satisfies the formula P.,[¢)] if the probability of taking

a path from s satisfying v is in the interval defined by i p.

10.3 Mapping SysML Activity to DTMC

The first step in transforming SysML activity to DTMC consists in identifying different commu-
nicating modules corresponding to the synchronizing threads in the diagram. In order to be able
to delimit the existing individual threads, we have to explore the different execution flows of the
activity diagram. Special constructs such as fork and join represent respectively spawning and
synchronization points. At each fork, there are as many new threads as outgoing edges and at
each join, there is a waiting point for all the incoming threads to synchronize. Accordingly, we
allocate a module for each identified thread.

In the case where some execution paths are intersecting with each other we chose to merge
the corresponding modules. Also, when a thread reaches a join construct and terminates after
synchronization, the corresponding module can be reused for the subsequent thread. This is done
for the sake of optimizing the PRISM code in order to keep it easily manageable. Algorithm 4
presents the generic procedure for converting an activity diagram to its corresponding DTMC.

The synchronization mechanism among the modules allows for two or more concurrent activ-
ity flows or execution threads to “experience” the same passage of time with respect to the time
constraints that may be specified for each of them. Consequently, each thread has its own clock

variable that is used to track the passage of time in the current state of the thread. The dynamics of

the model ensures that all the clock variables are updated (advanced or reset) synchronously. Thus,
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Algorithm 4 Mapping Activity Diagrams AD To PRISM DTMC

CTT = GetStructure(AD) {Encodes the structural artifacts into Control Transfer Table (CTT)}
FEP = generateFEP(CTT) {Explores CTT and generates the list of Flow Execution Paths (FEP)}
SSP = GetSynchropoints(CTT,FEP) {Generates a list of States Synchronization POINTs (SSP)}
for all item in FEP do
LCT= Compact(FEP) {Compacts the overlapping parts of FEP into LCT (list of connecting
threads)}
end for
for all item in LCT do
CreateNEWModule(item) {encode each thread in LCT along with its SSP as a separate
PRISM module}
PRISMModulesList.add(newPRISM) {generate PRISM code}
end for

the clock variable of each thread is advanced as a result of a self transition to its current state or
reset whenever the current state is left and another one is entered. Furthermore, whenever the clock
variable of a thread falls within the time constraint interval of the current state, this means that the
control can either remain in the current state or be transferred to another state that can be reached
by a transition from the current state. This amounts to the use of a probability distribution based on
which the thread will remain in the current state or exit it. Though the choice for such a distribution
may depend on the actual system being modeled, by default we use a uniform distribution over the

time constraint interval.

10.4 Performance Evaluation Case Study

In this section, we present a relevant case study involving a systems engineering product for which
a SysML activity diagram with time constraints is analyzed. The system represents a hypothetical
model of a digital photo-camera while the given activity diagram is meant to capture the functional
aspect of taking a picture as depicted by Figure 10.6. The selected properties aim to measure and
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verify certain performance characteristics exhibited by the model. The presented activity diagram
is intentionally not very laborious as to serve its instructive purpose. However, as it will become

apparent later, a simple model does not preclude a highly dynamic behavior.

TurnOn/2

(charged = true)
{p=0.3}

(charged = false)
{p=0.7}

AutoFocus / [2,3]

{memFull = false)
{p=0.8}

{sunny = false)
{p=0.6}

(sunny = true)

{p=0.4}

(memFull = true)
{p=0.2}

Figure 10.6: Digital Camera SysML Activity Diagram Example

For our example, the selection of an appropriate unit of time from the sequencing and perfor-

mance perspectives has to be relevant for the user of the product. Accordingly, the activity diagram

nodes that may require one or more units of time to complete are augmented with corresponding
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values for the interval denoting the expected time to completion. In contrast, the activity nodes
that take less than one unit of time to complete have no such augmentation.

The process captured by our activity diagram example starts by turning on the camera (TurnQn).
Subsequently, two threads are spawned. The first one commences by auto focusing (AutoFocus)
followed by a decision point that checks whether the memory is full (memFull guard) or not. In the
latter case (memFull = false), a second decision point is reached, where depending on the ambi-
ent lighting conditions (sunny or not) taking a picture (TakePicture) is executed. TakePicture
may be reached either directly (sunny = true) or after synchronizing with the second thread
(sunny = false). Thereafter, the picture is stored in the memory (WriteMem). The second thread
begins by checking whether the flash is charged or not. If not, the control is transferred to charg-
ing the flash (ChargeFlash). Subsequently or if the flash is already charged, the second thread
waits in order to synchronize (join node) with the first thread. After synchronization, the flashing is
triggered (Flash). The activity diagram execution is ended with turning off the camera (Turn0f£).

To assess the activity diagram of the digital camera, we generated the corresponding DTMC
according to the procedure depicted in Algorithm 4 and encoded it into PRISM model checker
input language.The corresponding reachability graph? is presented in Figure 10.7. As illustrated,
each edge of the reachability graph is annotated with its corresponding probability of selection.
Furthermore, the graph shows a highly dynamic behavior resulting from the concurrency of the
threads in the activity diagram in conjunction with the overlapping completion intervals of various
activity nodes.

In the following paragraphs, we present the results that are obtained by verifying a number of

“The reachability graph was derived from the state and transition matrices computed by PRISM version 3.0.
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Figure 10.7: Reachability Graph of the Digital Camera Activity Diagram Example
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interesting properties expressed in the syntax of the temporal logic defined by PRISM and based
on PCTL. This highlights the benefits of assessing probabilistic behavior in the presence of time
constraints.

The first property states that the probability to take a picture after turning on the camera should

be 0.75 or greater. It is expressed in PRISM as follows:

TurnOn = P > 0.75 [ true U TakePicture |

When analyzing this property over the DTMC of the activity diagram, PRISM reported that it turns
out to be satisfied. This reflects that the model meets the minimum required level of reliability.
The second property is building on the previous one and aims to check whether in the case of poor
lighting conditions, the probability of taking a picture using the flash after turning on the camera

is at least 0.5. It is expressed in PRISM as follows:

TurnOn = P > 0.5[true U!sunny & TakePicture & Flash ]

Though the model checker determined that the property fails for a probability value greater or
equal to 0.5, it passes for a value less or equal to 0.48. The actual value of the probability can
be determined by using a specific PRISM construct that queries for the probability value. This

illustrates the quantitative analysis feature provided by PRISM. The formula is as follows:

P = ?[true Ulsunny & TakePicture & Flash {TurnOn} ]
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Apart from verifying properties that concern the probability of reaching a particular situation, we
also consider time-bounded reachability verification which consists in measuring the probability of
reaching a certain situation within a time bound. For instance, the following property is measuring

the probability of taking a picture using the flash within 6 units of time after turning on the camera:

P = 7[trueU < 6+ 2 TakePicture &Flash {TurnOn & t1.ck = 0} ]

One can note that 2 supplementary units of time are added in the property formula. The reason
behind this is due to the fact that when reaching a synchronization point (join node), each thread
needs to enter a waiting state wherein it awaits for the other synchronizing threads to complete
their respective activities. When all the synchronizing threads reach the synchronization point,
they require one unit of time to leave their waiting states and one unit of time to perform the
synchronization and proceed further. Thus, for this kind of properties involving synchronizing
threads, one has to take this fact into account.

The obtained result indicates a severe performance issue for the considered time constraint
requirement since the computed value of the probability is 0.072. This means that the likelihood
to take a picture within 6 units of time is less than 1/10. Nevertheless, considering the fact that
charging the flash may take a significant amount of the 6 unit of time, the obtained result reflects
either a bad design or that this particular performance requirement is not mandatory but rather
optional. However, the model checker has determined higher probability values for more relaxed
time constraints. Thus, a value of 0.144 was identified for a time interval of 7 units, 0.312 for 8

units and 0.48 for 9 units.
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Chapter 11

Conclusion

The increased difficulties posed by modern system development, especially in the area of software
intensive systems design led to the emergence of systems modeling languages such as UML 2.0
and SysML. Organizations such as INCOSE and OMG represent very active drivers in the devel-
opment of the aforementioned modeling languages that are meant to accommodate a broad range
of systems engineering aspects.

Systems engineering aims to the successful design and development of complex systems by
providing the means to cope with the increased complexity exhibited by modern system design al-
lowing for the development of structured and efficient approaches for solving complex engineering
problems.

In this research initiative, we presented a unified paradigm for the automated verification and
validation of software and systems engineering design models expressed in UML and SysML
mainly based on model checking techniques and intended as a rigorous augmentation for conven-
tional techniques involving testing and simulation.
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The appropriate techniques for the proposed approach were gradually introduced in the context
of the presented verification and validation framework embodying the proposed methodology. The
thesis also details the artifacts and specification of the targeted behavioral diagrams, namely the
state machine and activity diagrams while introducing a unified semantic model that is appropriate
for capturing the semantics of such behavioral models. The procedure involved in applying the
model checking technique is also described along with model property specification in the con-
text of the CTL temporal logic. Moreover, the feasibility of the methodology is demonstrated on
relevant case studies. Additionally, the synergy emerging from using program analysis techniques
is advocated as means to tackle the state explosion problem that is characteristic to the model
checking procedure. Furthermore, it details a transformation procedure of SysML activity diagram
annotated with time constraints and probability artifacts to discrete time Markov chains that can
be analyzed by a probabilistic model checker in order to assess various performance parameters.

The significance of the presented research initiative gained scientific visibility in several pub-
lications [2—4, 33]. Also, the proposed methodology is cost effective and can be used in order
to diminish and even eliminate the variances between design intent and actual design quality and
performance. Moreover, by using it during the early stages of the design, the common penalities
associated with late maintenance, debugging and error fixing can be significantly alleviated. Fur-
thermore, due to its automated characteristic, one can also use such a verification and validation
paradigm for the assessment of already existing software and system design models. Consequently,
this can help in discovering potential heretofore unidentified erroneous or undesired behavior as

well as in detecting concealed performance issues.
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