New Measurements for Building Secure Software

Khalid Ibrahim Sultan

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

June 2007

© Khalid Ibrahim Sultan, 2007

Bibliotheque et
Archives Canada

Library and
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34464-4
Our file Notre référence
ISBN: 978-0-494-34464-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

New Measurements for Building Secure Software

Khalid Ibrahim Sultan

Despite the increased focus of today’s research towards improving security of the
cyber infrastructure, there still exists room for improvement particularly in handling
security during the software development life cycle (SDLC). Developing secure software
requires that the developers should address security issues as part of each phase of the

software development process.

Security metrics are powerful techniques that can assist software designers and
developers integrate security features into their systems from the very beginning in the
development lifecycle. However, it is worth mentioning that the idea of introducing such

metrics in each phase of the SDLC has not appeared before.

To cope with the situation, we propose a new set of technical security metrics for
building secure software. The proposed metrics are aimed to address the security related
parameters throughout the entire SDLC. The focus of this research is to examine the
concept “Design for Security” as part of research efforts and to incorporate technical
security issues related to the development of software from the very beginning in the

development process.

This set of metrics is further divided into subgroups where each subgroup
corresponds to a particular phase of the SDLC. While describing each of these metrics, it

has been specified whether a particular metric can be calculated automatically or

1ii

manually. For calculating the automated metrics, we built a tool using JavaCC (Java
Compiler Compiler) to do so. It takes a C/C++ source code files as input. The output of
the tool is basically the automated security metrics during the implementation phase. We
believe that considering these metrics will help people involved in the software

development process improve their applications from the security point of view.

Keywords: Software Security, Security Metrics, Software Development Lifecycle, Design

for Security.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who gave me the
possibility to complete this thesis.

I am deeply indebted to my supervisor Dr. Abdeslam En-Nouaary for his
suggestion of the research topic, the continuous help, and invaluable guidance through
all the research stages.

I would also like to thank Dr. Olga Ormandjieva, Dr. Abdelwahab Hamou-
Lhadj, and Dr. Rabin Raut for accepting to serve in the examination committee of my
thesis defense.

Special thanks go to the Ministry of Higher Education and Al-Mergheb
University (Libya) for their financial support.
Last, but not least, I would like to give my special thanks to my wonderful family

for their patience, sacrifice, and support during all those years of my studies.

Table of Contents

List of Figures ix
List of Tables b ¢
List of Acronyms xi
Chapter 1: Introduction 1
1.1 Security Metrics - Genesis: 2
1.2 Software Metrics: 4
1.2.1 WRY USE MELTICS? ..oeeeiieeiietieeertteeeiiee et e eesnree s et eee s e sencneseaene s semmasesessnsnes 4

1.2.2 MEMTICS TYPES: tineieiieiiieeeeteeet ettt et cesate s aeeste s st e sare s saesssnasessaesssnnes 6

7 Organizational MEICS: ..cc.covvuirieiriiieiiiiert ettt e et s embesene 6

P Operational METICS:cocvviiiiiiieieectrceenccteit ettt esae e e ene 6

¥ Technical MEtTiCS: ..c.cocviiiiiiiienreriieceiei ettt ettt et et see st e s st n e 7
1.2.3 Properties of SOftWare MEITICS:cc.ceevieeiieeiireniereie e e eesnreesiee e saeeseranenanes 7
1.2.4 Which MEtrics t0 USE7......ccceeiuieeiiiieiinierce ettt ssee e seeeeee e e s ae s 8

1.2.5 Documentation Of MEtriCS:cocererieerierinierieieneeenteneeteecet e e cere e 8

1.3 Thesis Objective: 11
1.4 Thesis Outline: 12
Chapter 2: Software Security Review 13
2.1 Software Security Definition: 13
2.2 Security Concepts: 14
2.3 Systems and Security 16
2.4 Security services 17
2.5 Common Security Loop Holes: 18

vi

2.5.1 BUffer OVErfloOW:ocvierieieeeetete ettt seb e enaes
2.5.2 RACE CONAILION: .evrreeiieieeteiitee ettt ettt rene st e sae e e s beseeaessassnaenaes
2.5.3 Trust Management:coeeerreeieinieiiiinicirircee st
2.5.4 Badly Implemented Cryptography and Cryptographic Algorithms:

2.6 Summary:

Chapter 3: Security in Software Development Lifecycle

3.1 Software Development Life Cycle Background:

3.2.1 The GENETAl MOAEL ...ttt eeseresesssesenessesssssssssessanessaessns
322 Waterfall MOAEl: ...ttt et veesssesaresnnanestmeeasnenanases
324 Incremental MOAELooovvvvioieieiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e eeseeeves et re s s sanamsaas

3.2.5 Spiral MOdEl......c..ooiiiiiiiiiiiecectcertcre ettt b et

3.3 Existing State-of-the-Art Technologies:
3.3.1 Requirement Phase: AbUSe Cases........ccoeveeeeirerirerennerneenieeneterereeesseesssnessnne
3.3.2 Design Phase: Threat Modeling.........cccceeceeveriivrinienieenenieceeteseneeneeecenee
3.3.3 Implementation Phase: Code ReVIEWcoocurervriiriiiieiieniireeneeereiiereennee
3.3.4 Testing Phase: Penetration TeSting........ccccceveeeereniinniececnienccreensece e

3.4 Summary:

Chapter 4: New Measurements for Building Secure Software

4.1 Requirement Phase:

4.2 Design Phase:

4.3 Implementation Phase:

4.4 Testing Phase:

4.5 Maintenance Phase:

Vil

19

20

21

21

22

23

23

24

26

29

30

32

32

35

39

42

44

45

45

53

57

63

65

4.6 Summary: 71
Chapter 5: Implementation and Results 72
5.1. Approach Methodology: 72
5.2 Why JavaCC? 73
5.3. Automatically Calculated Metrics: 75
5.4 Security Problems: .75
5.5 Activity Diagram: 81
5.6 Sequence Diagram: 82
5.7 Running the Tool:viinnincrrccssrencssnsscssissssssssssssssssssssesessssssssssssssasessssssssses 83
5.8 Results ANALySis: ..cocevcecrerissssnrsssncsssarssssssisssencssaessssssssssssssssssssassssanses 84
5.8.1 Simple Example: 84
5.8.2 Results DiSCUSSION:uuviriirniiiiiistinisissiennisssesnssessssessssssssssssssssesssessessssesssesanse 86
5.9 Summary: 91
Chapter 6: Conclusion and Future Work 92
6.1 Achievements: .. 92
0.2 FULUre WOTK: c....uuieeieieininineniencsiicsncssinssstsssssessssssssssssssssssssesssssssssssessssssssases 93
ReferenCes: uuuiiirieinssicscnscsssnccssanecsssnessassssasascssesssssssasananes 94

viil

List of Figures

Figure 2.1: The relationship between security concepts and computer networks 15
Figure 2.2: Security-related software vulnerabilities reported to CERT/CC................... 18
Figure 2.3: Writing beyond array bounds..........c..cecevuerveicieeiiciiiinniincccenne 19
Figure 2.4: C source code contains buffer overflow vulnerabilitycccecrureinnnnnnnee. 20
Figure 3.1: General Lifecycle Model...........c..cccooiminiiiiininiiiccenicceneeccreneeneeene 24
Figure 3.2: Waterfall Lifecycle Modelcoccoviriniininiieeerceeeiecencceecceene 26
Figure 3.3: Rapid Prototype Lifecycle Modelc.ooeiieiieninniiiiciececeenene 28
Figure 3.4: Incremental Lifecycle Model ..o 30
Figure 3.5: Spiral Lifecycle Model.........cooooviiiniiniiiiiiiniecceeeecce e 31
Figure 3.6: An example of wanted behavior and unwanted behaviorccceeeeneenne. 33
Figure 5.1: TOOl StrUCHUTE......c.covueriiiiiiiiiiiiiiciiitrtercccrctca s 73
Figure 5.2: Generation of JavaCC Parsercccceeveereeeeieenienereeeeseeeresiessesesssesnenans 74
Figure 5.3: The relationship between a JavaCC lexical analyzer and a JavaCC parser .. 74
Figure 5.4: C++ code poses a buffer overflow security problemccccecceveneecnccnnen. 79
Figure 5.5: Activity DIagraml......ccccccoovviiiiimiinieieniiienreerrenstreesiressteessseeesseesssessssaeesssns 81
Figure 5.6: Sequence Diagram........ccoceeiiiiiniieiiiiiiiiiiiireitceseeeenreceeeesreeesneeesnaee e 82
Figure 5.7: GUI for the input file.........cccoooiiiiiiiniininenie ettt 83
Figure 5.8: GUI for displaying the proposed metric for the C/C++ input file................. 84
Figure 5.9: Simple example applied to our tool...........ccccoeeiiiniiiniiiinieenceereneene 84
Figure 5.10: The result obtained from entering the simple example to our tool 85
Figure 5.11: Te result of executing the previous example...........ccccoecvervieenieneineeerveennne. 85
Figure 5.12: The metrics obtained when our tool applied on file access.C......coeveeennnn. 88

X

Table 1.1:

Table 1.2:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:

List of Tables

Characteristics 0f GOOd MELTICScocereiiriiriieeeerteeceteteeeeee et 3

Metrics Detail FOTM....couooiviiniiiiieiecetceenee ettt 9

Metrics declared to be automatically calculated............cccocceeveeienrniecennne 75
Vulnerable funCtions..........ecveereereriererninieieentet et see et se e eeeens 79
WU-ftpd-2.6.2package filescoceriininieniieieieeeete et 87
Results obtained from our tool on access.c fileoceveeiiiniiiiiciiiiee 88
ITS4 results for access.c file......coouinimirrnienieieeeeee e 89
Results obtained from our tool on wu-ftpd 2.6.6.........ccoovviviiiiiiiiie 89
ITS4 results for Wu-ftpd 2.6.6..........oeeeereeeeeeeeceeceee e 90

ACSAC
BNF
CERT/CC
DFD

DREAD

FTP
GUI

IT

ITS4
JavaCC
MS-DOS
NIST
RATS
SDLS
SMART
Splint

STRIDE

UML

WU-FTPD

List of Acronyms

Annual Computer Security Applications Conference

Backus Nour Form

Computer Emergency Response Team Coordination Center

Data Flow Diagram

Damage potential, Reproducibility, Exploitability, Affected users,
and Discoverability

File Transfer Protocol

Graphical User Interface

Information Technology

It’s the Software Stupid Secunity Scanner

Java Compiler Compiler

Microsoft - Diskette Operating System

National Institute of Standards and Technology

Rough Auditing Tool for Security

Software Development Lifecycle

Specific, Measurable, Attainable, Repeatable, and Time-dependent
Secure Programming Lint

Spoofing, Tampering, Repudiation, Information disclosure, Denial
of service, and Elevation of Privileges

Unified Modeling Language

Washington University - File Transfer Protocol Daemon

X1

Chapter 1: Introduction

Nowadays, security problems involving computers and software are frequent,
widespread, and serious. Therefore, the production of secure software is a must in the
interconnected electronic world of today. The number and variety of attacks by persons
and malicious software from outside organizations, particularly via the Internet, are
increasing rapidly. Over 90% of security incidents reported to the Computer Emergency
Response Team Coordination Center (CERT/CC) results from defects in software
requirements, design or code [1]. This is basically due to the lack of consideration for the
security features during the development process. Part of the problem is that security
teams are often called in to add security to software at a post development stage, rather
than working alongside developers during the development process.

According to the literature reviewed for this research, it is obvious that ensuring
software security needs to be considered from the very beginning in the SDLC. However,
security as a non-functional requirement is often an afterthought in system design and
often addressed late in the software development process. As a result, the security of such
systems is poor and can lead to security compromises, increased cost of maintaining the
software [2,3,4,5,6].

A secure system has security designed during initiation and implementation not
during maintenance because patches applied after implementation can introduce other
vulnerabilities, leading to a spiral of patching, fixing, and re-patching.

The software security research community believe that all the phases of the SDLC

should participate in a common activity; security assurance. Therefore, we need to move

beyond the firewall and build security into software as it is being created in order to
achieve a more secure environment.

From the technical point of view, yet there is a significant lack in handling
security during the SDLC. In fact, there is no such metrics for security in SDLC. The
metrics being developed in this research help to judge the technical objects of the SDLC
from security stand point which eventually helps to develop software products with

security in mind.

1.1 Security Metrics - Genesis:

Metrics are the tools that enable stakeholders to make decisions based on
quantitative or qualitative assessments rather than hunches or best guesses. Security
metrics are the application of quantitative, statistical, and/or mathematical analyses to
measuring security functional trends and workload. In other words, it is the tracking of
what each function is doing in terms of level of effort, costs, and productivity [7,8].

The purpose of measuring security is to monitor the status of measured activities
and facilitate improvement in those activities by applying corrective actions, based on
observed measurements.

Security metrics must yield quantifiable information for comparison purposes,
apply formulas for analysis, and track changes using the same points of reference.
Percentages or averages are most common, and absolute numbers are sometimes useful,
depending on the activity that is being measured [9].

Moreover, data required for calculating metrics must be readily obtainable, and

the process that is under consideration needs to be measurable. Only processes that are

consistent and repeatable should be considered for measurement. Although the processes
may be repeatable and stable, the measurable data may be difficult to obtain.

Good metrics are those that are SMART, i.e. specific, measurable, attainable,
repeatable, and time-dependent, according to George Jelen of the International Systems

Security Engineering Association [10]. Here is the definition of these characteristics of

metrics.

Specific Metrics should be well defined, using unambiguous language that
requires no judgment or interpretation by measurement takers.

Measurable Metrics by definition must be quantitative in nature. If something
can be counted or weighed, it is measurable.

Attainable Some measurements are specific and theoretically measurable, but
repeated measurement is not practical. Metrics, therefore, must be
within both the budgetary and technical limitations of the
measurement takers.

Repeatable Metrics, by definition, consist of measurements. Those

measurements are often gathered by different people at different
times, and potentially, across many organizations. When two
different measurement takers look at the same phenomenon, they

should each record the same measurement.

Time-dependent | Time-dependence is particularly important when measuring a
dynamic process, such as security. Metric contexts are typically
time-dependent, both because the setting of baselines requires
multiple time slices and because measurements themselves are only

valid for finite periods of time.

Table 1.1: Characteristics of Good Metrics

1.2 Software Metrics:

Software measurement can be defined informally as a process of quantifying the
attributes of software in such a way as to characterize them according to clearly defined
rules [11].

Software engineering, as any engineering approach, requires a measurement
mechanism to provide feedback and assist the software development, testing, and
maintenance. However, software measurement requires a definition of the environment in

which the measurement is expected to be performed.

1.2.1 Why use Metrics?

It is a widely accepted principle that an activity cannot be managed if it cannot be
measured. Security metrics are powerful techniques that can help software designers and
developers to integrate security features into their systems very early in the software
development process [12]. They also help them to be able to develop mitigation strategies
for the potential threats and vulnerabilities. However, Addressing security metﬁcs as part
of the life-cycle can be a cost-effective way to achieve overall goals and build secure
software.

The use of metrics has recently received a lot of attention. They provide useful
data that can be analyzed and utilized in technical, operational, and business decisions
across an organization. Metrics, in general, assist developers in meeting overall mission
goals such as continuity of operations, safety, reliability, and security.

There are four reasons for measuring software processes, products, and resources:

e to characterize

e to evaluate
e to predict
e to improve

We characterize to gain understanding of processes, products, resources, and
environments, and to establish baselines for comparisons with future assessments.

We evaluate to determine status with respect to plans. We also evaluate to assess
achievement of quality goals and to assess the impacts of technology and process
improvements on products and processes.

We predict so that we can plan. Measuring for prediction involves gaining
understandings of relationships among processes and products and building models of
these relationships, so that the values we observe for some attributes can be used to
predict others. This can help in establishing achievable goals for cost, schedule, and
quality so that appropriate resources can be applied. Predictive measures are also the
basis for extrapolating trends, so estimates for cost, time, and quality can be updated
based on current evidence. Projections and estimates based on historical data also help us
analyze risks and make design/cost tradeoffs.

We measure to improve when we gather quantitative information to help us
identify roadblocks, root causes, inefficiencies, and other opportunities for improving
product quality and process performance. Measures also help us plan and track
improvement efforts [13,14].

Though metrics may be required by laws, regulations, or administrative mandates,
they should be an integral part of any information security program. Metrics are a

necessary component of accountability policies. When implemented, they will change the

behavior of an organization, especially when tied to compensation, bonuses, and budgets.
Collecting and analyzing security-related metrics are a critical aspect of continuous
improvement in both private and public organizations. When making a business decision,
security metrics can provide a set of tangible data to support one course of action over

another [15,16].

1.2.2 Metrics Types:

Metrics can be characterized by what they measure as follows [17]:
» Organizational Metrics:

Organizational metrics are used to describe, and to track the effectiveness of
organizational programs and processes. They are used to support both strategic and
tactical decisions regarding an organization’s use of its resources. Strategic decisions
involve investment in IT architectures or technologies as well as the creation, sustaining,
and termination of security programs and program elements. Tactical decisions involve
the allocation of already-budgeted resources among security program elements and
activities. Moreover, Organizational metrics are often used in mandated performance or
compliance reporting, and are generally tied to standards of good practice [17]. Shortly,
we can say that organizational metrics assess the adequacy of standards, policies, and

procedures adopted by an organization.

> Operational Metrics:
Operational metrics are designed to assess an organization’s formal policies and
procedures. They are used to describe, and hence manage the risks to operational

environments. Most measures of risk, or of its component factors, are operational metrics.

Moreover, Operational metrics apply to systems and organizations in an operational
environment [17]. Operational metrics for security include measures of operational
readiness or security posture, i.e., how well can a system or organization be expected to
perform given an assumed threat environment; measures used in risk management,
including security performance, compliance, and risk metrics; metrics that describe the
threat environment; metrics that support incident response and vulnerability management;
and other metrics produced as part of normal operations that can be used directly as, or as

input to, security metrics.

» Technical Metrics:

Technical metrics assess the adequacy of a system or component security.
Technical metrics are used to describe, and hence compare, technical objects, particularly
products or systems, against standards; to compare such objects; or to assess the risks
inherent in such objects. Technical metrics could help industry select products that best
meet their security requirements. Technical metrics are generally associated with

technical standards.

1.2.3 Properties of Software Metrics:

According to Sellers, a software measure in general should be objective,
reliable, valid, and robust [18]. Objectivity means that the measurement process should
not depend on the subject that performs the measurement. The reliability requires the
metrics to characterize in a unique way every entity measures. Equal entities should

obtain equivalent measurement values, repeated measurement in equal conditions should

give same values for the same entities. The robustness requires the ability of a measure to

tolerate incomplete information.

1.2.4 Which Metrics to Use?

The Goal Question Metric paradigm (GQM) is one of the best-known and widely
used mechanisms for defining measurable goals, and the appropriate measurements
which would characterize the achievement of those goals [14]. GQM is a six-step
methodology for setting a measuring framework within the context of an organization or
a specific project. The steps are outlined below:

Step 1: (Conceptual Level) Develop a set of goals.

Step 2: (Operational Level) Develop an operational model.

Step 3: (Quantitative Level) Determine the measures needed.

Step 4: Develop a mechanism (tool) to collect and analyze the data.

Step 5: Collect measurement data, and empirically validate the measures.

Step 6: Analyze the data and feed back to the projects.

In this work the GQM approach has been applied to identify the appropriate
measurable goals for achieving software security, and theoretically valid measurements

for indicating the achievement of security goals.

1.2.5 Documentation of Metrics:
Once applicable metrics that contain the qualities described above are identified,
they will need to be documented in the Metric Detail Form in Table 1.2.The technical

security metrics form that is used in our thesis is based on the metrics development

guidelines from NIST Security Metrics Guide for Information Technology Systems [8].
This form will be used to document all the security aspects that can eventually be used to

calculate our metrics.

Performance goal

Performance objective

Metric

Purpose

Implementation evidence

Frequency

Formula

Data source

Indicator

Table 1.2: Metrics Detail Form

Table 1.2 contains information that defines the goal, objective and purpose of the
security metric. Multiple performance objectives can correspond to a single performance
goal. In such a case a different table shall be used to document each performance
objective. The implementation evidence serves for validating performance of security
activities and pinpointing causation factors [8]

One thing should be mentioned here is that to obtain adequate results from our
research; some modifications are done in this form as follows:

Performance In the metrics we are developing in this research, we will be using

goal security goal instead of performance goal. This is because the

Performance

objective

Metric

Purpose

Implementation

evidence

Frequency

Formula

Data source

purpose of our work is to provide guideline how to take security
considerations into account in the life cycle of the application. This
field states the desired results of considering security aspects during
a certain phase in the SDLC or for a component measured by the
metric.

Here, we are using security objective instead of performance
objective. This item will list one or more security questions. Multiple
security objectives can correspond to a single security goal.

This field defines the metric by describing the quantitative
measurements provided by the metric.

The purpose describes the reason of collecting the metrics.

This field lists the security assertions that are performed as
implementation evidence.

The frequency is a suggested time frame when the security function
testing is done. Repeating the calculation for a metric depends
basically on the metric being calculated itself and/or sometimes on
the SDLC model used to build the software. For example, when
incremental model is used, the metrics in the implementation phase
should be repeated for each build.

The calculation to be performed that results in a numeric expression
is described in this field. The implementation evidence listing serves
as an input in the formula to calculate the metric.

Data source in our case depends on at which phase of the application

10

life cycle we are; for example: within the design phase, the risk
analysis is most properly the main data source for collecting a metric.

Indicator The indicator is used to describe the interpretation of the metric. If
the metric is, for example, a percentage then the indicator will
describe the implications when the metric is very low and when it
converges to 100 percent.

Implementation We added this row to describe whether the metric being calculated
can be automatically calculated because not all metrics we proposed
are automated. Therefore, this filed should be filled in by either:
automatically calculated or Manual.

Choosing this form was based on the fact that this standard provides sufficient
coverage of the required description of the metric. This is useful for integrating security
into the development life cycle of an application as it provides clear way for developing

secure software from the very beginning.

1.3 Thesis Objective:

The main objective of this research is to develop a set of security metrics which if
focused during the SDLC will help building secure software. The importance of our
contribution is that the idea of introducing metrics for security in each phase of SDLC
has not appeared before, so our work will provide software developers with security
guideline to help them improve the application being developed from the security stand

point during each stage of the development life cycle.

11

Our research aims to ensure that security is fairly represented during each phase
of the development lifecycle by making sure that security is kept in mind and considered

as a property of the software from the requirements phase till the retirement.

1.4 Thesis Outline:

The rest of this thesis is organized as follows. In Chapter 2, the concept of
software security is discussed. Chapter 3 presents the Security in SDLC. Some techniques
used to provide security in SDLC along with a brief review of SDLC are presented in this
chapter. Chapter 4 introduces new metrics for building security in SDLC. Our
implementations to calculate the security metrics along with results discussion is
described in chapter 5. Chapter 6 shows the summary of our research as well as the

improvements that could be done in the future to enhance our work.

12

Chapter 2: Software Security Review

The software security field is a relatively new one. Until recently, security was an
afterthought; developers were typically focusing on functionality and features, waiting to
implement security at the end of development. Indeed, doing so helps to address some
problems but fails to address the root causes of the real security problems. In this chapter,
we are going to review the concept of the software security along with some other
security concepts to give an idea about this field and how it can help in producing secure

software.

2.1 Software Security Definition:

Software security is the idea of engineering software so that it continues to
function correctly under malicious attack. More precisely, it is the process of designing,
building, and testing software for security. Software security is mostly concerned with
designing software to be secure [2,19]. Issues critical to this field include, but not limited
to, software risk management, design for security, and security tests. Definitions of these
terminologies are explained below to make the picture clearer.

e Software Risk Management: software risk management is a means of
identifying, and mitigating software risks. In more details, it means dealing with a
concern before it becomes a crisis. This improves the chance of successful project
completion and reduces the consequences of those risks that cannot be avoided.
Software risk management is becoming recognized as a best practice in the

software industry for reducing the surprise factor.

13

e Design for Security: design for security is the notion that security should be
considered during all phases of the development cycle and should deeply
influence system’s design. Our contribution comes under this subfield. It aims to
examine the concept of “Design for Security” by introducing a new set of metrics
to be considered when developing software in order to ensure that security is
fairly represented during each phase of the development lifecycle.

e Security Tests: Security tests are meant to include all tests applied on software to
ensure that it is secure enough. This includes static and dynamic testing, which
applied on source code for detecting security problems such as buffer overflow
vulnerabilities, and penetration testing which performed on a system in its final

production environment.

2.2 Security Concepts:

This section briefly describes fundamental concepts of software security.
Understanding these concepts is vital for people who deal with security issues of software
systems.

e Security policy: A set of rules and practices that specify or regulate how a system
provides security to protect sensitive data and critical system resources.

e Security flaw: A security flaw is a software defect that poses a potential security
risk.

¢ Risk: flaws and bugs lead to risk. Risks capture the probability that a flaw or bug

will impact the purpose of the software.

14

e Vulnerability: Vulnerability is a set of conditions that allows an attacker to

violate an explicit or implicit security policy.

e Exploit: An exploit is a piece of software or technique that takes advantage of a

security vulnerability to violate an explicit or implicit security policy.

e Mitigation: Mitigations are methods, processes, tools, or runtime libraries that

can prevent or limit exploits against vulnerabilities.

e Attacker: A malicious actor who exploits vulnerabilities to achieve an objective.

These objectives vary depending on the threat. An attacker can also be referred to

as the adversary, malicious user, hacker, or other alias [20].

The relationship between these security concepts and computer networks are shown in

the following figure.

Computer
- Systern.

resolved
by

may
i may 055ess may
contain contain ¥ P passess
can lead to g g
> Vulrierability.

addressed
by

attacked
by

A4

- Exploit - -

< Mitigation

Figure 2.1: The relationship between security concepts and computer networks

As seen in figure 2.1, a network can be defined as a group of two or more

computer systems linked together. A computer system is a complete, working computer.

15

The computer system includes not only the computer, but also any software and
peripheral devices that are necessary to the computer function.

Programs are constructed from software components and custom developed
source code. Software components are the elements from which larger software programs
are composed [21]. Source code comprises program instructions in their original form.
There should be a security policy to be applied to both network and computer systems.
The network itself may possess vulnerability or more. Also, computer systems may
possess vulnerability or more. Both Software component and source code may contain
security flaw which might lead to vulnerability at the end. An attacker can exploit the
vulnerability to attack the system. Therefore, mitigations are set to address the

vulnerabilities as well as to resolve the security flaws.

2.3 Systems and Security

The problem with developing a secure system is that there are many conflicting
goals to accommodate. These include functionality, usability, efficiency, scalability,
simplicity, and modularity of a system. For an entity to complete a single transaction,
several systems may be involved. The transacting processes can be affected by a fault
that happens in one of the systems. Complex systems are made of many components that
interact with each other and each component is the collection of thousands of lines of
codes. A single erroneous line of code may cause a fault in the whole system. Practically,
the implementation engineering process faces the reality of design tradeoff and imperfect
configuration in the implementation process. That is why more secure systems can only

be developed if the security engineering is part of development lifecycle [4,22].

16

2.4 Security services
Here in this section, some of the known security services are defined.
2.4.1 Confidentiality: Confidentiality refers to limiting information access and
disclosure to authorized users "the right people”, and preventing access by or disclosure
to unauthorized ones "the wrong people". Usually this can be achieved by applying
cryptographic functions.
2.4.2 Authentication: Authentication is a security feature that ensures authentic
communication between entities. This security service provides proof of origin
authentication between the sender and the responder. Human authentication factors are
generally classified into three cases:
¢ Something the user is or does (e.g., fingerprint, DNA sequence, or signature or
voice recognition)
e Something the user has (e.g., ID card, security token, or cell phone)
e Something the user knows (e.g., a password, or personal identification number
(PIN))
2.4.3 Integrity: Integrity addresses the concept of trustworthiness of assets especially the
data, message or a stream of data.
2.4.4 Availability: Availability refers to the availability of information resources;
assuring information and communications services will be ready for use when expected.

Resource unavailability is critical even if a single user uses the service [4].

17

2.5 Common Security Loop Holes:

Over the last years, the problem of security in software has grown exponentially
[11,23,24]. Figure 2.2 shows the number of security-related software vulnerabilities
reported to the CERT Coordination Center over several years. According to this graph,
there is a clear and pressing need to consider security as a critical issue when developing

software and to be integrated smoothly into early life-cycle activities [1].

8500
8000 |- ———
7500 | — L
7000 |— —-
6500 - — - - -—
6000 | - -
5500
5000 { oo ——
4500 |-
4000 } —— -
3500 f oo
3000 | B
2200 f — —
2000 f— oo
1500 § — ——
1000

500*7777 E 7 =
0 3 .

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Figure 2.2: Security-related software vulnerabilities reported to CERT/CC

A lot of research has been done to address every single problem of them, we
present a brief description of some common security problems that might lead to or make

security vulnerabilities in software.

18

2.5.1 Buffer Overflow:

Buffer overflow is one of the most common problems of bad programming. It
occurs when data is written outside of the boundaries of the memory allocated to a
particular data structure. Depending on the location of the memory and the size of the
overflow, a buffer overflow may go undetected, which can corrupt data, cause erratic
behavior, or terminate the program abnormally [4].

16 Bytes of data

A

Source [F T
memory
Copy
operation
Destination
memory

o A J

e Y

Allocated memory (12 bytes) Other memory

Figure 2.3: Writing beyond array bounds

Figure 2.3 depicts how buffer overflow occurs in memory by showing an example of
copping 16 bytes of data into destination memory of 12 bytes. The result of this operation
is that the 4 bytes just next to the destination memory will be used to store the last 4 bytes
of the source.

To elaborate this point, let’s consider the following C source code which exhibits a
common programming mistake. Once compiled, the program will generate a buffer
overflow error if run with a command-line argument string that is too long, because this

argument is used to fill a buffer without checking its length.

19

/* C source code demonstrates a buffer overflow */
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv(])
{
char buffer[10];
if (arge <2)
{
fprintf(stderr, "USAGE: %s string\n", argv[0]);
return 1;
}
strepy(buffer, argv{1]);
return O;

}

Figure 2.4: C source code contains buffer overflow vulnerability

Strings of 9 or fewer characters will not cause a buffer overflow. Strings of 10 or
more characters will cause an overflow: this is always incorrect but may not always result

in a program error.

2.5.2 Race Condition:

Race condition is an undesirable situation that occurs when a system attempts to
perform two or more operations at the same time, but because of the nature of the system,
the operations must be done in the proper sequence in order to avoid problems.

For example, if one process writes to a file while another is reading from the same
location then the data read may be the old contents, the new contents or some mixture of

the two depending on the relative timing of the read and write operations [25].

20

2.5.3 Trust Management:

One of the biggest problems in software security is that developers often make
poor decisions about whom and what to trust. Trust isn’t something that should be
extended lightly. In the case of software, this means we shouldn’t even trust our own
servers unless we absolutely must. Therefore, servers should only trust one another if

absolutely necessary to meet requirements [4].

2.5.4 Badly Implemented Cryptography and Cryptographic Algorithms:

Badly implemented cryptographic process or algorithm with known flaws can
both lead to severe vulnerabilities. Whenever possible, widely reviewed cryptographic
libraries should be used. In addition, as cryptography relies on random numbers, without

a good source of random numbers, the cryptographic output will be weaker.

2.5.5 Access Control:

Controlling which person, process or machine has access to which assets is one of
the common security problems. Who should access what and when, should be well
addressed to prevent the system from being compromised. Access control is a general
way of talking about controlling access to system resources. It’s the ability to permit or
deny the use of an object (a passive entity, such as a system or file) by a subject (an
active entity, such as an individual or process). Access control systems provide the
essential services of identification and authentication, authorization, and accountability.

Identification and authentication determine who can log on to a system while

21

authorization determines what an authenticated user can do, and accountability identifies

what a user did. [4]

2.6 Summary:

Though relatively new, software security is an important discipline [2]. As we
have seen in the literature discussed in this chapter, security problems in software are
common. The problem has multiplied exponentially over the last few years. We believe
that the way security is approached has to be changed. Achieving this goal can only be
met if security is considered in all SDLC phases, from requirements to product

retirement.

22

Chapter 3: Security in Software Development Lifecycle

Security is not a feature that can be added to software once it is developed.
Instead, it is an emergent property of a system. As security is not a feature, it can’t be
bolted on after other software features are codified. Nor it can be patched in after attacks
have occurred in the field. Security must be built in from the ground up, considered a
critical part of the design from the very beginning and included in every subsequent
development phase all the way through fielding a complete system [26,27]. In this
chapter, we review the SDLC phases and then we present some existing techniques used

to provide security in the SDLC phases.

3.1 Software Development Life Cycle Background:

The SDLC is a conceptual model used to describe the stages involved in software
development process from an initial feasibility study through maintenance of the
completed application. Synonyms include software lifecycle and software process.
Various methodologies for SDLC have been developed to guide the processes involved
including the waterfall model, and Incremental Model. SDLC models describe phases of
the SDLC and the order in which those phases are executed. Although there exist several
such models and many companies adopt their own, all have very similar patterns. To give
an idea about the lifecycle of software, we present some of these models with a brief

illustration for each one of them [28,29].

23

3.2.1 The General Model

The general, basic model is shown below:

Requirements ———[% Design —{:%lmplementaﬁon——{) Testing > Maintenance

Figure 3.1: General Lifecycle Model

Each phase produces deliverables required by the next phase in the life cycle.
Requirements are translated into design. Code is produced during implementation that is
driven by the design. Testing verifies the deliverables of the implementation phase

against requirements.

3.2.1.1. Requirements Phase:

This phase is the main focus of the project managers and stakeholders. It includes
both eliciting the requirements as well as putting them into formal specifications. A
requirement is a condition needed by a user to solve a problem or achieve an objective. A
specification is a document that specifies, in a complete, precise, verifiable manner, the
requirements, design, behavior, or other characteristics of a system, and often, the
procedures for determining whether these provisions have been satisfied. Business
requirements are gathered in this phase by meetings with managers, stakeholders and
users. General questions answered during this phase are; who are going to use the
system? How will they use it? What data should be input into the system? What data
should be output by the system? This produces a nice big list of functionality that the

system should provide.

24

The requirements phase is the opportunity for the product team to consider how
security will be integrated into the development process, identify key security objectives,
and otherwise maximize software security while minimizing disruption to plans and
schedules.
3.2.1.2. Design Phase:

The software system design is produced from the results of the requirements
phase. This is where the details on how the system will work are produced. Architecture,
including hardware and software, communication, software design are all part of the
deliverables of a design phase.
3.2.1.3. Implementation Phase:

Code is produced from the deliverables of the design phase during
tmplementation, and this is the longest phase of the SDLC. For a developer, this is the
main focus of the life cycle because this is where the code is produced.
3.2.1.4. Testing Phase:

During testing, the implementation is tested against the requirements to make sure
that the product is actually solving the needs addressed and gathered during the
requirements phase.
3.2.1.5. Maintenance Phase:

Software will definitely undergo changes once it is delivered to the customer.
There are many reasons for the change. Change could happen because of some
unexpected input values into the system. In addition, the changes in the system could
directly affect the software operations. The software should be developed to

accommodate changes that could happen during the post implementation period [28,29].

25

3.2.2 Waterfall Model:

This is the most common and classic of all life cycle models. It is very simple to
understand and use. The relationship of each stage to the others can be roughly described
as a waterfall, where the outputs from a specific stage serve as the initial inputs for the
following stage. In a waterfall model, each phase must be completed in its entirety before
the next phase can begin. At the end of each phase, a review takes place to determine if
the project is on the right path and whether or not to continue or discard the project.

Unlike the general model, phases do not overlap in a waterfall model [28, 29].

f" """"""" |
Requirements { Changed 1 __
phase r._._a requirements | I
I b —————] I
Veri ! Veri !
y : _ vedty i
Y ¥ :
Specification '
phase - o - :
Veri It
od L
[
|t
Design : :
phase e — — — — — — 41
Verlfy ; : :
I BN
1y l
Impiementation i { I
phase - : i
Test B :
! i | i
I byl
|
by
Integration I
phase byl
Py
Test bl
l P
L1t
Maintenancs
—# Development phase
- - - Maintenance 4
Retirement

Figure 3.2: Waterfall Lifecycle Model

26

3.2.2.1 Advantages:

e Simple and easy to use.

e Maintenance easier

e FEasy to manage due to the rigidity of the model — each phase has specific

deliverables and a review process.

e Phases are processed and completed one at a time.

e Works well for smaller projects where requirements are very well understood.
3.2.2.2 Disadvantages:

e Adjusting scope during the life cycle can kill a project

e No working software is produced until late during the life cycle.

e High amounts of risk and uncertainty.

e Poor model for complex and object-oriented projects.

e Poor model for long and ongoing projects.

e Poor model where requirements are at a moderate to high risk of changing.

3.2.3 Rapid Prototyping Model

A rapid prototyping model is a working model that is functionally equivalent to a
subset of the product. The first step in the rapid prototype lifecycle model depicted in
figure 3.3 1s to build a rapid prototype and let the client and future users interact and
experiment with the rapid prototype. Once the client is satisfied that the rapid prototype
indeed does most of what is required, the developers can draw up the specifications
document with some assurance that the product meets the client’s real needs. The Focus

here is on development speed, not on correctness or design. Rapid prototype model aims

27

to prevent customer discovering new desires after seeing the original system at the end of

a different process.

| A |
Rapid { Changed .
prototype |___| requirements I
b ——— |
Verity : i Verify ! |
_______ i | i
' |
L ¥ |
Specification :
hase |
P e o e e e 9
Verity L
I
bl
3 i
. I
Design -
phase ~ B
il :
Verify ; : i
1!
4 P!
!
Implementation e — — 1 |
phase | I I
| |
Test I { ' I
by
| i by
integration : ; : :
phase Fyly
Test byt
bybg
[I
(I A
~——> Development Maintenance
- — - Maintenance phase

L Retirement ‘

Figure 3.3: Rapid Prototype Lifecycle Model

3.2.3.1 Advantages:
e Reduces development time.
e Reduces development costs.
e Developers receive quantifiable user feedback.
e Results in higher user satisfaction.

e Exposes developers to potential future system enhancements.

28

3.2.3.2 Disadvantages:
¢ Can lead to insufficient analysis.
e Users expect the performance of the ultimate system to be the same as the
prototype.
e Developers can become too attached to their prototypes
e (Can cause systems to be left unfinished or implemented before they are ready.
e If sophisticated software prototypes are employed, the time saving benefit of

prototyping can be lost.

3.2.4 Incremental Model

The incremental model is an intuitive approach to the waterfall model. Cycles are
divided up into smaller, more easily managed iterations. Each iteration passes through
the requirements, design, implementation and testing phases.

A working version of software is produced during the first iteration, so we have
working software early during the SDLC. Subsequent iterations build on the initial
software produced during the first iteration [28,29].
3.2.4.1 Advantages:

¢ Generates working software quickly and early during the software life cycle.

e More flexible — less costly to change scope and requirements.

e Easier to test and debug during a smaller iteration.

e Easier to manage risk because risky pieces are identified and handled during its
iteration.

e FEach iteration is an easily managed milestone.

29

Requirements
phase

Verify

Specification
phase

Verify

Architectural
design

Verify

4

For each build:
Perform detailed [~ — — 7
design, imple-

I
mentation, and !
integration. Test. |
Deliver to client. :

1

!

~— Development Maintenance
- ——» Maintenance > phase
[Retirement |

Figure 3.4: Incremental Lifecycle Model

3.2.4.2 Disadvantages:
e FEach phase of an iteration is rigid and do not overlap each other.

¢ Problems may arise pertaining to system architecture because not all requirements

are gathered up front for the entire software life cycle.

3.2.5 Spiral Model

Spiral model is similar to the incremental model, with more emphases placed on
risk analysis. The spiral model has four phases: Planning, Risk Analysis, Engineering
and Evaluation. A software project repeatedly passes through these phases in iterations.

Requirements are gathered during the planning phase. In the risk analysis phase, a

30

process is undertaken to identify risk and alternate solutions. A prototype is produced at
the end of the risk analysis phase [28,29].

Software is produced in the engineering phase, along with testing at the end of the
phase. The evaluation phase allows the customer to evaluate the output of the project to
date before the project continues to the next spiral.

In the spiral model, the angular component represents progress, and the radius of

the spiral represents cost.

Pilanning Risk Analysis

Teslin

Evaluation Engineering
Figure 3.5: Spiral Lifecycle Model
3.2.5.1 Advantages:
e High amount of risk analysis
e Good for large and mission-critical projects.

e Software is produced early in the software life cycle.

31

3.2.5.2 Disadvantages:
e Can be a costly model to use.
¢ Risk analysis requires highly specific expertise.
e Project’s success is highly dependent on the risk analysis phase.

e Doesn’t work well for smaller projects.

3.3 Existing State-of-the-Art Technologies:

This section gives a brief description of those techniques, which are being used
during SDLC to help building secure software. Making sure that security is fairly
addressed during each phase of the SDLC is a main job for the software practitioners. In
what follows, we present how much security is considered during each development

phase by presenting some techniques used for this purpose.

3.3.1 Requirement Phase: Abuse Cases

Although use case diagrams have proven quite helpful in requirements
engineering, both for eliciting requirements and getting a better overview of requirements
already started, not all kinds of requirements are equally well supported by use cases.
They are good for functional requirements, but poorer for non-functional requirements
like security requirements which often concentrate on what should not happen in the
system. Therefore, since use cases, by their nature, concentrate on what the system
should do, they obviously have less to offer when describing the opposite.

This means that use cases will be good at reflecting the so-called functional

requirements, but may not be so good for non-functional requirement.

32

2\ Register customer Steal card info

Customer

Order goods Spread virus X Attacker

Operator

Figure 3.6: An example of wanted behavior and unwanted behavior

Figure 3.5 shows a simple example about the wanted behavior and unwanted
behavior for a system that represents an online shopping process. The normal behavior
expected from the system is that the customer can register him/her self and/or order
goods. Also the operator can register and/or order goods for the customer. However,
using abuse cases allows the developer to consider the unwanted behavior that might be
done by the attacker as stealing card information and spreading viruses. As seen in the
figure above, including the expected behavior of the attacker can basically help the

developers to prevent such activities early in the development process.

3.3.1.1. What Are Abuse Cases?

Abuse cases (sometimes called misuse cases) are tools that can help you begin to
think about your software the same way that attackers do. By thinking beyond the
normative features and functions and also unexpected events, software security
professionals come to better understand how to create secure and reliable software [11].

Understanding who might attack the system is really critical. Building abuse cases

is a great way to get into the mind of the attackers. In addition to capturing and describing

33

relevant attacks, abuse cases allow an analyst to think carefully through what happens
when these functional security mechanisms fail or otherwise compromised.

The idea of abuse cases has a short history in the academic literature. McDermott
and Fox published an early paper in abuse cases at ACSAC in 1999 [30]. Later, Sindre
and Opdahl wrote a paper that explained how to extend use case diagrams with misuse
cases [31].

Their basic idea is to represent the actions that systems should prevent in tandem
with those that it should support so that security analysis of requirements becomes easier.
Creating useful abuse cases can be simply done through a process of informed
brainstorming. Approach that covers a lot of ground more quickly involves forming
brainstorming teams that combine security and reliability experts with system designers.
This approach relies heavily on experience and expertise.

To guide such brainstorming, software security experts ask many questions that
help identify the places where the system is likely to have weaknesses. This activity
mirrors the kind of thinking that an attacking adversary performs. Abuse is always
possible at places where legitimate use is possible. Such brainstorming involves a careful
look at all user interfaces as well as functional security requirements and considers what
things most developers assume a person can’t or won’t do.

One of the goals of abuse cases is to decide and document a priori how the
software should react to illegitimate users. The process of specifying abuse cases makes a
designer differentiate appropriate use from inappropriate use very clearly. Approaching
this problem involves asking the right questions. For example, how can the system

distinguish between good and bad inputs? How can the system tell that a request is

34

coming from legitimate Java Applet and not from rogue application replaying traffic?
This puts the designer squarely ahead of the attacker by identifying and fixing a problem

before it can even be created [11].

3.3.2 Design Phase: Threat Modeling

3.3.2.1 Threat Modeling-Defined:

Threat modeling is a security-analysis methodology that can be used to assess and
document the security risks associated with an application during the design
phase[25,32]. It is also known as risk analysis and risk assessment [11]. It has become a
popular technique to help system designers think about the security threats that their
systems will face. It enables them to develop mitigation strategies for the potential
vulnerabilities [32].
3.3.2.2. Threat Modeling-the process:

The threat modeling process consists of the following steps: decompose the
application, determine threats to the system, rank the threats, choose how to respond to
the threats, and choose how to mitigate the threats.

e Decompose the application:

During the decomposition phase, the job is looking at the application through an
adversary’s eyes. When adversaries view the application they only see the exposed
services. From these exposed services, the adversary formulates goals to attack the
system. To do so, a systematic approach is required. One approach is to use DFDs (Data
Flow Diagrams). By using this approach, the Threat-Modeling team is able to
systematically follow the flow of data throughout the system to identify the key processes

and the threats to those processes [25,32]. UML (Unified Modeling Language) could also

35

be used during this phase to decompose an application into its key components since
some parts of UML, such as activity diagrams, lend themselves well to the task as they
capture process in a way that is very similar to DFDs [25].

e Determining Threats To The System:

The components identified during the decomposition process are used as the
threat targets for the threat modeling. Each threat must then be categorized and ranked
according to criteria that enable the team to prioritize them. Microsoft has developed a
scheme for this categorization called STRIDE. STRIDE is a classification scheme
standing for Spoofing, Tampering, Repudiation, Information disclosure, Denial of service
and Elevation of Privileges. [2,25]

e Using STRIDE to categorize threats:
The STRIDE threat model has been used in the design of secure software systems [25].
As we mentioned above, STRIDE classifies threats into six classes based on their effect:
» Spoofing identity: Spoofing occurs when an attacker successfully poses
as an authorized user of a system.
» Tampering with data: Data tampering occurs when an attacker modifies,
adds, deletes, or reorders data.
> Repudiation: Repudiation occurs when a user denies an action and no
proof exists to prove that the action was performed.
» Information disclosure. Information disclosure occurs when information
is exposed to an unauthorized user.
> Denial of service. Denial of service denies service to valid users. Denial

of service attacks are easy to accomplish and difficult to guard against.

36

» Elevation of privilege: Elevation of privilege occurs when an
unprivileged user or attacker gains higher privileges in the system than
what they are authorized.

Classifying the threat makes it easier to understand what the threat allows an
attacker to do and aids in assigning priority. [25,32]

¢ Ranking the threats:

In order to determine the most important threats from the threats that we have already
identified in the previous phase, there is another method to determine risk called DREAD
(which is an acronym for Damage potential, Reproducibility, Exploitability, Affected
users and Discoverability) developed by Microsoft. DREAD Method is described in the
following paragraph.

e Using DREAD to rank the threats:

DREAD is another step in analyzing the threats to determine the risk of the threat and
the threat’s conditions. When using the DREAD method, a threat-modeling team
calculates security risks as an average of numeric values assigned to each of these five
categories.

> Damage potential: Ranks the extent of damage that occurs if vulnerability is
exploited.

> Reproducibility: Ranks how often an attempt at exploiting vulnerability
really works.

> Exploitability: Assigns a number to the effort required to exploit the
vulnerability. In addition, exploitability considers preconditions such as

whether the user must be authenticated.

37

> Affected users: A value characterizing the number of installed instances of
the system that would be affected if an exploit became widely available.

> Discoverability: Measures the likelihood that vulnerability will be found by
external security researchers, hackers, and the like.

When using the DREAD method, a limited range of values should be applied in order to
make the categorization of the vulnerabilities less ambiguous and more meaningful. In
addition, simplifying the range by using fewer, more meaningful values makes it easier
for a team to assign a DREAD rating to vulnerability [32].

e Choosing how to respond to the threats:

After the threats to the system are identified, we get to the point of determining
how we will deal with the threats. We have four options when considering threats and
how to mitigate them:

» Do nothing: Doing nothing is not a recommended solution because it might
lead to putting the users at risk. However, sometimes the risk is so low and so
costly to mitigate that it is worth accepting.

> Inform the user of threat: Warning the user about the problem is the second
alternative that we can choose in order to respond to a threat. By informing
the user about the problem, you allow the user to decide whether to use the
feature or not.

> Remove the problem: This solution is simply accomplished by pulling the
feature from the product. This choice is used in case when fixing the security

problem is impossible or when there is no time to fix the problem.

38

> Fix the problem: Fixing the problem is the most obvious solution and also

the most difficult as it involves more time for the development team.[25]

e Choosing how to mitigate the threats:
Determining how to allay threats is a two-step process. First, determine which
techniques can help. Second, choose the appropriate technologies for these techniques.
Techniques are not the same as technologies. A Technique is derived from a high-
level appreciation of what kinds of technologies can be applied to mitigate a threat. For
example, authentication is a security technique, and on the other hand, Kerberos is a

specific authentication technology [32].

3.3.3 Implementation Phase: Code Review

Software construction errors can lead to implementation flaws, some percentage
of which will become security vulnerabilities. Thus, a major goal is to reduce the chance
that developers introduce security vulnerabilities. To this end, we must have code
reviews[25,33,34]. In terms of bugs and flaws, code review is about finding and fixing
bugs. Code review processes -both manual and automated- attempt to identify security
bugs prior the software’s release. Current strategies are based on tools to find security
vulnerabilities in the source code. For example, Splint [33] uses lightweight static
analysis to detect common security vulnerabilities (including buffer overflows) and can
be extended to detect new vulnerabilities. Instead, Flawfinder [35] is a program that
examines source code and reports possible security weaknesses sorted by risk level.

RATS [36] as its name states, it is a “Rough Auditing Tool for Security”, because it

39

performs only a rough analysis of source code. These techniques will be discussed in
details later on.

Catching implementation bugs early is worth. Therefore, creating simple tool to
help look for security problems in the source code is an obvious way forward. The
promise of static analysis is to identify many common coding problems automatically
before a program is released.

Static analysis tools examine the text of a program statically without attempting to
execute it. On the other hand, manual auditing is very time consuming, and to do it
effectively, human code auditors must first know security vulnerabilities before they can
rigorously examine the code. Using a tool makes sense because code review is boring,
difficult, and tedious.

Some tools used to scan and detect some security problems in C and C++ source

code are presented in the following paragraphs [37].

3.3.3.1 ITS4:

ITS4 is a tool for statically scanning C and C++ source code for vulnerabilities.
It’s the first scanner built to look for security problems in code. ITS4 is actually an
acronym for “It’s the software Stupid Security Scanner” which was developed at Cigital
in early 2000. ITS4 scans the C and C++ source code for known dangerous library calls.
The tool does a small amount of checking on the argument of these calls and reports the
severity of the threat. As an example, library calls that copy a fixed —length string into a
buffer is rated as less sever than library calls copy the contents of an array into a

buffer[38].

40

3.3.3.2 Splint:

Splint stands for Secure Programming Lint. It is a static analysis tool for
checking C programs for security vulnerabilities and programming mistakes. The
software checks that the source code is consistent with security properties stated in
annotations. The annotations provide a way for the Splint software to use the
preconditions to see if function implementation ensures the postconditions. It resolves
preconditions using postconditions from previous statements and annotated preconditions

for the function [33,39,40].

3.3.3.3 RATS:

RATS (stands for Rough Auditing Tools for Security) is a scanning tool that
provides a security analyst with a list of potential trouble spots on which to focus, along
with describing the problem, and potentially suggest solutions. It also provides a relative
assessment of the potential severity of each problem, to better help an auditor prioritize.
This tool also performs some basic analysis to try to rule out conditions that are
obviously not problematic. It does only rough analysis, so it may not find errors, or find

things that are not errors [36,40].

3.3.3.4 Flawfinder:

Flawfinder is a program that searches through source code looking for potential
security flaws in source code by using a built-in database of C/C++ functions with well-
known problems, such as buffer overflow risks and providing a list of potential security

flaws, sorted by risk, with the most potentially dangerous flaws shown first. Risk level

41

depends on both the function and the values of the parameters of the function. It ignores

text inside comments and strings [35,40].

3.3.3.5 Combined Dynamic and Static Testing for Detecting Buffer Overflow:

Te main idea behind this approach is to rewrite the vulnerable source code so that
the modified code uses the new safe call version of old vulnerable C and C++ functions.
When the rewriting is possible, the tool gives different types of warnings, depending on
the complexity of the function syntax, format, and some other factors. This approach
works as follows: the tool takes the C or C++ as input, and then it does parsing process.
Every time it encounters a vulnerable function call, it classifies this function call. If this
function call is belonging to category of their interest, then it will rewrite this vulnerable
function by a safe version, which prevents the buffer overflow vulnerability. Otherwise, a
warning is issued if rewriting process is not possible. This technique claims to bring

down the false positive and false negative factors as low as possible [41].

3.3.4 Testing Phase: Penetration Testing

Security testing is about making sure the defensive mechanisms work correctly
(e.g. you cannot spoof another user’s identify), rather than that the functionality works
correctly. However, the best defense is building security in, not testing it in [11,42].

A majority of security defects and vulnerabilities in software are not directly
related to security functionality. Instead, security issues involve often unexpected but

intentional misuses of an application discovered by an attack.

42

Penetration testing is about testing a system in its final production environment.
For this reason, penetration testing is best suited to probing configuration problems and
other environmental factors that deeply impact software security.

Though penetration testing alone is not the answer, it is extremely useful and it is
an attractive late lifecycle activity. Once an application is finished, its owners subject it to
penetration testing as a part of the final acceptance regimen. Penetration testing can be
effective, as long as we base the testing activities on the security finding discovered and
tracked from the beginning of the SDLC [43].

One reason for the prevalence of penetration testing is that it appears to be
attractive as a late-lifecycle activity. Operation people not involved in the earlier parts of
the development lifecycle can impose it on the software. One major limitation of this
approach is that almost always represents a too-little-too-late attempt to tackle security at
the end of the development cycle. Fixing things at this stage is prohibitively expensive.
Post-penetration-test fixes tend to be practically reactive and defensive in mature.

The real value of penetration testing comes from probing a system in its final
operating environment. Uncovering environment and configuration problems and
concerns is the best result of any penetration testing. This is because mostly such

problems can actually be fixed late in the lifecycle [11].

3.3.4.1 Penetrate and Patch Approach Is Bad:
Basically, rushing out a patch after the product has been broken by someone instead

of coming to the realization that designing security in from the ground up is not a good

43

way to address security issues in a software product. This scheme is known as Penetrate
and Patch approach. Following are some of the limitations of this approach.
e Only known problems can be patched. Attackers might find problems that are not
reported before.
e Due to the fact that patches are often fixed under pressure, they might introduce
new vulnerabilities to a system.
¢ Sometimes patches do nothing to address the origin of the problem. Instead, they
often fix the symptom of the problem.
However, we can avoid the penetrate-and-patch approach to security only by
considering security as a crucial system property and not as a simple add-on feature. It is

always better to design for security from scratch than to try to add security to an existing

design [44].

3.4 Summary:

Building secure software is a challenge. After reviewing the existing state-of-the-
art techniques developed for handling the issue of software security, we have come to the
conclusion that security should be considered a critical part of the design from the very
beginning and included in every subsequent phase in the development process [23]
because integrating security into the SDLC may cope with the situation. Therefore,
introducing security features in all the phases of the software development process
extremely helps limiting costs of adding security features when it’s too late and very
expensive in terms of time and resources. The next chapter is devoted to propose our new

metrics for building secure software.

44

Chapter 4: New Measurements for Building Secure Software

Among the different quality attributes of software artifacts, security has lately
gained a lot of interest. However, both qualitative and quantitative methodologies to
assess security are still missing. This is possibly due to the lack of knowledge about
which properties must be considered when it comes to evaluate or measure security. As
we said in the previous chapters, the above-mentioned gap is even larger when one
considers software development phases [45].

In this chapter, we present our new metrics for building secure software. They are
listed below in groups according to each phase in the SDLC. As mentioned in chapter 1,
the security metrics form used in our thesis is based on the adapted version of the metrics
development guidelines from NIST.

4.1 Requirement Phase:

4.1.1 Percentage of developers who have security awareness

Security goal To check whether the developers have security knowledge or not

Security Do all developers have experience in software security or at least
objective have enough awareness about software security issues

Metric Percentage of developers who have security awareness

Purpose To gauge the level of expertise in security aspects among developers

Implementation | 1- Have security requirements been defined, with qualifications
evidence criteria, and documented?
2- How many developers involved in the application have security

awareness or security knowledge?

45

Frequency

Once after knowing the development team

Formula

Number of developers with security awareness / Number of

developers

Data source

developers training records or database; course completion

certificates

Indicator

The target for this measure is making sure that we have qualified
people involved in the development team. Having developers with
high security awareness would definitely improve the security of the

application.

Implementation

Manual calculation

4.1.2 Percentage

of developers with significant security responsibilities who have

received specialized training

Security goal

To determine whether the developers received adequate training to

fulfill their security responsibilities?

Security Did practitioners receive a special training or take any security

objective courses to be qualified for their responsibilities.

Metric Percentage of developers with significant security responsibilities
who have received specialized training

Purpose To gauge the level of expertise among designated security roles and
security responsibilities for the system

Implementation | 1- Have significant security responsibilities been defined, with

evidence qualifications criteria, and documented?

46

2- Are records kept of which developers have specialized security
responsibilities?

3- How many developers have significant security responsibilities?
4- How many of those with significant security responsibilities have

received the required training stated in their training plan?

Frequency Once after knowing the development team

Formula Number of developers with significant security responsibilities who
have received required training / Number of developers with

significant security responsibilities

Data source developers training records or database; course completion
certificates
Indicator 100 percent represents the goal of this measure, If security personnel

are not given appropriate training, the system may not be equipped to
combat the latest threats and vulnerabilities. Continued training

enforces the availability of necessary security information.

Implementation | Manual calculation

Developers with significant security responsibilities are, for instance, developers whose
job is implementing authentication or authorization mechanisms for the application being
developed.

4.1.3 Percentage of security requirements that have been taken into account.

Security goal To determine the total number of security requirements stated when

collecting the requirements of an application.

47

Security Are the security requirements that have been considered during the

objective requirements phase enough for developing secure software?

Metric Percentage of security requirements that have been taken into
account.

Purpose To quantify the security requirements of a system so that we can

compare it to other products.

Implementation | 1- Is security considered as a requirement for the application?
evidence 2- How many requirements have been stated for the application?

3- How many requirements among them were security-related

requirements?
Frequency Once after getting the requirements.
Formula Number of security requirements / Total number of requirements

stated for the application

Data source Requirement documentations

Indicator The number of security requirements should represent all possible
security requirements that could be considered in order to get a
secure application because before we can build a secure software, we

need to determine exactly what its security requirements are.

Implementation | Manual calculation

An example of security requirements is when an organization requests the following
identification requirements to be among the security requirements for its application:

- Ensure that users are identified and that their identities are properly verified.

48

4.1.4 Percentage of security requirements that have not been properly interpreted

Security goal

To determine the number of the security requirements mentioned in

the requirements but have been misunderstood

Security Are all security requirements mentioned within the requirements

objective phase and meaningful unambiguous?

Metric Percentage of security requirements that have not been properly
interpreted

Purpose To avoid the misunderstanding or misinterpreting of the security
requirements.

Implementation | 1- Is the security considered as a requirement for the application?

evidence 2- How many security requirements have been taken into account
during the requirements phase?
3- How many security requirements haven’t been well interpreted?

Frequency Once after getting the requirements.

Formula Number security requirements haven’t been well interpreted /

number security requirements have been taken into account

Data source

Specification documents

Indicator The target of this measure is to be as small as possible because
interpreting security requirements in a way different to the desired
means that this requirement will not be achieved and might lead the
system to be unsecured.

Implementation | Manual calculation

49

A good example for this metric is when an organization states the following
Authorization Requirements:

- Ensure that users can access data and services for which they have been authorized.
This may be understood by the developers as to allow users to access data and services
for which they have been authorized without preventing them to access data and services
of other users. This could be solved by describing the requirements in a more meaningful
way as follows:

- Ensure that users can only access data and services for which they have been properly

authorized.

4.1.5 Number of security requirements that have not been considered.

Security goal To determine the number of security requirements not mentioned

during the requirements phase.

Security Do the security requirements that have been taken into account
objective within the requirements phase represent all security requirements that

could be considered for an application?

Metric Number of security requirements that have not been considered.

Purpose To ensure that all possible security requirements are taken into

account and documented during the requirement phase.

Implementation | 1- Is the security considered as a requirement for the application?
evidence 2- How many security requirements have not been taken into account

during the requirements phase?

Frequency Once after getting the requirements.

50

Formula Number of security requirements that have not been considered

Data source Requirement documents

Indicator This measure should be very small or even zero if it is possible so

that we can ensure that all security aspects are considered.

Implementation | Manual calculation

Identifying the missing security requirements can be accomplished by different
techniques. It can be achieved by comparing the stated security requirements of the
application to a standard such as the Common Criteria, an international standard for
identifying and defining security requirements, or to security requirements of other
products. For instance: if the security requirements of an application don’t include
ensuring that confidential communications and data are kept private, we can consider that

Privacy Requirements of the application being developed are incomplete.

4.1.6 Number of techniques applied during the requirements phase to uncover

exceptional cases.

Security goal To determine the number of techniques used during the requirements

analysis to uncover the exceptional cases.

Security Are there any techniques used during the requirements analysis.
objective
Metric Number of techniques applied during the requirements phase to

uncover exceptional cases.

Purpose To use techniques for providing essential insight into a system’s

assumptions and how attackers will approach and undermine them.

51

Implementation | 1- Are exceptional cases considered to be handled from the very
evidence beginning?

2- How many techniques have been used to uncover them?

Frequency Once after getting the requirements.

Formula Number of techniques sued to uncover exceptional cases

Data source Requirements’ documents

Indicator The number of techniques used during the requirements analysis

should be enough to uncover exceptional cases existing in the
system. However, sometimes using only one technique is good

enough to get this job done.

Implementation | Manual calculation

Among the techniques used to uncover exceptional cases are the abuse cases. Abuse
cases allow an analyst to think carefully through what happens when functional security

mechanisms fail or are otherwise compromised.

4.1.7 Number of exceptional cases found during the requirements analysis

Security goal To determine the number of the exceptional cases within the

requirements phase.

Security Is there any security requirement going to be compromised?
objective

Metric Number of exceptional cases found during the requirements analysis
Purpose To make sure that the exceptional cases are discovered and handled.

52

Implementation | 1- How many techniques have been used to uncover them?
evidence 2- How many exceptional cases have been discovered and handled?
Frequency Once after getting the requirements.

Formula Number of exceptional cases discovered and handled

Data source

Requirement documents + Abuse cases results

Indicator This measure should represent the actual number of the exceptional
cases in the application. Exceptional cases that are not discovered,
might lead the application to be easily attacked or compromised

Implementation | Manual calculation

When the security is our goal, we need to talk about and prepare for abnormal behavior.

One possible way to do so is by asking many questions that help identify the places

where the system is likely to have weaknesses. One question that could be asked here is:

What can a bad guy do?

4.2 Design Phase:

4.2.1 Number of Threat Modeling (or security risk analysis) performed during the

design phase

Security goal

To determine how many times Threat Modeling applied on the

application within the design phase.

Security Has Threat Modeling been used during the design phase?
objective
Metric Number of Threat Modeling (or security risk analysis) performed

during the design phase

53

Purpose To make sure that the system is free of design flaws or at least to
minimize the number of design flaws.

Implementation | 1- Has Threat Modeling been applied on the application?

evidence 2- How many times has it been applied?

Frequency At least once.

Formula Number of times Threat Modeling applied

Data source Threat Modeling documents and results.

Indicator This metric computes the number of repeating Threat Modeling
during the design phase. It should be applied enough times because
systems that are not receiving regular risk assessments are likely to
be exposed to threats.

Implementation | Manual calculation

Threat modeling (also known as risk analysis or risk assessment) is the most important

activity during the design software process from a security viewpoint since it involves

information assets, threats, vulnerabilities, risks, impacts, and mitigations.

4.2.2 Number of design flaws found in design.

Security goal To determine the of design flaws in a system.

Security Does the system contain design flaw or design flaws?

objective

Metric Number of design flaws found in design.

Purpose To make sure that the design flaws are found and then handled early

54

in the development life cycle so that the cost of fixing them later will

be reduced.

Implementation | 1- Are design flaws considered to be checked and then handled
evidence during the design phase?
2- Are there any techniques used to find them?

3- How many flaws found in the design?

Frequency At least once.

Formula Number of architectural flaws found in design

Data source Threat Modeling documents and results.

Indicator This measure should represent the actual number of the flaws exist in

the design of the application. By finding all possible design flaws in
an application and then fixing them early we can reduce the cost of

handling later on.

Implementation | Manual calculation

Design flaws occur when software is planned and specified without proper consideration
of security requirements and principles. For instance, clear-text passwords are considered

as design flaws.

4.2.3 Percentage of assets that have been well protected.

Security goal To determine whether the asset of the system have been protected

Security Have the assets of the system identified and protected?

objective

55

Metric Percentage of assets that have been well protected

Purpose To ensure that the valuable components of the system have been well

protected.

Implementation | 1- Have the system been decomposed in order to determine its
evidence assets?
2- How many assets have been found?

3- How many assets have been protected?

Frequency At least once.

Formula Number of assets protected / Number of assets found.

Data source Results of Threat Modeling

Indicator The target of this measure is 100%. This metric should cover as

many assets as possible to make sure a malicious user can not reach
any asset to compromise it or modify it in order to attack or/and

modify it.

Implementation | Manual calculation

Assets of a system encompass abstract and physical assets. A firm’s reputation is
considered an important asset. On the other hand, database of the firm is an example of

the physical assets.

56

4.3 Implementation Phase:

4.3.1 Number of implementation bugs found in the system

Security goal To determine the coverage of implementation bugs in the application

Security Are the implementation bugs of the application defined?

objective

Metric Number of implementation bugs found in the system

Purpose To ensure the maximum coverage of implementation bugs existing in
the application.

Implementation | 1- Are there any techniques or tools used during the implementation
evidence phase to find the implementation bugs?

2- How many implementation bugs have been found?

Frequency At least once depending on the SDLC model.

Formula Number of implementation bugs found in the application

Data source Results of static analysis tools

Indicator The target of this metric is to cover all implementation bugs existing

in the code. They could be discovered by using some tools when

performing code review.

Implementation | Automatic calculation

Implementation bugs occur when software developers make a mistake when coding
software. They are independent of design. Vulnerabilities are considered implementation

bugs. A good example about these bugs is Buffer overflows.

57

4.3.2 Percentage of buffer overflow among the total number of implementation bugs

found.

Security goal To determine how many implementation bugs that are common bugs

Security Have implementation bugs been categorized?

objective

Metric Percentage of buffer overflow among the total number of
implementation bugs found.

Purpose To classify the vulnerabilities into groups so that mitigating them
would be easier.

Implementation | 1- Have implementation bugs been defined or standardized?

evidence 2- How many implementation bugs found in the application?
3- How many buffer overflows found?

Frequency At least once depending on the SDLC model.

Formula Number of buffer overflows / number of implementation bugs found

in the application

Data source

Results of static analysis tools

Indicator This metric calculates the percentage of buffer overflows in the
system. By identifying the buffer overflows we can easily mitigate
them because they have been already defined and ranked as well as
the ways to mitigate them have been already described.

Implementation | Automatic calculation

The reason why we focus on buffer overflows in this stage is that because buffer

overflow vulnerabilities are one of the most common security flaws.

58

4.3.3 Number of code reviews performed within the Implementation phase

Security goal To determine haw many times the developers applied code reviews

on the code of the program

Security Are the code reviews considered to find the bugs?

objective

Metric Number of code reviews performed within the Implementation phase
Purpose To make sure that the code has been reviewed by certain tools in

order to uncover the bugs and vulnerabilities

Implementation | 1- Are there any tools or techniques used to find the implementation
evidence bugs?

2- How many times has the code been reviewed?

Frequency At least once depending on the SDLC model.

Formula Number of code reviews performed.

Data source Results of static analysis tools

Indicator One of the best ways to ensure that code is resistant to attack is to

have it reviewed by other trusted individuals. Code review can be
performed by using static analysis tools. However, using the code
reviews alone doesn’t guarantee coed bug free because the tools used

in the code review look for a fixed set of patterns or rules in the code.

Implementation | Manual calculation

For more information about some existing tools used to perform code review, you can

refer to section 3.3.3

59

4.3.4 Average of implementation bugs over lines of code.

Security goal

To determine the ratio between the number of implementation bugs

and the number of the lines of code

Security Are implementation bugs identified?

objective

Metric Average of implementation bugs over lines of code.

Purpose To minimize the number of implementation bugs over lines of code

Implementation | 1- How many lines of code does the program have?

evidence 2- How many implementation bugs have been found in the
application?

Frequency At least once depending on the SDLC model.

Formula Number of implementation bugs / Number of the lines of the code

Data source

Results of static analysis tools

Indicator This measure should be as low as possible so that we can guarantee
that bugs in the system are low.
Implementation | Automatic calculation

Lines of code play an important role for system security. More complex systems are

likely to be more insecure due to the greater number of lines of code needed to develop

them. However, the number of errors per line of code varies greatly according to the

language used, the type of quality assurance processes, and level of testing.

60

4.3.5 Number of exceptions that have been implemented to handle execution failures

Security goal To determine the number of exceptions implemented to address
execution failures.

Security Are abnormal executions or execution failures considered to be

objective addressed?

Metric Number of - exceptions that have been implemented to handle
execution failures

Purpose To ensure that the abnormal executions have been well handled

Implementation | 1- How many exceptions have been implemented?

evidence

Frequency At least once depending on the SDLC model.

Formula Number of exceptions have been implemented

Data source Results of static analysis tools

Indicator The target of this metric is to cover all the failures that might occur
when executing the application. Using exceptions is appropriate for
abnormal execution. A failure is a situation that has been able to
occur due to a programming defect.

Implementation | Automatic calculation

The best solution is usually to print an error message. Specify the specific error messages

in response of particular failure.

61

4.3.6 Percentage of components with incident handling and response capability

Security goal

To determine the components with incident response capability

Security Are incident handling and response capability integrated into system

objective components?

Metric Percentage of components with incident handling and response
capability

Purpose To develop capabilities to detect problems, determine their cause,
minimize the resulting damage, resolve the problem, take appropriate
disciplinary or legal action, and documenting each step of the
response for future reference.

Implementation | 1- How many components does the system have?

evidence 2- How many components among them have incident handling and
response capability?

Frequency At least once depending on the SDLC model.

Formula Number of components with incident handling and response
capability added to it / Number of components in a system

Data source Implementation documents

Indicator This result of this metric should be 100% because if Incident
Response Capability is a part of a computer security program,
incidents can be contained and ultiinately prevented in a timely and
cost-effective manner.

Implementation | Manual calculation

62

Integrating incident response capabilities and handling incidents into the product’s

components includes handling specific types of incidents, such as:

- Denial of Service:

an attack that prevents or impairs the authorized use of

networks, systems, or applications by exhausting resources

- Malicious Code: a virus, worm, or other malicious entity that infects a host.

- Unauthorized Access: a person gains logical or physical access without

permission to a network, system, application, data, or other resource.

4.4 Testing Phase:

4.4.1 Percentage of the security test cases out of all test cases applied on the system

Security goal

To determine the percentage of coverage of a security functional

tests

Security Is the application’s security function explicitly defined

objective

Metric Percentage of the security test cases out of all test cases applied on
the system

Purpose To ensure that maximum coverage of security test cases is attained.

Implementation | 1- Are security functional tests clearly defined?

evidence

Frequency During testing , During retesting

Formula Number of security test cases/total number of test cases

Data source

Results of testing techniques applied

Indicator

This metric can be used to measure the quality of testing process and

63

in case the application is upgraded or patched, the metric can be used
to make comparison between the coverage of previous results and the

new retesting results.

Implementation

Manual calculation

Some of the security features should be tested explicitly such as entering wrong

password. The system has to reject the attempt in such a case. Another security test case

is entering wrong identity with correct password. The attempt has to be rejected too by

the system:.

4.4.2 Percentage of unsuccessful logins to the system

Security goal

To determine the percentage of unsuccessful logins to successful

logins to the system.

Security Is the login program used to audit all attempts to log into the system?

objective

Metric Percentage of unsuccessful logins to the system

Purpose To make sure that unsuccessful logins to the system are recorded and
hence audited so that the system can be more protected

Implementation | 1- How many attempts have been made to login to the system?

evidence 2- How many attempts among them were successfully logged in?

Frequency During testing , During retesting

Formula Number of unsuccessful logins to the system / Number of total

attempts to login into to the system

Data source

Results of testing techniques applied

64

Indicator Upon the result of this metric, developers can mix and match some
security features to provide optimal protection of a system. Login
controls and password management features are commercially
attractive security features that are relatively easy to implement and
most systems tend to have a lot of them. Such features include, but
not limited to, Limited attempts, Last login message, and System-

generated passwords.

Implementation | Automatic calculation

Usually all attempts to log into a system are audited by the login program. This creates
an important trail of user accesses and attempted accesses to the system. By using the
audit records for login or logoff, it is easy to determine who actually used the system.
However, there are a lot of possibilities of unsuccessful logins, among them:

- Wrong user name or password.

4.5 Maintenance Phase:
4.5.1 Number of formal risk assessments performed and documented in response to

changes in the application

Security goal To determine whether risk periodically assessed?

Security Are risk assessments performed and documented on a regular basis
objective or whenever the system, facilities or other conditions change?
Metric Number of formal risk assessments performed and documented in

response to changes in the application

65

Purpose To quantify the number of risk assessments completed in relation to

the application’s requirements.

Implementation | 1- Has risk analysis been applied on the application whenever the
evidence system, facilities or other conditions change?

2- How many times has it been applied?

Frequency At least once after changing the software.

Formula Number of times security risk analysis applied due to changes in the
application

Data source Maintenance documentation

Indicator This metric represents the number of repeating the security risk

analysis performed due to changes in the system. Appling risk
analysis whenever changes done help avoid system weaknesses that

might occur as a result of those changes.

Implementation | Manual calculation

Changes done in the application are classified into two groups: changes done upon
changes in the requirements such as adding a new functionality or new feature to the
application and changes done in response to the environments in which the application

works as changes in the regulations of the country.

4.5.2 Percentage of software changes have been done due to security considerations

Security goal To determine the percentage of software changes done due to

security reasons.

66

Security Is software considered to might be changed due to security

objective considerations?

Metric Percentage of software changes that have been done due to security
considerations

Purpose To determine the level of software configuration changes done upon

security considerations

Implementation | 1- Has security been taken into account as a factor within the SDLC?
evidence 2- Are changes in software done with respect to security affects?
3- How many software changes done on the software?

4- How many security holes and vulnerabilities have been patched?

Frequency At least once after changing the software.

Formula Number of security holes and vulnerabilities have been patched /

Total number of software changes

Data source Maintenance documentation

Indicator This metric helps identifying the amount of work done in order to
keep the application secure. Comparing the changes done with
respect to security considerations to the entire number of changes
done on the application gives us an idea about whether security was

taken into account or not and how much it is considered.

Implementation | Manual calculation

Software changes due to security considerations include patches released after software is
delivered or any other security updates. However, it is very important that venders keep

providing security patches or updates even after the deployment of their products.

67

4.5.3 Percentage of security holes or vulnerabilities that have been patched

Security goal To determine the percentage of security patches done to address

security holes or vulnerabilities.

Security Has security holes and vulnerabilities been defined and identified?
objective

Metric Percentage of security holes or vulnerabilities that have been patched
Purpose To ensure that security holes and vulnerabilities are patched early in

the development life cycle.

Implementation | 1- How many security holes or vulnerabilities have been discovered
evidence in the system?

2- How many security holes among them have been patched?

Frequency Whenever security holes patched.

Formula Number of security holes or vulnerabilities found in the application /

Number of security holes or vulnerabilities that have been patched

Data source Maintenance documentation

Indicator The target of this metric should be 100%. This measure should
include patches that cover as many as possible security holes existing

in the application before releasing it.

Implementation | Manual calculation

Not all changes done on software after its release are due to security consideration.
However, security should to be taken as an important issue that could have the software

changed even after releasing it.

68

4.5.4 Number of incidents reported

Security goal To determine the number of incidents reported by the system

Security Are there any technologies used to handle the incidents or any
objective unwanted actions that might affect badly on the system?

Metric Number of incidents reported

Purpose To ensure that the incidents are reported so that the system can select

the actions to be implemented in order to respond to these incidents.

Implementation | 1- Are incidents considered to be handled?
evidence 2- What are the methods that are used to count the incidents in the
system?

3- How many incidents reported by the system?

Frequency Regularly to ensure that all incidents are reported.

Formula Number of incidents reported

Data source Maintenance documentation

Indicator This metric counts the incidents reported by the system. Reporting

the incidents helps outline the actions to be implemented in response

to these incidents such as receiving technical assistance.

Implementation | Automatic calculation

Sometimes reported incidents represent some intrusion detection data. However, an
incident is the act of violating an explicit or implied security policy. A majority of
security incidents results from defects in software requirements, design, or code. These

activities include but are not limited to:

69

- Attempts (either failed or successful) to gain unauthorized access to a system.

- Unwanted disruption or denial of service.

4.5.5 The average amount of time it takes to respond to and mitigate known

vulnerabilities or weaknesses.

Security goal

To ensure that corrective actions are effectively implemented

Security Is there an effective process for reporting significant weakness and

objective ensuring effective remedial action?

Metric The average amount of time it takes to respond to and mitigate
known vulnerabilities or weaknesses.

Purpose To measure the efficiency of closing significant system weaknesses
to evaluate the existence, the timeliness and effectiveness, of a
process for implementing corrective actions

Implementation | 1- Is there any tracking system for weakness discovery and

evidence remediation implementation?

2- How many system weaknesses were discovered within the
reporting period?

Frequency Whenever a security hole or vulnerability discovered and then closed

Formula (number of weaknesses * period of time during which they are

discovered and closed) / Total number of weaknesses closed

Data source

Maintenance documentations

Indicator

A target time must be set for corrective action implementation.

Results should be compared to this target. The trend for corrective

70

action implementation/weakness closure should be toward shorter

time frames.

Implementation

Manual calculation

4.6 Summary:

This chapter was devoted to introduce our new metrics for building secure

software. As seen during the chapter, the proposed set of metrics consists of sub groups

of metrics representing each phase of the SDLC. We believe that if developers can get

feedback about the security problems that might occur as early as possible in the SDLC,

then they can gain the time needed to fix these problems in advanced phases such as in

the maintenance phase. Therefore, theses metrics are a step forward towards building

secure software because taking these metrics into account during the development

process can basically ensure that security is fairly represented during each phase of the

development lifecycle from the requirements phase till the deployment phase.

In the following chapter, we are going to explain the implementation of the tool

we built to calculate the metrics as well as to discuss the results obtained from the tool.

71

Chapter 5: Implementation and Results

In this research, we have developed a new set of metrics for building secure
software. This is a complete suite of metrics which is a collection of several subgroups of
metrics. Each of these subgroups is specifically designed for one particular phase of the
SDLC. Moreover, it is clearly mentioned whether a particular metrics can be
automatically calculated or not. Then, for those that can be automatically calculated, we
have used JavaCC to calculate them. While for those that can’t be the related tables are
filled with entries manually.

This chapter is devoted to explain the structure of our tool as well as to test it by
studying the results obtained when using this tool. As the major task of our tool is to find
out security loop holes in software while calculating the proposed metrics, we have
compared the results obtained by our tool to the results of other existing tools used to
catch security problems in the source code such as ITS4. This comparison is dictated later

in this chapter.

5.1. Approach Methodology:

As the metrics we have proposed need to be calculated, therefore we have
implemented a tool for this purpose. During the process of Design and implementation of
our tool we had in mind the target of calculating the automated metrics. The structure of

the tool is described in the following figure.

72

Java Program

JavaCC
Input L Output

Cand C++
source code

Lexical Parser Metrics

Analyzer

Figure 5.1: Tool Structure

As shown in the above figure, the structure of the tool consists of three main
components; input characters (C++ source code), parsing stage, and finally the output
(the proposed metrics).

The input is basically C and C++ source code files. The reason why we have
chosen the source code of C and C++ to be input to our tool is due to the popularity of
these languages. Both C and C++ are widely used for building applications. Moreover,
the vast majority of vulnerabilities have been surfaced in programs written in one of these
two languages. The parsing stage is a java program that consists of Java code besides
JavaCC expressions. Finally, the output obtained from the tool is the suite of security
metrics which can be calculated over the entire SDLC. The metrics are listed in the same

order as they appear in chapter 4.

5.2 Why JavaCC?
Using a compiler is the best tool when there is a need to analyze an input file

against certain format or a grammar. JavaCC (Java Compiler Compiler) is a parser

73

generator and a lexical analyzer generator for use with Java applications. A parser

generator is a tool that reads a grammar specification and converts it into a Java program

that can recognize matches to the grammar [46,47]. Figure 5.2 depicts the structure of a

parser generated by JavaCC.

JavaCC Source
e.g. MyParser.jj

JavaCC

Compiler

Lexical
Analyzer

Syntax
Analyzer

MyParser. Tokens.java
+ MyParserConstant.java
TokenManagerError.java

MyParser.java
ParserException.java

Figure 5.2: Generation of JavaCC Parser

To illustrate how JavaCC works, Figure 5.3 shows the relationship between a

JavaCC generated lexical analyzer (token manager) and a JavaCC generated parser. The

token manager reads in a sequence of characters and produces a sequence of objects

called tokens [46]. The rules used to break the sequence of characters into a sequence of

tokens obviously depend on the language; they are supplied by the programmer as a

collection of regular expressions.

Source code Lexical
(Characters) analyzer

Source code

(Tokens)

Parser/ code
generator

Object
code

Figure 5.3: The relationship between JavaCC lexical analyzer and JavaCC parser

74

The parser consumes the sequence of tokens, analyses its structure, and produces
whatever the programmer wants as long as it can be expressed in Java. The programmer
supplies a collection of Extended BNF production rules. JavaCC uses these productions

to generate the parser as a Java class.

5.3. Automatically Calculated Metrics:
Only 6 metrics among the entire suite of metrics could be automatically
calculated. They are listed in table 5.1. The tool was implemented to calculate only the

metrics of Implementation phase.

Metric SDLS phase

Number of implementation bugs found in the system Implementation
Percentage of buffer overflow among the total number of

Implementation
implementation bugs found.
Average implementation bugs over lines of code. Implementation
Number of exceptions that have been implemented to

Implementation
handle execution failures
Number of incidents reported Maintenance
Percentage of unsuccessful logins to the system Maintenance

Table 5.1: Metrics declared to be automatically calculated

5.4 Security Problems:
Even though software security problems vary from buffer overflows, race

conditions, Format string, etc, our focus in the implementation of our tool was on buffer

75

overflow security problems. This is due to the fact that the buffer overflow security
problems are more popular than others in C and C++ [48,49,50,51]. Also, implementing a
tool to deal with all these different issues simultaneously is not only difficult but also
impractical. By doing so, we believe that it would be easy for developers to reduce the
overall cost of the application being developed in terms of time and money by addressing
these well-known problems earlier in the development process.

We are concentrating on the collection of information about functions and data
constructs that pose a risk to the security of a computer system. These insecure items can
be considered as a backdoor through which malicious code can enter into a system.

We consider the following standard functions the existing of which pose a real
security threat to a software system. However, not all uses of them are bad. Exploiting

one of them requires an arbitrary input to be passed to the function [4].

Function Name Description

strepy() copy a string | char *strcpy(char *s/, const char *s2);

The strepy() function copies the string pointed to by s2
(including the terminating null byte) into the array
pointed to by s/. If copying takes place between objects

that overlap, the behavior 1s undefined.

strcat() concatenate char *strcat(char *s/, const char *s2);
two strings The strcat() function appends a copy of the string
pointed to by s2 (including the terminating null byte) to

the end of the string pointed to by s/. The initial byte of

76

52 overwrites the null byte at the end of s/. If copying
takes place between objects that overlap, the behavior is

undefined.

fscanf{(),
scanf(),

sscanf()

convert
formatted

input

The fscanf{) function reads from the named input stream.
The scanf() function reads from the standard input
stream stdin. The sscanf() function reads from the string
s. Each function reads bytes, interprets them according to
a format, and stores the results in its arguments. Each
expects, as arguments, a control string format and a set
of pointer arguments indicating where the converted
input should be stored. The result is undefined if there
are insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments

are evaluated but are otherwise ignored.

memset()

set bytes in

memory

void *memset(void *s, int ¢, size t n);
The memset() function copies ¢ (converted to an
unsigned char) into each of the first n bytes of the object

pointed to by s and returns s.

memmove()

copy bytes in
memory with
overlapping

arcas

void *memmove(void *s/, const void *s2, size t n);

The memmove() function copies n bytes from the object
pointed to by s2 into the object pointed to by s/. Copying
takes place as if the n bytes from the object pointed to by

s2 are first copied into a temporary array of n bytes that

77

does not overlap the objects pointed to by s/ and s2, and
then the n bytes from the temporary array are copied into

the object pointed to by s/ and returns s/

memccpy() | copy bytes in | void *memccpy(void *s/, const void *s2, int c, size t n);
memory The memccpy() function copies bytes from memory area
s2 into sl, stopping after the first occurrence of byte ¢
(converted to an unsigned char) is copied, or after n bytes
are copied, whichever comes first. If copying takes place
between objects that overlap, the behavior is undefined.
memcpy() | copy bytes in | void *memcpy(void *s/, const void *s2, size t n);
memory The memcpy() function copies n bytes from the object
pointed to by s2 into the object pointed to by s/. If
copying takes place between objects that overlap, the
behavior is undefined.
beopy() memory void becopy(const void *sl/, void *s2, size t n);
operations The bcopy() function copies n bytes from the area
pointed to by s/ to the area pointed to by s2.
fprintf(), print The fprintf() function places output on the named output
printf(), formatted stream. The printf() function places output on the
snprintf(), | output standard output stream stdout. The sprintf() function
sprintf() places output followed by the null byte, "0', in

consecutive bytes starting at *s; it is the user's

responsibility to ensure that enough space is available.

78

snprintf() is identical to sprintf() with the addition of the
n argument, which states the size of the buffer referred to
by s.

Each of these functions converts, formats and prints its

arguments under control of the format.

gets() get a string | char *gets(char *s);
from a stdin | The gets() function reads bytes from the standard input
stream stream, stdin, into the array pointed to by s, until a new

line is read or an end-of-file condition is encountered.

Table 5.2: Vulnerable functions

One thing should be mentioned here is that arrays declared as of type constant
will be considered to be allocated in the stack memory. We are interested in this kind of
buffer overflows rather than those allocated in the heap memory (Heap buffer overflow)
because they are less reported than the stack based buffer overflow as well as more

difficult to catch [38,48,52].

To illustrate this point, we will use the following piece of code:

char x[]="Happy New Year to you";
char y[15];
strepy(y,x);

Figure 5.4: C++ code poses a buffer overflow security problem.

79

Obviously, this code has buffer overflow security problem. This is because it
doesn’t perform a boundary checking. The source length (21 characters) is much longer
than the destination length so the result of executing strcpy(y,x) is that the data at the end

(134 [

of array “x” that didn’t fit into array “y” overwrites the memory locations that follow
array “y”. This means that memory allocations just next to array “y” will be definitely

corrupted. This kind of security problems makes it easy for attackers to modify and/or

corrupt data by entering an arbitrary input.

80

5.5 Activity Diagram:
The following activity diagram is used to display the sequence of activities in the
implementation of our tool. It describes the state of activities by showing the sequence of

activities performed on the input file to get the metrics.

anut the File to be scannecD

/4

Gen‘orm Lexical analysis)

Generate tokens

C‘\pply parsing algorithms on the input ﬁle)

(Genearte Security Metrics)

Security Metrics

Figure 5.5: Activity diagram

81

5.6 Sequence Diagram:
In this section we depict the sequence diagram of our tool which is used to model

the flow of logic within the tool in a visual manner.

User Interface Lexical Analyzer Parser

T
)
I
I
User '
r—]
1. Enter the file to be scanned

»
»

7
i
1
¥
t
i
t
i
I
I
]
]
I
t
t

2. pass the input file

3. generate tokens

4. pass the generated tokens
| 3

!
i
L
)
i
!
1
1
I
1
I
I
I
I
t
I
|
|
I
|
]
|
|
I
I
t
|
|
|
|
|
I
1
|
: 5. apply parsing rules and alghrithms
1

6. calculate security metrics

Figure 5.6: Sequence diagram

82

5.7 Running the Tool:

In order to run the tool, the user needs to make the following three steps
respectively:
1- Typing the following command in the MS-DOS prompt windows where the tool is
installed:

\javacc MetricsTool.jj
2- Typing the following command:

\javac MetricsTool.java
3- Running the tool by executing the file MetricsTool as follows:

\java MetricsTool

Having done the third step, the following window will appear:

Enter the file to be scanned

H
I i
H 1

OK Cancel

Figure 5.7: GUI for the input file

Then, by entering the proper file, the following window which lists the calculated metrics

will be shown up:

83

Security Metrics Result

~Number of implementation bugs found in the system: 0
‘ Percentage of huffer overflow among the total implementation bugs: 0
Average of implementation bugs over lines of code : 0%

Number of exceptions implemented is: 0

Figure 5.8: GUI for displaying the proposed metric for the C/C++ input file.
As seen in the last two figures, our tool maintains a very simple interface while
accomplishing what it has been designed for. The automatically calculated metrics which

are computed by our tool appear in the same order as they are listed in chapter 4.

5.8 Results Analysis:
5.8.1 Simple Example:

Let’s consider this example to see how our tool will extract the security metrics

for the program.

// Using strcpy

#include <iostream>

include <cstring>

using namespace std;

int main()

{
char x[]="Happy New Year to you ";
char y[15];
strepy(y,x); // copy contents of into y
cout<< "The string in array x is: "<<x

<<"\nThe string in array y is: "<<y<<"\n";

return 0; // indicate successful termination
} // end main

Figure 5.9: Simple example applied to our tool.

84

After entering the file to our tool, the security metrics will be computed and the

result will be, as shown, in the following figure.

B Security Metrics Result

- Number of implementation bugs found in the system: 1
Percentage of buffer overflow among the total implementation bugs: 100%
Average of implementation bugs over lines of code : 1 security bug per 23 lines of code

‘Number of exceptions implemented is: 0

Figure 5.10: The result obtained from entering the simple example to our tool.

As seen from this simple example, our tool detected the bugs found in this code
and calculated the metrics. The reason why the percentage of buffer overflow appears as
100%, is because we were interested in buffer overflow only while testing the input file
for the security problems as we have mentioned earlier. Therefore, all implementation
bugs found are buffer overflow problems. The following figure shows the result of
executing this file. The impact of the buffer overflow is obvious i.e. it has corrupted the

contents of array “x” as shown below.

Documents and Settings' Administrator

Figure 5.11: The result of executing the previous example

85

5.8.2 Results Discussion:

The best way of evaluating the proposed tool is to compare its results with the
results obtained by other existing tools. However, as discussed in chapter 1, there in no
existing tool for calculating security metrics for SDLC. Therefore, we can’t evaluate our
tool using the mentioned criterion. However, we can compare some results obtained by
our tool like the number of buffer overflow vulnerabilities found in the source code to the
results of other tools developed to do so. To perform such comparison, we are going to
compare the number of buffer overflow achieved by our tool to the result obtained by
1TS4 tool on the so-called wu-fipd-2.6.2 server.

Wu-fipd-2.6.2 is a replacement ftp daemon for Unix systems developed at
Washington University. Wu-ftpd-2.6.2 is a popular ftp daemon used on the Internet, and
on many anonymous fip sites around the world. FTP is a method of transferring files
between machines on a network and/or over the Internet. [5S3]. Many of the security
issues in wu-ftpd version 2.6.2 and earlier versions over the years have been buffer
overflows of one sort or another.

The wu-ftpd-2.6.2 package consists of 47 files. These files are listed in table 6.2.

We applied our tool on all of the package files and the same procedure was applied on

ITS4 as well.
Number File name Number File name
1. access.c 2. acl.c
3. auth.c 4, authenticate.c
5. authuser.c 6. ckconfig.c
7. CONVErsions.c 8. copyright.c
9. domain.c 10. extensions.c

86

1. fipcount.c 12. fipd.c

13. fiprestart.c 14. ftpshut.c

15. firuncate.c 16. fiw.c

17. getcwd.c 18. getpwnam.c
19. getusershell.c 20. glob.c

21. glob.c 22. hard.loop.c
23. hostacc.c 24, loadavg.c

25. logwtmp.c 26. paths.c

27. popen.c 28. private.c

29. privatepw.c 30. rdservers.c
31. realpath.c 32. recompress.c
33. restrict.c 34. routevector.c
35. $CO.C 36. sigfix.c

37. snprintf.c 38. strcasestr.c
39. strdup.c 40. strerror.c

41. strsep.c 42. strstr.c

43. syslog.c 44. test.loadavg.c
45. timeout.c 46. vsnprintf.c
47. wu_fnmatch.c

Table 5.3: The files exist in wu-ftpd-2.6.2package

To do a logical comparison between buffer overflow security problems obtained
by our tool and those of ITS4, we will focus in the following functions: strcpy(), strcat(),
sprintf(), snprintf(), memcpy(), gets(), and becopy(). After applying our tool and ITS4 tool
on each file in the Wu-ftpd-2.6.2 package, we collected together all of the detected

security problems over the entire package.

87

Figure 5.12 shows the security metrics obtained when our tool was applied on file

access.c, which is included in wu-ftpd package.

Security Metrics Result

Number of implementation bugs found in the system: 8
Percentage of buffer overflow among the total implementation bugs: 100%
Average of implementation bugs over lines of code: 1 security bug pér 191 lines of cotle

Number of exceptions implemented is: 0

Figure 5.12: The metrics obtained when our tool applied on access.c file

From the results shown in the figure above, we see that the security problems
found in this file are 8 all of which indicate buffer overflow security problems. One can
also notice that there is an average of one security problem over 191 lines of code.

Finally, as noticed from the results there is no exception handling provision in this file.

Function Number of buffer overflows detected
bcopy 0
gets 0
memcpy 2
snprintf 2
sprintf 0
strcat 0
strepy 4

Table 5.4: Results obtained from our tool on access.c file

88

When ITS4 applied on the same file, the results were as follows:

Function Number of buffer overflows detected
bcopy 0
gets 0
memcpy 2
snprintf 3
sprintf 0
strcat 0
strcpy 5

Table 5.5: ITS4 results for access.c file

As mentioned earlier in the chapter, we applied our tool on the entire package, file
by file. As a result of applying our tool on the entire wu-ftpd-2.6.2 package, we obtained

a total of 189 buffer overflow security problems.

Function Number of buffer overflows detected
bcopy 3
gets 15
memcepy 5
snprintf 31
sprintf 52
strcat 14
strcpy 69

Table 5.6: Results obtained from our tool on wu-ftpd 2.6.6

89

Table 5.7 shows the results of testing with ITS4. It was run with a command line
parameter that set the sensitivity cutoff to 1. At this cutoff, all vulnerabilities in the ITS4
database are reported, except ones at the level of NO RISK. This cutoff was chosen

because it was the highest that includes all of the interesting functions checked by our

tool.
Function Number of buffer overflows detected

bcopy 3
gets 17

memcpy 5
snprintf 36
sprintf 57
strcat 15
strcpy 82

Table 5.7: ITS4 results for wu-fipd 2.6.6

When we applied ITS4 on the same application, the result was 215 problems. This
observation approves the validity of the results obtained by our newly designed tool.
Further, both the tools were implemented by different parsers with different ways of
thinking and different rules as well. We implemented our tool using Javacc parser

generator. In contrast, ITS4 was implemented using Yacc and Lex compilers.

90

5.9 Summary:

In this chapter, we have presented the new metrics that we have proposed for
building secure software. These metrics can be applied in a systematic way to the SDLC
that can be used in the real world. The tool accomplished in this research was able to
calculate the Implementation Phase’s metrics as claimed.

Though, there is no such metrics for SDLC as we have mentioned before to
compare them to ours we compared the security problems detected by our tool to those
achieved by ITS4 as a step to ensure that our tool works well. We saw that the security
problems achieved by our tool are significant compared to the results obtained by ITS4.

The next chapter summarizes our contributions and some suggested future

research prospects in this connection that if continued could enhance our work.

91

Chapter 6: Conclusion and Future Work

Over the past decade, the need to build secure software has become a dominant
goal in software development [40]. However, we believe, as many others do, that security
must be treated as part of the entire system’s engineering process. Although, security
experts have done a lot of research to provide secure software, yet there exists room for

improvement.

6.1 Achievements:

In this research, we have put forward a set of new metrics for building secure
software. This set will update developers throughout the entire development process
about the security level of their software while being developed. This will enable them to
get feedback earlier in the development process and before releasing their software. The
reason of developing these metrics is due to the fact that the idea of introducing such
metrics in each phase of the SDLC has never been materialized in the past. Therefore, we
believe that our contribution will be a step forward in achieving the goal of producing
secure software.

We implemented a tool using JavaCC for calculating the metrics of the
Implementation Phase which are declared to be computed automatically in their tables in
chapter 4. The results obtained by our tool were considerable compared to the results of
ITS4 when both applied on the same application. It is worth mentioning that this
comparison was mainly focused on the buffer overflow security problems because ITS4

is dealing with the identification of only those security problems.

92

Although we have used the metrics of the implementation phase to prove the
concept and show that the metrics we developed are implementable, it is possible in
future to do the same with those metrics which are meant for design phase for example.
In design phase we can extend the developed metrics to cover the class diagram,
sequence diagram, and other UML diagrams. Then we can choose a case study (an
application while being developed) to calculate the metrics which specified for the design

phase to demonstrate that our metrics are implementable for each phase in the SDLC.

6.2 Future Work:

Though we have collected metrics for all the phases of SDLC, we have calculated
only those metrics which are meant for implementation phase using our new tool. The
logic behind choosing this single phase of the SDLC for our present research is the
amount of efforts required. Therefore, we are planning to extend our work in the
following two directions:

B First, we plan to have the rest of the metrics calculated by our tool.
B Second, we intend to investigate the ways of incorporating our proposed metrics

into other state-of-the-art security techniques including security design patterns.

93

[1]
[2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

References:

CERT/CC Advisories. Website: http://www.cert.org/advisories.

G. McGraw, “Software Security”, IEEE security & privacy, April 2004, pp. 80-
83.

D. P. Gilliam, T. L.Wolfe, J. S. Sherif, “Software Security Checklist for the
Software Life Cycle”, Processing of the 12™ IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprise, IEEE
Computer Society, June 2003, Austria, pp. 243-248.

J. Viega & G. McGraw, “Building Secure Software: How to Avoid Security
Problems the Right Way”, Addison-Wesley, Boston, 1** edition, 2002.

N. Davis, “Developing Secure Software”, Software Tech news: secure software
engineering, Vol. 8, No. 2, July 2005.

M. Bishop, “Computer Security: Art and Science”, Addison-Wesley, Boston, 1%
edition, 2002.

J. A. Chaula, L. Yngstrom, and S. Kowalski, “Security Metrics and Evaluation of
Information Systems Security”, in the 4™ Annual Conference on Information
Security for South Africa, Midrand, South Africa, 2004.

M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo, “Security Metrics
Guide for Information Technology Systems”. NIST Special Publication 800-55,
National Institute of Standards and Technology, Gaithersburg, Maryland. July
2003. Available at http://csrc.nist.gov/publications/nistpubs/800-55/sp800-55.pdf

J. C. Munson, “Software Engineering Measurement”, Auerbach Publications,
CRC Press LLC, USA, 2003.

G. Jelen, “SSE-CMM Security Metrics.” NIST and CSSPAB Workshop,
Washington D.C., 2000.

N. Fenton, and S. L. Pfleeger, “Software Metrics: A Rigorous and Practical
Approach”, International Thomson Computer Press, 1997.

P. Goodman, “Software metrics: best practices for successful IT management”,
Rothstein Associates Inc., 2004.

S. A. Whitmine, “Object Oriented Design Measurement”, Wily Computer
Publications, 1997.

94

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

(24]

[25]

[26]

R. E. Park, W. B. Goethert, W. A. Florac, “Goal-Driven Software Measurement:
A Guidebook™. 1996.

G. McGraw, “Software Security: Building Security In”, Addison-Wesley, Boston,
1** edition, 2006.

S.C. Payne, “A Guide to Security Metrics.” SANS Security Essentials GSEC
Practical Assignment Version 1.2e, SysAdmin, Audit, Network, Security Institute,
Bethesda, Maryland. 2001. www.sans.org/rr/whitepapers/auditing/55.php

R. B. Vaughn, R. Henning, and A. Siraj, “Information Assurance Measures and
Metrics - State of Practice and Proposed Taxonomy”, Proceedings of the 36th
Hawaii International Conference on System Sciences, IEEE Computer Society,
2002.

B. Henderson-Sellers, “Object-Oriented Metrics: Measures of Complexity”,
Prentice Hall PTR, 1 edition, 1995

G. McGraw, “Building Secure Software: Better than Protecting Bad Software”,
IEEE Software, December 2002, pp. 57-59.

R. C. Seacord, “Secure coding in C and C++ “, Addison-Wesley, Boston, 1*
edition, 2006.

K. C. Wallnau, S. Hissam, and R. C. Seacord “Building Systems from
Commercial Components”, Addison-Wesley, Boston, 2002.

I. Flechais, M. A. Sasse, and S. M. V. Hailes, “Bringing Security Home: A
Process For Developing Secure And Usable Systems”, In ACM/SIGSAC New
Security Paradigms Workshop, 2003.

P. Devanbu & S. Stubblebine, “Software Engineering for security; a roadmap”, in
processing of the conference on the future of the software engineering. Pp. 227-
239, ACM Press 2000.

P. Falcarin, M. Morisio, “Developing Secure Software and Systems”, in IEC
Network Security: Technology Advances, Strategies, and Change Drivers, July
2004.

M. Howard & D. LeBlanc, “Writing Secure Code”, Microsoft press, 2nd edition,
2003.

J. A. Whittaker & M. Howard, “Building More Secure Software With Improved
Development Process”, IEEE Security & Privacy, pp. 63-65, 2004.

95

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

A. K. Ghosh, C. Howell, and J. A. Whittaker, “Building Software Securely from
the Ground Up”, IEEE Software, February 2002, pp. 14-16.

S. R. Schach, “Object-Oriented and Classical Software Engineering”, Addison-
Wesley, Boston, 7" Edition, 2007.

R. S. Pressman, “Software Engineering, A Practitioner’s Approach”, McGraw
Hill, 6™ edition, 2005.

J. McDermott & C. Fox, “Using Abuse Case Model for Security Requirements
Analysis”, Processing of the 15" Annual Computer Security Application
conference”, Scottsdale, IEEE Computer Society Press, 1999, pp.13-15.

G. Sindre & A. L. Opdahl, “Eliciting Security Requirement by Misuse Cases”,
Requirements Engineering, Springer London, Volume 10, Issue 1, January 2005,
pp- 34 - 44.

F. Swiderski & W. Snyder, “Threat Modeling”, Microsoft press, 2004.

D. Evan, “Secure Programming Lint (Splint)”, Department of Computer Science,
University of Virginia. 2003. www.splint.org

M. G. Graff and K. R. Van Wyk, “Secure Coding: Principles and Practices”,
O’Reilly and Associates, California, 1** edition, 2003.

Flawfinder home page: http://www.dwheeler.com/flawfinder

Secure Software Inc. October, 2003, http://www.secure software.com

G. McGraw, “Static Analysis for Security”, IEEE Security & Privacy, December
2004, pp. 76-79.

J. Viega, J. T. Bloch, Y. Kohno, G. McGraw, “ITS4: A Static Vulnerability
Scanner for C and C++ Code”, Reliable Software Technologies, Dulles, Virginia,
16" Annual Computer Security Applications conference. December, 2000.

D. Evans and D. Larochelle, “Improving Security Using Extensible Lightweight
Static Analysis”, IEEE Software, February 2002, pp 42-51.

J. Tevis and J. Hamilton, “Methods for the Prevention, Detection and Removal of
Software Security Vulnerabilities”, ACM Southeast Conference 04. 2004, USA.

S. Alouneh and A. En-Nouaary, A New Method for Testing Buffer Overflow

Vulnerabilities in C and C++ Programs., in Fifth International Network
Conference, Samos Island, Greece, July 2005.

96

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

M. R. Stytz and J. A. Whittaker, “Why Security Testing is Hard”, IEEE Security
and Privacy, August 2003, pp 83-86.

G. McGraw, “Software Penetration Testing”, IEEE Security and Privacy, 2005.

G. McGraw, “Testing for Security Development: Why We Should Scrap
Penetrate-And Patch”, IEEE Aerospace and Electronic Systems, vol. 13, no. 4
April 1998, pp. 13-15.

R. Scandariato, B. D. Win, and W. Joosen, “Towards a Measuring Framework for
Security Properties of Software”, ACM, Virginian, USA, 2006, pp 27-29.

G. Succi and R. W. Wong, “The Application of JavaCC to Develop a C/C++
Preprocessor”, Department of Electrical and Computer Engineering, University of
Calgary, Calgary, Canada.

T. S. Norvell, “Introduction to JavaCC”, University of British Colombia,
Vancouver, 2003.

E. Haugh and M. Bishop, “Testing C Programs for Buffer Overflow
Vulnerabilities”, Proceedings of the 2003 Network and Distributed System
Security Symposium, February, 2003, pp. 123-130 .

C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. “Buffer Overflows:
Attacks and Defenses for the Vulnerability of the Decade”. In Proceedings of the
DARPA Information Survivability Conference and Expo, 1999.

T. Plum and D. M. Keaton, “Eliminating Buffer Overflows Using the Compile or
a Standalone Tool”, NIST Workshop on Software Assurance Tools,
Technologies, and Metrics at ASE 05, 2006.

M. Howard and J. A. Whittaker, “Secure Coding in C and C++”, IEEE Security
and Privacy, 2006, pp. 74-76.

D. A. Wheeler, “Secure Programming for Linux and Unix HOWTO”, v3.010, 3
March 2003.

WU-FTPD Development Group, website: http://www.wu-ftpd.org

97

