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Abstract

Synthesis of 7-Deaza-deoxyguanosine Analogs as Probes To Investigate DNA Repair

Emest Palus

Interstrand cross-links can be introduced into DNA as a consequence of
chemotherapy. These lesions are considered to be therapeutically relevant and
responsible for the efficacy of bifunctional alkylating agents in cancer chemotherapy.
There is considerable evidence that indicates interstrand cross-links are recognized by
cells and that this recognition can either mediate repair of damage and survival, or
accelerate cell death. Development of tumors resistant to these agents is an important
factor in the lack of response by some patients to therapy with these agents. Relatively
little is known about the mechanism by which interstrand cross-links are recognized and
repaired. In order to investigate repair mechanisms, interstrand cross-linked DNA
substrates of well defined structure are required. Such substrates are challenging to
prepare in quantities sufficient for biochemical and biophysical studies.

A method to synthesize a chemically stable analog of the clinically relevant N7G-
alkyl-N7G cross-link was explored. This structural analogue links the C7 atoms of two
molecules of 7-iodo-7-deaza-2’-deoxyguanosine with an alkyldiyne linker to form a
dimer via the Sonogashira reaction. Several nucleoside dimers were produced using this
strategy as proof of principle that it could be employed in the synthesis of interstrand
cross-linked DNA. However, in addition to the desired cross-coupling reaction it would

appear that a copper catalyzed homocoupling side reaction can also occur.

il



Acknowledgements

I would like to thank Dr. Christopher J. Wilds for providing me the opportunity to work
on this interesting and challenging project, for his patient guidance in the course of the
work and in the preparation of this thesis.

I would like to thank my supervisory committee members Dr. Joanne Turnbull and Dr.
Sebastien Robidoux for their expert knowledge and advice. In addition I would like to
thank Dr. Sebastien Robidoux for his assistance with the operation of the NMR
instrument.

Special thanks belong to Dr. Anne Noronha for running the MALDI mass spectra and
proofreading of this thesis.

I would also like to thank Dr. Louis Cuccia for the use of the Parr reactor.

I am appreciative of the efforts of Maria Ciaramella, Carol Coutts, Donna Gordon and
Lisa Montesano for their administrative assistance. Thanks to the Chemistry and
Biochemistry Department (Concordia University) for support in the form of teaching
assistantships, and for giving me the opportunity to study here.

Thanks should go to my lab mate Jason Booth who has been great company and an
excellent coworker. Finally, I would like to thank to my colleagues Diana F. Dascalescu

and Mirabel Eboka for their friendship, help and support over past few years.

v



Dedicated to my wife Dana and son Jakub whose patience, support and love have made

this experience possible.



Table of contents

List of figures

List of schemes

List of abbreviations

Chapter 1 Introduction
1.1 Importance of Nucleic Acids
1.2 DNA Damage and Repair
1.3 Bifunctional Alkylating Agents

1.4 Synthetic Methods for the Preparation of Interstrand Cross-Linked
DNA Duplexes

1.4.1 Direct Cross-linking Strategy
1.4.2 Hybridization Triggered Cross-Link Formation
1.4.3 Nucleoside Dimer Strategy
1.5 Project Background and Objectives
Chapter 2 Results and Discussion
2.1 Retrosynthetic Strategy
2.2 Synthesis of 7-iodo-7-deaza-2’deoxyguanosine

2.3 Attempts to Perform the Sonogashira Cross-coupling Reaction with
TMS-1,4-pentadiyne

2.4 Sonogashira Cross-coupling Reaction with 1,5-hexadiyne
2.5 Synthesis of Nucleoside Dimers by the Sonogashira Reaction
2.6 Conclusions and Future Directions

Chapter 3 Experimental

3.1 Reagents

Vi

viii

Xi

11

12

12

17

21

25

25

26

31

38

47

55

59

59



3.2 Chromatogaphy
3.3 Instrumentation
3.3.1 NMR Spectroscopy
3.3.2 FAB-Mass Spectrometry
3.3.3 MALDI TOF Mass Spectrometry
3.4 Synthesis
References
Appendix A - 'H NMR Spectrum of Compound 20 (in CDCl;)
Appendix B-  Mass Spectrum of Compound 20
Appendix C- 'HNMR Spectrum of Compound 21 (in CDCls)
Appendix D -  Mass Spectrum of Compound 21
Appendix E - 'H NMR Spectrum of Compound 22 (in CDCl5)

Appendix F-  Mass Spectrum of Compound 22

vil

60

60

60

61

61

61

85

89

90

91

92

93

94



Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.10

Figure 1.11

Figure 1.12

Figure 1.13

List of Figures

Schematic representation of the structure of DNA and RNA. The
numbering systems for furanose sugar, heterocyclic bases and the
Watson-Crick binding of complementary nucleoside bases is also
shown.

The flow of biological information in living cells.

A. N7-methylguanine and B. O6-methylguanine residues.
Alkylation at the O6 position allows for formation of a stable O6-
MedGeT base pair.

Reaction site and hydrogen bond network in the active site of
hAGT protein (Adapted from Daniels, D. S.; Woo, T. T.; Luu, K.
X.; Noll, D. M.; Clarke, N. D.; Pegg, A. E.; Tainer, J. A. Nat.
Struct. Biol. Mol. Biol. 2004, 11, 714.)

Proposed mechanism of activation and action of general
interstrand crosslinked duplexes.

Mechanism of activation and action of mechlorethamine (Adapted
from Noll, D. M.; McGregor Mason, T.; Miller, P. S. Chem. Rev.
2006, 106, 277.).

Mechanism of formation of the imidazole ring opened 7-
formamidopyrimidyl (FAPY) adduct.

Structures of the sulfonic acid ester agents busulfan (A) and
hepsulfam (B).

Mechanism of action and cross-link induced by hepsulfam.

Strategy for the synthesis of disulfide cross-linked dA residues via
hybridization triggered cross-link formation (n =2 or 3).

Strategy for the synthesis of disulfide cross-linked dG residues via
hybridization triggered cross-link formation (n =2 or 3).

Hybridization triggered cross-link formation by nucleophilic
attack on an aziridinyl modified nucleotide.

Structure of the N3T-alkyl-N3T cross-link.

viii

10

10

11

17

18



Figure 1.14

Figure 1.15

Figure 1.16

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6
Figure 2.7

Figure 2.8

Figure 2.9

Synthesis of N3T-alkyl-N3T cross-linked duplexes via a
monophosphoramidite approach. A. Monomers used in cross-
linked duplex assembly. B. Stepwise solid-phase synthesis of the
cross-linked duplex. (Adapted from Wilds, C. J., Noronha, A. M.,
Robidoux, S. and Miller, P. S. Journal of the American Chemical
Society 2004, 126, 9257).

Synthesis of N3T-alkyl-N3T cross-linked duplexes via a bis-
phosphoramidite approach. A. Monomers used in cross-assembly.
B. Stepwise solid-phase synthesis of the cross-linked duplex.

Structures of the 7-deazadeoxyguanosine-alkyl-7-deazadeoxy
guanosine cross-link mimic (A) and clinically relevant N7-
deoxyguanosine-alkyl-N7-deoxyguanosine cross-link (B).

Sn1 and Sn2 mechanistic pathways for the attachment of a
heteocyclic base to a chlorinated sugar.

Mesomeric  stabilization of o-complexes formed during
electrophilic attack at 7-deaza-dG (A) and at 2-NH, protected 6-
Cl-7-deaza-dG (B). Structures (C) and (D) — results of
electrophilic attack at 2-NH; protected 6-OMe-7-deaza-dG, shows
that the 6-OMe group could direct electrophilic attack to the
undesired 8 position even though the 2-NHj is protected.
Proposed mechanism of the Sonogashira reaction.

Proposed Sonogashira reaction product between TMS-1,4-
pentadiyne and compound 6.

Biproduct 10 produced by the Sonogashira coupling between 6
and TMS-1,4-pentadiyne.

Example of homocoupling reaction and product.
'H NMR spectra of compound 14.

Proposed structure of the homocoupled side product nucleoside
dimer 24.

Proposed synthesis to produce a nucleoside dimer at the C7
positions of 7-deazaguanosine.

X

20

2]

28

29

32

34

35

37

40

51

57



Scheme 2.1

Scheme 2.2

Scheme 2.3

Scheme 2.4

Scheme 2.5

Scheme 2.6

Scheme 2.7

Scheme 2.8

Scheme 2.9

Scheme 2.10

Scheme 2.11

Scheme 2.12

Scheme 2.13

Scheme 2.14

Scheme 2.15

Scheme 2.16

List of Schemes

Retrosynthetic strategy to prepare the 7-deaza-2’-deoxy
guanosine dimer.

Synthesis of 7-iodo-7-deaza-2’deoxyguanosine 9.

Synthesis of compound 12.

Synthesis of compound 13.

Synthesis of compound 14.

Synthesis of compound 15.

Synthesis of isobutyrylated compounds 16 and 17.

Synthesis of nucleoside 18.

Synthesis of nucleoside 19.

Synthesis of nucleoside dimer 20.

Synthesis of nucleoside dimer 21 as a result of prolonged
reaction times and higher temperatures by the Sonogashira
reaction.

Synthesis of nucleoside dimer 21.

Synthesis of nucleoside dimer 22.

Synthesis of nucleoside dimer 23.

Synthesis of tritylated nucleoside 25.

Synthesis of tritylated dimer 26.

25

26

36

38

39

41

42

44

45

46

47

49

49

50

52

54



brs

cal
dCMP
DCM
DMAP
DMF
DMS
DNA
DTT
EtOAc
FAPY

hAGT
iBu
ICL

MeOH
MCPBA
MP

NIS
0°-MedG
NMR

RT

THF

List of Abbreviations

adenine

aromatic

broad singlet

cytosine

calculated
deoxy-cytidine-5'-monophosphate
dichloromethane

N,N-dimethyl aminopyridine
dimethyl formamide
dimethylsulfate

deoxyribose nucleic acid
dithiothreitol

ethyl acetate
formamidopyrimidine

guanine

human O°%-alkylguanine-DNA alkyltransferase
isobutyryl

interstrand cross-link

multiplet

methanol
meta-chloroperoxybenzoic acid
melting point
N-iodosuccinimide
O6-methyldeoxyguanosine
Nuclear Magnetic Resonance
room temperature

singlet

thymine

tetrahydrofuran

X1



TMP
TMS
TLC
Tol

TTP

2’-deoxythymidine 5’-monohosphate
trimethylsilyl

thin layer chromatography

toluoyl

2’-deoxythymidine 5’-triphosphate

uracil

Xii



CHAPTER 1

INTRODUCTION

1.1. Importance of Nucleic Acids "***°

Nucleic acids are fundamentally important components of all living entities as
they contain “all the information” needed by cells to live and propagate. Despite this
important role in life’s processes they are by themselves highly unreactive and stable
outside the cell. There are two types of nucleic acids: DNA (deoxyribonucleic acids)
and RNA (ribonucleic acids), both of which are polymers of alternating pentofuranose
sugar and phosphate residues (Figure 1.1). Attached to the C1’ of the sugar atom is a
purine or pyrimidine base. The configuration of this linkage is 3, as the base lies on the
same side of the pentofuranose sugar as the C5’ hydroxymethyl group. The DNA chain
is said to have directionality - one end of the chain has a free 5’-hydroxyl (OH) group and
the other end a free 3’-OH.

DNA usually exists as a double stranded (ds) helix under native conditions. The
two strands are held together in an antiparallel fashion by Watson-Crick hydrogen-bonds
between composite purine and pyrimidine bases. Three of the bases are common to both
DNA and RNA: adenine, cytosine and guanine. The fourth DNA base, thymine, is
replaced by uracil in RNA. The genetic information resides in the sequence of these
bases and is characteristic for each organism. This complementarity between the bases
(G with C and A with T or U) constitutes one of the major stabilizing interactions

(hydrogen bonds) and it also contributes to the intrinsic double helical nature of DNA.



The second major interaction is hydrophobic and results in the vertical stacking of pi ()
electron systems of the coplanar heterocyclic bases along the vertical axis of the double
helix. These two base-derived stabilizing interactions, along with steric and hydrophobic
interactions, impart to the DNA molecule the stability necessary to preserve life. The
four nucleobases ensure fidelity of genetic information transfer while the sugar-phosphate

backbone imparts structure, flexibility and hydrophilicity.
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Figure 1.1: Schematic representation of the structure of DNA and RNA. The numbering
systems for furanose sugar, heterocyclic bases and the Watson-Crick binding of

complementary nucleoside bases is also shown.



RNA molecules are usually single stranded (ss) and composed of ribonucleotide
units. They are generally shorter than DNA, possessing several different functions and
tertiary structures such as messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal
RNA (rRNA). RNA acts as an intermediary in gene expression passing on information
from DNA to ultimately form protein. Thus DNA, which is chemically more stable than
RNA, emerged more ideally suited for the storage of genetic information during the

course of evolution.®

The path from DNA to protein synthesis begins in a cell’s nucleus, when the double-
stranded DNA can either be replicated to produce nascent DNA strands (replication) or it
can unwind from one point to another to allow for the synthesis of RNA (transcription)
(Figure 1.2). Finally, the process of translation occurs where RNA is converted to
protein. This transfer of biological information from a stored form (typically double
helical DNA) to functional polypeptides via mRNA intermediates comprises the “central

dogma of molecular biology™.’
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Figure 1.2: The flow of biological information in living cells.



1.2 DNA Damage and Repair

Despite its stability under physiological conditions, DNA is constantly being
assaulted by a large number of agents that can have severe effects if the induced damage
persists. Modification of DNA can lead to mutations, which alter the coding sequences of
DNA and can lead to cancer in mammals. As a result of this exposure, DNA can be
damaged at different levels leading to changes within the structure of DNA such as
depurination, oxidation or deamination to name a few.

The ability of alkylating agents to act upon DNA to induce damage has been
exploited in various techniques to study DNA. For example, the ability of
dimethylsulfate to preferentially alkylate deoxyguanosine at the N7 atom is utilized in the
Maxam-Gilbert DNA sequencing technique, where such adducts result in an extremely
labile glycosidic bond that may be depurinated followed by cleavage of the DNA strand
on either side of the residue under alkaline conditions.?

Other alkylating agents such as N-methyl-N-nitrosourea have been shown to halt
tumor growth. Nitrosamines have been shown to alkylate at both the oxygen atoms and
endocyclic nitrogen atoms of DNA, with the major site of alkylation (> 85 %) occurring
at the non-bridging phosphate oxygens and N’ position of guanine.” NMR studies of
DNA duplexes containing a single N’-methylguanine base exhibit little change in DNA
structure.' However, alkylation at the O° position of guanine has severe effects by
changing the imino nitrogen from a hydrogen bond donor to a hydrogen bond acceptor,

preventing the formation of Watson-Crick base pairing arrangements (Figure 1.3)."!
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Figure 1.3: A. N7-methylguanine and B. O6-methylguanine residues. Alkylation at the

06 position allows for formation of a stable 06-MedG-T base pair.

It has been shown that bacterial DNA polymerases can incorporate dCMP and
TMP opposite 0°-MedG during in vitro primer extension studies, with TTP being the
preferential substrate.'> As a result, this lesion can result in a dG-dC — dA-T transition
mutation in vivo.

While monoalkylation of a nucleobase may have detrimental effects on an
organism, cells are able to reverse this damage relatively easily. For example N’-
methylguanine can be removed by depurination with the abasic site being eventually
repaired.”  In humans O%-alkylated guanines are repaired directly by human O°-
alkylguanine-DNA alkyltransferase which is capable of removing an alkyl lesion when
guanine is base paired with cytosine in a DNA duplex. In the active site of this enzyme a
thiolate anion is formed which acts as a nucleophile to transfer the alkyl group from the

alkylated guanine base to hAGT (Figure 1.4)."
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Figure 1.4: Reaction site and hydrogen bond network in the active site of hAGT protein
(Adapted from Daniels, D. S.; Woo, T. T.; Luu, K. X; Noll, D. M.; Clarke, N. D.; Pegg,

A. E.; Tainer, J. A. Nat. Struct. Mol. Biol. 2004, 11, 714.)

1.3 Bifunctional Alkylating Agents

Bifunctional alkylating agents represent a much greater threat to the cell, as they
give rise to number of different lesions including monoalkylated adducts, intrastrand
cross-links where two nucleobases on the same strand are connected by the cross-linking
agent and interstrand cross-links (ICL) where the bases on adjacent strands are linked.
These adducts represent the most toxic of all alkylation events. Such agents are quite
abundant in the enviroment and within the cell (endogenous). Acrolein and
crotonaldehyde are both formed in the cell as a result of lipid peroxidation in addition to
being present in tobacco smoke. These molecules possess two electrophilic centres and
can thus form crosslinks in DNA.'>'® There is a high correlation between the ability of

bifunctional alkylators to form ICL in DNA and the degree of cytotoxicity. ICL



formation effectively prevents separation of strands and consequently blocks processes of
transcription and replication which eventually lead to cell death (Figure 1.5). Cells have
evolved several ways to neutralize these detrimental effects of damaged DNA and there
are various DNA repair pathways that can remove lesions from DNA. The importance of
DNA repair is underscored by several human syndromes that are caused by defects in
DNA-repair genes. A hallmark feature of these diseases is a dramatically increased

predisposition to cancer.

% —» Apoptosis
Cell Death

Nascent DNA

re-mRNA

" Crosslinked

DNA

Figure 1.5: Proposed mechanism of activation and action of general interstrand

crosslinked duplexes.

Formation of ICL lesions within DNA by bifunctional alkylating agents obviously
represent serious threats for cell survival. It was estimated that 40 unrepaired ICL lesions
per mammalian cell may cause its death.'” These same toxic properties of such agents
mentioned above have been exploited in their extensive clinical use as effective
chemotherapeutic agents.'®'* However the elimination and repair of these very crosslinks

are believed to be responsible for development of resistance of the tumor cells to



chemotherapy. Relatively little is known about the mechanisms by which ICL duplexes
are recognized and repaired. They are complex DNA lesions that are not easily removed
and compared to single strand damage, the repair of ICL is assumed to require more steps
since the ICL lesion needs to be excised in order to liberate the covalently linked DNA
strands. In addition, no intact template is available for repair synthesis, this again
significantly complicates the process of ICL elimination.*®

Some bifunctional alkylation agents, such as mechlorethamine which falls under

the category of the nitrogen mustards, are used in the treatment of advanced Hodgkin’s

disease. The mechanism of action of mechlorethamine is illustrated in Figure 1.6.
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Figure 1.6: Mechanism of activation and action of mechlorethamine (Adapted from

Noll, D. M.; McGregor Mason, T.; Miller, P. S. Chem. Rev. 2006, 106, 277.).



The nitrogen mustards react with guanine bases in DNA via formation of a reactive
aziridinium intermediate that alkylates at the N”-position to form a reactive monoadduct.
At this point a second reactive aziridinium ion may form that can either undergo reaction
with water to form a 2-hydroxyethyl monoadduct or react with a second guanine base at
the N’ atom to form an interstrand cross-link.

Loechler’s group demonstrated that the preferred target for interstrand
crosslinking was at 5°-GXC-3’ / 3’-CXG-5" sites (X may be any of the four
deoxyribonucleotide bases) by reacting oligonucleotide duplexes with mechlorethamine
followed by product isolation via denaturing polyacrylamide gel electrophoresis
(PAGE).?! This finding that the preferential linking was within the 5’-GXC-3’sites was
unexpected since the distance between the two N’ atoms in B form DNA duplex at the 5°-
d(GXC) sequence was 8.9 A which is greater than the actual bridging distance between
the reactive sites of the N-methyldiethyleneamine (7.5 A). In order for the ICL to form in
a canonical B-form DNA duplex it was apparent that there had to be some compensating
distortion. Computer models confirmed local propeller twisting and buckling at the site of
cross-link lesion while PAGE analysis estimated that the deformation caused bending of
the helix axis by 12.4-16.8° per lesion.”

Although mechlorethamine bridges the two 2’-deoxyguanosines through the N-7
positions, this renders the glycosidic bonds labile resulting in depurination, making
isolation of the intact ICL difficult. Thus, as a means to increase stability the synthesized
ICL duplex was converted to the chemically more stable 7-formamidopyrimidyl (FAPY)

adduct (see Figure 1.7) by basic hydrolysis and these were then isolated by denaturing



PAGE. Moreover several undesired side products were observed of which the interstrand

cross-links only constituted a negligible fraction (typically 1-5%).

[a¥a ")
(4 ¥ ")

Figure 1.7: Mechanism of formation of the imidazole ring opened 7-

formamidopyrimidyl (FAPY) adduct.

A structurally related class of ICLs are formed by the bis-
(methanesulfonyl)alkane esters. Hepsulfam (1-7-heptandiol disulfamate) which is used
clinically in the treatment of chronic myelogenous leukemia was developed as a result of

the synthesis of a number of structural analogues of busulfan (Figure 1.8).

Ao 0 o 0
H3C—ﬁ—O—CHzCHzCHzCHz—O"ISI-CH3 H2N_§“’O—CH2CH20H2CH2CH20H2CH2'O_ﬁ_NHz
0] 0] ) 0

Figure 1.8: Structures of the sulfonic acid ester agents busulfan (A) and hepsulfam (B).

Experimental results suggested that hepsulfam also forms ICLs with DNA.?
Mass spectrometry and UV spectroscopy studies by Colvin and coworkers have shown
that hepsulfam is capable of forming various N7 alkylated products with guanosine
including 1,7-bis(guanyl)heptane. Experiments with model oligonucleotides revealed

that hepsulfam forms interstrand cross-links at 5°-GXC-3’ sites, in a sequence orientation

10



> These N-7-alkylated bis adducts are unstable with

analogous to mechlorethamine.”
partial stability imparted by conversion to the formamidopyrimidyl (FAPY) derivative.
The 1,7 diaminoheptane linker has a N-N distance of 9.8 A and the molecular modeling
results indicate that introduction of the ICL lesion into DNA duplexes between the N-7
atoms of 5°-GXC-3" sequence causes minimal distortion of canonical B-form of DNA.
Mechanistically hepsulfam alkylates at the N-7 position of deoxyguanosine in
DNA (Figure 1.9) forming a carbon-nitrogen bond at the N-7 atom with the methylene
carbon atom adjacent to the ester oxygen atom of the sulfonyl group. In B-form DNA the

N-7 atom of deoxyguanosine protrudes into the major groove and is easily accessible to

small electrophilic alkylating agents.

NH, HN™ N
O:g:o o O%N;&L
) —8— N=
/—:N/\ @ s o 6NH2 (_R/_Ms_c_a
~ N A0 —— N0

N
\’5_'2 NH, Y

NH, NH,

Figure 1.9: Mechanism of action and cross-link induced by hepsulfam.

1.4  Synthetic Methods for the Preparation of Interstrand Cross-Linked DNA

Duplexes

Our knowledge of the mechanism by which interstrand cross-links are recognized
and repaired to date is quite limited. In order to study repair mechanisms, interstrand

cross-linked DNA substrates of well-defined structure and sufficient quantities are

11



required. Unfortunately the limited availability of large quantities of stable ICL DNA
duplexes is one of the major challenges of such studies. Currently there are three main
strategies used to engineer the cross-linked lesions into DNA duplexes.
1.4.1 Direct Cross-linking Strategy

The first and simplest way to introduce cross-linked lesion is by treatment of
DNA duplex directly with the cross-linking reagent which typically is a bifunctional
alkylator. However, this approach suffers from several important drawbacks as, in
addition to the desired ICL DNA, several other side products are formed which now have
to be separated via PAGE with a low overall yield of the synthesis. This method also
lacks target specificity as a result of numerous nucleophilic sites within DNA (exocyclic
amine, non-bridging phosphate oxygens, etc.). In addition, these cross-links may be
chemically unstable depending on the site of alkylation. For example, alkylation at the
N7 position of guanine produces thermolabile adducts that may depurinate resulting in
abasic sites in DNA. Some stability may be imparted to these cross-linked duplexes, for
example by alkaline treatment to afford the FAPY deriviative. However, this changes the
structure of the cross-linked duplex. Examples of cross-linking agents used in the
production of ICL DNA duplexes by this strategy include mechlorethamine?',
hepsulfam® and N,N-bis(2-chloroethyl)nitroso-urea.”*
1.4.2 Hybridization Triggered Cross-Link Formation

A second strategy for preparation of ICL DNA duplexes is based on site-specific
introduction of a modified convertible nucleoside into an oligonucleotide by solid phase
synthesis. At the oligonucleotide level, a convertible nucleoside possessing a good

leaving group is converted to natural base residue bearing the reactive functional group

12



either before cleavage of oligonucleotide from the solid support or post cleavage. Then
the oligonucleotide is hybridized with a complementary strand to form the DNA duplex.
Upon hybridization the reactive functional group is able to form a site-specific cross-link
to the complementary base from the opposite strand.

An example of this strategy involves the introduction of O6—phenyl-2’-
deoxyinosine into the appropriate position of a self-complementary DNA sequence by
solid phase synthesis. After the deprotection and cleavage of the oligonucleotide from the
solid support the phenyl group at O6 position of 2’-deoxyinosine residue is displaced by
reaction with the disulfide of aminoethanethiol or aminopropanethiol. The product of
nucleophilic displacement is an oligodeoxynucleotide that contains a N6-thioalkyl-2’-
deoxyadenosine residue. The thioalkyl group protected as a disulfide is reduced with
dithiothreitol (DTT) to afford a free thiol. The sequence prepared by this method is self-
complementary and thus spontaneously self-pairs to form duplex DNA. In these duplexes
the adenines possessing thioalkyl tethers are located on adjacent bases on the opposite
strands. Oxidation of the thioalkyl groups triggers ICL DNA formation with an alkyl
disulfide linkage (see Figure 1.10) between two adenines at 5’-d(AT)-3’ sequence.”

This methodology has been exploited in the synthesis of symmetrical ICL DNA

duplexes.
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Figure 1.10: Strategy for the synthesis of disulfide cross-linked dA residues via

hybridization triggered cross-link formation (n =2 or 3).

Molecular modeling studies suggest that the introduction of an alkyldisulfide
cross-link would cause little distortion in the secondary structure mainly due to its
location in major groove of DNA duplex. Moreover 'H-NMR data indicates that the
cross-link nucleobase residues are still capable of forming Watson-Crick base pairs.

A similar related convertible nucleoside 6-O-[2-(p-nitrophenyl)ethyl]-2-fluoro-
2’deoxyinosine was used to prepare a DNA duplex where two guanine residues were

cross-linked by an alkyldisulfide spacer in 5’-d(GC)-3’ sequence (Figure 1.1 1).%
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Figure 1.11: Strategy for the synthesis of disulfide cross-linked dG residues via

hybridization triggered cross-link formation (n =2 or 3).

Compared to the previously described cross-link, this synthetic approach requires
some additional reaction steps. After the incorporation of convertible nucleoside into an
oligonucleotide the fluorine atom is replaced with alkyl disulfide functional group. Then
the para-nitrophenylethyl (NPE) protecting group was removed by treatment with DBU

(1,8-diazabicyclo[5,4,0Jundec-7-ene). The remaining two redox reaction steps of this

15



synthesis are the same as previously described for the preparation of alkyldisulfide cross-
linked DNA duplexes containing a 5’-d(AT)-3’sequence.

Another example of the convertible nucleoside strategy involves the introduction
of a reactive aziridine group at the 4-position of a S5-methylcytidine base of an
oligonucleotide. The reactive aziridine ring system can react with the nucleophilic 4-
amino group of mismatched 5-methylcytidine from the opposite strand. As a result of the
ring opening reaction a ICL DNA duplex is formed placing an ethylene bridge between
two mismatched cytidine residues (Figure 1.12).*” The aziridinyl group was also used to
prepare ICL DNA duplexes which possess an ethylene linkage between the 6 position of
guanosine and the exocyclic 4-amino group of cytidine base in complementary strand.
One advantage of these nucleosides is that aziridine modified deoxyguanosine
triphosphate can serve as a substrate of DNA polymerases enabling incorporation in
DNA.?

Overall the hybridization cross-linking methodology is effective and affords a
high yield of the desired cross-link product. It offers greater control over site of the cross-
link relative to direct treatment of DNA with bifunctional alkylating agents. However
some limitations include a cytosine-cytosine or cytosine—adenosine mismatch at the site
of the cross-link for the aziridine ring opening reaction.”® This problem was partially
overcome by using an aziridine-containing guanosine analogue to increase versatility.
Another significant disadvantage of this type of ICL DNA structure is the fact that N-N
cross-links are not very stable. Also it must be noted that this type of ICL has not been
observed when DNA was treated with alkylating agents and therefore is not a clinically

relevant ICL for repair studies but serves as a model system.
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Figure 1.12: Hybridization triggered cross-link formation by nucleophilic attack on an

aziridinyl modified nucleotide.

1.4.3 Nucleoside Dimer Strategy
A more sophisticated approach to synthesize ICL DNA duplexes includes
coupling of a protected nucleoside dimer phosphoramidite to the ends of short

oligonucleotide strands via standard solid phase synthesis.

17



An example of a nucleoside dimer used to construct ICL duplexes is shown in
(Figure 1.13) where the N3 atoms of deoxythymidines are bridged to form a N3T-alkyl-

N3T cross-link in the resulting duplex DNA.

oy

\r\f\m

Figure 1.13: Structure of the N3T-alkyl-N3T cross-link.

This strategy itself has two approaches that have been used to construct these
duplexes. The first involves synthesis of a N3T-alkyl-N3T cross-link phosphoramidite.29
Assembly of the cross-linked duplex is illustrated in Figure 1.14. Oligonucleotide
synthesis begins with the first protected nucleoside attached to the solid support (CPG)
followed by (a) growth of linear strands with commercially available 3°0O-
deoxyphosphoramidites A followed by coupling of the cross-link phosphoramidite B, (b)
acid treatment to liberate the free 5’OH groups, (c¢) simultaneous extension of the second
and third arms of the duplex by repetitive coupling with 3’O-deoxyphosphoramidites A,
(d) capping with acetic anhydride to make the 5’OH groups of the branched Y-
intermediate unreactive (¢) removal of the t-butyldimethylsilyl (TBDMS) group at the
site of the cross-link by treatment with 1 M tetra-n-butylammonium fluoride (TBAF), in
tetrahydrofuran and (f) finally chain extension using 5’0O-deoxyphosphoramidites C to
afford the fully cross-linked duplex.

These cross-linked oligomers are cleaved from the support by treatment with

concentrated ammonium hydroxide: ethanol (3:1) and purified by strong anion exchange

HPLC. Although this procedure gives the cross-linked product in only 5-6 % overall
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yield, sufficient quantities of cross-linked material were obtained that enabled biological,

biophysical and structural studies by high resolution NMR spectroscopy.
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Figure 1.14: Synthesis of N3T-alkyl-N3T cross-linked duplexes via a
monophosphoramidite approach. A. Monomers used in cross-linked duplex assembly.
B. Stepwise solid-phase synthesis of the cross-linked duplex. (Adapted from Wilds, C.
J., Noronha, A. M., Robidoux, S. and Miller, P. S. Journal of the American Chemical

Society 2004, 126, 9257).
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Alternatively a newer symmetrical bis-phosphoramidite (Figure 1.15) can also be
used in the synthesis of this cross-link.*® The solid-phase synthetic strategy begins with
commercially available 3’-O-deoxyphosphoramidites A, then the N3T-butyl-N3T bis-
phosphoramidite D is coupled simultaneously to the 5’-ends of two oligonucleotide

chains attached to the solid support. Chain extension around the 5° ends of the cross-

linked site with 3’-O-deoxyphosphoramidites completes the synthesis of the cross-linked

duplex (XL).
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Figure 1.15: Synthesis of N3T-alkyl-N3T cross-linked duplexes via a bis-
phosphoramidite approach. A. Monomers used in cross-assembly. B. Stepwise solid-
phase synthesis of the cross-linked duplex.*

The yields are improved almost two-fold over the monophosphoramidite strategy.

However, one inevitable side product is the formation of XL-Y type failure sequences
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that are formed as a result of only one of the two reactive phosphoramidite moieties

successfully coupling to the linear growing oligonucleotide chains attached to the CPG.

1.5 PROJECT BACKGROUND AND OBJECTIVES

This thesis work focuses on the synthesis of analogues of deoxyguanosine cross-
links formed at the N7 position. Instead of using deoxyguanosine, 7-deaza-
deoxyguanosine which lacks a nitrogen at this position will be used to produce alkyl
linked dimers (Figure 1.16). The driving force for this particular study was to synthesize
a chemically stable interstrand cross-link that would enable biological and structural
studies of oligonucleotides containing cross-links at a site analogous to that of the cross-
link formed by the agents mechlorethamine (which places 5 atoms between the N7
atoms) or hepsulfam (which places 7). Elaboration of these nucleoside dimers to
phosphoramidites for the intent of insertion into DNA duplexes would enable
investigation of their physicochemical properties, structures and eventually to correlate

structure with the repair of interstrand cross-linked DNA duplexes.
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Figure 1.16: Structures of the 7-deazadeoxyguanosine-alkyl-7-deazadeoxyguanosine

cross-link mimic (A) and clinically relevant N7-deoxyguanosine-alkyl-N7-

deoxyguanosine cross-link (B).
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The influence of derivatives of 7-deazapurines bearing different substituents at the
7 position on DNA duplex thermal stability were also studied by Seela and co-workers.”!
It was found that the introduction of small substituents such as chloro, bromo and iodo at
the 7-position of 7-deazaadenosine causes stabilization of oligonucleotides duplexes.
However the presence of a methyl substituent at position 7 did not exert a significant
influence on the base pair stability.’® These observations implied that substituents at
position 7 of deazapurine nucleoside are well accommodated in the major groove of B-
form DNA and that their incorporation into DNA did not distort the DNA secondary
structure. The 7-iodinated derivatives of 7-deazapurines were then used as a means of
introducing reporter groups at the N7 of dG via the Sonogashira cross-coupling reaction,
which allows for substitution of side chains into the nucleobase at this sterically favorable

3 This strategy was used for preparation of 7-deaza-2’,3’-dideoxypurines

position.
derivative that carry fluorescent reporter groups at position 73* The triphosphate
derivatives of the four chain terminating 2, 3’-dideoxynucleosides bearing different
covalently attached fluorescent dyes could then be incorporated into DNA to be further
exploited for DNA sequencing techniques. Each base is distinguished by its unique
fluorescent emission and these labels circumvent the problematic use of radioisotopes
such as *’P in DNA sequencing. The drawback, however, is the requirement of close to
100% incorporation of modified nucleoside into the transcript DNA. As a result, this

process suffers from inefficient incorporation of the fluorescent labelled deazapurines

that are not well tolerated by DNA—polymerases.

Base modified nucleoside that are self-fluorescent and that retain the normal

Watson-Crick base-pairing properties of natural purine bases have been previously
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studied by Seela ef al.*® 7-alkynylated 7-deaza-2’-deoxadenosines were prepared via the
Sonogashira cross-coupling reaction which all show intensive fluorescence. The
fluorescence appears when the triple bond of alkyne side chain is in conjugation with
heterocyclic base. Quantum yield and fluorescent decay time significantly increase with
increasing polarity of solvent. The compound which exhibits most intensive self-
fluorescence properties is 7-hexynyl 7-deaza-2’-deoxyadenosine.>® In contrast 7-hexenyl-
7-deaza-2’-deoxyguanosine does not exhibit significant fluorescence.®® Other studies
involving oligonucleotides that contain this nucleobase with a long hexynyl chain are

thermally less stable compare to their unmodified counterparts.’ 6

Among the various structural modifications of 7-deazaguanosine that were
examined in order to increase base binding affinity the most promising results were
achieved with nucleobase bearing the propynyl group. The propynyl side chain was
introduced into position 7 of 7-deaza-2’-deoxyguanosine by Sonogashira cross-coupling
reaction. The thermal denaturation of oligonucleotides that contains this modified
nucleobase, when hybridized to RNA®’ or DNA* exhibit an increased stability relative
to unmodified oligonucleotides.

All the above mentioned studies involved a key intermediate used in the
preparation of 7-deazaguanosine adducts namely 7-iodo-7-deaza-2’-deoxyguanosine. The
iodo functional group allows for the formation of a single C-C bond between C7 atom of
modified nucleoside and terminal alkyne via palladium (0) catalyzed Sonogashira cross-
coupling reaction. Our goal was to adopt this strategy to introduce a dialkynyl side chain
at the 7 posttion of 7-deaza-2’-deoxyguanosine hoping to form a reactive monoadduct-

nucleoside. On further subjecting this monoalkylnucleoside adduct to a second

23



Sonogashira cross coupling reaction with a second equivalent of 7-iodo-7-deaza-2’-
deoxyguanosine we proposed that a crosslinked dinucleoside dimer would be produced
with the relevant protecting groups that make it amenable to solid phase oligonucleotide
synthesis. Incorporation of the dimer into oligonucleotides on an automated DNA
synthesizer would then produce the desires ICL duplexes which would then be used as
probes to carry out various structural and biochemical studies to aid in our understanding

of DNA repair and resistance to current chemotherapeutic regimens.
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Chapter 2

Results and Discussion

2.1 Retrosynthetic Strategy

The objective of this research was to develop a synthetic strategy to prepare a
dimer containing two 7-deaza-2’-deoxyguanosine nucleosides connected through the C7
atoms by an alkyl chain (Scheme 2.1). This molecule would be incorporated into an
oligonucleotide by solid phase synthesis to produce a DNA interstrand cross-link (ICL).
When n = 3 the ICL synthesized may be a structural mimic of the lesion formed in DNA
by the chemotherapeutic agent mechlorethamine.

The proposed synthetic approach to form the carbon-carbon bond between the
linker and C-7 positions of 7-iodo-7-deaza-deoxy-guanosine would involve the palladium
catalyzed Sonogashira cross-coupling reaction between the iodinated nucleoside and an
alkyldiyne to form a monoadduct followed eventually by coupling with a second
nucleoside to form the dimer according to the retrosynthetic scheme shown below

(Scheme 2.1).

Scheme 2.1: Retrosynthetic strategy to prepare a 7-deaza-2’-deoxyguanosine dimer
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2.2 Synthesis of 7-iodo-7-deaza-2’deoxyguanosine

One of the important intermediates in the proposed synthetic strategy (Scheme
2.1) is 7-iodo-7-deaza-2’deoxyguanosine 9. The synthesis of nucleoside 9 is outlined in
Scheme 2.2 which began with preparation of 2-thiomethyl-4-amino-pyrimidin-6-one 1.
This was formed by the condensation of thiourea with ethyl cyanoacetate in the presence
of strong base in absolute ethanol which gave the sodium salt of 2-thio-4-

aminopyrimidin-6-one. This intermediate was not isolated, but directly methylated with

dimethylsulphate to give compound 1 in good yield (76%).%
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Scheme 2.2: Synthesis of 7-iodo-7-deaza-2’deoxyguanosine 9.
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The pyrolo-pyrimidone bicyclic ring system of compound 2 was formed by a
condensation reaction of compound 1 with chloroacetaldehyde under aqueous alkaline
conditions. The ring closure reaction occurs in a regiospecific manner with compound 2
as the only product isolated in moderate yield (23 %).*’Attempts to improve the yield of
this step included altering reactions conditions such as temperature and carrying out the
reaction for an extended amount of time. However, the reaction conditions reported in the
literature gave the highest yield.

In order to enhance the reactivity of the 7-deaza-purine heterocycle to the
aromatic electrophilic substitution reaction the 6-oxo group has to be masked. One
possibility is to methylate at this position, however, it was found that it is very difficult to
displace a methoxy group by nucleophiles on 7-deaza-purines.41 Therefore the 6-oxo
group was instead converted to a chloride group which may be readily re-converted to an
oxo group. The conversion of compound 2 into it’s chlorinated derivative was performed
by reaction with phosphorous oxychloride in presence of N,N-dimethylaniline. This
produced compound 3 with a 48% yield. In our attempts to optimize this step, it was
found that the addition of a small portion of acetone in the concentrated crude product
improved the efficiency of the extraction step with diethylether and consequently
increased, albeit slightly, the overall yield of this step from 43 to 70 %.

In order to synthesize nucleoside 4 the Robins N-glycosylation method was
employed. This procedure has been shown to be applicable to 7-deaza-purine
nucleosides. Moreover, N-glycosylation readily proceeds in the presence of a methylthio
group at the 2-position of the heterocycle.42 Glycolysation of compound 3 with 1-chloro-

2-deoxy-3,5-di-O-p-toluoyl-B-D-erythro-pentofuranosyl was performed in a one pot
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reaction with sodium hydride in anhydrous acetonitrile. The sodium hydride generates the
sodium salt of compound 3 in situ which reacts with the chlorinated sugar, presumably
via a nucleophilic displacement reaction to produce nucleoside 4 in 65 % yield. This
reaction produces the nucleoside with the desired regioselectivity with bonding between
C1l’ of the deoxyribose sugar to the N9 atom of the 7-deaza-purine. In addition, this
reaction also proceeds with a high degree of stereoselectivity to produce the  anomer
nucleoside at the C1’° atom of the deoxyribofuranose. Exclusive formation of the f
anomer is believed due to a direct Walden inversion at the C1’ carbon by the anionic

heterocyclic nitrogen (see Figure 2.1).
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Figure 2.1: Syl and Sn2 mechanistic pathways for the attachment of a heterocyclic base

to a chlorinated sugar.

Introduction of the iodo substituent at the C7 position of nucleoside 4 was
accomplished using N-iodosuccinimide. It was necessary to perform this reaction at this
step rather than on a later intermediate as it has been observed that direct iodination of 7-
deaza-2’deoxyguanosine leads to mixtures of 7 and 8 iodinated products with the latter as

the major product (Figure 2.2). This is the result of mesomeric stabilization of the ¢ —
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complex formed during -electrophilic attack at the C-8 position of 7-deaza-
2’deoxyguanosine. Electrophilic attack of the iodide ion is directed onto the undesired C-
8 position due to the electron donor ability of the exocyclic amino and oxo functional
groups.43 As a result, the 7-deaza-2’deoxyguanosine is not a favourable intermediate for
halogenation. Therefore, iodination of modified nucleoside 4 where the amino group is

replaced by a methylthio group and the keto group is masked as a chloride was necessary.
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Figure 2.2: Mesomeric stabilization of ¢ —complexes formed during electrophilic attack
at 7-deaza-dG (A) and at 2-NHj, protected 6-Cl-7-deaza-dG (B). Structures (C) and (D) -
results of electrophilic attack at 2-NH, protected 6-OMe-7-deaza-dG, shows that the 6-
OMe group could direct electrophilic attack to the undesired 8 position even though

the 2-NH, is protected.**
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Moreover the reaction conditions together with the various substituents on the
deazapurine heterocycle play a role in the addition of halogens to the ring. For example,
N-bromosuccinimide in anhydrous dichloromethane leads to the formation of three
brominated products (7-bromo, 8-bromo and 7,8-dibromo). This problem can be
overcome by using DMF, as the solvent for the synthesis of nucleoside 5.*° Similarly, this
analogous reaction is highly regioselective with exclusive formation of the desired iodo
nucleoside 5 in high yield (82 %) in our favour.

Once the iodo substituent was introduced at C7 position of nucleoside 4, the 6-
oxo group could be recovered. Syn-2-pyridinealdoxime and 1,1,3,3-tetramethylguanidine
were used for selective nucleophilic displacement of chloride atom to give compound 6
in excellent yield (93.5 %).**37

The displacement of the 2-methylthio group of 7-deazapurines by various
nucleophiles is more challenging compared to the corresponding purine.47 Therefore,
transformation of the methylthio group to the amino group was performed by conversion
to the more reactive sulfoxide derivative 7. Nucleoside 6 was oxidized with m-
chloroperoxybenzoic acid in DCM. Initially, the temperature of the reaction mixture was
kept at 0°C in order to prevent further oxidation of the sulfoxide functional group.
Purification of this compound was straightforward by short column chromatography to
give compound 7 in excellent yield (97%).

The sulfoxide functional group of nucleoside 7 was replaced with an amino group

37 However, this

via reaction with anhydrous ammonia in anhydrous dioxane.
transformation requires harsh conditions, and specifically it is carried out in an autoclave

at 145°C for 8.5 h. Short column chromatography gave compound 8 in good yield (79%).
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The final step in the synthesis of deprotected nucleoside 9 is cleavage of toluoyl
protecting groups from nucleoside 8. The toluoyl protecting groups were removed by
treatment with ammonia in methanol in an autoclave at 140°C *’ with the completely
deprotected nucleoside obtained after 2 h as confirmed by TLC analysis. Shorter reaction
times resulted in incomplete deprotection of the O-toluolyl groups. Initial difficulties
were encountered when purifying crude nucleoside 9 by crystallization. However this
problem was overcome when the reaction was scaled up to afford unprotected pure

nucleoside 9 in 71% yield.

2.3 Attempts to Perform the Sonogashira Cross-coupling Reaction with TMS-1,4-
pentadiyne

One of the key steps in the proposed synthetic methodology to produce the alkyl
linkage between two 7-iodo-7-deazadeoxyguanosine nucleosides at the C7 position
involves the Sonogashira cross-coupling reaction. This reaction enables the formation of
a carbon-carbon bond between sp2 and sp hybridized carbon atoms, a transformation that
is otherwise quite difficult to achieve but can be carried out as a simple one pot cross-
coupling reaction between an aryliodide and a terminal alkyne. The reaction is tolerant of
a number of functional groups that may be present in the molecules reacting together
thereby eliminating the need for various protection-deprotection reactions and generally
involves the use of a palladium catalyst in conjunction with Cul (Figure 2.3). Literature
procedures of the Sonogashira cross-coupling reaction with nucleosides have reported

optimal yields of product when the ratio of terminal alkyne to nucleoside is 2 - 2.5
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equivalents for pyrimidines*® and 2 equivalents for 7-deazapurines using 10 mol% of
palladium and 20 mol% of Cul catalyst.*
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Figure 2.3: Proposed mechanism of the Sonogashira reaction.*’

However a number of reaction parameters including solvent, base, temperature
and molar ratio of participating reactants and catalysts had to be optimized for each
particular step. In order to conserve valuable nucleoside 9 it was decided to optimize the
Sonogashira cross-coupling reaction conditions with the more easily produced nucleoside
6. The 7-deazapurine ring system of nucleoside 6 slightly differs from nucleoside 9 by
the presence of thiomethyl functional group. Moreover the presence of the toluoyl
protecting groups should significantly facilitate the isolation of cross-coupled product.

Our original intention was to synthesize the 7-deazapurine nucleoside substituted
at the C7 position with an alkyl chain that contains five carbon atoms. The source of the
terminal alkyne in our synthetic design is represented by 1,4-pentadiyne. However, the

only commercially available source of 1,4-pentadyine is its TMS derivative - TMS-1,4-
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pentadiyne. The successful coupling of TMS protected acetylene to 7-deazaadenosine®

and pyrimidine®® nucleosides has been reported, hence the presence of the TMS group
should not represent a serious steric obstacle for the Sonogashira cross-coupling reaction.
It was reasoned that an additional advantage would be that cross-coupling with TMS
protected alkyldiyne would have prevent the second terminal acetylenic group of 1,4-
pentadiyne from cross-coupling to form a dimer or react to the give undesired
homocoupled product. The acetylenic group would be easily generated by treatment with
the desilylating agent TBAF.

The first attempts to couple TMS-1,4-pentadiyne with nucleoside 6 employed
reaction conditions similar to Sonogashira reaction conditions previously reported for 7-
deazapurines and pyrimidine nucleosides.***® This involved 0.1 eq of Pd(PPhs)s, 0.2 eq
of Cul catalyst, 2.5 eq of TMS-1,4-pentadiyne and 2.5 eq of Et3N in DMF. The reactions
were carried out at RT and at elevated temperature (40°C). However, in both cases after
40 h, only starting nucleoside 6 was recovered from reaction mixture. Increased amounts
of palladium catalyst (0.2 eq of Pd(PPhs)s) had no effect on reaction progress. No
reaction was observed when the concentration of the diyne or Et;N in DMF was changed.
Reaction time was also increased to 4 days with no effect. Finally, high temperature
(90°C) where employed but this resulted in complete decomposition of nucleoside 6 with

no nucleoside product formed.
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Figure 2.4: Proposed Sonogashira reaction product between TMS-1,4-pentadiyne and

compound 6.

The effect of solvent on the reactivity of nucleoside 6 in the Sonogashira cross-
coupling reaction was also investigated. The same cross-coupling reaction conditions
(0.1 eq of Pd(PPh;3)4, 0.2 eq of Cul catalyst, 2.5 eq of TMS-1,4-pentadiyne and 2.5 eq of
Et;N ) was carried out in THF. Analysis by TLC did not reveal any new products after 30
h at RT. An additional portion of catalyst (0.1 eq of Pd(PPhs)s, 0.2 eq of Cul) was added
and the reaction allowed to proceed an additional 40 h at RT, followed by heating to 40°C
for 4 h and then 16 h at RT. This prolonged reaction time did not yield the desired cross-
coupled product. Again, TLC indicated the gradual disappearance of starting material
with no new UV active compounds formed. The only nucleoside material obtained after
column chromatography was recovered starting material nucleoside 6.

The cross-coupling reaction was also attempted with (PPh;),PdCl, in THF, but
after 4 days only a small portion of starting material nucleoside 6 was isolated after
purification.

The reaction was also attempted in piperidine. Nucleoside 6 (1.0 eq), 0.2 eq of

Pd(PPhs)s, 0.2 eq of Cul and 2.6 eq of TMS-1,4-pentadiyne were allowed to react at RT
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for 4 days. When the TLC did not indicate any change, the temperature of reaction was
gradually increased to 90°C. Two nucleosides were observed by TLC and separated by
column chromatography. The major product was recovered nucleoside 6. Based on 'H-
NMR and ESI-TOF-MS analysis it is believed that minor product of reaction was
deiodinated nucleoside 10. The ESI-TOF-MS analysis has a major peak with a m/z =
534.19 (the calculated MW of deiodinated nucleoside 10 is 533.5). The 'H-NMR
spectrum of this side product reveals that the signal assigned to H6 at 7.03 ppm is doublet
(Jus-ne = 3.6 Hz) with a second doublet assigned to HS, which overlaps with the signal

for H1’ at 6.58 ppm.

1
TolO N //I\
(0]
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Figure 2.5: Biproduct 10 produced by the Sonogashira coupling between 6 and TMS-

1,4-pentadiyne.

In order to eliminate the possibility that the TMS group was interfering with the
cross-coupling reaction it was decided to remove the TMS protecting group from 1-TMS-
1,4-pentadiyne. The attempt to isolate deprotected 1,4-pentadiyne by vacuum distillation
failed. Therefore 1,4-pentadiyne was generated in-situ. In order to do this TBAF (3eq)
was added drop wise to the TMS-pentadiyne (3 eq) in THF at 0°C. Then, to the THF

solution was added 1 eq of nucleoside 6, 0.1 eq of Pd(PPhs)s, 0.2 eq of Cul and 3.5 eq of
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Et;N and the reaction mixture allowed to stirred at RT for 5 days. However TLC analysis
indicated presence only of starting material.

To simplify the reaction and minimize the use of valuable, less easily produced
nucleosides, it was decided to attempt the cross-coupling reaction on 7-iodo-7-
deazapurine 11 (Scheme 2.3). Compound 11 was prepared by iodination of compound 3
with NIS in DMF.** As mentioned above the reaction is highly regioselective due to
electronic effects of the functional groups attached to 7-deazapurine ring system. This
reaction proceeded in good yield (79 %) to afford compound 11. This result suggests that
deoxyribose sugar does not have any effect on the reactivity of 7-deazapurine for the
iodination reaction. It also suggests that the iodo substituent could be introduced at the C-
7 position of 7-deazapurine ring system prior to the glycosylation step in order to prepare
nucleoside 9.

The Sonogashira cross-coupling reaction of compound 11 with 2.5 eq of TMS 1,
4-pentadiyne, 0.1 eq of Pd(PPh;)4, 0.2 eq of Cul and 2.5 eq of Et;N in DMF was stirred
at 40 °C for After 4 days only starting material 11 was recovered. However when the
same reaction was repeated with just 1 eq of TMS-1,4-pentadiyne, apart from unreacted
compound 10 small portion (3 %) of desired cross-coupled compound 12 was isolated

after 19 h treatment.
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Scheme 2.3: Synthesis of compound 12.
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In our hands, the TMS-1,4-pentadiyne was found not to be reactive enough to
enable the formation of C-C bond with 6 and to a very low extent with heterocycle 11 via
the palladium catalyzed cross-coupling reaction. We speculate that reason for its inferior
reactivity could be due to low stability under basic conditions. Moreover, it was found
that palladium—copper iodide catalytic system in presence of oxidative agent may initiate
a homocoupling reaction of alkynes (Figure 2.4).°% °! Performing the Sonogashira cross-
coupling reaction under argon atmosphere may not completely eliminate traces of oxygen

from reaction mixture. Therefore the homocoupling may be a possible side reaction.

(PhP)4Pd®
oHc.  H Cul. EtN, CICH,COCH o, H H__cHo
N CeHg . 1t N o —  /
= | |
[ )= . ==X

Figure 2.6: Example of homocoupling reaction and product.50

It has been shown that the presence of electron-withdrawing groups in alkynes,
increasing their acidity, promotes more rapid dimerization under alkaline conditions
whereas under acidic conditions (pH=3) an inverse relationship was observed and
addition of Cu(I) salt became necessary to enhances the reactivity of the alkyne towards
the homocoupling reaction.”’ In addition, it has been shown that the homocoupling
reaction was promoted for arylalkynes with electron withdrawing groups present on the
phenyl ring. ** However, in spite of the lack of electron-withdrawing groups in 1-TMS-
1,4-pentadiyne we believe that the competitive homocoupling reaction or some other

process may occur at a rate faster than the desired cross-coupling reaction. The
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formation of any homocoupled product could not be detected by TLC. In addition the
isolation of the volatile homocoupled product would be difficult as all cross-coupling
reactions were carried out on a small scale.

In order to rule out the iodinated nucleoside 6 as the culprit in the unsuccessful
cross-coupling reactions with TMS-1,4-pentadiyne, a test reaction with an alkyne was
performed. A Sonogashira reaction between nucleoside 6 with 1-hexyne was attempted
and found to proceed smoothly to give cross-coupled product 13 in moderate yield (32%)

after 20 h treatment at 40°C.

o -

N )\ /€§\
TolO SCHs Z4 5 tal0

0 9]
(PhsP)4Pd, Cul, DMF \/—/\

OTol OTol
6

13

Scheme 2.4: Synthesis of compound 13.

The same reaction carried out at RT did not yield the expected cross-coupled
product, only unreacted starting material. Therefore, consequent Sonogashira cross-

coupling reactions were performed at elevated temperature (40°C).

2.4 Sonoghashira Cross-coupling Reaction with 1,5-hexadiyne
Given the unsuccessful attempts to introduce 1,4-pentadiyne at the C7 position of
7-deazapurine nucleoside it was decided to prepare an analogue that would be the next,

most structurally similar candidate to our target molecule. Rather than synthesize the 5
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carbon alkyl linker analogue, it was decided to prepare one with a 6 carbon linker, as
proof of principle of the synthetic strategy. Therefore, 1,5-hexadiyne, the next closest
analogue of the 1,4-pentadiyne, was explored for the synthesis of a C7 adduct of the 7-
deazapurine nucleoside via the palladium catalyzed Sonogashira cross-coupling reaction.
First, we verified reactivity of the 1,5-hexadiyne in cross-coupling reaction with
nucleoside 6 (Scheme 2.5). The Sonogashira reaction was carried out with 2.5 equiv of
the diyne, 0.1 eq of Pd(PPh;s)s, 0.23 eq of Cul and 2.7 eq of EtsN in DMF for 16 h at

40°C.

| O 7 N\ o
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(tﬁx B
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Scheme 2.5: Synthesis of compound 14.

The cross-coupled product 14 was obtained with a 53% yield. These reaction conditions
were similar to the one between nucleoside 6 and 1-hexyne illustrating the importance of
moderately elevated temperatures in the formation of the desired cross-coupled product.
The identity of the cross-coupled product 14 was confirmed by ESI-TOF-MS and 'H-
NMR analysis. In the '"H-NMR spectrum of compound 14, apart from two 2 H signals
assigned to the methylene groups of hexadiynyl side chain, a 1 H triplet signal assigned

to the acetylenic proton was observed at 1.99 ppm (Figure 2.7.).
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Figure 2.7: 'H NMR spectra of compound 14.

The signal for one of the methylene groups of the hexadiynyl groups partially overlaps
with a signal that belongs to the H2’ and H2” of the deoxyribose moiety. The triplet
signal of the acetylenic proton is a characteristic feature of all the '"H-NMR spectra of all
1,5 hexadiyne C-7 adducts of 7-deazapurines. The appearance of this signal in 'H-NMR
spectrum serves as validation that the cross-coupling reaction has occurred.

With the successful coupling of the 1,5-hexadiyne linker to 7-deazapurine via the
Sonogashira cross-coupling reaction we attempted to prepare nucleoside 15 (Scheme
2.6), an important intermediate in our strategy of preparation of the cross-linked
nucleoside dimer. The reaction conditions recommended for 7-deazapurines were
employed. Nucleoside 9 was treated with 2.5 eq of 1,5-hexadiyne, 0.1 eq of Pd(PPhs)4,

0.2 eq of Cul, and slight excess (2.9 eq) of EtzN in DMF at 40°C for 15 h.
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Scheme 2.6: Synthesis of compound 15.

Despite the fact that TLC revealed complete conversion of starting material 9 and
formation of new compound with slightly higher R¢ value, the isolation and the
purification of nucleoside 15 was not successful. We were unable to separate the crude
nucleoside by-products of the Sonogashira cross-coupling reaction. The salts of
triethylamine and decomposition products of the palladium catalyst are highly polar
species that are not easily removed from polar nucleoside 15 by means of standard
normal phase silica gel column chromatography. However, the presence of the 1,5-
hexadiyne adduct 15 in the crude product mixture was confirmed by ESI-TOF-MS and
'H-NMR analysis. The ESI-TOF-MS spectrum shows the presence of a molecular peak
of nucleoside 15 (M + H" =343.37 and M + Na" =365.37). Moreover in the '"H-NMR
spectrum a characteristic triplet signal of acetylenic proton of the hexadiynyl side chain
was observed at 1.99 ppm.

Due to difficulties encountered during the purification of nucleoside 15 it was
theorized that the presence of non-polar protecting groups could significantly facilitate

the isolation of cross-coupled product. Therefore we prepared the completely
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isobutyrylated nucleoside 16 and nucleoside 17 that is protected only at the exocyclic

amino group according to Scheme 2.7.
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Scheme 2.7: Synthesis of isobutyrylated compounds 16 and 17.

Compound 16 was prepared from nucleoside 9 by reaction with excess of
isobutyryl chloride (9 eq) in pyridine. In the best case the yield of the reaction was 96%.
Unfortunately the reaction yield of nucleoside 16 significantly fluctuated from case to
case. Despite the fact that byproduct of the acylation reaction is the pyridinium
hydrochloride salt we were suspicious that prolonged treatment for 20 h under this
condition may initiate decomposition of nucleosides present in reaction mixture.

However we did not investigate the influence of reaction time on the reaction yield.

Nucleoside 17 was prepared via transient protection method of Jones.® This

method is a reliable protecting group methodology that allows for differentiation between
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hydroxyl and amino groups of nucleosides. In order to achieve selective protection of
exocyclic amino group the hydroxyl groups are protected prior N-acylation. First a TMS
protecting group is introduced selectively for the hydroxyl groups. This step is followed
by isobutyrylation of exocyclic amino group carried out as a "one pot" reaction. Addition
of concentrated aqueous ammonia hydroxide into reaction mixture for a short time (15
min) hydrolyzed the TMS protecting groups to give N-protected nucleoside generally in
good yield. The Jones transient approach was successfully applied to prepare deazapurine
nucleoside 17 from unprotected nucleoside 9. After purification by column

chromatography the yield of nucleoside 17 was 71 %.

The introduction of these isobutyryl protecting groups renders the nucleoside
sufficiently less polar which should facilitate extraction and workup of the Sonogashira
cross-coupling reaction.

The fully isobutyrylated nucleoside 16 was cross-coupled with 4.9 eq of 1,5
hexadiyne in presence of 5.4 eq of triethylamine at 40°C (Scheme 2.8). It was difficult
to monitor the reaction by the TLC due to the fact that retention factor of starting material
16 (R¢= 0.61) is almost identical with retention factor of cross-coupled product 18 (R¢=
0.63, (EtOAc/Hexane/MeOH 4.5:4.5:0.8)). The reaction was allowed to run for 2 days,
however TLC analysis of the reaction mixture indicated that the composition of the
reaction mixture did not change significantly after the first three hours. We speculate that
the longer reaction times may result in decomposition of the reaction products. This could
be a reason for obtaining only a moderate yield (25%) of nucleoside 18. In the future,

reduced reaction time should be investigated for the coupling reaction.
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Scheme 2.8: Synthesis of nucleoside 18.

The Sonogashira reaction between nucleoside 17 and 2.5 equivalents of 1,5
hexadiyne in the presence of 4.3 equivalents of triethylamine gave the desired cross-
coupled nucleoside 19 in 45% yield (Scheme 2.9). The reaction mixture was stirred at
RT for 3.5 h but TLC revealed that the majority of the product was formed in first 20
minutes. Despite almost identical retention factors of nucleosides 17 and 19, monitoring
of the reaction by TLC indicated the formation of a strong fluorescent spot identified as
nucleoside 19. When the reaction time was reduced to 80 minutes the yield of the
reaction was only slightly lower (39 %). This difference may arise from different work up
procedures of the crude reaction mixture. We assumed that the evaporation of the DMF at
elevated temperature may initiate side reactions and consequently decomposition of the
cross-coupled product. In order to eliminate this step we decided to remove DMF by
means of column chromatography. In the latter case the reaction mixture was directly
purified by the column chromatography. However, in order to obtain sufficiently pure
nucleoside product the procedure of column chromatography was repeated twice. This

could also account for the slightly lower final yield of nucleoside 19.

44



Scheme 2.9: Synthesis of nucleoside 19.

Investigation of the effect of base concentration on the yield of the cross-
coupling reaction suggested that small changes in the concentration of triethylamine did
not play a profound role in efficiency of cross-coupling reaction. The Sonogashira
reaction between nucleoside 17 and 2.5 equivalents of 1,5-hexadiyne in the presence of
2.5 equivalents of triethylamine after 70 min at RT gave the desired cross-coupled
nucleoside 19 in various yields (34-45 %).

On the other hand, modified nucleoside 6 that has replaced the exocyclic amino
group with a methylmercapto group proved to be more efficient in the cross-coupling
reaction with 1,5 hexadiyne with a yield of nucleoside 14 of 53 %. It was observed that
the deoxydeazaguanosine nucleosides 9, 16 and 17 undergo the first step of the cross-
coupling reaction, namely oxidative addition, at a rate faster than modified nucleoside 6.
While the Sonogashira reaction mixture of nucleoside 6 was always a transparent orange
solution, the reaction mixture for nucleosides 9, 16 and 17 became dark brown solution
immediately after addition of 1,5-hexadiyne, which is known to be sign of rapid
consumption of starting iodide.*

Our results suggested that complete protection of all polar functional groups is
not necessary. Selective protection of exocyclic amino group was sufficient to facilitate
isolation of cross-coupled product of Sonogashira reaction with 1,5-hexadiyne. Protecting

groups increase solubility by decreasing the polar influence. In addition, it is well
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documented that the rate of oxidative addition of palladium (0) catalyst to some aryl-
halogen bonds increases as the aromatic ring becomes electron-deficient 3349 The
isobutyryl protecting group eliminates electron donor ability of exocyclic amino group
that may in turn facilitate oxidative addition of Pd catalyst to 7-iodo-7-deazaguanosine.
Consequently this effect could be also responsible for increased reactivity of nucleoside
17 to Sonogashira cross-coupling reaction compared to its unprotected analogue 9.

We have shown that the nucleoside 6 can form the C7 adduct with 1,5 hexadiyne
with a higher yield of desired product via the Sonogashira reaction compared to the
deoxy-7-deazaguanosine nucleosides 9, 16 and 17. It is obvious that the presence of the
exocyclic amino group can significantly change the reactivity of the 7-deazapurine
nucleoside. In order to investigate the effect of the keto group on reactivity of the
deazapurine nucleoside the cross-coupling reaction of nucleoside § with 1,5-hexadiyne
was performed. When nucleoside 5 was reacted with 2.7 eq of 1,5-hexadiyne in presence
of 0.1 eq of PA(PPh;3)4, 0.2 eq of Cul and 3.7 eq of EtsN in DMF cross-coupled product
20 was isolated in 52% yield after 3 h stirring at RT. The same reaction carried out over 4
h lead to a 61 % vyield of nucleoside 20. In the latter case the DMF evaporation was
excluded from the work up and nucleoside 20 was purified directly by column
chromatography. This result demonstrates that the method of isolation and work up may

also contribute to obtaining the desired product in a higher yield.
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Scheme 2.10: Synthesis of nucleoside 20.
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Longer reaction times or higher temperature did not improve the efficiency of the
cross-coupling reaction. Moreover, prolonged reaction times at elevated temperatures
resulted in decomposition of the reactants. For example, when nucleoside § was reacted
with 2.7 eq of 1,5 hexadiyne in presence of 0.1 eq of Pd(PPh;)s, 0.2 eq of Cul, and 3 eq
of EtzN in DMF for 40 h at 40°C nucleoside 20 was not isolated. Surprisingly however, a
small portion (5%) of nucleoside dimer 21 was obtained (Scheme 2.11) as confirmed by

MS and 'H-NMR.
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Scheme 2.11: Synthesis of dimer 21 as a result of prolonged reaction times and higher

temperatures by the Sonogashira reaction.

2.5 Synthesis of Nucleoside Dimers by the Sonogashira Reaction

Having successfully determined conditions to introduce an alkyldiyne moiety via
the Sonogashira reaction at the 7-position of various 7-deazapurines nucleoside, the next
major synthetic challenge was to produce a dimer. Due to the difficulties encountered
with 1-TMS-1,4-pentadiyne, it was decided to explore reactions between 1,5 hexadiyne
and 7-deazapurine nucleosides. Previously reported in the chemical literature were
preparation of 7-deazaadenosine nucleosides with the alkyldiynes 1,5-hexadiyne and 1,7-
octadiyne.”® To our knowledge these are the first attempts to synthesize deazaguanosine
nucleoside cross-coupled adducts linked through the C7 atoms by reacting a C7-iodo-

nucleoside and a nucleoside bearing 1,5-hexadiynyl side chain.
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Our experimental results shown that 7-deazaguanosine nucleosides containing an
exocyclic amino group gave poor yields of cross-coupled adduct via the Sonogashira
reaction. Introduction of isobutyryl protecting group at the exocyclic amino group
rendered isolation of cross-coupled adduct more feasible. However only moderate yields
of 7-deazaguanosine cross-coupled adducts were achieved.

Unlike 7-deazaguanosine, 7-deazapurine nucleosides bearing a methylmercapto
group at the C2 position proved to be more reactive. Moreover, a small amount of
dinucleoside dimer 21 was obtained in 5% yield when nucleoside § was treated with 2.5
eq of 1,5 hexadiyne at 40°C for a longer period of time. The same reaction product,
dimer 21 could be produced by applying our synthetic strategy, involving the cross-
coupling reaction of 7-deazapurine nucleoside § and its hexadiynyl derivative nucleoside
20. We decided to test our synthetic strategy by preparation of nucleoside dimer 21 by
treating nucleoside 5 with 2.5 eq of nucleoside 20 in presence of 0.1 eq of Pd(PPhs)s, 0.2
eq of Cul, and 5 eq of Et;N in DMF according to Scheme 2.12.

TLC analysis indicated complete consumption of iodinated nucleoside 5 after 6 h
at RT. The product of reaction was isolated by column chromatography. A single
purification step was not sufficient enough to yield a nucleoside dimer of sufficient
purity. A second attempt at silica gel column chromatography gave dimer 21 with a 43 %
yield. Both '"H-NMR and MS analysis confirmed identity of nucleoside dimer 21. The
result of this experiment confirmed that our synthetic strategy, the use of two consequent
Sonogashira cross-coupling reactions, under favorable circumstances may lead toward

nucleoside dimers.
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Scheme 2.12: Synthesis of nucleoside dimer 21.

To determine whether the same strategy could be applied to the preparation of the
nucleoside dimer from the less reactive 7-deazaguanosine nucleoside N-2 isobutyrylated
7-deazaguanosine 17 was coupled with 2.5 eq of nucleoside 20 according to Scheme
2.13. The result of this experiment was encouraging with the nucleoside dimer 22

isolated in good yield (41%) after 7 h treatment at RT.
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Scheme 2.13: Synthesis of nucleoside dimer 22.
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One of the ultimate goals was the synthesis of 7-deaza-2’deoxy-guanosine dimer
shown below. Due to the challenges encountered with working with unprotected and very
polar 7-deazadeoxyguanosine under the Sonogashira reaction conditions it was decided to
prepare its analogue 7-deaza-2’deoxy-guanosine dimer 23 where both exocyclic amino
groups are protected by isobutyryl groups by coupling nucleosides 17 and 19 according

to Scheme 2.14.
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Scheme 2.14: Synthesis of nucleoside dimer 23.

The synthesis of the nucleoside dimer 23 was attempted by a Sonogashira cross-coupling
reaction between 1,5-hexadiynyl adduct nucleoside 19 and N-isobutyrylated 7-iodo-7-
deaza-2’deoxyguanosine 17. In our first attempt we used only 2.1 eq of nucleoside 19 and
7 eq of triethylamine. The TLC analysis revealed complete consumption of nucleoside 17
after 5 h stirring at RT. At the same time the formation of two new compounds with
substantial lower retention factors were observed. The retention factor of the major
compound measured by normal phase TLC was 0.22 in MeOH / DCM (1:9). In order to
increase consumption of the nucleoside 19 another portion 0.25 eq of nucleoside 17 was

added into the reaction mixture. The TLC analysis indicated an increase in the formation
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of the minor product. The reaction was terminated after 7 h. Our attempt to separate two
products of reaction by column chromatography failed. However the 'H-NMR analysis of
impure product proved that isolated material is mixture of two nucleoside containing
products. In the ESI-TOF-MS spectrum two major peaks were found with m/z = 769.41
and m/z = 845.46. The first peak represents the molecular mass of desired nucleoside
dimer 23 (M+Na"). The molecular mass of the latter peak m/z = 845.46 (M+Na")
combined with results from "H-NMR analysis suggest that isolated material may also
contain product of homocoupling side reaction which we believe may be nucleoside

dimer 24 (Figure 2.8).

24

Figure 2.8: Proposed structure of the homocoupled side product nucleoside dimer 24.

From the results, it would appear that the process of homocoupling competes
significantly with the desired cross-coupling reaction. Not only does this reaction result
in consumption of terminal alkyne but also in consumption of catalyst. As was mentioned
earlier it is well known fact that palladium(0)—copper (I) catalytic system in presence of
air may initiate homocoupling reactions of a terminal alkyne.”' However we did not
attempt to carry out cross-coupling reaction with different ratios of catalyst. Instead it
was speculated that higher amount of triethylamine base (7 eq) may also be involved in

the formation of homocoupled dimer.
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Therefore in our next attempt to prepare dimer 23 the concentration of
triethyamine base was decreased. At the same time, in order to prevent any interruption in
the cross-coupling reaction due to premature depletion of terminal alkyne through
homocoupling reaction we also decided increase amount of nucleoside 19. We attempted
to couple nucleoside 17 with 2.5 eq of nucleoside 19 in presence of 2.5 eq of
triethylamine. In spite of changing the concentration of base and the terminal alkyne the
reaction followed the similar reaction pathway. Both new compounds were formed
simultaneously. Their similar mobility on TLC and high polarity renders their separation

by means of standard silica gel chromatography impossible.

We also explored the use of a nucleoside that contains a dimethoxytrityl
protecting group at the 5° position that could facilitate isolation of a dinucleoside dimer
and simultaneously significantly facilitate the monitoring of Sonogashira reaction by
TLC. Nucleoside 25 was produced by the reaction between nucleoside 19 and

dimethoxytrityl chloride (Scheme 2.15) in pyridine overnight.
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Scheme 2.15: Synthesis of tritylated nucleoside 25.

In order to protect the 5’~hydroxyl function of nucleoside 19 we chose the DMT
protecting group due to its high lability with acid treatment relative to the MMT. Our

final goal was incorporation of target nucleoside dimer into oligonucleotides duplex by
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standard solid phase synthesis. Therefore it was assumed that nucleosides bearing easily
removable protecting groups compatible with standard solid phase oligonucleotide
synthesis would be favoured. From this point of view the DMT protecting group seems to
be excellent candidate for protection of 5°-hydroxyl function of 2’-deoxy-7-
deazapurines. The treatment of nucleoside 19 with DMT chloride in pyridine afforded

tritylated nucleoside 25 in 42% yield.

The different reactivities of primary and secondary hydroxyl group of 2-
deoxyribofuranosyl moiety of nucleoside 17 allow for selective dimethoxytrityl
protection of the 5’ hydroxyl group. Tritylation is usually carried out by treatment of
alcohol substrate with DMT chloride in pyridine. The bulky trityl chloride exhibits a high
degree of selectivity for the primary hydroxyl group. The trityl ethers are stable to a wide
variety of non-acidic conditions but are easily hydrolysed by dilute acid. In addition the
acid treatment of nucleosides may also trigger cleavage of glycosidic bonds. This is why
more reactive monomethoxytrityl (MMT) and dimethoxytrityl (DMT) groups are used for
protection of 5’-hydroxyl functions of 2’deoxynucleoside rather then trityl. It was found
that introduction of each methoxy group into para position of trityl group significantly
increase rate of acid hydrolysis.> In addition the introduction of electron donor methoxy
groups also increase rate of reaction between trityl chlorides and hydroxyl function.
Because of these properties the MMT and DMT groups are important protecting groups

for primary 5’-hydroxyl functional group of nucleosides.

The proximity of the bulky DMT group relatively close to the reaction centre
could generate an additional obstacle for an already spatially congested arrangement for

the palladium catalyst which could hinder the cross-coupling reaction. We attempted to
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prepare nucleoside dimer 26 from hexadiynyl adduct 25 employing cross-coupling
conditions with 1 eq of compound 17, 1.1 eq of nucleoside 25, 0.1 eq of Pd(PPh3)4, 0.2 eq
of Cul and 1.5 eq of EtsN in DMF at RT according to Scheme 2.16. After 6 h treatment
TLC analysis showed surprisingly low consumption of the starting nucleosides. Apart
from recovered starting nucleosides, a small amount (2% overall yield) of desired
nucleoside dimer 26 was isolated by the silica gel column chromatography. However no
homocoupled product was obtained, only compound 26 was formed as the single product

of the reaction.

N NHiBu
o5
OH
17 HO
: (PhaP)4Pd, Cul, DMF
47 N\ o
NH
SN
DMTO N7 >N “NHiBu
o)
OH

Scheme 2.16: Synthesis of tritylated dimer 26.

In our effort to increase the reaction yield of nucleoside dimer 26 we repeated cross-
coupling reaction between nucleosides 17 and 25 in presence of 5 eq triethylamine. The
TLC analysis revealed that after the first 26 h treatment at RT, the majority of both
starting nucleosides were still present. In order to drive the reaction further another
portion of palladium (0.1eq) and copper (0.2eq) catalyst was added. After 37 h treatment
at RT the reaction mixture did not appear to have progressed any further. Another portion

of palladium and copper catalyst were added and the temperature elevated to 40°C for 3
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h. The TLC analysis revealed that even elevated temperature and a higher dose of catalyst
did not have a significant impact on the reaction. Therefore after 66 h the reaction was
terminated and components of reaction mixture isolated by silica gel column
chromatography. The desired nucleoside dimer 26 was isolated in 12 % yield. However

this compound was highly contaminated with side products of the Sonogashira reaction.

2.6 Conclusions and Future Directions

During the course of our studies one of the major challenges involved separating
polar nucleoside products of Sonogashira cross-coupling reactions from
triethylammonium salts. The formation of both polar byproducts and triethylamine salts
significantly complicates the purification process. Another disadvantage of Sonogashira
cross-coupling reaction is associated with homogenous character of palladium (0)
catalysts. The complete recovery of the catalyst is impossible and consequently the
product of cross-coupling reaction contains high levels of palladium contamination.
These problems are well known and cited in the literature. Methods to overcome these
difficulties may involve use of expensive resins that may neutralize the
triethylammonium by-product during work up,” the use of semiheterogenous catalytic
systems of well dispersed colloidal bimetallic nickel-palladium nanoparticles,*® or the use
of heterogeneous catalyst such as a solid supported Pd/C catalyst.® Attempts to
completely replace the palladium-copper system by nickel-copper catalysts have also
been reported.’® The idea to immobilize the aryl halide on chloromethyl functionalized

polystyrene and subsequently react with acetylenes and catalyst has also been reporte:d.57
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So far only few of these innovations have found practical applications to nucleoside

chemistry.

Another interesting idea is to replace the free triethylamine base with inexpensive
trialkylamine—bound resin and simultaneously utilize heterogenous Pd/C catalysts.”® This
strategy allows one to remove the alkylammonium salts and Pd catalyst by a simple
filtration. The heterogenous Sonogashira protocol that employs a Pd/C catalyst and resin
bound tertiary amine as a base was used to prepare cross-coupled adducts of polar
unprotected deoxyuridine, deoxyadenosine and deoxyguanosine in good to excellent
yields. The idea to anchor nucleoside halides to solid supports was also implemented in

0 . .
3960 However in our work we decided to overcome

order to simplify purification process.
the above mentioned problems by more easily feasible, economical and practical

procedures.

The Sonogashira cross-coupling reaction of free unprotected deoxy-7-
deazaguanosine with terminal alkynes like 1-propyne, 1-hexyne or 5-trifloracetylamino-
1-pentyne are well documented and usually give a good yield of cross-coupled
adduct.’>*® However during our work we experienced difficulties with the isolation of the
hexadiynyl adducts such as nucleoside 15. We assumed that the presence of protecting
groups may reduce polar character of the nucleoside and consequently facilitate the
isolation of cross-coupled product. When the cross-coupling reaction was carried out with
nucleoside 16 that has both 3’and 5’ hydroxyl groups of sugar moiety and exocyclic
amino group of 7-deazapurine protected with the isobutyryl group, a protecting group
with a relatively small size compared to the dimethoxytrityl group, a moderate yield of

hexadiyne adduct nucleoside 18 was obtained. When larger protecting groups are present
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on the nucleoside, such as when attempting to couple tritylated compound 25 with 17,
hardly any product was formed. Given the success as producing dimers 21, 22 and 23, it
would be advisable to use nucleosides that contain less bulky protecting groups during
the homocoupling reaction.

For example, a cross-coupling reaction between compound 17 and a hexadiyne
adduct that contains a 5’-O-levulinyl and 3’-O-tert-butyl dimethylsilyl group could give a

dimer (Figure 2.9).

(o)

2

[
J | NH
N7 >N” " NHiBu

HO
0

OH
17

+ (PhsP)4Pd, Cul, DMF

0

NH

e N P
0 N™N” “NHiBu

Figure 2.9: Proposed synthesis to produce a nucleoside dimer at the C7 positions of 7-

deazaguanosine.

After reduction of the triple bonds in the linker, this dimer could be tritylated selectively
at the free 5°-hydroxyl group and elaborated to the phosphoramidite to enable solid phase
synthesis of a cross-linked oligonucleotide.

This strategy would require additional deprotection steps to enable cross-link

formation, including removal of the levulinyl group by hydrazine, chain extension with
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3’-O-deoxyphosphoramidites, removal of the silyl group by TBAF and chain extension

with 5’-O-deoxyphosphoramidites.
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Chapter 3

Experimental

3.1 Reagents

In general, all solvents used in organic synthesis were anhydrous. Acetonitrile,
dichloromethane (DCM), N,N-dimethylaniline, dimethylformamide (DMF), dioxane,
methanol, pyridine, and triethylamine were purchased from the Aldrich Chemical
Company (Milwaukee, WI, USA). All solvents used in extractions and column
chromatography including acetone, acetonitrile, cyclohexane, dichloromethane, diethylether,
ethyl acetate, ethanol, hexanes and methanol were of reagent quality and purchased from
EMD Chemicals, Inc. (SanDiego, CA, USA).

The following reagents were all reagent grade, purchased from Aldrich Chemical
Company (Milwaukee, WI, USA) and used as received: Chloracetaldehyde (50 % in
water), copper (I) iodide, meta-chloro peroxybenzoic acid, 2,5-dihydroxybenzoic acid,
dimethylaminopyridine, dimethyl sulphate, dithranol, ethyl cyanoacetate, 1,5-hexadiyne
(50% in pentane), N-iodo-succinimide, isobutyryl chloride, phosphorus oxychloride, syn-
2-pyridinealdoxime, sodium hydride, sodium methoxide, tetrakis(triphenylphosphine)
palladium(0), 1,1,3,3-tetramethylguanidine, thiourea and TMS-chloride. The compound
1-chloro-2-deoxy-3,5-di-O-p-toluoyl-B-D-erythro-pentofuranose was purchased from
Berry & Associates, Inc. (Dexter, ML, USA). Anhydrous ammonia was purchased from
Praxair (St. Laurent, QC, Canada). The compound 1-TMS-1,4-pentadiyne was purchased
from GFS Chemicals Inc. (Powell, OH, USA). Dimethoxytrityl chloride was purchased

from Chemgenes Corporation (Wilmington, MA, USA). Ammonium hydroxide (30 % in
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water), ammonium molybdate, celite, ceric sulphate, citric acid, sodium bicarbonate,
sodium hydrogen sulfite, sodium sulfate (anhydrous), sulphuric acid and trifluoroacetic

acid were purchased from EMD Chemicals, Inc. (SanDiego, CA, USA).

3.2 Chromatography

Column chromatography was performed with silica gel (40-63 micron silica gel 60)
purchased from Silicycle (Quebec City, Quebec). Thin-layer chromatography (TLC) was
performed using Merck Kieselgel 60 F-254 aluminium-back analytical silica gel sheets (0.2
mm thickness) from EMD Chemicals, Inc. (SanDiego, CA, USA). Compounds were
visualized on the TLC plate by illumination with a UV light source (Mineralite, emission
wavelength ca. 254 nm), and further stained by exposure to HCI or trifluoroacetic acid
vapours for trityl-containing compounds. Both UV and non UV active compounds could
also be visualized with Mohr’s solution (2.5 g of ammonium molybdate and 1 g of ceric
sulphate in 10% sulphuric acid (w/v)). This was achieved by first dipping the plate in the

solution followed by heating to obtain purple coloured spots/regions.

3.3 Instrumentation
3.3.1 NMR Spectroscopy

All spectra were obtained at ambient temperature, on a Varian XL-300 (Concordia
University) or a Varian XL-500 (McGill University) spectrometer, and the chemical shifts
are reported in ppm downfield from tetramethylsilane (TMS). For the new compounds
synthesized, all 'H assignments were made using the 2-D NMR experiment homonuclear

correlated spectroscopy (COSY). Deuterated solvents were purchased from ACP Chemicals
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Inc. (Montreal, Quebec) and include acetone-Dg, chloroform-CDCl; dichloromethane-Ds,

dimethylsulfoxide-Dg, methanol-CD3;OD.

3.3.2 FAB-Mass Spectrometry
Fast atom bombardment mass spectra were collected by the McGill University
Analytical Services using a Kratos MS25RFA mass spectrometer. Nitrobenzyl alcohol

(NBA) matrix was used.

3.3.3 MALDI TOF Mass Spectrometry

Matrix-assisted laser desorption/ionization time of flight mass spectra were recorded
on a Waters TOF instrument with a minimum laser output of 6 mW at a wavelength of 337
nm light, 3 ns pulse width, 1 mm diameter spot). The MALDI instrument was operated in a

positive (reflection and linear) mode. The matrix used was either 2,5-dihydroxybenzoic

acid or dithranol.

3.4 Synthesis

Synthesis of compound 1

O

$
HN" N g~ CHs

2-thiomethyl-4-amino-pyrimidin-6-one
Ethyl cyanoacetate (16.968g, leq, 0.15mol) and thiourea (13.083g, 1.14eq, 0.172

mol) were added to a solution of sodium methoxide (9.403g, 1.16eq, 0.174 mol) in
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absolute methanol. The mixture was stirred and refluxed for 2 h. After the addition of
water (60 ml) the reaction mixture was treated dropwise with dimethyl sulphate (19.638g,
1.04eq, 156mmol). The reaction mixture was stirred and refluxed for an additional 10
minutes and then cooled down in an ice-bath. Crystallized product 1 was collected by
filtration and washed with water. An additional amount of product 1 was obtained by
concentration of the methanol filtrate to about one-half its volume followed by
crystallization and filtration steps. The overall yield of compound 1 was 76 %.

MP: 274-276°C

Re=0.21 (4.5:4.5:0.8, EtOAc / hexane / methanol)

"H NMR (300MHz, CD;0D) &: 5.09 (s, HS, 1H), 2.55 (s, SCHs, 3H)

ESI-TOF MS: 158.1 (calc. for [CsH,N3 OS + H'] 158.0)

Synthesis of compound 2

0
NH
6 |
2
7N N%\SCH:,,

2- thiomethyl-pyrrolo[2,3-d]pyrimidin-4-one

Sodium acetate (19.5g, 0.238 mol) was dissolved in water (150ml) and the
solution heated to 80°C. Then compound 1 (10g, 1 eq, 0.064 mol) was added followed by
chloracetaldehyde (50% in water, 10.4 g. 1.04 eq, 0.066mol). The suspension formed was
stirred at 80°C for 20 min. After cooling to room temperature the crude product was
isolated by filtration, washed with water followed by acetone. The product was

recrystallized from water to give compound 2 in 23 % yield.
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MP: > 300°C
Re=0.44 (4.5:4.5:0.8, EtOAc / hexane / methanol)

'H NMR (300MHz, DMSO-dg) §: 12.05 (br s, NH), 11.78 (br s, NH) 6.9(dd, H6,1H),6.35
(dd, H5, 1H), 3.3 (s, SCH; 3H)

ESI-TOF MS: 181.0 (calc. for [C;H7N; OS ] 181.0)

Synthesis of compound 3
Cl

SN
LA

N~ “SCH,

=" N

2- thiomethyl-4-chloro pyrrolo[2,3-d] pyrimidine

Compound 2 (12.847g, leq, 0.071 mol), phosphorus oxychloride (150 ml) and
freshly distilled N,N-dimethylaniline (20ml) were combined and heated under reflux for
4 h. The excess phosphorus oxychloride was removed in vacuo on a steam bath. The
residue (~ 50 ml) was poured with stirring onto crushed ice (~350g). A dark brown tar
was formed on the bottom of the beaker with the majority of the product being soluble in
the water. The aqueous solution was brought to pH 3-4 with a saturated sodium
bicarbonate solution, decanted and extracted with diethyl ether (4 x 400ml). The organic
extracts were combined, washed with water, and dried over anhydrous Na,SO4. The
dicthyl ether was removed by evaporation under reduced pressure. The crude product was
recrystallized from cyclohexane—-acetone (1:1 v/v) to give the desired compound 3 in
43.4 % yield. The dark brown tar was taken up in acetone (5 ml), diluted with water (150

ml) and extracted with diethyl ether (4x150 ml). The organic extracts were combined,
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washed with water and dried over anhydrous Na,SO4. The diethyl ether was removed by
evaporation under reduced pressure. The crude product was purified by silica gel column
chromatography using 5% acetone in toluene to afford an additional portion of desired

compound 3 (4.5 % yield) for a total yield of 6.78 g (47.9 %).
R¢(S10,) = 0.43 (1:9, acetone / toluene)

'H NMR (300MHz, CD,Cl,): 9.35 (br s, NH), 7.25 (dd, H6, 1H), 6.58 (dd, H5, 1H), 2.6

(s, SCHs, 3H)

ESI-TOF MS: 200.1 (calec. for [C;Hs CIN3 S + H'] 200.0)

Synthesis of compound 4

7/
N/ N 6 N| N~ “SCH,
7N

4-Chloro-7-(2-deoxy-3,5-di-O-p-toluoyl-B-D-erythro-pentofuranosyl)-2-(methylthio)

pyrrolo [2,3-d]pyrimidine

Compound 3 (0.659g, leq, 3.3 mmol) was suspended in anhydrous acetonitrile
(25 ml), followed by the addition of sodium hydride (0.091g, 1.1 eq, 3.6 mol). The
reaction mixture was stirred at room temperature under a nitrogen atmosphere. After 30
min 1-Chloro-2-deoxy-3,5-di-O-p-toluoyl-B-D-erythro-pentofuranosyl (1.283g, leq, 3.3
mmol) was added portion wise. The temperature was increased to 50°C and the reaction

was stirred for an additional 2 h. The mixture was subsequently filtered to remove a small
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amount of insoluble material and the acetonitrile was removed by distillation under
reduced pressure. The oily residue was purified by silica gel column chromatography

using 10% acetone in toluene to give desired compound 4 in 65 % yield.
R{(Si10,)=0.84 (1:9, acetone / toluene), 0.34 (1:4, EtOAc / hexane)

'"H NMR (300MHz, CD,Cl; ) 5: 7.93 (2xd, Tol, Ju.y=8.2Hz, 4Ar H ), 7.32-7.25(m, Tol,
H6, 4ArH +1H), 6.73 (dd, H1’,1H), 6.56 (d, HS, Jyy =3.6Hz,1H), 5.75 (m, H3’,1H), 4.68
(m, H4*,1H), 4.58 (m, 5°-CH,, 2H), 2.7-3.0 (m, H2’, H2"*, 2H), 2.63 (s, SCHs, 3H), 2.44

(s, CHs, 3H), 2.42 (s, CHs, 3H)

ESI-TOF MS: 574.1 (calc. for [CysHy6 CIN3Os S + Na+] 574.1)

Synthesis of compound 5:

. c
N AP
\/:\/ Lo SN N~ SCH,
7N\ Oi
=/ 1

4-Chloro-7-(2-deoxy-3,5-di-O-p-toluoyl-p-D-erythro-pentofuranosyl)-5-iodo-2-
(methylthio) pyrrolo[2,3-d]pyrimidine

Compound 4 (0.50 g, 1 eq, 0.92mmol) was dissolved in anhydrous DMF (27 ml)
and NIS (1.48 g, 7.2 eq, 6.59 mmol) was added. The mixture was heated to 95°C for 6 h.

On completion of the reaction, as observed by TLC, the mixture was allowed to cool to
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rt. Aqueous sodium bicarbonate (10%, 135 pl) was added and the mixture was
concentrated to 5 ml. The syrup-like residue was diluted with ethyl acetate (40ml) and
washed with water (20ml) followed by 5% aqueous sodium hydrogen sulfite (NaHSO3, 2
x 20ml), saturated NaCl (20ml) and then dried over Na,SO,4 and evaporated. The yellow
residue was purified by silica gel chromatography using 75% CH,Cl, in hexane to afford
colorless fine crystals of the desired iodinated compound 5 (82 % yield).

R¢ (S107)= 0.38 (1:4, EtOAc / hexane)

'H NMR (300MHz, CDCl3) 8: 7.95 (2xd,Tol, Juy=8.1Hz 4Ar H ), 7.39 (s, H6, 1H), 7.29
(m, Tol, 4Ar H), 6.72 (dd, H1’, 1H), 5.73 (m, H3’, 1H), 4.57-4.77 (m, H4’, 5’-CH,, 3H),

2.78(m, H2’, H2"’, 2H), 2.63 (s, SCH3 3H), 2.455 (s, CH;,3H), 2.437 (s, CH3,3H)

ESI-TOF MS: 700.0 (calc. for [CagHys CIIN3O5 S + Na'] 700.0)

Synthesis of compound 6:

7-(2-deoxy-3,5-di-O-p-toluoyl-B-D-erythro-pentofuranosyl)-5-iodo-2-(methylthio) -
pyrrolo[2,3-d]pyrimidin-4-one

To a solution of 5 (0.970 g, leq, 1.43 mmol) in DMF (14.4 ml) and dioxane (9.8
ml) was added syn-2-pyridinealdoxime (0.888 g, 5.5 eq, 7.80 mmol) and 1,1,3,3-

tetramethylguanidine (990u], 5.5 eq, 7.80 mmol). The mixture was stirred at rt for 24 h.
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The reaction was concentrated in vacuo and the residue was taken up in DCM (55 ml),
washed with 0.1M aqueous citric acid (2 x 35 ml), water (35 ml), saturated aqueous
sodium bicarbonate (35 ml), dried over Na,SO4 and evaporated. The residue was purified
by silica gel chromatography using 10 % ethyl acetate in DCM to afford the desired
compound 6 (93.5 % yield).

R¢ (Si07) = 0.38 (1:9, EtOAc / DCM), 0.47 (4.5:4.5:0.8, EtOAc / hexane / methanol)

'H NMR (300MHz, CDCls) &: 9.88(br ,NH), 7.95 (2xd, Ju.y=6.4Hz Tol, 4Ar H ),
7.27(m,Tol, 4Ar H), 7.06(s, H6, 1H) 6.62 (dd, H1’, 1H), 5.69 (m, H3’, 1H), 4.69-4.67(m,
5’-CH,, 2H), 4.58-4.56 (m, H4’,1H), 2.81-2.74 (m, H2’ ,H2”’, 2H), 2.64 (s, SCH3, 3H),
2.45(s, CHs, 3H), 2.44 (s, CH3, 3H)

ESI-TOF MS: 660.0 (calc. for [CagHas IN3O S + H'] 660.1)

Synthesis of compound 7:

| O

NH
Ao

o) 74 |
O_LO N
LS
JN_ Y
=T

2-Methysulfoxide-7-(2-deoxy-3,5-di-O-p-toluoyl-B-D-erythro-pentofuranosyl)-5-iodo-

pyrrolo[2,3-d]pyrimidin-4-one
Compound 6 (1.32 g, 1 eq, 2.0 mmol) was dissolved in DCM (55 ml) and solution
cooled down to 0 °C. Then MCPBA (0.67g, 1.35 eq., 2.71mmol) was added to the stirred

solution. After 15 min the ice bath was removed and stirring continued at rt for an
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additional 2 hrs. The reaction mixture was diluted with DCM (55ml) and washed with
saturated aqueous sodium bicarbonate resulting in the formation of an emulsion. This
emulsion was extracted with additional volumes of DCM. All DCM extracts were
combined, concentrated to 20 ml and dried over Na;SO4. After removal of the Na;SO4 by
filtration, methanol was added to the filtrate to make a 4% methanol in DCM solution
which was directly chromatographed on a short silica gel column to yield sulfoxide 7 (96
% yield).

R¢(510;) = 0.24 (4.5:4.5:0.8, EtOAc / hexane / MeOH)

'H NMR (300MHz, CDCl;) 8: 9.86 (br.s,NH), 7.94 (2xd, Ji.z=8.1Hz, Tol, 4Ar H ), 7.28
(m,Tol, 4Ar H), 7.20(s, H6,1H), 6.50 (dd, H1’,1H), 5.72 (m, H3’,1H), 4.71-4.65 (m, 5’-
CH,, 2H), 4.58 (m, H4’, 1H), 2.97, 2.94 (2 x s, SOCHj3, 3H), 2.80-2.71 (m, H2’ ,H2"’,
2H), 2.45 (s, CH3, 3H), 2.44 (s, CH3;, 3H)

- : . (calc. tor [Cogtg IN3O7 5 + .
ESI-TOF MS: 676.1 (calc. for [Cy3H6 IN3O7 S H+]6761)

Synthesis of compound 8

2-Amino-7-(2-deoxy-3,5-di-O-p-toluoyl-pB-D-erythro-pentofuranosyl) -5-iodo-pyrrolo

[2,3-d]pyrimidin-4-one
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Sulphoxide 7 (1.3g, 1.92 mmol) was suspended in dioxane (25 ml) which was
saturated with anhydrous ammonia at 10°C. The cold suspension was transferred to a Parr
reactor (a sealed stainless steel vessel with 35 ml volume glass inlet) and anhydrous
ammonia was bubbled through the suspension for an additional 10 min at 10°C. The
reaction vessel was sealed, the atmosphere inside the reactor replaced by anhydrous
ammonia and heated to 145°C for 8.5 h. After this time the reaction mixture was cooled
to rt, concentrated and the residue taken up in DCM and extracted with saturated aqueous
sodium bicarbonate. The organic layer was dried with anhydrous Na;SO,, filtered and
evaporated. Purification by silica gel column chromatography using 5% methanol in
DCM gave product 8 as colorless crystals (79 % yield).

R¢(S10,) = 0.17 (4.5:4.5:0.8, EtOAc/ hexane /MeOH)

'H NMR (300MHz, CDCl3) 8: 10.87 (br.s,NH), 7.96 (2xd, Jy.=8.1 Hz Tol, 4Ar H ), 7.27
(m,Tol, 4Ar H), 6.87 (s, H6, 1H) 6.49(dd, H1’, 1H), 6.07 (br s, NH;), 5.69 (m, H3’, 1H),
4.75-4.61(m, 5°-CH,, 2H), 4.55 (m, H4’, 1H), 2.78-2.58 (m, H2’,H2"*, 2H), 2.44 (s, CH3,
3H), 2.42 (s, CHs, 3H)

ESI-TOF MS: 629.1 (calc. for [C27Has INsOg + H'] 629.1)

Synthesis of compound 9

2-Amino-7-(2-deoxy- B-D-erythro-pentofuranosyl)-5-iodo-pyrrolo[2,3-d]pyrimidin-4-one
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Compound 8 (0.803 g, 1.28 mmol) was suspended in methanol (25 ml) that was
saturated with anhydrous ammonia at 0°C. The suspension was transferred to a Parr
reactor and anhydrous ammonia was bubbled through the solution at 0°C for an
additional 10 min. The reaction vessel was sealed and the atmosphere inside the reactor
replaced by anhydrous ammonia. The reaction mixture was heated to 140°C for 2 h,
cooled to rt and concentrated. The residue was taken up in water and extracted with
diethyl ether. Solid impurities were removed by filtration and the aqueous filtrate
concentrated to a solid. The crude product was purified by recrystallization from water
(3ml). Precipitated crystals were collected by filtration and washed with cold water and
diethyl ether. After drying under vacuum, nucleoside 9 was obtained in a 71 % yield.
R¢(5102) = 0.08 (4.5:4.5:0.8, EtOAc / hexane /MeOH), 0.30 (9:1, EtOAc / MeOH)

'H NMR (300MHz, DMSO-dg) 8: 10.46 (br, s, NH), 7.11(s, H6,1H), 6.32 (b,r s, NH,)
6.26 (dd, H1’, 1H), 5.20 (d, J=3.6,3°OH), 4.90 (t, J=5.4Hz, S’OH), 4.26 (m, H3’, 1H),
3.74 (m, H4’, 1H), 3.51-3.46(m, 5’-CH, 2H), 2.35-2.62 , 2.08-2.01(m, H2’,H2”’, 2H)

ESI-TOF MS: 391.1 (calc. for [C;;H;3IN4O,4 - H'] 391.1)

Synthesis of compound 11

Cl

/1 N
o

SCH;
4-chloro-5-iodo-2-(methylthio)-pyrrolo[2,3d]pyrimidine

To a solution of compound 3 (0.504g, leq, 2.52 mmol) in DMF (10 ml) was

added NIS (0.619g, 1.1eq, 2.75mmol). After stirring for 18 h at RT some precipitate,
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which was crystalline in nature, was formed. These crystals were filtered and the
remaining solution was evaporated under vacuum. The solid residue and precipitated
crystals were combined and recrystaillized from methanol to give compound 11 in 79 %
yield.

R¢(Si0;) = 0.45 (1:3, EtOAc / hexane)

'"H NMR (300MHz, DMSO-dg ) 8: 12.75 (br s, NH), 7.76 (s, H6, 1H), 2.54 (s, SCH; 3H)

ESI-TOF MS: 325.9 (cale. for [C;Hs CIIN3S + H'] 325.9)

Synthesis of compound 12
(H3C)3Si——=
\\ Cl
I ~N

7
A
H N

SCHj,
4-chloro-5-(5-TMS-1,4-pentendiynyl)-2-(methylthio)-pyrrolo[2,3-d}pyrimidine

A mixture of compound 11 (66.2 mg, 1 eq, 0.203 mmol), tetrakis(triphenyl-
phosphine) palladium (0) (23.4 mg, 0.1 eq, 0.020 mmol) and copper iodide (7.8 mg, 0.2
eq, 0.041 mmol) in DMF (2.5 ml) was placed in round bottom flask (5ml) and bubbled
with argon for 5 min. Then, 1-TMS-1,4-pentadiyne (35 ul , 27.6mg ,1 eq, 0.203 mmol)
and triethylamine (56 pl, 40.7 mg, 2eq, 0.402 mmol) were added. The reaction vessel
was sealed with a rubber septum and the atmosphere was replaced with argon. The
reaction mixture was kept at 40°C on a sand bath. After 19 h the mixture was transferred
to an oil bath and stirred at 40°C for an additional 24 h. The reaction mixture was

concentrated, taken up with EtOAc and absorbed onto silica gel (1 g). This material was
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purified by silica gel column chromatography using a gradient of 5-10 % EtOAc in
hexane to isolate compound 12 in 3% yield.

R¢(810,)=0.5 (1:3, EtOAc / hexene)

'H NMR (300MHz, CDCl3) &: 8.8 (br s, NH), 7.2(m, H6, 1H), 3.95(s, CHa, 2H), 2.6 (s,
SCH;, 3H), 0.2 (s, CHj, 9H)

ESI-TOF MS: 334 (calc. for [C sH;¢CIN;SSi + H] 334.1)

Synthesis of compound 13

2-Methylthio-7-(2-deoxy-3,5-di-O-p-toluoyl-p-D-erythro-pentofuranosyl)-5-(1-hexynyl)-

pyrrolo[2,3-d] pyrimidin-4-one

A mixture of 6 (66.9 mg, leq, 0.101 mmol), tetrakis(triphenylphosphine)-
palladium (Ph;P)4Pd (11.8 mg , 0.1 eq, 0.010mmol), copper iodide (4.0mg, 0.2eq, 0.021
mmol) in DMF (1ml) was bubbled with argon for 5 min in order to eliminate oxygen
from the system. Then 97% solution of 1-hexyne (21.2 mg, 29 pl, 0.25 mmol) and
triethylamine (25.3 mg, 35 ul, 0.25 mmol) were added. Reaction flask was sealed with a
rubber septum, the atmosphere inside was replaced with argon. The mixture was stirred at

40°C for 16 h, after which it was concentrated, taken up with ethyl acetate and absorbed
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on the surface of Celite (2g). This material was purified by normal silica gel column
chromatography using 10-40 % ethylacetate in hexane to give compound 13 in 32%

yield.
R¢(Si0,) = 0.54 (EtOAc/Hexane/Methanol4.5:4.5:0.8)

'H NMR (300MHz, CD,Cl,) 8: 10.15 (br s, NH), 7.95 (2xd, J;.4=8.25, Tol, 4Ar H ),
7.29(m,Tol, 4Ar H), 7.10 (s, H6,1H) 6.63 (dd, HI’,1H), 5.69 (m, H3’, 1H), 4.62(m, 5’
CH,, 2H), 4.56 (m, H4, 1H), 2.82-2.64 (m, H2’,H2”, 2H), 2.64 (s, SCH;, 3H), 2.43(s,
CHj, 3H), 2.42 (s, CHs, 3H), 1.65-1.4(m, 3x CHy, 6H), 0.93 (t, Jyii= 7.05 Hz, CHs, 3H)

ESI-TOF MS: 614.23 (calc. for [C34H35N304S + H'] 614.2)

Synthesis of compound 14

7/ N\ o
0 74 l NH
_Q__H.o NP s,
O
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2-Methylthio-7-(2-deoxy-3,5-di-O-p-toluoyl-B-D-erythro-pentofuranosyl)-5-(1,5-
hexdiynyl)-pyrrolo[2,3-d] pyrimidin-4-one

A mixture of 6 (67.1 mg, leq, 0.102 mmol), tetrakis(triphenylphosphine)-
palladium (0) (11.6 mg , 0.1 eq, 0.010mmol), copper iodide (4.4mg, 0.2eq, 0.023 mmol)
in DMF (1ml) was bubbled with argon. Then, 1,5-hexadiyne (a 50% w/w solution in

pentane, 0.25 mmol) and triethylamine (27.6mg, 0.273mmol) were added. The reaction
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flask was sealed with a rubber septum and the atmosphere inside of the flask replaced
with argon. The reaction mixture was stirred at 40°C for 16 h. Then, the reaction mixture
was concentrated, taken up with ethyl acetate and absorbed on the surface of Celite (2g).
This material was purified by normal silica gel column chromatography using 10-40 %

ethyl acetate in hexane to give compound 14 in 53 % yield.
R¢(Si0,) = 0.41 (4.5:4.5:0.8, EtOAc / hexane / methanol)

'H NMR (300MHz, CDCl3) &: 10.25 (br s,NH), 7.92 (2xd, Jus=6Hz, Tol, 4Ar H), 7.25
(m,Tol, 4Ar H), 7.09(s, H6, 1H) 6.59 (dd, HI’, 1H), 5.67 (m, H3, 1H), 4.62(m, 5’-CHa,
2H), 4.54 (m, H4’, 1H), 2.8- 2.65 (m, H2’, H2**, 2H), 2.66 (m,CHs-a, , 2H), 2.62 (s,
SCHs, 3H), 2.49 (m, CH,-b, 2H), 2.42 (s, CHs, 3H), 2.40 (s, CHs, 3H), 1.99 (¢, Jun =2.7,

CH-c, 1H).

ESI-TOF MS: 610.23 (calc. for [C34H31N304S + H+] 610.2)

Synthesis of compound 16

2-(N-isobutyryl)-amino-7-(2-deoxy-3,5-di-O-isobutyryl-B-D-erythro-pentofuranosyl)-5-
iodo-pyrrolo[2,3-d]pyrimidin-4-one
To a solution of compound 9 (0.269g, leq, 0.686mmol) in pyridine (6ml) was

added DMAP (4mg, 0.05eq, 0.034 mmol) and isobutyryl chloride (0.658g, 9eq,
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6.171mmol). The reaction mixture was stirred for 5 minutes, allowed to cool to rt and
then placed in an oil bath at 35°C. After 20 h, the byproduct pyridinium hydrochloride
was filtered and the filtrate was evaporated under reduced pressure. The residue was
taken up in ethyl acetate and absorbed onto Celite (1.5g). This material was purified by
normal silica gel column chromatography using a gradient of 20-30 % ethylacetate in

hexane to give compound 16 in 96% yield.
R¢(S10;): 0.63 (4.5:4.5:0.8, EtOAc/Hexane/MeOH)

'H NMR (300MHz, acetone-dg) 5: 11.84 (br.s, NH), 10.33 (br.s, NH), 7.31(s, H6,1H)
6.37 (dd, H1’, 1H), 5.39 (m, H3’, 1H), 4.32(m, 5’-CH,, 2H), 4.25(m, H4’, 1H), 2.96-2.46

(m,CH(N-iBu), H2’, H2’*,CH(O-iBu), SH), 1.24-1.15 (m,CHs, iBu, 18H)

ESI-TOF MS: 603.104, 625.146 (calc. for [C3sH3;IN4O7 + H'] 603.1, [Cp3H3,IN4O7 +

Na'] 625.1)

Synthesis of compound 17

I O
NH O
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2-(N-isobutyryl)amino-7-(2-deoxy-B-D-erythro-pentofuranosyl)-5-iodo-pyrrolo[2,3-d]
pyrimidin-4-one
Compound 9 (1.027 g, 1 eq, 2.618 mmol) was coevaporated with pyridine (3x)

then suspended in pyridine (29ml). Then, TMS-CI (3.6 ml, 10.9 eq, 28.465 mmol) was
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added and the mixture was allowed to stir for 30 min. This was followed by adding and
stirring continuously iBu-Cl (1.4 ml, 5 eq, 13.258 mmol). After 2h water (6ml) was
added with stirring for 5 min at 0°C. Cold NH;OH (30 % in water, 5.72ml) was
introduced and allowed to stir for an additional 15 min. The solvent was removed in
vacuo, the crude taken up in ethyl acetate, dried over sodium sulphate and adsorbed onto
the silica gel This material was purified by silica gel column chromatography using a

gradient of 40-0% hexane in ethyl acetate to give compound 17 in 71 % yield.
R¢(S10;): 0.53 (EtOAc/MeOH 9:1)

'H NMR (300MHz, acetone-dg) 8: 11.80 (br s,;NH), 10.33(br s, NH), 7.38(s,H6, 1H),
6.38(dd, H1’,1H), 4.55(m, H3’, 1H), 4.47(br s, 3°OH), 4.14(br s, 5’OH), 3.96(m, H4",
1H), 3.72(m, 5’-CH,, 2H), 2.90 (m, CH(iBu),1H), 2.51-2.421 and 2.28- 2.21 (m, H2’,

H2”"), 1.23(d, J=6.9Hz, CH3(iBu),6H)

MALDI TOF MS: 463.0, 485.0 (calc. for [CsH;sIN4Os + H'] 463.0, [C1sH 9IN4Os +

Na'] 485.0)
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Synthesis of compound 18

Lo, . ety
o

2-(N-isobutyryl)-amino-7-(2-deoxy-3,5-di-O-isobutyryl-B-D-erythro-pentofuranosyl)-5-
(1,5-hexdiynyl)-pyrrolo[2,3-d]pyrimidin-4-one

A mixture of 16 (60.2mg, leq, 0.1 mmol), tetrakis(triphenylphosphine)-
palladium (0) (11.5mg , 0.1 eq, 0.01mmol), copper iodide (3.8mg, 0.2eq, 0.02mmol) in
DMF (0.5ml) was bubbled with argon for 5 min with sonication in order to eliminate
oxygen from system. The reaction vessel was sealed with a rubber septum and the
atmosphere inside the vessel was replaced with argon. Then, a solution of 1,5-hexadiyne
in pentane (50%, 76.7mg, 4.9eq, 0.491 mmol) and triethylamine (54.3mg, 5.4eq,
0.537mmol) were injected into the reaction flask. The reaction mixture was stirred at 40
OC for 48 h. The reaction mixture was loaded directly onto a silica gel column and
chromatography performed using a gradient of 50-100% DCM in hexane followed by 0-
50% ethyl acetate in DCM. All fractions containing compound 18 were combined,
concentrated under reduced pressure at 50°C and adsorbed onto silica gel (4g). After a
second purification by silica gel column chromatography using 10% ethyl acetate in

hexane compound 18 was isolated in 25 % yield.

R¢(S10,): 0.63 (EtOAc/Hexane/MeOH 4.5:4.5:0.8)
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'"H NMR (300MHz, CDCl3) 8: 11.68(br.s,;NH), 8.58(br.s,NH), 7.0(s, H6, 1H) 6.17 (dd,
H1’, 1H), 5.40 (m, H3’, 1H), 4.75 (m, H4’, 1H), 4.33-4.23(m, 5°-CHa, 2H), 2.90 (m, H2’,
1H), 2.73-2.3(m, CH( N-iBu ),CH( O-iBu ), H2”>, CH,-a,CH,-b, 8H ), 2.03 (t, J=2.7 Hz,

CH-c, 1H), 1.31-1.18 (m,CHs( iBu), 18H)

ESI-TOF MS: 552.95, 574.92 (calc. for [CasH3eN;O; + H'] 553.3, [CaoH3gN4O7 + Na']

575.3)

Synthesis of compound 19

Y/ N
74 | NH O
HO N N/)\N)J\(
o
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2-(N-isobutyryl)amino-7-(2-deoxy-B-D-erythro-pentofuranosyl)-5-(1,5-hexdiynyl)-
pyrrolo [2,3-d] pyrimidin-4-one

A mixture of 17 (0.327g, leq, 0.707 mmol), tetrakis(triphenylphosphine)
palladium (0) (82.5 mg 0.1 eq, 0.071mmol), copper iodide (27.7mg, 0.2eq, 0.145mmol)
in DMF (1.8ml) was bubbled with argon for 5 min and sonicated in order to eliminate
oxygen from system. The reaction vessel was sealed with a rubber septum and the
atmosphere in the vessel was replaced with argon. Then, a solution of 1,5-hexadiyne in
pentane ( 50 %, 0.295 g, 2.7 eq, 1.891 mmol ) and triethylamine (0.273 g, 3.8 eq, 2.694
mmol ) were injected into the reaction flask. The reaction mixture was stirred at RT for

80mins. The crude mixture was purified by silica gel chromatography using a gradient of
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0-2% MeOH in DCM. Fractions containing compound 19 were combined, concentrated
under reduced pressure at 50°C and absorbed on to silica gel (2g). Pure compound 19 was
isolated in 39% yield after a second column purification using gradient of 0-3% MeOH in

DCM.
R¢(Si0,): 0.43 (DCM/MeOH 9:1)

'H NMR (300MHz, CDCls) &: 11.67(br s, NH), 8.04(br s, NH), 6.97(s, H6, 1H) 6.12(dd,
H1’, 1H), 4.69(m, H3’, 1H), 4.14 (m, H4’, 1H) 3.96-3.81 (m, 5’-CHy, 2H), 2.84-2.48(m,
H2’, CH,-a, CH(iBu), CH,-b, 6H), 2.29(m, H2"*, 1H), 2.04(t, Ju.i=2.7,CH-c, 1H), 1.29

(2xd, Jjn =2.1Hz, CH;(iBu))

MALDI TOF MS: 412.51, 434.52 (calc. for [CyH24N4Os + H'] 413.2, [Cy1Hp4N4O5 +

Na‘] 435.2)

Synthesis of compound 20

/2
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2-Methylthio-4-chloro-7-(2-deoxy-3,5-di-O-p-toluoyl-B-D-erythro-pentofuranosyl)-5-

(1,5-hexdiynyl)-pyrrolo[2,3-d] pyrimidine
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To a mixture of § (0.55g, leq, 0.811 mmol), tetrakis(triphenyl phosphine)
palladium (0) (0.093 g , 0.1 eq, 0.081 mmol), copper iodide (0.031g, 0.2 eq, 0.164
mmol) in DMF ( 11.5 ml ) was bubbled with argon for 5 min while sonicated in order to
eliminate oxygen from system. Reaction vessel was sealed with a rubber septum and the
atmosphere inside the vessel was replaced with argon. Then 50% pentane solution of 1,5-
hexadiyne (0.336g, 2.65eq, 2.153mmol) and triethylamine (0.304g, 3.7eq, 3.0lmmol)
were injected into the reaction flask. The reaction mixture was stirred at RT for 4 h. The
reaction mixture was purified by silica gel chromatography using first 50-100% DCM in
hexane then 0-50% ethyl acetate in DCM. All fractions containing compound 20 were
combined, concentrated at reduced pressure at 50°C and absorbed into SiO; (4g). Pure
compound 20 was isolated in 61% yield after an additional silica gel column

chromatography using 10% ethyl acetate in hexane.

R(Si0,)=0.34 (EtOAc/Hexene 1:4), H NMR (500MHz, CDCls) 8:7.95 (2xd, Ji.=8.1Hz,
Tol, 4ArH), 7.39(s, H6, 1H), 7.29 (m,Tol, 4Ar H), 6.70 (dd, H1, 1H), 5.72(m, H3, 1H),
4.67(m, 5-CHy, 2H), 4.59 (m, H4’, 1H), 2.77 (m, H2’ H2"*, 2H), 2.67(t, Juyy =7.4 Hz,
CHy-a, 2H), 2.63 (s, SCH, 3H), 2.50 (m, CH,-b, 2H), 2.45 (s, CHs, 3H), 2.43 (s,CHs,

3H), 2.04(t, Jin =2.65 Hz, CH-c, 1H)

MALDI TOF MS : 628.17 (calc. for [C34H30CIN;3OsS + H'] 628.17)
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Synthesis of compound 21

A mixture of 5 (67.8mg, leq, 0.1 mmol), 20 (157 mg, 2.5¢q, 0.25mmol),
tetrakis(triphenylphosphine)palladium (11.6mg, 0.1 eq, 0.01mmol), copper iodide (4mg,
0.21eq, 0.021mmol) in DMF (2.75ml) was bubbled with argon for 5 min with sonication
in order to eliminate oxygen from system. The reaction vessel was sealed with a rubber
septum and the atmosphere in the vessel was replaced with argon. Then, triethylamine
(56 mg, 5.53 eq, 0.55 mmol) was injected into the reaction flask. The reaction mixture
was stirred at RT for 6 h. The crude mixture was directly purified by silica gel column
chromatography using a gradient of 0-30 % ethyl acetate in hexane. All fractions
containing compound 21 were combined, concentrated under reduced pressure at 50°C
and adsorbed onto silica gel. Pure compound 21 was isolated in 42.9 % yield after a

second column purification using a gradient of 10-20 % ethyl acetate in hexane.

R¢(Si0;)=0.31 (EtOAc/Hexane 1:3), 0.2 (EtOAc/Hexane 1:4)

81



'H NMR (300MHz, CDCl;) : 7.99-7.89 (2xd, Ju; =8.1Hz, Tol, 8ArH), 7.40(s, H6, 2H),
7.31-7.23(m,Tol, 8Ar H), 6.70 (dd, H1’, 2H), 5.72(m, H3’, 2H), 4.71-4.58 (m, H4*, 5’-
CH,, 6H), 2.82-2.50 (m, H2’, H2", 4H), 2.74(s, CHp-a, CHy-b, 4H), 2.62 (s, SCH, 6H),

2.45 (s, CHs, 6H), 2.41 (s, CHs, 6H)

MALDI TOF MS: 1177.48 (calc. for [CeHssCLNO oS, + H'] 1177.3)

Synthesis of compound 22

OH

A mixture of 17 (48mg, 1 eq, 0.104 mmol), 20 (155 mg, 2.4 eq, 0.246 mmol)
tetrakis(triphenylphosphine)palladium (12.3 mg , 0.1 eq, 0.011 mmol) and copper iodide
(3.8 mg, 0.19 eq, 0.02 mmol) in DMF (1ml) was bubbled with argon for 5 min with
sonication in order to eliminate oxygen from the system. The reaction vessel was sealed

with a rubber septum and the atmosphere in the vessel was replaced with argon. Then,
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triethylamine (71.3 mg, 6.8 eq, 0.705 mmol) was injected into the reaction flask. The
mixture was stirred at RT for 7 h, after which it was directly applied to a silica gel
column and purified by chromatography using a gradient of 5-15 % ethyl acetate in
hexane. Compound 22 was isolated in 41 % yield.

R¢(S810;) = 0.75 (EtOAc/MeOH 9:1)

'H NMR (300MHz, CDCl3) 8: 11.66(br s,;NH ), 8.06 (br s, NH ), 7.94 (2 x d, Jji.1; =8.1Hz,
Tol, 4ArH), 7.53 (s, H6, 1H), 7.25 (m, 4Ar H, Tol), 7.0 (s, H6, 1H), 6.73 (dd , H1’, 1H),
6.14(m, H1’,1H) 5.78(m, H3’, 1H), 4.74-4.52 (m, H4’, 5°-CH,, H3’, 4H), 4.12(m,
H4’,1H), 3.95-3.75(m, 5’-CH,, 2H), 2.95-2.48 (m, H2’-a, H2’’-a, H2’-b, CH(iBu), 4H),
2.76(m, CHs-a, CH,-b, 4H), 2.63 (s, SCH3, 3H), 2.45 (s, CHs, 3H), 2.41 (s, CH3, 3H),

2.28 (m, H2**-b, 1H), 1.26 (d, Jir.y =6.9Hz,CH(iBu), 6H)

MALDI TOF MS: 984.25 (calc. for [C4gHssCIN7O10S + Na'] 984.3)

Synthesis of compound 25

2-(N-isobutyryl)amino-7-(2-deoxy-5-O-(4,4’-dimethoxytrityl)-B-D-erythro-

pentofuranosyl)-5-(1,5-hexdiynyl)-pyrrolo [2,3-d] pyrimidin-4-one
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Compound 19 (110 mg, leq, 0.267 mmol) was coevaporated with pyridine (3 x 5
ml) and taken up in pyridine (2ml). To the solution was added DMAP (0.7mg) and
DMT-CI (129 mg, 1.4eq, 0.380 mmol). The reaction mixture was stirred at RT for 24 h.
After this time, the biproduct pyridinium hydrochloride was filtered and the filtrate
evaporated under reduced pressure. The residue was taken in DCM and the organic layer
washed with NaHCO5 (5%), dried over Na,SOys, concentrated and purified by silica gel
column chromatography using a gradient of 0-3 % methanol in DCM to give compound

25 in a 58 % yield.
R¢(Si0,): 0.47(EtOAc/Hexane/MeOH 4.5:4.5:1)

'H NMR (300MHz, CD,Cl) &: 11.57(br s,NH), 8.08 (br s, NH), 7.04(s, H6, 1H) 7.45-
6.82 (m,DMT, 13H), 6.35(m, H1’, 1H), 4.53(m, H3’, 1H), 4.02(m, H4’, 1H), 3.78 (s,
CH;0, 6H) 3.34-3.21 (m, 5°-CHa, 2H), 2.66(m,CH,-a, 2H), 2.49-2.23 (m, CH(iBu), H2’,

H2*’, CH,-b, SH), 2.05(t, .t =2.7Hz, CH-c, 1H), 1.2(m, CH;(iBu), 6H)

: . calc. for [C4oHoN4O7 + Na .
MALDI TOF MS: 737.52 (calc. for [C4,H42N4O N+] 737.3)
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Appendix A: 11{ NMR Spectrum of Compound 20 (in CDCls)
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Appendix C: '"H NMR Spectrum of Compound 21 (in CDCls)
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Appendix E: 'H NMR Spectrum of Compound 22 (in CDCls)
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